1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
4 * Copyright 2011-2014 VMware, Inc., Palo Alto, CA., USA
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
29 #include "vmwgfx_drv.h"
31 #define VMW_FENCE_WRAP (1 << 31)
33 struct vmw_fence_manager
{
34 int num_fence_objects
;
35 struct vmw_private
*dev_priv
;
37 struct list_head fence_list
;
38 struct work_struct work
;
41 u32 event_fence_action_size
;
43 struct list_head cleanup_list
;
44 uint32_t pending_actions
[VMW_ACTION_MAX
];
45 struct mutex goal_irq_mutex
;
46 bool goal_irq_on
; /* Protected by @goal_irq_mutex */
47 bool seqno_valid
; /* Protected by @lock, and may not be set to true
48 without the @goal_irq_mutex held. */
52 struct vmw_user_fence
{
53 struct ttm_base_object base
;
54 struct vmw_fence_obj fence
;
58 * struct vmw_event_fence_action - fence action that delivers a drm event.
60 * @e: A struct drm_pending_event that controls the event delivery.
61 * @action: A struct vmw_fence_action to hook up to a fence.
62 * @fence: A referenced pointer to the fence to keep it alive while @action
64 * @dev: Pointer to a struct drm_device so we can access the event stuff.
65 * @kref: Both @e and @action has destructors, so we need to refcount.
66 * @size: Size accounted for this object.
67 * @tv_sec: If non-null, the variable pointed to will be assigned
68 * current time tv_sec val when the fence signals.
69 * @tv_usec: Must be set if @tv_sec is set, and the variable pointed to will
70 * be assigned the current time tv_usec val when the fence signals.
72 struct vmw_event_fence_action
{
73 struct vmw_fence_action action
;
75 struct drm_pending_event
*event
;
76 struct vmw_fence_obj
*fence
;
77 struct drm_device
*dev
;
83 static struct vmw_fence_manager
*
84 fman_from_fence(struct vmw_fence_obj
*fence
)
86 return container_of(fence
->base
.lock
, struct vmw_fence_manager
, lock
);
90 * Note on fencing subsystem usage of irqs:
91 * Typically the vmw_fences_update function is called
93 * a) When a new fence seqno has been submitted by the fifo code.
94 * b) On-demand when we have waiters. Sleeping waiters will switch on the
95 * ANY_FENCE irq and call vmw_fences_update function each time an ANY_FENCE
96 * irq is received. When the last fence waiter is gone, that IRQ is masked
99 * In situations where there are no waiters and we don't submit any new fences,
100 * fence objects may not be signaled. This is perfectly OK, since there are
101 * no consumers of the signaled data, but that is NOT ok when there are fence
102 * actions attached to a fence. The fencing subsystem then makes use of the
103 * FENCE_GOAL irq and sets the fence goal seqno to that of the next fence
104 * which has an action attached, and each time vmw_fences_update is called,
105 * the subsystem makes sure the fence goal seqno is updated.
107 * The fence goal seqno irq is on as long as there are unsignaled fence
108 * objects with actions attached to them.
111 static void vmw_fence_obj_destroy(struct dma_fence
*f
)
113 struct vmw_fence_obj
*fence
=
114 container_of(f
, struct vmw_fence_obj
, base
);
116 struct vmw_fence_manager
*fman
= fman_from_fence(fence
);
118 spin_lock(&fman
->lock
);
119 list_del_init(&fence
->head
);
120 --fman
->num_fence_objects
;
121 spin_unlock(&fman
->lock
);
122 fence
->destroy(fence
);
125 static const char *vmw_fence_get_driver_name(struct dma_fence
*f
)
130 static const char *vmw_fence_get_timeline_name(struct dma_fence
*f
)
135 static bool vmw_fence_enable_signaling(struct dma_fence
*f
)
137 struct vmw_fence_obj
*fence
=
138 container_of(f
, struct vmw_fence_obj
, base
);
140 struct vmw_fence_manager
*fman
= fman_from_fence(fence
);
141 struct vmw_private
*dev_priv
= fman
->dev_priv
;
143 u32
*fifo_mem
= dev_priv
->mmio_virt
;
144 u32 seqno
= vmw_mmio_read(fifo_mem
+ SVGA_FIFO_FENCE
);
145 if (seqno
- fence
->base
.seqno
< VMW_FENCE_WRAP
)
148 vmw_fifo_ping_host(dev_priv
, SVGA_SYNC_GENERIC
);
153 struct vmwgfx_wait_cb
{
154 struct dma_fence_cb base
;
155 struct task_struct
*task
;
159 vmwgfx_wait_cb(struct dma_fence
*fence
, struct dma_fence_cb
*cb
)
161 struct vmwgfx_wait_cb
*wait
=
162 container_of(cb
, struct vmwgfx_wait_cb
, base
);
164 wake_up_process(wait
->task
);
167 static void __vmw_fences_update(struct vmw_fence_manager
*fman
);
169 static long vmw_fence_wait(struct dma_fence
*f
, bool intr
, signed long timeout
)
171 struct vmw_fence_obj
*fence
=
172 container_of(f
, struct vmw_fence_obj
, base
);
174 struct vmw_fence_manager
*fman
= fman_from_fence(fence
);
175 struct vmw_private
*dev_priv
= fman
->dev_priv
;
176 struct vmwgfx_wait_cb cb
;
179 if (likely(vmw_fence_obj_signaled(fence
)))
182 vmw_fifo_ping_host(dev_priv
, SVGA_SYNC_GENERIC
);
183 vmw_seqno_waiter_add(dev_priv
);
187 if (intr
&& signal_pending(current
)) {
192 cb
.base
.func
= vmwgfx_wait_cb
;
194 list_add(&cb
.base
.node
, &f
->cb_list
);
197 __vmw_fences_update(fman
);
200 * We can use the barrier free __set_current_state() since
201 * DMA_FENCE_FLAG_SIGNALED_BIT + wakeup is protected by the
205 __set_current_state(TASK_INTERRUPTIBLE
);
207 __set_current_state(TASK_UNINTERRUPTIBLE
);
209 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
, &f
->flags
)) {
210 if (ret
== 0 && timeout
> 0)
215 if (intr
&& signal_pending(current
)) {
223 spin_unlock(f
->lock
);
225 ret
= schedule_timeout(ret
);
229 __set_current_state(TASK_RUNNING
);
230 if (!list_empty(&cb
.base
.node
))
231 list_del(&cb
.base
.node
);
234 spin_unlock(f
->lock
);
236 vmw_seqno_waiter_remove(dev_priv
);
241 static const struct dma_fence_ops vmw_fence_ops
= {
242 .get_driver_name
= vmw_fence_get_driver_name
,
243 .get_timeline_name
= vmw_fence_get_timeline_name
,
244 .enable_signaling
= vmw_fence_enable_signaling
,
245 .wait
= vmw_fence_wait
,
246 .release
= vmw_fence_obj_destroy
,
251 * Execute signal actions on fences recently signaled.
252 * This is done from a workqueue so we don't have to execute
253 * signal actions from atomic context.
256 static void vmw_fence_work_func(struct work_struct
*work
)
258 struct vmw_fence_manager
*fman
=
259 container_of(work
, struct vmw_fence_manager
, work
);
260 struct list_head list
;
261 struct vmw_fence_action
*action
, *next_action
;
265 INIT_LIST_HEAD(&list
);
266 mutex_lock(&fman
->goal_irq_mutex
);
268 spin_lock(&fman
->lock
);
269 list_splice_init(&fman
->cleanup_list
, &list
);
270 seqno_valid
= fman
->seqno_valid
;
271 spin_unlock(&fman
->lock
);
273 if (!seqno_valid
&& fman
->goal_irq_on
) {
274 fman
->goal_irq_on
= false;
275 vmw_goal_waiter_remove(fman
->dev_priv
);
277 mutex_unlock(&fman
->goal_irq_mutex
);
279 if (list_empty(&list
))
283 * At this point, only we should be able to manipulate the
284 * list heads of the actions we have on the private list.
285 * hence fman::lock not held.
288 list_for_each_entry_safe(action
, next_action
, &list
, head
) {
289 list_del_init(&action
->head
);
291 action
->cleanup(action
);
296 struct vmw_fence_manager
*vmw_fence_manager_init(struct vmw_private
*dev_priv
)
298 struct vmw_fence_manager
*fman
= kzalloc(sizeof(*fman
), GFP_KERNEL
);
303 fman
->dev_priv
= dev_priv
;
304 spin_lock_init(&fman
->lock
);
305 INIT_LIST_HEAD(&fman
->fence_list
);
306 INIT_LIST_HEAD(&fman
->cleanup_list
);
307 INIT_WORK(&fman
->work
, &vmw_fence_work_func
);
308 fman
->fifo_down
= true;
309 fman
->user_fence_size
= ttm_round_pot(sizeof(struct vmw_user_fence
)) +
311 fman
->fence_size
= ttm_round_pot(sizeof(struct vmw_fence_obj
));
312 fman
->event_fence_action_size
=
313 ttm_round_pot(sizeof(struct vmw_event_fence_action
));
314 mutex_init(&fman
->goal_irq_mutex
);
315 fman
->ctx
= dma_fence_context_alloc(1);
320 void vmw_fence_manager_takedown(struct vmw_fence_manager
*fman
)
324 (void) cancel_work_sync(&fman
->work
);
326 spin_lock(&fman
->lock
);
327 lists_empty
= list_empty(&fman
->fence_list
) &&
328 list_empty(&fman
->cleanup_list
);
329 spin_unlock(&fman
->lock
);
331 BUG_ON(!lists_empty
);
335 static int vmw_fence_obj_init(struct vmw_fence_manager
*fman
,
336 struct vmw_fence_obj
*fence
, u32 seqno
,
337 void (*destroy
) (struct vmw_fence_obj
*fence
))
341 dma_fence_init(&fence
->base
, &vmw_fence_ops
, &fman
->lock
,
343 INIT_LIST_HEAD(&fence
->seq_passed_actions
);
344 fence
->destroy
= destroy
;
346 spin_lock(&fman
->lock
);
347 if (unlikely(fman
->fifo_down
)) {
351 list_add_tail(&fence
->head
, &fman
->fence_list
);
352 ++fman
->num_fence_objects
;
355 spin_unlock(&fman
->lock
);
360 static void vmw_fences_perform_actions(struct vmw_fence_manager
*fman
,
361 struct list_head
*list
)
363 struct vmw_fence_action
*action
, *next_action
;
365 list_for_each_entry_safe(action
, next_action
, list
, head
) {
366 list_del_init(&action
->head
);
367 fman
->pending_actions
[action
->type
]--;
368 if (action
->seq_passed
!= NULL
)
369 action
->seq_passed(action
);
372 * Add the cleanup action to the cleanup list so that
373 * it will be performed by a worker task.
376 list_add_tail(&action
->head
, &fman
->cleanup_list
);
381 * vmw_fence_goal_new_locked - Figure out a new device fence goal
384 * @fman: Pointer to a fence manager.
385 * @passed_seqno: The seqno the device currently signals as passed.
387 * This function should be called with the fence manager lock held.
388 * It is typically called when we have a new passed_seqno, and
389 * we might need to update the fence goal. It checks to see whether
390 * the current fence goal has already passed, and, in that case,
391 * scans through all unsignaled fences to get the next fence object with an
392 * action attached, and sets the seqno of that fence as a new fence goal.
394 * returns true if the device goal seqno was updated. False otherwise.
396 static bool vmw_fence_goal_new_locked(struct vmw_fence_manager
*fman
,
401 struct vmw_fence_obj
*fence
;
403 if (likely(!fman
->seqno_valid
))
406 fifo_mem
= fman
->dev_priv
->mmio_virt
;
407 goal_seqno
= vmw_mmio_read(fifo_mem
+ SVGA_FIFO_FENCE_GOAL
);
408 if (likely(passed_seqno
- goal_seqno
>= VMW_FENCE_WRAP
))
411 fman
->seqno_valid
= false;
412 list_for_each_entry(fence
, &fman
->fence_list
, head
) {
413 if (!list_empty(&fence
->seq_passed_actions
)) {
414 fman
->seqno_valid
= true;
415 vmw_mmio_write(fence
->base
.seqno
,
416 fifo_mem
+ SVGA_FIFO_FENCE_GOAL
);
426 * vmw_fence_goal_check_locked - Replace the device fence goal seqno if
429 * @fence: Pointer to a struct vmw_fence_obj the seqno of which should be
430 * considered as a device fence goal.
432 * This function should be called with the fence manager lock held.
433 * It is typically called when an action has been attached to a fence to
434 * check whether the seqno of that fence should be used for a fence
435 * goal interrupt. This is typically needed if the current fence goal is
436 * invalid, or has a higher seqno than that of the current fence object.
438 * returns true if the device goal seqno was updated. False otherwise.
440 static bool vmw_fence_goal_check_locked(struct vmw_fence_obj
*fence
)
442 struct vmw_fence_manager
*fman
= fman_from_fence(fence
);
446 if (dma_fence_is_signaled_locked(&fence
->base
))
449 fifo_mem
= fman
->dev_priv
->mmio_virt
;
450 goal_seqno
= vmw_mmio_read(fifo_mem
+ SVGA_FIFO_FENCE_GOAL
);
451 if (likely(fman
->seqno_valid
&&
452 goal_seqno
- fence
->base
.seqno
< VMW_FENCE_WRAP
))
455 vmw_mmio_write(fence
->base
.seqno
, fifo_mem
+ SVGA_FIFO_FENCE_GOAL
);
456 fman
->seqno_valid
= true;
461 static void __vmw_fences_update(struct vmw_fence_manager
*fman
)
463 struct vmw_fence_obj
*fence
, *next_fence
;
464 struct list_head action_list
;
466 uint32_t seqno
, new_seqno
;
467 u32
*fifo_mem
= fman
->dev_priv
->mmio_virt
;
469 seqno
= vmw_mmio_read(fifo_mem
+ SVGA_FIFO_FENCE
);
471 list_for_each_entry_safe(fence
, next_fence
, &fman
->fence_list
, head
) {
472 if (seqno
- fence
->base
.seqno
< VMW_FENCE_WRAP
) {
473 list_del_init(&fence
->head
);
474 dma_fence_signal_locked(&fence
->base
);
475 INIT_LIST_HEAD(&action_list
);
476 list_splice_init(&fence
->seq_passed_actions
,
478 vmw_fences_perform_actions(fman
, &action_list
);
484 * Rerun if the fence goal seqno was updated, and the
485 * hardware might have raced with that update, so that
486 * we missed a fence_goal irq.
489 needs_rerun
= vmw_fence_goal_new_locked(fman
, seqno
);
490 if (unlikely(needs_rerun
)) {
491 new_seqno
= vmw_mmio_read(fifo_mem
+ SVGA_FIFO_FENCE
);
492 if (new_seqno
!= seqno
) {
498 if (!list_empty(&fman
->cleanup_list
))
499 (void) schedule_work(&fman
->work
);
502 void vmw_fences_update(struct vmw_fence_manager
*fman
)
504 spin_lock(&fman
->lock
);
505 __vmw_fences_update(fman
);
506 spin_unlock(&fman
->lock
);
509 bool vmw_fence_obj_signaled(struct vmw_fence_obj
*fence
)
511 struct vmw_fence_manager
*fman
= fman_from_fence(fence
);
513 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
, &fence
->base
.flags
))
516 vmw_fences_update(fman
);
518 return dma_fence_is_signaled(&fence
->base
);
521 int vmw_fence_obj_wait(struct vmw_fence_obj
*fence
, bool lazy
,
522 bool interruptible
, unsigned long timeout
)
524 long ret
= dma_fence_wait_timeout(&fence
->base
, interruptible
, timeout
);
534 void vmw_fence_obj_flush(struct vmw_fence_obj
*fence
)
536 struct vmw_private
*dev_priv
= fman_from_fence(fence
)->dev_priv
;
538 vmw_fifo_ping_host(dev_priv
, SVGA_SYNC_GENERIC
);
541 static void vmw_fence_destroy(struct vmw_fence_obj
*fence
)
543 dma_fence_free(&fence
->base
);
546 int vmw_fence_create(struct vmw_fence_manager
*fman
,
548 struct vmw_fence_obj
**p_fence
)
550 struct vmw_fence_obj
*fence
;
553 fence
= kzalloc(sizeof(*fence
), GFP_KERNEL
);
554 if (unlikely(!fence
))
557 ret
= vmw_fence_obj_init(fman
, fence
, seqno
,
559 if (unlikely(ret
!= 0))
571 static void vmw_user_fence_destroy(struct vmw_fence_obj
*fence
)
573 struct vmw_user_fence
*ufence
=
574 container_of(fence
, struct vmw_user_fence
, fence
);
575 struct vmw_fence_manager
*fman
= fman_from_fence(fence
);
577 ttm_base_object_kfree(ufence
, base
);
579 * Free kernel space accounting.
581 ttm_mem_global_free(vmw_mem_glob(fman
->dev_priv
),
582 fman
->user_fence_size
);
585 static void vmw_user_fence_base_release(struct ttm_base_object
**p_base
)
587 struct ttm_base_object
*base
= *p_base
;
588 struct vmw_user_fence
*ufence
=
589 container_of(base
, struct vmw_user_fence
, base
);
590 struct vmw_fence_obj
*fence
= &ufence
->fence
;
593 vmw_fence_obj_unreference(&fence
);
596 int vmw_user_fence_create(struct drm_file
*file_priv
,
597 struct vmw_fence_manager
*fman
,
599 struct vmw_fence_obj
**p_fence
,
602 struct ttm_object_file
*tfile
= vmw_fpriv(file_priv
)->tfile
;
603 struct vmw_user_fence
*ufence
;
604 struct vmw_fence_obj
*tmp
;
605 struct ttm_mem_global
*mem_glob
= vmw_mem_glob(fman
->dev_priv
);
606 struct ttm_operation_ctx ctx
= {
607 .interruptible
= false,
613 * Kernel memory space accounting, since this object may
614 * be created by a user-space request.
617 ret
= ttm_mem_global_alloc(mem_glob
, fman
->user_fence_size
,
619 if (unlikely(ret
!= 0))
622 ufence
= kzalloc(sizeof(*ufence
), GFP_KERNEL
);
623 if (unlikely(!ufence
)) {
628 ret
= vmw_fence_obj_init(fman
, &ufence
->fence
, seqno
,
629 vmw_user_fence_destroy
);
630 if (unlikely(ret
!= 0)) {
636 * The base object holds a reference which is freed in
637 * vmw_user_fence_base_release.
639 tmp
= vmw_fence_obj_reference(&ufence
->fence
);
640 ret
= ttm_base_object_init(tfile
, &ufence
->base
, false,
642 &vmw_user_fence_base_release
, NULL
);
645 if (unlikely(ret
!= 0)) {
647 * Free the base object's reference
649 vmw_fence_obj_unreference(&tmp
);
653 *p_fence
= &ufence
->fence
;
654 *p_handle
= ufence
->base
.handle
;
658 tmp
= &ufence
->fence
;
659 vmw_fence_obj_unreference(&tmp
);
661 ttm_mem_global_free(mem_glob
, fman
->user_fence_size
);
667 * vmw_wait_dma_fence - Wait for a dma fence
669 * @fman: pointer to a fence manager
670 * @fence: DMA fence to wait on
672 * This function handles the case when the fence is actually a fence
673 * array. If that's the case, it'll wait on each of the child fence
675 int vmw_wait_dma_fence(struct vmw_fence_manager
*fman
,
676 struct dma_fence
*fence
)
678 struct dma_fence_array
*fence_array
;
683 if (dma_fence_is_signaled(fence
))
686 if (!dma_fence_is_array(fence
))
687 return dma_fence_wait(fence
, true);
689 /* From i915: Note that if the fence-array was created in
690 * signal-on-any mode, we should *not* decompose it into its individual
691 * fences. However, we don't currently store which mode the fence-array
692 * is operating in. Fortunately, the only user of signal-on-any is
693 * private to amdgpu and we should not see any incoming fence-array
694 * from sync-file being in signal-on-any mode.
697 fence_array
= to_dma_fence_array(fence
);
698 for (i
= 0; i
< fence_array
->num_fences
; i
++) {
699 struct dma_fence
*child
= fence_array
->fences
[i
];
701 ret
= dma_fence_wait(child
, true);
712 * vmw_fence_fifo_down - signal all unsignaled fence objects.
715 void vmw_fence_fifo_down(struct vmw_fence_manager
*fman
)
717 struct list_head action_list
;
721 * The list may be altered while we traverse it, so always
722 * restart when we've released the fman->lock.
725 spin_lock(&fman
->lock
);
726 fman
->fifo_down
= true;
727 while (!list_empty(&fman
->fence_list
)) {
728 struct vmw_fence_obj
*fence
=
729 list_entry(fman
->fence_list
.prev
, struct vmw_fence_obj
,
731 dma_fence_get(&fence
->base
);
732 spin_unlock(&fman
->lock
);
734 ret
= vmw_fence_obj_wait(fence
, false, false,
735 VMW_FENCE_WAIT_TIMEOUT
);
737 if (unlikely(ret
!= 0)) {
738 list_del_init(&fence
->head
);
739 dma_fence_signal(&fence
->base
);
740 INIT_LIST_HEAD(&action_list
);
741 list_splice_init(&fence
->seq_passed_actions
,
743 vmw_fences_perform_actions(fman
, &action_list
);
746 BUG_ON(!list_empty(&fence
->head
));
747 dma_fence_put(&fence
->base
);
748 spin_lock(&fman
->lock
);
750 spin_unlock(&fman
->lock
);
753 void vmw_fence_fifo_up(struct vmw_fence_manager
*fman
)
755 spin_lock(&fman
->lock
);
756 fman
->fifo_down
= false;
757 spin_unlock(&fman
->lock
);
762 * vmw_fence_obj_lookup - Look up a user-space fence object
764 * @tfile: A struct ttm_object_file identifying the caller.
765 * @handle: A handle identifying the fence object.
766 * @return: A struct vmw_user_fence base ttm object on success or
767 * an error pointer on failure.
769 * The fence object is looked up and type-checked. The caller needs
770 * to have opened the fence object first, but since that happens on
771 * creation and fence objects aren't shareable, that's not an
774 static struct ttm_base_object
*
775 vmw_fence_obj_lookup(struct ttm_object_file
*tfile
, u32 handle
)
777 struct ttm_base_object
*base
= ttm_base_object_lookup(tfile
, handle
);
780 pr_err("Invalid fence object handle 0x%08lx.\n",
781 (unsigned long)handle
);
782 return ERR_PTR(-EINVAL
);
785 if (base
->refcount_release
!= vmw_user_fence_base_release
) {
786 pr_err("Invalid fence object handle 0x%08lx.\n",
787 (unsigned long)handle
);
788 ttm_base_object_unref(&base
);
789 return ERR_PTR(-EINVAL
);
796 int vmw_fence_obj_wait_ioctl(struct drm_device
*dev
, void *data
,
797 struct drm_file
*file_priv
)
799 struct drm_vmw_fence_wait_arg
*arg
=
800 (struct drm_vmw_fence_wait_arg
*)data
;
801 unsigned long timeout
;
802 struct ttm_base_object
*base
;
803 struct vmw_fence_obj
*fence
;
804 struct ttm_object_file
*tfile
= vmw_fpriv(file_priv
)->tfile
;
806 uint64_t wait_timeout
= ((uint64_t)arg
->timeout_us
* HZ
);
809 * 64-bit division not present on 32-bit systems, so do an
810 * approximation. (Divide by 1000000).
813 wait_timeout
= (wait_timeout
>> 20) + (wait_timeout
>> 24) -
814 (wait_timeout
>> 26);
816 if (!arg
->cookie_valid
) {
817 arg
->cookie_valid
= 1;
818 arg
->kernel_cookie
= jiffies
+ wait_timeout
;
821 base
= vmw_fence_obj_lookup(tfile
, arg
->handle
);
823 return PTR_ERR(base
);
825 fence
= &(container_of(base
, struct vmw_user_fence
, base
)->fence
);
828 if (time_after_eq(timeout
, (unsigned long)arg
->kernel_cookie
)) {
829 ret
= ((vmw_fence_obj_signaled(fence
)) ?
834 timeout
= (unsigned long)arg
->kernel_cookie
- timeout
;
836 ret
= vmw_fence_obj_wait(fence
, arg
->lazy
, true, timeout
);
839 ttm_base_object_unref(&base
);
842 * Optionally unref the fence object.
845 if (ret
== 0 && (arg
->wait_options
& DRM_VMW_WAIT_OPTION_UNREF
))
846 return ttm_ref_object_base_unref(tfile
, arg
->handle
,
851 int vmw_fence_obj_signaled_ioctl(struct drm_device
*dev
, void *data
,
852 struct drm_file
*file_priv
)
854 struct drm_vmw_fence_signaled_arg
*arg
=
855 (struct drm_vmw_fence_signaled_arg
*) data
;
856 struct ttm_base_object
*base
;
857 struct vmw_fence_obj
*fence
;
858 struct vmw_fence_manager
*fman
;
859 struct ttm_object_file
*tfile
= vmw_fpriv(file_priv
)->tfile
;
860 struct vmw_private
*dev_priv
= vmw_priv(dev
);
862 base
= vmw_fence_obj_lookup(tfile
, arg
->handle
);
864 return PTR_ERR(base
);
866 fence
= &(container_of(base
, struct vmw_user_fence
, base
)->fence
);
867 fman
= fman_from_fence(fence
);
869 arg
->signaled
= vmw_fence_obj_signaled(fence
);
871 arg
->signaled_flags
= arg
->flags
;
872 spin_lock(&fman
->lock
);
873 arg
->passed_seqno
= dev_priv
->last_read_seqno
;
874 spin_unlock(&fman
->lock
);
876 ttm_base_object_unref(&base
);
882 int vmw_fence_obj_unref_ioctl(struct drm_device
*dev
, void *data
,
883 struct drm_file
*file_priv
)
885 struct drm_vmw_fence_arg
*arg
=
886 (struct drm_vmw_fence_arg
*) data
;
888 return ttm_ref_object_base_unref(vmw_fpriv(file_priv
)->tfile
,
894 * vmw_event_fence_action_seq_passed
896 * @action: The struct vmw_fence_action embedded in a struct
897 * vmw_event_fence_action.
899 * This function is called when the seqno of the fence where @action is
900 * attached has passed. It queues the event on the submitter's event list.
901 * This function is always called from atomic context.
903 static void vmw_event_fence_action_seq_passed(struct vmw_fence_action
*action
)
905 struct vmw_event_fence_action
*eaction
=
906 container_of(action
, struct vmw_event_fence_action
, action
);
907 struct drm_device
*dev
= eaction
->dev
;
908 struct drm_pending_event
*event
= eaction
->event
;
910 if (unlikely(event
== NULL
))
913 spin_lock_irq(&dev
->event_lock
);
915 if (likely(eaction
->tv_sec
!= NULL
)) {
916 struct timespec64 ts
;
919 /* monotonic time, so no y2038 overflow */
920 *eaction
->tv_sec
= ts
.tv_sec
;
921 *eaction
->tv_usec
= ts
.tv_nsec
/ NSEC_PER_USEC
;
924 drm_send_event_locked(dev
, eaction
->event
);
925 eaction
->event
= NULL
;
926 spin_unlock_irq(&dev
->event_lock
);
930 * vmw_event_fence_action_cleanup
932 * @action: The struct vmw_fence_action embedded in a struct
933 * vmw_event_fence_action.
935 * This function is the struct vmw_fence_action destructor. It's typically
936 * called from a workqueue.
938 static void vmw_event_fence_action_cleanup(struct vmw_fence_action
*action
)
940 struct vmw_event_fence_action
*eaction
=
941 container_of(action
, struct vmw_event_fence_action
, action
);
943 vmw_fence_obj_unreference(&eaction
->fence
);
949 * vmw_fence_obj_add_action - Add an action to a fence object.
951 * @fence - The fence object.
952 * @action - The action to add.
954 * Note that the action callbacks may be executed before this function
957 static void vmw_fence_obj_add_action(struct vmw_fence_obj
*fence
,
958 struct vmw_fence_action
*action
)
960 struct vmw_fence_manager
*fman
= fman_from_fence(fence
);
961 bool run_update
= false;
963 mutex_lock(&fman
->goal_irq_mutex
);
964 spin_lock(&fman
->lock
);
966 fman
->pending_actions
[action
->type
]++;
967 if (dma_fence_is_signaled_locked(&fence
->base
)) {
968 struct list_head action_list
;
970 INIT_LIST_HEAD(&action_list
);
971 list_add_tail(&action
->head
, &action_list
);
972 vmw_fences_perform_actions(fman
, &action_list
);
974 list_add_tail(&action
->head
, &fence
->seq_passed_actions
);
977 * This function may set fman::seqno_valid, so it must
978 * be run with the goal_irq_mutex held.
980 run_update
= vmw_fence_goal_check_locked(fence
);
983 spin_unlock(&fman
->lock
);
986 if (!fman
->goal_irq_on
) {
987 fman
->goal_irq_on
= true;
988 vmw_goal_waiter_add(fman
->dev_priv
);
990 vmw_fences_update(fman
);
992 mutex_unlock(&fman
->goal_irq_mutex
);
997 * vmw_event_fence_action_create - Post an event for sending when a fence
998 * object seqno has passed.
1000 * @file_priv: The file connection on which the event should be posted.
1001 * @fence: The fence object on which to post the event.
1002 * @event: Event to be posted. This event should've been alloced
1003 * using k[mz]alloc, and should've been completely initialized.
1004 * @interruptible: Interruptible waits if possible.
1006 * As a side effect, the object pointed to by @event may have been
1007 * freed when this function returns. If this function returns with
1008 * an error code, the caller needs to free that object.
1011 int vmw_event_fence_action_queue(struct drm_file
*file_priv
,
1012 struct vmw_fence_obj
*fence
,
1013 struct drm_pending_event
*event
,
1018 struct vmw_event_fence_action
*eaction
;
1019 struct vmw_fence_manager
*fman
= fman_from_fence(fence
);
1021 eaction
= kzalloc(sizeof(*eaction
), GFP_KERNEL
);
1022 if (unlikely(!eaction
))
1025 eaction
->event
= event
;
1027 eaction
->action
.seq_passed
= vmw_event_fence_action_seq_passed
;
1028 eaction
->action
.cleanup
= vmw_event_fence_action_cleanup
;
1029 eaction
->action
.type
= VMW_ACTION_EVENT
;
1031 eaction
->fence
= vmw_fence_obj_reference(fence
);
1032 eaction
->dev
= fman
->dev_priv
->dev
;
1033 eaction
->tv_sec
= tv_sec
;
1034 eaction
->tv_usec
= tv_usec
;
1036 vmw_fence_obj_add_action(fence
, &eaction
->action
);
1041 struct vmw_event_fence_pending
{
1042 struct drm_pending_event base
;
1043 struct drm_vmw_event_fence event
;
1046 static int vmw_event_fence_action_create(struct drm_file
*file_priv
,
1047 struct vmw_fence_obj
*fence
,
1052 struct vmw_event_fence_pending
*event
;
1053 struct vmw_fence_manager
*fman
= fman_from_fence(fence
);
1054 struct drm_device
*dev
= fman
->dev_priv
->dev
;
1057 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
1058 if (unlikely(!event
)) {
1059 DRM_ERROR("Failed to allocate an event.\n");
1064 event
->event
.base
.type
= DRM_VMW_EVENT_FENCE_SIGNALED
;
1065 event
->event
.base
.length
= sizeof(*event
);
1066 event
->event
.user_data
= user_data
;
1068 ret
= drm_event_reserve_init(dev
, file_priv
, &event
->base
, &event
->event
.base
);
1070 if (unlikely(ret
!= 0)) {
1071 DRM_ERROR("Failed to allocate event space for this file.\n");
1076 if (flags
& DRM_VMW_FE_FLAG_REQ_TIME
)
1077 ret
= vmw_event_fence_action_queue(file_priv
, fence
,
1079 &event
->event
.tv_sec
,
1080 &event
->event
.tv_usec
,
1083 ret
= vmw_event_fence_action_queue(file_priv
, fence
,
1094 drm_event_cancel_free(dev
, &event
->base
);
1099 int vmw_fence_event_ioctl(struct drm_device
*dev
, void *data
,
1100 struct drm_file
*file_priv
)
1102 struct vmw_private
*dev_priv
= vmw_priv(dev
);
1103 struct drm_vmw_fence_event_arg
*arg
=
1104 (struct drm_vmw_fence_event_arg
*) data
;
1105 struct vmw_fence_obj
*fence
= NULL
;
1106 struct vmw_fpriv
*vmw_fp
= vmw_fpriv(file_priv
);
1107 struct ttm_object_file
*tfile
= vmw_fp
->tfile
;
1108 struct drm_vmw_fence_rep __user
*user_fence_rep
=
1109 (struct drm_vmw_fence_rep __user
*)(unsigned long)
1115 * Look up an existing fence object,
1116 * and if user-space wants a new reference,
1120 struct ttm_base_object
*base
=
1121 vmw_fence_obj_lookup(tfile
, arg
->handle
);
1124 return PTR_ERR(base
);
1126 fence
= &(container_of(base
, struct vmw_user_fence
,
1128 (void) vmw_fence_obj_reference(fence
);
1130 if (user_fence_rep
!= NULL
) {
1131 ret
= ttm_ref_object_add(vmw_fp
->tfile
, base
,
1132 TTM_REF_USAGE
, NULL
, false);
1133 if (unlikely(ret
!= 0)) {
1134 DRM_ERROR("Failed to reference a fence "
1136 goto out_no_ref_obj
;
1138 handle
= base
->handle
;
1140 ttm_base_object_unref(&base
);
1144 * Create a new fence object.
1147 ret
= vmw_execbuf_fence_commands(file_priv
, dev_priv
,
1151 if (unlikely(ret
!= 0)) {
1152 DRM_ERROR("Fence event failed to create fence.\n");
1157 BUG_ON(fence
== NULL
);
1159 ret
= vmw_event_fence_action_create(file_priv
, fence
,
1163 if (unlikely(ret
!= 0)) {
1164 if (ret
!= -ERESTARTSYS
)
1165 DRM_ERROR("Failed to attach event to fence.\n");
1169 vmw_execbuf_copy_fence_user(dev_priv
, vmw_fp
, 0, user_fence_rep
, fence
,
1171 vmw_fence_obj_unreference(&fence
);
1174 if (user_fence_rep
!= NULL
)
1175 ttm_ref_object_base_unref(tfile
, handle
, TTM_REF_USAGE
);
1177 vmw_fence_obj_unreference(&fence
);