2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
10 * Copyright (c) 2014, Intel Corporation.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2, as published by the Free Software Foundation.
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
39 #include "bmc150-accel.h"
41 #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
44 #define BMC150_ACCEL_REG_CHIP_ID 0x00
46 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
53 #define BMC150_ACCEL_REG_PMU_LPW 0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT 5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
59 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
61 #define BMC150_ACCEL_DEF_RANGE_2G 0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G 0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G 0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW 0x10
68 #define BMC150_ACCEL_DEF_BW 125
70 #define BMC150_ACCEL_REG_RESET 0x14
71 #define BMC150_ACCEL_RESET_VAL 0xB6
73 #define BMC150_ACCEL_REG_INT_MAP_0 0x19
74 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
76 #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
77 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
78 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
79 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
81 #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
82 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
83 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
84 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
86 #define BMC150_ACCEL_REG_INT_EN_0 0x16
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
88 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
89 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
91 #define BMC150_ACCEL_REG_INT_EN_1 0x17
92 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
93 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
94 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
96 #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
97 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
99 #define BMC150_ACCEL_REG_INT_5 0x27
100 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
102 #define BMC150_ACCEL_REG_INT_6 0x28
103 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
105 /* Slope duration in terms of number of samples */
106 #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
107 /* in terms of multiples of g's/LSB, based on range */
108 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
110 #define BMC150_ACCEL_REG_XOUT_L 0x02
112 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
114 /* Sleep Duration values */
115 #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
116 #define BMC150_ACCEL_SLEEP_1_MS 0x06
117 #define BMC150_ACCEL_SLEEP_2_MS 0x07
118 #define BMC150_ACCEL_SLEEP_4_MS 0x08
119 #define BMC150_ACCEL_SLEEP_6_MS 0x09
120 #define BMC150_ACCEL_SLEEP_10_MS 0x0A
121 #define BMC150_ACCEL_SLEEP_25_MS 0x0B
122 #define BMC150_ACCEL_SLEEP_50_MS 0x0C
123 #define BMC150_ACCEL_SLEEP_100_MS 0x0D
124 #define BMC150_ACCEL_SLEEP_500_MS 0x0E
125 #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
127 #define BMC150_ACCEL_REG_TEMP 0x08
128 #define BMC150_ACCEL_TEMP_CENTER_VAL 24
130 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
131 #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
133 #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
134 #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
135 #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
136 #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
137 #define BMC150_ACCEL_FIFO_LENGTH 32
139 enum bmc150_accel_axis
{
146 enum bmc150_power_modes
{
147 BMC150_ACCEL_SLEEP_MODE_NORMAL
,
148 BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND
,
149 BMC150_ACCEL_SLEEP_MODE_LPM
,
150 BMC150_ACCEL_SLEEP_MODE_SUSPEND
= 0x04,
153 struct bmc150_scale_info
{
158 struct bmc150_accel_chip_info
{
161 const struct iio_chan_spec
*channels
;
163 const struct bmc150_scale_info scale_table
[4];
166 struct bmc150_accel_interrupt
{
167 const struct bmc150_accel_interrupt_info
*info
;
171 struct bmc150_accel_trigger
{
172 struct bmc150_accel_data
*data
;
173 struct iio_trigger
*indio_trig
;
174 int (*setup
)(struct bmc150_accel_trigger
*t
, bool state
);
179 enum bmc150_accel_interrupt_id
{
180 BMC150_ACCEL_INT_DATA_READY
,
181 BMC150_ACCEL_INT_ANY_MOTION
,
182 BMC150_ACCEL_INT_WATERMARK
,
183 BMC150_ACCEL_INTERRUPTS
,
186 enum bmc150_accel_trigger_id
{
187 BMC150_ACCEL_TRIGGER_DATA_READY
,
188 BMC150_ACCEL_TRIGGER_ANY_MOTION
,
189 BMC150_ACCEL_TRIGGERS
,
192 struct bmc150_accel_data
{
193 struct regmap
*regmap
;
195 struct bmc150_accel_interrupt interrupts
[BMC150_ACCEL_INTERRUPTS
];
196 struct bmc150_accel_trigger triggers
[BMC150_ACCEL_TRIGGERS
];
198 u8 fifo_mode
, watermark
;
205 int64_t timestamp
, old_timestamp
; /* Only used in hw fifo mode. */
206 const struct bmc150_accel_chip_info
*chip_info
;
209 static const struct {
213 } bmc150_accel_samp_freq_table
[] = { {15, 620000, 0x08},
222 static const struct {
225 } bmc150_accel_sample_upd_time
[] = { {0x08, 64},
234 static const struct {
237 } bmc150_accel_sleep_value_table
[] = { {0, 0},
238 {500, BMC150_ACCEL_SLEEP_500_MICRO
},
239 {1000, BMC150_ACCEL_SLEEP_1_MS
},
240 {2000, BMC150_ACCEL_SLEEP_2_MS
},
241 {4000, BMC150_ACCEL_SLEEP_4_MS
},
242 {6000, BMC150_ACCEL_SLEEP_6_MS
},
243 {10000, BMC150_ACCEL_SLEEP_10_MS
},
244 {25000, BMC150_ACCEL_SLEEP_25_MS
},
245 {50000, BMC150_ACCEL_SLEEP_50_MS
},
246 {100000, BMC150_ACCEL_SLEEP_100_MS
},
247 {500000, BMC150_ACCEL_SLEEP_500_MS
},
248 {1000000, BMC150_ACCEL_SLEEP_1_SEC
} };
250 const struct regmap_config bmc150_regmap_conf
= {
253 .max_register
= 0x3f,
255 EXPORT_SYMBOL_GPL(bmc150_regmap_conf
);
257 static int bmc150_accel_set_mode(struct bmc150_accel_data
*data
,
258 enum bmc150_power_modes mode
,
261 struct device
*dev
= regmap_get_device(data
->regmap
);
268 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_sleep_value_table
);
270 if (bmc150_accel_sleep_value_table
[i
].sleep_dur
==
273 bmc150_accel_sleep_value_table
[i
].reg_value
;
282 lpw_bits
= mode
<< BMC150_ACCEL_PMU_MODE_SHIFT
;
283 lpw_bits
|= (dur_val
<< BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT
);
285 dev_dbg(dev
, "Set Mode bits %x\n", lpw_bits
);
287 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_PMU_LPW
, lpw_bits
);
289 dev_err(dev
, "Error writing reg_pmu_lpw\n");
296 static int bmc150_accel_set_bw(struct bmc150_accel_data
*data
, int val
,
302 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_samp_freq_table
); ++i
) {
303 if (bmc150_accel_samp_freq_table
[i
].val
== val
&&
304 bmc150_accel_samp_freq_table
[i
].val2
== val2
) {
305 ret
= regmap_write(data
->regmap
,
306 BMC150_ACCEL_REG_PMU_BW
,
307 bmc150_accel_samp_freq_table
[i
].bw_bits
);
312 bmc150_accel_samp_freq_table
[i
].bw_bits
;
320 static int bmc150_accel_update_slope(struct bmc150_accel_data
*data
)
322 struct device
*dev
= regmap_get_device(data
->regmap
);
325 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_INT_6
,
328 dev_err(dev
, "Error writing reg_int_6\n");
332 ret
= regmap_update_bits(data
->regmap
, BMC150_ACCEL_REG_INT_5
,
333 BMC150_ACCEL_SLOPE_DUR_MASK
, data
->slope_dur
);
335 dev_err(dev
, "Error updating reg_int_5\n");
339 dev_dbg(dev
, "%x %x\n", data
->slope_thres
, data
->slope_dur
);
344 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger
*t
,
348 return bmc150_accel_update_slope(t
->data
);
353 static int bmc150_accel_get_bw(struct bmc150_accel_data
*data
, int *val
,
358 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_samp_freq_table
); ++i
) {
359 if (bmc150_accel_samp_freq_table
[i
].bw_bits
== data
->bw_bits
) {
360 *val
= bmc150_accel_samp_freq_table
[i
].val
;
361 *val2
= bmc150_accel_samp_freq_table
[i
].val2
;
362 return IIO_VAL_INT_PLUS_MICRO
;
370 static int bmc150_accel_get_startup_times(struct bmc150_accel_data
*data
)
374 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_sample_upd_time
); ++i
) {
375 if (bmc150_accel_sample_upd_time
[i
].bw_bits
== data
->bw_bits
)
376 return bmc150_accel_sample_upd_time
[i
].msec
;
379 return BMC150_ACCEL_MAX_STARTUP_TIME_MS
;
382 static int bmc150_accel_set_power_state(struct bmc150_accel_data
*data
, bool on
)
384 struct device
*dev
= regmap_get_device(data
->regmap
);
388 ret
= pm_runtime_get_sync(dev
);
390 pm_runtime_mark_last_busy(dev
);
391 ret
= pm_runtime_put_autosuspend(dev
);
396 "Failed: bmc150_accel_set_power_state for %d\n", on
);
398 pm_runtime_put_noidle(dev
);
406 static int bmc150_accel_set_power_state(struct bmc150_accel_data
*data
, bool on
)
412 static const struct bmc150_accel_interrupt_info
{
417 } bmc150_accel_interrupts
[BMC150_ACCEL_INTERRUPTS
] = {
418 { /* data ready interrupt */
419 .map_reg
= BMC150_ACCEL_REG_INT_MAP_1
,
420 .map_bitmask
= BMC150_ACCEL_INT_MAP_1_BIT_DATA
,
421 .en_reg
= BMC150_ACCEL_REG_INT_EN_1
,
422 .en_bitmask
= BMC150_ACCEL_INT_EN_BIT_DATA_EN
,
424 { /* motion interrupt */
425 .map_reg
= BMC150_ACCEL_REG_INT_MAP_0
,
426 .map_bitmask
= BMC150_ACCEL_INT_MAP_0_BIT_SLOPE
,
427 .en_reg
= BMC150_ACCEL_REG_INT_EN_0
,
428 .en_bitmask
= BMC150_ACCEL_INT_EN_BIT_SLP_X
|
429 BMC150_ACCEL_INT_EN_BIT_SLP_Y
|
430 BMC150_ACCEL_INT_EN_BIT_SLP_Z
432 { /* fifo watermark interrupt */
433 .map_reg
= BMC150_ACCEL_REG_INT_MAP_1
,
434 .map_bitmask
= BMC150_ACCEL_INT_MAP_1_BIT_FWM
,
435 .en_reg
= BMC150_ACCEL_REG_INT_EN_1
,
436 .en_bitmask
= BMC150_ACCEL_INT_EN_BIT_FWM_EN
,
440 static void bmc150_accel_interrupts_setup(struct iio_dev
*indio_dev
,
441 struct bmc150_accel_data
*data
)
445 for (i
= 0; i
< BMC150_ACCEL_INTERRUPTS
; i
++)
446 data
->interrupts
[i
].info
= &bmc150_accel_interrupts
[i
];
449 static int bmc150_accel_set_interrupt(struct bmc150_accel_data
*data
, int i
,
452 struct device
*dev
= regmap_get_device(data
->regmap
);
453 struct bmc150_accel_interrupt
*intr
= &data
->interrupts
[i
];
454 const struct bmc150_accel_interrupt_info
*info
= intr
->info
;
458 if (atomic_inc_return(&intr
->users
) > 1)
461 if (atomic_dec_return(&intr
->users
) > 0)
466 * We will expect the enable and disable to do operation in reverse
467 * order. This will happen here anyway, as our resume operation uses
468 * sync mode runtime pm calls. The suspend operation will be delayed
469 * by autosuspend delay.
470 * So the disable operation will still happen in reverse order of
471 * enable operation. When runtime pm is disabled the mode is always on,
472 * so sequence doesn't matter.
474 ret
= bmc150_accel_set_power_state(data
, state
);
478 /* map the interrupt to the appropriate pins */
479 ret
= regmap_update_bits(data
->regmap
, info
->map_reg
, info
->map_bitmask
,
480 (state
? info
->map_bitmask
: 0));
482 dev_err(dev
, "Error updating reg_int_map\n");
483 goto out_fix_power_state
;
486 /* enable/disable the interrupt */
487 ret
= regmap_update_bits(data
->regmap
, info
->en_reg
, info
->en_bitmask
,
488 (state
? info
->en_bitmask
: 0));
490 dev_err(dev
, "Error updating reg_int_en\n");
491 goto out_fix_power_state
;
497 bmc150_accel_set_power_state(data
, false);
501 static int bmc150_accel_set_scale(struct bmc150_accel_data
*data
, int val
)
503 struct device
*dev
= regmap_get_device(data
->regmap
);
506 for (i
= 0; i
< ARRAY_SIZE(data
->chip_info
->scale_table
); ++i
) {
507 if (data
->chip_info
->scale_table
[i
].scale
== val
) {
508 ret
= regmap_write(data
->regmap
,
509 BMC150_ACCEL_REG_PMU_RANGE
,
510 data
->chip_info
->scale_table
[i
].reg_range
);
512 dev_err(dev
, "Error writing pmu_range\n");
516 data
->range
= data
->chip_info
->scale_table
[i
].reg_range
;
524 static int bmc150_accel_get_temp(struct bmc150_accel_data
*data
, int *val
)
526 struct device
*dev
= regmap_get_device(data
->regmap
);
530 mutex_lock(&data
->mutex
);
532 ret
= regmap_read(data
->regmap
, BMC150_ACCEL_REG_TEMP
, &value
);
534 dev_err(dev
, "Error reading reg_temp\n");
535 mutex_unlock(&data
->mutex
);
538 *val
= sign_extend32(value
, 7);
540 mutex_unlock(&data
->mutex
);
545 static int bmc150_accel_get_axis(struct bmc150_accel_data
*data
,
546 struct iio_chan_spec
const *chan
,
549 struct device
*dev
= regmap_get_device(data
->regmap
);
551 int axis
= chan
->scan_index
;
554 mutex_lock(&data
->mutex
);
555 ret
= bmc150_accel_set_power_state(data
, true);
557 mutex_unlock(&data
->mutex
);
561 ret
= regmap_bulk_read(data
->regmap
, BMC150_ACCEL_AXIS_TO_REG(axis
),
562 &raw_val
, sizeof(raw_val
));
564 dev_err(dev
, "Error reading axis %d\n", axis
);
565 bmc150_accel_set_power_state(data
, false);
566 mutex_unlock(&data
->mutex
);
569 *val
= sign_extend32(le16_to_cpu(raw_val
) >> chan
->scan_type
.shift
,
570 chan
->scan_type
.realbits
- 1);
571 ret
= bmc150_accel_set_power_state(data
, false);
572 mutex_unlock(&data
->mutex
);
579 static int bmc150_accel_read_raw(struct iio_dev
*indio_dev
,
580 struct iio_chan_spec
const *chan
,
581 int *val
, int *val2
, long mask
)
583 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
587 case IIO_CHAN_INFO_RAW
:
588 switch (chan
->type
) {
590 return bmc150_accel_get_temp(data
, val
);
592 if (iio_buffer_enabled(indio_dev
))
595 return bmc150_accel_get_axis(data
, chan
, val
);
599 case IIO_CHAN_INFO_OFFSET
:
600 if (chan
->type
== IIO_TEMP
) {
601 *val
= BMC150_ACCEL_TEMP_CENTER_VAL
;
606 case IIO_CHAN_INFO_SCALE
:
608 switch (chan
->type
) {
611 return IIO_VAL_INT_PLUS_MICRO
;
615 const struct bmc150_scale_info
*si
;
616 int st_size
= ARRAY_SIZE(data
->chip_info
->scale_table
);
618 for (i
= 0; i
< st_size
; ++i
) {
619 si
= &data
->chip_info
->scale_table
[i
];
620 if (si
->reg_range
== data
->range
) {
622 return IIO_VAL_INT_PLUS_MICRO
;
630 case IIO_CHAN_INFO_SAMP_FREQ
:
631 mutex_lock(&data
->mutex
);
632 ret
= bmc150_accel_get_bw(data
, val
, val2
);
633 mutex_unlock(&data
->mutex
);
640 static int bmc150_accel_write_raw(struct iio_dev
*indio_dev
,
641 struct iio_chan_spec
const *chan
,
642 int val
, int val2
, long mask
)
644 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
648 case IIO_CHAN_INFO_SAMP_FREQ
:
649 mutex_lock(&data
->mutex
);
650 ret
= bmc150_accel_set_bw(data
, val
, val2
);
651 mutex_unlock(&data
->mutex
);
653 case IIO_CHAN_INFO_SCALE
:
657 mutex_lock(&data
->mutex
);
658 ret
= bmc150_accel_set_scale(data
, val2
);
659 mutex_unlock(&data
->mutex
);
668 static int bmc150_accel_read_event(struct iio_dev
*indio_dev
,
669 const struct iio_chan_spec
*chan
,
670 enum iio_event_type type
,
671 enum iio_event_direction dir
,
672 enum iio_event_info info
,
675 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
679 case IIO_EV_INFO_VALUE
:
680 *val
= data
->slope_thres
;
682 case IIO_EV_INFO_PERIOD
:
683 *val
= data
->slope_dur
;
692 static int bmc150_accel_write_event(struct iio_dev
*indio_dev
,
693 const struct iio_chan_spec
*chan
,
694 enum iio_event_type type
,
695 enum iio_event_direction dir
,
696 enum iio_event_info info
,
699 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
701 if (data
->ev_enable_state
)
705 case IIO_EV_INFO_VALUE
:
706 data
->slope_thres
= val
& BMC150_ACCEL_SLOPE_THRES_MASK
;
708 case IIO_EV_INFO_PERIOD
:
709 data
->slope_dur
= val
& BMC150_ACCEL_SLOPE_DUR_MASK
;
718 static int bmc150_accel_read_event_config(struct iio_dev
*indio_dev
,
719 const struct iio_chan_spec
*chan
,
720 enum iio_event_type type
,
721 enum iio_event_direction dir
)
723 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
725 return data
->ev_enable_state
;
728 static int bmc150_accel_write_event_config(struct iio_dev
*indio_dev
,
729 const struct iio_chan_spec
*chan
,
730 enum iio_event_type type
,
731 enum iio_event_direction dir
,
734 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
737 if (state
== data
->ev_enable_state
)
740 mutex_lock(&data
->mutex
);
742 ret
= bmc150_accel_set_interrupt(data
, BMC150_ACCEL_INT_ANY_MOTION
,
745 mutex_unlock(&data
->mutex
);
749 data
->ev_enable_state
= state
;
750 mutex_unlock(&data
->mutex
);
755 static int bmc150_accel_validate_trigger(struct iio_dev
*indio_dev
,
756 struct iio_trigger
*trig
)
758 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
761 for (i
= 0; i
< BMC150_ACCEL_TRIGGERS
; i
++) {
762 if (data
->triggers
[i
].indio_trig
== trig
)
769 static ssize_t
bmc150_accel_get_fifo_watermark(struct device
*dev
,
770 struct device_attribute
*attr
,
773 struct iio_dev
*indio_dev
= dev_to_iio_dev(dev
);
774 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
777 mutex_lock(&data
->mutex
);
778 wm
= data
->watermark
;
779 mutex_unlock(&data
->mutex
);
781 return sprintf(buf
, "%d\n", wm
);
784 static ssize_t
bmc150_accel_get_fifo_state(struct device
*dev
,
785 struct device_attribute
*attr
,
788 struct iio_dev
*indio_dev
= dev_to_iio_dev(dev
);
789 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
792 mutex_lock(&data
->mutex
);
793 state
= data
->fifo_mode
;
794 mutex_unlock(&data
->mutex
);
796 return sprintf(buf
, "%d\n", state
);
799 static IIO_CONST_ATTR(hwfifo_watermark_min
, "1");
800 static IIO_CONST_ATTR(hwfifo_watermark_max
,
801 __stringify(BMC150_ACCEL_FIFO_LENGTH
));
802 static IIO_DEVICE_ATTR(hwfifo_enabled
, S_IRUGO
,
803 bmc150_accel_get_fifo_state
, NULL
, 0);
804 static IIO_DEVICE_ATTR(hwfifo_watermark
, S_IRUGO
,
805 bmc150_accel_get_fifo_watermark
, NULL
, 0);
807 static const struct attribute
*bmc150_accel_fifo_attributes
[] = {
808 &iio_const_attr_hwfifo_watermark_min
.dev_attr
.attr
,
809 &iio_const_attr_hwfifo_watermark_max
.dev_attr
.attr
,
810 &iio_dev_attr_hwfifo_watermark
.dev_attr
.attr
,
811 &iio_dev_attr_hwfifo_enabled
.dev_attr
.attr
,
815 static int bmc150_accel_set_watermark(struct iio_dev
*indio_dev
, unsigned val
)
817 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
819 if (val
> BMC150_ACCEL_FIFO_LENGTH
)
820 val
= BMC150_ACCEL_FIFO_LENGTH
;
822 mutex_lock(&data
->mutex
);
823 data
->watermark
= val
;
824 mutex_unlock(&data
->mutex
);
830 * We must read at least one full frame in one burst, otherwise the rest of the
831 * frame data is discarded.
833 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data
*data
,
834 char *buffer
, int samples
)
836 struct device
*dev
= regmap_get_device(data
->regmap
);
837 int sample_length
= 3 * 2;
839 int total_length
= samples
* sample_length
;
841 ret
= regmap_raw_read(data
->regmap
, BMC150_ACCEL_REG_FIFO_DATA
,
842 buffer
, total_length
);
845 "Error transferring data from fifo: %d\n", ret
);
850 static int __bmc150_accel_fifo_flush(struct iio_dev
*indio_dev
,
851 unsigned samples
, bool irq
)
853 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
854 struct device
*dev
= regmap_get_device(data
->regmap
);
857 u16 buffer
[BMC150_ACCEL_FIFO_LENGTH
* 3];
859 uint64_t sample_period
;
862 ret
= regmap_read(data
->regmap
, BMC150_ACCEL_REG_FIFO_STATUS
, &val
);
864 dev_err(dev
, "Error reading reg_fifo_status\n");
874 * If we getting called from IRQ handler we know the stored timestamp is
875 * fairly accurate for the last stored sample. Otherwise, if we are
876 * called as a result of a read operation from userspace and hence
877 * before the watermark interrupt was triggered, take a timestamp
878 * now. We can fall anywhere in between two samples so the error in this
879 * case is at most one sample period.
882 data
->old_timestamp
= data
->timestamp
;
883 data
->timestamp
= iio_get_time_ns(indio_dev
);
887 * Approximate timestamps for each of the sample based on the sampling
888 * frequency, timestamp for last sample and number of samples.
890 * Note that we can't use the current bandwidth settings to compute the
891 * sample period because the sample rate varies with the device
892 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
893 * small variation adds when we store a large number of samples and
894 * creates significant jitter between the last and first samples in
895 * different batches (e.g. 32ms vs 21ms).
897 * To avoid this issue we compute the actual sample period ourselves
898 * based on the timestamp delta between the last two flush operations.
900 sample_period
= (data
->timestamp
- data
->old_timestamp
);
901 do_div(sample_period
, count
);
902 tstamp
= data
->timestamp
- (count
- 1) * sample_period
;
904 if (samples
&& count
> samples
)
907 ret
= bmc150_accel_fifo_transfer(data
, (u8
*)buffer
, count
);
912 * Ideally we want the IIO core to handle the demux when running in fifo
913 * mode but not when running in triggered buffer mode. Unfortunately
914 * this does not seem to be possible, so stick with driver demux for
917 for (i
= 0; i
< count
; i
++) {
922 for_each_set_bit(bit
, indio_dev
->active_scan_mask
,
923 indio_dev
->masklength
)
924 memcpy(&sample
[j
++], &buffer
[i
* 3 + bit
], 2);
926 iio_push_to_buffers_with_timestamp(indio_dev
, sample
, tstamp
);
928 tstamp
+= sample_period
;
934 static int bmc150_accel_fifo_flush(struct iio_dev
*indio_dev
, unsigned samples
)
936 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
939 mutex_lock(&data
->mutex
);
940 ret
= __bmc150_accel_fifo_flush(indio_dev
, samples
, false);
941 mutex_unlock(&data
->mutex
);
946 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
947 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
949 static struct attribute
*bmc150_accel_attributes
[] = {
950 &iio_const_attr_sampling_frequency_available
.dev_attr
.attr
,
954 static const struct attribute_group bmc150_accel_attrs_group
= {
955 .attrs
= bmc150_accel_attributes
,
958 static const struct iio_event_spec bmc150_accel_event
= {
959 .type
= IIO_EV_TYPE_ROC
,
960 .dir
= IIO_EV_DIR_EITHER
,
961 .mask_separate
= BIT(IIO_EV_INFO_VALUE
) |
962 BIT(IIO_EV_INFO_ENABLE
) |
963 BIT(IIO_EV_INFO_PERIOD
)
966 #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
969 .channel2 = IIO_MOD_##_axis, \
970 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
971 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
972 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
973 .scan_index = AXIS_##_axis, \
976 .realbits = (bits), \
978 .shift = 16 - (bits), \
979 .endianness = IIO_LE, \
981 .event_spec = &bmc150_accel_event, \
982 .num_event_specs = 1 \
985 #define BMC150_ACCEL_CHANNELS(bits) { \
988 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
989 BIT(IIO_CHAN_INFO_SCALE) | \
990 BIT(IIO_CHAN_INFO_OFFSET), \
993 BMC150_ACCEL_CHANNEL(X, bits), \
994 BMC150_ACCEL_CHANNEL(Y, bits), \
995 BMC150_ACCEL_CHANNEL(Z, bits), \
996 IIO_CHAN_SOFT_TIMESTAMP(3), \
999 static const struct iio_chan_spec bma222e_accel_channels
[] =
1000 BMC150_ACCEL_CHANNELS(8);
1001 static const struct iio_chan_spec bma250e_accel_channels
[] =
1002 BMC150_ACCEL_CHANNELS(10);
1003 static const struct iio_chan_spec bmc150_accel_channels
[] =
1004 BMC150_ACCEL_CHANNELS(12);
1005 static const struct iio_chan_spec bma280_accel_channels
[] =
1006 BMC150_ACCEL_CHANNELS(14);
1008 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl
[] = {
1012 .channels
= bmc150_accel_channels
,
1013 .num_channels
= ARRAY_SIZE(bmc150_accel_channels
),
1014 .scale_table
= { {9610, BMC150_ACCEL_DEF_RANGE_2G
},
1015 {19122, BMC150_ACCEL_DEF_RANGE_4G
},
1016 {38344, BMC150_ACCEL_DEF_RANGE_8G
},
1017 {76590, BMC150_ACCEL_DEF_RANGE_16G
} },
1022 .channels
= bmc150_accel_channels
,
1023 .num_channels
= ARRAY_SIZE(bmc150_accel_channels
),
1024 .scale_table
= { {9610, BMC150_ACCEL_DEF_RANGE_2G
},
1025 {19122, BMC150_ACCEL_DEF_RANGE_4G
},
1026 {38344, BMC150_ACCEL_DEF_RANGE_8G
},
1027 {76590, BMC150_ACCEL_DEF_RANGE_16G
} },
1032 .channels
= bmc150_accel_channels
,
1033 .num_channels
= ARRAY_SIZE(bmc150_accel_channels
),
1034 .scale_table
= { {9610, BMC150_ACCEL_DEF_RANGE_2G
},
1035 {19122, BMC150_ACCEL_DEF_RANGE_4G
},
1036 {38344, BMC150_ACCEL_DEF_RANGE_8G
},
1037 {76590, BMC150_ACCEL_DEF_RANGE_16G
} },
1042 .channels
= bma250e_accel_channels
,
1043 .num_channels
= ARRAY_SIZE(bma250e_accel_channels
),
1044 .scale_table
= { {38344, BMC150_ACCEL_DEF_RANGE_2G
},
1045 {76590, BMC150_ACCEL_DEF_RANGE_4G
},
1046 {153277, BMC150_ACCEL_DEF_RANGE_8G
},
1047 {306457, BMC150_ACCEL_DEF_RANGE_16G
} },
1052 .channels
= bma222e_accel_channels
,
1053 .num_channels
= ARRAY_SIZE(bma222e_accel_channels
),
1054 .scale_table
= { {153277, BMC150_ACCEL_DEF_RANGE_2G
},
1055 {306457, BMC150_ACCEL_DEF_RANGE_4G
},
1056 {612915, BMC150_ACCEL_DEF_RANGE_8G
},
1057 {1225831, BMC150_ACCEL_DEF_RANGE_16G
} },
1062 .channels
= bma280_accel_channels
,
1063 .num_channels
= ARRAY_SIZE(bma280_accel_channels
),
1064 .scale_table
= { {2392, BMC150_ACCEL_DEF_RANGE_2G
},
1065 {4785, BMC150_ACCEL_DEF_RANGE_4G
},
1066 {9581, BMC150_ACCEL_DEF_RANGE_8G
},
1067 {19152, BMC150_ACCEL_DEF_RANGE_16G
} },
1071 static const struct iio_info bmc150_accel_info
= {
1072 .attrs
= &bmc150_accel_attrs_group
,
1073 .read_raw
= bmc150_accel_read_raw
,
1074 .write_raw
= bmc150_accel_write_raw
,
1075 .read_event_value
= bmc150_accel_read_event
,
1076 .write_event_value
= bmc150_accel_write_event
,
1077 .write_event_config
= bmc150_accel_write_event_config
,
1078 .read_event_config
= bmc150_accel_read_event_config
,
1081 static const struct iio_info bmc150_accel_info_fifo
= {
1082 .attrs
= &bmc150_accel_attrs_group
,
1083 .read_raw
= bmc150_accel_read_raw
,
1084 .write_raw
= bmc150_accel_write_raw
,
1085 .read_event_value
= bmc150_accel_read_event
,
1086 .write_event_value
= bmc150_accel_write_event
,
1087 .write_event_config
= bmc150_accel_write_event_config
,
1088 .read_event_config
= bmc150_accel_read_event_config
,
1089 .validate_trigger
= bmc150_accel_validate_trigger
,
1090 .hwfifo_set_watermark
= bmc150_accel_set_watermark
,
1091 .hwfifo_flush_to_buffer
= bmc150_accel_fifo_flush
,
1094 static const unsigned long bmc150_accel_scan_masks
[] = {
1095 BIT(AXIS_X
) | BIT(AXIS_Y
) | BIT(AXIS_Z
),
1098 static irqreturn_t
bmc150_accel_trigger_handler(int irq
, void *p
)
1100 struct iio_poll_func
*pf
= p
;
1101 struct iio_dev
*indio_dev
= pf
->indio_dev
;
1102 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1105 mutex_lock(&data
->mutex
);
1106 ret
= regmap_bulk_read(data
->regmap
, BMC150_ACCEL_REG_XOUT_L
,
1107 data
->buffer
, AXIS_MAX
* 2);
1108 mutex_unlock(&data
->mutex
);
1112 iio_push_to_buffers_with_timestamp(indio_dev
, data
->buffer
,
1115 iio_trigger_notify_done(indio_dev
->trig
);
1120 static int bmc150_accel_trig_try_reen(struct iio_trigger
*trig
)
1122 struct bmc150_accel_trigger
*t
= iio_trigger_get_drvdata(trig
);
1123 struct bmc150_accel_data
*data
= t
->data
;
1124 struct device
*dev
= regmap_get_device(data
->regmap
);
1127 /* new data interrupts don't need ack */
1128 if (t
== &t
->data
->triggers
[BMC150_ACCEL_TRIGGER_DATA_READY
])
1131 mutex_lock(&data
->mutex
);
1132 /* clear any latched interrupt */
1133 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_INT_RST_LATCH
,
1134 BMC150_ACCEL_INT_MODE_LATCH_INT
|
1135 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
1136 mutex_unlock(&data
->mutex
);
1138 dev_err(dev
, "Error writing reg_int_rst_latch\n");
1145 static int bmc150_accel_trigger_set_state(struct iio_trigger
*trig
,
1148 struct bmc150_accel_trigger
*t
= iio_trigger_get_drvdata(trig
);
1149 struct bmc150_accel_data
*data
= t
->data
;
1152 mutex_lock(&data
->mutex
);
1154 if (t
->enabled
== state
) {
1155 mutex_unlock(&data
->mutex
);
1160 ret
= t
->setup(t
, state
);
1162 mutex_unlock(&data
->mutex
);
1167 ret
= bmc150_accel_set_interrupt(data
, t
->intr
, state
);
1169 mutex_unlock(&data
->mutex
);
1175 mutex_unlock(&data
->mutex
);
1180 static const struct iio_trigger_ops bmc150_accel_trigger_ops
= {
1181 .set_trigger_state
= bmc150_accel_trigger_set_state
,
1182 .try_reenable
= bmc150_accel_trig_try_reen
,
1185 static int bmc150_accel_handle_roc_event(struct iio_dev
*indio_dev
)
1187 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1188 struct device
*dev
= regmap_get_device(data
->regmap
);
1193 ret
= regmap_read(data
->regmap
, BMC150_ACCEL_REG_INT_STATUS_2
, &val
);
1195 dev_err(dev
, "Error reading reg_int_status_2\n");
1199 if (val
& BMC150_ACCEL_ANY_MOTION_BIT_SIGN
)
1200 dir
= IIO_EV_DIR_FALLING
;
1202 dir
= IIO_EV_DIR_RISING
;
1204 if (val
& BMC150_ACCEL_ANY_MOTION_BIT_X
)
1205 iio_push_event(indio_dev
,
1206 IIO_MOD_EVENT_CODE(IIO_ACCEL
,
1213 if (val
& BMC150_ACCEL_ANY_MOTION_BIT_Y
)
1214 iio_push_event(indio_dev
,
1215 IIO_MOD_EVENT_CODE(IIO_ACCEL
,
1222 if (val
& BMC150_ACCEL_ANY_MOTION_BIT_Z
)
1223 iio_push_event(indio_dev
,
1224 IIO_MOD_EVENT_CODE(IIO_ACCEL
,
1234 static irqreturn_t
bmc150_accel_irq_thread_handler(int irq
, void *private)
1236 struct iio_dev
*indio_dev
= private;
1237 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1238 struct device
*dev
= regmap_get_device(data
->regmap
);
1242 mutex_lock(&data
->mutex
);
1244 if (data
->fifo_mode
) {
1245 ret
= __bmc150_accel_fifo_flush(indio_dev
,
1246 BMC150_ACCEL_FIFO_LENGTH
, true);
1251 if (data
->ev_enable_state
) {
1252 ret
= bmc150_accel_handle_roc_event(indio_dev
);
1258 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_INT_RST_LATCH
,
1259 BMC150_ACCEL_INT_MODE_LATCH_INT
|
1260 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
1262 dev_err(dev
, "Error writing reg_int_rst_latch\n");
1269 mutex_unlock(&data
->mutex
);
1274 static irqreturn_t
bmc150_accel_irq_handler(int irq
, void *private)
1276 struct iio_dev
*indio_dev
= private;
1277 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1281 data
->old_timestamp
= data
->timestamp
;
1282 data
->timestamp
= iio_get_time_ns(indio_dev
);
1284 for (i
= 0; i
< BMC150_ACCEL_TRIGGERS
; i
++) {
1285 if (data
->triggers
[i
].enabled
) {
1286 iio_trigger_poll(data
->triggers
[i
].indio_trig
);
1292 if (data
->ev_enable_state
|| data
->fifo_mode
)
1293 return IRQ_WAKE_THREAD
;
1301 static const struct {
1304 int (*setup
)(struct bmc150_accel_trigger
*t
, bool state
);
1305 } bmc150_accel_triggers
[BMC150_ACCEL_TRIGGERS
] = {
1312 .name
= "%s-any-motion-dev%d",
1313 .setup
= bmc150_accel_any_motion_setup
,
1317 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data
*data
,
1322 for (i
= from
; i
>= 0; i
--) {
1323 if (data
->triggers
[i
].indio_trig
) {
1324 iio_trigger_unregister(data
->triggers
[i
].indio_trig
);
1325 data
->triggers
[i
].indio_trig
= NULL
;
1330 static int bmc150_accel_triggers_setup(struct iio_dev
*indio_dev
,
1331 struct bmc150_accel_data
*data
)
1333 struct device
*dev
= regmap_get_device(data
->regmap
);
1336 for (i
= 0; i
< BMC150_ACCEL_TRIGGERS
; i
++) {
1337 struct bmc150_accel_trigger
*t
= &data
->triggers
[i
];
1339 t
->indio_trig
= devm_iio_trigger_alloc(dev
,
1340 bmc150_accel_triggers
[i
].name
,
1343 if (!t
->indio_trig
) {
1348 t
->indio_trig
->dev
.parent
= dev
;
1349 t
->indio_trig
->ops
= &bmc150_accel_trigger_ops
;
1350 t
->intr
= bmc150_accel_triggers
[i
].intr
;
1352 t
->setup
= bmc150_accel_triggers
[i
].setup
;
1353 iio_trigger_set_drvdata(t
->indio_trig
, t
);
1355 ret
= iio_trigger_register(t
->indio_trig
);
1361 bmc150_accel_unregister_triggers(data
, i
- 1);
1366 #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
1367 #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
1368 #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
1370 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data
*data
)
1372 struct device
*dev
= regmap_get_device(data
->regmap
);
1373 u8 reg
= BMC150_ACCEL_REG_FIFO_CONFIG1
;
1376 ret
= regmap_write(data
->regmap
, reg
, data
->fifo_mode
);
1378 dev_err(dev
, "Error writing reg_fifo_config1\n");
1382 if (!data
->fifo_mode
)
1385 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_FIFO_CONFIG0
,
1388 dev_err(dev
, "Error writing reg_fifo_config0\n");
1393 static int bmc150_accel_buffer_preenable(struct iio_dev
*indio_dev
)
1395 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1397 return bmc150_accel_set_power_state(data
, true);
1400 static int bmc150_accel_buffer_postenable(struct iio_dev
*indio_dev
)
1402 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1405 if (indio_dev
->currentmode
== INDIO_BUFFER_TRIGGERED
)
1406 return iio_triggered_buffer_postenable(indio_dev
);
1408 mutex_lock(&data
->mutex
);
1410 if (!data
->watermark
)
1413 ret
= bmc150_accel_set_interrupt(data
, BMC150_ACCEL_INT_WATERMARK
,
1418 data
->fifo_mode
= BMC150_ACCEL_FIFO_MODE_FIFO
;
1420 ret
= bmc150_accel_fifo_set_mode(data
);
1422 data
->fifo_mode
= 0;
1423 bmc150_accel_set_interrupt(data
, BMC150_ACCEL_INT_WATERMARK
,
1428 mutex_unlock(&data
->mutex
);
1433 static int bmc150_accel_buffer_predisable(struct iio_dev
*indio_dev
)
1435 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1437 if (indio_dev
->currentmode
== INDIO_BUFFER_TRIGGERED
)
1438 return iio_triggered_buffer_predisable(indio_dev
);
1440 mutex_lock(&data
->mutex
);
1442 if (!data
->fifo_mode
)
1445 bmc150_accel_set_interrupt(data
, BMC150_ACCEL_INT_WATERMARK
, false);
1446 __bmc150_accel_fifo_flush(indio_dev
, BMC150_ACCEL_FIFO_LENGTH
, false);
1447 data
->fifo_mode
= 0;
1448 bmc150_accel_fifo_set_mode(data
);
1451 mutex_unlock(&data
->mutex
);
1456 static int bmc150_accel_buffer_postdisable(struct iio_dev
*indio_dev
)
1458 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1460 return bmc150_accel_set_power_state(data
, false);
1463 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops
= {
1464 .preenable
= bmc150_accel_buffer_preenable
,
1465 .postenable
= bmc150_accel_buffer_postenable
,
1466 .predisable
= bmc150_accel_buffer_predisable
,
1467 .postdisable
= bmc150_accel_buffer_postdisable
,
1470 static int bmc150_accel_chip_init(struct bmc150_accel_data
*data
)
1472 struct device
*dev
= regmap_get_device(data
->regmap
);
1477 * Reset chip to get it in a known good state. A delay of 1.8ms after
1478 * reset is required according to the data sheets of supported chips.
1480 regmap_write(data
->regmap
, BMC150_ACCEL_REG_RESET
,
1481 BMC150_ACCEL_RESET_VAL
);
1482 usleep_range(1800, 2500);
1484 ret
= regmap_read(data
->regmap
, BMC150_ACCEL_REG_CHIP_ID
, &val
);
1486 dev_err(dev
, "Error: Reading chip id\n");
1490 dev_dbg(dev
, "Chip Id %x\n", val
);
1491 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_chip_info_tbl
); i
++) {
1492 if (bmc150_accel_chip_info_tbl
[i
].chip_id
== val
) {
1493 data
->chip_info
= &bmc150_accel_chip_info_tbl
[i
];
1498 if (!data
->chip_info
) {
1499 dev_err(dev
, "Invalid chip %x\n", val
);
1503 ret
= bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_NORMAL
, 0);
1508 ret
= bmc150_accel_set_bw(data
, BMC150_ACCEL_DEF_BW
, 0);
1512 /* Set Default Range */
1513 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_PMU_RANGE
,
1514 BMC150_ACCEL_DEF_RANGE_4G
);
1516 dev_err(dev
, "Error writing reg_pmu_range\n");
1520 data
->range
= BMC150_ACCEL_DEF_RANGE_4G
;
1522 /* Set default slope duration and thresholds */
1523 data
->slope_thres
= BMC150_ACCEL_DEF_SLOPE_THRESHOLD
;
1524 data
->slope_dur
= BMC150_ACCEL_DEF_SLOPE_DURATION
;
1525 ret
= bmc150_accel_update_slope(data
);
1529 /* Set default as latched interrupts */
1530 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_INT_RST_LATCH
,
1531 BMC150_ACCEL_INT_MODE_LATCH_INT
|
1532 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
1534 dev_err(dev
, "Error writing reg_int_rst_latch\n");
1541 int bmc150_accel_core_probe(struct device
*dev
, struct regmap
*regmap
, int irq
,
1542 const char *name
, bool block_supported
)
1544 struct bmc150_accel_data
*data
;
1545 struct iio_dev
*indio_dev
;
1548 indio_dev
= devm_iio_device_alloc(dev
, sizeof(*data
));
1552 data
= iio_priv(indio_dev
);
1553 dev_set_drvdata(dev
, indio_dev
);
1556 data
->regmap
= regmap
;
1558 ret
= bmc150_accel_chip_init(data
);
1562 mutex_init(&data
->mutex
);
1564 indio_dev
->dev
.parent
= dev
;
1565 indio_dev
->channels
= data
->chip_info
->channels
;
1566 indio_dev
->num_channels
= data
->chip_info
->num_channels
;
1567 indio_dev
->name
= name
? name
: data
->chip_info
->name
;
1568 indio_dev
->available_scan_masks
= bmc150_accel_scan_masks
;
1569 indio_dev
->modes
= INDIO_DIRECT_MODE
;
1570 indio_dev
->info
= &bmc150_accel_info
;
1572 ret
= iio_triggered_buffer_setup(indio_dev
,
1573 &iio_pollfunc_store_time
,
1574 bmc150_accel_trigger_handler
,
1575 &bmc150_accel_buffer_ops
);
1577 dev_err(dev
, "Failed: iio triggered buffer setup\n");
1581 if (data
->irq
> 0) {
1582 ret
= devm_request_threaded_irq(
1584 bmc150_accel_irq_handler
,
1585 bmc150_accel_irq_thread_handler
,
1586 IRQF_TRIGGER_RISING
,
1587 BMC150_ACCEL_IRQ_NAME
,
1590 goto err_buffer_cleanup
;
1593 * Set latched mode interrupt. While certain interrupts are
1594 * non-latched regardless of this settings (e.g. new data) we
1595 * want to use latch mode when we can to prevent interrupt
1598 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_INT_RST_LATCH
,
1599 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
1601 dev_err(dev
, "Error writing reg_int_rst_latch\n");
1602 goto err_buffer_cleanup
;
1605 bmc150_accel_interrupts_setup(indio_dev
, data
);
1607 ret
= bmc150_accel_triggers_setup(indio_dev
, data
);
1609 goto err_buffer_cleanup
;
1611 if (block_supported
) {
1612 indio_dev
->modes
|= INDIO_BUFFER_SOFTWARE
;
1613 indio_dev
->info
= &bmc150_accel_info_fifo
;
1614 iio_buffer_set_attrs(indio_dev
->buffer
,
1615 bmc150_accel_fifo_attributes
);
1619 ret
= pm_runtime_set_active(dev
);
1621 goto err_trigger_unregister
;
1623 pm_runtime_enable(dev
);
1624 pm_runtime_set_autosuspend_delay(dev
, BMC150_AUTO_SUSPEND_DELAY_MS
);
1625 pm_runtime_use_autosuspend(dev
);
1627 ret
= iio_device_register(indio_dev
);
1629 dev_err(dev
, "Unable to register iio device\n");
1630 goto err_trigger_unregister
;
1635 err_trigger_unregister
:
1636 bmc150_accel_unregister_triggers(data
, BMC150_ACCEL_TRIGGERS
- 1);
1638 iio_triggered_buffer_cleanup(indio_dev
);
1642 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe
);
1644 int bmc150_accel_core_remove(struct device
*dev
)
1646 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1647 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1649 iio_device_unregister(indio_dev
);
1651 pm_runtime_disable(dev
);
1652 pm_runtime_set_suspended(dev
);
1653 pm_runtime_put_noidle(dev
);
1655 bmc150_accel_unregister_triggers(data
, BMC150_ACCEL_TRIGGERS
- 1);
1657 iio_triggered_buffer_cleanup(indio_dev
);
1659 mutex_lock(&data
->mutex
);
1660 bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND
, 0);
1661 mutex_unlock(&data
->mutex
);
1665 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove
);
1667 #ifdef CONFIG_PM_SLEEP
1668 static int bmc150_accel_suspend(struct device
*dev
)
1670 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1671 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1673 mutex_lock(&data
->mutex
);
1674 bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_SUSPEND
, 0);
1675 mutex_unlock(&data
->mutex
);
1680 static int bmc150_accel_resume(struct device
*dev
)
1682 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1683 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1685 mutex_lock(&data
->mutex
);
1686 bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_NORMAL
, 0);
1687 bmc150_accel_fifo_set_mode(data
);
1688 mutex_unlock(&data
->mutex
);
1695 static int bmc150_accel_runtime_suspend(struct device
*dev
)
1697 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1698 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1701 ret
= bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_SUSPEND
, 0);
1708 static int bmc150_accel_runtime_resume(struct device
*dev
)
1710 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1711 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1715 ret
= bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_NORMAL
, 0);
1718 ret
= bmc150_accel_fifo_set_mode(data
);
1722 sleep_val
= bmc150_accel_get_startup_times(data
);
1724 usleep_range(sleep_val
* 1000, 20000);
1726 msleep_interruptible(sleep_val
);
1732 const struct dev_pm_ops bmc150_accel_pm_ops
= {
1733 SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend
, bmc150_accel_resume
)
1734 SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend
,
1735 bmc150_accel_runtime_resume
, NULL
)
1737 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops
);
1739 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1740 MODULE_LICENSE("GPL v2");
1741 MODULE_DESCRIPTION("BMC150 accelerometer driver");