dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / iio / accel / st_accel_core.c
bloba3c0916479fa6ed17219ec0b4551d67aca8c75fb
1 /*
2 * STMicroelectronics accelerometers driver
4 * Copyright 2012-2013 STMicroelectronics Inc.
6 * Denis Ciocca <denis.ciocca@st.com>
8 * Licensed under the GPL-2.
9 */
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/acpi.h>
15 #include <linux/errno.h>
16 #include <linux/types.h>
17 #include <linux/mutex.h>
18 #include <linux/interrupt.h>
19 #include <linux/i2c.h>
20 #include <linux/gpio.h>
21 #include <linux/irq.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/trigger.h>
25 #include <linux/iio/buffer.h>
27 #include <linux/iio/common/st_sensors.h>
28 #include "st_accel.h"
30 #define ST_ACCEL_NUMBER_DATA_CHANNELS 3
32 /* DEFAULT VALUE FOR SENSORS */
33 #define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28
34 #define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a
35 #define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c
37 /* FULLSCALE */
38 #define ST_ACCEL_FS_AVL_2G 2
39 #define ST_ACCEL_FS_AVL_4G 4
40 #define ST_ACCEL_FS_AVL_6G 6
41 #define ST_ACCEL_FS_AVL_8G 8
42 #define ST_ACCEL_FS_AVL_16G 16
43 #define ST_ACCEL_FS_AVL_100G 100
44 #define ST_ACCEL_FS_AVL_200G 200
45 #define ST_ACCEL_FS_AVL_400G 400
47 static const struct iio_chan_spec st_accel_8bit_channels[] = {
48 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
49 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
50 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 8, 8,
51 ST_ACCEL_DEFAULT_OUT_X_L_ADDR+1),
52 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
53 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
54 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 8, 8,
55 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR+1),
56 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
57 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
58 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 8, 8,
59 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR+1),
60 IIO_CHAN_SOFT_TIMESTAMP(3)
63 static const struct iio_chan_spec st_accel_12bit_channels[] = {
64 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
65 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
66 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 12, 16,
67 ST_ACCEL_DEFAULT_OUT_X_L_ADDR),
68 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
69 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
70 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 12, 16,
71 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR),
72 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
73 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
74 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 12, 16,
75 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR),
76 IIO_CHAN_SOFT_TIMESTAMP(3)
79 static const struct iio_chan_spec st_accel_16bit_channels[] = {
80 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
81 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
82 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16,
83 ST_ACCEL_DEFAULT_OUT_X_L_ADDR),
84 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
85 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
86 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16,
87 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR),
88 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
89 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
90 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16,
91 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR),
92 IIO_CHAN_SOFT_TIMESTAMP(3)
95 static const struct st_sensor_settings st_accel_sensors_settings[] = {
97 .wai = 0x33,
98 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
99 .sensors_supported = {
100 [0] = LIS3DH_ACCEL_DEV_NAME,
101 [1] = LSM303DLHC_ACCEL_DEV_NAME,
102 [2] = LSM330D_ACCEL_DEV_NAME,
103 [3] = LSM330DL_ACCEL_DEV_NAME,
104 [4] = LSM330DLC_ACCEL_DEV_NAME,
105 [5] = LSM303AGR_ACCEL_DEV_NAME,
106 [6] = LIS2DH12_ACCEL_DEV_NAME,
107 [7] = LIS3DE_ACCEL_DEV_NAME,
109 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
110 .odr = {
111 .addr = 0x20,
112 .mask = 0xf0,
113 .odr_avl = {
114 { .hz = 1, .value = 0x01, },
115 { .hz = 10, .value = 0x02, },
116 { .hz = 25, .value = 0x03, },
117 { .hz = 50, .value = 0x04, },
118 { .hz = 100, .value = 0x05, },
119 { .hz = 200, .value = 0x06, },
120 { .hz = 400, .value = 0x07, },
121 { .hz = 1600, .value = 0x08, },
124 .pw = {
125 .addr = 0x20,
126 .mask = 0xf0,
127 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
129 .enable_axis = {
130 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
131 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
133 .fs = {
134 .addr = 0x23,
135 .mask = 0x30,
136 .fs_avl = {
137 [0] = {
138 .num = ST_ACCEL_FS_AVL_2G,
139 .value = 0x00,
140 .gain = IIO_G_TO_M_S_2(1000),
142 [1] = {
143 .num = ST_ACCEL_FS_AVL_4G,
144 .value = 0x01,
145 .gain = IIO_G_TO_M_S_2(2000),
147 [2] = {
148 .num = ST_ACCEL_FS_AVL_8G,
149 .value = 0x02,
150 .gain = IIO_G_TO_M_S_2(4000),
152 [3] = {
153 .num = ST_ACCEL_FS_AVL_16G,
154 .value = 0x03,
155 .gain = IIO_G_TO_M_S_2(12000),
159 .bdu = {
160 .addr = 0x23,
161 .mask = 0x80,
163 .drdy_irq = {
164 .int1 = {
165 .addr = 0x22,
166 .mask = 0x10,
168 .addr_ihl = 0x25,
169 .mask_ihl = 0x02,
170 .stat_drdy = {
171 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
172 .mask = 0x07,
175 .sim = {
176 .addr = 0x23,
177 .value = BIT(0),
179 .multi_read_bit = true,
180 .bootime = 2,
183 .wai = 0x32,
184 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
185 .sensors_supported = {
186 [0] = LIS331DLH_ACCEL_DEV_NAME,
187 [1] = LSM303DL_ACCEL_DEV_NAME,
188 [2] = LSM303DLH_ACCEL_DEV_NAME,
189 [3] = LSM303DLM_ACCEL_DEV_NAME,
191 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
192 .odr = {
193 .addr = 0x20,
194 .mask = 0x18,
195 .odr_avl = {
196 { .hz = 50, .value = 0x00, },
197 { .hz = 100, .value = 0x01, },
198 { .hz = 400, .value = 0x02, },
199 { .hz = 1000, .value = 0x03, },
202 .pw = {
203 .addr = 0x20,
204 .mask = 0xe0,
205 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
206 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
208 .enable_axis = {
209 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
210 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
212 .fs = {
213 .addr = 0x23,
214 .mask = 0x30,
215 .fs_avl = {
216 [0] = {
217 .num = ST_ACCEL_FS_AVL_2G,
218 .value = 0x00,
219 .gain = IIO_G_TO_M_S_2(1000),
221 [1] = {
222 .num = ST_ACCEL_FS_AVL_4G,
223 .value = 0x01,
224 .gain = IIO_G_TO_M_S_2(2000),
226 [2] = {
227 .num = ST_ACCEL_FS_AVL_8G,
228 .value = 0x03,
229 .gain = IIO_G_TO_M_S_2(3900),
233 .bdu = {
234 .addr = 0x23,
235 .mask = 0x80,
237 .drdy_irq = {
238 .int1 = {
239 .addr = 0x22,
240 .mask = 0x02,
241 .addr_od = 0x22,
242 .mask_od = 0x40,
244 .int2 = {
245 .addr = 0x22,
246 .mask = 0x10,
247 .addr_od = 0x22,
248 .mask_od = 0x40,
250 .addr_ihl = 0x22,
251 .mask_ihl = 0x80,
252 .stat_drdy = {
253 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
254 .mask = 0x07,
257 .sim = {
258 .addr = 0x23,
259 .value = BIT(0),
261 .multi_read_bit = true,
262 .bootime = 2,
265 .wai = 0x40,
266 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
267 .sensors_supported = {
268 [0] = LSM330_ACCEL_DEV_NAME,
270 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
271 .odr = {
272 .addr = 0x20,
273 .mask = 0xf0,
274 .odr_avl = {
275 { .hz = 3, .value = 0x01, },
276 { .hz = 6, .value = 0x02, },
277 { .hz = 12, .value = 0x03, },
278 { .hz = 25, .value = 0x04, },
279 { .hz = 50, .value = 0x05, },
280 { .hz = 100, .value = 0x06, },
281 { .hz = 200, .value = 0x07, },
282 { .hz = 400, .value = 0x08, },
283 { .hz = 800, .value = 0x09, },
284 { .hz = 1600, .value = 0x0a, },
287 .pw = {
288 .addr = 0x20,
289 .mask = 0xf0,
290 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
292 .enable_axis = {
293 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
294 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
296 .fs = {
297 .addr = 0x24,
298 .mask = 0x38,
299 .fs_avl = {
300 [0] = {
301 .num = ST_ACCEL_FS_AVL_2G,
302 .value = 0x00,
303 .gain = IIO_G_TO_M_S_2(61),
305 [1] = {
306 .num = ST_ACCEL_FS_AVL_4G,
307 .value = 0x01,
308 .gain = IIO_G_TO_M_S_2(122),
310 [2] = {
311 .num = ST_ACCEL_FS_AVL_6G,
312 .value = 0x02,
313 .gain = IIO_G_TO_M_S_2(183),
315 [3] = {
316 .num = ST_ACCEL_FS_AVL_8G,
317 .value = 0x03,
318 .gain = IIO_G_TO_M_S_2(244),
320 [4] = {
321 .num = ST_ACCEL_FS_AVL_16G,
322 .value = 0x04,
323 .gain = IIO_G_TO_M_S_2(732),
327 .bdu = {
328 .addr = 0x20,
329 .mask = 0x08,
331 .drdy_irq = {
332 .int1 = {
333 .addr = 0x23,
334 .mask = 0x80,
336 .addr_ihl = 0x23,
337 .mask_ihl = 0x40,
338 .stat_drdy = {
339 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
340 .mask = 0x07,
342 .ig1 = {
343 .en_addr = 0x23,
344 .en_mask = 0x08,
347 .sim = {
348 .addr = 0x24,
349 .value = BIT(0),
351 .multi_read_bit = false,
352 .bootime = 2,
355 .wai = 0x3a,
356 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
357 .sensors_supported = {
358 [0] = LIS3LV02DL_ACCEL_DEV_NAME,
360 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
361 .odr = {
362 .addr = 0x20,
363 .mask = 0x30, /* DF1 and DF0 */
364 .odr_avl = {
365 { .hz = 40, .value = 0x00, },
366 { .hz = 160, .value = 0x01, },
367 { .hz = 640, .value = 0x02, },
368 { .hz = 2560, .value = 0x03, },
371 .pw = {
372 .addr = 0x20,
373 .mask = 0xc0,
374 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
375 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
377 .enable_axis = {
378 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
379 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
381 .fs = {
382 .addr = 0x21,
383 .mask = 0x80,
384 .fs_avl = {
385 [0] = {
386 .num = ST_ACCEL_FS_AVL_2G,
387 .value = 0x00,
388 .gain = IIO_G_TO_M_S_2(1000),
390 [1] = {
391 .num = ST_ACCEL_FS_AVL_6G,
392 .value = 0x01,
393 .gain = IIO_G_TO_M_S_2(3000),
397 .bdu = {
398 .addr = 0x21,
399 .mask = 0x40,
402 * Data Alignment Setting - needs to be set to get
403 * left-justified data like all other sensors.
405 .das = {
406 .addr = 0x21,
407 .mask = 0x01,
409 .drdy_irq = {
410 .int1 = {
411 .addr = 0x21,
412 .mask = 0x04,
414 .stat_drdy = {
415 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
416 .mask = 0x07,
419 .sim = {
420 .addr = 0x21,
421 .value = BIT(1),
423 .multi_read_bit = true,
424 .bootime = 2, /* guess */
427 .wai = 0x3b,
428 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
429 .sensors_supported = {
430 [0] = LIS331DL_ACCEL_DEV_NAME,
432 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
433 .odr = {
434 .addr = 0x20,
435 .mask = 0x80,
436 .odr_avl = {
437 { .hz = 100, .value = 0x00, },
438 { .hz = 400, .value = 0x01, },
441 .pw = {
442 .addr = 0x20,
443 .mask = 0x40,
444 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
445 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
447 .enable_axis = {
448 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
449 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
451 .fs = {
452 .addr = 0x20,
453 .mask = 0x20,
455 * TODO: check these resulting gain settings, these are
456 * not in the datsheet
458 .fs_avl = {
459 [0] = {
460 .num = ST_ACCEL_FS_AVL_2G,
461 .value = 0x00,
462 .gain = IIO_G_TO_M_S_2(18000),
464 [1] = {
465 .num = ST_ACCEL_FS_AVL_8G,
466 .value = 0x01,
467 .gain = IIO_G_TO_M_S_2(72000),
471 .drdy_irq = {
472 .int1 = {
473 .addr = 0x22,
474 .mask = 0x04,
475 .addr_od = 0x22,
476 .mask_od = 0x40,
478 .int2 = {
479 .addr = 0x22,
480 .mask = 0x20,
481 .addr_od = 0x22,
482 .mask_od = 0x40,
484 .addr_ihl = 0x22,
485 .mask_ihl = 0x80,
486 .stat_drdy = {
487 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
488 .mask = 0x07,
491 .sim = {
492 .addr = 0x21,
493 .value = BIT(7),
495 .multi_read_bit = false,
496 .bootime = 2, /* guess */
499 .wai = 0x32,
500 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
501 .sensors_supported = {
502 [0] = H3LIS331DL_ACCEL_DEV_NAME,
504 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
505 .odr = {
506 .addr = 0x20,
507 .mask = 0x18,
508 .odr_avl = {
509 { .hz = 50, .value = 0x00, },
510 { .hz = 100, .value = 0x01, },
511 { .hz = 400, .value = 0x02, },
512 { .hz = 1000, .value = 0x03, },
515 .pw = {
516 .addr = 0x20,
517 .mask = 0x20,
518 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
519 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
521 .enable_axis = {
522 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
523 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
525 .fs = {
526 .addr = 0x23,
527 .mask = 0x30,
528 .fs_avl = {
529 [0] = {
530 .num = ST_ACCEL_FS_AVL_100G,
531 .value = 0x00,
532 .gain = IIO_G_TO_M_S_2(49000),
534 [1] = {
535 .num = ST_ACCEL_FS_AVL_200G,
536 .value = 0x01,
537 .gain = IIO_G_TO_M_S_2(98000),
539 [2] = {
540 .num = ST_ACCEL_FS_AVL_400G,
541 .value = 0x03,
542 .gain = IIO_G_TO_M_S_2(195000),
546 .bdu = {
547 .addr = 0x23,
548 .mask = 0x80,
550 .drdy_irq = {
551 .int1 = {
552 .addr = 0x22,
553 .mask = 0x02,
555 .int2 = {
556 .addr = 0x22,
557 .mask = 0x10,
559 .addr_ihl = 0x22,
560 .mask_ihl = 0x80,
562 .sim = {
563 .addr = 0x23,
564 .value = BIT(0),
566 .multi_read_bit = true,
567 .bootime = 2,
570 /* No WAI register present */
571 .sensors_supported = {
572 [0] = LIS3L02DQ_ACCEL_DEV_NAME,
574 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
575 .odr = {
576 .addr = 0x20,
577 .mask = 0x30,
578 .odr_avl = {
579 { .hz = 280, .value = 0x00, },
580 { .hz = 560, .value = 0x01, },
581 { .hz = 1120, .value = 0x02, },
582 { .hz = 4480, .value = 0x03, },
585 .pw = {
586 .addr = 0x20,
587 .mask = 0xc0,
588 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
589 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
591 .enable_axis = {
592 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
593 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
595 .fs = {
596 .fs_avl = {
597 [0] = {
598 .num = ST_ACCEL_FS_AVL_2G,
599 .gain = IIO_G_TO_M_S_2(488),
604 * The part has a BDU bit but if set the data is never
605 * updated so don't set it.
607 .bdu = {
609 .drdy_irq = {
610 .int1 = {
611 .addr = 0x21,
612 .mask = 0x04,
614 .stat_drdy = {
615 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
616 .mask = 0x07,
619 .sim = {
620 .addr = 0x21,
621 .value = BIT(1),
623 .multi_read_bit = false,
624 .bootime = 2,
627 .wai = 0x33,
628 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
629 .sensors_supported = {
630 [0] = LNG2DM_ACCEL_DEV_NAME,
632 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
633 .odr = {
634 .addr = 0x20,
635 .mask = 0xf0,
636 .odr_avl = {
637 { .hz = 1, .value = 0x01, },
638 { .hz = 10, .value = 0x02, },
639 { .hz = 25, .value = 0x03, },
640 { .hz = 50, .value = 0x04, },
641 { .hz = 100, .value = 0x05, },
642 { .hz = 200, .value = 0x06, },
643 { .hz = 400, .value = 0x07, },
644 { .hz = 1600, .value = 0x08, },
647 .pw = {
648 .addr = 0x20,
649 .mask = 0xf0,
650 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
652 .enable_axis = {
653 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
654 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
656 .fs = {
657 .addr = 0x23,
658 .mask = 0x30,
659 .fs_avl = {
660 [0] = {
661 .num = ST_ACCEL_FS_AVL_2G,
662 .value = 0x00,
663 .gain = IIO_G_TO_M_S_2(15600),
665 [1] = {
666 .num = ST_ACCEL_FS_AVL_4G,
667 .value = 0x01,
668 .gain = IIO_G_TO_M_S_2(31200),
670 [2] = {
671 .num = ST_ACCEL_FS_AVL_8G,
672 .value = 0x02,
673 .gain = IIO_G_TO_M_S_2(62500),
675 [3] = {
676 .num = ST_ACCEL_FS_AVL_16G,
677 .value = 0x03,
678 .gain = IIO_G_TO_M_S_2(187500),
682 .drdy_irq = {
683 .int1 = {
684 .addr = 0x22,
685 .mask = 0x10,
687 .addr_ihl = 0x25,
688 .mask_ihl = 0x02,
689 .stat_drdy = {
690 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
691 .mask = 0x07,
694 .sim = {
695 .addr = 0x23,
696 .value = BIT(0),
698 .multi_read_bit = true,
699 .bootime = 2,
702 .wai = 0x44,
703 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
704 .sensors_supported = {
705 [0] = LIS2DW12_ACCEL_DEV_NAME,
707 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
708 .odr = {
709 .addr = 0x20,
710 .mask = 0xf0,
711 .odr_avl = {
712 { .hz = 1, .value = 0x01, },
713 { .hz = 12, .value = 0x02, },
714 { .hz = 25, .value = 0x03, },
715 { .hz = 50, .value = 0x04, },
716 { .hz = 100, .value = 0x05, },
717 { .hz = 200, .value = 0x06, },
720 .pw = {
721 .addr = 0x20,
722 .mask = 0xf0,
723 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
725 .fs = {
726 .addr = 0x25,
727 .mask = 0x30,
728 .fs_avl = {
729 [0] = {
730 .num = ST_ACCEL_FS_AVL_2G,
731 .value = 0x00,
732 .gain = IIO_G_TO_M_S_2(976),
734 [1] = {
735 .num = ST_ACCEL_FS_AVL_4G,
736 .value = 0x01,
737 .gain = IIO_G_TO_M_S_2(1952),
739 [2] = {
740 .num = ST_ACCEL_FS_AVL_8G,
741 .value = 0x02,
742 .gain = IIO_G_TO_M_S_2(3904),
744 [3] = {
745 .num = ST_ACCEL_FS_AVL_16G,
746 .value = 0x03,
747 .gain = IIO_G_TO_M_S_2(7808),
751 .bdu = {
752 .addr = 0x21,
753 .mask = 0x08,
755 .drdy_irq = {
756 .int1 = {
757 .addr = 0x23,
758 .mask = 0x01,
759 .addr_od = 0x22,
760 .mask_od = 0x20,
762 .int2 = {
763 .addr = 0x24,
764 .mask = 0x01,
765 .addr_od = 0x22,
766 .mask_od = 0x20,
768 .addr_ihl = 0x22,
769 .mask_ihl = 0x08,
770 .stat_drdy = {
771 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
772 .mask = 0x01,
775 .sim = {
776 .addr = 0x21,
777 .value = BIT(0),
779 .multi_read_bit = false,
780 .bootime = 2,
783 .wai = 0x11,
784 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
785 .sensors_supported = {
786 [0] = LIS3DHH_ACCEL_DEV_NAME,
788 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
789 .odr = {
790 /* just ODR = 1100Hz available */
791 .odr_avl = {
792 { .hz = 1100, .value = 0x00, },
795 .pw = {
796 .addr = 0x20,
797 .mask = 0x80,
798 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
799 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
801 .fs = {
802 .fs_avl = {
803 [0] = {
804 .num = ST_ACCEL_FS_AVL_2G,
805 .gain = IIO_G_TO_M_S_2(76),
809 .bdu = {
810 .addr = 0x20,
811 .mask = 0x01,
813 .drdy_irq = {
814 .int1 = {
815 .addr = 0x21,
816 .mask = 0x80,
817 .addr_od = 0x23,
818 .mask_od = 0x04,
820 .int2 = {
821 .addr = 0x22,
822 .mask = 0x80,
823 .addr_od = 0x23,
824 .mask_od = 0x08,
826 .stat_drdy = {
827 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
828 .mask = 0x07,
831 .multi_read_bit = false,
832 .bootime = 2,
836 static int st_accel_read_raw(struct iio_dev *indio_dev,
837 struct iio_chan_spec const *ch, int *val,
838 int *val2, long mask)
840 int err;
841 struct st_sensor_data *adata = iio_priv(indio_dev);
843 switch (mask) {
844 case IIO_CHAN_INFO_RAW:
845 err = st_sensors_read_info_raw(indio_dev, ch, val);
846 if (err < 0)
847 goto read_error;
849 return IIO_VAL_INT;
850 case IIO_CHAN_INFO_SCALE:
851 *val = adata->current_fullscale->gain / 1000000;
852 *val2 = adata->current_fullscale->gain % 1000000;
853 return IIO_VAL_INT_PLUS_MICRO;
854 case IIO_CHAN_INFO_SAMP_FREQ:
855 *val = adata->odr;
856 return IIO_VAL_INT;
857 default:
858 return -EINVAL;
861 read_error:
862 return err;
865 static int st_accel_write_raw(struct iio_dev *indio_dev,
866 struct iio_chan_spec const *chan, int val, int val2, long mask)
868 int err;
870 switch (mask) {
871 case IIO_CHAN_INFO_SCALE: {
872 int gain;
874 gain = val * 1000000 + val2;
875 err = st_sensors_set_fullscale_by_gain(indio_dev, gain);
876 break;
878 case IIO_CHAN_INFO_SAMP_FREQ:
879 if (val2)
880 return -EINVAL;
881 mutex_lock(&indio_dev->mlock);
882 err = st_sensors_set_odr(indio_dev, val);
883 mutex_unlock(&indio_dev->mlock);
884 return err;
885 default:
886 return -EINVAL;
889 return err;
892 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
893 static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available);
895 static struct attribute *st_accel_attributes[] = {
896 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
897 &iio_dev_attr_in_accel_scale_available.dev_attr.attr,
898 NULL,
901 static const struct attribute_group st_accel_attribute_group = {
902 .attrs = st_accel_attributes,
905 static const struct iio_info accel_info = {
906 .attrs = &st_accel_attribute_group,
907 .read_raw = &st_accel_read_raw,
908 .write_raw = &st_accel_write_raw,
909 .debugfs_reg_access = &st_sensors_debugfs_reg_access,
912 #ifdef CONFIG_IIO_TRIGGER
913 static const struct iio_trigger_ops st_accel_trigger_ops = {
914 .set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE,
915 .validate_device = st_sensors_validate_device,
917 #define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops)
918 #else
919 #define ST_ACCEL_TRIGGER_OPS NULL
920 #endif
922 static const struct iio_mount_matrix *
923 get_mount_matrix(const struct iio_dev *indio_dev,
924 const struct iio_chan_spec *chan)
926 struct st_sensor_data *adata = iio_priv(indio_dev);
928 return adata->mount_matrix;
931 static const struct iio_chan_spec_ext_info mount_matrix_ext_info[] = {
932 IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, get_mount_matrix),
933 { },
936 /* Read ST-specific _ONT orientation data from ACPI and generate an
937 * appropriate mount matrix.
939 static int apply_acpi_orientation(struct iio_dev *indio_dev,
940 struct iio_chan_spec *channels)
942 #ifdef CONFIG_ACPI
943 struct st_sensor_data *adata = iio_priv(indio_dev);
944 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
945 struct acpi_device *adev;
946 union acpi_object *ont;
947 union acpi_object *elements;
948 acpi_status status;
949 int ret = -EINVAL;
950 unsigned int val;
951 int i, j;
952 int final_ont[3][3] = { { 0 }, };
954 /* For some reason, ST's _ONT translation does not apply directly
955 * to the data read from the sensor. Another translation must be
956 * performed first, as described by the matrix below. Perhaps
957 * ST required this specific translation for the first product
958 * where the device was mounted?
960 const int default_ont[3][3] = {
961 { 0, 1, 0 },
962 { -1, 0, 0 },
963 { 0, 0, -1 },
967 adev = ACPI_COMPANION(adata->dev);
968 if (!adev)
969 return 0;
971 /* Read _ONT data, which should be a package of 6 integers. */
972 status = acpi_evaluate_object(adev->handle, "_ONT", NULL, &buffer);
973 if (status == AE_NOT_FOUND) {
974 return 0;
975 } else if (ACPI_FAILURE(status)) {
976 dev_warn(&indio_dev->dev, "failed to execute _ONT: %d\n",
977 status);
978 return status;
981 ont = buffer.pointer;
982 if (ont->type != ACPI_TYPE_PACKAGE || ont->package.count != 6)
983 goto out;
985 /* The first 3 integers provide axis order information.
986 * e.g. 0 1 2 would indicate normal X,Y,Z ordering.
987 * e.g. 1 0 2 indicates that data arrives in order Y,X,Z.
989 elements = ont->package.elements;
990 for (i = 0; i < 3; i++) {
991 if (elements[i].type != ACPI_TYPE_INTEGER)
992 goto out;
994 val = elements[i].integer.value;
995 if (val < 0 || val > 2)
996 goto out;
998 /* Avoiding full matrix multiplication, we simply reorder the
999 * columns in the default_ont matrix according to the
1000 * ordering provided by _ONT.
1002 final_ont[0][i] = default_ont[0][val];
1003 final_ont[1][i] = default_ont[1][val];
1004 final_ont[2][i] = default_ont[2][val];
1007 /* The final 3 integers provide sign flip information.
1008 * 0 means no change, 1 means flip.
1009 * e.g. 0 0 1 means that Z data should be sign-flipped.
1010 * This is applied after the axis reordering from above.
1012 elements += 3;
1013 for (i = 0; i < 3; i++) {
1014 if (elements[i].type != ACPI_TYPE_INTEGER)
1015 goto out;
1017 val = elements[i].integer.value;
1018 if (val != 0 && val != 1)
1019 goto out;
1020 if (!val)
1021 continue;
1023 /* Flip the values in the indicated column */
1024 final_ont[0][i] *= -1;
1025 final_ont[1][i] *= -1;
1026 final_ont[2][i] *= -1;
1029 /* Convert our integer matrix to a string-based iio_mount_matrix */
1030 adata->mount_matrix = devm_kmalloc(&indio_dev->dev,
1031 sizeof(*adata->mount_matrix),
1032 GFP_KERNEL);
1033 if (!adata->mount_matrix) {
1034 ret = -ENOMEM;
1035 goto out;
1038 for (i = 0; i < 3; i++) {
1039 for (j = 0; j < 3; j++) {
1040 int matrix_val = final_ont[i][j];
1041 char *str_value;
1043 switch (matrix_val) {
1044 case -1:
1045 str_value = "-1";
1046 break;
1047 case 0:
1048 str_value = "0";
1049 break;
1050 case 1:
1051 str_value = "1";
1052 break;
1053 default:
1054 goto out;
1056 adata->mount_matrix->rotation[i * 3 + j] = str_value;
1060 /* Expose the mount matrix via ext_info */
1061 for (i = 0; i < indio_dev->num_channels; i++)
1062 channels[i].ext_info = mount_matrix_ext_info;
1064 ret = 0;
1065 dev_info(&indio_dev->dev, "computed mount matrix from ACPI\n");
1067 out:
1068 kfree(buffer.pointer);
1069 return ret;
1070 #else /* !CONFIG_ACPI */
1071 return 0;
1072 #endif
1075 int st_accel_common_probe(struct iio_dev *indio_dev)
1077 struct st_sensor_data *adata = iio_priv(indio_dev);
1078 struct st_sensors_platform_data *pdata =
1079 (struct st_sensors_platform_data *)adata->dev->platform_data;
1080 int irq = adata->get_irq_data_ready(indio_dev);
1081 struct iio_chan_spec *channels;
1082 size_t channels_size;
1083 int err;
1085 indio_dev->modes = INDIO_DIRECT_MODE;
1086 indio_dev->info = &accel_info;
1087 mutex_init(&adata->tb.buf_lock);
1089 err = st_sensors_power_enable(indio_dev);
1090 if (err)
1091 return err;
1093 err = st_sensors_check_device_support(indio_dev,
1094 ARRAY_SIZE(st_accel_sensors_settings),
1095 st_accel_sensors_settings);
1096 if (err < 0)
1097 goto st_accel_power_off;
1099 adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS;
1100 adata->multiread_bit = adata->sensor_settings->multi_read_bit;
1101 indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS;
1103 channels_size = indio_dev->num_channels * sizeof(struct iio_chan_spec);
1104 channels = devm_kmemdup(&indio_dev->dev,
1105 adata->sensor_settings->ch,
1106 channels_size, GFP_KERNEL);
1107 if (!channels) {
1108 err = -ENOMEM;
1109 goto st_accel_power_off;
1112 if (apply_acpi_orientation(indio_dev, channels))
1113 dev_warn(&indio_dev->dev,
1114 "failed to apply ACPI orientation data: %d\n", err);
1116 indio_dev->channels = channels;
1117 adata->current_fullscale = (struct st_sensor_fullscale_avl *)
1118 &adata->sensor_settings->fs.fs_avl[0];
1119 adata->odr = adata->sensor_settings->odr.odr_avl[0].hz;
1121 if (!pdata)
1122 pdata = (struct st_sensors_platform_data *)&default_accel_pdata;
1124 err = st_sensors_init_sensor(indio_dev, pdata);
1125 if (err < 0)
1126 goto st_accel_power_off;
1128 err = st_accel_allocate_ring(indio_dev);
1129 if (err < 0)
1130 goto st_accel_power_off;
1132 if (irq > 0) {
1133 err = st_sensors_allocate_trigger(indio_dev,
1134 ST_ACCEL_TRIGGER_OPS);
1135 if (err < 0)
1136 goto st_accel_probe_trigger_error;
1139 err = iio_device_register(indio_dev);
1140 if (err)
1141 goto st_accel_device_register_error;
1143 dev_info(&indio_dev->dev, "registered accelerometer %s\n",
1144 indio_dev->name);
1146 return 0;
1148 st_accel_device_register_error:
1149 if (irq > 0)
1150 st_sensors_deallocate_trigger(indio_dev);
1151 st_accel_probe_trigger_error:
1152 st_accel_deallocate_ring(indio_dev);
1153 st_accel_power_off:
1154 st_sensors_power_disable(indio_dev);
1156 return err;
1158 EXPORT_SYMBOL(st_accel_common_probe);
1160 void st_accel_common_remove(struct iio_dev *indio_dev)
1162 struct st_sensor_data *adata = iio_priv(indio_dev);
1164 st_sensors_power_disable(indio_dev);
1166 iio_device_unregister(indio_dev);
1167 if (adata->get_irq_data_ready(indio_dev) > 0)
1168 st_sensors_deallocate_trigger(indio_dev);
1170 st_accel_deallocate_ring(indio_dev);
1172 EXPORT_SYMBOL(st_accel_common_remove);
1174 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
1175 MODULE_DESCRIPTION("STMicroelectronics accelerometers driver");
1176 MODULE_LICENSE("GPL v2");