2 * Core registration and callback routines for MTD
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 #include <linux/nvmem-provider.h>
46 #include <linux/mtd/mtd.h>
47 #include <linux/mtd/partitions.h>
51 struct backing_dev_info
*mtd_bdi
;
53 #ifdef CONFIG_PM_SLEEP
55 static int mtd_cls_suspend(struct device
*dev
)
57 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
59 return mtd
? mtd_suspend(mtd
) : 0;
62 static int mtd_cls_resume(struct device
*dev
)
64 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops
, mtd_cls_suspend
, mtd_cls_resume
);
72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
74 #define MTD_CLS_PM_OPS NULL
77 static struct class mtd_class
= {
83 static DEFINE_IDR(mtd_idr
);
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86 should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex
);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex
);
90 struct mtd_info
*__mtd_next_device(int i
)
92 return idr_get_next(&mtd_idr
, &i
);
94 EXPORT_SYMBOL_GPL(__mtd_next_device
);
96 static LIST_HEAD(mtd_notifiers
);
99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101 /* REVISIT once MTD uses the driver model better, whoever allocates
102 * the mtd_info will probably want to use the release() hook...
104 static void mtd_release(struct device
*dev
)
106 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
107 dev_t index
= MTD_DEVT(mtd
->index
);
109 /* remove /dev/mtdXro node */
110 device_destroy(&mtd_class
, index
+ 1);
113 static ssize_t
mtd_type_show(struct device
*dev
,
114 struct device_attribute
*attr
, char *buf
)
116 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
141 case MTD_MLCNANDFLASH
:
148 return snprintf(buf
, PAGE_SIZE
, "%s\n", type
);
150 static DEVICE_ATTR(type
, S_IRUGO
, mtd_type_show
, NULL
);
152 static ssize_t
mtd_flags_show(struct device
*dev
,
153 struct device_attribute
*attr
, char *buf
)
155 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
157 return snprintf(buf
, PAGE_SIZE
, "0x%lx\n", (unsigned long)mtd
->flags
);
159 static DEVICE_ATTR(flags
, S_IRUGO
, mtd_flags_show
, NULL
);
161 static ssize_t
mtd_size_show(struct device
*dev
,
162 struct device_attribute
*attr
, char *buf
)
164 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
166 return snprintf(buf
, PAGE_SIZE
, "%llu\n",
167 (unsigned long long)mtd
->size
);
169 static DEVICE_ATTR(size
, S_IRUGO
, mtd_size_show
, NULL
);
171 static ssize_t
mtd_erasesize_show(struct device
*dev
,
172 struct device_attribute
*attr
, char *buf
)
174 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
176 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->erasesize
);
178 static DEVICE_ATTR(erasesize
, S_IRUGO
, mtd_erasesize_show
, NULL
);
180 static ssize_t
mtd_writesize_show(struct device
*dev
,
181 struct device_attribute
*attr
, char *buf
)
183 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
185 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->writesize
);
187 static DEVICE_ATTR(writesize
, S_IRUGO
, mtd_writesize_show
, NULL
);
189 static ssize_t
mtd_subpagesize_show(struct device
*dev
,
190 struct device_attribute
*attr
, char *buf
)
192 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
193 unsigned int subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
195 return snprintf(buf
, PAGE_SIZE
, "%u\n", subpagesize
);
197 static DEVICE_ATTR(subpagesize
, S_IRUGO
, mtd_subpagesize_show
, NULL
);
199 static ssize_t
mtd_oobsize_show(struct device
*dev
,
200 struct device_attribute
*attr
, char *buf
)
202 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
204 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->oobsize
);
206 static DEVICE_ATTR(oobsize
, S_IRUGO
, mtd_oobsize_show
, NULL
);
208 static ssize_t
mtd_oobavail_show(struct device
*dev
,
209 struct device_attribute
*attr
, char *buf
)
211 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
213 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->oobavail
);
215 static DEVICE_ATTR(oobavail
, S_IRUGO
, mtd_oobavail_show
, NULL
);
217 static ssize_t
mtd_numeraseregions_show(struct device
*dev
,
218 struct device_attribute
*attr
, char *buf
)
220 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
222 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->numeraseregions
);
224 static DEVICE_ATTR(numeraseregions
, S_IRUGO
, mtd_numeraseregions_show
,
227 static ssize_t
mtd_name_show(struct device
*dev
,
228 struct device_attribute
*attr
, char *buf
)
230 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
232 return snprintf(buf
, PAGE_SIZE
, "%s\n", mtd
->name
);
234 static DEVICE_ATTR(name
, S_IRUGO
, mtd_name_show
, NULL
);
236 static ssize_t
mtd_ecc_strength_show(struct device
*dev
,
237 struct device_attribute
*attr
, char *buf
)
239 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
241 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->ecc_strength
);
243 static DEVICE_ATTR(ecc_strength
, S_IRUGO
, mtd_ecc_strength_show
, NULL
);
245 static ssize_t
mtd_bitflip_threshold_show(struct device
*dev
,
246 struct device_attribute
*attr
,
249 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
251 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->bitflip_threshold
);
254 static ssize_t
mtd_bitflip_threshold_store(struct device
*dev
,
255 struct device_attribute
*attr
,
256 const char *buf
, size_t count
)
258 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
259 unsigned int bitflip_threshold
;
262 retval
= kstrtouint(buf
, 0, &bitflip_threshold
);
266 mtd
->bitflip_threshold
= bitflip_threshold
;
269 static DEVICE_ATTR(bitflip_threshold
, S_IRUGO
| S_IWUSR
,
270 mtd_bitflip_threshold_show
,
271 mtd_bitflip_threshold_store
);
273 static ssize_t
mtd_ecc_step_size_show(struct device
*dev
,
274 struct device_attribute
*attr
, char *buf
)
276 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
278 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->ecc_step_size
);
281 static DEVICE_ATTR(ecc_step_size
, S_IRUGO
, mtd_ecc_step_size_show
, NULL
);
283 static ssize_t
mtd_ecc_stats_corrected_show(struct device
*dev
,
284 struct device_attribute
*attr
, char *buf
)
286 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
287 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
289 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->corrected
);
291 static DEVICE_ATTR(corrected_bits
, S_IRUGO
,
292 mtd_ecc_stats_corrected_show
, NULL
);
294 static ssize_t
mtd_ecc_stats_errors_show(struct device
*dev
,
295 struct device_attribute
*attr
, char *buf
)
297 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
298 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
300 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->failed
);
302 static DEVICE_ATTR(ecc_failures
, S_IRUGO
, mtd_ecc_stats_errors_show
, NULL
);
304 static ssize_t
mtd_badblocks_show(struct device
*dev
,
305 struct device_attribute
*attr
, char *buf
)
307 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
308 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
310 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->badblocks
);
312 static DEVICE_ATTR(bad_blocks
, S_IRUGO
, mtd_badblocks_show
, NULL
);
314 static ssize_t
mtd_bbtblocks_show(struct device
*dev
,
315 struct device_attribute
*attr
, char *buf
)
317 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
318 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
320 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->bbtblocks
);
322 static DEVICE_ATTR(bbt_blocks
, S_IRUGO
, mtd_bbtblocks_show
, NULL
);
324 static struct attribute
*mtd_attrs
[] = {
326 &dev_attr_flags
.attr
,
328 &dev_attr_erasesize
.attr
,
329 &dev_attr_writesize
.attr
,
330 &dev_attr_subpagesize
.attr
,
331 &dev_attr_oobsize
.attr
,
332 &dev_attr_oobavail
.attr
,
333 &dev_attr_numeraseregions
.attr
,
335 &dev_attr_ecc_strength
.attr
,
336 &dev_attr_ecc_step_size
.attr
,
337 &dev_attr_corrected_bits
.attr
,
338 &dev_attr_ecc_failures
.attr
,
339 &dev_attr_bad_blocks
.attr
,
340 &dev_attr_bbt_blocks
.attr
,
341 &dev_attr_bitflip_threshold
.attr
,
344 ATTRIBUTE_GROUPS(mtd
);
346 static const struct device_type mtd_devtype
= {
348 .groups
= mtd_groups
,
349 .release
= mtd_release
,
353 unsigned mtd_mmap_capabilities(struct mtd_info
*mtd
)
357 return NOMMU_MAP_COPY
| NOMMU_MAP_DIRECT
| NOMMU_MAP_EXEC
|
358 NOMMU_MAP_READ
| NOMMU_MAP_WRITE
;
360 return NOMMU_MAP_COPY
| NOMMU_MAP_DIRECT
| NOMMU_MAP_EXEC
|
363 return NOMMU_MAP_COPY
;
366 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities
);
369 static int mtd_reboot_notifier(struct notifier_block
*n
, unsigned long state
,
372 struct mtd_info
*mtd
;
374 mtd
= container_of(n
, struct mtd_info
, reboot_notifier
);
381 * mtd_wunit_to_pairing_info - get pairing information of a wunit
382 * @mtd: pointer to new MTD device info structure
383 * @wunit: write unit we are interested in
384 * @info: returned pairing information
386 * Retrieve pairing information associated to the wunit.
387 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
388 * paired together, and where programming a page may influence the page it is
390 * The notion of page is replaced by the term wunit (write-unit) to stay
391 * consistent with the ->writesize field.
393 * The @wunit argument can be extracted from an absolute offset using
394 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
397 * From the pairing info the MTD user can find all the wunits paired with
398 * @wunit using the following loop:
400 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
402 * mtd_pairing_info_to_wunit(mtd, &info);
406 int mtd_wunit_to_pairing_info(struct mtd_info
*mtd
, int wunit
,
407 struct mtd_pairing_info
*info
)
409 int npairs
= mtd_wunit_per_eb(mtd
) / mtd_pairing_groups(mtd
);
411 if (wunit
< 0 || wunit
>= npairs
)
414 if (mtd
->pairing
&& mtd
->pairing
->get_info
)
415 return mtd
->pairing
->get_info(mtd
, wunit
, info
);
422 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info
);
425 * mtd_pairing_info_to_wunit - get wunit from pairing information
426 * @mtd: pointer to new MTD device info structure
427 * @info: pairing information struct
429 * Returns a positive number representing the wunit associated to the info
430 * struct, or a negative error code.
432 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
433 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
436 * It can also be used to only program the first page of each pair (i.e.
437 * page attached to group 0), which allows one to use an MLC NAND in
438 * software-emulated SLC mode:
441 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
442 * for (info.pair = 0; info.pair < npairs; info.pair++) {
443 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
444 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
445 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
448 int mtd_pairing_info_to_wunit(struct mtd_info
*mtd
,
449 const struct mtd_pairing_info
*info
)
451 int ngroups
= mtd_pairing_groups(mtd
);
452 int npairs
= mtd_wunit_per_eb(mtd
) / ngroups
;
454 if (!info
|| info
->pair
< 0 || info
->pair
>= npairs
||
455 info
->group
< 0 || info
->group
>= ngroups
)
458 if (mtd
->pairing
&& mtd
->pairing
->get_wunit
)
459 return mtd
->pairing
->get_wunit(mtd
, info
);
463 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit
);
466 * mtd_pairing_groups - get the number of pairing groups
467 * @mtd: pointer to new MTD device info structure
469 * Returns the number of pairing groups.
471 * This number is usually equal to the number of bits exposed by a single
472 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
473 * to iterate over all pages of a given pair.
475 int mtd_pairing_groups(struct mtd_info
*mtd
)
477 if (!mtd
->pairing
|| !mtd
->pairing
->ngroups
)
480 return mtd
->pairing
->ngroups
;
482 EXPORT_SYMBOL_GPL(mtd_pairing_groups
);
484 static int mtd_nvmem_reg_read(void *priv
, unsigned int offset
,
485 void *val
, size_t bytes
)
487 struct mtd_info
*mtd
= priv
;
491 err
= mtd_read(mtd
, offset
, bytes
, &retlen
, val
);
492 if (err
&& err
!= -EUCLEAN
)
495 return retlen
== bytes
? 0 : -EIO
;
498 static int mtd_nvmem_add(struct mtd_info
*mtd
)
500 struct nvmem_config config
= {};
503 config
.dev
= &mtd
->dev
;
504 config
.name
= mtd
->name
;
505 config
.owner
= THIS_MODULE
;
506 config
.reg_read
= mtd_nvmem_reg_read
;
507 config
.size
= mtd
->size
;
508 config
.word_size
= 1;
510 config
.read_only
= true;
511 config
.root_only
= true;
512 config
.no_of_node
= true;
515 mtd
->nvmem
= nvmem_register(&config
);
516 if (IS_ERR(mtd
->nvmem
)) {
517 /* Just ignore if there is no NVMEM support in the kernel */
518 if (PTR_ERR(mtd
->nvmem
) == -EOPNOTSUPP
) {
521 dev_err(&mtd
->dev
, "Failed to register NVMEM device\n");
522 return PTR_ERR(mtd
->nvmem
);
529 static struct dentry
*dfs_dir_mtd
;
532 * add_mtd_device - register an MTD device
533 * @mtd: pointer to new MTD device info structure
535 * Add a device to the list of MTD devices present in the system, and
536 * notify each currently active MTD 'user' of its arrival. Returns
537 * zero on success or non-zero on failure.
540 int add_mtd_device(struct mtd_info
*mtd
)
542 struct mtd_notifier
*not;
546 * May occur, for instance, on buggy drivers which call
547 * mtd_device_parse_register() multiple times on the same master MTD,
548 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
550 if (WARN_ONCE(mtd
->dev
.type
, "MTD already registered\n"))
553 BUG_ON(mtd
->writesize
== 0);
556 * MTD drivers should implement ->_{write,read}() or
557 * ->_{write,read}_oob(), but not both.
559 if (WARN_ON((mtd
->_write
&& mtd
->_write_oob
) ||
560 (mtd
->_read
&& mtd
->_read_oob
)))
563 if (WARN_ON((!mtd
->erasesize
|| !mtd
->_erase
) &&
564 !(mtd
->flags
& MTD_NO_ERASE
)))
567 mutex_lock(&mtd_table_mutex
);
569 i
= idr_alloc(&mtd_idr
, mtd
, 0, 0, GFP_KERNEL
);
578 /* default value if not set by driver */
579 if (mtd
->bitflip_threshold
== 0)
580 mtd
->bitflip_threshold
= mtd
->ecc_strength
;
582 if (is_power_of_2(mtd
->erasesize
))
583 mtd
->erasesize_shift
= ffs(mtd
->erasesize
) - 1;
585 mtd
->erasesize_shift
= 0;
587 if (is_power_of_2(mtd
->writesize
))
588 mtd
->writesize_shift
= ffs(mtd
->writesize
) - 1;
590 mtd
->writesize_shift
= 0;
592 mtd
->erasesize_mask
= (1 << mtd
->erasesize_shift
) - 1;
593 mtd
->writesize_mask
= (1 << mtd
->writesize_shift
) - 1;
595 /* Some chips always power up locked. Unlock them now */
596 if ((mtd
->flags
& MTD_WRITEABLE
) && (mtd
->flags
& MTD_POWERUP_LOCK
)) {
597 error
= mtd_unlock(mtd
, 0, mtd
->size
);
598 if (error
&& error
!= -EOPNOTSUPP
)
600 "%s: unlock failed, writes may not work\n",
602 /* Ignore unlock failures? */
606 /* Caller should have set dev.parent to match the
607 * physical device, if appropriate.
609 mtd
->dev
.type
= &mtd_devtype
;
610 mtd
->dev
.class = &mtd_class
;
611 mtd
->dev
.devt
= MTD_DEVT(i
);
612 dev_set_name(&mtd
->dev
, "mtd%d", i
);
613 dev_set_drvdata(&mtd
->dev
, mtd
);
614 of_node_get(mtd_get_of_node(mtd
));
615 error
= device_register(&mtd
->dev
);
619 /* Add the nvmem provider */
620 error
= mtd_nvmem_add(mtd
);
624 if (!IS_ERR_OR_NULL(dfs_dir_mtd
)) {
625 mtd
->dbg
.dfs_dir
= debugfs_create_dir(dev_name(&mtd
->dev
), dfs_dir_mtd
);
626 if (IS_ERR_OR_NULL(mtd
->dbg
.dfs_dir
)) {
627 pr_debug("mtd device %s won't show data in debugfs\n",
628 dev_name(&mtd
->dev
));
632 device_create(&mtd_class
, mtd
->dev
.parent
, MTD_DEVT(i
) + 1, NULL
,
635 pr_debug("mtd: Giving out device %d to %s\n", i
, mtd
->name
);
636 /* No need to get a refcount on the module containing
637 the notifier, since we hold the mtd_table_mutex */
638 list_for_each_entry(not, &mtd_notifiers
, list
)
641 mutex_unlock(&mtd_table_mutex
);
642 /* We _know_ we aren't being removed, because
643 our caller is still holding us here. So none
644 of this try_ nonsense, and no bitching about it
646 __module_get(THIS_MODULE
);
650 device_unregister(&mtd
->dev
);
652 of_node_put(mtd_get_of_node(mtd
));
653 idr_remove(&mtd_idr
, i
);
655 mutex_unlock(&mtd_table_mutex
);
660 * del_mtd_device - unregister an MTD device
661 * @mtd: pointer to MTD device info structure
663 * Remove a device from the list of MTD devices present in the system,
664 * and notify each currently active MTD 'user' of its departure.
665 * Returns zero on success or 1 on failure, which currently will happen
666 * if the requested device does not appear to be present in the list.
669 int del_mtd_device(struct mtd_info
*mtd
)
672 struct mtd_notifier
*not;
674 mutex_lock(&mtd_table_mutex
);
676 debugfs_remove_recursive(mtd
->dbg
.dfs_dir
);
678 if (idr_find(&mtd_idr
, mtd
->index
) != mtd
) {
683 /* No need to get a refcount on the module containing
684 the notifier, since we hold the mtd_table_mutex */
685 list_for_each_entry(not, &mtd_notifiers
, list
)
689 printk(KERN_NOTICE
"Removing MTD device #%d (%s) with use count %d\n",
690 mtd
->index
, mtd
->name
, mtd
->usecount
);
693 /* Try to remove the NVMEM provider */
695 nvmem_unregister(mtd
->nvmem
);
697 device_unregister(&mtd
->dev
);
699 idr_remove(&mtd_idr
, mtd
->index
);
700 of_node_put(mtd_get_of_node(mtd
));
702 module_put(THIS_MODULE
);
707 mutex_unlock(&mtd_table_mutex
);
712 * Set a few defaults based on the parent devices, if not provided by the
715 static void mtd_set_dev_defaults(struct mtd_info
*mtd
)
717 if (mtd
->dev
.parent
) {
718 if (!mtd
->owner
&& mtd
->dev
.parent
->driver
)
719 mtd
->owner
= mtd
->dev
.parent
->driver
->owner
;
721 mtd
->name
= dev_name(mtd
->dev
.parent
);
723 pr_debug("mtd device won't show a device symlink in sysfs\n");
726 mtd
->orig_flags
= mtd
->flags
;
730 * mtd_device_parse_register - parse partitions and register an MTD device.
732 * @mtd: the MTD device to register
733 * @types: the list of MTD partition probes to try, see
734 * 'parse_mtd_partitions()' for more information
735 * @parser_data: MTD partition parser-specific data
736 * @parts: fallback partition information to register, if parsing fails;
737 * only valid if %nr_parts > %0
738 * @nr_parts: the number of partitions in parts, if zero then the full
739 * MTD device is registered if no partition info is found
741 * This function aggregates MTD partitions parsing (done by
742 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
743 * basically follows the most common pattern found in many MTD drivers:
745 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
747 * * Then It tries to probe partitions on MTD device @mtd using parsers
748 * specified in @types (if @types is %NULL, then the default list of parsers
749 * is used, see 'parse_mtd_partitions()' for more information). If none are
750 * found this functions tries to fallback to information specified in
752 * * If no partitions were found this function just registers the MTD device
755 * Returns zero in case of success and a negative error code in case of failure.
757 int mtd_device_parse_register(struct mtd_info
*mtd
, const char * const *types
,
758 struct mtd_part_parser_data
*parser_data
,
759 const struct mtd_partition
*parts
,
764 mtd_set_dev_defaults(mtd
);
766 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER
)) {
767 ret
= add_mtd_device(mtd
);
772 /* Prefer parsed partitions over driver-provided fallback */
773 ret
= parse_mtd_partitions(mtd
, types
, parser_data
);
777 ret
= add_mtd_partitions(mtd
, parts
, nr_parts
);
778 else if (!device_is_registered(&mtd
->dev
))
779 ret
= add_mtd_device(mtd
);
787 * FIXME: some drivers unfortunately call this function more than once.
788 * So we have to check if we've already assigned the reboot notifier.
790 * Generally, we can make multiple calls work for most cases, but it
791 * does cause problems with parse_mtd_partitions() above (e.g.,
792 * cmdlineparts will register partitions more than once).
794 WARN_ONCE(mtd
->_reboot
&& mtd
->reboot_notifier
.notifier_call
,
795 "MTD already registered\n");
796 if (mtd
->_reboot
&& !mtd
->reboot_notifier
.notifier_call
) {
797 mtd
->reboot_notifier
.notifier_call
= mtd_reboot_notifier
;
798 register_reboot_notifier(&mtd
->reboot_notifier
);
802 if (ret
&& device_is_registered(&mtd
->dev
))
807 EXPORT_SYMBOL_GPL(mtd_device_parse_register
);
810 * mtd_device_unregister - unregister an existing MTD device.
812 * @master: the MTD device to unregister. This will unregister both the master
813 * and any partitions if registered.
815 int mtd_device_unregister(struct mtd_info
*master
)
820 unregister_reboot_notifier(&master
->reboot_notifier
);
822 err
= del_mtd_partitions(master
);
826 if (!device_is_registered(&master
->dev
))
829 return del_mtd_device(master
);
831 EXPORT_SYMBOL_GPL(mtd_device_unregister
);
834 * register_mtd_user - register a 'user' of MTD devices.
835 * @new: pointer to notifier info structure
837 * Registers a pair of callbacks function to be called upon addition
838 * or removal of MTD devices. Causes the 'add' callback to be immediately
839 * invoked for each MTD device currently present in the system.
841 void register_mtd_user (struct mtd_notifier
*new)
843 struct mtd_info
*mtd
;
845 mutex_lock(&mtd_table_mutex
);
847 list_add(&new->list
, &mtd_notifiers
);
849 __module_get(THIS_MODULE
);
851 mtd_for_each_device(mtd
)
854 mutex_unlock(&mtd_table_mutex
);
856 EXPORT_SYMBOL_GPL(register_mtd_user
);
859 * unregister_mtd_user - unregister a 'user' of MTD devices.
860 * @old: pointer to notifier info structure
862 * Removes a callback function pair from the list of 'users' to be
863 * notified upon addition or removal of MTD devices. Causes the
864 * 'remove' callback to be immediately invoked for each MTD device
865 * currently present in the system.
867 int unregister_mtd_user (struct mtd_notifier
*old
)
869 struct mtd_info
*mtd
;
871 mutex_lock(&mtd_table_mutex
);
873 module_put(THIS_MODULE
);
875 mtd_for_each_device(mtd
)
878 list_del(&old
->list
);
879 mutex_unlock(&mtd_table_mutex
);
882 EXPORT_SYMBOL_GPL(unregister_mtd_user
);
885 * get_mtd_device - obtain a validated handle for an MTD device
886 * @mtd: last known address of the required MTD device
887 * @num: internal device number of the required MTD device
889 * Given a number and NULL address, return the num'th entry in the device
890 * table, if any. Given an address and num == -1, search the device table
891 * for a device with that address and return if it's still present. Given
892 * both, return the num'th driver only if its address matches. Return
895 struct mtd_info
*get_mtd_device(struct mtd_info
*mtd
, int num
)
897 struct mtd_info
*ret
= NULL
, *other
;
900 mutex_lock(&mtd_table_mutex
);
903 mtd_for_each_device(other
) {
909 } else if (num
>= 0) {
910 ret
= idr_find(&mtd_idr
, num
);
911 if (mtd
&& mtd
!= ret
)
920 err
= __get_mtd_device(ret
);
924 mutex_unlock(&mtd_table_mutex
);
927 EXPORT_SYMBOL_GPL(get_mtd_device
);
930 int __get_mtd_device(struct mtd_info
*mtd
)
934 if (!try_module_get(mtd
->owner
))
937 if (mtd
->_get_device
) {
938 err
= mtd
->_get_device(mtd
);
941 module_put(mtd
->owner
);
948 EXPORT_SYMBOL_GPL(__get_mtd_device
);
951 * get_mtd_device_nm - obtain a validated handle for an MTD device by
953 * @name: MTD device name to open
955 * This function returns MTD device description structure in case of
956 * success and an error code in case of failure.
958 struct mtd_info
*get_mtd_device_nm(const char *name
)
961 struct mtd_info
*mtd
= NULL
, *other
;
963 mutex_lock(&mtd_table_mutex
);
965 mtd_for_each_device(other
) {
966 if (!strcmp(name
, other
->name
)) {
975 err
= __get_mtd_device(mtd
);
979 mutex_unlock(&mtd_table_mutex
);
983 mutex_unlock(&mtd_table_mutex
);
986 EXPORT_SYMBOL_GPL(get_mtd_device_nm
);
988 void put_mtd_device(struct mtd_info
*mtd
)
990 mutex_lock(&mtd_table_mutex
);
991 __put_mtd_device(mtd
);
992 mutex_unlock(&mtd_table_mutex
);
995 EXPORT_SYMBOL_GPL(put_mtd_device
);
997 void __put_mtd_device(struct mtd_info
*mtd
)
1000 BUG_ON(mtd
->usecount
< 0);
1002 if (mtd
->_put_device
)
1003 mtd
->_put_device(mtd
);
1005 module_put(mtd
->owner
);
1007 EXPORT_SYMBOL_GPL(__put_mtd_device
);
1010 * Erase is an synchronous operation. Device drivers are epected to return a
1011 * negative error code if the operation failed and update instr->fail_addr
1012 * to point the portion that was not properly erased.
1014 int mtd_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
1016 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
1018 if (!mtd
->erasesize
|| !mtd
->_erase
)
1021 if (instr
->addr
>= mtd
->size
|| instr
->len
> mtd
->size
- instr
->addr
)
1023 if (!(mtd
->flags
& MTD_WRITEABLE
))
1029 ledtrig_mtd_activity();
1030 return mtd
->_erase(mtd
, instr
);
1032 EXPORT_SYMBOL_GPL(mtd_erase
);
1035 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1037 int mtd_point(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
,
1038 void **virt
, resource_size_t
*phys
)
1046 if (from
< 0 || from
>= mtd
->size
|| len
> mtd
->size
- from
)
1050 return mtd
->_point(mtd
, from
, len
, retlen
, virt
, phys
);
1052 EXPORT_SYMBOL_GPL(mtd_point
);
1054 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1055 int mtd_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
)
1059 if (from
< 0 || from
>= mtd
->size
|| len
> mtd
->size
- from
)
1063 return mtd
->_unpoint(mtd
, from
, len
);
1065 EXPORT_SYMBOL_GPL(mtd_unpoint
);
1068 * Allow NOMMU mmap() to directly map the device (if not NULL)
1069 * - return the address to which the offset maps
1070 * - return -ENOSYS to indicate refusal to do the mapping
1072 unsigned long mtd_get_unmapped_area(struct mtd_info
*mtd
, unsigned long len
,
1073 unsigned long offset
, unsigned long flags
)
1079 ret
= mtd_point(mtd
, offset
, len
, &retlen
, &virt
, NULL
);
1082 if (retlen
!= len
) {
1083 mtd_unpoint(mtd
, offset
, retlen
);
1086 return (unsigned long)virt
;
1088 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area
);
1090 int mtd_read(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
,
1093 struct mtd_oob_ops ops
= {
1099 ret
= mtd_read_oob(mtd
, from
, &ops
);
1100 *retlen
= ops
.retlen
;
1104 EXPORT_SYMBOL_GPL(mtd_read
);
1106 int mtd_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
,
1109 struct mtd_oob_ops ops
= {
1111 .datbuf
= (u8
*)buf
,
1115 ret
= mtd_write_oob(mtd
, to
, &ops
);
1116 *retlen
= ops
.retlen
;
1120 EXPORT_SYMBOL_GPL(mtd_write
);
1123 * In blackbox flight recorder like scenarios we want to make successful writes
1124 * in interrupt context. panic_write() is only intended to be called when its
1125 * known the kernel is about to panic and we need the write to succeed. Since
1126 * the kernel is not going to be running for much longer, this function can
1127 * break locks and delay to ensure the write succeeds (but not sleep).
1129 int mtd_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
,
1133 if (!mtd
->_panic_write
)
1135 if (to
< 0 || to
>= mtd
->size
|| len
> mtd
->size
- to
)
1137 if (!(mtd
->flags
& MTD_WRITEABLE
))
1141 return mtd
->_panic_write(mtd
, to
, len
, retlen
, buf
);
1143 EXPORT_SYMBOL_GPL(mtd_panic_write
);
1145 static int mtd_check_oob_ops(struct mtd_info
*mtd
, loff_t offs
,
1146 struct mtd_oob_ops
*ops
)
1149 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1150 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1159 if (offs
< 0 || offs
+ ops
->len
> mtd
->size
)
1165 if (ops
->ooboffs
>= mtd_oobavail(mtd
, ops
))
1168 maxooblen
= ((size_t)(mtd_div_by_ws(mtd
->size
, mtd
) -
1169 mtd_div_by_ws(offs
, mtd
)) *
1170 mtd_oobavail(mtd
, ops
)) - ops
->ooboffs
;
1171 if (ops
->ooblen
> maxooblen
)
1178 int mtd_read_oob(struct mtd_info
*mtd
, loff_t from
, struct mtd_oob_ops
*ops
)
1181 ops
->retlen
= ops
->oobretlen
= 0;
1183 ret_code
= mtd_check_oob_ops(mtd
, from
, ops
);
1187 ledtrig_mtd_activity();
1189 /* Check the validity of a potential fallback on mtd->_read */
1190 if (!mtd
->_read_oob
&& (!mtd
->_read
|| ops
->oobbuf
))
1194 ret_code
= mtd
->_read_oob(mtd
, from
, ops
);
1196 ret_code
= mtd
->_read(mtd
, from
, ops
->len
, &ops
->retlen
,
1200 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1201 * similar to mtd->_read(), returning a non-negative integer
1202 * representing max bitflips. In other cases, mtd->_read_oob() may
1203 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1205 if (unlikely(ret_code
< 0))
1207 if (mtd
->ecc_strength
== 0)
1208 return 0; /* device lacks ecc */
1209 return ret_code
>= mtd
->bitflip_threshold
? -EUCLEAN
: 0;
1211 EXPORT_SYMBOL_GPL(mtd_read_oob
);
1213 int mtd_write_oob(struct mtd_info
*mtd
, loff_t to
,
1214 struct mtd_oob_ops
*ops
)
1218 ops
->retlen
= ops
->oobretlen
= 0;
1220 if (!(mtd
->flags
& MTD_WRITEABLE
))
1223 ret
= mtd_check_oob_ops(mtd
, to
, ops
);
1227 ledtrig_mtd_activity();
1229 /* Check the validity of a potential fallback on mtd->_write */
1230 if (!mtd
->_write_oob
&& (!mtd
->_write
|| ops
->oobbuf
))
1233 if (mtd
->_write_oob
)
1234 return mtd
->_write_oob(mtd
, to
, ops
);
1236 return mtd
->_write(mtd
, to
, ops
->len
, &ops
->retlen
,
1239 EXPORT_SYMBOL_GPL(mtd_write_oob
);
1242 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1243 * @mtd: MTD device structure
1244 * @section: ECC section. Depending on the layout you may have all the ECC
1245 * bytes stored in a single contiguous section, or one section
1246 * per ECC chunk (and sometime several sections for a single ECC
1248 * @oobecc: OOB region struct filled with the appropriate ECC position
1251 * This function returns ECC section information in the OOB area. If you want
1252 * to get all the ECC bytes information, then you should call
1253 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1255 * Returns zero on success, a negative error code otherwise.
1257 int mtd_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1258 struct mtd_oob_region
*oobecc
)
1260 memset(oobecc
, 0, sizeof(*oobecc
));
1262 if (!mtd
|| section
< 0)
1265 if (!mtd
->ooblayout
|| !mtd
->ooblayout
->ecc
)
1268 return mtd
->ooblayout
->ecc(mtd
, section
, oobecc
);
1270 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc
);
1273 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1275 * @mtd: MTD device structure
1276 * @section: Free section you are interested in. Depending on the layout
1277 * you may have all the free bytes stored in a single contiguous
1278 * section, or one section per ECC chunk plus an extra section
1279 * for the remaining bytes (or other funky layout).
1280 * @oobfree: OOB region struct filled with the appropriate free position
1283 * This function returns free bytes position in the OOB area. If you want
1284 * to get all the free bytes information, then you should call
1285 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1287 * Returns zero on success, a negative error code otherwise.
1289 int mtd_ooblayout_free(struct mtd_info
*mtd
, int section
,
1290 struct mtd_oob_region
*oobfree
)
1292 memset(oobfree
, 0, sizeof(*oobfree
));
1294 if (!mtd
|| section
< 0)
1297 if (!mtd
->ooblayout
|| !mtd
->ooblayout
->free
)
1300 return mtd
->ooblayout
->free(mtd
, section
, oobfree
);
1302 EXPORT_SYMBOL_GPL(mtd_ooblayout_free
);
1305 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1306 * @mtd: mtd info structure
1307 * @byte: the byte we are searching for
1308 * @sectionp: pointer where the section id will be stored
1309 * @oobregion: used to retrieve the ECC position
1310 * @iter: iterator function. Should be either mtd_ooblayout_free or
1311 * mtd_ooblayout_ecc depending on the region type you're searching for
1313 * This function returns the section id and oobregion information of a
1314 * specific byte. For example, say you want to know where the 4th ECC byte is
1315 * stored, you'll use:
1317 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1319 * Returns zero on success, a negative error code otherwise.
1321 static int mtd_ooblayout_find_region(struct mtd_info
*mtd
, int byte
,
1322 int *sectionp
, struct mtd_oob_region
*oobregion
,
1323 int (*iter
)(struct mtd_info
*,
1325 struct mtd_oob_region
*oobregion
))
1327 int pos
= 0, ret
, section
= 0;
1329 memset(oobregion
, 0, sizeof(*oobregion
));
1332 ret
= iter(mtd
, section
, oobregion
);
1336 if (pos
+ oobregion
->length
> byte
)
1339 pos
+= oobregion
->length
;
1344 * Adjust region info to make it start at the beginning at the
1347 oobregion
->offset
+= byte
- pos
;
1348 oobregion
->length
-= byte
- pos
;
1349 *sectionp
= section
;
1355 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1357 * @mtd: mtd info structure
1358 * @eccbyte: the byte we are searching for
1359 * @sectionp: pointer where the section id will be stored
1360 * @oobregion: OOB region information
1362 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1365 * Returns zero on success, a negative error code otherwise.
1367 int mtd_ooblayout_find_eccregion(struct mtd_info
*mtd
, int eccbyte
,
1369 struct mtd_oob_region
*oobregion
)
1371 return mtd_ooblayout_find_region(mtd
, eccbyte
, section
, oobregion
,
1374 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion
);
1377 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1378 * @mtd: mtd info structure
1379 * @buf: destination buffer to store OOB bytes
1380 * @oobbuf: OOB buffer
1381 * @start: first byte to retrieve
1382 * @nbytes: number of bytes to retrieve
1383 * @iter: section iterator
1385 * Extract bytes attached to a specific category (ECC or free)
1386 * from the OOB buffer and copy them into buf.
1388 * Returns zero on success, a negative error code otherwise.
1390 static int mtd_ooblayout_get_bytes(struct mtd_info
*mtd
, u8
*buf
,
1391 const u8
*oobbuf
, int start
, int nbytes
,
1392 int (*iter
)(struct mtd_info
*,
1394 struct mtd_oob_region
*oobregion
))
1396 struct mtd_oob_region oobregion
;
1399 ret
= mtd_ooblayout_find_region(mtd
, start
, §ion
,
1405 cnt
= min_t(int, nbytes
, oobregion
.length
);
1406 memcpy(buf
, oobbuf
+ oobregion
.offset
, cnt
);
1413 ret
= iter(mtd
, ++section
, &oobregion
);
1420 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1421 * @mtd: mtd info structure
1422 * @buf: source buffer to get OOB bytes from
1423 * @oobbuf: OOB buffer
1424 * @start: first OOB byte to set
1425 * @nbytes: number of OOB bytes to set
1426 * @iter: section iterator
1428 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1429 * is selected by passing the appropriate iterator.
1431 * Returns zero on success, a negative error code otherwise.
1433 static int mtd_ooblayout_set_bytes(struct mtd_info
*mtd
, const u8
*buf
,
1434 u8
*oobbuf
, int start
, int nbytes
,
1435 int (*iter
)(struct mtd_info
*,
1437 struct mtd_oob_region
*oobregion
))
1439 struct mtd_oob_region oobregion
;
1442 ret
= mtd_ooblayout_find_region(mtd
, start
, §ion
,
1448 cnt
= min_t(int, nbytes
, oobregion
.length
);
1449 memcpy(oobbuf
+ oobregion
.offset
, buf
, cnt
);
1456 ret
= iter(mtd
, ++section
, &oobregion
);
1463 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1464 * @mtd: mtd info structure
1465 * @iter: category iterator
1467 * Count the number of bytes in a given category.
1469 * Returns a positive value on success, a negative error code otherwise.
1471 static int mtd_ooblayout_count_bytes(struct mtd_info
*mtd
,
1472 int (*iter
)(struct mtd_info
*,
1474 struct mtd_oob_region
*oobregion
))
1476 struct mtd_oob_region oobregion
;
1477 int section
= 0, ret
, nbytes
= 0;
1480 ret
= iter(mtd
, section
++, &oobregion
);
1487 nbytes
+= oobregion
.length
;
1494 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1495 * @mtd: mtd info structure
1496 * @eccbuf: destination buffer to store ECC bytes
1497 * @oobbuf: OOB buffer
1498 * @start: first ECC byte to retrieve
1499 * @nbytes: number of ECC bytes to retrieve
1501 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1503 * Returns zero on success, a negative error code otherwise.
1505 int mtd_ooblayout_get_eccbytes(struct mtd_info
*mtd
, u8
*eccbuf
,
1506 const u8
*oobbuf
, int start
, int nbytes
)
1508 return mtd_ooblayout_get_bytes(mtd
, eccbuf
, oobbuf
, start
, nbytes
,
1511 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes
);
1514 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1515 * @mtd: mtd info structure
1516 * @eccbuf: source buffer to get ECC bytes from
1517 * @oobbuf: OOB buffer
1518 * @start: first ECC byte to set
1519 * @nbytes: number of ECC bytes to set
1521 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1523 * Returns zero on success, a negative error code otherwise.
1525 int mtd_ooblayout_set_eccbytes(struct mtd_info
*mtd
, const u8
*eccbuf
,
1526 u8
*oobbuf
, int start
, int nbytes
)
1528 return mtd_ooblayout_set_bytes(mtd
, eccbuf
, oobbuf
, start
, nbytes
,
1531 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes
);
1534 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1535 * @mtd: mtd info structure
1536 * @databuf: destination buffer to store ECC bytes
1537 * @oobbuf: OOB buffer
1538 * @start: first ECC byte to retrieve
1539 * @nbytes: number of ECC bytes to retrieve
1541 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1543 * Returns zero on success, a negative error code otherwise.
1545 int mtd_ooblayout_get_databytes(struct mtd_info
*mtd
, u8
*databuf
,
1546 const u8
*oobbuf
, int start
, int nbytes
)
1548 return mtd_ooblayout_get_bytes(mtd
, databuf
, oobbuf
, start
, nbytes
,
1549 mtd_ooblayout_free
);
1551 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes
);
1554 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1555 * @mtd: mtd info structure
1556 * @databuf: source buffer to get data bytes from
1557 * @oobbuf: OOB buffer
1558 * @start: first ECC byte to set
1559 * @nbytes: number of ECC bytes to set
1561 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1563 * Returns zero on success, a negative error code otherwise.
1565 int mtd_ooblayout_set_databytes(struct mtd_info
*mtd
, const u8
*databuf
,
1566 u8
*oobbuf
, int start
, int nbytes
)
1568 return mtd_ooblayout_set_bytes(mtd
, databuf
, oobbuf
, start
, nbytes
,
1569 mtd_ooblayout_free
);
1571 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes
);
1574 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1575 * @mtd: mtd info structure
1577 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1579 * Returns zero on success, a negative error code otherwise.
1581 int mtd_ooblayout_count_freebytes(struct mtd_info
*mtd
)
1583 return mtd_ooblayout_count_bytes(mtd
, mtd_ooblayout_free
);
1585 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes
);
1588 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1589 * @mtd: mtd info structure
1591 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1593 * Returns zero on success, a negative error code otherwise.
1595 int mtd_ooblayout_count_eccbytes(struct mtd_info
*mtd
)
1597 return mtd_ooblayout_count_bytes(mtd
, mtd_ooblayout_ecc
);
1599 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes
);
1602 * Method to access the protection register area, present in some flash
1603 * devices. The user data is one time programmable but the factory data is read
1606 int mtd_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
, size_t *retlen
,
1607 struct otp_info
*buf
)
1609 if (!mtd
->_get_fact_prot_info
)
1613 return mtd
->_get_fact_prot_info(mtd
, len
, retlen
, buf
);
1615 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info
);
1617 int mtd_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1618 size_t *retlen
, u_char
*buf
)
1621 if (!mtd
->_read_fact_prot_reg
)
1625 return mtd
->_read_fact_prot_reg(mtd
, from
, len
, retlen
, buf
);
1627 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg
);
1629 int mtd_get_user_prot_info(struct mtd_info
*mtd
, size_t len
, size_t *retlen
,
1630 struct otp_info
*buf
)
1632 if (!mtd
->_get_user_prot_info
)
1636 return mtd
->_get_user_prot_info(mtd
, len
, retlen
, buf
);
1638 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info
);
1640 int mtd_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1641 size_t *retlen
, u_char
*buf
)
1644 if (!mtd
->_read_user_prot_reg
)
1648 return mtd
->_read_user_prot_reg(mtd
, from
, len
, retlen
, buf
);
1650 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg
);
1652 int mtd_write_user_prot_reg(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1653 size_t *retlen
, u_char
*buf
)
1658 if (!mtd
->_write_user_prot_reg
)
1662 ret
= mtd
->_write_user_prot_reg(mtd
, to
, len
, retlen
, buf
);
1667 * If no data could be written at all, we are out of memory and
1668 * must return -ENOSPC.
1670 return (*retlen
) ? 0 : -ENOSPC
;
1672 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg
);
1674 int mtd_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
)
1676 if (!mtd
->_lock_user_prot_reg
)
1680 return mtd
->_lock_user_prot_reg(mtd
, from
, len
);
1682 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg
);
1684 /* Chip-supported device locking */
1685 int mtd_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1689 if (ofs
< 0 || ofs
>= mtd
->size
|| len
> mtd
->size
- ofs
)
1693 return mtd
->_lock(mtd
, ofs
, len
);
1695 EXPORT_SYMBOL_GPL(mtd_lock
);
1697 int mtd_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1701 if (ofs
< 0 || ofs
>= mtd
->size
|| len
> mtd
->size
- ofs
)
1705 return mtd
->_unlock(mtd
, ofs
, len
);
1707 EXPORT_SYMBOL_GPL(mtd_unlock
);
1709 int mtd_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1711 if (!mtd
->_is_locked
)
1713 if (ofs
< 0 || ofs
>= mtd
->size
|| len
> mtd
->size
- ofs
)
1717 return mtd
->_is_locked(mtd
, ofs
, len
);
1719 EXPORT_SYMBOL_GPL(mtd_is_locked
);
1721 int mtd_block_isreserved(struct mtd_info
*mtd
, loff_t ofs
)
1723 if (ofs
< 0 || ofs
>= mtd
->size
)
1725 if (!mtd
->_block_isreserved
)
1727 return mtd
->_block_isreserved(mtd
, ofs
);
1729 EXPORT_SYMBOL_GPL(mtd_block_isreserved
);
1731 int mtd_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
1733 if (ofs
< 0 || ofs
>= mtd
->size
)
1735 if (!mtd
->_block_isbad
)
1737 return mtd
->_block_isbad(mtd
, ofs
);
1739 EXPORT_SYMBOL_GPL(mtd_block_isbad
);
1741 int mtd_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1743 if (!mtd
->_block_markbad
)
1745 if (ofs
< 0 || ofs
>= mtd
->size
)
1747 if (!(mtd
->flags
& MTD_WRITEABLE
))
1749 return mtd
->_block_markbad(mtd
, ofs
);
1751 EXPORT_SYMBOL_GPL(mtd_block_markbad
);
1754 * default_mtd_writev - the default writev method
1755 * @mtd: mtd device description object pointer
1756 * @vecs: the vectors to write
1757 * @count: count of vectors in @vecs
1758 * @to: the MTD device offset to write to
1759 * @retlen: on exit contains the count of bytes written to the MTD device.
1761 * This function returns zero in case of success and a negative error code in
1764 static int default_mtd_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
1765 unsigned long count
, loff_t to
, size_t *retlen
)
1768 size_t totlen
= 0, thislen
;
1771 for (i
= 0; i
< count
; i
++) {
1772 if (!vecs
[i
].iov_len
)
1774 ret
= mtd_write(mtd
, to
, vecs
[i
].iov_len
, &thislen
,
1777 if (ret
|| thislen
!= vecs
[i
].iov_len
)
1779 to
+= vecs
[i
].iov_len
;
1786 * mtd_writev - the vector-based MTD write method
1787 * @mtd: mtd device description object pointer
1788 * @vecs: the vectors to write
1789 * @count: count of vectors in @vecs
1790 * @to: the MTD device offset to write to
1791 * @retlen: on exit contains the count of bytes written to the MTD device.
1793 * This function returns zero in case of success and a negative error code in
1796 int mtd_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
1797 unsigned long count
, loff_t to
, size_t *retlen
)
1800 if (!(mtd
->flags
& MTD_WRITEABLE
))
1803 return default_mtd_writev(mtd
, vecs
, count
, to
, retlen
);
1804 return mtd
->_writev(mtd
, vecs
, count
, to
, retlen
);
1806 EXPORT_SYMBOL_GPL(mtd_writev
);
1809 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1810 * @mtd: mtd device description object pointer
1811 * @size: a pointer to the ideal or maximum size of the allocation, points
1812 * to the actual allocation size on success.
1814 * This routine attempts to allocate a contiguous kernel buffer up to
1815 * the specified size, backing off the size of the request exponentially
1816 * until the request succeeds or until the allocation size falls below
1817 * the system page size. This attempts to make sure it does not adversely
1818 * impact system performance, so when allocating more than one page, we
1819 * ask the memory allocator to avoid re-trying, swapping, writing back
1820 * or performing I/O.
1822 * Note, this function also makes sure that the allocated buffer is aligned to
1823 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1825 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1826 * to handle smaller (i.e. degraded) buffer allocations under low- or
1827 * fragmented-memory situations where such reduced allocations, from a
1828 * requested ideal, are allowed.
1830 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1832 void *mtd_kmalloc_up_to(const struct mtd_info
*mtd
, size_t *size
)
1834 gfp_t flags
= __GFP_NOWARN
| __GFP_DIRECT_RECLAIM
| __GFP_NORETRY
;
1835 size_t min_alloc
= max_t(size_t, mtd
->writesize
, PAGE_SIZE
);
1838 *size
= min_t(size_t, *size
, KMALLOC_MAX_SIZE
);
1840 while (*size
> min_alloc
) {
1841 kbuf
= kmalloc(*size
, flags
);
1846 *size
= ALIGN(*size
, mtd
->writesize
);
1850 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1851 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1853 return kmalloc(*size
, GFP_KERNEL
);
1855 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to
);
1857 #ifdef CONFIG_PROC_FS
1859 /*====================================================================*/
1860 /* Support for /proc/mtd */
1862 static int mtd_proc_show(struct seq_file
*m
, void *v
)
1864 struct mtd_info
*mtd
;
1866 seq_puts(m
, "dev: size erasesize name\n");
1867 mutex_lock(&mtd_table_mutex
);
1868 mtd_for_each_device(mtd
) {
1869 seq_printf(m
, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1870 mtd
->index
, (unsigned long long)mtd
->size
,
1871 mtd
->erasesize
, mtd
->name
);
1873 mutex_unlock(&mtd_table_mutex
);
1876 #endif /* CONFIG_PROC_FS */
1878 /*====================================================================*/
1881 static struct backing_dev_info
* __init
mtd_bdi_init(char *name
)
1883 struct backing_dev_info
*bdi
;
1886 bdi
= bdi_alloc(GFP_KERNEL
);
1888 return ERR_PTR(-ENOMEM
);
1892 * We put '-0' suffix to the name to get the same name format as we
1893 * used to get. Since this is called only once, we get a unique name.
1895 ret
= bdi_register(bdi
, "%.28s-0", name
);
1899 return ret
? ERR_PTR(ret
) : bdi
;
1902 static struct proc_dir_entry
*proc_mtd
;
1904 static int __init
init_mtd(void)
1908 ret
= class_register(&mtd_class
);
1912 mtd_bdi
= mtd_bdi_init("mtd");
1913 if (IS_ERR(mtd_bdi
)) {
1914 ret
= PTR_ERR(mtd_bdi
);
1918 proc_mtd
= proc_create_single("mtd", 0, NULL
, mtd_proc_show
);
1920 ret
= init_mtdchar();
1924 dfs_dir_mtd
= debugfs_create_dir("mtd", NULL
);
1930 remove_proc_entry("mtd", NULL
);
1933 class_unregister(&mtd_class
);
1935 pr_err("Error registering mtd class or bdi: %d\n", ret
);
1939 static void __exit
cleanup_mtd(void)
1941 debugfs_remove_recursive(dfs_dir_mtd
);
1944 remove_proc_entry("mtd", NULL
);
1945 class_unregister(&mtd_class
);
1947 idr_destroy(&mtd_idr
);
1950 module_init(init_mtd
);
1951 module_exit(cleanup_mtd
);
1953 MODULE_LICENSE("GPL");
1954 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1955 MODULE_DESCRIPTION("Core MTD registration and access routines");