1 /* bnx2.c: QLogic bnx2 network driver.
3 * Copyright (c) 2004-2014 Broadcom Corporation
4 * Copyright (c) 2014-2015 QLogic Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
10 * Written by: Michael Chan (mchan@broadcom.com)
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
18 #include <linux/stringify.h>
19 #include <linux/kernel.h>
20 #include <linux/timer.h>
21 #include <linux/errno.h>
22 #include <linux/ioport.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/bitops.h>
34 #include <linux/delay.h>
35 #include <asm/byteorder.h>
37 #include <linux/time.h>
38 #include <linux/ethtool.h>
39 #include <linux/mii.h>
41 #include <linux/if_vlan.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/crash_dump.h>
54 #if IS_ENABLED(CONFIG_CNIC)
61 #define DRV_MODULE_NAME "bnx2"
62 #define DRV_MODULE_VERSION "2.2.6"
63 #define DRV_MODULE_RELDATE "January 29, 2014"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
67 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
68 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
70 #define RUN_AT(x) (jiffies + (x))
72 /* Time in jiffies before concluding the transmitter is hung. */
73 #define TX_TIMEOUT (5*HZ)
75 static char version
[] =
76 "QLogic " DRV_MODULE_NAME
" Gigabit Ethernet Driver v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
78 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
79 MODULE_DESCRIPTION("QLogic BCM5706/5708/5709/5716 Driver");
80 MODULE_LICENSE("GPL");
81 MODULE_VERSION(DRV_MODULE_VERSION
);
82 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
83 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
84 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
86 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
88 static int disable_msi
= 0;
90 module_param(disable_msi
, int, 0444);
91 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
107 /* indexed by board_t, above */
111 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
112 { "HP NC370T Multifunction Gigabit Server Adapter" },
113 { "HP NC370i Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
115 { "HP NC370F Multifunction Gigabit Server Adapter" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
121 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
124 static const struct pci_device_id bnx2_pci_tbl
[] = {
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
126 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
128 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
129 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
131 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
132 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
133 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
134 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
135 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
136 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
137 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
138 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
139 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
140 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
141 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
142 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
143 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
144 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
145 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
146 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
150 static const struct flash_spec flash_table
[] =
152 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
153 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
155 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
156 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
157 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
159 /* Expansion entry 0001 */
160 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
162 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
164 /* Saifun SA25F010 (non-buffered flash) */
165 /* strap, cfg1, & write1 need updates */
166 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
168 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
169 "Non-buffered flash (128kB)"},
170 /* Saifun SA25F020 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
174 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
175 "Non-buffered flash (256kB)"},
176 /* Expansion entry 0100 */
177 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
179 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
181 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
182 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
184 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
185 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
186 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
187 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
189 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
190 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
191 /* Saifun SA25F005 (non-buffered flash) */
192 /* strap, cfg1, & write1 need updates */
193 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
195 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
196 "Non-buffered flash (64kB)"},
198 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
199 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
200 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
202 /* Expansion entry 1001 */
203 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
204 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
205 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
207 /* Expansion entry 1010 */
208 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
209 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
210 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
212 /* ATMEL AT45DB011B (buffered flash) */
213 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
214 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
215 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
216 "Buffered flash (128kB)"},
217 /* Expansion entry 1100 */
218 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
219 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
220 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
222 /* Expansion entry 1101 */
223 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
224 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
225 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
227 /* Ateml Expansion entry 1110 */
228 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
229 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
230 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
231 "Entry 1110 (Atmel)"},
232 /* ATMEL AT45DB021B (buffered flash) */
233 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
234 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
235 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
236 "Buffered flash (256kB)"},
239 static const struct flash_spec flash_5709
= {
240 .flags
= BNX2_NV_BUFFERED
,
241 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
242 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
243 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
244 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
245 .name
= "5709 Buffered flash (256kB)",
248 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
250 static void bnx2_init_napi(struct bnx2
*bp
);
251 static void bnx2_del_napi(struct bnx2
*bp
);
253 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
257 /* The ring uses 256 indices for 255 entries, one of them
258 * needs to be skipped.
260 diff
= READ_ONCE(txr
->tx_prod
) - READ_ONCE(txr
->tx_cons
);
261 if (unlikely(diff
>= BNX2_TX_DESC_CNT
)) {
263 if (diff
== BNX2_TX_DESC_CNT
)
264 diff
= BNX2_MAX_TX_DESC_CNT
;
266 return bp
->tx_ring_size
- diff
;
270 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
275 spin_lock_irqsave(&bp
->indirect_lock
, flags
);
276 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
277 val
= BNX2_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
278 spin_unlock_irqrestore(&bp
->indirect_lock
, flags
);
283 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
287 spin_lock_irqsave(&bp
->indirect_lock
, flags
);
288 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
289 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
290 spin_unlock_irqrestore(&bp
->indirect_lock
, flags
);
294 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
296 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
300 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
302 return bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
);
306 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
311 spin_lock_irqsave(&bp
->indirect_lock
, flags
);
312 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
315 BNX2_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
316 BNX2_WR(bp
, BNX2_CTX_CTX_CTRL
,
317 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
318 for (i
= 0; i
< 5; i
++) {
319 val
= BNX2_RD(bp
, BNX2_CTX_CTX_CTRL
);
320 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
325 BNX2_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
326 BNX2_WR(bp
, BNX2_CTX_DATA
, val
);
328 spin_unlock_irqrestore(&bp
->indirect_lock
, flags
);
333 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
335 struct bnx2
*bp
= netdev_priv(dev
);
336 struct drv_ctl_io
*io
= &info
->data
.io
;
339 case DRV_CTL_IO_WR_CMD
:
340 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
342 case DRV_CTL_IO_RD_CMD
:
343 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
345 case DRV_CTL_CTX_WR_CMD
:
346 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
354 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
356 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
357 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
360 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
361 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
362 bnapi
->cnic_present
= 0;
363 sb_id
= bp
->irq_nvecs
;
364 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
366 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
367 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
368 bnapi
->cnic_present
= 1;
370 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
373 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
374 cp
->irq_arr
[0].status_blk
= (void *)
375 ((unsigned long) bnapi
->status_blk
.msi
+
376 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
377 cp
->irq_arr
[0].status_blk_num
= sb_id
;
381 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
384 struct bnx2
*bp
= netdev_priv(dev
);
385 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
390 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
393 if (!bnx2_reg_rd_ind(bp
, BNX2_FW_MAX_ISCSI_CONN
))
396 bp
->cnic_data
= data
;
397 rcu_assign_pointer(bp
->cnic_ops
, ops
);
400 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
402 bnx2_setup_cnic_irq_info(bp
);
407 static int bnx2_unregister_cnic(struct net_device
*dev
)
409 struct bnx2
*bp
= netdev_priv(dev
);
410 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
411 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
413 mutex_lock(&bp
->cnic_lock
);
415 bnapi
->cnic_present
= 0;
416 RCU_INIT_POINTER(bp
->cnic_ops
, NULL
);
417 mutex_unlock(&bp
->cnic_lock
);
422 static struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
424 struct bnx2
*bp
= netdev_priv(dev
);
425 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
427 if (!cp
->max_iscsi_conn
)
430 cp
->drv_owner
= THIS_MODULE
;
431 cp
->chip_id
= bp
->chip_id
;
433 cp
->io_base
= bp
->regview
;
434 cp
->drv_ctl
= bnx2_drv_ctl
;
435 cp
->drv_register_cnic
= bnx2_register_cnic
;
436 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
442 bnx2_cnic_stop(struct bnx2
*bp
)
444 struct cnic_ops
*c_ops
;
445 struct cnic_ctl_info info
;
447 mutex_lock(&bp
->cnic_lock
);
448 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
449 lockdep_is_held(&bp
->cnic_lock
));
451 info
.cmd
= CNIC_CTL_STOP_CMD
;
452 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
454 mutex_unlock(&bp
->cnic_lock
);
458 bnx2_cnic_start(struct bnx2
*bp
)
460 struct cnic_ops
*c_ops
;
461 struct cnic_ctl_info info
;
463 mutex_lock(&bp
->cnic_lock
);
464 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
465 lockdep_is_held(&bp
->cnic_lock
));
467 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
468 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
470 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
472 info
.cmd
= CNIC_CTL_START_CMD
;
473 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
475 mutex_unlock(&bp
->cnic_lock
);
481 bnx2_cnic_stop(struct bnx2
*bp
)
486 bnx2_cnic_start(struct bnx2
*bp
)
493 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
498 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
499 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
500 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
502 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
503 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
508 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
509 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
510 BNX2_EMAC_MDIO_COMM_START_BUSY
;
511 BNX2_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
513 for (i
= 0; i
< 50; i
++) {
516 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
517 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
520 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
521 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
527 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
536 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
537 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
538 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
540 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
541 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
550 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
555 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
556 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
557 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
559 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
560 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
565 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
566 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
567 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
568 BNX2_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
570 for (i
= 0; i
< 50; i
++) {
573 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
574 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
580 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
585 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
586 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
587 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
589 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
590 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
599 bnx2_disable_int(struct bnx2
*bp
)
602 struct bnx2_napi
*bnapi
;
604 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
605 bnapi
= &bp
->bnx2_napi
[i
];
606 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
607 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
609 BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
613 bnx2_enable_int(struct bnx2
*bp
)
616 struct bnx2_napi
*bnapi
;
618 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
619 bnapi
= &bp
->bnx2_napi
[i
];
621 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
622 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
623 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
624 bnapi
->last_status_idx
);
626 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
627 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
628 bnapi
->last_status_idx
);
630 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
634 bnx2_disable_int_sync(struct bnx2
*bp
)
638 atomic_inc(&bp
->intr_sem
);
639 if (!netif_running(bp
->dev
))
642 bnx2_disable_int(bp
);
643 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
644 synchronize_irq(bp
->irq_tbl
[i
].vector
);
648 bnx2_napi_disable(struct bnx2
*bp
)
652 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
653 napi_disable(&bp
->bnx2_napi
[i
].napi
);
657 bnx2_napi_enable(struct bnx2
*bp
)
661 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
662 napi_enable(&bp
->bnx2_napi
[i
].napi
);
666 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
670 if (netif_running(bp
->dev
)) {
671 bnx2_napi_disable(bp
);
672 netif_tx_disable(bp
->dev
);
674 bnx2_disable_int_sync(bp
);
675 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
679 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
681 if (atomic_dec_and_test(&bp
->intr_sem
)) {
682 if (netif_running(bp
->dev
)) {
683 netif_tx_wake_all_queues(bp
->dev
);
684 spin_lock_bh(&bp
->phy_lock
);
686 netif_carrier_on(bp
->dev
);
687 spin_unlock_bh(&bp
->phy_lock
);
688 bnx2_napi_enable(bp
);
697 bnx2_free_tx_mem(struct bnx2
*bp
)
701 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
702 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
703 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
705 if (txr
->tx_desc_ring
) {
706 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
708 txr
->tx_desc_mapping
);
709 txr
->tx_desc_ring
= NULL
;
711 kfree(txr
->tx_buf_ring
);
712 txr
->tx_buf_ring
= NULL
;
717 bnx2_free_rx_mem(struct bnx2
*bp
)
721 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
722 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
723 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
726 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
727 if (rxr
->rx_desc_ring
[j
])
728 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
729 rxr
->rx_desc_ring
[j
],
730 rxr
->rx_desc_mapping
[j
]);
731 rxr
->rx_desc_ring
[j
] = NULL
;
733 vfree(rxr
->rx_buf_ring
);
734 rxr
->rx_buf_ring
= NULL
;
736 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
737 if (rxr
->rx_pg_desc_ring
[j
])
738 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
739 rxr
->rx_pg_desc_ring
[j
],
740 rxr
->rx_pg_desc_mapping
[j
]);
741 rxr
->rx_pg_desc_ring
[j
] = NULL
;
743 vfree(rxr
->rx_pg_ring
);
744 rxr
->rx_pg_ring
= NULL
;
749 bnx2_alloc_tx_mem(struct bnx2
*bp
)
753 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
754 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
755 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
757 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
758 if (!txr
->tx_buf_ring
)
762 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
763 &txr
->tx_desc_mapping
, GFP_KERNEL
);
764 if (!txr
->tx_desc_ring
)
771 bnx2_alloc_rx_mem(struct bnx2
*bp
)
775 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
776 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
777 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
781 vzalloc(array_size(SW_RXBD_RING_SIZE
, bp
->rx_max_ring
));
782 if (!rxr
->rx_buf_ring
)
785 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
786 rxr
->rx_desc_ring
[j
] =
787 dma_alloc_coherent(&bp
->pdev
->dev
,
789 &rxr
->rx_desc_mapping
[j
],
791 if (!rxr
->rx_desc_ring
[j
])
796 if (bp
->rx_pg_ring_size
) {
798 vzalloc(array_size(SW_RXPG_RING_SIZE
,
799 bp
->rx_max_pg_ring
));
800 if (!rxr
->rx_pg_ring
)
805 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
806 rxr
->rx_pg_desc_ring
[j
] =
807 dma_alloc_coherent(&bp
->pdev
->dev
,
809 &rxr
->rx_pg_desc_mapping
[j
],
811 if (!rxr
->rx_pg_desc_ring
[j
])
820 bnx2_free_stats_blk(struct net_device
*dev
)
822 struct bnx2
*bp
= netdev_priv(dev
);
824 if (bp
->status_blk
) {
825 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
827 bp
->status_blk_mapping
);
828 bp
->status_blk
= NULL
;
829 bp
->stats_blk
= NULL
;
834 bnx2_alloc_stats_blk(struct net_device
*dev
)
838 struct bnx2
*bp
= netdev_priv(dev
);
840 /* Combine status and statistics blocks into one allocation. */
841 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
842 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
843 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
844 BNX2_SBLK_MSIX_ALIGN_SIZE
);
845 bp
->status_stats_size
= status_blk_size
+
846 sizeof(struct statistics_block
);
847 status_blk
= dma_alloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
848 &bp
->status_blk_mapping
, GFP_KERNEL
);
852 bp
->status_blk
= status_blk
;
853 bp
->stats_blk
= status_blk
+ status_blk_size
;
854 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
860 bnx2_free_mem(struct bnx2
*bp
)
863 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
865 bnx2_free_tx_mem(bp
);
866 bnx2_free_rx_mem(bp
);
868 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
869 if (bp
->ctx_blk
[i
]) {
870 dma_free_coherent(&bp
->pdev
->dev
, BNX2_PAGE_SIZE
,
872 bp
->ctx_blk_mapping
[i
]);
873 bp
->ctx_blk
[i
] = NULL
;
877 if (bnapi
->status_blk
.msi
)
878 bnapi
->status_blk
.msi
= NULL
;
882 bnx2_alloc_mem(struct bnx2
*bp
)
885 struct bnx2_napi
*bnapi
;
887 bnapi
= &bp
->bnx2_napi
[0];
888 bnapi
->status_blk
.msi
= bp
->status_blk
;
889 bnapi
->hw_tx_cons_ptr
=
890 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
891 bnapi
->hw_rx_cons_ptr
=
892 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
893 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
894 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
895 struct status_block_msix
*sblk
;
897 bnapi
= &bp
->bnx2_napi
[i
];
899 sblk
= (bp
->status_blk
+ BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
900 bnapi
->status_blk
.msix
= sblk
;
901 bnapi
->hw_tx_cons_ptr
=
902 &sblk
->status_tx_quick_consumer_index
;
903 bnapi
->hw_rx_cons_ptr
=
904 &sblk
->status_rx_quick_consumer_index
;
905 bnapi
->int_num
= i
<< 24;
909 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
910 bp
->ctx_pages
= 0x2000 / BNX2_PAGE_SIZE
;
911 if (bp
->ctx_pages
== 0)
913 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
914 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
916 &bp
->ctx_blk_mapping
[i
],
923 err
= bnx2_alloc_rx_mem(bp
);
927 err
= bnx2_alloc_tx_mem(bp
);
939 bnx2_report_fw_link(struct bnx2
*bp
)
941 u32 fw_link_status
= 0;
943 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
949 switch (bp
->line_speed
) {
951 if (bp
->duplex
== DUPLEX_HALF
)
952 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
954 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
957 if (bp
->duplex
== DUPLEX_HALF
)
958 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
960 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
963 if (bp
->duplex
== DUPLEX_HALF
)
964 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
966 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
969 if (bp
->duplex
== DUPLEX_HALF
)
970 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
972 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
976 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
979 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
981 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
982 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
984 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
985 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
986 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
988 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
992 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
994 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
998 bnx2_xceiver_str(struct bnx2
*bp
)
1000 return (bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
1001 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
1006 bnx2_report_link(struct bnx2
*bp
)
1009 netif_carrier_on(bp
->dev
);
1010 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
1011 bnx2_xceiver_str(bp
),
1013 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
1015 if (bp
->flow_ctrl
) {
1016 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
1017 pr_cont(", receive ");
1018 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1019 pr_cont("& transmit ");
1022 pr_cont(", transmit ");
1024 pr_cont("flow control ON");
1028 netif_carrier_off(bp
->dev
);
1029 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1030 bnx2_xceiver_str(bp
));
1033 bnx2_report_fw_link(bp
);
1037 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1039 u32 local_adv
, remote_adv
;
1042 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1043 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1045 if (bp
->duplex
== DUPLEX_FULL
) {
1046 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1051 if (bp
->duplex
!= DUPLEX_FULL
) {
1055 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1056 (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)) {
1059 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1060 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1061 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1062 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1063 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1067 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1068 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1070 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1071 u32 new_local_adv
= 0;
1072 u32 new_remote_adv
= 0;
1074 if (local_adv
& ADVERTISE_1000XPAUSE
)
1075 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1076 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1077 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1078 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1079 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1080 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1081 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1083 local_adv
= new_local_adv
;
1084 remote_adv
= new_remote_adv
;
1087 /* See Table 28B-3 of 802.3ab-1999 spec. */
1088 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1089 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1090 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1091 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1093 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1094 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1098 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1099 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1103 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1104 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1105 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1107 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1113 bnx2_5709s_linkup(struct bnx2
*bp
)
1119 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1120 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1121 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1123 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1124 bp
->line_speed
= bp
->req_line_speed
;
1125 bp
->duplex
= bp
->req_duplex
;
1128 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1130 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1131 bp
->line_speed
= SPEED_10
;
1133 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1134 bp
->line_speed
= SPEED_100
;
1136 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1137 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1138 bp
->line_speed
= SPEED_1000
;
1140 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1141 bp
->line_speed
= SPEED_2500
;
1144 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1145 bp
->duplex
= DUPLEX_FULL
;
1147 bp
->duplex
= DUPLEX_HALF
;
1152 bnx2_5708s_linkup(struct bnx2
*bp
)
1157 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1158 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1159 case BCM5708S_1000X_STAT1_SPEED_10
:
1160 bp
->line_speed
= SPEED_10
;
1162 case BCM5708S_1000X_STAT1_SPEED_100
:
1163 bp
->line_speed
= SPEED_100
;
1165 case BCM5708S_1000X_STAT1_SPEED_1G
:
1166 bp
->line_speed
= SPEED_1000
;
1168 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1169 bp
->line_speed
= SPEED_2500
;
1172 if (val
& BCM5708S_1000X_STAT1_FD
)
1173 bp
->duplex
= DUPLEX_FULL
;
1175 bp
->duplex
= DUPLEX_HALF
;
1181 bnx2_5706s_linkup(struct bnx2
*bp
)
1183 u32 bmcr
, local_adv
, remote_adv
, common
;
1186 bp
->line_speed
= SPEED_1000
;
1188 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1189 if (bmcr
& BMCR_FULLDPLX
) {
1190 bp
->duplex
= DUPLEX_FULL
;
1193 bp
->duplex
= DUPLEX_HALF
;
1196 if (!(bmcr
& BMCR_ANENABLE
)) {
1200 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1201 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1203 common
= local_adv
& remote_adv
;
1204 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1206 if (common
& ADVERTISE_1000XFULL
) {
1207 bp
->duplex
= DUPLEX_FULL
;
1210 bp
->duplex
= DUPLEX_HALF
;
1218 bnx2_copper_linkup(struct bnx2
*bp
)
1222 bp
->phy_flags
&= ~BNX2_PHY_FLAG_MDIX
;
1224 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1225 if (bmcr
& BMCR_ANENABLE
) {
1226 u32 local_adv
, remote_adv
, common
;
1228 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1229 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1231 common
= local_adv
& (remote_adv
>> 2);
1232 if (common
& ADVERTISE_1000FULL
) {
1233 bp
->line_speed
= SPEED_1000
;
1234 bp
->duplex
= DUPLEX_FULL
;
1236 else if (common
& ADVERTISE_1000HALF
) {
1237 bp
->line_speed
= SPEED_1000
;
1238 bp
->duplex
= DUPLEX_HALF
;
1241 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1242 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1244 common
= local_adv
& remote_adv
;
1245 if (common
& ADVERTISE_100FULL
) {
1246 bp
->line_speed
= SPEED_100
;
1247 bp
->duplex
= DUPLEX_FULL
;
1249 else if (common
& ADVERTISE_100HALF
) {
1250 bp
->line_speed
= SPEED_100
;
1251 bp
->duplex
= DUPLEX_HALF
;
1253 else if (common
& ADVERTISE_10FULL
) {
1254 bp
->line_speed
= SPEED_10
;
1255 bp
->duplex
= DUPLEX_FULL
;
1257 else if (common
& ADVERTISE_10HALF
) {
1258 bp
->line_speed
= SPEED_10
;
1259 bp
->duplex
= DUPLEX_HALF
;
1268 if (bmcr
& BMCR_SPEED100
) {
1269 bp
->line_speed
= SPEED_100
;
1272 bp
->line_speed
= SPEED_10
;
1274 if (bmcr
& BMCR_FULLDPLX
) {
1275 bp
->duplex
= DUPLEX_FULL
;
1278 bp
->duplex
= DUPLEX_HALF
;
1285 bnx2_read_phy(bp
, MII_BNX2_EXT_STATUS
, &ext_status
);
1286 if (ext_status
& EXT_STATUS_MDIX
)
1287 bp
->phy_flags
|= BNX2_PHY_FLAG_MDIX
;
1294 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1296 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1298 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1299 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1302 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1303 val
|= BNX2_L2CTX_FLOW_CTRL_ENABLE
;
1305 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1309 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1314 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1317 bnx2_init_rx_context(bp
, cid
);
1322 bnx2_set_mac_link(struct bnx2
*bp
)
1326 BNX2_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1327 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1328 (bp
->duplex
== DUPLEX_HALF
)) {
1329 BNX2_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1332 /* Configure the EMAC mode register. */
1333 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
1335 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1336 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1337 BNX2_EMAC_MODE_25G_MODE
);
1340 switch (bp
->line_speed
) {
1342 if (BNX2_CHIP(bp
) != BNX2_CHIP_5706
) {
1343 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1348 val
|= BNX2_EMAC_MODE_PORT_MII
;
1351 val
|= BNX2_EMAC_MODE_25G_MODE
;
1354 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1359 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1362 /* Set the MAC to operate in the appropriate duplex mode. */
1363 if (bp
->duplex
== DUPLEX_HALF
)
1364 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1365 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
1367 /* Enable/disable rx PAUSE. */
1368 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1370 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1371 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1372 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1374 /* Enable/disable tx PAUSE. */
1375 val
= BNX2_RD(bp
, BNX2_EMAC_TX_MODE
);
1376 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1378 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1379 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1380 BNX2_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1382 /* Acknowledge the interrupt. */
1383 BNX2_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1385 bnx2_init_all_rx_contexts(bp
);
1389 bnx2_enable_bmsr1(struct bnx2
*bp
)
1391 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1392 (BNX2_CHIP(bp
) == BNX2_CHIP_5709
))
1393 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1394 MII_BNX2_BLK_ADDR_GP_STATUS
);
1398 bnx2_disable_bmsr1(struct bnx2
*bp
)
1400 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1401 (BNX2_CHIP(bp
) == BNX2_CHIP_5709
))
1402 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1403 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1407 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1412 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1415 if (bp
->autoneg
& AUTONEG_SPEED
)
1416 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1418 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1419 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1421 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1422 if (!(up1
& BCM5708S_UP1_2G5
)) {
1423 up1
|= BCM5708S_UP1_2G5
;
1424 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1428 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1429 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1430 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1436 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1441 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1444 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1445 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1447 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1448 if (up1
& BCM5708S_UP1_2G5
) {
1449 up1
&= ~BCM5708S_UP1_2G5
;
1450 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1454 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1455 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1456 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1462 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1464 u32
uninitialized_var(bmcr
);
1467 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1470 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1473 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1474 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1475 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1476 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1477 val
|= MII_BNX2_SD_MISC1_FORCE
|
1478 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1479 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1482 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1483 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1484 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1486 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1487 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1489 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1497 if (bp
->autoneg
& AUTONEG_SPEED
) {
1498 bmcr
&= ~BMCR_ANENABLE
;
1499 if (bp
->req_duplex
== DUPLEX_FULL
)
1500 bmcr
|= BMCR_FULLDPLX
;
1502 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1506 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1508 u32
uninitialized_var(bmcr
);
1511 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1514 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1517 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1518 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1519 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1520 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1521 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1524 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1525 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1526 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1528 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1529 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1531 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1539 if (bp
->autoneg
& AUTONEG_SPEED
)
1540 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1541 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1545 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1549 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1550 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1552 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1554 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1558 bnx2_set_link(struct bnx2
*bp
)
1563 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1568 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1571 link_up
= bp
->link_up
;
1573 bnx2_enable_bmsr1(bp
);
1574 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1575 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1576 bnx2_disable_bmsr1(bp
);
1578 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1579 (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)) {
1582 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1583 bnx2_5706s_force_link_dn(bp
, 0);
1584 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1586 val
= BNX2_RD(bp
, BNX2_EMAC_STATUS
);
1588 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1589 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1590 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1592 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1593 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1594 bmsr
|= BMSR_LSTATUS
;
1596 bmsr
&= ~BMSR_LSTATUS
;
1599 if (bmsr
& BMSR_LSTATUS
) {
1602 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1603 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
1604 bnx2_5706s_linkup(bp
);
1605 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
1606 bnx2_5708s_linkup(bp
);
1607 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1608 bnx2_5709s_linkup(bp
);
1611 bnx2_copper_linkup(bp
);
1613 bnx2_resolve_flow_ctrl(bp
);
1616 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1617 (bp
->autoneg
& AUTONEG_SPEED
))
1618 bnx2_disable_forced_2g5(bp
);
1620 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1623 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1624 bmcr
|= BMCR_ANENABLE
;
1625 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1627 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1632 if (bp
->link_up
!= link_up
) {
1633 bnx2_report_link(bp
);
1636 bnx2_set_mac_link(bp
);
1642 bnx2_reset_phy(struct bnx2
*bp
)
1647 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1649 #define PHY_RESET_MAX_WAIT 100
1650 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1653 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1654 if (!(reg
& BMCR_RESET
)) {
1659 if (i
== PHY_RESET_MAX_WAIT
) {
1666 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1670 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1671 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1673 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1674 adv
= ADVERTISE_1000XPAUSE
;
1677 adv
= ADVERTISE_PAUSE_CAP
;
1680 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1681 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1682 adv
= ADVERTISE_1000XPSE_ASYM
;
1685 adv
= ADVERTISE_PAUSE_ASYM
;
1688 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1689 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1690 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1693 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1699 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1702 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1703 __releases(&bp
->phy_lock
)
1704 __acquires(&bp
->phy_lock
)
1706 u32 speed_arg
= 0, pause_adv
;
1708 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1710 if (bp
->autoneg
& AUTONEG_SPEED
) {
1711 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1712 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1713 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1714 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1715 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1716 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1717 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1718 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1719 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1720 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1721 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1722 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1723 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1725 if (bp
->req_line_speed
== SPEED_2500
)
1726 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1727 else if (bp
->req_line_speed
== SPEED_1000
)
1728 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1729 else if (bp
->req_line_speed
== SPEED_100
) {
1730 if (bp
->req_duplex
== DUPLEX_FULL
)
1731 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1733 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1734 } else if (bp
->req_line_speed
== SPEED_10
) {
1735 if (bp
->req_duplex
== DUPLEX_FULL
)
1736 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1738 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1742 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1743 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1744 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1745 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1747 if (port
== PORT_TP
)
1748 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1749 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1751 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1753 spin_unlock_bh(&bp
->phy_lock
);
1754 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1755 spin_lock_bh(&bp
->phy_lock
);
1761 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1762 __releases(&bp
->phy_lock
)
1763 __acquires(&bp
->phy_lock
)
1768 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1769 return bnx2_setup_remote_phy(bp
, port
);
1771 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1773 int force_link_down
= 0;
1775 if (bp
->req_line_speed
== SPEED_2500
) {
1776 if (!bnx2_test_and_enable_2g5(bp
))
1777 force_link_down
= 1;
1778 } else if (bp
->req_line_speed
== SPEED_1000
) {
1779 if (bnx2_test_and_disable_2g5(bp
))
1780 force_link_down
= 1;
1782 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1783 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1785 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1786 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1787 new_bmcr
|= BMCR_SPEED1000
;
1789 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1790 if (bp
->req_line_speed
== SPEED_2500
)
1791 bnx2_enable_forced_2g5(bp
);
1792 else if (bp
->req_line_speed
== SPEED_1000
) {
1793 bnx2_disable_forced_2g5(bp
);
1794 new_bmcr
&= ~0x2000;
1797 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1798 if (bp
->req_line_speed
== SPEED_2500
)
1799 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1801 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1804 if (bp
->req_duplex
== DUPLEX_FULL
) {
1805 adv
|= ADVERTISE_1000XFULL
;
1806 new_bmcr
|= BMCR_FULLDPLX
;
1809 adv
|= ADVERTISE_1000XHALF
;
1810 new_bmcr
&= ~BMCR_FULLDPLX
;
1812 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1813 /* Force a link down visible on the other side */
1815 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1816 ~(ADVERTISE_1000XFULL
|
1817 ADVERTISE_1000XHALF
));
1818 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1819 BMCR_ANRESTART
| BMCR_ANENABLE
);
1822 netif_carrier_off(bp
->dev
);
1823 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1824 bnx2_report_link(bp
);
1826 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1827 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1829 bnx2_resolve_flow_ctrl(bp
);
1830 bnx2_set_mac_link(bp
);
1835 bnx2_test_and_enable_2g5(bp
);
1837 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1838 new_adv
|= ADVERTISE_1000XFULL
;
1840 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1842 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1843 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1845 bp
->serdes_an_pending
= 0;
1846 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1847 /* Force a link down visible on the other side */
1849 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1850 spin_unlock_bh(&bp
->phy_lock
);
1852 spin_lock_bh(&bp
->phy_lock
);
1855 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1856 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1858 /* Speed up link-up time when the link partner
1859 * does not autonegotiate which is very common
1860 * in blade servers. Some blade servers use
1861 * IPMI for kerboard input and it's important
1862 * to minimize link disruptions. Autoneg. involves
1863 * exchanging base pages plus 3 next pages and
1864 * normally completes in about 120 msec.
1866 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1867 bp
->serdes_an_pending
= 1;
1868 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1870 bnx2_resolve_flow_ctrl(bp
);
1871 bnx2_set_mac_link(bp
);
1877 #define ETHTOOL_ALL_FIBRE_SPEED \
1878 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1879 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1880 (ADVERTISED_1000baseT_Full)
1882 #define ETHTOOL_ALL_COPPER_SPEED \
1883 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1884 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1885 ADVERTISED_1000baseT_Full)
1887 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1888 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1890 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1893 bnx2_set_default_remote_link(struct bnx2
*bp
)
1897 if (bp
->phy_port
== PORT_TP
)
1898 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1900 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1902 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1903 bp
->req_line_speed
= 0;
1904 bp
->autoneg
|= AUTONEG_SPEED
;
1905 bp
->advertising
= ADVERTISED_Autoneg
;
1906 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1907 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1908 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1909 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1910 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1911 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1912 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1913 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1914 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1915 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1916 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1917 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1920 bp
->advertising
= 0;
1921 bp
->req_duplex
= DUPLEX_FULL
;
1922 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1923 bp
->req_line_speed
= SPEED_10
;
1924 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1925 bp
->req_duplex
= DUPLEX_HALF
;
1927 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1928 bp
->req_line_speed
= SPEED_100
;
1929 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1930 bp
->req_duplex
= DUPLEX_HALF
;
1932 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1933 bp
->req_line_speed
= SPEED_1000
;
1934 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1935 bp
->req_line_speed
= SPEED_2500
;
1940 bnx2_set_default_link(struct bnx2
*bp
)
1942 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1943 bnx2_set_default_remote_link(bp
);
1947 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1948 bp
->req_line_speed
= 0;
1949 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1952 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1954 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1955 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1956 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1958 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1959 bp
->req_duplex
= DUPLEX_FULL
;
1962 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1966 bnx2_send_heart_beat(struct bnx2
*bp
)
1971 spin_lock(&bp
->indirect_lock
);
1972 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1973 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1974 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1975 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1976 spin_unlock(&bp
->indirect_lock
);
1980 bnx2_remote_phy_event(struct bnx2
*bp
)
1983 u8 link_up
= bp
->link_up
;
1986 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1988 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1989 bnx2_send_heart_beat(bp
);
1991 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1993 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1999 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
2000 bp
->duplex
= DUPLEX_FULL
;
2002 case BNX2_LINK_STATUS_10HALF
:
2003 bp
->duplex
= DUPLEX_HALF
;
2005 case BNX2_LINK_STATUS_10FULL
:
2006 bp
->line_speed
= SPEED_10
;
2008 case BNX2_LINK_STATUS_100HALF
:
2009 bp
->duplex
= DUPLEX_HALF
;
2011 case BNX2_LINK_STATUS_100BASE_T4
:
2012 case BNX2_LINK_STATUS_100FULL
:
2013 bp
->line_speed
= SPEED_100
;
2015 case BNX2_LINK_STATUS_1000HALF
:
2016 bp
->duplex
= DUPLEX_HALF
;
2018 case BNX2_LINK_STATUS_1000FULL
:
2019 bp
->line_speed
= SPEED_1000
;
2021 case BNX2_LINK_STATUS_2500HALF
:
2022 bp
->duplex
= DUPLEX_HALF
;
2024 case BNX2_LINK_STATUS_2500FULL
:
2025 bp
->line_speed
= SPEED_2500
;
2033 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
2034 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2035 if (bp
->duplex
== DUPLEX_FULL
)
2036 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2038 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2039 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2040 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2041 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2044 old_port
= bp
->phy_port
;
2045 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2046 bp
->phy_port
= PORT_FIBRE
;
2048 bp
->phy_port
= PORT_TP
;
2050 if (old_port
!= bp
->phy_port
)
2051 bnx2_set_default_link(bp
);
2054 if (bp
->link_up
!= link_up
)
2055 bnx2_report_link(bp
);
2057 bnx2_set_mac_link(bp
);
2061 bnx2_set_remote_link(struct bnx2
*bp
)
2065 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2067 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2068 bnx2_remote_phy_event(bp
);
2070 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2072 bnx2_send_heart_beat(bp
);
2079 bnx2_setup_copper_phy(struct bnx2
*bp
)
2080 __releases(&bp
->phy_lock
)
2081 __acquires(&bp
->phy_lock
)
2083 u32 bmcr
, adv_reg
, new_adv
= 0;
2086 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2088 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2089 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2090 ADVERTISE_PAUSE_ASYM
);
2092 new_adv
= ADVERTISE_CSMA
| ethtool_adv_to_mii_adv_t(bp
->advertising
);
2094 if (bp
->autoneg
& AUTONEG_SPEED
) {
2096 u32 new_adv1000
= 0;
2098 new_adv
|= bnx2_phy_get_pause_adv(bp
);
2100 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2101 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2103 new_adv1000
|= ethtool_adv_to_mii_ctrl1000_t(bp
->advertising
);
2104 if ((adv1000_reg
!= new_adv1000
) ||
2105 (adv_reg
!= new_adv
) ||
2106 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2108 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2109 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000
);
2110 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2113 else if (bp
->link_up
) {
2114 /* Flow ctrl may have changed from auto to forced */
2115 /* or vice-versa. */
2117 bnx2_resolve_flow_ctrl(bp
);
2118 bnx2_set_mac_link(bp
);
2123 /* advertise nothing when forcing speed */
2124 if (adv_reg
!= new_adv
)
2125 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2128 if (bp
->req_line_speed
== SPEED_100
) {
2129 new_bmcr
|= BMCR_SPEED100
;
2131 if (bp
->req_duplex
== DUPLEX_FULL
) {
2132 new_bmcr
|= BMCR_FULLDPLX
;
2134 if (new_bmcr
!= bmcr
) {
2137 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2138 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2140 if (bmsr
& BMSR_LSTATUS
) {
2141 /* Force link down */
2142 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2143 spin_unlock_bh(&bp
->phy_lock
);
2145 spin_lock_bh(&bp
->phy_lock
);
2147 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2148 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2151 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2153 /* Normally, the new speed is setup after the link has
2154 * gone down and up again. In some cases, link will not go
2155 * down so we need to set up the new speed here.
2157 if (bmsr
& BMSR_LSTATUS
) {
2158 bp
->line_speed
= bp
->req_line_speed
;
2159 bp
->duplex
= bp
->req_duplex
;
2160 bnx2_resolve_flow_ctrl(bp
);
2161 bnx2_set_mac_link(bp
);
2164 bnx2_resolve_flow_ctrl(bp
);
2165 bnx2_set_mac_link(bp
);
2171 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2172 __releases(&bp
->phy_lock
)
2173 __acquires(&bp
->phy_lock
)
2175 if (bp
->loopback
== MAC_LOOPBACK
)
2178 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2179 return bnx2_setup_serdes_phy(bp
, port
);
2182 return bnx2_setup_copper_phy(bp
);
2187 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2191 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2192 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2193 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2194 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2195 bp
->mii_lpa
= MII_LPA
+ 0x10;
2196 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2198 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2199 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2201 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2205 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2207 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2208 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2209 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2210 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2212 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2213 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2214 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2215 val
|= BCM5708S_UP1_2G5
;
2217 val
&= ~BCM5708S_UP1_2G5
;
2218 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2220 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2221 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2222 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2223 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2225 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2227 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2228 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2229 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2231 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2237 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2244 bp
->mii_up1
= BCM5708S_UP1
;
2246 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2247 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2248 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2250 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2251 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2252 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2254 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2255 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2256 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2258 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2259 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2260 val
|= BCM5708S_UP1_2G5
;
2261 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2264 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
) ||
2265 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B0
) ||
2266 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B1
)) {
2267 /* increase tx signal amplitude */
2268 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2269 BCM5708S_BLK_ADDR_TX_MISC
);
2270 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2271 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2272 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2273 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2276 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2277 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2282 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2283 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2284 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2285 BCM5708S_BLK_ADDR_TX_MISC
);
2286 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2287 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2288 BCM5708S_BLK_ADDR_DIG
);
2295 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2300 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2302 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
2303 BNX2_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2305 if (bp
->dev
->mtu
> ETH_DATA_LEN
) {
2308 /* Set extended packet length bit */
2309 bnx2_write_phy(bp
, 0x18, 0x7);
2310 bnx2_read_phy(bp
, 0x18, &val
);
2311 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2313 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2314 bnx2_read_phy(bp
, 0x1c, &val
);
2315 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2320 bnx2_write_phy(bp
, 0x18, 0x7);
2321 bnx2_read_phy(bp
, 0x18, &val
);
2322 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2324 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2325 bnx2_read_phy(bp
, 0x1c, &val
);
2326 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2333 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2340 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2341 bnx2_write_phy(bp
, 0x18, 0x0c00);
2342 bnx2_write_phy(bp
, 0x17, 0x000a);
2343 bnx2_write_phy(bp
, 0x15, 0x310b);
2344 bnx2_write_phy(bp
, 0x17, 0x201f);
2345 bnx2_write_phy(bp
, 0x15, 0x9506);
2346 bnx2_write_phy(bp
, 0x17, 0x401f);
2347 bnx2_write_phy(bp
, 0x15, 0x14e2);
2348 bnx2_write_phy(bp
, 0x18, 0x0400);
2351 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2352 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2353 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2354 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2356 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2359 if (bp
->dev
->mtu
> ETH_DATA_LEN
) {
2360 /* Set extended packet length bit */
2361 bnx2_write_phy(bp
, 0x18, 0x7);
2362 bnx2_read_phy(bp
, 0x18, &val
);
2363 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2365 bnx2_read_phy(bp
, 0x10, &val
);
2366 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2369 bnx2_write_phy(bp
, 0x18, 0x7);
2370 bnx2_read_phy(bp
, 0x18, &val
);
2371 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2373 bnx2_read_phy(bp
, 0x10, &val
);
2374 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2377 /* ethernet@wirespeed */
2378 bnx2_write_phy(bp
, MII_BNX2_AUX_CTL
, AUX_CTL_MISC_CTL
);
2379 bnx2_read_phy(bp
, MII_BNX2_AUX_CTL
, &val
);
2380 val
|= AUX_CTL_MISC_CTL_WR
| AUX_CTL_MISC_CTL_WIRESPEED
;
2383 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
2384 val
|= AUX_CTL_MISC_CTL_AUTOMDIX
;
2386 bnx2_write_phy(bp
, MII_BNX2_AUX_CTL
, val
);
2392 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2393 __releases(&bp
->phy_lock
)
2394 __acquires(&bp
->phy_lock
)
2399 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2400 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2402 bp
->mii_bmcr
= MII_BMCR
;
2403 bp
->mii_bmsr
= MII_BMSR
;
2404 bp
->mii_bmsr1
= MII_BMSR
;
2405 bp
->mii_adv
= MII_ADVERTISE
;
2406 bp
->mii_lpa
= MII_LPA
;
2408 BNX2_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2410 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2413 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2414 bp
->phy_id
= val
<< 16;
2415 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2416 bp
->phy_id
|= val
& 0xffff;
2418 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2419 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
2420 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2421 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
2422 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2423 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
2424 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2427 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2432 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2438 bnx2_set_mac_loopback(struct bnx2
*bp
)
2442 mac_mode
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
2443 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2444 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2445 BNX2_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2450 static int bnx2_test_link(struct bnx2
*);
2453 bnx2_set_phy_loopback(struct bnx2
*bp
)
2458 spin_lock_bh(&bp
->phy_lock
);
2459 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2461 spin_unlock_bh(&bp
->phy_lock
);
2465 for (i
= 0; i
< 10; i
++) {
2466 if (bnx2_test_link(bp
) == 0)
2471 mac_mode
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
2472 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2473 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2474 BNX2_EMAC_MODE_25G_MODE
);
2476 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2477 BNX2_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2483 bnx2_dump_mcp_state(struct bnx2
*bp
)
2485 struct net_device
*dev
= bp
->dev
;
2488 netdev_err(dev
, "<--- start MCP states dump --->\n");
2489 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
2490 mcp_p0
= BNX2_MCP_STATE_P0
;
2491 mcp_p1
= BNX2_MCP_STATE_P1
;
2493 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
2494 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
2496 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
2497 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
2498 netdev_err(dev
, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
2499 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_MODE
),
2500 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_STATE
),
2501 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_EVENT_MASK
));
2502 netdev_err(dev
, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
2503 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2504 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2505 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_INSTRUCTION
));
2506 netdev_err(dev
, "DEBUG: shmem states:\n");
2507 netdev_err(dev
, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
2508 bnx2_shmem_rd(bp
, BNX2_DRV_MB
),
2509 bnx2_shmem_rd(bp
, BNX2_FW_MB
),
2510 bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
));
2511 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp
, BNX2_DRV_PULSE_MB
));
2512 netdev_err(dev
, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
2513 bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
),
2514 bnx2_shmem_rd(bp
, BNX2_BC_STATE_RESET_TYPE
));
2515 pr_cont(" condition[%08x]\n",
2516 bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
));
2517 DP_SHMEM_LINE(bp
, BNX2_BC_RESET_TYPE
);
2518 DP_SHMEM_LINE(bp
, 0x3cc);
2519 DP_SHMEM_LINE(bp
, 0x3dc);
2520 DP_SHMEM_LINE(bp
, 0x3ec);
2521 netdev_err(dev
, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp
, 0x3fc));
2522 netdev_err(dev
, "<--- end MCP states dump --->\n");
2526 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2532 msg_data
|= bp
->fw_wr_seq
;
2533 bp
->fw_last_msg
= msg_data
;
2535 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2540 /* wait for an acknowledgement. */
2541 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2544 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2546 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2549 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2552 /* If we timed out, inform the firmware that this is the case. */
2553 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2554 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2555 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2557 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2559 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2560 bnx2_dump_mcp_state(bp
);
2566 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2573 bnx2_init_5709_context(struct bnx2
*bp
)
2578 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2579 val
|= (BNX2_PAGE_BITS
- 8) << 16;
2580 BNX2_WR(bp
, BNX2_CTX_COMMAND
, val
);
2581 for (i
= 0; i
< 10; i
++) {
2582 val
= BNX2_RD(bp
, BNX2_CTX_COMMAND
);
2583 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2587 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2590 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2594 memset(bp
->ctx_blk
[i
], 0, BNX2_PAGE_SIZE
);
2598 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2599 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2600 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2601 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2602 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2603 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2604 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2605 for (j
= 0; j
< 10; j
++) {
2607 val
= BNX2_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2608 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2612 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2621 bnx2_init_context(struct bnx2
*bp
)
2627 u32 vcid_addr
, pcid_addr
, offset
;
2632 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
2635 vcid_addr
= GET_PCID_ADDR(vcid
);
2637 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2642 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2645 vcid_addr
= GET_CID_ADDR(vcid
);
2646 pcid_addr
= vcid_addr
;
2649 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2650 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2651 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2653 BNX2_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2654 BNX2_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2656 /* Zero out the context. */
2657 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2658 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2664 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2670 good_mbuf
= kmalloc_array(512, sizeof(u16
), GFP_KERNEL
);
2674 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2675 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2679 /* Allocate a bunch of mbufs and save the good ones in an array. */
2680 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2681 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2682 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2683 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2685 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2687 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2689 /* The addresses with Bit 9 set are bad memory blocks. */
2690 if (!(val
& (1 << 9))) {
2691 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2695 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2698 /* Free the good ones back to the mbuf pool thus discarding
2699 * all the bad ones. */
2700 while (good_mbuf_cnt
) {
2703 val
= good_mbuf
[good_mbuf_cnt
];
2704 val
= (val
<< 9) | val
| 1;
2706 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2713 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2717 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2719 BNX2_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2721 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2722 (mac_addr
[4] << 8) | mac_addr
[5];
2724 BNX2_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2728 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2731 struct bnx2_sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2732 struct bnx2_rx_bd
*rxbd
=
2733 &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(index
)][BNX2_RX_IDX(index
)];
2734 struct page
*page
= alloc_page(gfp
);
2738 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2739 PCI_DMA_FROMDEVICE
);
2740 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2746 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2747 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2748 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2753 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2755 struct bnx2_sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2756 struct page
*page
= rx_pg
->page
;
2761 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2762 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2769 bnx2_alloc_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2772 struct bnx2_sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2774 struct bnx2_rx_bd
*rxbd
=
2775 &rxr
->rx_desc_ring
[BNX2_RX_RING(index
)][BNX2_RX_IDX(index
)];
2777 data
= kmalloc(bp
->rx_buf_size
, gfp
);
2781 mapping
= dma_map_single(&bp
->pdev
->dev
,
2783 bp
->rx_buf_use_size
,
2784 PCI_DMA_FROMDEVICE
);
2785 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2790 rx_buf
->data
= data
;
2791 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2793 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2794 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2796 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2802 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2804 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2805 u32 new_link_state
, old_link_state
;
2808 new_link_state
= sblk
->status_attn_bits
& event
;
2809 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2810 if (new_link_state
!= old_link_state
) {
2812 BNX2_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2814 BNX2_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2822 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2824 spin_lock(&bp
->phy_lock
);
2826 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2828 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2829 bnx2_set_remote_link(bp
);
2831 spin_unlock(&bp
->phy_lock
);
2836 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2840 cons
= READ_ONCE(*bnapi
->hw_tx_cons_ptr
);
2842 if (unlikely((cons
& BNX2_MAX_TX_DESC_CNT
) == BNX2_MAX_TX_DESC_CNT
))
2848 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2850 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2851 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2852 int tx_pkt
= 0, index
;
2853 unsigned int tx_bytes
= 0;
2854 struct netdev_queue
*txq
;
2856 index
= (bnapi
- bp
->bnx2_napi
);
2857 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2859 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2860 sw_cons
= txr
->tx_cons
;
2862 while (sw_cons
!= hw_cons
) {
2863 struct bnx2_sw_tx_bd
*tx_buf
;
2864 struct sk_buff
*skb
;
2867 sw_ring_cons
= BNX2_TX_RING_IDX(sw_cons
);
2869 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2872 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2873 prefetch(&skb
->end
);
2875 /* partial BD completions possible with TSO packets */
2876 if (tx_buf
->is_gso
) {
2877 u16 last_idx
, last_ring_idx
;
2879 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2880 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2881 if (unlikely(last_ring_idx
>= BNX2_MAX_TX_DESC_CNT
)) {
2884 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2889 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2890 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2893 last
= tx_buf
->nr_frags
;
2895 for (i
= 0; i
< last
; i
++) {
2896 struct bnx2_sw_tx_bd
*tx_buf
;
2898 sw_cons
= BNX2_NEXT_TX_BD(sw_cons
);
2900 tx_buf
= &txr
->tx_buf_ring
[BNX2_TX_RING_IDX(sw_cons
)];
2901 dma_unmap_page(&bp
->pdev
->dev
,
2902 dma_unmap_addr(tx_buf
, mapping
),
2903 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
2907 sw_cons
= BNX2_NEXT_TX_BD(sw_cons
);
2909 tx_bytes
+= skb
->len
;
2910 dev_kfree_skb_any(skb
);
2912 if (tx_pkt
== budget
)
2915 if (hw_cons
== sw_cons
)
2916 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2919 netdev_tx_completed_queue(txq
, tx_pkt
, tx_bytes
);
2920 txr
->hw_tx_cons
= hw_cons
;
2921 txr
->tx_cons
= sw_cons
;
2923 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2924 * before checking for netif_tx_queue_stopped(). Without the
2925 * memory barrier, there is a small possibility that bnx2_start_xmit()
2926 * will miss it and cause the queue to be stopped forever.
2930 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2931 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2932 __netif_tx_lock(txq
, smp_processor_id());
2933 if ((netif_tx_queue_stopped(txq
)) &&
2934 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2935 netif_tx_wake_queue(txq
);
2936 __netif_tx_unlock(txq
);
2943 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2944 struct sk_buff
*skb
, int count
)
2946 struct bnx2_sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2947 struct bnx2_rx_bd
*cons_bd
, *prod_bd
;
2950 u16 cons
= rxr
->rx_pg_cons
;
2952 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2954 /* The caller was unable to allocate a new page to replace the
2955 * last one in the frags array, so we need to recycle that page
2956 * and then free the skb.
2960 struct skb_shared_info
*shinfo
;
2962 shinfo
= skb_shinfo(skb
);
2964 page
= skb_frag_page(&shinfo
->frags
[shinfo
->nr_frags
]);
2965 __skb_frag_set_page(&shinfo
->frags
[shinfo
->nr_frags
], NULL
);
2967 cons_rx_pg
->page
= page
;
2971 hw_prod
= rxr
->rx_pg_prod
;
2973 for (i
= 0; i
< count
; i
++) {
2974 prod
= BNX2_RX_PG_RING_IDX(hw_prod
);
2976 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2977 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2978 cons_bd
= &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(cons
)]
2979 [BNX2_RX_IDX(cons
)];
2980 prod_bd
= &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(prod
)]
2981 [BNX2_RX_IDX(prod
)];
2984 prod_rx_pg
->page
= cons_rx_pg
->page
;
2985 cons_rx_pg
->page
= NULL
;
2986 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2987 dma_unmap_addr(cons_rx_pg
, mapping
));
2989 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2990 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2993 cons
= BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons
));
2994 hw_prod
= BNX2_NEXT_RX_BD(hw_prod
);
2996 rxr
->rx_pg_prod
= hw_prod
;
2997 rxr
->rx_pg_cons
= cons
;
3001 bnx2_reuse_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
3002 u8
*data
, u16 cons
, u16 prod
)
3004 struct bnx2_sw_bd
*cons_rx_buf
, *prod_rx_buf
;
3005 struct bnx2_rx_bd
*cons_bd
, *prod_bd
;
3007 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
3008 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
3010 dma_sync_single_for_device(&bp
->pdev
->dev
,
3011 dma_unmap_addr(cons_rx_buf
, mapping
),
3012 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
3014 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
3016 prod_rx_buf
->data
= data
;
3021 dma_unmap_addr_set(prod_rx_buf
, mapping
,
3022 dma_unmap_addr(cons_rx_buf
, mapping
));
3024 cons_bd
= &rxr
->rx_desc_ring
[BNX2_RX_RING(cons
)][BNX2_RX_IDX(cons
)];
3025 prod_bd
= &rxr
->rx_desc_ring
[BNX2_RX_RING(prod
)][BNX2_RX_IDX(prod
)];
3026 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
3027 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
3030 static struct sk_buff
*
3031 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u8
*data
,
3032 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
3036 u16 prod
= ring_idx
& 0xffff;
3037 struct sk_buff
*skb
;
3039 err
= bnx2_alloc_rx_data(bp
, rxr
, prod
, GFP_ATOMIC
);
3040 if (unlikely(err
)) {
3041 bnx2_reuse_rx_data(bp
, rxr
, data
, (u16
) (ring_idx
>> 16), prod
);
3044 unsigned int raw_len
= len
+ 4;
3045 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
3047 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3052 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
3053 PCI_DMA_FROMDEVICE
);
3054 skb
= build_skb(data
, 0);
3059 skb_reserve(skb
, ((u8
*)get_l2_fhdr(data
) - data
) + BNX2_RX_OFFSET
);
3064 unsigned int i
, frag_len
, frag_size
, pages
;
3065 struct bnx2_sw_pg
*rx_pg
;
3066 u16 pg_cons
= rxr
->rx_pg_cons
;
3067 u16 pg_prod
= rxr
->rx_pg_prod
;
3069 frag_size
= len
+ 4 - hdr_len
;
3070 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
3071 skb_put(skb
, hdr_len
);
3073 for (i
= 0; i
< pages
; i
++) {
3074 dma_addr_t mapping_old
;
3076 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
3077 if (unlikely(frag_len
<= 4)) {
3078 unsigned int tail
= 4 - frag_len
;
3080 rxr
->rx_pg_cons
= pg_cons
;
3081 rxr
->rx_pg_prod
= pg_prod
;
3082 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3089 &skb_shinfo(skb
)->frags
[i
- 1];
3090 skb_frag_size_sub(frag
, tail
);
3091 skb
->data_len
-= tail
;
3095 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3097 /* Don't unmap yet. If we're unable to allocate a new
3098 * page, we need to recycle the page and the DMA addr.
3100 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3104 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3107 err
= bnx2_alloc_rx_page(bp
, rxr
,
3108 BNX2_RX_PG_RING_IDX(pg_prod
),
3110 if (unlikely(err
)) {
3111 rxr
->rx_pg_cons
= pg_cons
;
3112 rxr
->rx_pg_prod
= pg_prod
;
3113 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3118 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3119 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3121 frag_size
-= frag_len
;
3122 skb
->data_len
+= frag_len
;
3123 skb
->truesize
+= PAGE_SIZE
;
3124 skb
->len
+= frag_len
;
3126 pg_prod
= BNX2_NEXT_RX_BD(pg_prod
);
3127 pg_cons
= BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons
));
3129 rxr
->rx_pg_prod
= pg_prod
;
3130 rxr
->rx_pg_cons
= pg_cons
;
3136 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3140 cons
= READ_ONCE(*bnapi
->hw_rx_cons_ptr
);
3142 if (unlikely((cons
& BNX2_MAX_RX_DESC_CNT
) == BNX2_MAX_RX_DESC_CNT
))
3148 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3150 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3151 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3152 struct l2_fhdr
*rx_hdr
;
3153 int rx_pkt
= 0, pg_ring_used
= 0;
3158 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3159 sw_cons
= rxr
->rx_cons
;
3160 sw_prod
= rxr
->rx_prod
;
3162 /* Memory barrier necessary as speculative reads of the rx
3163 * buffer can be ahead of the index in the status block
3166 while (sw_cons
!= hw_cons
) {
3167 unsigned int len
, hdr_len
;
3169 struct bnx2_sw_bd
*rx_buf
, *next_rx_buf
;
3170 struct sk_buff
*skb
;
3171 dma_addr_t dma_addr
;
3175 sw_ring_cons
= BNX2_RX_RING_IDX(sw_cons
);
3176 sw_ring_prod
= BNX2_RX_RING_IDX(sw_prod
);
3178 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3179 data
= rx_buf
->data
;
3180 rx_buf
->data
= NULL
;
3182 rx_hdr
= get_l2_fhdr(data
);
3185 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3187 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3188 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3189 PCI_DMA_FROMDEVICE
);
3191 next_ring_idx
= BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons
));
3192 next_rx_buf
= &rxr
->rx_buf_ring
[next_ring_idx
];
3193 prefetch(get_l2_fhdr(next_rx_buf
->data
));
3195 len
= rx_hdr
->l2_fhdr_pkt_len
;
3196 status
= rx_hdr
->l2_fhdr_status
;
3199 if (status
& L2_FHDR_STATUS_SPLIT
) {
3200 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3202 } else if (len
> bp
->rx_jumbo_thresh
) {
3203 hdr_len
= bp
->rx_jumbo_thresh
;
3207 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3208 L2_FHDR_ERRORS_PHY_DECODE
|
3209 L2_FHDR_ERRORS_ALIGNMENT
|
3210 L2_FHDR_ERRORS_TOO_SHORT
|
3211 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3213 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3218 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3220 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3227 if (len
<= bp
->rx_copy_thresh
) {
3228 skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3230 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3237 (u8
*)rx_hdr
+ BNX2_RX_OFFSET
- 6,
3239 skb_reserve(skb
, 6);
3242 bnx2_reuse_rx_data(bp
, rxr
, data
,
3243 sw_ring_cons
, sw_ring_prod
);
3246 skb
= bnx2_rx_skb(bp
, rxr
, data
, len
, hdr_len
, dma_addr
,
3247 (sw_ring_cons
<< 16) | sw_ring_prod
);
3251 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3252 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
))
3253 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), rx_hdr
->l2_fhdr_vlan_tag
);
3255 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3257 if (len
> (bp
->dev
->mtu
+ ETH_HLEN
) &&
3258 skb
->protocol
!= htons(0x8100) &&
3259 skb
->protocol
!= htons(ETH_P_8021AD
)) {
3266 skb_checksum_none_assert(skb
);
3267 if ((bp
->dev
->features
& NETIF_F_RXCSUM
) &&
3268 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3269 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3271 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3272 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3273 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3275 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3276 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3277 L2_FHDR_STATUS_USE_RXHASH
))
3278 skb_set_hash(skb
, rx_hdr
->l2_fhdr_hash
,
3281 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3282 napi_gro_receive(&bnapi
->napi
, skb
);
3286 sw_cons
= BNX2_NEXT_RX_BD(sw_cons
);
3287 sw_prod
= BNX2_NEXT_RX_BD(sw_prod
);
3289 if (rx_pkt
== budget
)
3292 /* Refresh hw_cons to see if there is new work */
3293 if (sw_cons
== hw_cons
) {
3294 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3298 rxr
->rx_cons
= sw_cons
;
3299 rxr
->rx_prod
= sw_prod
;
3302 BNX2_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3304 BNX2_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3306 BNX2_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3314 /* MSI ISR - The only difference between this and the INTx ISR
3315 * is that the MSI interrupt is always serviced.
3318 bnx2_msi(int irq
, void *dev_instance
)
3320 struct bnx2_napi
*bnapi
= dev_instance
;
3321 struct bnx2
*bp
= bnapi
->bp
;
3323 prefetch(bnapi
->status_blk
.msi
);
3324 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3325 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3326 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3328 /* Return here if interrupt is disabled. */
3329 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3332 napi_schedule(&bnapi
->napi
);
3338 bnx2_msi_1shot(int irq
, void *dev_instance
)
3340 struct bnx2_napi
*bnapi
= dev_instance
;
3341 struct bnx2
*bp
= bnapi
->bp
;
3343 prefetch(bnapi
->status_blk
.msi
);
3345 /* Return here if interrupt is disabled. */
3346 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3349 napi_schedule(&bnapi
->napi
);
3355 bnx2_interrupt(int irq
, void *dev_instance
)
3357 struct bnx2_napi
*bnapi
= dev_instance
;
3358 struct bnx2
*bp
= bnapi
->bp
;
3359 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3361 /* When using INTx, it is possible for the interrupt to arrive
3362 * at the CPU before the status block posted prior to the
3363 * interrupt. Reading a register will flush the status block.
3364 * When using MSI, the MSI message will always complete after
3365 * the status block write.
3367 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3368 (BNX2_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3369 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3372 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3373 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3374 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3376 /* Read back to deassert IRQ immediately to avoid too many
3377 * spurious interrupts.
3379 BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3381 /* Return here if interrupt is shared and is disabled. */
3382 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3385 if (napi_schedule_prep(&bnapi
->napi
)) {
3386 bnapi
->last_status_idx
= sblk
->status_idx
;
3387 __napi_schedule(&bnapi
->napi
);
3394 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3396 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3397 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3399 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3400 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3405 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3406 STATUS_ATTN_BITS_TIMER_ABORT)
3409 bnx2_has_work(struct bnx2_napi
*bnapi
)
3411 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3413 if (bnx2_has_fast_work(bnapi
))
3417 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3421 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3422 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3429 bnx2_chk_missed_msi(struct bnx2
*bp
)
3431 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3434 if (bnx2_has_work(bnapi
)) {
3435 msi_ctrl
= BNX2_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3436 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3439 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3440 BNX2_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3441 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3442 BNX2_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3443 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3447 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3451 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3453 struct cnic_ops
*c_ops
;
3455 if (!bnapi
->cnic_present
)
3459 c_ops
= rcu_dereference(bp
->cnic_ops
);
3461 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3462 bnapi
->status_blk
.msi
);
3467 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3469 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3470 u32 status_attn_bits
= sblk
->status_attn_bits
;
3471 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3473 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3474 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3476 bnx2_phy_int(bp
, bnapi
);
3478 /* This is needed to take care of transient status
3479 * during link changes.
3481 BNX2_WR(bp
, BNX2_HC_COMMAND
,
3482 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3483 BNX2_RD(bp
, BNX2_HC_COMMAND
);
3487 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3488 int work_done
, int budget
)
3490 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3491 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3493 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3494 bnx2_tx_int(bp
, bnapi
, 0);
3496 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3497 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3502 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3504 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3505 struct bnx2
*bp
= bnapi
->bp
;
3507 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3510 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3511 if (unlikely(work_done
>= budget
))
3514 bnapi
->last_status_idx
= sblk
->status_idx
;
3515 /* status idx must be read before checking for more work. */
3517 if (likely(!bnx2_has_fast_work(bnapi
))) {
3519 napi_complete_done(napi
, work_done
);
3520 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3521 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3522 bnapi
->last_status_idx
);
3529 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3531 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3532 struct bnx2
*bp
= bnapi
->bp
;
3534 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3537 bnx2_poll_link(bp
, bnapi
);
3539 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3542 bnx2_poll_cnic(bp
, bnapi
);
3545 /* bnapi->last_status_idx is used below to tell the hw how
3546 * much work has been processed, so we must read it before
3547 * checking for more work.
3549 bnapi
->last_status_idx
= sblk
->status_idx
;
3551 if (unlikely(work_done
>= budget
))
3555 if (likely(!bnx2_has_work(bnapi
))) {
3556 napi_complete_done(napi
, work_done
);
3557 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3558 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3559 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3560 bnapi
->last_status_idx
);
3563 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3564 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3565 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3566 bnapi
->last_status_idx
);
3568 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3569 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3570 bnapi
->last_status_idx
);
3578 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3579 * from set_multicast.
3582 bnx2_set_rx_mode(struct net_device
*dev
)
3584 struct bnx2
*bp
= netdev_priv(dev
);
3585 u32 rx_mode
, sort_mode
;
3586 struct netdev_hw_addr
*ha
;
3589 if (!netif_running(dev
))
3592 spin_lock_bh(&bp
->phy_lock
);
3594 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3595 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3596 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3597 if (!(dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) &&
3598 (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3599 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3600 if (dev
->flags
& IFF_PROMISC
) {
3601 /* Promiscuous mode. */
3602 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3603 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3604 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3606 else if (dev
->flags
& IFF_ALLMULTI
) {
3607 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3608 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3611 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3614 /* Accept one or more multicast(s). */
3615 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3620 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3622 netdev_for_each_mc_addr(ha
, dev
) {
3623 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3625 regidx
= (bit
& 0xe0) >> 5;
3627 mc_filter
[regidx
] |= (1 << bit
);
3630 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3631 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3635 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3638 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3639 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3640 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3641 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3642 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3643 /* Add all entries into to the match filter list */
3645 netdev_for_each_uc_addr(ha
, dev
) {
3646 bnx2_set_mac_addr(bp
, ha
->addr
,
3647 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3649 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3655 if (rx_mode
!= bp
->rx_mode
) {
3656 bp
->rx_mode
= rx_mode
;
3657 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3660 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3661 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3662 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3664 spin_unlock_bh(&bp
->phy_lock
);
3668 check_fw_section(const struct firmware
*fw
,
3669 const struct bnx2_fw_file_section
*section
,
3670 u32 alignment
, bool non_empty
)
3672 u32 offset
= be32_to_cpu(section
->offset
);
3673 u32 len
= be32_to_cpu(section
->len
);
3675 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3677 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3678 len
& (alignment
- 1))
3684 check_mips_fw_entry(const struct firmware
*fw
,
3685 const struct bnx2_mips_fw_file_entry
*entry
)
3687 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3688 check_fw_section(fw
, &entry
->data
, 4, false) ||
3689 check_fw_section(fw
, &entry
->rodata
, 4, false))
3694 static void bnx2_release_firmware(struct bnx2
*bp
)
3696 if (bp
->rv2p_firmware
) {
3697 release_firmware(bp
->mips_firmware
);
3698 release_firmware(bp
->rv2p_firmware
);
3699 bp
->rv2p_firmware
= NULL
;
3703 static int bnx2_request_uncached_firmware(struct bnx2
*bp
)
3705 const char *mips_fw_file
, *rv2p_fw_file
;
3706 const struct bnx2_mips_fw_file
*mips_fw
;
3707 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3710 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
3711 mips_fw_file
= FW_MIPS_FILE_09
;
3712 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5709_A0
) ||
3713 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5709_A1
))
3714 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3716 rv2p_fw_file
= FW_RV2P_FILE_09
;
3718 mips_fw_file
= FW_MIPS_FILE_06
;
3719 rv2p_fw_file
= FW_RV2P_FILE_06
;
3722 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3724 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3728 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3730 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3731 goto err_release_mips_firmware
;
3733 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3734 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3735 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3736 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3737 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3738 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3739 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3740 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3741 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3743 goto err_release_firmware
;
3745 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3746 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3747 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3748 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3750 goto err_release_firmware
;
3755 err_release_firmware
:
3756 release_firmware(bp
->rv2p_firmware
);
3757 bp
->rv2p_firmware
= NULL
;
3758 err_release_mips_firmware
:
3759 release_firmware(bp
->mips_firmware
);
3763 static int bnx2_request_firmware(struct bnx2
*bp
)
3765 return bp
->rv2p_firmware
? 0 : bnx2_request_uncached_firmware(bp
);
3769 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3772 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3773 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3774 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3781 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3782 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3784 u32 rv2p_code_len
, file_offset
;
3789 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3790 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3792 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3794 if (rv2p_proc
== RV2P_PROC1
) {
3795 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3796 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3798 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3799 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3802 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3803 BNX2_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3805 BNX2_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3808 val
= (i
/ 8) | cmd
;
3809 BNX2_WR(bp
, addr
, val
);
3812 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3813 for (i
= 0; i
< 8; i
++) {
3816 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3817 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3818 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3819 BNX2_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3820 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3821 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3822 BNX2_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3824 val
= (loc
/ 2) | cmd
;
3825 BNX2_WR(bp
, addr
, val
);
3829 /* Reset the processor, un-stall is done later. */
3830 if (rv2p_proc
== RV2P_PROC1
) {
3831 BNX2_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3834 BNX2_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3841 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3842 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3844 u32 addr
, len
, file_offset
;
3850 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3851 val
|= cpu_reg
->mode_value_halt
;
3852 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3853 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3855 /* Load the Text area. */
3856 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3857 len
= be32_to_cpu(fw_entry
->text
.len
);
3858 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3859 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3861 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3865 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3866 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3869 /* Load the Data area. */
3870 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3871 len
= be32_to_cpu(fw_entry
->data
.len
);
3872 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3873 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3875 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3879 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3880 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3883 /* Load the Read-Only area. */
3884 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3885 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3886 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3887 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3889 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3893 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3894 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3897 /* Clear the pre-fetch instruction. */
3898 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3900 val
= be32_to_cpu(fw_entry
->start_addr
);
3901 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3903 /* Start the CPU. */
3904 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3905 val
&= ~cpu_reg
->mode_value_halt
;
3906 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3907 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3913 bnx2_init_cpus(struct bnx2
*bp
)
3915 const struct bnx2_mips_fw_file
*mips_fw
=
3916 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3917 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3918 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3921 /* Initialize the RV2P processor. */
3922 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3923 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3925 /* Initialize the RX Processor. */
3926 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3930 /* Initialize the TX Processor. */
3931 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3935 /* Initialize the TX Patch-up Processor. */
3936 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3940 /* Initialize the Completion Processor. */
3941 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3945 /* Initialize the Command Processor. */
3946 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3953 bnx2_setup_wol(struct bnx2
*bp
)
3962 autoneg
= bp
->autoneg
;
3963 advertising
= bp
->advertising
;
3965 if (bp
->phy_port
== PORT_TP
) {
3966 bp
->autoneg
= AUTONEG_SPEED
;
3967 bp
->advertising
= ADVERTISED_10baseT_Half
|
3968 ADVERTISED_10baseT_Full
|
3969 ADVERTISED_100baseT_Half
|
3970 ADVERTISED_100baseT_Full
|
3974 spin_lock_bh(&bp
->phy_lock
);
3975 bnx2_setup_phy(bp
, bp
->phy_port
);
3976 spin_unlock_bh(&bp
->phy_lock
);
3978 bp
->autoneg
= autoneg
;
3979 bp
->advertising
= advertising
;
3981 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3983 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
3985 /* Enable port mode. */
3986 val
&= ~BNX2_EMAC_MODE_PORT
;
3987 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3988 BNX2_EMAC_MODE_ACPI_RCVD
|
3989 BNX2_EMAC_MODE_MPKT
;
3990 if (bp
->phy_port
== PORT_TP
) {
3991 val
|= BNX2_EMAC_MODE_PORT_MII
;
3993 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3994 if (bp
->line_speed
== SPEED_2500
)
3995 val
|= BNX2_EMAC_MODE_25G_MODE
;
3998 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
4000 /* receive all multicast */
4001 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
4002 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
4005 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, BNX2_EMAC_RX_MODE_SORT_MODE
);
4007 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
| BNX2_RPM_SORT_USER0_MC_EN
;
4008 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
4009 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
4010 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, val
| BNX2_RPM_SORT_USER0_ENA
);
4012 /* Need to enable EMAC and RPM for WOL. */
4013 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4014 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
4015 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
4016 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
4018 val
= BNX2_RD(bp
, BNX2_RPM_CONFIG
);
4019 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4020 BNX2_WR(bp
, BNX2_RPM_CONFIG
, val
);
4022 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
4024 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4027 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
)) {
4030 wol_msg
|= BNX2_DRV_MSG_DATA_WAIT3
;
4031 if (bp
->fw_last_msg
|| BNX2_CHIP(bp
) != BNX2_CHIP_5709
) {
4032 bnx2_fw_sync(bp
, wol_msg
, 1, 0);
4035 /* Tell firmware not to power down the PHY yet, otherwise
4036 * the chip will take a long time to respond to MMIO reads.
4038 val
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
4039 bnx2_shmem_wr(bp
, BNX2_PORT_FEATURE
,
4040 val
| BNX2_PORT_FEATURE_ASF_ENABLED
);
4041 bnx2_fw_sync(bp
, wol_msg
, 1, 0);
4042 bnx2_shmem_wr(bp
, BNX2_PORT_FEATURE
, val
);
4048 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
4054 pci_enable_wake(bp
->pdev
, PCI_D0
, false);
4055 pci_set_power_state(bp
->pdev
, PCI_D0
);
4057 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
4058 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
4059 val
&= ~BNX2_EMAC_MODE_MPKT
;
4060 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
4062 val
= BNX2_RD(bp
, BNX2_RPM_CONFIG
);
4063 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4064 BNX2_WR(bp
, BNX2_RPM_CONFIG
, val
);
4069 pci_wake_from_d3(bp
->pdev
, bp
->wol
);
4070 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
4071 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
)) {
4074 pci_set_power_state(bp
->pdev
, PCI_D3hot
);
4078 if (!bp
->fw_last_msg
&& BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4081 /* Tell firmware not to power down the PHY yet,
4082 * otherwise the other port may not respond to
4085 val
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
4086 val
&= ~BNX2_CONDITION_PM_STATE_MASK
;
4087 val
|= BNX2_CONDITION_PM_STATE_UNPREP
;
4088 bnx2_shmem_wr(bp
, BNX2_BC_STATE_CONDITION
, val
);
4090 pci_set_power_state(bp
->pdev
, PCI_D3hot
);
4092 /* No more memory access after this point until
4093 * device is brought back to D0.
4104 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4109 /* Request access to the flash interface. */
4110 BNX2_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4111 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4112 val
= BNX2_RD(bp
, BNX2_NVM_SW_ARB
);
4113 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4119 if (j
>= NVRAM_TIMEOUT_COUNT
)
4126 bnx2_release_nvram_lock(struct bnx2
*bp
)
4131 /* Relinquish nvram interface. */
4132 BNX2_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4134 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4135 val
= BNX2_RD(bp
, BNX2_NVM_SW_ARB
);
4136 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4142 if (j
>= NVRAM_TIMEOUT_COUNT
)
4150 bnx2_enable_nvram_write(struct bnx2
*bp
)
4154 val
= BNX2_RD(bp
, BNX2_MISC_CFG
);
4155 BNX2_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4157 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4160 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4161 BNX2_WR(bp
, BNX2_NVM_COMMAND
,
4162 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4164 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4167 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4168 if (val
& BNX2_NVM_COMMAND_DONE
)
4172 if (j
>= NVRAM_TIMEOUT_COUNT
)
4179 bnx2_disable_nvram_write(struct bnx2
*bp
)
4183 val
= BNX2_RD(bp
, BNX2_MISC_CFG
);
4184 BNX2_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4189 bnx2_enable_nvram_access(struct bnx2
*bp
)
4193 val
= BNX2_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4194 /* Enable both bits, even on read. */
4195 BNX2_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4196 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4200 bnx2_disable_nvram_access(struct bnx2
*bp
)
4204 val
= BNX2_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4205 /* Disable both bits, even after read. */
4206 BNX2_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4207 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4208 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4212 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4217 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4218 /* Buffered flash, no erase needed */
4221 /* Build an erase command */
4222 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4223 BNX2_NVM_COMMAND_DOIT
;
4225 /* Need to clear DONE bit separately. */
4226 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4228 /* Address of the NVRAM to read from. */
4229 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4231 /* Issue an erase command. */
4232 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4234 /* Wait for completion. */
4235 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4240 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4241 if (val
& BNX2_NVM_COMMAND_DONE
)
4245 if (j
>= NVRAM_TIMEOUT_COUNT
)
4252 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4257 /* Build the command word. */
4258 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4260 /* Calculate an offset of a buffered flash, not needed for 5709. */
4261 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4262 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4263 bp
->flash_info
->page_bits
) +
4264 (offset
% bp
->flash_info
->page_size
);
4267 /* Need to clear DONE bit separately. */
4268 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4270 /* Address of the NVRAM to read from. */
4271 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4273 /* Issue a read command. */
4274 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4276 /* Wait for completion. */
4277 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4282 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4283 if (val
& BNX2_NVM_COMMAND_DONE
) {
4284 __be32 v
= cpu_to_be32(BNX2_RD(bp
, BNX2_NVM_READ
));
4285 memcpy(ret_val
, &v
, 4);
4289 if (j
>= NVRAM_TIMEOUT_COUNT
)
4297 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4303 /* Build the command word. */
4304 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4306 /* Calculate an offset of a buffered flash, not needed for 5709. */
4307 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4308 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4309 bp
->flash_info
->page_bits
) +
4310 (offset
% bp
->flash_info
->page_size
);
4313 /* Need to clear DONE bit separately. */
4314 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4316 memcpy(&val32
, val
, 4);
4318 /* Write the data. */
4319 BNX2_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4321 /* Address of the NVRAM to write to. */
4322 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4324 /* Issue the write command. */
4325 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4327 /* Wait for completion. */
4328 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4331 if (BNX2_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4334 if (j
>= NVRAM_TIMEOUT_COUNT
)
4341 bnx2_init_nvram(struct bnx2
*bp
)
4344 int j
, entry_count
, rc
= 0;
4345 const struct flash_spec
*flash
;
4347 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4348 bp
->flash_info
= &flash_5709
;
4349 goto get_flash_size
;
4352 /* Determine the selected interface. */
4353 val
= BNX2_RD(bp
, BNX2_NVM_CFG1
);
4355 entry_count
= ARRAY_SIZE(flash_table
);
4357 if (val
& 0x40000000) {
4359 /* Flash interface has been reconfigured */
4360 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4362 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4363 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4364 bp
->flash_info
= flash
;
4371 /* Not yet been reconfigured */
4373 if (val
& (1 << 23))
4374 mask
= FLASH_BACKUP_STRAP_MASK
;
4376 mask
= FLASH_STRAP_MASK
;
4378 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4381 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4382 bp
->flash_info
= flash
;
4384 /* Request access to the flash interface. */
4385 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4388 /* Enable access to flash interface */
4389 bnx2_enable_nvram_access(bp
);
4391 /* Reconfigure the flash interface */
4392 BNX2_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4393 BNX2_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4394 BNX2_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4395 BNX2_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4397 /* Disable access to flash interface */
4398 bnx2_disable_nvram_access(bp
);
4399 bnx2_release_nvram_lock(bp
);
4404 } /* if (val & 0x40000000) */
4406 if (j
== entry_count
) {
4407 bp
->flash_info
= NULL
;
4408 pr_alert("Unknown flash/EEPROM type\n");
4413 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4414 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4416 bp
->flash_size
= val
;
4418 bp
->flash_size
= bp
->flash_info
->total_size
;
4424 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4428 u32 cmd_flags
, offset32
, len32
, extra
;
4433 /* Request access to the flash interface. */
4434 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4437 /* Enable access to flash interface */
4438 bnx2_enable_nvram_access(bp
);
4451 pre_len
= 4 - (offset
& 3);
4453 if (pre_len
>= len32
) {
4455 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4456 BNX2_NVM_COMMAND_LAST
;
4459 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4462 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4467 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4474 extra
= 4 - (len32
& 3);
4475 len32
= (len32
+ 4) & ~3;
4482 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4484 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4485 BNX2_NVM_COMMAND_LAST
;
4487 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4489 memcpy(ret_buf
, buf
, 4 - extra
);
4491 else if (len32
> 0) {
4494 /* Read the first word. */
4498 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4500 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4502 /* Advance to the next dword. */
4507 while (len32
> 4 && rc
== 0) {
4508 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4510 /* Advance to the next dword. */
4519 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4520 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4522 memcpy(ret_buf
, buf
, 4 - extra
);
4525 /* Disable access to flash interface */
4526 bnx2_disable_nvram_access(bp
);
4528 bnx2_release_nvram_lock(bp
);
4534 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4537 u32 written
, offset32
, len32
;
4538 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4540 int align_start
, align_end
;
4545 align_start
= align_end
= 0;
4547 if ((align_start
= (offset32
& 3))) {
4549 len32
+= align_start
;
4552 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4557 align_end
= 4 - (len32
& 3);
4559 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4563 if (align_start
|| align_end
) {
4564 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4568 memcpy(align_buf
, start
, 4);
4571 memcpy(align_buf
+ len32
- 4, end
, 4);
4573 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4577 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4578 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4579 if (!flash_buffer
) {
4581 goto nvram_write_end
;
4586 while ((written
< len32
) && (rc
== 0)) {
4587 u32 page_start
, page_end
, data_start
, data_end
;
4588 u32 addr
, cmd_flags
;
4591 /* Find the page_start addr */
4592 page_start
= offset32
+ written
;
4593 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4594 /* Find the page_end addr */
4595 page_end
= page_start
+ bp
->flash_info
->page_size
;
4596 /* Find the data_start addr */
4597 data_start
= (written
== 0) ? offset32
: page_start
;
4598 /* Find the data_end addr */
4599 data_end
= (page_end
> offset32
+ len32
) ?
4600 (offset32
+ len32
) : page_end
;
4602 /* Request access to the flash interface. */
4603 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4604 goto nvram_write_end
;
4606 /* Enable access to flash interface */
4607 bnx2_enable_nvram_access(bp
);
4609 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4610 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4613 /* Read the whole page into the buffer
4614 * (non-buffer flash only) */
4615 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4616 if (j
== (bp
->flash_info
->page_size
- 4)) {
4617 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4619 rc
= bnx2_nvram_read_dword(bp
,
4625 goto nvram_write_end
;
4631 /* Enable writes to flash interface (unlock write-protect) */
4632 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4633 goto nvram_write_end
;
4635 /* Loop to write back the buffer data from page_start to
4638 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4639 /* Erase the page */
4640 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4641 goto nvram_write_end
;
4643 /* Re-enable the write again for the actual write */
4644 bnx2_enable_nvram_write(bp
);
4646 for (addr
= page_start
; addr
< data_start
;
4647 addr
+= 4, i
+= 4) {
4649 rc
= bnx2_nvram_write_dword(bp
, addr
,
4650 &flash_buffer
[i
], cmd_flags
);
4653 goto nvram_write_end
;
4659 /* Loop to write the new data from data_start to data_end */
4660 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4661 if ((addr
== page_end
- 4) ||
4662 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4663 (addr
== data_end
- 4))) {
4665 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4667 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4671 goto nvram_write_end
;
4677 /* Loop to write back the buffer data from data_end
4679 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4680 for (addr
= data_end
; addr
< page_end
;
4681 addr
+= 4, i
+= 4) {
4683 if (addr
== page_end
-4) {
4684 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4686 rc
= bnx2_nvram_write_dword(bp
, addr
,
4687 &flash_buffer
[i
], cmd_flags
);
4690 goto nvram_write_end
;
4696 /* Disable writes to flash interface (lock write-protect) */
4697 bnx2_disable_nvram_write(bp
);
4699 /* Disable access to flash interface */
4700 bnx2_disable_nvram_access(bp
);
4701 bnx2_release_nvram_lock(bp
);
4703 /* Increment written */
4704 written
+= data_end
- data_start
;
4708 kfree(flash_buffer
);
4714 bnx2_init_fw_cap(struct bnx2
*bp
)
4718 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4719 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4721 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4722 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4724 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4725 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4728 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4729 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4730 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4733 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4734 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4737 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4739 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4740 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4741 bp
->phy_port
= PORT_FIBRE
;
4743 bp
->phy_port
= PORT_TP
;
4745 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4746 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4749 if (netif_running(bp
->dev
) && sig
)
4750 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4754 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4756 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4758 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4759 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4763 bnx2_wait_dma_complete(struct bnx2
*bp
)
4769 * Wait for the current PCI transaction to complete before
4772 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) ||
4773 (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)) {
4774 BNX2_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4775 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4776 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4777 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4778 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4779 val
= BNX2_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4782 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4783 val
&= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4784 BNX2_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4785 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4787 for (i
= 0; i
< 100; i
++) {
4789 val
= BNX2_RD(bp
, BNX2_PCICFG_DEVICE_CONTROL
);
4790 if (!(val
& BNX2_PCICFG_DEVICE_STATUS_NO_PEND
))
4800 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4806 /* Wait for the current PCI transaction to complete before
4807 * issuing a reset. */
4808 bnx2_wait_dma_complete(bp
);
4810 /* Wait for the firmware to tell us it is ok to issue a reset. */
4811 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4813 /* Deposit a driver reset signature so the firmware knows that
4814 * this is a soft reset. */
4815 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4816 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4818 /* Do a dummy read to force the chip to complete all current transaction
4819 * before we issue a reset. */
4820 val
= BNX2_RD(bp
, BNX2_MISC_ID
);
4822 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4823 BNX2_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4824 BNX2_RD(bp
, BNX2_MISC_COMMAND
);
4827 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4828 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4830 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4833 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4834 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4835 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4838 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4840 /* Reading back any register after chip reset will hang the
4841 * bus on 5706 A0 and A1. The msleep below provides plenty
4842 * of margin for write posting.
4844 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
4845 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
))
4848 /* Reset takes approximate 30 usec */
4849 for (i
= 0; i
< 10; i
++) {
4850 val
= BNX2_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4851 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4852 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4857 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4858 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4859 pr_err("Chip reset did not complete\n");
4864 /* Make sure byte swapping is properly configured. */
4865 val
= BNX2_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4866 if (val
!= 0x01020304) {
4867 pr_err("Chip not in correct endian mode\n");
4871 /* Wait for the firmware to finish its initialization. */
4872 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4876 spin_lock_bh(&bp
->phy_lock
);
4877 old_port
= bp
->phy_port
;
4878 bnx2_init_fw_cap(bp
);
4879 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4880 old_port
!= bp
->phy_port
)
4881 bnx2_set_default_remote_link(bp
);
4882 spin_unlock_bh(&bp
->phy_lock
);
4884 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
4885 /* Adjust the voltage regular to two steps lower. The default
4886 * of this register is 0x0000000e. */
4887 BNX2_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4889 /* Remove bad rbuf memory from the free pool. */
4890 rc
= bnx2_alloc_bad_rbuf(bp
);
4893 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4894 bnx2_setup_msix_tbl(bp
);
4895 /* Prevent MSIX table reads and write from timing out */
4896 BNX2_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4897 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4904 bnx2_init_chip(struct bnx2
*bp
)
4909 /* Make sure the interrupt is not active. */
4910 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4912 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4913 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4915 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4917 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4918 DMA_READ_CHANS
<< 12 |
4919 DMA_WRITE_CHANS
<< 16;
4921 val
|= (0x2 << 20) | (1 << 11);
4923 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4926 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) &&
4927 (BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A0
) &&
4928 !(bp
->flags
& BNX2_FLAG_PCIX
))
4929 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4931 BNX2_WR(bp
, BNX2_DMA_CONFIG
, val
);
4933 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
4934 val
= BNX2_RD(bp
, BNX2_TDMA_CONFIG
);
4935 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4936 BNX2_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4939 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4942 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4944 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4945 val16
& ~PCI_X_CMD_ERO
);
4948 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4949 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4950 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4951 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4953 /* Initialize context mapping and zero out the quick contexts. The
4954 * context block must have already been enabled. */
4955 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4956 rc
= bnx2_init_5709_context(bp
);
4960 bnx2_init_context(bp
);
4962 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4965 bnx2_init_nvram(bp
);
4967 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4969 val
= BNX2_RD(bp
, BNX2_MQ_CONFIG
);
4970 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4971 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4972 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4973 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4974 if (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
)
4975 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4978 BNX2_WR(bp
, BNX2_MQ_CONFIG
, val
);
4980 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4981 BNX2_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4982 BNX2_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4984 val
= (BNX2_PAGE_BITS
- 8) << 24;
4985 BNX2_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4987 /* Configure page size. */
4988 val
= BNX2_RD(bp
, BNX2_TBDR_CONFIG
);
4989 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4990 val
|= (BNX2_PAGE_BITS
- 8) << 24 | 0x40;
4991 BNX2_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4993 val
= bp
->mac_addr
[0] +
4994 (bp
->mac_addr
[1] << 8) +
4995 (bp
->mac_addr
[2] << 16) +
4997 (bp
->mac_addr
[4] << 8) +
4998 (bp
->mac_addr
[5] << 16);
4999 BNX2_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
5001 /* Program the MTU. Also include 4 bytes for CRC32. */
5003 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
5004 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ ETH_HLEN
+ 4))
5005 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
5006 BNX2_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
5008 if (mtu
< ETH_DATA_LEN
)
5011 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
5012 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
5013 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
5015 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
5016 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
5017 bp
->bnx2_napi
[i
].last_status_idx
= 0;
5019 bp
->idle_chk_status_idx
= 0xffff;
5021 /* Set up how to generate a link change interrupt. */
5022 BNX2_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
5024 BNX2_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
5025 (u64
) bp
->status_blk_mapping
& 0xffffffff);
5026 BNX2_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
5028 BNX2_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
5029 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
5030 BNX2_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
5031 (u64
) bp
->stats_blk_mapping
>> 32);
5033 BNX2_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
5034 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
5036 BNX2_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
5037 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
5039 BNX2_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
5040 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
5042 BNX2_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5044 BNX2_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5046 BNX2_WR(bp
, BNX2_HC_COM_TICKS
,
5047 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
5049 BNX2_WR(bp
, BNX2_HC_CMD_TICKS
,
5050 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
5052 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
5053 BNX2_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
5055 BNX2_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
5056 BNX2_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
5058 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
)
5059 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
5061 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
5062 BNX2_HC_CONFIG_COLLECT_STATS
;
5065 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
5066 BNX2_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
5067 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
5069 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
5072 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
5073 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
5075 BNX2_WR(bp
, BNX2_HC_CONFIG
, val
);
5077 if (bp
->rx_ticks
< 25)
5078 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 1);
5080 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 0);
5082 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
5083 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
5084 BNX2_HC_SB_CONFIG_1
;
5087 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
5088 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
5089 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
5091 BNX2_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
5092 (bp
->tx_quick_cons_trip_int
<< 16) |
5093 bp
->tx_quick_cons_trip
);
5095 BNX2_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
5096 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5098 BNX2_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
5099 (bp
->rx_quick_cons_trip_int
<< 16) |
5100 bp
->rx_quick_cons_trip
);
5102 BNX2_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
5103 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5106 /* Clear internal stats counters. */
5107 BNX2_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
5109 BNX2_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
5111 /* Initialize the receive filter. */
5112 bnx2_set_rx_mode(bp
->dev
);
5114 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5115 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
5116 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
5117 BNX2_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
5119 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
5122 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
5123 BNX2_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
5127 bp
->hc_cmd
= BNX2_RD(bp
, BNX2_HC_COMMAND
);
5133 bnx2_clear_ring_states(struct bnx2
*bp
)
5135 struct bnx2_napi
*bnapi
;
5136 struct bnx2_tx_ring_info
*txr
;
5137 struct bnx2_rx_ring_info
*rxr
;
5140 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5141 bnapi
= &bp
->bnx2_napi
[i
];
5142 txr
= &bnapi
->tx_ring
;
5143 rxr
= &bnapi
->rx_ring
;
5146 txr
->hw_tx_cons
= 0;
5147 rxr
->rx_prod_bseq
= 0;
5150 rxr
->rx_pg_prod
= 0;
5151 rxr
->rx_pg_cons
= 0;
5156 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5158 u32 val
, offset0
, offset1
, offset2
, offset3
;
5159 u32 cid_addr
= GET_CID_ADDR(cid
);
5161 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5162 offset0
= BNX2_L2CTX_TYPE_XI
;
5163 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5164 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5165 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5167 offset0
= BNX2_L2CTX_TYPE
;
5168 offset1
= BNX2_L2CTX_CMD_TYPE
;
5169 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5170 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5172 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5173 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5175 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5176 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5178 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5179 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5181 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5182 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5186 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5188 struct bnx2_tx_bd
*txbd
;
5190 struct bnx2_napi
*bnapi
;
5191 struct bnx2_tx_ring_info
*txr
;
5193 bnapi
= &bp
->bnx2_napi
[ring_num
];
5194 txr
= &bnapi
->tx_ring
;
5199 cid
= TX_TSS_CID
+ ring_num
- 1;
5201 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5203 txbd
= &txr
->tx_desc_ring
[BNX2_MAX_TX_DESC_CNT
];
5205 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5206 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5209 txr
->tx_prod_bseq
= 0;
5211 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5212 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5214 bnx2_init_tx_context(bp
, cid
, txr
);
5218 bnx2_init_rxbd_rings(struct bnx2_rx_bd
*rx_ring
[], dma_addr_t dma
[],
5219 u32 buf_size
, int num_rings
)
5222 struct bnx2_rx_bd
*rxbd
;
5224 for (i
= 0; i
< num_rings
; i
++) {
5227 rxbd
= &rx_ring
[i
][0];
5228 for (j
= 0; j
< BNX2_MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5229 rxbd
->rx_bd_len
= buf_size
;
5230 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5232 if (i
== (num_rings
- 1))
5236 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5237 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5242 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5245 u16 prod
, ring_prod
;
5246 u32 cid
, rx_cid_addr
, val
;
5247 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5248 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5253 cid
= RX_RSS_CID
+ ring_num
- 1;
5255 rx_cid_addr
= GET_CID_ADDR(cid
);
5257 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5258 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5260 bnx2_init_rx_context(bp
, cid
);
5262 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5263 val
= BNX2_RD(bp
, BNX2_MQ_MAP_L2_5
);
5264 BNX2_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5267 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5268 if (bp
->rx_pg_ring_size
) {
5269 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5270 rxr
->rx_pg_desc_mapping
,
5271 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5272 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5273 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5274 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5275 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5277 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5278 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5280 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5281 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5283 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5284 BNX2_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5287 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5288 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5290 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5291 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5293 ring_prod
= prod
= rxr
->rx_pg_prod
;
5294 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5295 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5296 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5297 ring_num
, i
, bp
->rx_pg_ring_size
);
5300 prod
= BNX2_NEXT_RX_BD(prod
);
5301 ring_prod
= BNX2_RX_PG_RING_IDX(prod
);
5303 rxr
->rx_pg_prod
= prod
;
5305 ring_prod
= prod
= rxr
->rx_prod
;
5306 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5307 if (bnx2_alloc_rx_data(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5308 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5309 ring_num
, i
, bp
->rx_ring_size
);
5312 prod
= BNX2_NEXT_RX_BD(prod
);
5313 ring_prod
= BNX2_RX_RING_IDX(prod
);
5315 rxr
->rx_prod
= prod
;
5317 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5318 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5319 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5321 BNX2_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5322 BNX2_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5324 BNX2_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5328 bnx2_init_all_rings(struct bnx2
*bp
)
5333 bnx2_clear_ring_states(bp
);
5335 BNX2_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5336 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5337 bnx2_init_tx_ring(bp
, i
);
5339 if (bp
->num_tx_rings
> 1)
5340 BNX2_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5343 BNX2_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5344 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5346 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5347 bnx2_init_rx_ring(bp
, i
);
5349 if (bp
->num_rx_rings
> 1) {
5352 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5353 int shift
= (i
% 8) << 2;
5355 tbl_32
|= (i
% (bp
->num_rx_rings
- 1)) << shift
;
5357 BNX2_WR(bp
, BNX2_RLUP_RSS_DATA
, tbl_32
);
5358 BNX2_WR(bp
, BNX2_RLUP_RSS_COMMAND
, (i
>> 3) |
5359 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK
|
5360 BNX2_RLUP_RSS_COMMAND_WRITE
|
5361 BNX2_RLUP_RSS_COMMAND_HASH_MASK
);
5366 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5367 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5369 BNX2_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5374 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5376 u32 max
, num_rings
= 1;
5378 while (ring_size
> BNX2_MAX_RX_DESC_CNT
) {
5379 ring_size
-= BNX2_MAX_RX_DESC_CNT
;
5382 /* round to next power of 2 */
5384 while ((max
& num_rings
) == 0)
5387 if (num_rings
!= max
)
5394 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5396 u32 rx_size
, rx_space
, jumbo_size
;
5398 /* 8 for CRC and VLAN */
5399 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5401 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5402 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5404 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5405 bp
->rx_pg_ring_size
= 0;
5406 bp
->rx_max_pg_ring
= 0;
5407 bp
->rx_max_pg_ring_idx
= 0;
5408 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5409 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5411 jumbo_size
= size
* pages
;
5412 if (jumbo_size
> BNX2_MAX_TOTAL_RX_PG_DESC_CNT
)
5413 jumbo_size
= BNX2_MAX_TOTAL_RX_PG_DESC_CNT
;
5415 bp
->rx_pg_ring_size
= jumbo_size
;
5416 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5417 BNX2_MAX_RX_PG_RINGS
);
5418 bp
->rx_max_pg_ring_idx
=
5419 (bp
->rx_max_pg_ring
* BNX2_RX_DESC_CNT
) - 1;
5420 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5421 bp
->rx_copy_thresh
= 0;
5424 bp
->rx_buf_use_size
= rx_size
;
5425 /* hw alignment + build_skb() overhead*/
5426 bp
->rx_buf_size
= SKB_DATA_ALIGN(bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
) +
5427 NET_SKB_PAD
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5428 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5429 bp
->rx_ring_size
= size
;
5430 bp
->rx_max_ring
= bnx2_find_max_ring(size
, BNX2_MAX_RX_RINGS
);
5431 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* BNX2_RX_DESC_CNT
) - 1;
5435 bnx2_free_tx_skbs(struct bnx2
*bp
)
5439 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5440 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5441 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5444 if (!txr
->tx_buf_ring
)
5447 for (j
= 0; j
< BNX2_TX_DESC_CNT
; ) {
5448 struct bnx2_sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5449 struct sk_buff
*skb
= tx_buf
->skb
;
5453 j
= BNX2_NEXT_TX_BD(j
);
5457 dma_unmap_single(&bp
->pdev
->dev
,
5458 dma_unmap_addr(tx_buf
, mapping
),
5464 last
= tx_buf
->nr_frags
;
5465 j
= BNX2_NEXT_TX_BD(j
);
5466 for (k
= 0; k
< last
; k
++, j
= BNX2_NEXT_TX_BD(j
)) {
5467 tx_buf
= &txr
->tx_buf_ring
[BNX2_TX_RING_IDX(j
)];
5468 dma_unmap_page(&bp
->pdev
->dev
,
5469 dma_unmap_addr(tx_buf
, mapping
),
5470 skb_frag_size(&skb_shinfo(skb
)->frags
[k
]),
5475 netdev_tx_reset_queue(netdev_get_tx_queue(bp
->dev
, i
));
5480 bnx2_free_rx_skbs(struct bnx2
*bp
)
5484 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5485 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5486 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5489 if (!rxr
->rx_buf_ring
)
5492 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5493 struct bnx2_sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5494 u8
*data
= rx_buf
->data
;
5499 dma_unmap_single(&bp
->pdev
->dev
,
5500 dma_unmap_addr(rx_buf
, mapping
),
5501 bp
->rx_buf_use_size
,
5502 PCI_DMA_FROMDEVICE
);
5504 rx_buf
->data
= NULL
;
5508 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5509 bnx2_free_rx_page(bp
, rxr
, j
);
5514 bnx2_free_skbs(struct bnx2
*bp
)
5516 bnx2_free_tx_skbs(bp
);
5517 bnx2_free_rx_skbs(bp
);
5521 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5525 rc
= bnx2_reset_chip(bp
, reset_code
);
5530 if ((rc
= bnx2_init_chip(bp
)) != 0)
5533 bnx2_init_all_rings(bp
);
5538 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5542 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5545 spin_lock_bh(&bp
->phy_lock
);
5546 bnx2_init_phy(bp
, reset_phy
);
5548 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5549 bnx2_remote_phy_event(bp
);
5550 spin_unlock_bh(&bp
->phy_lock
);
5555 bnx2_shutdown_chip(struct bnx2
*bp
)
5559 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5560 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5562 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5564 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5566 return bnx2_reset_chip(bp
, reset_code
);
5570 bnx2_test_registers(struct bnx2
*bp
)
5574 static const struct {
5577 #define BNX2_FL_NOT_5709 1
5581 { 0x006c, 0, 0x00000000, 0x0000003f },
5582 { 0x0090, 0, 0xffffffff, 0x00000000 },
5583 { 0x0094, 0, 0x00000000, 0x00000000 },
5585 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5586 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5587 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5588 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5589 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5590 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5591 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5592 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5593 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5595 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5596 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5597 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5598 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5599 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5600 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5602 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5603 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5604 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5606 { 0x1000, 0, 0x00000000, 0x00000001 },
5607 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5609 { 0x1408, 0, 0x01c00800, 0x00000000 },
5610 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5611 { 0x14a8, 0, 0x00000000, 0x000001ff },
5612 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5613 { 0x14b0, 0, 0x00000002, 0x00000001 },
5614 { 0x14b8, 0, 0x00000000, 0x00000000 },
5615 { 0x14c0, 0, 0x00000000, 0x00000009 },
5616 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5617 { 0x14cc, 0, 0x00000000, 0x00000001 },
5618 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5620 { 0x1800, 0, 0x00000000, 0x00000001 },
5621 { 0x1804, 0, 0x00000000, 0x00000003 },
5623 { 0x2800, 0, 0x00000000, 0x00000001 },
5624 { 0x2804, 0, 0x00000000, 0x00003f01 },
5625 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5626 { 0x2810, 0, 0xffff0000, 0x00000000 },
5627 { 0x2814, 0, 0xffff0000, 0x00000000 },
5628 { 0x2818, 0, 0xffff0000, 0x00000000 },
5629 { 0x281c, 0, 0xffff0000, 0x00000000 },
5630 { 0x2834, 0, 0xffffffff, 0x00000000 },
5631 { 0x2840, 0, 0x00000000, 0xffffffff },
5632 { 0x2844, 0, 0x00000000, 0xffffffff },
5633 { 0x2848, 0, 0xffffffff, 0x00000000 },
5634 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5636 { 0x2c00, 0, 0x00000000, 0x00000011 },
5637 { 0x2c04, 0, 0x00000000, 0x00030007 },
5639 { 0x3c00, 0, 0x00000000, 0x00000001 },
5640 { 0x3c04, 0, 0x00000000, 0x00070000 },
5641 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5642 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5643 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5644 { 0x3c14, 0, 0x00000000, 0xffffffff },
5645 { 0x3c18, 0, 0x00000000, 0xffffffff },
5646 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5647 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5649 { 0x5004, 0, 0x00000000, 0x0000007f },
5650 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5652 { 0x5c00, 0, 0x00000000, 0x00000001 },
5653 { 0x5c04, 0, 0x00000000, 0x0003000f },
5654 { 0x5c08, 0, 0x00000003, 0x00000000 },
5655 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5656 { 0x5c10, 0, 0x00000000, 0xffffffff },
5657 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5658 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5659 { 0x5c88, 0, 0x00000000, 0x00077373 },
5660 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5662 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5663 { 0x680c, 0, 0xffffffff, 0x00000000 },
5664 { 0x6810, 0, 0xffffffff, 0x00000000 },
5665 { 0x6814, 0, 0xffffffff, 0x00000000 },
5666 { 0x6818, 0, 0xffffffff, 0x00000000 },
5667 { 0x681c, 0, 0xffffffff, 0x00000000 },
5668 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5669 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5670 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5671 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5672 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5673 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5674 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5675 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5676 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5677 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5678 { 0x684c, 0, 0xffffffff, 0x00000000 },
5679 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5680 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5681 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5682 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5683 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5684 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5686 { 0xffff, 0, 0x00000000, 0x00000000 },
5691 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5694 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5695 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5696 u16 flags
= reg_tbl
[i
].flags
;
5698 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5701 offset
= (u32
) reg_tbl
[i
].offset
;
5702 rw_mask
= reg_tbl
[i
].rw_mask
;
5703 ro_mask
= reg_tbl
[i
].ro_mask
;
5705 save_val
= readl(bp
->regview
+ offset
);
5707 writel(0, bp
->regview
+ offset
);
5709 val
= readl(bp
->regview
+ offset
);
5710 if ((val
& rw_mask
) != 0) {
5714 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5718 writel(0xffffffff, bp
->regview
+ offset
);
5720 val
= readl(bp
->regview
+ offset
);
5721 if ((val
& rw_mask
) != rw_mask
) {
5725 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5729 writel(save_val
, bp
->regview
+ offset
);
5733 writel(save_val
, bp
->regview
+ offset
);
5741 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5743 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5744 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5747 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5750 for (offset
= 0; offset
< size
; offset
+= 4) {
5752 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5754 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5764 bnx2_test_memory(struct bnx2
*bp
)
5768 static struct mem_entry
{
5771 } mem_tbl_5706
[] = {
5772 { 0x60000, 0x4000 },
5773 { 0xa0000, 0x3000 },
5774 { 0xe0000, 0x4000 },
5775 { 0x120000, 0x4000 },
5776 { 0x1a0000, 0x4000 },
5777 { 0x160000, 0x4000 },
5781 { 0x60000, 0x4000 },
5782 { 0xa0000, 0x3000 },
5783 { 0xe0000, 0x4000 },
5784 { 0x120000, 0x4000 },
5785 { 0x1a0000, 0x4000 },
5788 struct mem_entry
*mem_tbl
;
5790 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5791 mem_tbl
= mem_tbl_5709
;
5793 mem_tbl
= mem_tbl_5706
;
5795 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5796 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5797 mem_tbl
[i
].len
)) != 0) {
5805 #define BNX2_MAC_LOOPBACK 0
5806 #define BNX2_PHY_LOOPBACK 1
5809 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5811 unsigned int pkt_size
, num_pkts
, i
;
5812 struct sk_buff
*skb
;
5814 unsigned char *packet
;
5815 u16 rx_start_idx
, rx_idx
;
5817 struct bnx2_tx_bd
*txbd
;
5818 struct bnx2_sw_bd
*rx_buf
;
5819 struct l2_fhdr
*rx_hdr
;
5821 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5822 struct bnx2_tx_ring_info
*txr
;
5823 struct bnx2_rx_ring_info
*rxr
;
5827 txr
= &tx_napi
->tx_ring
;
5828 rxr
= &bnapi
->rx_ring
;
5829 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5830 bp
->loopback
= MAC_LOOPBACK
;
5831 bnx2_set_mac_loopback(bp
);
5833 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5834 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5837 bp
->loopback
= PHY_LOOPBACK
;
5838 bnx2_set_phy_loopback(bp
);
5843 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5844 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5847 packet
= skb_put(skb
, pkt_size
);
5848 memcpy(packet
, bp
->dev
->dev_addr
, ETH_ALEN
);
5849 memset(packet
+ ETH_ALEN
, 0x0, 8);
5850 for (i
= 14; i
< pkt_size
; i
++)
5851 packet
[i
] = (unsigned char) (i
& 0xff);
5853 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5855 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5860 BNX2_WR(bp
, BNX2_HC_COMMAND
,
5861 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5863 BNX2_RD(bp
, BNX2_HC_COMMAND
);
5866 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5870 txbd
= &txr
->tx_desc_ring
[BNX2_TX_RING_IDX(txr
->tx_prod
)];
5872 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5873 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5874 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5875 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5878 txr
->tx_prod
= BNX2_NEXT_TX_BD(txr
->tx_prod
);
5879 txr
->tx_prod_bseq
+= pkt_size
;
5881 BNX2_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5882 BNX2_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5886 BNX2_WR(bp
, BNX2_HC_COMMAND
,
5887 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5889 BNX2_RD(bp
, BNX2_HC_COMMAND
);
5893 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5896 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5897 goto loopback_test_done
;
5899 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5900 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5901 goto loopback_test_done
;
5904 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5905 data
= rx_buf
->data
;
5907 rx_hdr
= get_l2_fhdr(data
);
5908 data
= (u8
*)rx_hdr
+ BNX2_RX_OFFSET
;
5910 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5911 dma_unmap_addr(rx_buf
, mapping
),
5912 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
5914 if (rx_hdr
->l2_fhdr_status
&
5915 (L2_FHDR_ERRORS_BAD_CRC
|
5916 L2_FHDR_ERRORS_PHY_DECODE
|
5917 L2_FHDR_ERRORS_ALIGNMENT
|
5918 L2_FHDR_ERRORS_TOO_SHORT
|
5919 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5921 goto loopback_test_done
;
5924 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5925 goto loopback_test_done
;
5928 for (i
= 14; i
< pkt_size
; i
++) {
5929 if (*(data
+ i
) != (unsigned char) (i
& 0xff)) {
5930 goto loopback_test_done
;
5941 #define BNX2_MAC_LOOPBACK_FAILED 1
5942 #define BNX2_PHY_LOOPBACK_FAILED 2
5943 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5944 BNX2_PHY_LOOPBACK_FAILED)
5947 bnx2_test_loopback(struct bnx2
*bp
)
5951 if (!netif_running(bp
->dev
))
5952 return BNX2_LOOPBACK_FAILED
;
5954 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5955 spin_lock_bh(&bp
->phy_lock
);
5956 bnx2_init_phy(bp
, 1);
5957 spin_unlock_bh(&bp
->phy_lock
);
5958 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5959 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5960 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5961 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5965 #define NVRAM_SIZE 0x200
5966 #define CRC32_RESIDUAL 0xdebb20e3
5969 bnx2_test_nvram(struct bnx2
*bp
)
5971 __be32 buf
[NVRAM_SIZE
/ 4];
5972 u8
*data
= (u8
*) buf
;
5976 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5977 goto test_nvram_done
;
5979 magic
= be32_to_cpu(buf
[0]);
5980 if (magic
!= 0x669955aa) {
5982 goto test_nvram_done
;
5985 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5986 goto test_nvram_done
;
5988 csum
= ether_crc_le(0x100, data
);
5989 if (csum
!= CRC32_RESIDUAL
) {
5991 goto test_nvram_done
;
5994 csum
= ether_crc_le(0x100, data
+ 0x100);
5995 if (csum
!= CRC32_RESIDUAL
) {
6004 bnx2_test_link(struct bnx2
*bp
)
6008 if (!netif_running(bp
->dev
))
6011 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6016 spin_lock_bh(&bp
->phy_lock
);
6017 bnx2_enable_bmsr1(bp
);
6018 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
6019 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
6020 bnx2_disable_bmsr1(bp
);
6021 spin_unlock_bh(&bp
->phy_lock
);
6023 if (bmsr
& BMSR_LSTATUS
) {
6030 bnx2_test_intr(struct bnx2
*bp
)
6035 if (!netif_running(bp
->dev
))
6038 status_idx
= BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
6040 /* This register is not touched during run-time. */
6041 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
6042 BNX2_RD(bp
, BNX2_HC_COMMAND
);
6044 for (i
= 0; i
< 10; i
++) {
6045 if ((BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
6051 msleep_interruptible(10);
6059 /* Determining link for parallel detection. */
6061 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
6063 u32 mode_ctl
, an_dbg
, exp
;
6065 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
6068 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
6069 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
6071 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
6074 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6075 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6076 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6078 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
6081 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
6082 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6083 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6085 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
6092 bnx2_5706_serdes_timer(struct bnx2
*bp
)
6096 spin_lock(&bp
->phy_lock
);
6097 if (bp
->serdes_an_pending
) {
6098 bp
->serdes_an_pending
--;
6100 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6103 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6105 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6107 if (bmcr
& BMCR_ANENABLE
) {
6108 if (bnx2_5706_serdes_has_link(bp
)) {
6109 bmcr
&= ~BMCR_ANENABLE
;
6110 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
6111 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6112 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
6116 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
6117 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
6120 bnx2_write_phy(bp
, 0x17, 0x0f01);
6121 bnx2_read_phy(bp
, 0x15, &phy2
);
6125 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6126 bmcr
|= BMCR_ANENABLE
;
6127 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6129 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
6132 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6137 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6138 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6139 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6141 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6142 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6143 bnx2_5706s_force_link_dn(bp
, 1);
6144 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6147 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6150 spin_unlock(&bp
->phy_lock
);
6154 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6156 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6159 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6160 bp
->serdes_an_pending
= 0;
6164 spin_lock(&bp
->phy_lock
);
6165 if (bp
->serdes_an_pending
)
6166 bp
->serdes_an_pending
--;
6167 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6170 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6171 if (bmcr
& BMCR_ANENABLE
) {
6172 bnx2_enable_forced_2g5(bp
);
6173 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6175 bnx2_disable_forced_2g5(bp
);
6176 bp
->serdes_an_pending
= 2;
6177 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6181 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6183 spin_unlock(&bp
->phy_lock
);
6187 bnx2_timer(struct timer_list
*t
)
6189 struct bnx2
*bp
= from_timer(bp
, t
, timer
);
6191 if (!netif_running(bp
->dev
))
6194 if (atomic_read(&bp
->intr_sem
) != 0)
6195 goto bnx2_restart_timer
;
6197 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6198 BNX2_FLAG_USING_MSI
)
6199 bnx2_chk_missed_msi(bp
);
6201 bnx2_send_heart_beat(bp
);
6203 bp
->stats_blk
->stat_FwRxDrop
=
6204 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6206 /* workaround occasional corrupted counters */
6207 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6208 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6209 BNX2_HC_COMMAND_STATS_NOW
);
6211 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6212 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
6213 bnx2_5706_serdes_timer(bp
);
6215 bnx2_5708_serdes_timer(bp
);
6219 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6223 bnx2_request_irq(struct bnx2
*bp
)
6225 unsigned long flags
;
6226 struct bnx2_irq
*irq
;
6229 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6232 flags
= IRQF_SHARED
;
6234 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6235 irq
= &bp
->irq_tbl
[i
];
6236 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6246 __bnx2_free_irq(struct bnx2
*bp
)
6248 struct bnx2_irq
*irq
;
6251 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6252 irq
= &bp
->irq_tbl
[i
];
6254 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6260 bnx2_free_irq(struct bnx2
*bp
)
6263 __bnx2_free_irq(bp
);
6264 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6265 pci_disable_msi(bp
->pdev
);
6266 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6267 pci_disable_msix(bp
->pdev
);
6269 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6273 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6276 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6277 struct net_device
*dev
= bp
->dev
;
6278 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6280 bnx2_setup_msix_tbl(bp
);
6281 BNX2_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6282 BNX2_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6283 BNX2_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6285 /* Need to flush the previous three writes to ensure MSI-X
6286 * is setup properly */
6287 BNX2_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6289 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6290 msix_ent
[i
].entry
= i
;
6291 msix_ent
[i
].vector
= 0;
6294 total_vecs
= msix_vecs
;
6298 total_vecs
= pci_enable_msix_range(bp
->pdev
, msix_ent
,
6299 BNX2_MIN_MSIX_VEC
, total_vecs
);
6303 msix_vecs
= total_vecs
;
6307 bp
->irq_nvecs
= msix_vecs
;
6308 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6309 for (i
= 0; i
< total_vecs
; i
++) {
6310 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6311 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6312 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6317 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6319 int cpus
= netif_get_num_default_rss_queues();
6322 if (!bp
->num_req_rx_rings
)
6323 msix_vecs
= max(cpus
+ 1, bp
->num_req_tx_rings
);
6324 else if (!bp
->num_req_tx_rings
)
6325 msix_vecs
= max(cpus
, bp
->num_req_rx_rings
);
6327 msix_vecs
= max(bp
->num_req_rx_rings
, bp
->num_req_tx_rings
);
6329 msix_vecs
= min(msix_vecs
, RX_MAX_RINGS
);
6331 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6332 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6334 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6336 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6337 bnx2_enable_msix(bp
, msix_vecs
);
6339 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6340 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6341 if (pci_enable_msi(bp
->pdev
) == 0) {
6342 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6343 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
6344 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6345 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6347 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6349 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6353 if (!bp
->num_req_tx_rings
)
6354 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6356 bp
->num_tx_rings
= min(bp
->irq_nvecs
, bp
->num_req_tx_rings
);
6358 if (!bp
->num_req_rx_rings
)
6359 bp
->num_rx_rings
= bp
->irq_nvecs
;
6361 bp
->num_rx_rings
= min(bp
->irq_nvecs
, bp
->num_req_rx_rings
);
6363 netif_set_real_num_tx_queues(bp
->dev
, bp
->num_tx_rings
);
6365 return netif_set_real_num_rx_queues(bp
->dev
, bp
->num_rx_rings
);
6368 /* Called with rtnl_lock */
6370 bnx2_open(struct net_device
*dev
)
6372 struct bnx2
*bp
= netdev_priv(dev
);
6375 rc
= bnx2_request_firmware(bp
);
6379 netif_carrier_off(dev
);
6381 bnx2_disable_int(bp
);
6383 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
6387 bnx2_napi_enable(bp
);
6388 rc
= bnx2_alloc_mem(bp
);
6392 rc
= bnx2_request_irq(bp
);
6396 rc
= bnx2_init_nic(bp
, 1);
6400 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6402 atomic_set(&bp
->intr_sem
, 0);
6404 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6406 bnx2_enable_int(bp
);
6408 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6409 /* Test MSI to make sure it is working
6410 * If MSI test fails, go back to INTx mode
6412 if (bnx2_test_intr(bp
) != 0) {
6413 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6415 bnx2_disable_int(bp
);
6418 bnx2_setup_int_mode(bp
, 1);
6420 rc
= bnx2_init_nic(bp
, 0);
6423 rc
= bnx2_request_irq(bp
);
6426 del_timer_sync(&bp
->timer
);
6429 bnx2_enable_int(bp
);
6432 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6433 netdev_info(dev
, "using MSI\n");
6434 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6435 netdev_info(dev
, "using MSIX\n");
6437 netif_tx_start_all_queues(dev
);
6442 bnx2_napi_disable(bp
);
6447 bnx2_release_firmware(bp
);
6452 bnx2_reset_task(struct work_struct
*work
)
6454 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6459 if (!netif_running(bp
->dev
)) {
6464 bnx2_netif_stop(bp
, true);
6466 pci_read_config_word(bp
->pdev
, PCI_COMMAND
, &pcicmd
);
6467 if (!(pcicmd
& PCI_COMMAND_MEMORY
)) {
6468 /* in case PCI block has reset */
6469 pci_restore_state(bp
->pdev
);
6470 pci_save_state(bp
->pdev
);
6472 rc
= bnx2_init_nic(bp
, 1);
6474 netdev_err(bp
->dev
, "failed to reset NIC, closing\n");
6475 bnx2_napi_enable(bp
);
6481 atomic_set(&bp
->intr_sem
, 1);
6482 bnx2_netif_start(bp
, true);
6486 #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
6489 bnx2_dump_ftq(struct bnx2
*bp
)
6492 u32 reg
, bdidx
, cid
, valid
;
6493 struct net_device
*dev
= bp
->dev
;
6494 static const struct ftq_reg
{
6498 BNX2_FTQ_ENTRY(RV2P_P
),
6499 BNX2_FTQ_ENTRY(RV2P_T
),
6500 BNX2_FTQ_ENTRY(RV2P_M
),
6501 BNX2_FTQ_ENTRY(TBDR_
),
6502 BNX2_FTQ_ENTRY(TDMA_
),
6503 BNX2_FTQ_ENTRY(TXP_
),
6504 BNX2_FTQ_ENTRY(TXP_
),
6505 BNX2_FTQ_ENTRY(TPAT_
),
6506 BNX2_FTQ_ENTRY(RXP_C
),
6507 BNX2_FTQ_ENTRY(RXP_
),
6508 BNX2_FTQ_ENTRY(COM_COMXQ_
),
6509 BNX2_FTQ_ENTRY(COM_COMTQ_
),
6510 BNX2_FTQ_ENTRY(COM_COMQ_
),
6511 BNX2_FTQ_ENTRY(CP_CPQ_
),
6514 netdev_err(dev
, "<--- start FTQ dump --->\n");
6515 for (i
= 0; i
< ARRAY_SIZE(ftq_arr
); i
++)
6516 netdev_err(dev
, "%s %08x\n", ftq_arr
[i
].name
,
6517 bnx2_reg_rd_ind(bp
, ftq_arr
[i
].off
));
6519 netdev_err(dev
, "CPU states:\n");
6520 for (reg
= BNX2_TXP_CPU_MODE
; reg
<= BNX2_CP_CPU_MODE
; reg
+= 0x40000)
6521 netdev_err(dev
, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
6522 reg
, bnx2_reg_rd_ind(bp
, reg
),
6523 bnx2_reg_rd_ind(bp
, reg
+ 4),
6524 bnx2_reg_rd_ind(bp
, reg
+ 8),
6525 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6526 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6527 bnx2_reg_rd_ind(bp
, reg
+ 0x20));
6529 netdev_err(dev
, "<--- end FTQ dump --->\n");
6530 netdev_err(dev
, "<--- start TBDC dump --->\n");
6531 netdev_err(dev
, "TBDC free cnt: %ld\n",
6532 BNX2_RD(bp
, BNX2_TBDC_STATUS
) & BNX2_TBDC_STATUS_FREE_CNT
);
6533 netdev_err(dev
, "LINE CID BIDX CMD VALIDS\n");
6534 for (i
= 0; i
< 0x20; i
++) {
6537 BNX2_WR(bp
, BNX2_TBDC_BD_ADDR
, i
);
6538 BNX2_WR(bp
, BNX2_TBDC_CAM_OPCODE
,
6539 BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ
);
6540 BNX2_WR(bp
, BNX2_TBDC_COMMAND
, BNX2_TBDC_COMMAND_CMD_REG_ARB
);
6541 while ((BNX2_RD(bp
, BNX2_TBDC_COMMAND
) &
6542 BNX2_TBDC_COMMAND_CMD_REG_ARB
) && j
< 100)
6545 cid
= BNX2_RD(bp
, BNX2_TBDC_CID
);
6546 bdidx
= BNX2_RD(bp
, BNX2_TBDC_BIDX
);
6547 valid
= BNX2_RD(bp
, BNX2_TBDC_CAM_OPCODE
);
6548 netdev_err(dev
, "%02x %06x %04lx %02x [%x]\n",
6549 i
, cid
, bdidx
& BNX2_TBDC_BDIDX_BDIDX
,
6550 bdidx
>> 24, (valid
>> 8) & 0x0ff);
6552 netdev_err(dev
, "<--- end TBDC dump --->\n");
6556 bnx2_dump_state(struct bnx2
*bp
)
6558 struct net_device
*dev
= bp
->dev
;
6561 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6562 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6563 atomic_read(&bp
->intr_sem
), val1
);
6564 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6565 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6566 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6567 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6568 BNX2_RD(bp
, BNX2_EMAC_TX_STATUS
),
6569 BNX2_RD(bp
, BNX2_EMAC_RX_STATUS
));
6570 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6571 BNX2_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6572 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6573 BNX2_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6574 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6575 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6576 BNX2_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6580 bnx2_tx_timeout(struct net_device
*dev
)
6582 struct bnx2
*bp
= netdev_priv(dev
);
6585 bnx2_dump_state(bp
);
6586 bnx2_dump_mcp_state(bp
);
6588 /* This allows the netif to be shutdown gracefully before resetting */
6589 schedule_work(&bp
->reset_task
);
6592 /* Called with netif_tx_lock.
6593 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6594 * netif_wake_queue().
6597 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6599 struct bnx2
*bp
= netdev_priv(dev
);
6601 struct bnx2_tx_bd
*txbd
;
6602 struct bnx2_sw_tx_bd
*tx_buf
;
6603 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6604 u16 prod
, ring_prod
;
6606 struct bnx2_napi
*bnapi
;
6607 struct bnx2_tx_ring_info
*txr
;
6608 struct netdev_queue
*txq
;
6610 /* Determine which tx ring we will be placed on */
6611 i
= skb_get_queue_mapping(skb
);
6612 bnapi
= &bp
->bnx2_napi
[i
];
6613 txr
= &bnapi
->tx_ring
;
6614 txq
= netdev_get_tx_queue(dev
, i
);
6616 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6617 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6618 netif_tx_stop_queue(txq
);
6619 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6621 return NETDEV_TX_BUSY
;
6623 len
= skb_headlen(skb
);
6624 prod
= txr
->tx_prod
;
6625 ring_prod
= BNX2_TX_RING_IDX(prod
);
6628 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6629 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6632 if (skb_vlan_tag_present(skb
)) {
6634 (TX_BD_FLAGS_VLAN_TAG
| (skb_vlan_tag_get(skb
) << 16));
6637 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6641 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6643 tcp_opt_len
= tcp_optlen(skb
);
6645 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6646 u32 tcp_off
= skb_transport_offset(skb
) -
6647 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6649 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6650 TX_BD_FLAGS_SW_FLAGS
;
6651 if (likely(tcp_off
== 0))
6652 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6655 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6656 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6657 ((tcp_off
& 0x10) <<
6658 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6659 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6663 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6664 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6665 (tcp_opt_len
>> 2)) << 8;
6671 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6672 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6673 dev_kfree_skb_any(skb
);
6674 return NETDEV_TX_OK
;
6677 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6679 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6681 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6683 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6684 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6685 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6686 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6688 last_frag
= skb_shinfo(skb
)->nr_frags
;
6689 tx_buf
->nr_frags
= last_frag
;
6690 tx_buf
->is_gso
= skb_is_gso(skb
);
6692 for (i
= 0; i
< last_frag
; i
++) {
6693 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6695 prod
= BNX2_NEXT_TX_BD(prod
);
6696 ring_prod
= BNX2_TX_RING_IDX(prod
);
6697 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6699 len
= skb_frag_size(frag
);
6700 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0, len
,
6702 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6704 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6707 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6708 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6709 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6710 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6713 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6715 /* Sync BD data before updating TX mailbox */
6718 netdev_tx_sent_queue(txq
, skb
->len
);
6720 prod
= BNX2_NEXT_TX_BD(prod
);
6721 txr
->tx_prod_bseq
+= skb
->len
;
6723 BNX2_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6724 BNX2_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6728 txr
->tx_prod
= prod
;
6730 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6731 netif_tx_stop_queue(txq
);
6733 /* netif_tx_stop_queue() must be done before checking
6734 * tx index in bnx2_tx_avail() below, because in
6735 * bnx2_tx_int(), we update tx index before checking for
6736 * netif_tx_queue_stopped().
6739 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6740 netif_tx_wake_queue(txq
);
6743 return NETDEV_TX_OK
;
6745 /* save value of frag that failed */
6748 /* start back at beginning and unmap skb */
6749 prod
= txr
->tx_prod
;
6750 ring_prod
= BNX2_TX_RING_IDX(prod
);
6751 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6753 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6754 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6756 /* unmap remaining mapped pages */
6757 for (i
= 0; i
< last_frag
; i
++) {
6758 prod
= BNX2_NEXT_TX_BD(prod
);
6759 ring_prod
= BNX2_TX_RING_IDX(prod
);
6760 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6761 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6762 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
6766 dev_kfree_skb_any(skb
);
6767 return NETDEV_TX_OK
;
6770 /* Called with rtnl_lock */
6772 bnx2_close(struct net_device
*dev
)
6774 struct bnx2
*bp
= netdev_priv(dev
);
6776 bnx2_disable_int_sync(bp
);
6777 bnx2_napi_disable(bp
);
6778 netif_tx_disable(dev
);
6779 del_timer_sync(&bp
->timer
);
6780 bnx2_shutdown_chip(bp
);
6786 netif_carrier_off(bp
->dev
);
6791 bnx2_save_stats(struct bnx2
*bp
)
6793 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6794 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6797 /* The 1st 10 counters are 64-bit counters */
6798 for (i
= 0; i
< 20; i
+= 2) {
6802 hi
= temp_stats
[i
] + hw_stats
[i
];
6803 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6804 if (lo
> 0xffffffff)
6807 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6810 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6811 temp_stats
[i
] += hw_stats
[i
];
6814 #define GET_64BIT_NET_STATS64(ctr) \
6815 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6817 #define GET_64BIT_NET_STATS(ctr) \
6818 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6819 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6821 #define GET_32BIT_NET_STATS(ctr) \
6822 (unsigned long) (bp->stats_blk->ctr + \
6823 bp->temp_stats_blk->ctr)
6826 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6828 struct bnx2
*bp
= netdev_priv(dev
);
6833 net_stats
->rx_packets
=
6834 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6835 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6836 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6838 net_stats
->tx_packets
=
6839 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6840 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6841 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6843 net_stats
->rx_bytes
=
6844 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6846 net_stats
->tx_bytes
=
6847 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6849 net_stats
->multicast
=
6850 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6852 net_stats
->collisions
=
6853 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6855 net_stats
->rx_length_errors
=
6856 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6857 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6859 net_stats
->rx_over_errors
=
6860 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6861 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6863 net_stats
->rx_frame_errors
=
6864 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6866 net_stats
->rx_crc_errors
=
6867 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6869 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6870 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6871 net_stats
->rx_crc_errors
;
6873 net_stats
->tx_aborted_errors
=
6874 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6875 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6877 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) ||
6878 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
))
6879 net_stats
->tx_carrier_errors
= 0;
6881 net_stats
->tx_carrier_errors
=
6882 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6885 net_stats
->tx_errors
=
6886 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6887 net_stats
->tx_aborted_errors
+
6888 net_stats
->tx_carrier_errors
;
6890 net_stats
->rx_missed_errors
=
6891 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6892 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6893 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6897 /* All ethtool functions called with rtnl_lock */
6900 bnx2_get_link_ksettings(struct net_device
*dev
,
6901 struct ethtool_link_ksettings
*cmd
)
6903 struct bnx2
*bp
= netdev_priv(dev
);
6904 int support_serdes
= 0, support_copper
= 0;
6905 u32 supported
, advertising
;
6907 supported
= SUPPORTED_Autoneg
;
6908 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6911 } else if (bp
->phy_port
== PORT_FIBRE
)
6916 if (support_serdes
) {
6917 supported
|= SUPPORTED_1000baseT_Full
|
6919 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6920 supported
|= SUPPORTED_2500baseX_Full
;
6922 if (support_copper
) {
6923 supported
|= SUPPORTED_10baseT_Half
|
6924 SUPPORTED_10baseT_Full
|
6925 SUPPORTED_100baseT_Half
|
6926 SUPPORTED_100baseT_Full
|
6927 SUPPORTED_1000baseT_Full
|
6931 spin_lock_bh(&bp
->phy_lock
);
6932 cmd
->base
.port
= bp
->phy_port
;
6933 advertising
= bp
->advertising
;
6935 if (bp
->autoneg
& AUTONEG_SPEED
) {
6936 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
6938 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
6941 if (netif_carrier_ok(dev
)) {
6942 cmd
->base
.speed
= bp
->line_speed
;
6943 cmd
->base
.duplex
= bp
->duplex
;
6944 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
)) {
6945 if (bp
->phy_flags
& BNX2_PHY_FLAG_MDIX
)
6946 cmd
->base
.eth_tp_mdix
= ETH_TP_MDI_X
;
6948 cmd
->base
.eth_tp_mdix
= ETH_TP_MDI
;
6952 cmd
->base
.speed
= SPEED_UNKNOWN
;
6953 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
6955 spin_unlock_bh(&bp
->phy_lock
);
6957 cmd
->base
.phy_address
= bp
->phy_addr
;
6959 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
6961 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
6968 bnx2_set_link_ksettings(struct net_device
*dev
,
6969 const struct ethtool_link_ksettings
*cmd
)
6971 struct bnx2
*bp
= netdev_priv(dev
);
6972 u8 autoneg
= bp
->autoneg
;
6973 u8 req_duplex
= bp
->req_duplex
;
6974 u16 req_line_speed
= bp
->req_line_speed
;
6975 u32 advertising
= bp
->advertising
;
6978 spin_lock_bh(&bp
->phy_lock
);
6980 if (cmd
->base
.port
!= PORT_TP
&& cmd
->base
.port
!= PORT_FIBRE
)
6981 goto err_out_unlock
;
6983 if (cmd
->base
.port
!= bp
->phy_port
&&
6984 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6985 goto err_out_unlock
;
6987 /* If device is down, we can store the settings only if the user
6988 * is setting the currently active port.
6990 if (!netif_running(dev
) && cmd
->base
.port
!= bp
->phy_port
)
6991 goto err_out_unlock
;
6993 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
6994 autoneg
|= AUTONEG_SPEED
;
6996 ethtool_convert_link_mode_to_legacy_u32(
6997 &advertising
, cmd
->link_modes
.advertising
);
6999 if (cmd
->base
.port
== PORT_TP
) {
7000 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
7002 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
7004 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
7006 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
7008 advertising
|= ADVERTISED_Autoneg
;
7011 u32 speed
= cmd
->base
.speed
;
7013 if (cmd
->base
.port
== PORT_FIBRE
) {
7014 if ((speed
!= SPEED_1000
&&
7015 speed
!= SPEED_2500
) ||
7016 (cmd
->base
.duplex
!= DUPLEX_FULL
))
7017 goto err_out_unlock
;
7019 if (speed
== SPEED_2500
&&
7020 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
7021 goto err_out_unlock
;
7022 } else if (speed
== SPEED_1000
|| speed
== SPEED_2500
)
7023 goto err_out_unlock
;
7025 autoneg
&= ~AUTONEG_SPEED
;
7026 req_line_speed
= speed
;
7027 req_duplex
= cmd
->base
.duplex
;
7031 bp
->autoneg
= autoneg
;
7032 bp
->advertising
= advertising
;
7033 bp
->req_line_speed
= req_line_speed
;
7034 bp
->req_duplex
= req_duplex
;
7037 /* If device is down, the new settings will be picked up when it is
7040 if (netif_running(dev
))
7041 err
= bnx2_setup_phy(bp
, cmd
->base
.port
);
7044 spin_unlock_bh(&bp
->phy_lock
);
7050 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
7052 struct bnx2
*bp
= netdev_priv(dev
);
7054 strlcpy(info
->driver
, DRV_MODULE_NAME
, sizeof(info
->driver
));
7055 strlcpy(info
->version
, DRV_MODULE_VERSION
, sizeof(info
->version
));
7056 strlcpy(info
->bus_info
, pci_name(bp
->pdev
), sizeof(info
->bus_info
));
7057 strlcpy(info
->fw_version
, bp
->fw_version
, sizeof(info
->fw_version
));
7060 #define BNX2_REGDUMP_LEN (32 * 1024)
7063 bnx2_get_regs_len(struct net_device
*dev
)
7065 return BNX2_REGDUMP_LEN
;
7069 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
7071 u32
*p
= _p
, i
, offset
;
7073 struct bnx2
*bp
= netdev_priv(dev
);
7074 static const u32 reg_boundaries
[] = {
7075 0x0000, 0x0098, 0x0400, 0x045c,
7076 0x0800, 0x0880, 0x0c00, 0x0c10,
7077 0x0c30, 0x0d08, 0x1000, 0x101c,
7078 0x1040, 0x1048, 0x1080, 0x10a4,
7079 0x1400, 0x1490, 0x1498, 0x14f0,
7080 0x1500, 0x155c, 0x1580, 0x15dc,
7081 0x1600, 0x1658, 0x1680, 0x16d8,
7082 0x1800, 0x1820, 0x1840, 0x1854,
7083 0x1880, 0x1894, 0x1900, 0x1984,
7084 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
7085 0x1c80, 0x1c94, 0x1d00, 0x1d84,
7086 0x2000, 0x2030, 0x23c0, 0x2400,
7087 0x2800, 0x2820, 0x2830, 0x2850,
7088 0x2b40, 0x2c10, 0x2fc0, 0x3058,
7089 0x3c00, 0x3c94, 0x4000, 0x4010,
7090 0x4080, 0x4090, 0x43c0, 0x4458,
7091 0x4c00, 0x4c18, 0x4c40, 0x4c54,
7092 0x4fc0, 0x5010, 0x53c0, 0x5444,
7093 0x5c00, 0x5c18, 0x5c80, 0x5c90,
7094 0x5fc0, 0x6000, 0x6400, 0x6428,
7095 0x6800, 0x6848, 0x684c, 0x6860,
7096 0x6888, 0x6910, 0x8000
7101 memset(p
, 0, BNX2_REGDUMP_LEN
);
7103 if (!netif_running(bp
->dev
))
7107 offset
= reg_boundaries
[0];
7109 while (offset
< BNX2_REGDUMP_LEN
) {
7110 *p
++ = BNX2_RD(bp
, offset
);
7112 if (offset
== reg_boundaries
[i
+ 1]) {
7113 offset
= reg_boundaries
[i
+ 2];
7114 p
= (u32
*) (orig_p
+ offset
);
7121 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7123 struct bnx2
*bp
= netdev_priv(dev
);
7125 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
7130 wol
->supported
= WAKE_MAGIC
;
7132 wol
->wolopts
= WAKE_MAGIC
;
7136 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
7140 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7142 struct bnx2
*bp
= netdev_priv(dev
);
7144 if (wol
->wolopts
& ~WAKE_MAGIC
)
7147 if (wol
->wolopts
& WAKE_MAGIC
) {
7148 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
7157 device_set_wakeup_enable(&bp
->pdev
->dev
, bp
->wol
);
7163 bnx2_nway_reset(struct net_device
*dev
)
7165 struct bnx2
*bp
= netdev_priv(dev
);
7168 if (!netif_running(dev
))
7171 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
7175 spin_lock_bh(&bp
->phy_lock
);
7177 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
7180 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
7181 spin_unlock_bh(&bp
->phy_lock
);
7185 /* Force a link down visible on the other side */
7186 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7187 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
7188 spin_unlock_bh(&bp
->phy_lock
);
7192 spin_lock_bh(&bp
->phy_lock
);
7194 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
7195 bp
->serdes_an_pending
= 1;
7196 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
7199 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
7200 bmcr
&= ~BMCR_LOOPBACK
;
7201 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
7203 spin_unlock_bh(&bp
->phy_lock
);
7209 bnx2_get_link(struct net_device
*dev
)
7211 struct bnx2
*bp
= netdev_priv(dev
);
7217 bnx2_get_eeprom_len(struct net_device
*dev
)
7219 struct bnx2
*bp
= netdev_priv(dev
);
7221 if (!bp
->flash_info
)
7224 return (int) bp
->flash_size
;
7228 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7231 struct bnx2
*bp
= netdev_priv(dev
);
7234 /* parameters already validated in ethtool_get_eeprom */
7236 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7242 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7245 struct bnx2
*bp
= netdev_priv(dev
);
7248 /* parameters already validated in ethtool_set_eeprom */
7250 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7256 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7258 struct bnx2
*bp
= netdev_priv(dev
);
7260 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7262 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7263 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7264 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7265 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7267 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7268 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7269 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7270 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7272 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7278 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7280 struct bnx2
*bp
= netdev_priv(dev
);
7282 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7283 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7285 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7286 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7288 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7289 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7291 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7292 if (bp
->rx_quick_cons_trip_int
> 0xff)
7293 bp
->rx_quick_cons_trip_int
= 0xff;
7295 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7296 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7298 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7299 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7301 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7302 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7304 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7305 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7308 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7309 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7310 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7311 bp
->stats_ticks
= USEC_PER_SEC
;
7313 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7314 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7315 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7317 if (netif_running(bp
->dev
)) {
7318 bnx2_netif_stop(bp
, true);
7319 bnx2_init_nic(bp
, 0);
7320 bnx2_netif_start(bp
, true);
7327 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7329 struct bnx2
*bp
= netdev_priv(dev
);
7331 ering
->rx_max_pending
= BNX2_MAX_TOTAL_RX_DESC_CNT
;
7332 ering
->rx_jumbo_max_pending
= BNX2_MAX_TOTAL_RX_PG_DESC_CNT
;
7334 ering
->rx_pending
= bp
->rx_ring_size
;
7335 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7337 ering
->tx_max_pending
= BNX2_MAX_TX_DESC_CNT
;
7338 ering
->tx_pending
= bp
->tx_ring_size
;
7342 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
, bool reset_irq
)
7344 if (netif_running(bp
->dev
)) {
7345 /* Reset will erase chipset stats; save them */
7346 bnx2_save_stats(bp
);
7348 bnx2_netif_stop(bp
, true);
7349 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7354 __bnx2_free_irq(bp
);
7360 bnx2_set_rx_ring_size(bp
, rx
);
7361 bp
->tx_ring_size
= tx
;
7363 if (netif_running(bp
->dev
)) {
7367 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
7372 rc
= bnx2_alloc_mem(bp
);
7375 rc
= bnx2_request_irq(bp
);
7378 rc
= bnx2_init_nic(bp
, 0);
7381 bnx2_napi_enable(bp
);
7386 mutex_lock(&bp
->cnic_lock
);
7387 /* Let cnic know about the new status block. */
7388 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7389 bnx2_setup_cnic_irq_info(bp
);
7390 mutex_unlock(&bp
->cnic_lock
);
7392 bnx2_netif_start(bp
, true);
7398 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7400 struct bnx2
*bp
= netdev_priv(dev
);
7403 if ((ering
->rx_pending
> BNX2_MAX_TOTAL_RX_DESC_CNT
) ||
7404 (ering
->tx_pending
> BNX2_MAX_TX_DESC_CNT
) ||
7405 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7409 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
,
7415 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7417 struct bnx2
*bp
= netdev_priv(dev
);
7419 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7420 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7421 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7425 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7427 struct bnx2
*bp
= netdev_priv(dev
);
7429 bp
->req_flow_ctrl
= 0;
7430 if (epause
->rx_pause
)
7431 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7432 if (epause
->tx_pause
)
7433 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7435 if (epause
->autoneg
) {
7436 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7439 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7442 if (netif_running(dev
)) {
7443 spin_lock_bh(&bp
->phy_lock
);
7444 bnx2_setup_phy(bp
, bp
->phy_port
);
7445 spin_unlock_bh(&bp
->phy_lock
);
7452 char string
[ETH_GSTRING_LEN
];
7453 } bnx2_stats_str_arr
[] = {
7455 { "rx_error_bytes" },
7457 { "tx_error_bytes" },
7458 { "rx_ucast_packets" },
7459 { "rx_mcast_packets" },
7460 { "rx_bcast_packets" },
7461 { "tx_ucast_packets" },
7462 { "tx_mcast_packets" },
7463 { "tx_bcast_packets" },
7464 { "tx_mac_errors" },
7465 { "tx_carrier_errors" },
7466 { "rx_crc_errors" },
7467 { "rx_align_errors" },
7468 { "tx_single_collisions" },
7469 { "tx_multi_collisions" },
7471 { "tx_excess_collisions" },
7472 { "tx_late_collisions" },
7473 { "tx_total_collisions" },
7476 { "rx_undersize_packets" },
7477 { "rx_oversize_packets" },
7478 { "rx_64_byte_packets" },
7479 { "rx_65_to_127_byte_packets" },
7480 { "rx_128_to_255_byte_packets" },
7481 { "rx_256_to_511_byte_packets" },
7482 { "rx_512_to_1023_byte_packets" },
7483 { "rx_1024_to_1522_byte_packets" },
7484 { "rx_1523_to_9022_byte_packets" },
7485 { "tx_64_byte_packets" },
7486 { "tx_65_to_127_byte_packets" },
7487 { "tx_128_to_255_byte_packets" },
7488 { "tx_256_to_511_byte_packets" },
7489 { "tx_512_to_1023_byte_packets" },
7490 { "tx_1024_to_1522_byte_packets" },
7491 { "tx_1523_to_9022_byte_packets" },
7492 { "rx_xon_frames" },
7493 { "rx_xoff_frames" },
7494 { "tx_xon_frames" },
7495 { "tx_xoff_frames" },
7496 { "rx_mac_ctrl_frames" },
7497 { "rx_filtered_packets" },
7498 { "rx_ftq_discards" },
7500 { "rx_fw_discards" },
7503 #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
7505 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7507 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7508 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7509 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7510 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7511 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7512 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7513 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7514 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7515 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7516 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7517 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7518 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7519 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7520 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7521 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7522 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7523 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7524 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7525 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7526 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7527 STATS_OFFSET32(stat_EtherStatsCollisions
),
7528 STATS_OFFSET32(stat_EtherStatsFragments
),
7529 STATS_OFFSET32(stat_EtherStatsJabbers
),
7530 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7531 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7532 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7533 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7534 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7535 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7536 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7537 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7538 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7539 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7540 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7541 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7542 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7543 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7544 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7545 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7546 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7547 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7548 STATS_OFFSET32(stat_OutXonSent
),
7549 STATS_OFFSET32(stat_OutXoffSent
),
7550 STATS_OFFSET32(stat_MacControlFramesReceived
),
7551 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7552 STATS_OFFSET32(stat_IfInFTQDiscards
),
7553 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7554 STATS_OFFSET32(stat_FwRxDrop
),
7557 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7558 * skipped because of errata.
7560 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7561 8,0,8,8,8,8,8,8,8,8,
7562 4,0,4,4,4,4,4,4,4,4,
7563 4,4,4,4,4,4,4,4,4,4,
7564 4,4,4,4,4,4,4,4,4,4,
7568 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7569 8,0,8,8,8,8,8,8,8,8,
7570 4,4,4,4,4,4,4,4,4,4,
7571 4,4,4,4,4,4,4,4,4,4,
7572 4,4,4,4,4,4,4,4,4,4,
7576 #define BNX2_NUM_TESTS 6
7579 char string
[ETH_GSTRING_LEN
];
7580 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7581 { "register_test (offline)" },
7582 { "memory_test (offline)" },
7583 { "loopback_test (offline)" },
7584 { "nvram_test (online)" },
7585 { "interrupt_test (online)" },
7586 { "link_test (online)" },
7590 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7594 return BNX2_NUM_TESTS
;
7596 return BNX2_NUM_STATS
;
7603 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7605 struct bnx2
*bp
= netdev_priv(dev
);
7607 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7608 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7611 bnx2_netif_stop(bp
, true);
7612 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7615 if (bnx2_test_registers(bp
) != 0) {
7617 etest
->flags
|= ETH_TEST_FL_FAILED
;
7619 if (bnx2_test_memory(bp
) != 0) {
7621 etest
->flags
|= ETH_TEST_FL_FAILED
;
7623 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7624 etest
->flags
|= ETH_TEST_FL_FAILED
;
7626 if (!netif_running(bp
->dev
))
7627 bnx2_shutdown_chip(bp
);
7629 bnx2_init_nic(bp
, 1);
7630 bnx2_netif_start(bp
, true);
7633 /* wait for link up */
7634 for (i
= 0; i
< 7; i
++) {
7637 msleep_interruptible(1000);
7641 if (bnx2_test_nvram(bp
) != 0) {
7643 etest
->flags
|= ETH_TEST_FL_FAILED
;
7645 if (bnx2_test_intr(bp
) != 0) {
7647 etest
->flags
|= ETH_TEST_FL_FAILED
;
7650 if (bnx2_test_link(bp
) != 0) {
7652 etest
->flags
|= ETH_TEST_FL_FAILED
;
7658 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7660 switch (stringset
) {
7662 memcpy(buf
, bnx2_stats_str_arr
,
7663 sizeof(bnx2_stats_str_arr
));
7666 memcpy(buf
, bnx2_tests_str_arr
,
7667 sizeof(bnx2_tests_str_arr
));
7673 bnx2_get_ethtool_stats(struct net_device
*dev
,
7674 struct ethtool_stats
*stats
, u64
*buf
)
7676 struct bnx2
*bp
= netdev_priv(dev
);
7678 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7679 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7680 u8
*stats_len_arr
= NULL
;
7683 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7687 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
7688 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
) ||
7689 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A2
) ||
7690 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
))
7691 stats_len_arr
= bnx2_5706_stats_len_arr
;
7693 stats_len_arr
= bnx2_5708_stats_len_arr
;
7695 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7696 unsigned long offset
;
7698 if (stats_len_arr
[i
] == 0) {
7699 /* skip this counter */
7704 offset
= bnx2_stats_offset_arr
[i
];
7705 if (stats_len_arr
[i
] == 4) {
7706 /* 4-byte counter */
7707 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7708 *(temp_stats
+ offset
);
7711 /* 8-byte counter */
7712 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7713 *(hw_stats
+ offset
+ 1) +
7714 (((u64
) *(temp_stats
+ offset
)) << 32) +
7715 *(temp_stats
+ offset
+ 1);
7720 bnx2_set_phys_id(struct net_device
*dev
, enum ethtool_phys_id_state state
)
7722 struct bnx2
*bp
= netdev_priv(dev
);
7725 case ETHTOOL_ID_ACTIVE
:
7726 bp
->leds_save
= BNX2_RD(bp
, BNX2_MISC_CFG
);
7727 BNX2_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7728 return 1; /* cycle on/off once per second */
7731 BNX2_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7732 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7733 BNX2_EMAC_LED_100MB_OVERRIDE
|
7734 BNX2_EMAC_LED_10MB_OVERRIDE
|
7735 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7736 BNX2_EMAC_LED_TRAFFIC
);
7739 case ETHTOOL_ID_OFF
:
7740 BNX2_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7743 case ETHTOOL_ID_INACTIVE
:
7744 BNX2_WR(bp
, BNX2_EMAC_LED
, 0);
7745 BNX2_WR(bp
, BNX2_MISC_CFG
, bp
->leds_save
);
7753 bnx2_set_features(struct net_device
*dev
, netdev_features_t features
)
7755 struct bnx2
*bp
= netdev_priv(dev
);
7757 /* TSO with VLAN tag won't work with current firmware */
7758 if (features
& NETIF_F_HW_VLAN_CTAG_TX
)
7759 dev
->vlan_features
|= (dev
->hw_features
& NETIF_F_ALL_TSO
);
7761 dev
->vlan_features
&= ~NETIF_F_ALL_TSO
;
7763 if ((!!(features
& NETIF_F_HW_VLAN_CTAG_RX
) !=
7764 !!(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) &&
7765 netif_running(dev
)) {
7766 bnx2_netif_stop(bp
, false);
7767 dev
->features
= features
;
7768 bnx2_set_rx_mode(dev
);
7769 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
7770 bnx2_netif_start(bp
, false);
7777 static void bnx2_get_channels(struct net_device
*dev
,
7778 struct ethtool_channels
*channels
)
7780 struct bnx2
*bp
= netdev_priv(dev
);
7781 u32 max_rx_rings
= 1;
7782 u32 max_tx_rings
= 1;
7784 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7785 max_rx_rings
= RX_MAX_RINGS
;
7786 max_tx_rings
= TX_MAX_RINGS
;
7789 channels
->max_rx
= max_rx_rings
;
7790 channels
->max_tx
= max_tx_rings
;
7791 channels
->max_other
= 0;
7792 channels
->max_combined
= 0;
7793 channels
->rx_count
= bp
->num_rx_rings
;
7794 channels
->tx_count
= bp
->num_tx_rings
;
7795 channels
->other_count
= 0;
7796 channels
->combined_count
= 0;
7799 static int bnx2_set_channels(struct net_device
*dev
,
7800 struct ethtool_channels
*channels
)
7802 struct bnx2
*bp
= netdev_priv(dev
);
7803 u32 max_rx_rings
= 1;
7804 u32 max_tx_rings
= 1;
7807 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7808 max_rx_rings
= RX_MAX_RINGS
;
7809 max_tx_rings
= TX_MAX_RINGS
;
7811 if (channels
->rx_count
> max_rx_rings
||
7812 channels
->tx_count
> max_tx_rings
)
7815 bp
->num_req_rx_rings
= channels
->rx_count
;
7816 bp
->num_req_tx_rings
= channels
->tx_count
;
7818 if (netif_running(dev
))
7819 rc
= bnx2_change_ring_size(bp
, bp
->rx_ring_size
,
7820 bp
->tx_ring_size
, true);
7825 static const struct ethtool_ops bnx2_ethtool_ops
= {
7826 .get_drvinfo
= bnx2_get_drvinfo
,
7827 .get_regs_len
= bnx2_get_regs_len
,
7828 .get_regs
= bnx2_get_regs
,
7829 .get_wol
= bnx2_get_wol
,
7830 .set_wol
= bnx2_set_wol
,
7831 .nway_reset
= bnx2_nway_reset
,
7832 .get_link
= bnx2_get_link
,
7833 .get_eeprom_len
= bnx2_get_eeprom_len
,
7834 .get_eeprom
= bnx2_get_eeprom
,
7835 .set_eeprom
= bnx2_set_eeprom
,
7836 .get_coalesce
= bnx2_get_coalesce
,
7837 .set_coalesce
= bnx2_set_coalesce
,
7838 .get_ringparam
= bnx2_get_ringparam
,
7839 .set_ringparam
= bnx2_set_ringparam
,
7840 .get_pauseparam
= bnx2_get_pauseparam
,
7841 .set_pauseparam
= bnx2_set_pauseparam
,
7842 .self_test
= bnx2_self_test
,
7843 .get_strings
= bnx2_get_strings
,
7844 .set_phys_id
= bnx2_set_phys_id
,
7845 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7846 .get_sset_count
= bnx2_get_sset_count
,
7847 .get_channels
= bnx2_get_channels
,
7848 .set_channels
= bnx2_set_channels
,
7849 .get_link_ksettings
= bnx2_get_link_ksettings
,
7850 .set_link_ksettings
= bnx2_set_link_ksettings
,
7853 /* Called with rtnl_lock */
7855 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7857 struct mii_ioctl_data
*data
= if_mii(ifr
);
7858 struct bnx2
*bp
= netdev_priv(dev
);
7863 data
->phy_id
= bp
->phy_addr
;
7869 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7872 if (!netif_running(dev
))
7875 spin_lock_bh(&bp
->phy_lock
);
7876 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7877 spin_unlock_bh(&bp
->phy_lock
);
7879 data
->val_out
= mii_regval
;
7885 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7888 if (!netif_running(dev
))
7891 spin_lock_bh(&bp
->phy_lock
);
7892 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7893 spin_unlock_bh(&bp
->phy_lock
);
7904 /* Called with rtnl_lock */
7906 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7908 struct sockaddr
*addr
= p
;
7909 struct bnx2
*bp
= netdev_priv(dev
);
7911 if (!is_valid_ether_addr(addr
->sa_data
))
7912 return -EADDRNOTAVAIL
;
7914 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7915 if (netif_running(dev
))
7916 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7921 /* Called with rtnl_lock */
7923 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7925 struct bnx2
*bp
= netdev_priv(dev
);
7928 return bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
,
7932 #ifdef CONFIG_NET_POLL_CONTROLLER
7934 poll_bnx2(struct net_device
*dev
)
7936 struct bnx2
*bp
= netdev_priv(dev
);
7939 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7940 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7942 disable_irq(irq
->vector
);
7943 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7944 enable_irq(irq
->vector
);
7950 bnx2_get_5709_media(struct bnx2
*bp
)
7952 u32 val
= BNX2_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7953 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7956 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7958 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7959 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7963 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7964 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7966 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7968 if (bp
->func
== 0) {
7973 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7981 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7988 bnx2_get_pci_speed(struct bnx2
*bp
)
7992 reg
= BNX2_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7993 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7996 bp
->flags
|= BNX2_FLAG_PCIX
;
7998 clkreg
= BNX2_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
8000 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
8002 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
8003 bp
->bus_speed_mhz
= 133;
8006 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
8007 bp
->bus_speed_mhz
= 100;
8010 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
8011 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
8012 bp
->bus_speed_mhz
= 66;
8015 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
8016 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
8017 bp
->bus_speed_mhz
= 50;
8020 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
8021 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
8022 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
8023 bp
->bus_speed_mhz
= 33;
8028 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
8029 bp
->bus_speed_mhz
= 66;
8031 bp
->bus_speed_mhz
= 33;
8034 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
8035 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
8040 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
8044 unsigned int block_end
, rosize
, len
;
8046 #define BNX2_VPD_NVRAM_OFFSET 0x300
8047 #define BNX2_VPD_LEN 128
8048 #define BNX2_MAX_VER_SLEN 30
8050 data
= kmalloc(256, GFP_KERNEL
);
8054 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
8059 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
8060 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
8061 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
8062 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
8063 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
8066 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
8070 rosize
= pci_vpd_lrdt_size(&data
[i
]);
8071 i
+= PCI_VPD_LRDT_TAG_SIZE
;
8072 block_end
= i
+ rosize
;
8074 if (block_end
> BNX2_VPD_LEN
)
8077 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8078 PCI_VPD_RO_KEYWORD_MFR_ID
);
8082 len
= pci_vpd_info_field_size(&data
[j
]);
8084 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8085 if (j
+ len
> block_end
|| len
!= 4 ||
8086 memcmp(&data
[j
], "1028", 4))
8089 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8090 PCI_VPD_RO_KEYWORD_VENDOR0
);
8094 len
= pci_vpd_info_field_size(&data
[j
]);
8096 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8097 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
8100 memcpy(bp
->fw_version
, &data
[j
], len
);
8101 bp
->fw_version
[len
] = ' ';
8108 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
8113 u64 dma_mask
, persist_dma_mask
;
8116 SET_NETDEV_DEV(dev
, &pdev
->dev
);
8117 bp
= netdev_priv(dev
);
8122 bp
->temp_stats_blk
=
8123 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
8125 if (!bp
->temp_stats_blk
) {
8130 /* enable device (incl. PCI PM wakeup), and bus-mastering */
8131 rc
= pci_enable_device(pdev
);
8133 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
8137 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
8139 "Cannot find PCI device base address, aborting\n");
8141 goto err_out_disable
;
8144 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
8146 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
8147 goto err_out_disable
;
8150 pci_set_master(pdev
);
8152 bp
->pm_cap
= pdev
->pm_cap
;
8153 if (bp
->pm_cap
== 0) {
8155 "Cannot find power management capability, aborting\n");
8157 goto err_out_release
;
8163 spin_lock_init(&bp
->phy_lock
);
8164 spin_lock_init(&bp
->indirect_lock
);
8166 mutex_init(&bp
->cnic_lock
);
8168 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
8170 bp
->regview
= pci_iomap(pdev
, 0, MB_GET_CID_ADDR(TX_TSS_CID
+
8171 TX_MAX_TSS_RINGS
+ 1));
8173 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
8175 goto err_out_release
;
8178 /* Configure byte swap and enable write to the reg_window registers.
8179 * Rely on CPU to do target byte swapping on big endian systems
8180 * The chip's target access swapping will not swap all accesses
8182 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
,
8183 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
8184 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
8186 bp
->chip_id
= BNX2_RD(bp
, BNX2_MISC_ID
);
8188 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
8189 if (!pci_is_pcie(pdev
)) {
8190 dev_err(&pdev
->dev
, "Not PCIE, aborting\n");
8194 bp
->flags
|= BNX2_FLAG_PCIE
;
8195 if (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
)
8196 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
8198 /* AER (Advanced Error Reporting) hooks */
8199 err
= pci_enable_pcie_error_reporting(pdev
);
8201 bp
->flags
|= BNX2_FLAG_AER_ENABLED
;
8204 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
8205 if (bp
->pcix_cap
== 0) {
8207 "Cannot find PCIX capability, aborting\n");
8211 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
8214 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
&&
8215 BNX2_CHIP_REV(bp
) != BNX2_CHIP_REV_Ax
) {
8217 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
8220 if (BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A0
&&
8221 BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A1
) {
8223 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
8226 /* 5708 cannot support DMA addresses > 40-bit. */
8227 if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
8228 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
8230 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
8232 /* Configure DMA attributes. */
8233 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
8234 dev
->features
|= NETIF_F_HIGHDMA
;
8235 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
8238 "pci_set_consistent_dma_mask failed, aborting\n");
8241 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
8242 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
8246 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
8247 bnx2_get_pci_speed(bp
);
8249 /* 5706A0 may falsely detect SERR and PERR. */
8250 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
8251 reg
= BNX2_RD(bp
, PCI_COMMAND
);
8252 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
8253 BNX2_WR(bp
, PCI_COMMAND
, reg
);
8254 } else if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
) &&
8255 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
8258 "5706 A1 can only be used in a PCIX bus, aborting\n");
8262 bnx2_init_nvram(bp
);
8264 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8266 if (bnx2_reg_rd_ind(bp
, BNX2_MCP_TOE_ID
) & BNX2_MCP_TOE_ID_FUNCTION_ID
)
8269 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8270 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8271 u32 off
= bp
->func
<< 2;
8273 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8275 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8277 /* Get the permanent MAC address. First we need to make sure the
8278 * firmware is actually running.
8280 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8282 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8283 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8284 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8289 bnx2_read_vpd_fw_ver(bp
);
8291 j
= strlen(bp
->fw_version
);
8292 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8293 for (i
= 0; i
< 3 && j
< 24; i
++) {
8297 bp
->fw_version
[j
++] = 'b';
8298 bp
->fw_version
[j
++] = 'c';
8299 bp
->fw_version
[j
++] = ' ';
8301 num
= (u8
) (reg
>> (24 - (i
* 8)));
8302 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8303 if (num
>= k
|| !skip0
|| k
== 1) {
8304 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8309 bp
->fw_version
[j
++] = '.';
8311 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8312 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8315 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8316 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8318 for (i
= 0; i
< 30; i
++) {
8319 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8320 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8325 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8326 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8327 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8328 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8329 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8332 bp
->fw_version
[j
++] = ' ';
8333 for (i
= 0; i
< 3 && j
< 28; i
++) {
8334 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8335 reg
= be32_to_cpu(reg
);
8336 memcpy(&bp
->fw_version
[j
], ®
, 4);
8341 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8342 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8343 bp
->mac_addr
[1] = (u8
) reg
;
8345 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8346 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8347 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8348 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8349 bp
->mac_addr
[5] = (u8
) reg
;
8351 bp
->tx_ring_size
= BNX2_MAX_TX_DESC_CNT
;
8352 bnx2_set_rx_ring_size(bp
, 255);
8354 bp
->tx_quick_cons_trip_int
= 2;
8355 bp
->tx_quick_cons_trip
= 20;
8356 bp
->tx_ticks_int
= 18;
8359 bp
->rx_quick_cons_trip_int
= 2;
8360 bp
->rx_quick_cons_trip
= 12;
8361 bp
->rx_ticks_int
= 18;
8364 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8366 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8370 /* allocate stats_blk */
8371 rc
= bnx2_alloc_stats_blk(dev
);
8375 /* Disable WOL support if we are running on a SERDES chip. */
8376 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
8377 bnx2_get_5709_media(bp
);
8378 else if (BNX2_CHIP_BOND(bp
) & BNX2_CHIP_BOND_SERDES_BIT
)
8379 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8381 bp
->phy_port
= PORT_TP
;
8382 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8383 bp
->phy_port
= PORT_FIBRE
;
8384 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8385 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8386 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8389 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
) {
8390 /* Don't do parallel detect on this board because of
8391 * some board problems. The link will not go down
8392 * if we do parallel detect.
8394 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8395 pdev
->subsystem_device
== 0x310c)
8396 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8399 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8400 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8402 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
||
8403 BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
8404 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8405 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
&&
8406 (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
||
8407 BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Bx
))
8408 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8410 bnx2_init_fw_cap(bp
);
8412 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
) ||
8413 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B0
) ||
8414 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B1
) ||
8415 !(BNX2_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8416 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8420 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
8421 device_set_wakeup_capable(&bp
->pdev
->dev
, false);
8423 device_set_wakeup_enable(&bp
->pdev
->dev
, bp
->wol
);
8425 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
8426 bp
->tx_quick_cons_trip_int
=
8427 bp
->tx_quick_cons_trip
;
8428 bp
->tx_ticks_int
= bp
->tx_ticks
;
8429 bp
->rx_quick_cons_trip_int
=
8430 bp
->rx_quick_cons_trip
;
8431 bp
->rx_ticks_int
= bp
->rx_ticks
;
8432 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8433 bp
->com_ticks_int
= bp
->com_ticks
;
8434 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8437 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8439 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8440 * with byte enables disabled on the unused 32-bit word. This is legal
8441 * but causes problems on the AMD 8132 which will eventually stop
8442 * responding after a while.
8444 * AMD believes this incompatibility is unique to the 5706, and
8445 * prefers to locally disable MSI rather than globally disabling it.
8447 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
&& disable_msi
== 0) {
8448 struct pci_dev
*amd_8132
= NULL
;
8450 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8451 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8454 if (amd_8132
->revision
>= 0x10 &&
8455 amd_8132
->revision
<= 0x13) {
8457 pci_dev_put(amd_8132
);
8463 bnx2_set_default_link(bp
);
8464 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8466 timer_setup(&bp
->timer
, bnx2_timer
, 0);
8467 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8470 if (bnx2_shmem_rd(bp
, BNX2_ISCSI_INITIATOR
) & BNX2_ISCSI_INITIATOR_EN
)
8471 bp
->cnic_eth_dev
.max_iscsi_conn
=
8472 (bnx2_shmem_rd(bp
, BNX2_ISCSI_MAX_CONN
) &
8473 BNX2_ISCSI_MAX_CONN_MASK
) >> BNX2_ISCSI_MAX_CONN_SHIFT
;
8474 bp
->cnic_probe
= bnx2_cnic_probe
;
8476 pci_save_state(pdev
);
8481 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8482 pci_disable_pcie_error_reporting(pdev
);
8483 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8486 pci_iounmap(pdev
, bp
->regview
);
8490 pci_release_regions(pdev
);
8493 pci_disable_device(pdev
);
8496 kfree(bp
->temp_stats_blk
);
8502 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8506 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8507 s
+= sprintf(s
, "PCI Express");
8509 s
+= sprintf(s
, "PCI");
8510 if (bp
->flags
& BNX2_FLAG_PCIX
)
8511 s
+= sprintf(s
, "-X");
8512 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8513 s
+= sprintf(s
, " 32-bit");
8515 s
+= sprintf(s
, " 64-bit");
8516 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8522 bnx2_del_napi(struct bnx2
*bp
)
8526 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8527 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8531 bnx2_init_napi(struct bnx2
*bp
)
8535 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8536 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8537 int (*poll
)(struct napi_struct
*, int);
8542 poll
= bnx2_poll_msix
;
8544 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8549 static const struct net_device_ops bnx2_netdev_ops
= {
8550 .ndo_open
= bnx2_open
,
8551 .ndo_start_xmit
= bnx2_start_xmit
,
8552 .ndo_stop
= bnx2_close
,
8553 .ndo_get_stats64
= bnx2_get_stats64
,
8554 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8555 .ndo_do_ioctl
= bnx2_ioctl
,
8556 .ndo_validate_addr
= eth_validate_addr
,
8557 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8558 .ndo_change_mtu
= bnx2_change_mtu
,
8559 .ndo_set_features
= bnx2_set_features
,
8560 .ndo_tx_timeout
= bnx2_tx_timeout
,
8561 #ifdef CONFIG_NET_POLL_CONTROLLER
8562 .ndo_poll_controller
= poll_bnx2
,
8567 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8569 static int version_printed
= 0;
8570 struct net_device
*dev
;
8575 if (version_printed
++ == 0)
8576 pr_info("%s", version
);
8578 /* dev zeroed in init_etherdev */
8579 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8583 rc
= bnx2_init_board(pdev
, dev
);
8587 dev
->netdev_ops
= &bnx2_netdev_ops
;
8588 dev
->watchdog_timeo
= TX_TIMEOUT
;
8589 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8591 bp
= netdev_priv(dev
);
8593 pci_set_drvdata(pdev
, dev
);
8596 * In-flight DMA from 1st kernel could continue going in kdump kernel.
8597 * New io-page table has been created before bnx2 does reset at open stage.
8598 * We have to wait for the in-flight DMA to complete to avoid it look up
8599 * into the newly created io-page table.
8601 if (is_kdump_kernel())
8602 bnx2_wait_dma_complete(bp
);
8604 memcpy(dev
->dev_addr
, bp
->mac_addr
, ETH_ALEN
);
8606 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
8607 NETIF_F_TSO
| NETIF_F_TSO_ECN
|
8608 NETIF_F_RXHASH
| NETIF_F_RXCSUM
;
8610 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
8611 dev
->hw_features
|= NETIF_F_IPV6_CSUM
| NETIF_F_TSO6
;
8613 dev
->vlan_features
= dev
->hw_features
;
8614 dev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
8615 dev
->features
|= dev
->hw_features
;
8616 dev
->priv_flags
|= IFF_UNICAST_FLT
;
8617 dev
->min_mtu
= MIN_ETHERNET_PACKET_SIZE
;
8618 dev
->max_mtu
= MAX_ETHERNET_JUMBO_PACKET_SIZE
;
8620 if (!(bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
8621 dev
->hw_features
&= ~NETIF_F_HW_VLAN_CTAG_RX
;
8623 if ((rc
= register_netdev(dev
))) {
8624 dev_err(&pdev
->dev
, "Cannot register net device\n");
8628 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, "
8629 "node addr %pM\n", board_info
[ent
->driver_data
].name
,
8630 ((BNX2_CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8631 ((BNX2_CHIP_ID(bp
) & 0x0ff0) >> 4),
8632 bnx2_bus_string(bp
, str
), (long)pci_resource_start(pdev
, 0),
8633 pdev
->irq
, dev
->dev_addr
);
8638 pci_iounmap(pdev
, bp
->regview
);
8639 pci_release_regions(pdev
);
8640 pci_disable_device(pdev
);
8642 bnx2_free_stats_blk(dev
);
8648 bnx2_remove_one(struct pci_dev
*pdev
)
8650 struct net_device
*dev
= pci_get_drvdata(pdev
);
8651 struct bnx2
*bp
= netdev_priv(dev
);
8653 unregister_netdev(dev
);
8655 del_timer_sync(&bp
->timer
);
8656 cancel_work_sync(&bp
->reset_task
);
8658 pci_iounmap(bp
->pdev
, bp
->regview
);
8660 bnx2_free_stats_blk(dev
);
8661 kfree(bp
->temp_stats_blk
);
8663 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8664 pci_disable_pcie_error_reporting(pdev
);
8665 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8668 bnx2_release_firmware(bp
);
8672 pci_release_regions(pdev
);
8673 pci_disable_device(pdev
);
8676 #ifdef CONFIG_PM_SLEEP
8678 bnx2_suspend(struct device
*device
)
8680 struct pci_dev
*pdev
= to_pci_dev(device
);
8681 struct net_device
*dev
= pci_get_drvdata(pdev
);
8682 struct bnx2
*bp
= netdev_priv(dev
);
8684 if (netif_running(dev
)) {
8685 cancel_work_sync(&bp
->reset_task
);
8686 bnx2_netif_stop(bp
, true);
8687 netif_device_detach(dev
);
8688 del_timer_sync(&bp
->timer
);
8689 bnx2_shutdown_chip(bp
);
8690 __bnx2_free_irq(bp
);
8698 bnx2_resume(struct device
*device
)
8700 struct pci_dev
*pdev
= to_pci_dev(device
);
8701 struct net_device
*dev
= pci_get_drvdata(pdev
);
8702 struct bnx2
*bp
= netdev_priv(dev
);
8704 if (!netif_running(dev
))
8707 bnx2_set_power_state(bp
, PCI_D0
);
8708 netif_device_attach(dev
);
8709 bnx2_request_irq(bp
);
8710 bnx2_init_nic(bp
, 1);
8711 bnx2_netif_start(bp
, true);
8715 static SIMPLE_DEV_PM_OPS(bnx2_pm_ops
, bnx2_suspend
, bnx2_resume
);
8716 #define BNX2_PM_OPS (&bnx2_pm_ops)
8720 #define BNX2_PM_OPS NULL
8722 #endif /* CONFIG_PM_SLEEP */
8724 * bnx2_io_error_detected - called when PCI error is detected
8725 * @pdev: Pointer to PCI device
8726 * @state: The current pci connection state
8728 * This function is called after a PCI bus error affecting
8729 * this device has been detected.
8731 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8732 pci_channel_state_t state
)
8734 struct net_device
*dev
= pci_get_drvdata(pdev
);
8735 struct bnx2
*bp
= netdev_priv(dev
);
8738 netif_device_detach(dev
);
8740 if (state
== pci_channel_io_perm_failure
) {
8742 return PCI_ERS_RESULT_DISCONNECT
;
8745 if (netif_running(dev
)) {
8746 bnx2_netif_stop(bp
, true);
8747 del_timer_sync(&bp
->timer
);
8748 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8751 pci_disable_device(pdev
);
8754 /* Request a slot slot reset. */
8755 return PCI_ERS_RESULT_NEED_RESET
;
8759 * bnx2_io_slot_reset - called after the pci bus has been reset.
8760 * @pdev: Pointer to PCI device
8762 * Restart the card from scratch, as if from a cold-boot.
8764 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8766 struct net_device
*dev
= pci_get_drvdata(pdev
);
8767 struct bnx2
*bp
= netdev_priv(dev
);
8768 pci_ers_result_t result
= PCI_ERS_RESULT_DISCONNECT
;
8772 if (pci_enable_device(pdev
)) {
8774 "Cannot re-enable PCI device after reset\n");
8776 pci_set_master(pdev
);
8777 pci_restore_state(pdev
);
8778 pci_save_state(pdev
);
8780 if (netif_running(dev
))
8781 err
= bnx2_init_nic(bp
, 1);
8784 result
= PCI_ERS_RESULT_RECOVERED
;
8787 if (result
!= PCI_ERS_RESULT_RECOVERED
&& netif_running(dev
)) {
8788 bnx2_napi_enable(bp
);
8793 if (!(bp
->flags
& BNX2_FLAG_AER_ENABLED
))
8800 * bnx2_io_resume - called when traffic can start flowing again.
8801 * @pdev: Pointer to PCI device
8803 * This callback is called when the error recovery driver tells us that
8804 * its OK to resume normal operation.
8806 static void bnx2_io_resume(struct pci_dev
*pdev
)
8808 struct net_device
*dev
= pci_get_drvdata(pdev
);
8809 struct bnx2
*bp
= netdev_priv(dev
);
8812 if (netif_running(dev
))
8813 bnx2_netif_start(bp
, true);
8815 netif_device_attach(dev
);
8819 static void bnx2_shutdown(struct pci_dev
*pdev
)
8821 struct net_device
*dev
= pci_get_drvdata(pdev
);
8827 bp
= netdev_priv(dev
);
8832 if (netif_running(dev
))
8835 if (system_state
== SYSTEM_POWER_OFF
)
8836 bnx2_set_power_state(bp
, PCI_D3hot
);
8841 static const struct pci_error_handlers bnx2_err_handler
= {
8842 .error_detected
= bnx2_io_error_detected
,
8843 .slot_reset
= bnx2_io_slot_reset
,
8844 .resume
= bnx2_io_resume
,
8847 static struct pci_driver bnx2_pci_driver
= {
8848 .name
= DRV_MODULE_NAME
,
8849 .id_table
= bnx2_pci_tbl
,
8850 .probe
= bnx2_init_one
,
8851 .remove
= bnx2_remove_one
,
8852 .driver
.pm
= BNX2_PM_OPS
,
8853 .err_handler
= &bnx2_err_handler
,
8854 .shutdown
= bnx2_shutdown
,
8857 module_pci_driver(bnx2_pci_driver
);