2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4 * Copyright (C) 2012 Marvell
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
36 #include "mvneta_bm.h"
42 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
43 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
44 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
45 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
46 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
47 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
48 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
49 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
50 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
51 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
52 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
53 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
54 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
55 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
56 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
57 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
58 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
60 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
61 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
62 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
63 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
64 #define MVNETA_PORT_RX_RESET 0x1cc0
65 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
66 #define MVNETA_PHY_ADDR 0x2000
67 #define MVNETA_PHY_ADDR_MASK 0x1f
68 #define MVNETA_MBUS_RETRY 0x2010
69 #define MVNETA_UNIT_INTR_CAUSE 0x2080
70 #define MVNETA_UNIT_CONTROL 0x20B0
71 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
72 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
73 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
74 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
75 #define MVNETA_BASE_ADDR_ENABLE 0x2290
76 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
77 #define MVNETA_PORT_CONFIG 0x2400
78 #define MVNETA_UNI_PROMISC_MODE BIT(0)
79 #define MVNETA_DEF_RXQ(q) ((q) << 1)
80 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
81 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
82 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
83 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
84 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
85 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
86 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
87 MVNETA_DEF_RXQ_ARP(q) | \
88 MVNETA_DEF_RXQ_TCP(q) | \
89 MVNETA_DEF_RXQ_UDP(q) | \
90 MVNETA_DEF_RXQ_BPDU(q) | \
91 MVNETA_TX_UNSET_ERR_SUM | \
92 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
93 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
94 #define MVNETA_MAC_ADDR_LOW 0x2414
95 #define MVNETA_MAC_ADDR_HIGH 0x2418
96 #define MVNETA_SDMA_CONFIG 0x241c
97 #define MVNETA_SDMA_BRST_SIZE_16 4
98 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
99 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
100 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
101 #define MVNETA_DESC_SWAP BIT(6)
102 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
103 #define MVNETA_PORT_STATUS 0x2444
104 #define MVNETA_TX_IN_PRGRS BIT(1)
105 #define MVNETA_TX_FIFO_EMPTY BIT(8)
106 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
107 #define MVNETA_SERDES_CFG 0x24A0
108 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
109 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
110 #define MVNETA_TYPE_PRIO 0x24bc
111 #define MVNETA_FORCE_UNI BIT(21)
112 #define MVNETA_TXQ_CMD_1 0x24e4
113 #define MVNETA_TXQ_CMD 0x2448
114 #define MVNETA_TXQ_DISABLE_SHIFT 8
115 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
116 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
117 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
118 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
119 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
120 #define MVNETA_ACC_MODE 0x2500
121 #define MVNETA_BM_ADDRESS 0x2504
122 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
123 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
124 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
125 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
126 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
127 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
129 /* Exception Interrupt Port/Queue Cause register
131 * Their behavior depend of the mapping done using the PCPX2Q
132 * registers. For a given CPU if the bit associated to a queue is not
133 * set, then for the register a read from this CPU will always return
134 * 0 and a write won't do anything
137 #define MVNETA_INTR_NEW_CAUSE 0x25a0
138 #define MVNETA_INTR_NEW_MASK 0x25a4
140 /* bits 0..7 = TXQ SENT, one bit per queue.
141 * bits 8..15 = RXQ OCCUP, one bit per queue.
142 * bits 16..23 = RXQ FREE, one bit per queue.
143 * bit 29 = OLD_REG_SUM, see old reg ?
144 * bit 30 = TX_ERR_SUM, one bit for 4 ports
145 * bit 31 = MISC_SUM, one bit for 4 ports
147 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
148 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
149 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
150 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
151 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
153 #define MVNETA_INTR_OLD_CAUSE 0x25a8
154 #define MVNETA_INTR_OLD_MASK 0x25ac
156 /* Data Path Port/Queue Cause Register */
157 #define MVNETA_INTR_MISC_CAUSE 0x25b0
158 #define MVNETA_INTR_MISC_MASK 0x25b4
160 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
161 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
162 #define MVNETA_CAUSE_PTP BIT(4)
164 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
165 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
166 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
167 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
168 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
169 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
170 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
171 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
175 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
177 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
178 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
179 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
181 #define MVNETA_INTR_ENABLE 0x25b8
182 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
183 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
185 #define MVNETA_RXQ_CMD 0x2680
186 #define MVNETA_RXQ_DISABLE_SHIFT 8
187 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
188 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
189 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
190 #define MVNETA_GMAC_CTRL_0 0x2c00
191 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
192 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
193 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
194 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
195 #define MVNETA_GMAC_CTRL_2 0x2c08
196 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
197 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
198 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
199 #define MVNETA_GMAC2_PORT_RESET BIT(6)
200 #define MVNETA_GMAC_STATUS 0x2c10
201 #define MVNETA_GMAC_LINK_UP BIT(0)
202 #define MVNETA_GMAC_SPEED_1000 BIT(1)
203 #define MVNETA_GMAC_SPEED_100 BIT(2)
204 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
205 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
206 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
207 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
208 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
209 #define MVNETA_GMAC_AN_COMPLETE BIT(11)
210 #define MVNETA_GMAC_SYNC_OK BIT(14)
211 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
212 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
213 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
214 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
215 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
216 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
217 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
218 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
219 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
220 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
221 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
222 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
223 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
224 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
225 #define MVNETA_GMAC_CTRL_4 0x2c90
226 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1)
227 #define MVNETA_MIB_COUNTERS_BASE 0x3000
228 #define MVNETA_MIB_LATE_COLLISION 0x7c
229 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
230 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
231 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
232 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
233 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
234 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
235 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
236 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
237 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
238 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
239 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
240 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
241 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
242 #define MVNETA_PORT_TX_RESET 0x3cf0
243 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
244 #define MVNETA_TX_MTU 0x3e0c
245 #define MVNETA_TX_TOKEN_SIZE 0x3e14
246 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
247 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
248 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
250 #define MVNETA_LPI_CTRL_0 0x2cc0
251 #define MVNETA_LPI_CTRL_1 0x2cc4
252 #define MVNETA_LPI_REQUEST_ENABLE BIT(0)
253 #define MVNETA_LPI_CTRL_2 0x2cc8
254 #define MVNETA_LPI_STATUS 0x2ccc
256 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
258 /* Descriptor ring Macros */
259 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
260 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
262 /* Various constants */
265 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
266 #define MVNETA_RX_COAL_PKTS 32
267 #define MVNETA_RX_COAL_USEC 100
269 /* The two bytes Marvell header. Either contains a special value used
270 * by Marvell switches when a specific hardware mode is enabled (not
271 * supported by this driver) or is filled automatically by zeroes on
272 * the RX side. Those two bytes being at the front of the Ethernet
273 * header, they allow to have the IP header aligned on a 4 bytes
274 * boundary automatically: the hardware skips those two bytes on its
277 #define MVNETA_MH_SIZE 2
279 #define MVNETA_VLAN_TAG_LEN 4
281 #define MVNETA_TX_CSUM_DEF_SIZE 1600
282 #define MVNETA_TX_CSUM_MAX_SIZE 9800
283 #define MVNETA_ACC_MODE_EXT1 1
284 #define MVNETA_ACC_MODE_EXT2 2
286 #define MVNETA_MAX_DECODE_WIN 6
288 /* Timeout constants */
289 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
290 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
291 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
293 #define MVNETA_TX_MTU_MAX 0x3ffff
295 /* The RSS lookup table actually has 256 entries but we do not use
298 #define MVNETA_RSS_LU_TABLE_SIZE 1
300 /* Max number of Rx descriptors */
301 #define MVNETA_MAX_RXD 512
303 /* Max number of Tx descriptors */
304 #define MVNETA_MAX_TXD 1024
306 /* Max number of allowed TCP segments for software TSO */
307 #define MVNETA_MAX_TSO_SEGS 100
309 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
311 /* descriptor aligned size */
312 #define MVNETA_DESC_ALIGNED_SIZE 32
314 /* Number of bytes to be taken into account by HW when putting incoming data
315 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
316 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
318 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
320 #define MVNETA_RX_PKT_SIZE(mtu) \
321 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
322 ETH_HLEN + ETH_FCS_LEN, \
325 #define IS_TSO_HEADER(txq, addr) \
326 ((addr >= txq->tso_hdrs_phys) && \
327 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
329 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
330 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
333 ETHTOOL_STAT_EEE_WAKEUP
,
334 ETHTOOL_STAT_SKB_ALLOC_ERR
,
335 ETHTOOL_STAT_REFILL_ERR
,
339 struct mvneta_statistic
{
340 unsigned short offset
;
342 const char name
[ETH_GSTRING_LEN
];
349 static const struct mvneta_statistic mvneta_statistics
[] = {
350 { 0x3000, T_REG_64
, "good_octets_received", },
351 { 0x3010, T_REG_32
, "good_frames_received", },
352 { 0x3008, T_REG_32
, "bad_octets_received", },
353 { 0x3014, T_REG_32
, "bad_frames_received", },
354 { 0x3018, T_REG_32
, "broadcast_frames_received", },
355 { 0x301c, T_REG_32
, "multicast_frames_received", },
356 { 0x3050, T_REG_32
, "unrec_mac_control_received", },
357 { 0x3058, T_REG_32
, "good_fc_received", },
358 { 0x305c, T_REG_32
, "bad_fc_received", },
359 { 0x3060, T_REG_32
, "undersize_received", },
360 { 0x3064, T_REG_32
, "fragments_received", },
361 { 0x3068, T_REG_32
, "oversize_received", },
362 { 0x306c, T_REG_32
, "jabber_received", },
363 { 0x3070, T_REG_32
, "mac_receive_error", },
364 { 0x3074, T_REG_32
, "bad_crc_event", },
365 { 0x3078, T_REG_32
, "collision", },
366 { 0x307c, T_REG_32
, "late_collision", },
367 { 0x2484, T_REG_32
, "rx_discard", },
368 { 0x2488, T_REG_32
, "rx_overrun", },
369 { 0x3020, T_REG_32
, "frames_64_octets", },
370 { 0x3024, T_REG_32
, "frames_65_to_127_octets", },
371 { 0x3028, T_REG_32
, "frames_128_to_255_octets", },
372 { 0x302c, T_REG_32
, "frames_256_to_511_octets", },
373 { 0x3030, T_REG_32
, "frames_512_to_1023_octets", },
374 { 0x3034, T_REG_32
, "frames_1024_to_max_octets", },
375 { 0x3038, T_REG_64
, "good_octets_sent", },
376 { 0x3040, T_REG_32
, "good_frames_sent", },
377 { 0x3044, T_REG_32
, "excessive_collision", },
378 { 0x3048, T_REG_32
, "multicast_frames_sent", },
379 { 0x304c, T_REG_32
, "broadcast_frames_sent", },
380 { 0x3054, T_REG_32
, "fc_sent", },
381 { 0x300c, T_REG_32
, "internal_mac_transmit_err", },
382 { ETHTOOL_STAT_EEE_WAKEUP
, T_SW
, "eee_wakeup_errors", },
383 { ETHTOOL_STAT_SKB_ALLOC_ERR
, T_SW
, "skb_alloc_errors", },
384 { ETHTOOL_STAT_REFILL_ERR
, T_SW
, "refill_errors", },
387 struct mvneta_pcpu_stats
{
388 struct u64_stats_sync syncp
;
395 struct mvneta_pcpu_port
{
396 /* Pointer to the shared port */
397 struct mvneta_port
*pp
;
399 /* Pointer to the CPU-local NAPI struct */
400 struct napi_struct napi
;
402 /* Cause of the previous interrupt */
408 struct mvneta_pcpu_port __percpu
*ports
;
409 struct mvneta_pcpu_stats __percpu
*stats
;
413 struct mvneta_rx_queue
*rxqs
;
414 struct mvneta_tx_queue
*txqs
;
415 struct net_device
*dev
;
416 struct hlist_node node_online
;
417 struct hlist_node node_dead
;
419 /* Protect the access to the percpu interrupt registers,
420 * ensuring that the configuration remains coherent.
426 struct napi_struct napi
;
436 phy_interface_t phy_interface
;
437 struct device_node
*dn
;
438 unsigned int tx_csum_limit
;
439 struct phylink
*phylink
;
442 struct mvneta_bm
*bm_priv
;
443 struct mvneta_bm_pool
*pool_long
;
444 struct mvneta_bm_pool
*pool_short
;
451 u64 ethtool_stats
[ARRAY_SIZE(mvneta_statistics
)];
453 u32 indir
[MVNETA_RSS_LU_TABLE_SIZE
];
455 /* Flags for special SoC configurations */
456 bool neta_armada3700
;
457 u16 rx_offset_correction
;
458 const struct mbus_dram_target_info
*dram_target_info
;
461 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
462 * layout of the transmit and reception DMA descriptors, and their
463 * layout is therefore defined by the hardware design
466 #define MVNETA_TX_L3_OFF_SHIFT 0
467 #define MVNETA_TX_IP_HLEN_SHIFT 8
468 #define MVNETA_TX_L4_UDP BIT(16)
469 #define MVNETA_TX_L3_IP6 BIT(17)
470 #define MVNETA_TXD_IP_CSUM BIT(18)
471 #define MVNETA_TXD_Z_PAD BIT(19)
472 #define MVNETA_TXD_L_DESC BIT(20)
473 #define MVNETA_TXD_F_DESC BIT(21)
474 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
475 MVNETA_TXD_L_DESC | \
477 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
478 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
480 #define MVNETA_RXD_ERR_CRC 0x0
481 #define MVNETA_RXD_BM_POOL_SHIFT 13
482 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
483 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
484 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
485 #define MVNETA_RXD_ERR_LEN BIT(18)
486 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
487 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
488 #define MVNETA_RXD_L3_IP4 BIT(25)
489 #define MVNETA_RXD_LAST_DESC BIT(26)
490 #define MVNETA_RXD_FIRST_DESC BIT(27)
491 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
492 MVNETA_RXD_LAST_DESC)
493 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
495 #if defined(__LITTLE_ENDIAN)
496 struct mvneta_tx_desc
{
497 u32 command
; /* Options used by HW for packet transmitting.*/
498 u16 reserved1
; /* csum_l4 (for future use) */
499 u16 data_size
; /* Data size of transmitted packet in bytes */
500 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
501 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
502 u32 reserved3
[4]; /* Reserved - (for future use) */
505 struct mvneta_rx_desc
{
506 u32 status
; /* Info about received packet */
507 u16 reserved1
; /* pnc_info - (for future use, PnC) */
508 u16 data_size
; /* Size of received packet in bytes */
510 u32 buf_phys_addr
; /* Physical address of the buffer */
511 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
513 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
514 u16 reserved3
; /* prefetch_cmd, for future use */
515 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
517 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
518 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
521 struct mvneta_tx_desc
{
522 u16 data_size
; /* Data size of transmitted packet in bytes */
523 u16 reserved1
; /* csum_l4 (for future use) */
524 u32 command
; /* Options used by HW for packet transmitting.*/
525 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
526 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
527 u32 reserved3
[4]; /* Reserved - (for future use) */
530 struct mvneta_rx_desc
{
531 u16 data_size
; /* Size of received packet in bytes */
532 u16 reserved1
; /* pnc_info - (for future use, PnC) */
533 u32 status
; /* Info about received packet */
535 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
536 u32 buf_phys_addr
; /* Physical address of the buffer */
538 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
539 u16 reserved3
; /* prefetch_cmd, for future use */
540 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
542 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
543 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
547 struct mvneta_tx_queue
{
548 /* Number of this TX queue, in the range 0-7 */
551 /* Number of TX DMA descriptors in the descriptor ring */
554 /* Number of currently used TX DMA descriptor in the
559 int tx_stop_threshold
;
560 int tx_wake_threshold
;
562 /* Array of transmitted skb */
563 struct sk_buff
**tx_skb
;
565 /* Index of last TX DMA descriptor that was inserted */
568 /* Index of the TX DMA descriptor to be cleaned up */
573 /* Virtual address of the TX DMA descriptors array */
574 struct mvneta_tx_desc
*descs
;
576 /* DMA address of the TX DMA descriptors array */
577 dma_addr_t descs_phys
;
579 /* Index of the last TX DMA descriptor */
582 /* Index of the next TX DMA descriptor to process */
583 int next_desc_to_proc
;
585 /* DMA buffers for TSO headers */
588 /* DMA address of TSO headers */
589 dma_addr_t tso_hdrs_phys
;
591 /* Affinity mask for CPUs*/
592 cpumask_t affinity_mask
;
595 struct mvneta_rx_queue
{
596 /* rx queue number, in the range 0-7 */
599 /* num of rx descriptors in the rx descriptor ring */
605 /* Virtual address of the RX buffer */
606 void **buf_virt_addr
;
608 /* Virtual address of the RX DMA descriptors array */
609 struct mvneta_rx_desc
*descs
;
611 /* DMA address of the RX DMA descriptors array */
612 dma_addr_t descs_phys
;
614 /* Index of the last RX DMA descriptor */
617 /* Index of the next RX DMA descriptor to process */
618 int next_desc_to_proc
;
620 /* Index of first RX DMA descriptor to refill */
624 /* pointer to uncomplete skb buffer */
633 static enum cpuhp_state online_hpstate
;
634 /* The hardware supports eight (8) rx queues, but we are only allowing
635 * the first one to be used. Therefore, let's just allocate one queue.
637 static int rxq_number
= 8;
638 static int txq_number
= 8;
642 static int rx_copybreak __read_mostly
= 256;
643 static int rx_header_size __read_mostly
= 128;
645 /* HW BM need that each port be identify by a unique ID */
646 static int global_port_id
;
648 #define MVNETA_DRIVER_NAME "mvneta"
649 #define MVNETA_DRIVER_VERSION "1.0"
651 /* Utility/helper methods */
653 /* Write helper method */
654 static void mvreg_write(struct mvneta_port
*pp
, u32 offset
, u32 data
)
656 writel(data
, pp
->base
+ offset
);
659 /* Read helper method */
660 static u32
mvreg_read(struct mvneta_port
*pp
, u32 offset
)
662 return readl(pp
->base
+ offset
);
665 /* Increment txq get counter */
666 static void mvneta_txq_inc_get(struct mvneta_tx_queue
*txq
)
668 txq
->txq_get_index
++;
669 if (txq
->txq_get_index
== txq
->size
)
670 txq
->txq_get_index
= 0;
673 /* Increment txq put counter */
674 static void mvneta_txq_inc_put(struct mvneta_tx_queue
*txq
)
676 txq
->txq_put_index
++;
677 if (txq
->txq_put_index
== txq
->size
)
678 txq
->txq_put_index
= 0;
682 /* Clear all MIB counters */
683 static void mvneta_mib_counters_clear(struct mvneta_port
*pp
)
688 /* Perform dummy reads from MIB counters */
689 for (i
= 0; i
< MVNETA_MIB_LATE_COLLISION
; i
+= 4)
690 dummy
= mvreg_read(pp
, (MVNETA_MIB_COUNTERS_BASE
+ i
));
691 dummy
= mvreg_read(pp
, MVNETA_RX_DISCARD_FRAME_COUNT
);
692 dummy
= mvreg_read(pp
, MVNETA_OVERRUN_FRAME_COUNT
);
695 /* Get System Network Statistics */
697 mvneta_get_stats64(struct net_device
*dev
,
698 struct rtnl_link_stats64
*stats
)
700 struct mvneta_port
*pp
= netdev_priv(dev
);
704 for_each_possible_cpu(cpu
) {
705 struct mvneta_pcpu_stats
*cpu_stats
;
711 cpu_stats
= per_cpu_ptr(pp
->stats
, cpu
);
713 start
= u64_stats_fetch_begin_irq(&cpu_stats
->syncp
);
714 rx_packets
= cpu_stats
->rx_packets
;
715 rx_bytes
= cpu_stats
->rx_bytes
;
716 tx_packets
= cpu_stats
->tx_packets
;
717 tx_bytes
= cpu_stats
->tx_bytes
;
718 } while (u64_stats_fetch_retry_irq(&cpu_stats
->syncp
, start
));
720 stats
->rx_packets
+= rx_packets
;
721 stats
->rx_bytes
+= rx_bytes
;
722 stats
->tx_packets
+= tx_packets
;
723 stats
->tx_bytes
+= tx_bytes
;
726 stats
->rx_errors
= dev
->stats
.rx_errors
;
727 stats
->rx_dropped
= dev
->stats
.rx_dropped
;
729 stats
->tx_dropped
= dev
->stats
.tx_dropped
;
732 /* Rx descriptors helper methods */
734 /* Checks whether the RX descriptor having this status is both the first
735 * and the last descriptor for the RX packet. Each RX packet is currently
736 * received through a single RX descriptor, so not having each RX
737 * descriptor with its first and last bits set is an error
739 static int mvneta_rxq_desc_is_first_last(u32 status
)
741 return (status
& MVNETA_RXD_FIRST_LAST_DESC
) ==
742 MVNETA_RXD_FIRST_LAST_DESC
;
745 /* Add number of descriptors ready to receive new packets */
746 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port
*pp
,
747 struct mvneta_rx_queue
*rxq
,
750 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
753 while (ndescs
> MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
) {
754 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
755 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
<<
756 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
757 ndescs
-= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
;
760 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
761 (ndescs
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
764 /* Get number of RX descriptors occupied by received packets */
765 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port
*pp
,
766 struct mvneta_rx_queue
*rxq
)
770 val
= mvreg_read(pp
, MVNETA_RXQ_STATUS_REG(rxq
->id
));
771 return val
& MVNETA_RXQ_OCCUPIED_ALL_MASK
;
774 /* Update num of rx desc called upon return from rx path or
775 * from mvneta_rxq_drop_pkts().
777 static void mvneta_rxq_desc_num_update(struct mvneta_port
*pp
,
778 struct mvneta_rx_queue
*rxq
,
779 int rx_done
, int rx_filled
)
783 if ((rx_done
<= 0xff) && (rx_filled
<= 0xff)) {
785 (rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
);
786 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
790 /* Only 255 descriptors can be added at once */
791 while ((rx_done
> 0) || (rx_filled
> 0)) {
792 if (rx_done
<= 0xff) {
799 if (rx_filled
<= 0xff) {
800 val
|= rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
803 val
|= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
806 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
810 /* Get pointer to next RX descriptor to be processed by SW */
811 static struct mvneta_rx_desc
*
812 mvneta_rxq_next_desc_get(struct mvneta_rx_queue
*rxq
)
814 int rx_desc
= rxq
->next_desc_to_proc
;
816 rxq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(rxq
, rx_desc
);
817 prefetch(rxq
->descs
+ rxq
->next_desc_to_proc
);
818 return rxq
->descs
+ rx_desc
;
821 /* Change maximum receive size of the port. */
822 static void mvneta_max_rx_size_set(struct mvneta_port
*pp
, int max_rx_size
)
826 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
827 val
&= ~MVNETA_GMAC_MAX_RX_SIZE_MASK
;
828 val
|= ((max_rx_size
- MVNETA_MH_SIZE
) / 2) <<
829 MVNETA_GMAC_MAX_RX_SIZE_SHIFT
;
830 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
834 /* Set rx queue offset */
835 static void mvneta_rxq_offset_set(struct mvneta_port
*pp
,
836 struct mvneta_rx_queue
*rxq
,
841 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
842 val
&= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK
;
845 val
|= MVNETA_RXQ_PKT_OFFSET_MASK(offset
>> 3);
846 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
850 /* Tx descriptors helper methods */
852 /* Update HW with number of TX descriptors to be sent */
853 static void mvneta_txq_pend_desc_add(struct mvneta_port
*pp
,
854 struct mvneta_tx_queue
*txq
,
859 pend_desc
+= txq
->pending
;
861 /* Only 255 Tx descriptors can be added at once */
863 val
= min(pend_desc
, 255);
864 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
866 } while (pend_desc
> 0);
870 /* Get pointer to next TX descriptor to be processed (send) by HW */
871 static struct mvneta_tx_desc
*
872 mvneta_txq_next_desc_get(struct mvneta_tx_queue
*txq
)
874 int tx_desc
= txq
->next_desc_to_proc
;
876 txq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(txq
, tx_desc
);
877 return txq
->descs
+ tx_desc
;
880 /* Release the last allocated TX descriptor. Useful to handle DMA
881 * mapping failures in the TX path.
883 static void mvneta_txq_desc_put(struct mvneta_tx_queue
*txq
)
885 if (txq
->next_desc_to_proc
== 0)
886 txq
->next_desc_to_proc
= txq
->last_desc
- 1;
888 txq
->next_desc_to_proc
--;
891 /* Set rxq buf size */
892 static void mvneta_rxq_buf_size_set(struct mvneta_port
*pp
,
893 struct mvneta_rx_queue
*rxq
,
898 val
= mvreg_read(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
));
900 val
&= ~MVNETA_RXQ_BUF_SIZE_MASK
;
901 val
|= ((buf_size
>> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT
);
903 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), val
);
906 /* Disable buffer management (BM) */
907 static void mvneta_rxq_bm_disable(struct mvneta_port
*pp
,
908 struct mvneta_rx_queue
*rxq
)
912 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
913 val
&= ~MVNETA_RXQ_HW_BUF_ALLOC
;
914 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
917 /* Enable buffer management (BM) */
918 static void mvneta_rxq_bm_enable(struct mvneta_port
*pp
,
919 struct mvneta_rx_queue
*rxq
)
923 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
924 val
|= MVNETA_RXQ_HW_BUF_ALLOC
;
925 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
928 /* Notify HW about port's assignment of pool for bigger packets */
929 static void mvneta_rxq_long_pool_set(struct mvneta_port
*pp
,
930 struct mvneta_rx_queue
*rxq
)
934 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
935 val
&= ~MVNETA_RXQ_LONG_POOL_ID_MASK
;
936 val
|= (pp
->pool_long
->id
<< MVNETA_RXQ_LONG_POOL_ID_SHIFT
);
938 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
941 /* Notify HW about port's assignment of pool for smaller packets */
942 static void mvneta_rxq_short_pool_set(struct mvneta_port
*pp
,
943 struct mvneta_rx_queue
*rxq
)
947 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
948 val
&= ~MVNETA_RXQ_SHORT_POOL_ID_MASK
;
949 val
|= (pp
->pool_short
->id
<< MVNETA_RXQ_SHORT_POOL_ID_SHIFT
);
951 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
954 /* Set port's receive buffer size for assigned BM pool */
955 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port
*pp
,
961 if (!IS_ALIGNED(buf_size
, 8)) {
962 dev_warn(pp
->dev
->dev
.parent
,
963 "illegal buf_size value %d, round to %d\n",
964 buf_size
, ALIGN(buf_size
, 8));
965 buf_size
= ALIGN(buf_size
, 8);
968 val
= mvreg_read(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
));
969 val
|= buf_size
& MVNETA_PORT_POOL_BUFFER_SZ_MASK
;
970 mvreg_write(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
), val
);
973 /* Configure MBUS window in order to enable access BM internal SRAM */
974 static int mvneta_mbus_io_win_set(struct mvneta_port
*pp
, u32 base
, u32 wsize
,
977 u32 win_enable
, win_protect
;
980 win_enable
= mvreg_read(pp
, MVNETA_BASE_ADDR_ENABLE
);
982 if (pp
->bm_win_id
< 0) {
983 /* Find first not occupied window */
984 for (i
= 0; i
< MVNETA_MAX_DECODE_WIN
; i
++) {
985 if (win_enable
& (1 << i
)) {
990 if (i
== MVNETA_MAX_DECODE_WIN
)
996 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
997 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
1000 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
1002 mvreg_write(pp
, MVNETA_WIN_BASE(i
), (base
& 0xffff0000) |
1003 (attr
<< 8) | target
);
1005 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), (wsize
- 1) & 0xffff0000);
1007 win_protect
= mvreg_read(pp
, MVNETA_ACCESS_PROTECT_ENABLE
);
1008 win_protect
|= 3 << (2 * i
);
1009 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
1011 win_enable
&= ~(1 << i
);
1012 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
1017 static int mvneta_bm_port_mbus_init(struct mvneta_port
*pp
)
1023 /* Get BM window information */
1024 err
= mvebu_mbus_get_io_win_info(pp
->bm_priv
->bppi_phys_addr
, &wsize
,
1031 /* Open NETA -> BM window */
1032 err
= mvneta_mbus_io_win_set(pp
, pp
->bm_priv
->bppi_phys_addr
, wsize
,
1035 netdev_info(pp
->dev
, "fail to configure mbus window to BM\n");
1041 /* Assign and initialize pools for port. In case of fail
1042 * buffer manager will remain disabled for current port.
1044 static int mvneta_bm_port_init(struct platform_device
*pdev
,
1045 struct mvneta_port
*pp
)
1047 struct device_node
*dn
= pdev
->dev
.of_node
;
1048 u32 long_pool_id
, short_pool_id
;
1050 if (!pp
->neta_armada3700
) {
1053 ret
= mvneta_bm_port_mbus_init(pp
);
1058 if (of_property_read_u32(dn
, "bm,pool-long", &long_pool_id
)) {
1059 netdev_info(pp
->dev
, "missing long pool id\n");
1063 /* Create port's long pool depending on mtu */
1064 pp
->pool_long
= mvneta_bm_pool_use(pp
->bm_priv
, long_pool_id
,
1065 MVNETA_BM_LONG
, pp
->id
,
1066 MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
));
1067 if (!pp
->pool_long
) {
1068 netdev_info(pp
->dev
, "fail to obtain long pool for port\n");
1072 pp
->pool_long
->port_map
|= 1 << pp
->id
;
1074 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_long
->buf_size
,
1077 /* If short pool id is not defined, assume using single pool */
1078 if (of_property_read_u32(dn
, "bm,pool-short", &short_pool_id
))
1079 short_pool_id
= long_pool_id
;
1081 /* Create port's short pool */
1082 pp
->pool_short
= mvneta_bm_pool_use(pp
->bm_priv
, short_pool_id
,
1083 MVNETA_BM_SHORT
, pp
->id
,
1084 MVNETA_BM_SHORT_PKT_SIZE
);
1085 if (!pp
->pool_short
) {
1086 netdev_info(pp
->dev
, "fail to obtain short pool for port\n");
1087 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1091 if (short_pool_id
!= long_pool_id
) {
1092 pp
->pool_short
->port_map
|= 1 << pp
->id
;
1093 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_short
->buf_size
,
1094 pp
->pool_short
->id
);
1100 /* Update settings of a pool for bigger packets */
1101 static void mvneta_bm_update_mtu(struct mvneta_port
*pp
, int mtu
)
1103 struct mvneta_bm_pool
*bm_pool
= pp
->pool_long
;
1104 struct hwbm_pool
*hwbm_pool
= &bm_pool
->hwbm_pool
;
1107 /* Release all buffers from long pool */
1108 mvneta_bm_bufs_free(pp
->bm_priv
, bm_pool
, 1 << pp
->id
);
1109 if (hwbm_pool
->buf_num
) {
1110 WARN(1, "cannot free all buffers in pool %d\n",
1115 bm_pool
->pkt_size
= MVNETA_RX_PKT_SIZE(mtu
);
1116 bm_pool
->buf_size
= MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
);
1117 hwbm_pool
->frag_size
= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)) +
1118 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
));
1120 /* Fill entire long pool */
1121 num
= hwbm_pool_add(hwbm_pool
, hwbm_pool
->size
, GFP_ATOMIC
);
1122 if (num
!= hwbm_pool
->size
) {
1123 WARN(1, "pool %d: %d of %d allocated\n",
1124 bm_pool
->id
, num
, hwbm_pool
->size
);
1127 mvneta_bm_pool_bufsize_set(pp
, bm_pool
->buf_size
, bm_pool
->id
);
1132 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1133 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
, 1 << pp
->id
);
1136 mvreg_write(pp
, MVNETA_ACC_MODE
, MVNETA_ACC_MODE_EXT1
);
1137 netdev_info(pp
->dev
, "fail to update MTU, fall back to software BM\n");
1140 /* Start the Ethernet port RX and TX activity */
1141 static void mvneta_port_up(struct mvneta_port
*pp
)
1146 /* Enable all initialized TXs. */
1148 for (queue
= 0; queue
< txq_number
; queue
++) {
1149 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
1151 q_map
|= (1 << queue
);
1153 mvreg_write(pp
, MVNETA_TXQ_CMD
, q_map
);
1156 /* Enable all initialized RXQs. */
1157 for (queue
= 0; queue
< rxq_number
; queue
++) {
1158 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
1161 q_map
|= (1 << queue
);
1163 mvreg_write(pp
, MVNETA_RXQ_CMD
, q_map
);
1166 /* Stop the Ethernet port activity */
1167 static void mvneta_port_down(struct mvneta_port
*pp
)
1172 /* Stop Rx port activity. Check port Rx activity. */
1173 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
) & MVNETA_RXQ_ENABLE_MASK
;
1175 /* Issue stop command for active channels only */
1177 mvreg_write(pp
, MVNETA_RXQ_CMD
,
1178 val
<< MVNETA_RXQ_DISABLE_SHIFT
);
1180 /* Wait for all Rx activity to terminate. */
1183 if (count
++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC
) {
1184 netdev_warn(pp
->dev
,
1185 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1191 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
);
1192 } while (val
& MVNETA_RXQ_ENABLE_MASK
);
1194 /* Stop Tx port activity. Check port Tx activity. Issue stop
1195 * command for active channels only
1197 val
= (mvreg_read(pp
, MVNETA_TXQ_CMD
)) & MVNETA_TXQ_ENABLE_MASK
;
1200 mvreg_write(pp
, MVNETA_TXQ_CMD
,
1201 (val
<< MVNETA_TXQ_DISABLE_SHIFT
));
1203 /* Wait for all Tx activity to terminate. */
1206 if (count
++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC
) {
1207 netdev_warn(pp
->dev
,
1208 "TIMEOUT for TX stopped status=0x%08x\n",
1214 /* Check TX Command reg that all Txqs are stopped */
1215 val
= mvreg_read(pp
, MVNETA_TXQ_CMD
);
1217 } while (val
& MVNETA_TXQ_ENABLE_MASK
);
1219 /* Double check to verify that TX FIFO is empty */
1222 if (count
++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT
) {
1223 netdev_warn(pp
->dev
,
1224 "TX FIFO empty timeout status=0x%08x\n",
1230 val
= mvreg_read(pp
, MVNETA_PORT_STATUS
);
1231 } while (!(val
& MVNETA_TX_FIFO_EMPTY
) &&
1232 (val
& MVNETA_TX_IN_PRGRS
));
1237 /* Enable the port by setting the port enable bit of the MAC control register */
1238 static void mvneta_port_enable(struct mvneta_port
*pp
)
1243 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1244 val
|= MVNETA_GMAC0_PORT_ENABLE
;
1245 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1248 /* Disable the port and wait for about 200 usec before retuning */
1249 static void mvneta_port_disable(struct mvneta_port
*pp
)
1253 /* Reset the Enable bit in the Serial Control Register */
1254 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1255 val
&= ~MVNETA_GMAC0_PORT_ENABLE
;
1256 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1261 /* Multicast tables methods */
1263 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1264 static void mvneta_set_ucast_table(struct mvneta_port
*pp
, int queue
)
1272 val
= 0x1 | (queue
<< 1);
1273 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1276 for (offset
= 0; offset
<= 0xc; offset
+= 4)
1277 mvreg_write(pp
, MVNETA_DA_FILT_UCAST_BASE
+ offset
, val
);
1280 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1281 static void mvneta_set_special_mcast_table(struct mvneta_port
*pp
, int queue
)
1289 val
= 0x1 | (queue
<< 1);
1290 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1293 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1294 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ offset
, val
);
1298 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1299 static void mvneta_set_other_mcast_table(struct mvneta_port
*pp
, int queue
)
1305 memset(pp
->mcast_count
, 0, sizeof(pp
->mcast_count
));
1308 memset(pp
->mcast_count
, 1, sizeof(pp
->mcast_count
));
1309 val
= 0x1 | (queue
<< 1);
1310 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1313 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1314 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ offset
, val
);
1317 static void mvneta_percpu_unmask_interrupt(void *arg
)
1319 struct mvneta_port
*pp
= arg
;
1321 /* All the queue are unmasked, but actually only the ones
1322 * mapped to this CPU will be unmasked
1324 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
1325 MVNETA_RX_INTR_MASK_ALL
|
1326 MVNETA_TX_INTR_MASK_ALL
|
1327 MVNETA_MISCINTR_INTR_MASK
);
1330 static void mvneta_percpu_mask_interrupt(void *arg
)
1332 struct mvneta_port
*pp
= arg
;
1334 /* All the queue are masked, but actually only the ones
1335 * mapped to this CPU will be masked
1337 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
1338 mvreg_write(pp
, MVNETA_INTR_OLD_MASK
, 0);
1339 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
, 0);
1342 static void mvneta_percpu_clear_intr_cause(void *arg
)
1344 struct mvneta_port
*pp
= arg
;
1346 /* All the queue are cleared, but actually only the ones
1347 * mapped to this CPU will be cleared
1349 mvreg_write(pp
, MVNETA_INTR_NEW_CAUSE
, 0);
1350 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
1351 mvreg_write(pp
, MVNETA_INTR_OLD_CAUSE
, 0);
1354 /* This method sets defaults to the NETA port:
1355 * Clears interrupt Cause and Mask registers.
1356 * Clears all MAC tables.
1357 * Sets defaults to all registers.
1358 * Resets RX and TX descriptor rings.
1360 * This method can be called after mvneta_port_down() to return the port
1361 * settings to defaults.
1363 static void mvneta_defaults_set(struct mvneta_port
*pp
)
1368 int max_cpu
= num_present_cpus();
1370 /* Clear all Cause registers */
1371 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
1373 /* Mask all interrupts */
1374 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
1375 mvreg_write(pp
, MVNETA_INTR_ENABLE
, 0);
1377 /* Enable MBUS Retry bit16 */
1378 mvreg_write(pp
, MVNETA_MBUS_RETRY
, 0x20);
1380 /* Set CPU queue access map. CPUs are assigned to the RX and
1381 * TX queues modulo their number. If there is only one TX
1382 * queue then it is assigned to the CPU associated to the
1385 for_each_present_cpu(cpu
) {
1386 int rxq_map
= 0, txq_map
= 0;
1388 if (!pp
->neta_armada3700
) {
1389 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
1390 if ((rxq
% max_cpu
) == cpu
)
1391 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
1393 for (txq
= 0; txq
< txq_number
; txq
++)
1394 if ((txq
% max_cpu
) == cpu
)
1395 txq_map
|= MVNETA_CPU_TXQ_ACCESS(txq
);
1397 /* With only one TX queue we configure a special case
1398 * which will allow to get all the irq on a single
1401 if (txq_number
== 1)
1402 txq_map
= (cpu
== pp
->rxq_def
) ?
1403 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1406 txq_map
= MVNETA_CPU_TXQ_ACCESS_ALL_MASK
;
1407 rxq_map
= MVNETA_CPU_RXQ_ACCESS_ALL_MASK
;
1410 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
1413 /* Reset RX and TX DMAs */
1414 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
1415 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
1417 /* Disable Legacy WRR, Disable EJP, Release from reset */
1418 mvreg_write(pp
, MVNETA_TXQ_CMD_1
, 0);
1419 for (queue
= 0; queue
< txq_number
; queue
++) {
1420 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(queue
), 0);
1421 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(queue
), 0);
1424 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
1425 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
1427 /* Set Port Acceleration Mode */
1429 /* HW buffer management + legacy parser */
1430 val
= MVNETA_ACC_MODE_EXT2
;
1432 /* SW buffer management + legacy parser */
1433 val
= MVNETA_ACC_MODE_EXT1
;
1434 mvreg_write(pp
, MVNETA_ACC_MODE
, val
);
1437 mvreg_write(pp
, MVNETA_BM_ADDRESS
, pp
->bm_priv
->bppi_phys_addr
);
1439 /* Update val of portCfg register accordingly with all RxQueue types */
1440 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
1441 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
1444 mvreg_write(pp
, MVNETA_PORT_CONFIG_EXTEND
, val
);
1445 mvreg_write(pp
, MVNETA_RX_MIN_FRAME_SIZE
, 64);
1447 /* Build PORT_SDMA_CONFIG_REG */
1450 /* Default burst size */
1451 val
|= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1452 val
|= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1453 val
|= MVNETA_RX_NO_DATA_SWAP
| MVNETA_TX_NO_DATA_SWAP
;
1455 #if defined(__BIG_ENDIAN)
1456 val
|= MVNETA_DESC_SWAP
;
1459 /* Assign port SDMA configuration */
1460 mvreg_write(pp
, MVNETA_SDMA_CONFIG
, val
);
1462 /* Disable PHY polling in hardware, since we're using the
1463 * kernel phylib to do this.
1465 val
= mvreg_read(pp
, MVNETA_UNIT_CONTROL
);
1466 val
&= ~MVNETA_PHY_POLLING_ENABLE
;
1467 mvreg_write(pp
, MVNETA_UNIT_CONTROL
, val
);
1469 mvneta_set_ucast_table(pp
, -1);
1470 mvneta_set_special_mcast_table(pp
, -1);
1471 mvneta_set_other_mcast_table(pp
, -1);
1473 /* Set port interrupt enable register - default enable all */
1474 mvreg_write(pp
, MVNETA_INTR_ENABLE
,
1475 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1476 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK
));
1478 mvneta_mib_counters_clear(pp
);
1481 /* Set max sizes for tx queues */
1482 static void mvneta_txq_max_tx_size_set(struct mvneta_port
*pp
, int max_tx_size
)
1488 mtu
= max_tx_size
* 8;
1489 if (mtu
> MVNETA_TX_MTU_MAX
)
1490 mtu
= MVNETA_TX_MTU_MAX
;
1493 val
= mvreg_read(pp
, MVNETA_TX_MTU
);
1494 val
&= ~MVNETA_TX_MTU_MAX
;
1496 mvreg_write(pp
, MVNETA_TX_MTU
, val
);
1498 /* TX token size and all TXQs token size must be larger that MTU */
1499 val
= mvreg_read(pp
, MVNETA_TX_TOKEN_SIZE
);
1501 size
= val
& MVNETA_TX_TOKEN_SIZE_MAX
;
1504 val
&= ~MVNETA_TX_TOKEN_SIZE_MAX
;
1506 mvreg_write(pp
, MVNETA_TX_TOKEN_SIZE
, val
);
1508 for (queue
= 0; queue
< txq_number
; queue
++) {
1509 val
= mvreg_read(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
));
1511 size
= val
& MVNETA_TXQ_TOKEN_SIZE_MAX
;
1514 val
&= ~MVNETA_TXQ_TOKEN_SIZE_MAX
;
1516 mvreg_write(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
), val
);
1521 /* Set unicast address */
1522 static void mvneta_set_ucast_addr(struct mvneta_port
*pp
, u8 last_nibble
,
1525 unsigned int unicast_reg
;
1526 unsigned int tbl_offset
;
1527 unsigned int reg_offset
;
1529 /* Locate the Unicast table entry */
1530 last_nibble
= (0xf & last_nibble
);
1532 /* offset from unicast tbl base */
1533 tbl_offset
= (last_nibble
/ 4) * 4;
1535 /* offset within the above reg */
1536 reg_offset
= last_nibble
% 4;
1538 unicast_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
));
1541 /* Clear accepts frame bit at specified unicast DA tbl entry */
1542 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1544 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1545 unicast_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
1548 mvreg_write(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
), unicast_reg
);
1551 /* Set mac address */
1552 static void mvneta_mac_addr_set(struct mvneta_port
*pp
, unsigned char *addr
,
1559 mac_l
= (addr
[4] << 8) | (addr
[5]);
1560 mac_h
= (addr
[0] << 24) | (addr
[1] << 16) |
1561 (addr
[2] << 8) | (addr
[3] << 0);
1563 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, mac_l
);
1564 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, mac_h
);
1567 /* Accept frames of this address */
1568 mvneta_set_ucast_addr(pp
, addr
[5], queue
);
1571 /* Set the number of packets that will be received before RX interrupt
1572 * will be generated by HW.
1574 static void mvneta_rx_pkts_coal_set(struct mvneta_port
*pp
,
1575 struct mvneta_rx_queue
*rxq
, u32 value
)
1577 mvreg_write(pp
, MVNETA_RXQ_THRESHOLD_REG(rxq
->id
),
1578 value
| MVNETA_RXQ_NON_OCCUPIED(0));
1581 /* Set the time delay in usec before RX interrupt will be generated by
1584 static void mvneta_rx_time_coal_set(struct mvneta_port
*pp
,
1585 struct mvneta_rx_queue
*rxq
, u32 value
)
1588 unsigned long clk_rate
;
1590 clk_rate
= clk_get_rate(pp
->clk
);
1591 val
= (clk_rate
/ 1000000) * value
;
1593 mvreg_write(pp
, MVNETA_RXQ_TIME_COAL_REG(rxq
->id
), val
);
1596 /* Set threshold for TX_DONE pkts coalescing */
1597 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port
*pp
,
1598 struct mvneta_tx_queue
*txq
, u32 value
)
1602 val
= mvreg_read(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
));
1604 val
&= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK
;
1605 val
|= MVNETA_TXQ_SENT_THRESH_MASK(value
);
1607 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), val
);
1610 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1611 static void mvneta_rx_desc_fill(struct mvneta_rx_desc
*rx_desc
,
1612 u32 phys_addr
, void *virt_addr
,
1613 struct mvneta_rx_queue
*rxq
)
1617 rx_desc
->buf_phys_addr
= phys_addr
;
1618 i
= rx_desc
- rxq
->descs
;
1619 rxq
->buf_virt_addr
[i
] = virt_addr
;
1622 /* Decrement sent descriptors counter */
1623 static void mvneta_txq_sent_desc_dec(struct mvneta_port
*pp
,
1624 struct mvneta_tx_queue
*txq
,
1629 /* Only 255 TX descriptors can be updated at once */
1630 while (sent_desc
> 0xff) {
1631 val
= 0xff << MVNETA_TXQ_DEC_SENT_SHIFT
;
1632 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1633 sent_desc
= sent_desc
- 0xff;
1636 val
= sent_desc
<< MVNETA_TXQ_DEC_SENT_SHIFT
;
1637 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1640 /* Get number of TX descriptors already sent by HW */
1641 static int mvneta_txq_sent_desc_num_get(struct mvneta_port
*pp
,
1642 struct mvneta_tx_queue
*txq
)
1647 val
= mvreg_read(pp
, MVNETA_TXQ_STATUS_REG(txq
->id
));
1648 sent_desc
= (val
& MVNETA_TXQ_SENT_DESC_MASK
) >>
1649 MVNETA_TXQ_SENT_DESC_SHIFT
;
1654 /* Get number of sent descriptors and decrement counter.
1655 * The number of sent descriptors is returned.
1657 static int mvneta_txq_sent_desc_proc(struct mvneta_port
*pp
,
1658 struct mvneta_tx_queue
*txq
)
1662 /* Get number of sent descriptors */
1663 sent_desc
= mvneta_txq_sent_desc_num_get(pp
, txq
);
1665 /* Decrement sent descriptors counter */
1667 mvneta_txq_sent_desc_dec(pp
, txq
, sent_desc
);
1672 /* Set TXQ descriptors fields relevant for CSUM calculation */
1673 static u32
mvneta_txq_desc_csum(int l3_offs
, int l3_proto
,
1674 int ip_hdr_len
, int l4_proto
)
1678 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1679 * G_L4_chk, L4_type; required only for checksum
1682 command
= l3_offs
<< MVNETA_TX_L3_OFF_SHIFT
;
1683 command
|= ip_hdr_len
<< MVNETA_TX_IP_HLEN_SHIFT
;
1685 if (l3_proto
== htons(ETH_P_IP
))
1686 command
|= MVNETA_TXD_IP_CSUM
;
1688 command
|= MVNETA_TX_L3_IP6
;
1690 if (l4_proto
== IPPROTO_TCP
)
1691 command
|= MVNETA_TX_L4_CSUM_FULL
;
1692 else if (l4_proto
== IPPROTO_UDP
)
1693 command
|= MVNETA_TX_L4_UDP
| MVNETA_TX_L4_CSUM_FULL
;
1695 command
|= MVNETA_TX_L4_CSUM_NOT
;
1701 /* Display more error info */
1702 static void mvneta_rx_error(struct mvneta_port
*pp
,
1703 struct mvneta_rx_desc
*rx_desc
)
1705 u32 status
= rx_desc
->status
;
1707 switch (status
& MVNETA_RXD_ERR_CODE_MASK
) {
1708 case MVNETA_RXD_ERR_CRC
:
1709 netdev_err(pp
->dev
, "bad rx status %08x (crc error), size=%d\n",
1710 status
, rx_desc
->data_size
);
1712 case MVNETA_RXD_ERR_OVERRUN
:
1713 netdev_err(pp
->dev
, "bad rx status %08x (overrun error), size=%d\n",
1714 status
, rx_desc
->data_size
);
1716 case MVNETA_RXD_ERR_LEN
:
1717 netdev_err(pp
->dev
, "bad rx status %08x (max frame length error), size=%d\n",
1718 status
, rx_desc
->data_size
);
1720 case MVNETA_RXD_ERR_RESOURCE
:
1721 netdev_err(pp
->dev
, "bad rx status %08x (resource error), size=%d\n",
1722 status
, rx_desc
->data_size
);
1727 /* Handle RX checksum offload based on the descriptor's status */
1728 static void mvneta_rx_csum(struct mvneta_port
*pp
, u32 status
,
1729 struct sk_buff
*skb
)
1731 if ((pp
->dev
->features
& NETIF_F_RXCSUM
) &&
1732 (status
& MVNETA_RXD_L3_IP4
) &&
1733 (status
& MVNETA_RXD_L4_CSUM_OK
)) {
1735 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1739 skb
->ip_summed
= CHECKSUM_NONE
;
1742 /* Return tx queue pointer (find last set bit) according to <cause> returned
1743 * form tx_done reg. <cause> must not be null. The return value is always a
1744 * valid queue for matching the first one found in <cause>.
1746 static struct mvneta_tx_queue
*mvneta_tx_done_policy(struct mvneta_port
*pp
,
1749 int queue
= fls(cause
) - 1;
1751 return &pp
->txqs
[queue
];
1754 /* Free tx queue skbuffs */
1755 static void mvneta_txq_bufs_free(struct mvneta_port
*pp
,
1756 struct mvneta_tx_queue
*txq
, int num
,
1757 struct netdev_queue
*nq
)
1759 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1762 for (i
= 0; i
< num
; i
++) {
1763 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+
1765 struct sk_buff
*skb
= txq
->tx_skb
[txq
->txq_get_index
];
1768 bytes_compl
+= skb
->len
;
1772 mvneta_txq_inc_get(txq
);
1774 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
1775 dma_unmap_single(pp
->dev
->dev
.parent
,
1776 tx_desc
->buf_phys_addr
,
1777 tx_desc
->data_size
, DMA_TO_DEVICE
);
1780 dev_kfree_skb_any(skb
);
1783 netdev_tx_completed_queue(nq
, pkts_compl
, bytes_compl
);
1786 /* Handle end of transmission */
1787 static void mvneta_txq_done(struct mvneta_port
*pp
,
1788 struct mvneta_tx_queue
*txq
)
1790 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
1793 tx_done
= mvneta_txq_sent_desc_proc(pp
, txq
);
1797 mvneta_txq_bufs_free(pp
, txq
, tx_done
, nq
);
1799 txq
->count
-= tx_done
;
1801 if (netif_tx_queue_stopped(nq
)) {
1802 if (txq
->count
<= txq
->tx_wake_threshold
)
1803 netif_tx_wake_queue(nq
);
1807 /* Refill processing for SW buffer management */
1808 /* Allocate page per descriptor */
1809 static int mvneta_rx_refill(struct mvneta_port
*pp
,
1810 struct mvneta_rx_desc
*rx_desc
,
1811 struct mvneta_rx_queue
*rxq
,
1814 dma_addr_t phys_addr
;
1817 page
= __dev_alloc_page(gfp_mask
);
1821 /* map page for use */
1822 phys_addr
= dma_map_page(pp
->dev
->dev
.parent
, page
, 0, PAGE_SIZE
,
1824 if (unlikely(dma_mapping_error(pp
->dev
->dev
.parent
, phys_addr
))) {
1829 phys_addr
+= pp
->rx_offset_correction
;
1830 mvneta_rx_desc_fill(rx_desc
, phys_addr
, page
, rxq
);
1834 /* Handle tx checksum */
1835 static u32
mvneta_skb_tx_csum(struct mvneta_port
*pp
, struct sk_buff
*skb
)
1837 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1839 __be16 l3_proto
= vlan_get_protocol(skb
);
1842 if (l3_proto
== htons(ETH_P_IP
)) {
1843 struct iphdr
*ip4h
= ip_hdr(skb
);
1845 /* Calculate IPv4 checksum and L4 checksum */
1846 ip_hdr_len
= ip4h
->ihl
;
1847 l4_proto
= ip4h
->protocol
;
1848 } else if (l3_proto
== htons(ETH_P_IPV6
)) {
1849 struct ipv6hdr
*ip6h
= ipv6_hdr(skb
);
1851 /* Read l4_protocol from one of IPv6 extra headers */
1852 if (skb_network_header_len(skb
) > 0)
1853 ip_hdr_len
= (skb_network_header_len(skb
) >> 2);
1854 l4_proto
= ip6h
->nexthdr
;
1856 return MVNETA_TX_L4_CSUM_NOT
;
1858 return mvneta_txq_desc_csum(skb_network_offset(skb
),
1859 l3_proto
, ip_hdr_len
, l4_proto
);
1862 return MVNETA_TX_L4_CSUM_NOT
;
1865 /* Drop packets received by the RXQ and free buffers */
1866 static void mvneta_rxq_drop_pkts(struct mvneta_port
*pp
,
1867 struct mvneta_rx_queue
*rxq
)
1871 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1873 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
1876 for (i
= 0; i
< rx_done
; i
++) {
1877 struct mvneta_rx_desc
*rx_desc
=
1878 mvneta_rxq_next_desc_get(rxq
);
1879 u8 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
1880 struct mvneta_bm_pool
*bm_pool
;
1882 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
1883 /* Return dropped buffer to the pool */
1884 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
1885 rx_desc
->buf_phys_addr
);
1890 for (i
= 0; i
< rxq
->size
; i
++) {
1891 struct mvneta_rx_desc
*rx_desc
= rxq
->descs
+ i
;
1892 void *data
= rxq
->buf_virt_addr
[i
];
1893 if (!data
|| !(rx_desc
->buf_phys_addr
))
1896 dma_unmap_page(pp
->dev
->dev
.parent
, rx_desc
->buf_phys_addr
,
1897 PAGE_SIZE
, DMA_FROM_DEVICE
);
1903 int mvneta_rx_refill_queue(struct mvneta_port
*pp
, struct mvneta_rx_queue
*rxq
)
1905 struct mvneta_rx_desc
*rx_desc
;
1906 int curr_desc
= rxq
->first_to_refill
;
1909 for (i
= 0; (i
< rxq
->refill_num
) && (i
< 64); i
++) {
1910 rx_desc
= rxq
->descs
+ curr_desc
;
1911 if (!(rx_desc
->buf_phys_addr
)) {
1912 if (mvneta_rx_refill(pp
, rx_desc
, rxq
, GFP_ATOMIC
)) {
1913 pr_err("Can't refill queue %d. Done %d from %d\n",
1914 rxq
->id
, i
, rxq
->refill_num
);
1919 curr_desc
= MVNETA_QUEUE_NEXT_DESC(rxq
, curr_desc
);
1921 rxq
->refill_num
-= i
;
1922 rxq
->first_to_refill
= curr_desc
;
1927 /* Main rx processing when using software buffer management */
1928 static int mvneta_rx_swbm(struct napi_struct
*napi
,
1929 struct mvneta_port
*pp
, int budget
,
1930 struct mvneta_rx_queue
*rxq
)
1932 struct net_device
*dev
= pp
->dev
;
1933 int rx_todo
, rx_proc
;
1938 /* Get number of received packets */
1939 rx_todo
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1942 /* Fairness NAPI loop */
1943 while ((rcvd_pkts
< budget
) && (rx_proc
< rx_todo
)) {
1944 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
1945 unsigned char *data
;
1947 dma_addr_t phys_addr
;
1948 u32 rx_status
, index
;
1949 int rx_bytes
, skb_size
, copy_size
;
1950 int frag_num
, frag_size
, frag_offset
;
1952 index
= rx_desc
- rxq
->descs
;
1953 page
= (struct page
*)rxq
->buf_virt_addr
[index
];
1954 data
= page_address(page
);
1955 /* Prefetch header */
1958 phys_addr
= rx_desc
->buf_phys_addr
;
1959 rx_status
= rx_desc
->status
;
1963 if (rx_status
& MVNETA_RXD_FIRST_DESC
) {
1964 /* Check errors only for FIRST descriptor */
1965 if (rx_status
& MVNETA_RXD_ERR_SUMMARY
) {
1966 mvneta_rx_error(pp
, rx_desc
);
1967 dev
->stats
.rx_errors
++;
1968 /* leave the descriptor untouched */
1971 rx_bytes
= rx_desc
->data_size
-
1972 (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
1974 /* Allocate small skb for each new packet */
1975 skb_size
= max(rx_copybreak
, rx_header_size
);
1976 rxq
->skb
= netdev_alloc_skb_ip_align(dev
, skb_size
);
1977 if (unlikely(!rxq
->skb
)) {
1979 "Can't allocate skb on queue %d\n",
1981 dev
->stats
.rx_dropped
++;
1982 rxq
->skb_alloc_err
++;
1985 copy_size
= min(skb_size
, rx_bytes
);
1987 /* Copy data from buffer to SKB, skip Marvell header */
1988 memcpy(rxq
->skb
->data
, data
+ MVNETA_MH_SIZE
,
1990 skb_put(rxq
->skb
, copy_size
);
1991 rxq
->left_size
= rx_bytes
- copy_size
;
1993 mvneta_rx_csum(pp
, rx_status
, rxq
->skb
);
1994 if (rxq
->left_size
== 0) {
1995 int size
= copy_size
+ MVNETA_MH_SIZE
;
1997 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
2002 /* leave the descriptor and buffer untouched */
2004 /* refill descriptor with new buffer later */
2005 rx_desc
->buf_phys_addr
= 0;
2008 frag_offset
= copy_size
+ MVNETA_MH_SIZE
;
2009 frag_size
= min(rxq
->left_size
,
2010 (int)(PAGE_SIZE
- frag_offset
));
2011 skb_add_rx_frag(rxq
->skb
, frag_num
, page
,
2012 frag_offset
, frag_size
,
2014 dma_unmap_page(dev
->dev
.parent
, phys_addr
,
2015 PAGE_SIZE
, DMA_FROM_DEVICE
);
2016 rxq
->left_size
-= frag_size
;
2019 /* Middle or Last descriptor */
2020 if (unlikely(!rxq
->skb
)) {
2021 pr_debug("no skb for rx_status 0x%x\n",
2025 if (!rxq
->left_size
) {
2026 /* last descriptor has only FCS */
2027 /* and can be discarded */
2028 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
2032 /* leave the descriptor and buffer untouched */
2034 /* refill descriptor with new buffer later */
2035 rx_desc
->buf_phys_addr
= 0;
2037 frag_num
= skb_shinfo(rxq
->skb
)->nr_frags
;
2039 frag_size
= min(rxq
->left_size
,
2040 (int)(PAGE_SIZE
- frag_offset
));
2041 skb_add_rx_frag(rxq
->skb
, frag_num
, page
,
2042 frag_offset
, frag_size
,
2045 dma_unmap_page(dev
->dev
.parent
, phys_addr
,
2046 PAGE_SIZE
, DMA_FROM_DEVICE
);
2048 rxq
->left_size
-= frag_size
;
2050 } /* Middle or Last descriptor */
2052 if (!(rx_status
& MVNETA_RXD_LAST_DESC
))
2053 /* no last descriptor this time */
2056 if (rxq
->left_size
) {
2057 pr_err("get last desc, but left_size (%d) != 0\n",
2059 dev_kfree_skb_any(rxq
->skb
);
2065 rcvd_bytes
+= rxq
->skb
->len
;
2067 /* Linux processing */
2068 rxq
->skb
->protocol
= eth_type_trans(rxq
->skb
, dev
);
2070 napi_gro_receive(napi
, rxq
->skb
);
2072 /* clean uncomplete skb pointer in queue */
2078 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2080 u64_stats_update_begin(&stats
->syncp
);
2081 stats
->rx_packets
+= rcvd_pkts
;
2082 stats
->rx_bytes
+= rcvd_bytes
;
2083 u64_stats_update_end(&stats
->syncp
);
2086 /* return some buffers to hardware queue, one at a time is too slow */
2087 refill
= mvneta_rx_refill_queue(pp
, rxq
);
2089 /* Update rxq management counters */
2090 mvneta_rxq_desc_num_update(pp
, rxq
, rx_proc
, refill
);
2095 /* Main rx processing when using hardware buffer management */
2096 static int mvneta_rx_hwbm(struct napi_struct
*napi
,
2097 struct mvneta_port
*pp
, int rx_todo
,
2098 struct mvneta_rx_queue
*rxq
)
2100 struct net_device
*dev
= pp
->dev
;
2105 /* Get number of received packets */
2106 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
2108 if (rx_todo
> rx_done
)
2113 /* Fairness NAPI loop */
2114 while (rx_done
< rx_todo
) {
2115 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
2116 struct mvneta_bm_pool
*bm_pool
= NULL
;
2117 struct sk_buff
*skb
;
2118 unsigned char *data
;
2119 dma_addr_t phys_addr
;
2120 u32 rx_status
, frag_size
;
2125 rx_status
= rx_desc
->status
;
2126 rx_bytes
= rx_desc
->data_size
- (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
2127 data
= (u8
*)(uintptr_t)rx_desc
->buf_cookie
;
2128 phys_addr
= rx_desc
->buf_phys_addr
;
2129 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
2130 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
2132 if (!mvneta_rxq_desc_is_first_last(rx_status
) ||
2133 (rx_status
& MVNETA_RXD_ERR_SUMMARY
)) {
2134 err_drop_frame_ret_pool
:
2135 /* Return the buffer to the pool */
2136 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2137 rx_desc
->buf_phys_addr
);
2139 dev
->stats
.rx_errors
++;
2140 mvneta_rx_error(pp
, rx_desc
);
2141 /* leave the descriptor untouched */
2145 if (rx_bytes
<= rx_copybreak
) {
2146 /* better copy a small frame and not unmap the DMA region */
2147 skb
= netdev_alloc_skb_ip_align(dev
, rx_bytes
);
2149 goto err_drop_frame_ret_pool
;
2151 dma_sync_single_range_for_cpu(&pp
->bm_priv
->pdev
->dev
,
2152 rx_desc
->buf_phys_addr
,
2153 MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2156 skb_put_data(skb
, data
+ MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2159 skb
->protocol
= eth_type_trans(skb
, dev
);
2160 mvneta_rx_csum(pp
, rx_status
, skb
);
2161 napi_gro_receive(napi
, skb
);
2164 rcvd_bytes
+= rx_bytes
;
2166 /* Return the buffer to the pool */
2167 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2168 rx_desc
->buf_phys_addr
);
2170 /* leave the descriptor and buffer untouched */
2174 /* Refill processing */
2175 err
= hwbm_pool_refill(&bm_pool
->hwbm_pool
, GFP_ATOMIC
);
2177 netdev_err(dev
, "Linux processing - Can't refill\n");
2179 goto err_drop_frame_ret_pool
;
2182 frag_size
= bm_pool
->hwbm_pool
.frag_size
;
2184 skb
= build_skb(data
, frag_size
> PAGE_SIZE
? 0 : frag_size
);
2186 /* After refill old buffer has to be unmapped regardless
2187 * the skb is successfully built or not.
2189 dma_unmap_single(&pp
->bm_priv
->pdev
->dev
, phys_addr
,
2190 bm_pool
->buf_size
, DMA_FROM_DEVICE
);
2192 goto err_drop_frame
;
2195 rcvd_bytes
+= rx_bytes
;
2197 /* Linux processing */
2198 skb_reserve(skb
, MVNETA_MH_SIZE
+ NET_SKB_PAD
);
2199 skb_put(skb
, rx_bytes
);
2201 skb
->protocol
= eth_type_trans(skb
, dev
);
2203 mvneta_rx_csum(pp
, rx_status
, skb
);
2205 napi_gro_receive(napi
, skb
);
2209 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2211 u64_stats_update_begin(&stats
->syncp
);
2212 stats
->rx_packets
+= rcvd_pkts
;
2213 stats
->rx_bytes
+= rcvd_bytes
;
2214 u64_stats_update_end(&stats
->syncp
);
2217 /* Update rxq management counters */
2218 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
2224 mvneta_tso_put_hdr(struct sk_buff
*skb
,
2225 struct mvneta_port
*pp
, struct mvneta_tx_queue
*txq
)
2227 struct mvneta_tx_desc
*tx_desc
;
2228 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2230 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2231 tx_desc
= mvneta_txq_next_desc_get(txq
);
2232 tx_desc
->data_size
= hdr_len
;
2233 tx_desc
->command
= mvneta_skb_tx_csum(pp
, skb
);
2234 tx_desc
->command
|= MVNETA_TXD_F_DESC
;
2235 tx_desc
->buf_phys_addr
= txq
->tso_hdrs_phys
+
2236 txq
->txq_put_index
* TSO_HEADER_SIZE
;
2237 mvneta_txq_inc_put(txq
);
2241 mvneta_tso_put_data(struct net_device
*dev
, struct mvneta_tx_queue
*txq
,
2242 struct sk_buff
*skb
, char *data
, int size
,
2243 bool last_tcp
, bool is_last
)
2245 struct mvneta_tx_desc
*tx_desc
;
2247 tx_desc
= mvneta_txq_next_desc_get(txq
);
2248 tx_desc
->data_size
= size
;
2249 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, data
,
2250 size
, DMA_TO_DEVICE
);
2251 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2252 tx_desc
->buf_phys_addr
))) {
2253 mvneta_txq_desc_put(txq
);
2257 tx_desc
->command
= 0;
2258 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2261 /* last descriptor in the TCP packet */
2262 tx_desc
->command
= MVNETA_TXD_L_DESC
;
2264 /* last descriptor in SKB */
2266 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2268 mvneta_txq_inc_put(txq
);
2272 static int mvneta_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
,
2273 struct mvneta_tx_queue
*txq
)
2275 int total_len
, data_left
;
2277 struct mvneta_port
*pp
= netdev_priv(dev
);
2279 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2282 /* Count needed descriptors */
2283 if ((txq
->count
+ tso_count_descs(skb
)) >= txq
->size
)
2286 if (skb_headlen(skb
) < (skb_transport_offset(skb
) + tcp_hdrlen(skb
))) {
2287 pr_info("*** Is this even possible???!?!?\n");
2291 /* Initialize the TSO handler, and prepare the first payload */
2292 tso_start(skb
, &tso
);
2294 total_len
= skb
->len
- hdr_len
;
2295 while (total_len
> 0) {
2298 data_left
= min_t(int, skb_shinfo(skb
)->gso_size
, total_len
);
2299 total_len
-= data_left
;
2302 /* prepare packet headers: MAC + IP + TCP */
2303 hdr
= txq
->tso_hdrs
+ txq
->txq_put_index
* TSO_HEADER_SIZE
;
2304 tso_build_hdr(skb
, hdr
, &tso
, data_left
, total_len
== 0);
2306 mvneta_tso_put_hdr(skb
, pp
, txq
);
2308 while (data_left
> 0) {
2312 size
= min_t(int, tso
.size
, data_left
);
2314 if (mvneta_tso_put_data(dev
, txq
, skb
,
2321 tso_build_data(skb
, &tso
, size
);
2328 /* Release all used data descriptors; header descriptors must not
2331 for (i
= desc_count
- 1; i
>= 0; i
--) {
2332 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+ i
;
2333 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
2334 dma_unmap_single(pp
->dev
->dev
.parent
,
2335 tx_desc
->buf_phys_addr
,
2338 mvneta_txq_desc_put(txq
);
2343 /* Handle tx fragmentation processing */
2344 static int mvneta_tx_frag_process(struct mvneta_port
*pp
, struct sk_buff
*skb
,
2345 struct mvneta_tx_queue
*txq
)
2347 struct mvneta_tx_desc
*tx_desc
;
2348 int i
, nr_frags
= skb_shinfo(skb
)->nr_frags
;
2350 for (i
= 0; i
< nr_frags
; i
++) {
2351 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2352 void *addr
= page_address(frag
->page
.p
) + frag
->page_offset
;
2354 tx_desc
= mvneta_txq_next_desc_get(txq
);
2355 tx_desc
->data_size
= frag
->size
;
2357 tx_desc
->buf_phys_addr
=
2358 dma_map_single(pp
->dev
->dev
.parent
, addr
,
2359 tx_desc
->data_size
, DMA_TO_DEVICE
);
2361 if (dma_mapping_error(pp
->dev
->dev
.parent
,
2362 tx_desc
->buf_phys_addr
)) {
2363 mvneta_txq_desc_put(txq
);
2367 if (i
== nr_frags
- 1) {
2368 /* Last descriptor */
2369 tx_desc
->command
= MVNETA_TXD_L_DESC
| MVNETA_TXD_Z_PAD
;
2370 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2372 /* Descriptor in the middle: Not First, Not Last */
2373 tx_desc
->command
= 0;
2374 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2376 mvneta_txq_inc_put(txq
);
2382 /* Release all descriptors that were used to map fragments of
2383 * this packet, as well as the corresponding DMA mappings
2385 for (i
= i
- 1; i
>= 0; i
--) {
2386 tx_desc
= txq
->descs
+ i
;
2387 dma_unmap_single(pp
->dev
->dev
.parent
,
2388 tx_desc
->buf_phys_addr
,
2391 mvneta_txq_desc_put(txq
);
2397 /* Main tx processing */
2398 static netdev_tx_t
mvneta_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2400 struct mvneta_port
*pp
= netdev_priv(dev
);
2401 u16 txq_id
= skb_get_queue_mapping(skb
);
2402 struct mvneta_tx_queue
*txq
= &pp
->txqs
[txq_id
];
2403 struct mvneta_tx_desc
*tx_desc
;
2408 if (!netif_running(dev
))
2411 if (skb_is_gso(skb
)) {
2412 frags
= mvneta_tx_tso(skb
, dev
, txq
);
2416 frags
= skb_shinfo(skb
)->nr_frags
+ 1;
2418 /* Get a descriptor for the first part of the packet */
2419 tx_desc
= mvneta_txq_next_desc_get(txq
);
2421 tx_cmd
= mvneta_skb_tx_csum(pp
, skb
);
2423 tx_desc
->data_size
= skb_headlen(skb
);
2425 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, skb
->data
,
2428 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2429 tx_desc
->buf_phys_addr
))) {
2430 mvneta_txq_desc_put(txq
);
2436 /* First and Last descriptor */
2437 tx_cmd
|= MVNETA_TXD_FLZ_DESC
;
2438 tx_desc
->command
= tx_cmd
;
2439 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2440 mvneta_txq_inc_put(txq
);
2442 /* First but not Last */
2443 tx_cmd
|= MVNETA_TXD_F_DESC
;
2444 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2445 mvneta_txq_inc_put(txq
);
2446 tx_desc
->command
= tx_cmd
;
2447 /* Continue with other skb fragments */
2448 if (mvneta_tx_frag_process(pp
, skb
, txq
)) {
2449 dma_unmap_single(dev
->dev
.parent
,
2450 tx_desc
->buf_phys_addr
,
2453 mvneta_txq_desc_put(txq
);
2461 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2462 struct netdev_queue
*nq
= netdev_get_tx_queue(dev
, txq_id
);
2464 netdev_tx_sent_queue(nq
, len
);
2466 txq
->count
+= frags
;
2467 if (txq
->count
>= txq
->tx_stop_threshold
)
2468 netif_tx_stop_queue(nq
);
2470 if (!skb
->xmit_more
|| netif_xmit_stopped(nq
) ||
2471 txq
->pending
+ frags
> MVNETA_TXQ_DEC_SENT_MASK
)
2472 mvneta_txq_pend_desc_add(pp
, txq
, frags
);
2474 txq
->pending
+= frags
;
2476 u64_stats_update_begin(&stats
->syncp
);
2477 stats
->tx_packets
++;
2478 stats
->tx_bytes
+= len
;
2479 u64_stats_update_end(&stats
->syncp
);
2481 dev
->stats
.tx_dropped
++;
2482 dev_kfree_skb_any(skb
);
2485 return NETDEV_TX_OK
;
2489 /* Free tx resources, when resetting a port */
2490 static void mvneta_txq_done_force(struct mvneta_port
*pp
,
2491 struct mvneta_tx_queue
*txq
)
2494 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
2495 int tx_done
= txq
->count
;
2497 mvneta_txq_bufs_free(pp
, txq
, tx_done
, nq
);
2501 txq
->txq_put_index
= 0;
2502 txq
->txq_get_index
= 0;
2505 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2506 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2508 static void mvneta_tx_done_gbe(struct mvneta_port
*pp
, u32 cause_tx_done
)
2510 struct mvneta_tx_queue
*txq
;
2511 struct netdev_queue
*nq
;
2512 int cpu
= smp_processor_id();
2514 while (cause_tx_done
) {
2515 txq
= mvneta_tx_done_policy(pp
, cause_tx_done
);
2517 nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
2518 __netif_tx_lock(nq
, cpu
);
2521 mvneta_txq_done(pp
, txq
);
2523 __netif_tx_unlock(nq
);
2524 cause_tx_done
&= ~((1 << txq
->id
));
2528 /* Compute crc8 of the specified address, using a unique algorithm ,
2529 * according to hw spec, different than generic crc8 algorithm
2531 static int mvneta_addr_crc(unsigned char *addr
)
2536 for (i
= 0; i
< ETH_ALEN
; i
++) {
2539 crc
= (crc
^ addr
[i
]) << 8;
2540 for (j
= 7; j
>= 0; j
--) {
2541 if (crc
& (0x100 << j
))
2549 /* This method controls the net device special MAC multicast support.
2550 * The Special Multicast Table for MAC addresses supports MAC of the form
2551 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2552 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2553 * Table entries in the DA-Filter table. This method set the Special
2554 * Multicast Table appropriate entry.
2556 static void mvneta_set_special_mcast_addr(struct mvneta_port
*pp
,
2557 unsigned char last_byte
,
2560 unsigned int smc_table_reg
;
2561 unsigned int tbl_offset
;
2562 unsigned int reg_offset
;
2564 /* Register offset from SMC table base */
2565 tbl_offset
= (last_byte
/ 4);
2566 /* Entry offset within the above reg */
2567 reg_offset
= last_byte
% 4;
2569 smc_table_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_SPEC_MCAST
2573 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2575 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2576 smc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2579 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ tbl_offset
* 4,
2583 /* This method controls the network device Other MAC multicast support.
2584 * The Other Multicast Table is used for multicast of another type.
2585 * A CRC-8 is used as an index to the Other Multicast Table entries
2586 * in the DA-Filter table.
2587 * The method gets the CRC-8 value from the calling routine and
2588 * sets the Other Multicast Table appropriate entry according to the
2591 static void mvneta_set_other_mcast_addr(struct mvneta_port
*pp
,
2595 unsigned int omc_table_reg
;
2596 unsigned int tbl_offset
;
2597 unsigned int reg_offset
;
2599 tbl_offset
= (crc8
/ 4) * 4; /* Register offset from OMC table base */
2600 reg_offset
= crc8
% 4; /* Entry offset within the above reg */
2602 omc_table_reg
= mvreg_read(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
);
2605 /* Clear accepts frame bit at specified Other DA table entry */
2606 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2608 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2609 omc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2612 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
, omc_table_reg
);
2615 /* The network device supports multicast using two tables:
2616 * 1) Special Multicast Table for MAC addresses of the form
2617 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2618 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2619 * Table entries in the DA-Filter table.
2620 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2621 * is used as an index to the Other Multicast Table entries in the
2624 static int mvneta_mcast_addr_set(struct mvneta_port
*pp
, unsigned char *p_addr
,
2627 unsigned char crc_result
= 0;
2629 if (memcmp(p_addr
, "\x01\x00\x5e\x00\x00", 5) == 0) {
2630 mvneta_set_special_mcast_addr(pp
, p_addr
[5], queue
);
2634 crc_result
= mvneta_addr_crc(p_addr
);
2636 if (pp
->mcast_count
[crc_result
] == 0) {
2637 netdev_info(pp
->dev
, "No valid Mcast for crc8=0x%02x\n",
2642 pp
->mcast_count
[crc_result
]--;
2643 if (pp
->mcast_count
[crc_result
] != 0) {
2644 netdev_info(pp
->dev
,
2645 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2646 pp
->mcast_count
[crc_result
], crc_result
);
2650 pp
->mcast_count
[crc_result
]++;
2652 mvneta_set_other_mcast_addr(pp
, crc_result
, queue
);
2657 /* Configure Fitering mode of Ethernet port */
2658 static void mvneta_rx_unicast_promisc_set(struct mvneta_port
*pp
,
2661 u32 port_cfg_reg
, val
;
2663 port_cfg_reg
= mvreg_read(pp
, MVNETA_PORT_CONFIG
);
2665 val
= mvreg_read(pp
, MVNETA_TYPE_PRIO
);
2667 /* Set / Clear UPM bit in port configuration register */
2669 /* Accept all Unicast addresses */
2670 port_cfg_reg
|= MVNETA_UNI_PROMISC_MODE
;
2671 val
|= MVNETA_FORCE_UNI
;
2672 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, 0xffff);
2673 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, 0xffffffff);
2675 /* Reject all Unicast addresses */
2676 port_cfg_reg
&= ~MVNETA_UNI_PROMISC_MODE
;
2677 val
&= ~MVNETA_FORCE_UNI
;
2680 mvreg_write(pp
, MVNETA_PORT_CONFIG
, port_cfg_reg
);
2681 mvreg_write(pp
, MVNETA_TYPE_PRIO
, val
);
2684 /* register unicast and multicast addresses */
2685 static void mvneta_set_rx_mode(struct net_device
*dev
)
2687 struct mvneta_port
*pp
= netdev_priv(dev
);
2688 struct netdev_hw_addr
*ha
;
2690 if (dev
->flags
& IFF_PROMISC
) {
2691 /* Accept all: Multicast + Unicast */
2692 mvneta_rx_unicast_promisc_set(pp
, 1);
2693 mvneta_set_ucast_table(pp
, pp
->rxq_def
);
2694 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2695 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2697 /* Accept single Unicast */
2698 mvneta_rx_unicast_promisc_set(pp
, 0);
2699 mvneta_set_ucast_table(pp
, -1);
2700 mvneta_mac_addr_set(pp
, dev
->dev_addr
, pp
->rxq_def
);
2702 if (dev
->flags
& IFF_ALLMULTI
) {
2703 /* Accept all multicast */
2704 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2705 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2707 /* Accept only initialized multicast */
2708 mvneta_set_special_mcast_table(pp
, -1);
2709 mvneta_set_other_mcast_table(pp
, -1);
2711 if (!netdev_mc_empty(dev
)) {
2712 netdev_for_each_mc_addr(ha
, dev
) {
2713 mvneta_mcast_addr_set(pp
, ha
->addr
,
2721 /* Interrupt handling - the callback for request_irq() */
2722 static irqreturn_t
mvneta_isr(int irq
, void *dev_id
)
2724 struct mvneta_port
*pp
= (struct mvneta_port
*)dev_id
;
2726 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
2727 napi_schedule(&pp
->napi
);
2732 /* Interrupt handling - the callback for request_percpu_irq() */
2733 static irqreturn_t
mvneta_percpu_isr(int irq
, void *dev_id
)
2735 struct mvneta_pcpu_port
*port
= (struct mvneta_pcpu_port
*)dev_id
;
2737 disable_percpu_irq(port
->pp
->dev
->irq
);
2738 napi_schedule(&port
->napi
);
2743 static void mvneta_link_change(struct mvneta_port
*pp
)
2745 u32 gmac_stat
= mvreg_read(pp
, MVNETA_GMAC_STATUS
);
2747 phylink_mac_change(pp
->phylink
, !!(gmac_stat
& MVNETA_GMAC_LINK_UP
));
2751 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2752 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2753 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2754 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2755 * Each CPU has its own causeRxTx register
2757 static int mvneta_poll(struct napi_struct
*napi
, int budget
)
2762 struct mvneta_port
*pp
= netdev_priv(napi
->dev
);
2763 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
2765 if (!netif_running(pp
->dev
)) {
2766 napi_complete(napi
);
2770 /* Read cause register */
2771 cause_rx_tx
= mvreg_read(pp
, MVNETA_INTR_NEW_CAUSE
);
2772 if (cause_rx_tx
& MVNETA_MISCINTR_INTR_MASK
) {
2773 u32 cause_misc
= mvreg_read(pp
, MVNETA_INTR_MISC_CAUSE
);
2775 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
2777 if (cause_misc
& (MVNETA_CAUSE_PHY_STATUS_CHANGE
|
2778 MVNETA_CAUSE_LINK_CHANGE
))
2779 mvneta_link_change(pp
);
2782 /* Release Tx descriptors */
2783 if (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
) {
2784 mvneta_tx_done_gbe(pp
, (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
));
2785 cause_rx_tx
&= ~MVNETA_TX_INTR_MASK_ALL
;
2788 /* For the case where the last mvneta_poll did not process all
2791 rx_queue
= fls(((cause_rx_tx
>> 8) & 0xff));
2793 cause_rx_tx
|= pp
->neta_armada3700
? pp
->cause_rx_tx
:
2797 rx_queue
= rx_queue
- 1;
2799 rx_done
= mvneta_rx_hwbm(napi
, pp
, budget
,
2800 &pp
->rxqs
[rx_queue
]);
2802 rx_done
= mvneta_rx_swbm(napi
, pp
, budget
,
2803 &pp
->rxqs
[rx_queue
]);
2806 if (rx_done
< budget
) {
2808 napi_complete_done(napi
, rx_done
);
2810 if (pp
->neta_armada3700
) {
2811 unsigned long flags
;
2813 local_irq_save(flags
);
2814 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
2815 MVNETA_RX_INTR_MASK(rxq_number
) |
2816 MVNETA_TX_INTR_MASK(txq_number
) |
2817 MVNETA_MISCINTR_INTR_MASK
);
2818 local_irq_restore(flags
);
2820 enable_percpu_irq(pp
->dev
->irq
, 0);
2824 if (pp
->neta_armada3700
)
2825 pp
->cause_rx_tx
= cause_rx_tx
;
2827 port
->cause_rx_tx
= cause_rx_tx
;
2832 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2833 static int mvneta_rxq_fill(struct mvneta_port
*pp
, struct mvneta_rx_queue
*rxq
,
2838 for (i
= 0; i
< num
; i
++) {
2839 memset(rxq
->descs
+ i
, 0, sizeof(struct mvneta_rx_desc
));
2840 if (mvneta_rx_refill(pp
, rxq
->descs
+ i
, rxq
,
2843 "%s:rxq %d, %d of %d buffs filled\n",
2844 __func__
, rxq
->id
, i
, num
);
2849 /* Add this number of RX descriptors as non occupied (ready to
2852 mvneta_rxq_non_occup_desc_add(pp
, rxq
, i
);
2857 /* Free all packets pending transmit from all TXQs and reset TX port */
2858 static void mvneta_tx_reset(struct mvneta_port
*pp
)
2862 /* free the skb's in the tx ring */
2863 for (queue
= 0; queue
< txq_number
; queue
++)
2864 mvneta_txq_done_force(pp
, &pp
->txqs
[queue
]);
2866 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
2867 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
2870 static void mvneta_rx_reset(struct mvneta_port
*pp
)
2872 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
2873 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
2876 /* Rx/Tx queue initialization/cleanup methods */
2878 static int mvneta_rxq_sw_init(struct mvneta_port
*pp
,
2879 struct mvneta_rx_queue
*rxq
)
2881 rxq
->size
= pp
->rx_ring_size
;
2883 /* Allocate memory for RX descriptors */
2884 rxq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2885 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2886 &rxq
->descs_phys
, GFP_KERNEL
);
2890 rxq
->last_desc
= rxq
->size
- 1;
2895 static void mvneta_rxq_hw_init(struct mvneta_port
*pp
,
2896 struct mvneta_rx_queue
*rxq
)
2898 /* Set Rx descriptors queue starting address */
2899 mvreg_write(pp
, MVNETA_RXQ_BASE_ADDR_REG(rxq
->id
), rxq
->descs_phys
);
2900 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), rxq
->size
);
2902 /* Set coalescing pkts and time */
2903 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
2904 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
2908 mvneta_rxq_offset_set(pp
, rxq
, 0);
2909 mvneta_rxq_buf_size_set(pp
, rxq
, PAGE_SIZE
< SZ_64K
?
2911 MVNETA_RX_BUF_SIZE(pp
->pkt_size
));
2912 mvneta_rxq_bm_disable(pp
, rxq
);
2913 mvneta_rxq_fill(pp
, rxq
, rxq
->size
);
2916 mvneta_rxq_offset_set(pp
, rxq
,
2917 NET_SKB_PAD
- pp
->rx_offset_correction
);
2919 mvneta_rxq_bm_enable(pp
, rxq
);
2920 /* Fill RXQ with buffers from RX pool */
2921 mvneta_rxq_long_pool_set(pp
, rxq
);
2922 mvneta_rxq_short_pool_set(pp
, rxq
);
2923 mvneta_rxq_non_occup_desc_add(pp
, rxq
, rxq
->size
);
2927 /* Create a specified RX queue */
2928 static int mvneta_rxq_init(struct mvneta_port
*pp
,
2929 struct mvneta_rx_queue
*rxq
)
2934 ret
= mvneta_rxq_sw_init(pp
, rxq
);
2938 mvneta_rxq_hw_init(pp
, rxq
);
2943 /* Cleanup Rx queue */
2944 static void mvneta_rxq_deinit(struct mvneta_port
*pp
,
2945 struct mvneta_rx_queue
*rxq
)
2947 mvneta_rxq_drop_pkts(pp
, rxq
);
2950 dev_kfree_skb_any(rxq
->skb
);
2953 dma_free_coherent(pp
->dev
->dev
.parent
,
2954 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2960 rxq
->next_desc_to_proc
= 0;
2961 rxq
->descs_phys
= 0;
2962 rxq
->first_to_refill
= 0;
2963 rxq
->refill_num
= 0;
2968 static int mvneta_txq_sw_init(struct mvneta_port
*pp
,
2969 struct mvneta_tx_queue
*txq
)
2973 txq
->size
= pp
->tx_ring_size
;
2975 /* A queue must always have room for at least one skb.
2976 * Therefore, stop the queue when the free entries reaches
2977 * the maximum number of descriptors per skb.
2979 txq
->tx_stop_threshold
= txq
->size
- MVNETA_MAX_SKB_DESCS
;
2980 txq
->tx_wake_threshold
= txq
->tx_stop_threshold
/ 2;
2982 /* Allocate memory for TX descriptors */
2983 txq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2984 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2985 &txq
->descs_phys
, GFP_KERNEL
);
2989 txq
->last_desc
= txq
->size
- 1;
2991 txq
->tx_skb
= kmalloc_array(txq
->size
, sizeof(*txq
->tx_skb
),
2994 dma_free_coherent(pp
->dev
->dev
.parent
,
2995 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2996 txq
->descs
, txq
->descs_phys
);
3000 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3001 txq
->tso_hdrs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
3002 txq
->size
* TSO_HEADER_SIZE
,
3003 &txq
->tso_hdrs_phys
, GFP_KERNEL
);
3004 if (!txq
->tso_hdrs
) {
3006 dma_free_coherent(pp
->dev
->dev
.parent
,
3007 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
3008 txq
->descs
, txq
->descs_phys
);
3012 /* Setup XPS mapping */
3014 cpu
= txq
->id
% num_present_cpus();
3016 cpu
= pp
->rxq_def
% num_present_cpus();
3017 cpumask_set_cpu(cpu
, &txq
->affinity_mask
);
3018 netif_set_xps_queue(pp
->dev
, &txq
->affinity_mask
, txq
->id
);
3023 static void mvneta_txq_hw_init(struct mvneta_port
*pp
,
3024 struct mvneta_tx_queue
*txq
)
3026 /* Set maximum bandwidth for enabled TXQs */
3027 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0x03ffffff);
3028 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0x3fffffff);
3030 /* Set Tx descriptors queue starting address */
3031 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), txq
->descs_phys
);
3032 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), txq
->size
);
3034 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
3037 /* Create and initialize a tx queue */
3038 static int mvneta_txq_init(struct mvneta_port
*pp
,
3039 struct mvneta_tx_queue
*txq
)
3043 ret
= mvneta_txq_sw_init(pp
, txq
);
3047 mvneta_txq_hw_init(pp
, txq
);
3052 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3053 static void mvneta_txq_sw_deinit(struct mvneta_port
*pp
,
3054 struct mvneta_tx_queue
*txq
)
3056 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
3061 dma_free_coherent(pp
->dev
->dev
.parent
,
3062 txq
->size
* TSO_HEADER_SIZE
,
3063 txq
->tso_hdrs
, txq
->tso_hdrs_phys
);
3065 dma_free_coherent(pp
->dev
->dev
.parent
,
3066 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
3067 txq
->descs
, txq
->descs_phys
);
3069 netdev_tx_reset_queue(nq
);
3073 txq
->next_desc_to_proc
= 0;
3074 txq
->descs_phys
= 0;
3077 static void mvneta_txq_hw_deinit(struct mvneta_port
*pp
,
3078 struct mvneta_tx_queue
*txq
)
3080 /* Set minimum bandwidth for disabled TXQs */
3081 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0);
3082 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0);
3084 /* Set Tx descriptors queue starting address and size */
3085 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), 0);
3086 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), 0);
3089 static void mvneta_txq_deinit(struct mvneta_port
*pp
,
3090 struct mvneta_tx_queue
*txq
)
3092 mvneta_txq_sw_deinit(pp
, txq
);
3093 mvneta_txq_hw_deinit(pp
, txq
);
3096 /* Cleanup all Tx queues */
3097 static void mvneta_cleanup_txqs(struct mvneta_port
*pp
)
3101 for (queue
= 0; queue
< txq_number
; queue
++)
3102 mvneta_txq_deinit(pp
, &pp
->txqs
[queue
]);
3105 /* Cleanup all Rx queues */
3106 static void mvneta_cleanup_rxqs(struct mvneta_port
*pp
)
3110 for (queue
= 0; queue
< rxq_number
; queue
++)
3111 mvneta_rxq_deinit(pp
, &pp
->rxqs
[queue
]);
3115 /* Init all Rx queues */
3116 static int mvneta_setup_rxqs(struct mvneta_port
*pp
)
3120 for (queue
= 0; queue
< rxq_number
; queue
++) {
3121 int err
= mvneta_rxq_init(pp
, &pp
->rxqs
[queue
]);
3124 netdev_err(pp
->dev
, "%s: can't create rxq=%d\n",
3126 mvneta_cleanup_rxqs(pp
);
3134 /* Init all tx queues */
3135 static int mvneta_setup_txqs(struct mvneta_port
*pp
)
3139 for (queue
= 0; queue
< txq_number
; queue
++) {
3140 int err
= mvneta_txq_init(pp
, &pp
->txqs
[queue
]);
3142 netdev_err(pp
->dev
, "%s: can't create txq=%d\n",
3144 mvneta_cleanup_txqs(pp
);
3152 static int mvneta_comphy_init(struct mvneta_port
*pp
)
3159 ret
= phy_set_mode_ext(pp
->comphy
, PHY_MODE_ETHERNET
,
3164 return phy_power_on(pp
->comphy
);
3167 static void mvneta_start_dev(struct mvneta_port
*pp
)
3171 WARN_ON(mvneta_comphy_init(pp
));
3173 mvneta_max_rx_size_set(pp
, pp
->pkt_size
);
3174 mvneta_txq_max_tx_size_set(pp
, pp
->pkt_size
);
3176 /* start the Rx/Tx activity */
3177 mvneta_port_enable(pp
);
3179 if (!pp
->neta_armada3700
) {
3180 /* Enable polling on the port */
3181 for_each_online_cpu(cpu
) {
3182 struct mvneta_pcpu_port
*port
=
3183 per_cpu_ptr(pp
->ports
, cpu
);
3185 napi_enable(&port
->napi
);
3188 napi_enable(&pp
->napi
);
3191 /* Unmask interrupts. It has to be done from each CPU */
3192 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3194 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3195 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3196 MVNETA_CAUSE_LINK_CHANGE
);
3198 phylink_start(pp
->phylink
);
3199 netif_tx_start_all_queues(pp
->dev
);
3202 static void mvneta_stop_dev(struct mvneta_port
*pp
)
3206 phylink_stop(pp
->phylink
);
3208 if (!pp
->neta_armada3700
) {
3209 for_each_online_cpu(cpu
) {
3210 struct mvneta_pcpu_port
*port
=
3211 per_cpu_ptr(pp
->ports
, cpu
);
3213 napi_disable(&port
->napi
);
3216 napi_disable(&pp
->napi
);
3219 netif_carrier_off(pp
->dev
);
3221 mvneta_port_down(pp
);
3222 netif_tx_stop_all_queues(pp
->dev
);
3224 /* Stop the port activity */
3225 mvneta_port_disable(pp
);
3227 /* Clear all ethernet port interrupts */
3228 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
3230 /* Mask all ethernet port interrupts */
3231 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3233 mvneta_tx_reset(pp
);
3234 mvneta_rx_reset(pp
);
3236 WARN_ON(phy_power_off(pp
->comphy
));
3239 static void mvneta_percpu_enable(void *arg
)
3241 struct mvneta_port
*pp
= arg
;
3243 enable_percpu_irq(pp
->dev
->irq
, IRQ_TYPE_NONE
);
3246 static void mvneta_percpu_disable(void *arg
)
3248 struct mvneta_port
*pp
= arg
;
3250 disable_percpu_irq(pp
->dev
->irq
);
3253 /* Change the device mtu */
3254 static int mvneta_change_mtu(struct net_device
*dev
, int mtu
)
3256 struct mvneta_port
*pp
= netdev_priv(dev
);
3259 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu
), 8)) {
3260 netdev_info(dev
, "Illegal MTU value %d, rounding to %d\n",
3261 mtu
, ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8));
3262 mtu
= ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8);
3267 if (!netif_running(dev
)) {
3269 mvneta_bm_update_mtu(pp
, mtu
);
3271 netdev_update_features(dev
);
3275 /* The interface is running, so we have to force a
3276 * reallocation of the queues
3278 mvneta_stop_dev(pp
);
3279 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3281 mvneta_cleanup_txqs(pp
);
3282 mvneta_cleanup_rxqs(pp
);
3285 mvneta_bm_update_mtu(pp
, mtu
);
3287 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(dev
->mtu
);
3289 ret
= mvneta_setup_rxqs(pp
);
3291 netdev_err(dev
, "unable to setup rxqs after MTU change\n");
3295 ret
= mvneta_setup_txqs(pp
);
3297 netdev_err(dev
, "unable to setup txqs after MTU change\n");
3301 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3302 mvneta_start_dev(pp
);
3304 netdev_update_features(dev
);
3309 static netdev_features_t
mvneta_fix_features(struct net_device
*dev
,
3310 netdev_features_t features
)
3312 struct mvneta_port
*pp
= netdev_priv(dev
);
3314 if (pp
->tx_csum_limit
&& dev
->mtu
> pp
->tx_csum_limit
) {
3315 features
&= ~(NETIF_F_IP_CSUM
| NETIF_F_TSO
);
3317 "Disable IP checksum for MTU greater than %dB\n",
3324 /* Get mac address */
3325 static void mvneta_get_mac_addr(struct mvneta_port
*pp
, unsigned char *addr
)
3327 u32 mac_addr_l
, mac_addr_h
;
3329 mac_addr_l
= mvreg_read(pp
, MVNETA_MAC_ADDR_LOW
);
3330 mac_addr_h
= mvreg_read(pp
, MVNETA_MAC_ADDR_HIGH
);
3331 addr
[0] = (mac_addr_h
>> 24) & 0xFF;
3332 addr
[1] = (mac_addr_h
>> 16) & 0xFF;
3333 addr
[2] = (mac_addr_h
>> 8) & 0xFF;
3334 addr
[3] = mac_addr_h
& 0xFF;
3335 addr
[4] = (mac_addr_l
>> 8) & 0xFF;
3336 addr
[5] = mac_addr_l
& 0xFF;
3339 /* Handle setting mac address */
3340 static int mvneta_set_mac_addr(struct net_device
*dev
, void *addr
)
3342 struct mvneta_port
*pp
= netdev_priv(dev
);
3343 struct sockaddr
*sockaddr
= addr
;
3346 ret
= eth_prepare_mac_addr_change(dev
, addr
);
3349 /* Remove previous address table entry */
3350 mvneta_mac_addr_set(pp
, dev
->dev_addr
, -1);
3352 /* Set new addr in hw */
3353 mvneta_mac_addr_set(pp
, sockaddr
->sa_data
, pp
->rxq_def
);
3355 eth_commit_mac_addr_change(dev
, addr
);
3359 static void mvneta_validate(struct net_device
*ndev
, unsigned long *supported
,
3360 struct phylink_link_state
*state
)
3362 struct mvneta_port
*pp
= netdev_priv(ndev
);
3363 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask
) = { 0, };
3365 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3366 if (state
->interface
!= PHY_INTERFACE_MODE_NA
&&
3367 state
->interface
!= PHY_INTERFACE_MODE_QSGMII
&&
3368 state
->interface
!= PHY_INTERFACE_MODE_SGMII
&&
3369 !phy_interface_mode_is_8023z(state
->interface
) &&
3370 !phy_interface_mode_is_rgmii(state
->interface
)) {
3371 bitmap_zero(supported
, __ETHTOOL_LINK_MODE_MASK_NBITS
);
3375 /* Allow all the expected bits */
3376 phylink_set(mask
, Autoneg
);
3377 phylink_set_port_modes(mask
);
3379 /* Asymmetric pause is unsupported */
3380 phylink_set(mask
, Pause
);
3382 /* Half-duplex at speeds higher than 100Mbit is unsupported */
3383 if (pp
->comphy
|| state
->interface
!= PHY_INTERFACE_MODE_2500BASEX
) {
3384 phylink_set(mask
, 1000baseT_Full
);
3385 phylink_set(mask
, 1000baseX_Full
);
3387 if (pp
->comphy
|| state
->interface
== PHY_INTERFACE_MODE_2500BASEX
) {
3388 phylink_set(mask
, 2500baseX_Full
);
3391 if (!phy_interface_mode_is_8023z(state
->interface
)) {
3392 /* 10M and 100M are only supported in non-802.3z mode */
3393 phylink_set(mask
, 10baseT_Half
);
3394 phylink_set(mask
, 10baseT_Full
);
3395 phylink_set(mask
, 100baseT_Half
);
3396 phylink_set(mask
, 100baseT_Full
);
3399 bitmap_and(supported
, supported
, mask
,
3400 __ETHTOOL_LINK_MODE_MASK_NBITS
);
3401 bitmap_and(state
->advertising
, state
->advertising
, mask
,
3402 __ETHTOOL_LINK_MODE_MASK_NBITS
);
3404 /* We can only operate at 2500BaseX or 1000BaseX. If requested
3405 * to advertise both, only report advertising at 2500BaseX.
3407 phylink_helper_basex_speed(state
);
3410 static int mvneta_mac_link_state(struct net_device
*ndev
,
3411 struct phylink_link_state
*state
)
3413 struct mvneta_port
*pp
= netdev_priv(ndev
);
3416 gmac_stat
= mvreg_read(pp
, MVNETA_GMAC_STATUS
);
3418 if (gmac_stat
& MVNETA_GMAC_SPEED_1000
)
3420 state
->interface
== PHY_INTERFACE_MODE_2500BASEX
?
3421 SPEED_2500
: SPEED_1000
;
3422 else if (gmac_stat
& MVNETA_GMAC_SPEED_100
)
3423 state
->speed
= SPEED_100
;
3425 state
->speed
= SPEED_10
;
3427 state
->an_complete
= !!(gmac_stat
& MVNETA_GMAC_AN_COMPLETE
);
3428 state
->link
= !!(gmac_stat
& MVNETA_GMAC_LINK_UP
);
3429 state
->duplex
= !!(gmac_stat
& MVNETA_GMAC_FULL_DUPLEX
);
3432 if (gmac_stat
& MVNETA_GMAC_RX_FLOW_CTRL_ENABLE
)
3433 state
->pause
|= MLO_PAUSE_RX
;
3434 if (gmac_stat
& MVNETA_GMAC_TX_FLOW_CTRL_ENABLE
)
3435 state
->pause
|= MLO_PAUSE_TX
;
3440 static void mvneta_mac_an_restart(struct net_device
*ndev
)
3442 struct mvneta_port
*pp
= netdev_priv(ndev
);
3443 u32 gmac_an
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3445 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3446 gmac_an
| MVNETA_GMAC_INBAND_RESTART_AN
);
3447 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3448 gmac_an
& ~MVNETA_GMAC_INBAND_RESTART_AN
);
3451 static void mvneta_mac_config(struct net_device
*ndev
, unsigned int mode
,
3452 const struct phylink_link_state
*state
)
3454 struct mvneta_port
*pp
= netdev_priv(ndev
);
3455 u32 new_ctrl0
, gmac_ctrl0
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
3456 u32 new_ctrl2
, gmac_ctrl2
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
3457 u32 new_ctrl4
, gmac_ctrl4
= mvreg_read(pp
, MVNETA_GMAC_CTRL_4
);
3458 u32 new_clk
, gmac_clk
= mvreg_read(pp
, MVNETA_GMAC_CLOCK_DIVIDER
);
3459 u32 new_an
, gmac_an
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3461 new_ctrl0
= gmac_ctrl0
& ~MVNETA_GMAC0_PORT_1000BASE_X
;
3462 new_ctrl2
= gmac_ctrl2
& ~(MVNETA_GMAC2_INBAND_AN_ENABLE
|
3463 MVNETA_GMAC2_PORT_RESET
);
3464 new_ctrl4
= gmac_ctrl4
& ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE
);
3465 new_clk
= gmac_clk
& ~MVNETA_GMAC_1MS_CLOCK_ENABLE
;
3466 new_an
= gmac_an
& ~(MVNETA_GMAC_INBAND_AN_ENABLE
|
3467 MVNETA_GMAC_INBAND_RESTART_AN
|
3468 MVNETA_GMAC_CONFIG_MII_SPEED
|
3469 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3470 MVNETA_GMAC_AN_SPEED_EN
|
3471 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL
|
3472 MVNETA_GMAC_CONFIG_FLOW_CTRL
|
3473 MVNETA_GMAC_AN_FLOW_CTRL_EN
|
3474 MVNETA_GMAC_CONFIG_FULL_DUPLEX
|
3475 MVNETA_GMAC_AN_DUPLEX_EN
);
3477 /* Even though it might look weird, when we're configured in
3478 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3480 new_ctrl2
|= MVNETA_GMAC2_PORT_RGMII
;
3482 if (state
->interface
== PHY_INTERFACE_MODE_QSGMII
||
3483 state
->interface
== PHY_INTERFACE_MODE_SGMII
||
3484 phy_interface_mode_is_8023z(state
->interface
))
3485 new_ctrl2
|= MVNETA_GMAC2_PCS_ENABLE
;
3487 if (phylink_test(state
->advertising
, Pause
))
3488 new_an
|= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL
;
3489 if (state
->pause
& MLO_PAUSE_TXRX_MASK
)
3490 new_an
|= MVNETA_GMAC_CONFIG_FLOW_CTRL
;
3492 if (!phylink_autoneg_inband(mode
)) {
3493 /* Phy or fixed speed */
3495 new_an
|= MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3497 if (state
->speed
== SPEED_1000
|| state
->speed
== SPEED_2500
)
3498 new_an
|= MVNETA_GMAC_CONFIG_GMII_SPEED
;
3499 else if (state
->speed
== SPEED_100
)
3500 new_an
|= MVNETA_GMAC_CONFIG_MII_SPEED
;
3501 } else if (state
->interface
== PHY_INTERFACE_MODE_SGMII
) {
3502 /* SGMII mode receives the state from the PHY */
3503 new_ctrl2
|= MVNETA_GMAC2_INBAND_AN_ENABLE
;
3504 new_clk
|= MVNETA_GMAC_1MS_CLOCK_ENABLE
;
3505 new_an
= (new_an
& ~(MVNETA_GMAC_FORCE_LINK_DOWN
|
3506 MVNETA_GMAC_FORCE_LINK_PASS
)) |
3507 MVNETA_GMAC_INBAND_AN_ENABLE
|
3508 MVNETA_GMAC_AN_SPEED_EN
|
3509 MVNETA_GMAC_AN_DUPLEX_EN
;
3511 /* 802.3z negotiation - only 1000base-X */
3512 new_ctrl0
|= MVNETA_GMAC0_PORT_1000BASE_X
;
3513 new_clk
|= MVNETA_GMAC_1MS_CLOCK_ENABLE
;
3514 new_an
= (new_an
& ~(MVNETA_GMAC_FORCE_LINK_DOWN
|
3515 MVNETA_GMAC_FORCE_LINK_PASS
)) |
3516 MVNETA_GMAC_INBAND_AN_ENABLE
|
3517 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3518 /* The MAC only supports FD mode */
3519 MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3521 if (state
->pause
& MLO_PAUSE_AN
&& state
->an_enabled
)
3522 new_an
|= MVNETA_GMAC_AN_FLOW_CTRL_EN
;
3525 /* Armada 370 documentation says we can only change the port mode
3526 * and in-band enable when the link is down, so force it down
3527 * while making these changes. We also do this for GMAC_CTRL2 */
3528 if ((new_ctrl0
^ gmac_ctrl0
) & MVNETA_GMAC0_PORT_1000BASE_X
||
3529 (new_ctrl2
^ gmac_ctrl2
) & MVNETA_GMAC2_INBAND_AN_ENABLE
||
3530 (new_an
^ gmac_an
) & MVNETA_GMAC_INBAND_AN_ENABLE
) {
3531 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3532 (gmac_an
& ~MVNETA_GMAC_FORCE_LINK_PASS
) |
3533 MVNETA_GMAC_FORCE_LINK_DOWN
);
3537 /* When at 2.5G, the link partner can send frames with shortened
3540 if (state
->speed
== SPEED_2500
)
3541 new_ctrl4
|= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE
;
3543 if (pp
->comphy
&& pp
->phy_interface
!= state
->interface
&&
3544 (state
->interface
== PHY_INTERFACE_MODE_SGMII
||
3545 state
->interface
== PHY_INTERFACE_MODE_1000BASEX
||
3546 state
->interface
== PHY_INTERFACE_MODE_2500BASEX
)) {
3547 pp
->phy_interface
= state
->interface
;
3549 WARN_ON(phy_power_off(pp
->comphy
));
3550 WARN_ON(mvneta_comphy_init(pp
));
3553 if (new_ctrl0
!= gmac_ctrl0
)
3554 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, new_ctrl0
);
3555 if (new_ctrl2
!= gmac_ctrl2
)
3556 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, new_ctrl2
);
3557 if (new_ctrl4
!= gmac_ctrl4
)
3558 mvreg_write(pp
, MVNETA_GMAC_CTRL_4
, new_ctrl4
);
3559 if (new_clk
!= gmac_clk
)
3560 mvreg_write(pp
, MVNETA_GMAC_CLOCK_DIVIDER
, new_clk
);
3561 if (new_an
!= gmac_an
)
3562 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, new_an
);
3564 if (gmac_ctrl2
& MVNETA_GMAC2_PORT_RESET
) {
3565 while ((mvreg_read(pp
, MVNETA_GMAC_CTRL_2
) &
3566 MVNETA_GMAC2_PORT_RESET
) != 0)
3571 static void mvneta_set_eee(struct mvneta_port
*pp
, bool enable
)
3575 lpi_ctl1
= mvreg_read(pp
, MVNETA_LPI_CTRL_1
);
3577 lpi_ctl1
|= MVNETA_LPI_REQUEST_ENABLE
;
3579 lpi_ctl1
&= ~MVNETA_LPI_REQUEST_ENABLE
;
3580 mvreg_write(pp
, MVNETA_LPI_CTRL_1
, lpi_ctl1
);
3583 static void mvneta_mac_link_down(struct net_device
*ndev
, unsigned int mode
,
3584 phy_interface_t interface
)
3586 struct mvneta_port
*pp
= netdev_priv(ndev
);
3589 mvneta_port_down(pp
);
3591 if (!phylink_autoneg_inband(mode
)) {
3592 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3593 val
&= ~MVNETA_GMAC_FORCE_LINK_PASS
;
3594 val
|= MVNETA_GMAC_FORCE_LINK_DOWN
;
3595 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3598 pp
->eee_active
= false;
3599 mvneta_set_eee(pp
, false);
3602 static void mvneta_mac_link_up(struct net_device
*ndev
, unsigned int mode
,
3603 phy_interface_t interface
,
3604 struct phy_device
*phy
)
3606 struct mvneta_port
*pp
= netdev_priv(ndev
);
3609 if (!phylink_autoneg_inband(mode
)) {
3610 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3611 val
&= ~MVNETA_GMAC_FORCE_LINK_DOWN
;
3612 val
|= MVNETA_GMAC_FORCE_LINK_PASS
;
3613 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3618 if (phy
&& pp
->eee_enabled
) {
3619 pp
->eee_active
= phy_init_eee(phy
, 0) >= 0;
3620 mvneta_set_eee(pp
, pp
->eee_active
&& pp
->tx_lpi_enabled
);
3624 static const struct phylink_mac_ops mvneta_phylink_ops
= {
3625 .validate
= mvneta_validate
,
3626 .mac_link_state
= mvneta_mac_link_state
,
3627 .mac_an_restart
= mvneta_mac_an_restart
,
3628 .mac_config
= mvneta_mac_config
,
3629 .mac_link_down
= mvneta_mac_link_down
,
3630 .mac_link_up
= mvneta_mac_link_up
,
3633 static int mvneta_mdio_probe(struct mvneta_port
*pp
)
3635 struct ethtool_wolinfo wol
= { .cmd
= ETHTOOL_GWOL
};
3636 int err
= phylink_of_phy_connect(pp
->phylink
, pp
->dn
, 0);
3639 netdev_err(pp
->dev
, "could not attach PHY: %d\n", err
);
3641 phylink_ethtool_get_wol(pp
->phylink
, &wol
);
3642 device_set_wakeup_capable(&pp
->dev
->dev
, !!wol
.supported
);
3647 static void mvneta_mdio_remove(struct mvneta_port
*pp
)
3649 phylink_disconnect_phy(pp
->phylink
);
3652 /* Electing a CPU must be done in an atomic way: it should be done
3653 * after or before the removal/insertion of a CPU and this function is
3656 static void mvneta_percpu_elect(struct mvneta_port
*pp
)
3658 int elected_cpu
= 0, max_cpu
, cpu
, i
= 0;
3660 /* Use the cpu associated to the rxq when it is online, in all
3661 * the other cases, use the cpu 0 which can't be offline.
3663 if (cpu_online(pp
->rxq_def
))
3664 elected_cpu
= pp
->rxq_def
;
3666 max_cpu
= num_present_cpus();
3668 for_each_online_cpu(cpu
) {
3669 int rxq_map
= 0, txq_map
= 0;
3672 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
3673 if ((rxq
% max_cpu
) == cpu
)
3674 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
3676 if (cpu
== elected_cpu
)
3677 /* Map the default receive queue queue to the
3680 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(pp
->rxq_def
);
3682 /* We update the TX queue map only if we have one
3683 * queue. In this case we associate the TX queue to
3684 * the CPU bound to the default RX queue
3686 if (txq_number
== 1)
3687 txq_map
= (cpu
== elected_cpu
) ?
3688 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3690 txq_map
= mvreg_read(pp
, MVNETA_CPU_MAP(cpu
)) &
3691 MVNETA_CPU_TXQ_ACCESS_ALL_MASK
;
3693 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
3695 /* Update the interrupt mask on each CPU according the
3698 smp_call_function_single(cpu
, mvneta_percpu_unmask_interrupt
,
3705 static int mvneta_cpu_online(unsigned int cpu
, struct hlist_node
*node
)
3708 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3710 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3713 spin_lock(&pp
->lock
);
3715 * Configuring the driver for a new CPU while the driver is
3716 * stopping is racy, so just avoid it.
3718 if (pp
->is_stopped
) {
3719 spin_unlock(&pp
->lock
);
3722 netif_tx_stop_all_queues(pp
->dev
);
3725 * We have to synchronise on tha napi of each CPU except the one
3726 * just being woken up
3728 for_each_online_cpu(other_cpu
) {
3729 if (other_cpu
!= cpu
) {
3730 struct mvneta_pcpu_port
*other_port
=
3731 per_cpu_ptr(pp
->ports
, other_cpu
);
3733 napi_synchronize(&other_port
->napi
);
3737 /* Mask all ethernet port interrupts */
3738 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3739 napi_enable(&port
->napi
);
3742 * Enable per-CPU interrupts on the CPU that is
3745 mvneta_percpu_enable(pp
);
3748 * Enable per-CPU interrupt on the one CPU we care
3751 mvneta_percpu_elect(pp
);
3753 /* Unmask all ethernet port interrupts */
3754 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3755 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3756 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3757 MVNETA_CAUSE_LINK_CHANGE
);
3758 netif_tx_start_all_queues(pp
->dev
);
3759 spin_unlock(&pp
->lock
);
3763 static int mvneta_cpu_down_prepare(unsigned int cpu
, struct hlist_node
*node
)
3765 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3767 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3770 * Thanks to this lock we are sure that any pending cpu election is
3773 spin_lock(&pp
->lock
);
3774 /* Mask all ethernet port interrupts */
3775 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3776 spin_unlock(&pp
->lock
);
3778 napi_synchronize(&port
->napi
);
3779 napi_disable(&port
->napi
);
3780 /* Disable per-CPU interrupts on the CPU that is brought down. */
3781 mvneta_percpu_disable(pp
);
3785 static int mvneta_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
3787 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3790 /* Check if a new CPU must be elected now this on is down */
3791 spin_lock(&pp
->lock
);
3792 mvneta_percpu_elect(pp
);
3793 spin_unlock(&pp
->lock
);
3794 /* Unmask all ethernet port interrupts */
3795 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3796 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3797 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3798 MVNETA_CAUSE_LINK_CHANGE
);
3799 netif_tx_start_all_queues(pp
->dev
);
3803 static int mvneta_open(struct net_device
*dev
)
3805 struct mvneta_port
*pp
= netdev_priv(dev
);
3808 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
);
3810 ret
= mvneta_setup_rxqs(pp
);
3814 ret
= mvneta_setup_txqs(pp
);
3816 goto err_cleanup_rxqs
;
3818 /* Connect to port interrupt line */
3819 if (pp
->neta_armada3700
)
3820 ret
= request_irq(pp
->dev
->irq
, mvneta_isr
, 0,
3823 ret
= request_percpu_irq(pp
->dev
->irq
, mvneta_percpu_isr
,
3824 dev
->name
, pp
->ports
);
3826 netdev_err(pp
->dev
, "cannot request irq %d\n", pp
->dev
->irq
);
3827 goto err_cleanup_txqs
;
3830 if (!pp
->neta_armada3700
) {
3831 /* Enable per-CPU interrupt on all the CPU to handle our RX
3834 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3836 pp
->is_stopped
= false;
3837 /* Register a CPU notifier to handle the case where our CPU
3838 * might be taken offline.
3840 ret
= cpuhp_state_add_instance_nocalls(online_hpstate
,
3845 ret
= cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3848 goto err_free_online_hp
;
3851 ret
= mvneta_mdio_probe(pp
);
3853 netdev_err(dev
, "cannot probe MDIO bus\n");
3854 goto err_free_dead_hp
;
3857 mvneta_start_dev(pp
);
3862 if (!pp
->neta_armada3700
)
3863 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3866 if (!pp
->neta_armada3700
)
3867 cpuhp_state_remove_instance_nocalls(online_hpstate
,
3870 if (pp
->neta_armada3700
) {
3871 free_irq(pp
->dev
->irq
, pp
);
3873 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3874 free_percpu_irq(pp
->dev
->irq
, pp
->ports
);
3877 mvneta_cleanup_txqs(pp
);
3879 mvneta_cleanup_rxqs(pp
);
3883 /* Stop the port, free port interrupt line */
3884 static int mvneta_stop(struct net_device
*dev
)
3886 struct mvneta_port
*pp
= netdev_priv(dev
);
3888 if (!pp
->neta_armada3700
) {
3889 /* Inform that we are stopping so we don't want to setup the
3890 * driver for new CPUs in the notifiers. The code of the
3891 * notifier for CPU online is protected by the same spinlock,
3892 * so when we get the lock, the notifer work is done.
3894 spin_lock(&pp
->lock
);
3895 pp
->is_stopped
= true;
3896 spin_unlock(&pp
->lock
);
3898 mvneta_stop_dev(pp
);
3899 mvneta_mdio_remove(pp
);
3901 cpuhp_state_remove_instance_nocalls(online_hpstate
,
3903 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3905 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3906 free_percpu_irq(dev
->irq
, pp
->ports
);
3908 mvneta_stop_dev(pp
);
3909 mvneta_mdio_remove(pp
);
3910 free_irq(dev
->irq
, pp
);
3913 mvneta_cleanup_rxqs(pp
);
3914 mvneta_cleanup_txqs(pp
);
3919 static int mvneta_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
3921 struct mvneta_port
*pp
= netdev_priv(dev
);
3923 return phylink_mii_ioctl(pp
->phylink
, ifr
, cmd
);
3926 /* Ethtool methods */
3928 /* Set link ksettings (phy address, speed) for ethtools */
3930 mvneta_ethtool_set_link_ksettings(struct net_device
*ndev
,
3931 const struct ethtool_link_ksettings
*cmd
)
3933 struct mvneta_port
*pp
= netdev_priv(ndev
);
3935 return phylink_ethtool_ksettings_set(pp
->phylink
, cmd
);
3938 /* Get link ksettings for ethtools */
3940 mvneta_ethtool_get_link_ksettings(struct net_device
*ndev
,
3941 struct ethtool_link_ksettings
*cmd
)
3943 struct mvneta_port
*pp
= netdev_priv(ndev
);
3945 return phylink_ethtool_ksettings_get(pp
->phylink
, cmd
);
3948 static int mvneta_ethtool_nway_reset(struct net_device
*dev
)
3950 struct mvneta_port
*pp
= netdev_priv(dev
);
3952 return phylink_ethtool_nway_reset(pp
->phylink
);
3955 /* Set interrupt coalescing for ethtools */
3956 static int mvneta_ethtool_set_coalesce(struct net_device
*dev
,
3957 struct ethtool_coalesce
*c
)
3959 struct mvneta_port
*pp
= netdev_priv(dev
);
3962 for (queue
= 0; queue
< rxq_number
; queue
++) {
3963 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
3964 rxq
->time_coal
= c
->rx_coalesce_usecs
;
3965 rxq
->pkts_coal
= c
->rx_max_coalesced_frames
;
3966 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
3967 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
3970 for (queue
= 0; queue
< txq_number
; queue
++) {
3971 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
3972 txq
->done_pkts_coal
= c
->tx_max_coalesced_frames
;
3973 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
3979 /* get coalescing for ethtools */
3980 static int mvneta_ethtool_get_coalesce(struct net_device
*dev
,
3981 struct ethtool_coalesce
*c
)
3983 struct mvneta_port
*pp
= netdev_priv(dev
);
3985 c
->rx_coalesce_usecs
= pp
->rxqs
[0].time_coal
;
3986 c
->rx_max_coalesced_frames
= pp
->rxqs
[0].pkts_coal
;
3988 c
->tx_max_coalesced_frames
= pp
->txqs
[0].done_pkts_coal
;
3993 static void mvneta_ethtool_get_drvinfo(struct net_device
*dev
,
3994 struct ethtool_drvinfo
*drvinfo
)
3996 strlcpy(drvinfo
->driver
, MVNETA_DRIVER_NAME
,
3997 sizeof(drvinfo
->driver
));
3998 strlcpy(drvinfo
->version
, MVNETA_DRIVER_VERSION
,
3999 sizeof(drvinfo
->version
));
4000 strlcpy(drvinfo
->bus_info
, dev_name(&dev
->dev
),
4001 sizeof(drvinfo
->bus_info
));
4005 static void mvneta_ethtool_get_ringparam(struct net_device
*netdev
,
4006 struct ethtool_ringparam
*ring
)
4008 struct mvneta_port
*pp
= netdev_priv(netdev
);
4010 ring
->rx_max_pending
= MVNETA_MAX_RXD
;
4011 ring
->tx_max_pending
= MVNETA_MAX_TXD
;
4012 ring
->rx_pending
= pp
->rx_ring_size
;
4013 ring
->tx_pending
= pp
->tx_ring_size
;
4016 static int mvneta_ethtool_set_ringparam(struct net_device
*dev
,
4017 struct ethtool_ringparam
*ring
)
4019 struct mvneta_port
*pp
= netdev_priv(dev
);
4021 if ((ring
->rx_pending
== 0) || (ring
->tx_pending
== 0))
4023 pp
->rx_ring_size
= ring
->rx_pending
< MVNETA_MAX_RXD
?
4024 ring
->rx_pending
: MVNETA_MAX_RXD
;
4026 pp
->tx_ring_size
= clamp_t(u16
, ring
->tx_pending
,
4027 MVNETA_MAX_SKB_DESCS
* 2, MVNETA_MAX_TXD
);
4028 if (pp
->tx_ring_size
!= ring
->tx_pending
)
4029 netdev_warn(dev
, "TX queue size set to %u (requested %u)\n",
4030 pp
->tx_ring_size
, ring
->tx_pending
);
4032 if (netif_running(dev
)) {
4034 if (mvneta_open(dev
)) {
4036 "error on opening device after ring param change\n");
4044 static void mvneta_ethtool_get_pauseparam(struct net_device
*dev
,
4045 struct ethtool_pauseparam
*pause
)
4047 struct mvneta_port
*pp
= netdev_priv(dev
);
4049 phylink_ethtool_get_pauseparam(pp
->phylink
, pause
);
4052 static int mvneta_ethtool_set_pauseparam(struct net_device
*dev
,
4053 struct ethtool_pauseparam
*pause
)
4055 struct mvneta_port
*pp
= netdev_priv(dev
);
4057 return phylink_ethtool_set_pauseparam(pp
->phylink
, pause
);
4060 static void mvneta_ethtool_get_strings(struct net_device
*netdev
, u32 sset
,
4063 if (sset
== ETH_SS_STATS
) {
4066 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
4067 memcpy(data
+ i
* ETH_GSTRING_LEN
,
4068 mvneta_statistics
[i
].name
, ETH_GSTRING_LEN
);
4072 static void mvneta_ethtool_update_stats(struct mvneta_port
*pp
)
4074 const struct mvneta_statistic
*s
;
4075 void __iomem
*base
= pp
->base
;
4080 for (i
= 0, s
= mvneta_statistics
;
4081 s
< mvneta_statistics
+ ARRAY_SIZE(mvneta_statistics
);
4087 val
= readl_relaxed(base
+ s
->offset
);
4090 /* Docs say to read low 32-bit then high */
4091 low
= readl_relaxed(base
+ s
->offset
);
4092 high
= readl_relaxed(base
+ s
->offset
+ 4);
4093 val
= (u64
)high
<< 32 | low
;
4096 switch (s
->offset
) {
4097 case ETHTOOL_STAT_EEE_WAKEUP
:
4098 val
= phylink_get_eee_err(pp
->phylink
);
4100 case ETHTOOL_STAT_SKB_ALLOC_ERR
:
4101 val
= pp
->rxqs
[0].skb_alloc_err
;
4103 case ETHTOOL_STAT_REFILL_ERR
:
4104 val
= pp
->rxqs
[0].refill_err
;
4110 pp
->ethtool_stats
[i
] += val
;
4114 static void mvneta_ethtool_get_stats(struct net_device
*dev
,
4115 struct ethtool_stats
*stats
, u64
*data
)
4117 struct mvneta_port
*pp
= netdev_priv(dev
);
4120 mvneta_ethtool_update_stats(pp
);
4122 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
4123 *data
++ = pp
->ethtool_stats
[i
];
4126 static int mvneta_ethtool_get_sset_count(struct net_device
*dev
, int sset
)
4128 if (sset
== ETH_SS_STATS
)
4129 return ARRAY_SIZE(mvneta_statistics
);
4133 static u32
mvneta_ethtool_get_rxfh_indir_size(struct net_device
*dev
)
4135 return MVNETA_RSS_LU_TABLE_SIZE
;
4138 static int mvneta_ethtool_get_rxnfc(struct net_device
*dev
,
4139 struct ethtool_rxnfc
*info
,
4140 u32
*rules __always_unused
)
4142 switch (info
->cmd
) {
4143 case ETHTOOL_GRXRINGS
:
4144 info
->data
= rxq_number
;
4153 static int mvneta_config_rss(struct mvneta_port
*pp
)
4158 netif_tx_stop_all_queues(pp
->dev
);
4160 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
4162 if (!pp
->neta_armada3700
) {
4163 /* We have to synchronise on the napi of each CPU */
4164 for_each_online_cpu(cpu
) {
4165 struct mvneta_pcpu_port
*pcpu_port
=
4166 per_cpu_ptr(pp
->ports
, cpu
);
4168 napi_synchronize(&pcpu_port
->napi
);
4169 napi_disable(&pcpu_port
->napi
);
4172 napi_synchronize(&pp
->napi
);
4173 napi_disable(&pp
->napi
);
4176 pp
->rxq_def
= pp
->indir
[0];
4178 /* Update unicast mapping */
4179 mvneta_set_rx_mode(pp
->dev
);
4181 /* Update val of portCfg register accordingly with all RxQueue types */
4182 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
4183 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
4185 /* Update the elected CPU matching the new rxq_def */
4186 spin_lock(&pp
->lock
);
4187 mvneta_percpu_elect(pp
);
4188 spin_unlock(&pp
->lock
);
4190 if (!pp
->neta_armada3700
) {
4191 /* We have to synchronise on the napi of each CPU */
4192 for_each_online_cpu(cpu
) {
4193 struct mvneta_pcpu_port
*pcpu_port
=
4194 per_cpu_ptr(pp
->ports
, cpu
);
4196 napi_enable(&pcpu_port
->napi
);
4199 napi_enable(&pp
->napi
);
4202 netif_tx_start_all_queues(pp
->dev
);
4207 static int mvneta_ethtool_set_rxfh(struct net_device
*dev
, const u32
*indir
,
4208 const u8
*key
, const u8 hfunc
)
4210 struct mvneta_port
*pp
= netdev_priv(dev
);
4212 /* Current code for Armada 3700 doesn't support RSS features yet */
4213 if (pp
->neta_armada3700
)
4216 /* We require at least one supported parameter to be changed
4217 * and no change in any of the unsupported parameters
4220 (hfunc
!= ETH_RSS_HASH_NO_CHANGE
&& hfunc
!= ETH_RSS_HASH_TOP
))
4226 memcpy(pp
->indir
, indir
, MVNETA_RSS_LU_TABLE_SIZE
);
4228 return mvneta_config_rss(pp
);
4231 static int mvneta_ethtool_get_rxfh(struct net_device
*dev
, u32
*indir
, u8
*key
,
4234 struct mvneta_port
*pp
= netdev_priv(dev
);
4236 /* Current code for Armada 3700 doesn't support RSS features yet */
4237 if (pp
->neta_armada3700
)
4241 *hfunc
= ETH_RSS_HASH_TOP
;
4246 memcpy(indir
, pp
->indir
, MVNETA_RSS_LU_TABLE_SIZE
);
4251 static void mvneta_ethtool_get_wol(struct net_device
*dev
,
4252 struct ethtool_wolinfo
*wol
)
4254 struct mvneta_port
*pp
= netdev_priv(dev
);
4256 phylink_ethtool_get_wol(pp
->phylink
, wol
);
4259 static int mvneta_ethtool_set_wol(struct net_device
*dev
,
4260 struct ethtool_wolinfo
*wol
)
4262 struct mvneta_port
*pp
= netdev_priv(dev
);
4265 ret
= phylink_ethtool_set_wol(pp
->phylink
, wol
);
4267 device_set_wakeup_enable(&dev
->dev
, !!wol
->wolopts
);
4272 static int mvneta_ethtool_get_eee(struct net_device
*dev
,
4273 struct ethtool_eee
*eee
)
4275 struct mvneta_port
*pp
= netdev_priv(dev
);
4278 lpi_ctl0
= mvreg_read(pp
, MVNETA_LPI_CTRL_0
);
4280 eee
->eee_enabled
= pp
->eee_enabled
;
4281 eee
->eee_active
= pp
->eee_active
;
4282 eee
->tx_lpi_enabled
= pp
->tx_lpi_enabled
;
4283 eee
->tx_lpi_timer
= (lpi_ctl0
) >> 8; // * scale;
4285 return phylink_ethtool_get_eee(pp
->phylink
, eee
);
4288 static int mvneta_ethtool_set_eee(struct net_device
*dev
,
4289 struct ethtool_eee
*eee
)
4291 struct mvneta_port
*pp
= netdev_priv(dev
);
4294 /* The Armada 37x documents do not give limits for this other than
4295 * it being an 8-bit register. */
4296 if (eee
->tx_lpi_enabled
&& eee
->tx_lpi_timer
> 255)
4299 lpi_ctl0
= mvreg_read(pp
, MVNETA_LPI_CTRL_0
);
4300 lpi_ctl0
&= ~(0xff << 8);
4301 lpi_ctl0
|= eee
->tx_lpi_timer
<< 8;
4302 mvreg_write(pp
, MVNETA_LPI_CTRL_0
, lpi_ctl0
);
4304 pp
->eee_enabled
= eee
->eee_enabled
;
4305 pp
->tx_lpi_enabled
= eee
->tx_lpi_enabled
;
4307 mvneta_set_eee(pp
, eee
->tx_lpi_enabled
&& eee
->eee_enabled
);
4309 return phylink_ethtool_set_eee(pp
->phylink
, eee
);
4312 static const struct net_device_ops mvneta_netdev_ops
= {
4313 .ndo_open
= mvneta_open
,
4314 .ndo_stop
= mvneta_stop
,
4315 .ndo_start_xmit
= mvneta_tx
,
4316 .ndo_set_rx_mode
= mvneta_set_rx_mode
,
4317 .ndo_set_mac_address
= mvneta_set_mac_addr
,
4318 .ndo_change_mtu
= mvneta_change_mtu
,
4319 .ndo_fix_features
= mvneta_fix_features
,
4320 .ndo_get_stats64
= mvneta_get_stats64
,
4321 .ndo_do_ioctl
= mvneta_ioctl
,
4324 static const struct ethtool_ops mvneta_eth_tool_ops
= {
4325 .nway_reset
= mvneta_ethtool_nway_reset
,
4326 .get_link
= ethtool_op_get_link
,
4327 .set_coalesce
= mvneta_ethtool_set_coalesce
,
4328 .get_coalesce
= mvneta_ethtool_get_coalesce
,
4329 .get_drvinfo
= mvneta_ethtool_get_drvinfo
,
4330 .get_ringparam
= mvneta_ethtool_get_ringparam
,
4331 .set_ringparam
= mvneta_ethtool_set_ringparam
,
4332 .get_pauseparam
= mvneta_ethtool_get_pauseparam
,
4333 .set_pauseparam
= mvneta_ethtool_set_pauseparam
,
4334 .get_strings
= mvneta_ethtool_get_strings
,
4335 .get_ethtool_stats
= mvneta_ethtool_get_stats
,
4336 .get_sset_count
= mvneta_ethtool_get_sset_count
,
4337 .get_rxfh_indir_size
= mvneta_ethtool_get_rxfh_indir_size
,
4338 .get_rxnfc
= mvneta_ethtool_get_rxnfc
,
4339 .get_rxfh
= mvneta_ethtool_get_rxfh
,
4340 .set_rxfh
= mvneta_ethtool_set_rxfh
,
4341 .get_link_ksettings
= mvneta_ethtool_get_link_ksettings
,
4342 .set_link_ksettings
= mvneta_ethtool_set_link_ksettings
,
4343 .get_wol
= mvneta_ethtool_get_wol
,
4344 .set_wol
= mvneta_ethtool_set_wol
,
4345 .get_eee
= mvneta_ethtool_get_eee
,
4346 .set_eee
= mvneta_ethtool_set_eee
,
4350 static int mvneta_init(struct device
*dev
, struct mvneta_port
*pp
)
4355 mvneta_port_disable(pp
);
4357 /* Set port default values */
4358 mvneta_defaults_set(pp
);
4360 pp
->txqs
= devm_kcalloc(dev
, txq_number
, sizeof(*pp
->txqs
), GFP_KERNEL
);
4364 /* Initialize TX descriptor rings */
4365 for (queue
= 0; queue
< txq_number
; queue
++) {
4366 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
4368 txq
->size
= pp
->tx_ring_size
;
4369 txq
->done_pkts_coal
= MVNETA_TXDONE_COAL_PKTS
;
4372 pp
->rxqs
= devm_kcalloc(dev
, rxq_number
, sizeof(*pp
->rxqs
), GFP_KERNEL
);
4376 /* Create Rx descriptor rings */
4377 for (queue
= 0; queue
< rxq_number
; queue
++) {
4378 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
4380 rxq
->size
= pp
->rx_ring_size
;
4381 rxq
->pkts_coal
= MVNETA_RX_COAL_PKTS
;
4382 rxq
->time_coal
= MVNETA_RX_COAL_USEC
;
4384 = devm_kmalloc_array(pp
->dev
->dev
.parent
,
4386 sizeof(*rxq
->buf_virt_addr
),
4388 if (!rxq
->buf_virt_addr
)
4395 /* platform glue : initialize decoding windows */
4396 static void mvneta_conf_mbus_windows(struct mvneta_port
*pp
,
4397 const struct mbus_dram_target_info
*dram
)
4403 for (i
= 0; i
< 6; i
++) {
4404 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
4405 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
4408 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
4415 for (i
= 0; i
< dram
->num_cs
; i
++) {
4416 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
4418 mvreg_write(pp
, MVNETA_WIN_BASE(i
),
4419 (cs
->base
& 0xffff0000) |
4420 (cs
->mbus_attr
<< 8) |
4421 dram
->mbus_dram_target_id
);
4423 mvreg_write(pp
, MVNETA_WIN_SIZE(i
),
4424 (cs
->size
- 1) & 0xffff0000);
4426 win_enable
&= ~(1 << i
);
4427 win_protect
|= 3 << (2 * i
);
4430 /* For Armada3700 open default 4GB Mbus window, leaving
4431 * arbitration of target/attribute to a different layer
4434 mvreg_write(pp
, MVNETA_WIN_SIZE(0), 0xffff0000);
4435 win_enable
&= ~BIT(0);
4439 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
4440 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
4443 /* Power up the port */
4444 static int mvneta_port_power_up(struct mvneta_port
*pp
, int phy_mode
)
4446 /* MAC Cause register should be cleared */
4447 mvreg_write(pp
, MVNETA_UNIT_INTR_CAUSE
, 0);
4449 if (phy_mode
== PHY_INTERFACE_MODE_QSGMII
)
4450 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_QSGMII_SERDES_PROTO
);
4451 else if (phy_mode
== PHY_INTERFACE_MODE_SGMII
||
4452 phy_interface_mode_is_8023z(phy_mode
))
4453 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_SGMII_SERDES_PROTO
);
4454 else if (!phy_interface_mode_is_rgmii(phy_mode
))
4460 /* Device initialization routine */
4461 static int mvneta_probe(struct platform_device
*pdev
)
4463 struct resource
*res
;
4464 struct device_node
*dn
= pdev
->dev
.of_node
;
4465 struct device_node
*bm_node
;
4466 struct mvneta_port
*pp
;
4467 struct net_device
*dev
;
4468 struct phylink
*phylink
;
4470 const char *dt_mac_addr
;
4471 char hw_mac_addr
[ETH_ALEN
];
4472 const char *mac_from
;
4478 dev
= alloc_etherdev_mqs(sizeof(struct mvneta_port
), txq_number
, rxq_number
);
4482 dev
->irq
= irq_of_parse_and_map(dn
, 0);
4483 if (dev
->irq
== 0) {
4485 goto err_free_netdev
;
4488 phy_mode
= of_get_phy_mode(dn
);
4490 dev_err(&pdev
->dev
, "incorrect phy-mode\n");
4495 comphy
= devm_of_phy_get(&pdev
->dev
, dn
, NULL
);
4496 if (comphy
== ERR_PTR(-EPROBE_DEFER
)) {
4497 err
= -EPROBE_DEFER
;
4499 } else if (IS_ERR(comphy
)) {
4503 phylink
= phylink_create(dev
, pdev
->dev
.fwnode
, phy_mode
,
4504 &mvneta_phylink_ops
);
4505 if (IS_ERR(phylink
)) {
4506 err
= PTR_ERR(phylink
);
4510 dev
->tx_queue_len
= MVNETA_MAX_TXD
;
4511 dev
->watchdog_timeo
= 5 * HZ
;
4512 dev
->netdev_ops
= &mvneta_netdev_ops
;
4514 dev
->ethtool_ops
= &mvneta_eth_tool_ops
;
4516 pp
= netdev_priv(dev
);
4517 spin_lock_init(&pp
->lock
);
4518 pp
->phylink
= phylink
;
4519 pp
->comphy
= comphy
;
4520 pp
->phy_interface
= phy_mode
;
4523 pp
->rxq_def
= rxq_def
;
4524 pp
->indir
[0] = rxq_def
;
4526 /* Get special SoC configurations */
4527 if (of_device_is_compatible(dn
, "marvell,armada-3700-neta"))
4528 pp
->neta_armada3700
= true;
4530 pp
->clk
= devm_clk_get(&pdev
->dev
, "core");
4531 if (IS_ERR(pp
->clk
))
4532 pp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
4533 if (IS_ERR(pp
->clk
)) {
4534 err
= PTR_ERR(pp
->clk
);
4535 goto err_free_phylink
;
4538 clk_prepare_enable(pp
->clk
);
4540 pp
->clk_bus
= devm_clk_get(&pdev
->dev
, "bus");
4541 if (!IS_ERR(pp
->clk_bus
))
4542 clk_prepare_enable(pp
->clk_bus
);
4544 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4545 pp
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
4546 if (IS_ERR(pp
->base
)) {
4547 err
= PTR_ERR(pp
->base
);
4551 /* Alloc per-cpu port structure */
4552 pp
->ports
= alloc_percpu(struct mvneta_pcpu_port
);
4558 /* Alloc per-cpu stats */
4559 pp
->stats
= netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats
);
4562 goto err_free_ports
;
4565 dt_mac_addr
= of_get_mac_address(dn
);
4567 mac_from
= "device tree";
4568 memcpy(dev
->dev_addr
, dt_mac_addr
, ETH_ALEN
);
4570 mvneta_get_mac_addr(pp
, hw_mac_addr
);
4571 if (is_valid_ether_addr(hw_mac_addr
)) {
4572 mac_from
= "hardware";
4573 memcpy(dev
->dev_addr
, hw_mac_addr
, ETH_ALEN
);
4575 mac_from
= "random";
4576 eth_hw_addr_random(dev
);
4580 if (!of_property_read_u32(dn
, "tx-csum-limit", &tx_csum_limit
)) {
4581 if (tx_csum_limit
< 0 ||
4582 tx_csum_limit
> MVNETA_TX_CSUM_MAX_SIZE
) {
4583 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4584 dev_info(&pdev
->dev
,
4585 "Wrong TX csum limit in DT, set to %dB\n",
4586 MVNETA_TX_CSUM_DEF_SIZE
);
4588 } else if (of_device_is_compatible(dn
, "marvell,armada-370-neta")) {
4589 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4591 tx_csum_limit
= MVNETA_TX_CSUM_MAX_SIZE
;
4594 pp
->tx_csum_limit
= tx_csum_limit
;
4596 pp
->dram_target_info
= mv_mbus_dram_info();
4597 /* Armada3700 requires setting default configuration of Mbus
4598 * windows, however without using filled mbus_dram_target_info
4601 if (pp
->dram_target_info
|| pp
->neta_armada3700
)
4602 mvneta_conf_mbus_windows(pp
, pp
->dram_target_info
);
4604 pp
->tx_ring_size
= MVNETA_MAX_TXD
;
4605 pp
->rx_ring_size
= MVNETA_MAX_RXD
;
4608 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4610 pp
->id
= global_port_id
++;
4611 pp
->rx_offset_correction
= 0; /* not relevant for SW BM */
4613 /* Obtain access to BM resources if enabled and already initialized */
4614 bm_node
= of_parse_phandle(dn
, "buffer-manager", 0);
4616 pp
->bm_priv
= mvneta_bm_get(bm_node
);
4618 err
= mvneta_bm_port_init(pdev
, pp
);
4620 dev_info(&pdev
->dev
,
4621 "use SW buffer management\n");
4622 mvneta_bm_put(pp
->bm_priv
);
4626 /* Set RX packet offset correction for platforms, whose
4627 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4628 * platforms and 0B for 32-bit ones.
4630 pp
->rx_offset_correction
= max(0,
4632 MVNETA_RX_PKT_OFFSET_CORRECTION
);
4634 of_node_put(bm_node
);
4636 err
= mvneta_init(&pdev
->dev
, pp
);
4640 err
= mvneta_port_power_up(pp
, phy_mode
);
4642 dev_err(&pdev
->dev
, "can't power up port\n");
4646 /* Armada3700 network controller does not support per-cpu
4647 * operation, so only single NAPI should be initialized.
4649 if (pp
->neta_armada3700
) {
4650 netif_napi_add(dev
, &pp
->napi
, mvneta_poll
, NAPI_POLL_WEIGHT
);
4652 for_each_present_cpu(cpu
) {
4653 struct mvneta_pcpu_port
*port
=
4654 per_cpu_ptr(pp
->ports
, cpu
);
4656 netif_napi_add(dev
, &port
->napi
, mvneta_poll
,
4662 dev
->features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
4663 NETIF_F_TSO
| NETIF_F_RXCSUM
;
4664 dev
->hw_features
|= dev
->features
;
4665 dev
->vlan_features
|= dev
->features
;
4666 dev
->priv_flags
|= IFF_LIVE_ADDR_CHANGE
;
4667 dev
->gso_max_segs
= MVNETA_MAX_TSO_SEGS
;
4669 /* MTU range: 68 - 9676 */
4670 dev
->min_mtu
= ETH_MIN_MTU
;
4671 /* 9676 == 9700 - 20 and rounding to 8 */
4672 dev
->max_mtu
= 9676;
4674 err
= register_netdev(dev
);
4676 dev_err(&pdev
->dev
, "failed to register\n");
4677 goto err_free_stats
;
4680 netdev_info(dev
, "Using %s mac address %pM\n", mac_from
,
4683 platform_set_drvdata(pdev
, pp
->dev
);
4688 unregister_netdev(dev
);
4690 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4691 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4693 mvneta_bm_put(pp
->bm_priv
);
4696 free_percpu(pp
->stats
);
4698 free_percpu(pp
->ports
);
4700 clk_disable_unprepare(pp
->clk_bus
);
4701 clk_disable_unprepare(pp
->clk
);
4704 phylink_destroy(pp
->phylink
);
4706 irq_dispose_mapping(dev
->irq
);
4712 /* Device removal routine */
4713 static int mvneta_remove(struct platform_device
*pdev
)
4715 struct net_device
*dev
= platform_get_drvdata(pdev
);
4716 struct mvneta_port
*pp
= netdev_priv(dev
);
4718 unregister_netdev(dev
);
4719 clk_disable_unprepare(pp
->clk_bus
);
4720 clk_disable_unprepare(pp
->clk
);
4721 free_percpu(pp
->ports
);
4722 free_percpu(pp
->stats
);
4723 irq_dispose_mapping(dev
->irq
);
4724 phylink_destroy(pp
->phylink
);
4728 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4729 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4731 mvneta_bm_put(pp
->bm_priv
);
4737 #ifdef CONFIG_PM_SLEEP
4738 static int mvneta_suspend(struct device
*device
)
4741 struct net_device
*dev
= dev_get_drvdata(device
);
4742 struct mvneta_port
*pp
= netdev_priv(dev
);
4744 if (!netif_running(dev
))
4747 if (!pp
->neta_armada3700
) {
4748 spin_lock(&pp
->lock
);
4749 pp
->is_stopped
= true;
4750 spin_unlock(&pp
->lock
);
4752 cpuhp_state_remove_instance_nocalls(online_hpstate
,
4754 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
4759 mvneta_stop_dev(pp
);
4762 for (queue
= 0; queue
< rxq_number
; queue
++) {
4763 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
4765 mvneta_rxq_drop_pkts(pp
, rxq
);
4768 for (queue
= 0; queue
< txq_number
; queue
++) {
4769 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
4771 mvneta_txq_hw_deinit(pp
, txq
);
4775 netif_device_detach(dev
);
4776 clk_disable_unprepare(pp
->clk_bus
);
4777 clk_disable_unprepare(pp
->clk
);
4782 static int mvneta_resume(struct device
*device
)
4784 struct platform_device
*pdev
= to_platform_device(device
);
4785 struct net_device
*dev
= dev_get_drvdata(device
);
4786 struct mvneta_port
*pp
= netdev_priv(dev
);
4789 clk_prepare_enable(pp
->clk
);
4790 if (!IS_ERR(pp
->clk_bus
))
4791 clk_prepare_enable(pp
->clk_bus
);
4792 if (pp
->dram_target_info
|| pp
->neta_armada3700
)
4793 mvneta_conf_mbus_windows(pp
, pp
->dram_target_info
);
4795 err
= mvneta_bm_port_init(pdev
, pp
);
4797 dev_info(&pdev
->dev
, "use SW buffer management\n");
4801 mvneta_defaults_set(pp
);
4802 err
= mvneta_port_power_up(pp
, pp
->phy_interface
);
4804 dev_err(device
, "can't power up port\n");
4808 netif_device_attach(dev
);
4810 if (!netif_running(dev
))
4813 for (queue
= 0; queue
< rxq_number
; queue
++) {
4814 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
4816 rxq
->next_desc_to_proc
= 0;
4817 mvneta_rxq_hw_init(pp
, rxq
);
4820 for (queue
= 0; queue
< txq_number
; queue
++) {
4821 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
4823 txq
->next_desc_to_proc
= 0;
4824 mvneta_txq_hw_init(pp
, txq
);
4827 if (!pp
->neta_armada3700
) {
4828 spin_lock(&pp
->lock
);
4829 pp
->is_stopped
= false;
4830 spin_unlock(&pp
->lock
);
4831 cpuhp_state_add_instance_nocalls(online_hpstate
,
4833 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
4838 mvneta_start_dev(pp
);
4840 mvneta_set_rx_mode(dev
);
4846 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops
, mvneta_suspend
, mvneta_resume
);
4848 static const struct of_device_id mvneta_match
[] = {
4849 { .compatible
= "marvell,armada-370-neta" },
4850 { .compatible
= "marvell,armada-xp-neta" },
4851 { .compatible
= "marvell,armada-3700-neta" },
4854 MODULE_DEVICE_TABLE(of
, mvneta_match
);
4856 static struct platform_driver mvneta_driver
= {
4857 .probe
= mvneta_probe
,
4858 .remove
= mvneta_remove
,
4860 .name
= MVNETA_DRIVER_NAME
,
4861 .of_match_table
= mvneta_match
,
4862 .pm
= &mvneta_pm_ops
,
4866 static int __init
mvneta_driver_init(void)
4870 ret
= cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN
, "net/mvmeta:online",
4872 mvneta_cpu_down_prepare
);
4875 online_hpstate
= ret
;
4876 ret
= cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD
, "net/mvneta:dead",
4877 NULL
, mvneta_cpu_dead
);
4881 ret
= platform_driver_register(&mvneta_driver
);
4887 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD
);
4889 cpuhp_remove_multi_state(online_hpstate
);
4893 module_init(mvneta_driver_init
);
4895 static void __exit
mvneta_driver_exit(void)
4897 platform_driver_unregister(&mvneta_driver
);
4898 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD
);
4899 cpuhp_remove_multi_state(online_hpstate
);
4901 module_exit(mvneta_driver_exit
);
4903 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4904 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4905 MODULE_LICENSE("GPL");
4907 module_param(rxq_number
, int, 0444);
4908 module_param(txq_number
, int, 0444);
4910 module_param(rxq_def
, int, 0444);
4911 module_param(rx_copybreak
, int, 0644);