dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / net / ethernet / renesas / sh_eth.c
blobe33af371b169ea54ae6449deb72902e51b02ca82
1 // SPDX-License-Identifier: GPL-2.0
2 /* SuperH Ethernet device driver
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6 * Copyright (C) 2008-2014 Renesas Solutions Corp.
7 * Copyright (C) 2013-2017 Cogent Embedded, Inc.
8 * Copyright (C) 2014 Codethink Limited
9 */
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_net.h>
25 #include <linux/phy.h>
26 #include <linux/cache.h>
27 #include <linux/io.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/ethtool.h>
31 #include <linux/if_vlan.h>
32 #include <linux/sh_eth.h>
33 #include <linux/of_mdio.h>
35 #include "sh_eth.h"
37 #define SH_ETH_DEF_MSG_ENABLE \
38 (NETIF_MSG_LINK | \
39 NETIF_MSG_TIMER | \
40 NETIF_MSG_RX_ERR| \
41 NETIF_MSG_TX_ERR)
43 #define SH_ETH_OFFSET_INVALID ((u16)~0)
45 #define SH_ETH_OFFSET_DEFAULTS \
46 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
48 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
49 SH_ETH_OFFSET_DEFAULTS,
51 [EDSR] = 0x0000,
52 [EDMR] = 0x0400,
53 [EDTRR] = 0x0408,
54 [EDRRR] = 0x0410,
55 [EESR] = 0x0428,
56 [EESIPR] = 0x0430,
57 [TDLAR] = 0x0010,
58 [TDFAR] = 0x0014,
59 [TDFXR] = 0x0018,
60 [TDFFR] = 0x001c,
61 [RDLAR] = 0x0030,
62 [RDFAR] = 0x0034,
63 [RDFXR] = 0x0038,
64 [RDFFR] = 0x003c,
65 [TRSCER] = 0x0438,
66 [RMFCR] = 0x0440,
67 [TFTR] = 0x0448,
68 [FDR] = 0x0450,
69 [RMCR] = 0x0458,
70 [RPADIR] = 0x0460,
71 [FCFTR] = 0x0468,
72 [CSMR] = 0x04E4,
74 [ECMR] = 0x0500,
75 [ECSR] = 0x0510,
76 [ECSIPR] = 0x0518,
77 [PIR] = 0x0520,
78 [PSR] = 0x0528,
79 [PIPR] = 0x052c,
80 [RFLR] = 0x0508,
81 [APR] = 0x0554,
82 [MPR] = 0x0558,
83 [PFTCR] = 0x055c,
84 [PFRCR] = 0x0560,
85 [TPAUSER] = 0x0564,
86 [GECMR] = 0x05b0,
87 [BCULR] = 0x05b4,
88 [MAHR] = 0x05c0,
89 [MALR] = 0x05c8,
90 [TROCR] = 0x0700,
91 [CDCR] = 0x0708,
92 [LCCR] = 0x0710,
93 [CEFCR] = 0x0740,
94 [FRECR] = 0x0748,
95 [TSFRCR] = 0x0750,
96 [TLFRCR] = 0x0758,
97 [RFCR] = 0x0760,
98 [CERCR] = 0x0768,
99 [CEECR] = 0x0770,
100 [MAFCR] = 0x0778,
101 [RMII_MII] = 0x0790,
103 [ARSTR] = 0x0000,
104 [TSU_CTRST] = 0x0004,
105 [TSU_FWEN0] = 0x0010,
106 [TSU_FWEN1] = 0x0014,
107 [TSU_FCM] = 0x0018,
108 [TSU_BSYSL0] = 0x0020,
109 [TSU_BSYSL1] = 0x0024,
110 [TSU_PRISL0] = 0x0028,
111 [TSU_PRISL1] = 0x002c,
112 [TSU_FWSL0] = 0x0030,
113 [TSU_FWSL1] = 0x0034,
114 [TSU_FWSLC] = 0x0038,
115 [TSU_QTAGM0] = 0x0040,
116 [TSU_QTAGM1] = 0x0044,
117 [TSU_FWSR] = 0x0050,
118 [TSU_FWINMK] = 0x0054,
119 [TSU_ADQT0] = 0x0048,
120 [TSU_ADQT1] = 0x004c,
121 [TSU_VTAG0] = 0x0058,
122 [TSU_VTAG1] = 0x005c,
123 [TSU_ADSBSY] = 0x0060,
124 [TSU_TEN] = 0x0064,
125 [TSU_POST1] = 0x0070,
126 [TSU_POST2] = 0x0074,
127 [TSU_POST3] = 0x0078,
128 [TSU_POST4] = 0x007c,
129 [TSU_ADRH0] = 0x0100,
131 [TXNLCR0] = 0x0080,
132 [TXALCR0] = 0x0084,
133 [RXNLCR0] = 0x0088,
134 [RXALCR0] = 0x008c,
135 [FWNLCR0] = 0x0090,
136 [FWALCR0] = 0x0094,
137 [TXNLCR1] = 0x00a0,
138 [TXALCR1] = 0x00a4,
139 [RXNLCR1] = 0x00a8,
140 [RXALCR1] = 0x00ac,
141 [FWNLCR1] = 0x00b0,
142 [FWALCR1] = 0x00b4,
145 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
146 SH_ETH_OFFSET_DEFAULTS,
148 [EDSR] = 0x0000,
149 [EDMR] = 0x0400,
150 [EDTRR] = 0x0408,
151 [EDRRR] = 0x0410,
152 [EESR] = 0x0428,
153 [EESIPR] = 0x0430,
154 [TDLAR] = 0x0010,
155 [TDFAR] = 0x0014,
156 [TDFXR] = 0x0018,
157 [TDFFR] = 0x001c,
158 [RDLAR] = 0x0030,
159 [RDFAR] = 0x0034,
160 [RDFXR] = 0x0038,
161 [RDFFR] = 0x003c,
162 [TRSCER] = 0x0438,
163 [RMFCR] = 0x0440,
164 [TFTR] = 0x0448,
165 [FDR] = 0x0450,
166 [RMCR] = 0x0458,
167 [RPADIR] = 0x0460,
168 [FCFTR] = 0x0468,
169 [CSMR] = 0x04E4,
171 [ECMR] = 0x0500,
172 [RFLR] = 0x0508,
173 [ECSR] = 0x0510,
174 [ECSIPR] = 0x0518,
175 [PIR] = 0x0520,
176 [APR] = 0x0554,
177 [MPR] = 0x0558,
178 [PFTCR] = 0x055c,
179 [PFRCR] = 0x0560,
180 [TPAUSER] = 0x0564,
181 [MAHR] = 0x05c0,
182 [MALR] = 0x05c8,
183 [CEFCR] = 0x0740,
184 [FRECR] = 0x0748,
185 [TSFRCR] = 0x0750,
186 [TLFRCR] = 0x0758,
187 [RFCR] = 0x0760,
188 [MAFCR] = 0x0778,
190 [ARSTR] = 0x0000,
191 [TSU_CTRST] = 0x0004,
192 [TSU_FWSLC] = 0x0038,
193 [TSU_VTAG0] = 0x0058,
194 [TSU_ADSBSY] = 0x0060,
195 [TSU_TEN] = 0x0064,
196 [TSU_POST1] = 0x0070,
197 [TSU_POST2] = 0x0074,
198 [TSU_POST3] = 0x0078,
199 [TSU_POST4] = 0x007c,
200 [TSU_ADRH0] = 0x0100,
202 [TXNLCR0] = 0x0080,
203 [TXALCR0] = 0x0084,
204 [RXNLCR0] = 0x0088,
205 [RXALCR0] = 0x008C,
208 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
209 SH_ETH_OFFSET_DEFAULTS,
211 [ECMR] = 0x0300,
212 [RFLR] = 0x0308,
213 [ECSR] = 0x0310,
214 [ECSIPR] = 0x0318,
215 [PIR] = 0x0320,
216 [PSR] = 0x0328,
217 [RDMLR] = 0x0340,
218 [IPGR] = 0x0350,
219 [APR] = 0x0354,
220 [MPR] = 0x0358,
221 [RFCF] = 0x0360,
222 [TPAUSER] = 0x0364,
223 [TPAUSECR] = 0x0368,
224 [MAHR] = 0x03c0,
225 [MALR] = 0x03c8,
226 [TROCR] = 0x03d0,
227 [CDCR] = 0x03d4,
228 [LCCR] = 0x03d8,
229 [CNDCR] = 0x03dc,
230 [CEFCR] = 0x03e4,
231 [FRECR] = 0x03e8,
232 [TSFRCR] = 0x03ec,
233 [TLFRCR] = 0x03f0,
234 [RFCR] = 0x03f4,
235 [MAFCR] = 0x03f8,
237 [EDMR] = 0x0200,
238 [EDTRR] = 0x0208,
239 [EDRRR] = 0x0210,
240 [TDLAR] = 0x0218,
241 [RDLAR] = 0x0220,
242 [EESR] = 0x0228,
243 [EESIPR] = 0x0230,
244 [TRSCER] = 0x0238,
245 [RMFCR] = 0x0240,
246 [TFTR] = 0x0248,
247 [FDR] = 0x0250,
248 [RMCR] = 0x0258,
249 [TFUCR] = 0x0264,
250 [RFOCR] = 0x0268,
251 [RMIIMODE] = 0x026c,
252 [FCFTR] = 0x0270,
253 [TRIMD] = 0x027c,
256 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
257 SH_ETH_OFFSET_DEFAULTS,
259 [ECMR] = 0x0100,
260 [RFLR] = 0x0108,
261 [ECSR] = 0x0110,
262 [ECSIPR] = 0x0118,
263 [PIR] = 0x0120,
264 [PSR] = 0x0128,
265 [RDMLR] = 0x0140,
266 [IPGR] = 0x0150,
267 [APR] = 0x0154,
268 [MPR] = 0x0158,
269 [TPAUSER] = 0x0164,
270 [RFCF] = 0x0160,
271 [TPAUSECR] = 0x0168,
272 [BCFRR] = 0x016c,
273 [MAHR] = 0x01c0,
274 [MALR] = 0x01c8,
275 [TROCR] = 0x01d0,
276 [CDCR] = 0x01d4,
277 [LCCR] = 0x01d8,
278 [CNDCR] = 0x01dc,
279 [CEFCR] = 0x01e4,
280 [FRECR] = 0x01e8,
281 [TSFRCR] = 0x01ec,
282 [TLFRCR] = 0x01f0,
283 [RFCR] = 0x01f4,
284 [MAFCR] = 0x01f8,
285 [RTRATE] = 0x01fc,
287 [EDMR] = 0x0000,
288 [EDTRR] = 0x0008,
289 [EDRRR] = 0x0010,
290 [TDLAR] = 0x0018,
291 [RDLAR] = 0x0020,
292 [EESR] = 0x0028,
293 [EESIPR] = 0x0030,
294 [TRSCER] = 0x0038,
295 [RMFCR] = 0x0040,
296 [TFTR] = 0x0048,
297 [FDR] = 0x0050,
298 [RMCR] = 0x0058,
299 [TFUCR] = 0x0064,
300 [RFOCR] = 0x0068,
301 [FCFTR] = 0x0070,
302 [RPADIR] = 0x0078,
303 [TRIMD] = 0x007c,
304 [RBWAR] = 0x00c8,
305 [RDFAR] = 0x00cc,
306 [TBRAR] = 0x00d4,
307 [TDFAR] = 0x00d8,
310 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
311 SH_ETH_OFFSET_DEFAULTS,
313 [EDMR] = 0x0000,
314 [EDTRR] = 0x0004,
315 [EDRRR] = 0x0008,
316 [TDLAR] = 0x000c,
317 [RDLAR] = 0x0010,
318 [EESR] = 0x0014,
319 [EESIPR] = 0x0018,
320 [TRSCER] = 0x001c,
321 [RMFCR] = 0x0020,
322 [TFTR] = 0x0024,
323 [FDR] = 0x0028,
324 [RMCR] = 0x002c,
325 [EDOCR] = 0x0030,
326 [FCFTR] = 0x0034,
327 [RPADIR] = 0x0038,
328 [TRIMD] = 0x003c,
329 [RBWAR] = 0x0040,
330 [RDFAR] = 0x0044,
331 [TBRAR] = 0x004c,
332 [TDFAR] = 0x0050,
334 [ECMR] = 0x0160,
335 [ECSR] = 0x0164,
336 [ECSIPR] = 0x0168,
337 [PIR] = 0x016c,
338 [MAHR] = 0x0170,
339 [MALR] = 0x0174,
340 [RFLR] = 0x0178,
341 [PSR] = 0x017c,
342 [TROCR] = 0x0180,
343 [CDCR] = 0x0184,
344 [LCCR] = 0x0188,
345 [CNDCR] = 0x018c,
346 [CEFCR] = 0x0194,
347 [FRECR] = 0x0198,
348 [TSFRCR] = 0x019c,
349 [TLFRCR] = 0x01a0,
350 [RFCR] = 0x01a4,
351 [MAFCR] = 0x01a8,
352 [IPGR] = 0x01b4,
353 [APR] = 0x01b8,
354 [MPR] = 0x01bc,
355 [TPAUSER] = 0x01c4,
356 [BCFR] = 0x01cc,
358 [ARSTR] = 0x0000,
359 [TSU_CTRST] = 0x0004,
360 [TSU_FWEN0] = 0x0010,
361 [TSU_FWEN1] = 0x0014,
362 [TSU_FCM] = 0x0018,
363 [TSU_BSYSL0] = 0x0020,
364 [TSU_BSYSL1] = 0x0024,
365 [TSU_PRISL0] = 0x0028,
366 [TSU_PRISL1] = 0x002c,
367 [TSU_FWSL0] = 0x0030,
368 [TSU_FWSL1] = 0x0034,
369 [TSU_FWSLC] = 0x0038,
370 [TSU_QTAGM0] = 0x0040,
371 [TSU_QTAGM1] = 0x0044,
372 [TSU_ADQT0] = 0x0048,
373 [TSU_ADQT1] = 0x004c,
374 [TSU_FWSR] = 0x0050,
375 [TSU_FWINMK] = 0x0054,
376 [TSU_ADSBSY] = 0x0060,
377 [TSU_TEN] = 0x0064,
378 [TSU_POST1] = 0x0070,
379 [TSU_POST2] = 0x0074,
380 [TSU_POST3] = 0x0078,
381 [TSU_POST4] = 0x007c,
383 [TXNLCR0] = 0x0080,
384 [TXALCR0] = 0x0084,
385 [RXNLCR0] = 0x0088,
386 [RXALCR0] = 0x008c,
387 [FWNLCR0] = 0x0090,
388 [FWALCR0] = 0x0094,
389 [TXNLCR1] = 0x00a0,
390 [TXALCR1] = 0x00a4,
391 [RXNLCR1] = 0x00a8,
392 [RXALCR1] = 0x00ac,
393 [FWNLCR1] = 0x00b0,
394 [FWALCR1] = 0x00b4,
396 [TSU_ADRH0] = 0x0100,
399 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
400 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
402 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
404 struct sh_eth_private *mdp = netdev_priv(ndev);
405 u16 offset = mdp->reg_offset[enum_index];
407 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
408 return;
410 iowrite32(data, mdp->addr + offset);
413 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
415 struct sh_eth_private *mdp = netdev_priv(ndev);
416 u16 offset = mdp->reg_offset[enum_index];
418 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 return ~0U;
421 return ioread32(mdp->addr + offset);
424 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
425 u32 set)
427 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
428 enum_index);
431 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
433 return mdp->reg_offset[enum_index];
436 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
437 int enum_index)
439 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
441 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
442 return;
444 iowrite32(data, mdp->tsu_addr + offset);
447 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
449 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
451 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
452 return ~0U;
454 return ioread32(mdp->tsu_addr + offset);
457 static void sh_eth_soft_swap(char *src, int len)
459 #ifdef __LITTLE_ENDIAN
460 u32 *p = (u32 *)src;
461 u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
463 for (; p < maxp; p++)
464 *p = swab32(*p);
465 #endif
468 static void sh_eth_select_mii(struct net_device *ndev)
470 struct sh_eth_private *mdp = netdev_priv(ndev);
471 u32 value;
473 switch (mdp->phy_interface) {
474 case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
475 value = 0x3;
476 break;
477 case PHY_INTERFACE_MODE_GMII:
478 value = 0x2;
479 break;
480 case PHY_INTERFACE_MODE_MII:
481 value = 0x1;
482 break;
483 case PHY_INTERFACE_MODE_RMII:
484 value = 0x0;
485 break;
486 default:
487 netdev_warn(ndev,
488 "PHY interface mode was not setup. Set to MII.\n");
489 value = 0x1;
490 break;
493 sh_eth_write(ndev, value, RMII_MII);
496 static void sh_eth_set_duplex(struct net_device *ndev)
498 struct sh_eth_private *mdp = netdev_priv(ndev);
500 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
503 static void sh_eth_chip_reset(struct net_device *ndev)
505 struct sh_eth_private *mdp = netdev_priv(ndev);
507 /* reset device */
508 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
509 mdelay(1);
512 static int sh_eth_soft_reset(struct net_device *ndev)
514 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
515 mdelay(3);
516 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
518 return 0;
521 static int sh_eth_check_soft_reset(struct net_device *ndev)
523 int cnt;
525 for (cnt = 100; cnt > 0; cnt--) {
526 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
527 return 0;
528 mdelay(1);
531 netdev_err(ndev, "Device reset failed\n");
532 return -ETIMEDOUT;
535 static int sh_eth_soft_reset_gether(struct net_device *ndev)
537 struct sh_eth_private *mdp = netdev_priv(ndev);
538 int ret;
540 sh_eth_write(ndev, EDSR_ENALL, EDSR);
541 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
543 ret = sh_eth_check_soft_reset(ndev);
544 if (ret)
545 return ret;
547 /* Table Init */
548 sh_eth_write(ndev, 0, TDLAR);
549 sh_eth_write(ndev, 0, TDFAR);
550 sh_eth_write(ndev, 0, TDFXR);
551 sh_eth_write(ndev, 0, TDFFR);
552 sh_eth_write(ndev, 0, RDLAR);
553 sh_eth_write(ndev, 0, RDFAR);
554 sh_eth_write(ndev, 0, RDFXR);
555 sh_eth_write(ndev, 0, RDFFR);
557 /* Reset HW CRC register */
558 if (mdp->cd->csmr)
559 sh_eth_write(ndev, 0, CSMR);
561 /* Select MII mode */
562 if (mdp->cd->select_mii)
563 sh_eth_select_mii(ndev);
565 return ret;
568 static void sh_eth_set_rate_gether(struct net_device *ndev)
570 struct sh_eth_private *mdp = netdev_priv(ndev);
572 switch (mdp->speed) {
573 case 10: /* 10BASE */
574 sh_eth_write(ndev, GECMR_10, GECMR);
575 break;
576 case 100:/* 100BASE */
577 sh_eth_write(ndev, GECMR_100, GECMR);
578 break;
579 case 1000: /* 1000BASE */
580 sh_eth_write(ndev, GECMR_1000, GECMR);
581 break;
585 #ifdef CONFIG_OF
586 /* R7S72100 */
587 static struct sh_eth_cpu_data r7s72100_data = {
588 .soft_reset = sh_eth_soft_reset_gether,
590 .chip_reset = sh_eth_chip_reset,
591 .set_duplex = sh_eth_set_duplex,
593 .register_type = SH_ETH_REG_FAST_RZ,
595 .edtrr_trns = EDTRR_TRNS_GETHER,
596 .ecsr_value = ECSR_ICD,
597 .ecsipr_value = ECSIPR_ICDIP,
598 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
599 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
600 EESIPR_ECIIP |
601 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
602 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
603 EESIPR_RMAFIP | EESIPR_RRFIP |
604 EESIPR_RTLFIP | EESIPR_RTSFIP |
605 EESIPR_PREIP | EESIPR_CERFIP,
607 .tx_check = EESR_TC1 | EESR_FTC,
608 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
609 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
610 EESR_TDE,
611 .fdr_value = 0x0000070f,
613 .no_psr = 1,
614 .apr = 1,
615 .mpr = 1,
616 .tpauser = 1,
617 .hw_swap = 1,
618 .rpadir = 1,
619 .no_trimd = 1,
620 .no_ade = 1,
621 .xdfar_rw = 1,
622 .csmr = 1,
623 .rx_csum = 1,
624 .tsu = 1,
625 .no_tx_cntrs = 1,
628 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
630 sh_eth_chip_reset(ndev);
632 sh_eth_select_mii(ndev);
635 /* R8A7740 */
636 static struct sh_eth_cpu_data r8a7740_data = {
637 .soft_reset = sh_eth_soft_reset_gether,
639 .chip_reset = sh_eth_chip_reset_r8a7740,
640 .set_duplex = sh_eth_set_duplex,
641 .set_rate = sh_eth_set_rate_gether,
643 .register_type = SH_ETH_REG_GIGABIT,
645 .edtrr_trns = EDTRR_TRNS_GETHER,
646 .ecsr_value = ECSR_ICD | ECSR_MPD,
647 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
648 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
649 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
650 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
651 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
652 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
653 EESIPR_CEEFIP | EESIPR_CELFIP |
654 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
655 EESIPR_PREIP | EESIPR_CERFIP,
657 .tx_check = EESR_TC1 | EESR_FTC,
658 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
659 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
660 EESR_TDE,
661 .fdr_value = 0x0000070f,
663 .apr = 1,
664 .mpr = 1,
665 .tpauser = 1,
666 .bculr = 1,
667 .hw_swap = 1,
668 .rpadir = 1,
669 .no_trimd = 1,
670 .no_ade = 1,
671 .xdfar_rw = 1,
672 .csmr = 1,
673 .rx_csum = 1,
674 .tsu = 1,
675 .select_mii = 1,
676 .magic = 1,
677 .cexcr = 1,
680 /* There is CPU dependent code */
681 static void sh_eth_set_rate_rcar(struct net_device *ndev)
683 struct sh_eth_private *mdp = netdev_priv(ndev);
685 switch (mdp->speed) {
686 case 10: /* 10BASE */
687 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
688 break;
689 case 100:/* 100BASE */
690 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
691 break;
695 /* R-Car Gen1 */
696 static struct sh_eth_cpu_data rcar_gen1_data = {
697 .soft_reset = sh_eth_soft_reset,
699 .set_duplex = sh_eth_set_duplex,
700 .set_rate = sh_eth_set_rate_rcar,
702 .register_type = SH_ETH_REG_FAST_RCAR,
704 .edtrr_trns = EDTRR_TRNS_ETHER,
705 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
706 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
707 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
708 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
709 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
710 EESIPR_RMAFIP | EESIPR_RRFIP |
711 EESIPR_RTLFIP | EESIPR_RTSFIP |
712 EESIPR_PREIP | EESIPR_CERFIP,
714 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
715 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
716 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
717 .fdr_value = 0x00000f0f,
719 .apr = 1,
720 .mpr = 1,
721 .tpauser = 1,
722 .hw_swap = 1,
723 .no_xdfar = 1,
726 /* R-Car Gen2 and RZ/G1 */
727 static struct sh_eth_cpu_data rcar_gen2_data = {
728 .soft_reset = sh_eth_soft_reset,
730 .set_duplex = sh_eth_set_duplex,
731 .set_rate = sh_eth_set_rate_rcar,
733 .register_type = SH_ETH_REG_FAST_RCAR,
735 .edtrr_trns = EDTRR_TRNS_ETHER,
736 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
737 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
738 ECSIPR_MPDIP,
739 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
740 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
741 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
742 EESIPR_RMAFIP | EESIPR_RRFIP |
743 EESIPR_RTLFIP | EESIPR_RTSFIP |
744 EESIPR_PREIP | EESIPR_CERFIP,
746 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
747 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
748 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
749 .fdr_value = 0x00000f0f,
751 .trscer_err_mask = DESC_I_RINT8,
753 .apr = 1,
754 .mpr = 1,
755 .tpauser = 1,
756 .hw_swap = 1,
757 .no_xdfar = 1,
758 .rmiimode = 1,
759 .magic = 1,
762 /* R8A77980 */
763 static struct sh_eth_cpu_data r8a77980_data = {
764 .soft_reset = sh_eth_soft_reset_gether,
766 .set_duplex = sh_eth_set_duplex,
767 .set_rate = sh_eth_set_rate_gether,
769 .register_type = SH_ETH_REG_GIGABIT,
771 .edtrr_trns = EDTRR_TRNS_GETHER,
772 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
773 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
774 ECSIPR_MPDIP,
775 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
776 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
777 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
778 EESIPR_RMAFIP | EESIPR_RRFIP |
779 EESIPR_RTLFIP | EESIPR_RTSFIP |
780 EESIPR_PREIP | EESIPR_CERFIP,
782 .tx_check = EESR_FTC | EESR_CD | EESR_TRO,
783 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
784 EESR_RFE | EESR_RDE | EESR_RFRMER |
785 EESR_TFE | EESR_TDE | EESR_ECI,
786 .fdr_value = 0x0000070f,
788 .apr = 1,
789 .mpr = 1,
790 .tpauser = 1,
791 .bculr = 1,
792 .hw_swap = 1,
793 .nbst = 1,
794 .rpadir = 1,
795 .no_trimd = 1,
796 .no_ade = 1,
797 .xdfar_rw = 1,
798 .csmr = 1,
799 .rx_csum = 1,
800 .select_mii = 1,
801 .magic = 1,
802 .cexcr = 1,
805 /* R7S9210 */
806 static struct sh_eth_cpu_data r7s9210_data = {
807 .soft_reset = sh_eth_soft_reset,
809 .set_duplex = sh_eth_set_duplex,
810 .set_rate = sh_eth_set_rate_rcar,
812 .register_type = SH_ETH_REG_FAST_SH4,
814 .edtrr_trns = EDTRR_TRNS_ETHER,
815 .ecsr_value = ECSR_ICD,
816 .ecsipr_value = ECSIPR_ICDIP,
817 .eesipr_value = EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
818 EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
819 EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
820 EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
821 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
822 EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
823 EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
825 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
826 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
827 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
829 .fdr_value = 0x0000070f,
831 .apr = 1,
832 .mpr = 1,
833 .tpauser = 1,
834 .hw_swap = 1,
835 .rpadir = 1,
836 .no_ade = 1,
837 .xdfar_rw = 1,
839 #endif /* CONFIG_OF */
841 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
843 struct sh_eth_private *mdp = netdev_priv(ndev);
845 switch (mdp->speed) {
846 case 10: /* 10BASE */
847 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
848 break;
849 case 100:/* 100BASE */
850 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
851 break;
855 /* SH7724 */
856 static struct sh_eth_cpu_data sh7724_data = {
857 .soft_reset = sh_eth_soft_reset,
859 .set_duplex = sh_eth_set_duplex,
860 .set_rate = sh_eth_set_rate_sh7724,
862 .register_type = SH_ETH_REG_FAST_SH4,
864 .edtrr_trns = EDTRR_TRNS_ETHER,
865 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
866 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
867 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
868 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
869 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
870 EESIPR_RMAFIP | EESIPR_RRFIP |
871 EESIPR_RTLFIP | EESIPR_RTSFIP |
872 EESIPR_PREIP | EESIPR_CERFIP,
874 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
875 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
876 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
878 .apr = 1,
879 .mpr = 1,
880 .tpauser = 1,
881 .hw_swap = 1,
882 .rpadir = 1,
885 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
887 struct sh_eth_private *mdp = netdev_priv(ndev);
889 switch (mdp->speed) {
890 case 10: /* 10BASE */
891 sh_eth_write(ndev, 0, RTRATE);
892 break;
893 case 100:/* 100BASE */
894 sh_eth_write(ndev, 1, RTRATE);
895 break;
899 /* SH7757 */
900 static struct sh_eth_cpu_data sh7757_data = {
901 .soft_reset = sh_eth_soft_reset,
903 .set_duplex = sh_eth_set_duplex,
904 .set_rate = sh_eth_set_rate_sh7757,
906 .register_type = SH_ETH_REG_FAST_SH4,
908 .edtrr_trns = EDTRR_TRNS_ETHER,
909 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
910 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
911 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
912 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
913 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
914 EESIPR_CEEFIP | EESIPR_CELFIP |
915 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
916 EESIPR_PREIP | EESIPR_CERFIP,
918 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
919 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
920 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
922 .irq_flags = IRQF_SHARED,
923 .apr = 1,
924 .mpr = 1,
925 .tpauser = 1,
926 .hw_swap = 1,
927 .no_ade = 1,
928 .rpadir = 1,
929 .rtrate = 1,
930 .dual_port = 1,
933 #define SH_GIGA_ETH_BASE 0xfee00000UL
934 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
935 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
936 static void sh_eth_chip_reset_giga(struct net_device *ndev)
938 u32 mahr[2], malr[2];
939 int i;
941 /* save MAHR and MALR */
942 for (i = 0; i < 2; i++) {
943 malr[i] = ioread32((void *)GIGA_MALR(i));
944 mahr[i] = ioread32((void *)GIGA_MAHR(i));
947 sh_eth_chip_reset(ndev);
949 /* restore MAHR and MALR */
950 for (i = 0; i < 2; i++) {
951 iowrite32(malr[i], (void *)GIGA_MALR(i));
952 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
956 static void sh_eth_set_rate_giga(struct net_device *ndev)
958 struct sh_eth_private *mdp = netdev_priv(ndev);
960 switch (mdp->speed) {
961 case 10: /* 10BASE */
962 sh_eth_write(ndev, 0x00000000, GECMR);
963 break;
964 case 100:/* 100BASE */
965 sh_eth_write(ndev, 0x00000010, GECMR);
966 break;
967 case 1000: /* 1000BASE */
968 sh_eth_write(ndev, 0x00000020, GECMR);
969 break;
973 /* SH7757(GETHERC) */
974 static struct sh_eth_cpu_data sh7757_data_giga = {
975 .soft_reset = sh_eth_soft_reset_gether,
977 .chip_reset = sh_eth_chip_reset_giga,
978 .set_duplex = sh_eth_set_duplex,
979 .set_rate = sh_eth_set_rate_giga,
981 .register_type = SH_ETH_REG_GIGABIT,
983 .edtrr_trns = EDTRR_TRNS_GETHER,
984 .ecsr_value = ECSR_ICD | ECSR_MPD,
985 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
986 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
987 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
988 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
989 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
990 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
991 EESIPR_CEEFIP | EESIPR_CELFIP |
992 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
993 EESIPR_PREIP | EESIPR_CERFIP,
995 .tx_check = EESR_TC1 | EESR_FTC,
996 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
997 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
998 EESR_TDE,
999 .fdr_value = 0x0000072f,
1001 .irq_flags = IRQF_SHARED,
1002 .apr = 1,
1003 .mpr = 1,
1004 .tpauser = 1,
1005 .bculr = 1,
1006 .hw_swap = 1,
1007 .rpadir = 1,
1008 .no_trimd = 1,
1009 .no_ade = 1,
1010 .xdfar_rw = 1,
1011 .tsu = 1,
1012 .cexcr = 1,
1013 .dual_port = 1,
1016 /* SH7734 */
1017 static struct sh_eth_cpu_data sh7734_data = {
1018 .soft_reset = sh_eth_soft_reset_gether,
1020 .chip_reset = sh_eth_chip_reset,
1021 .set_duplex = sh_eth_set_duplex,
1022 .set_rate = sh_eth_set_rate_gether,
1024 .register_type = SH_ETH_REG_GIGABIT,
1026 .edtrr_trns = EDTRR_TRNS_GETHER,
1027 .ecsr_value = ECSR_ICD | ECSR_MPD,
1028 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1029 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1030 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1031 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1032 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1033 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1034 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1035 EESIPR_PREIP | EESIPR_CERFIP,
1037 .tx_check = EESR_TC1 | EESR_FTC,
1038 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1039 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
1040 EESR_TDE,
1042 .apr = 1,
1043 .mpr = 1,
1044 .tpauser = 1,
1045 .bculr = 1,
1046 .hw_swap = 1,
1047 .no_trimd = 1,
1048 .no_ade = 1,
1049 .xdfar_rw = 1,
1050 .tsu = 1,
1051 .csmr = 1,
1052 .rx_csum = 1,
1053 .select_mii = 1,
1054 .magic = 1,
1055 .cexcr = 1,
1058 /* SH7763 */
1059 static struct sh_eth_cpu_data sh7763_data = {
1060 .soft_reset = sh_eth_soft_reset_gether,
1062 .chip_reset = sh_eth_chip_reset,
1063 .set_duplex = sh_eth_set_duplex,
1064 .set_rate = sh_eth_set_rate_gether,
1066 .register_type = SH_ETH_REG_GIGABIT,
1068 .edtrr_trns = EDTRR_TRNS_GETHER,
1069 .ecsr_value = ECSR_ICD | ECSR_MPD,
1070 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1071 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1072 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1073 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1074 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1075 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1076 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1077 EESIPR_PREIP | EESIPR_CERFIP,
1079 .tx_check = EESR_TC1 | EESR_FTC,
1080 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1081 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1083 .apr = 1,
1084 .mpr = 1,
1085 .tpauser = 1,
1086 .bculr = 1,
1087 .hw_swap = 1,
1088 .no_trimd = 1,
1089 .no_ade = 1,
1090 .xdfar_rw = 1,
1091 .tsu = 1,
1092 .irq_flags = IRQF_SHARED,
1093 .magic = 1,
1094 .cexcr = 1,
1095 .rx_csum = 1,
1096 .dual_port = 1,
1099 static struct sh_eth_cpu_data sh7619_data = {
1100 .soft_reset = sh_eth_soft_reset,
1102 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1104 .edtrr_trns = EDTRR_TRNS_ETHER,
1105 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1106 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1107 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1108 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1109 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1110 EESIPR_CEEFIP | EESIPR_CELFIP |
1111 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1112 EESIPR_PREIP | EESIPR_CERFIP,
1114 .apr = 1,
1115 .mpr = 1,
1116 .tpauser = 1,
1117 .hw_swap = 1,
1120 static struct sh_eth_cpu_data sh771x_data = {
1121 .soft_reset = sh_eth_soft_reset,
1123 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1125 .edtrr_trns = EDTRR_TRNS_ETHER,
1126 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1127 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1128 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1129 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1130 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1131 EESIPR_CEEFIP | EESIPR_CELFIP |
1132 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1133 EESIPR_PREIP | EESIPR_CERFIP,
1134 .tsu = 1,
1135 .dual_port = 1,
1138 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1140 if (!cd->ecsr_value)
1141 cd->ecsr_value = DEFAULT_ECSR_INIT;
1143 if (!cd->ecsipr_value)
1144 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1146 if (!cd->fcftr_value)
1147 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1148 DEFAULT_FIFO_F_D_RFD;
1150 if (!cd->fdr_value)
1151 cd->fdr_value = DEFAULT_FDR_INIT;
1153 if (!cd->tx_check)
1154 cd->tx_check = DEFAULT_TX_CHECK;
1156 if (!cd->eesr_err_check)
1157 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1159 if (!cd->trscer_err_mask)
1160 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1163 static void sh_eth_set_receive_align(struct sk_buff *skb)
1165 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1167 if (reserve)
1168 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1171 /* Program the hardware MAC address from dev->dev_addr. */
1172 static void update_mac_address(struct net_device *ndev)
1174 sh_eth_write(ndev,
1175 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1176 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1177 sh_eth_write(ndev,
1178 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1181 /* Get MAC address from SuperH MAC address register
1183 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1184 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1185 * When you want use this device, you must set MAC address in bootloader.
1188 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1190 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1191 memcpy(ndev->dev_addr, mac, ETH_ALEN);
1192 } else {
1193 u32 mahr = sh_eth_read(ndev, MAHR);
1194 u32 malr = sh_eth_read(ndev, MALR);
1196 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1197 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1198 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
1199 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
1200 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
1201 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
1205 struct bb_info {
1206 void (*set_gate)(void *addr);
1207 struct mdiobb_ctrl ctrl;
1208 void *addr;
1211 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1213 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1214 u32 pir;
1216 if (bitbang->set_gate)
1217 bitbang->set_gate(bitbang->addr);
1219 pir = ioread32(bitbang->addr);
1220 if (set)
1221 pir |= mask;
1222 else
1223 pir &= ~mask;
1224 iowrite32(pir, bitbang->addr);
1227 /* Data I/O pin control */
1228 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1230 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1233 /* Set bit data*/
1234 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1236 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1239 /* Get bit data*/
1240 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1242 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1244 if (bitbang->set_gate)
1245 bitbang->set_gate(bitbang->addr);
1247 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1250 /* MDC pin control */
1251 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1253 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1256 /* mdio bus control struct */
1257 static struct mdiobb_ops bb_ops = {
1258 .owner = THIS_MODULE,
1259 .set_mdc = sh_mdc_ctrl,
1260 .set_mdio_dir = sh_mmd_ctrl,
1261 .set_mdio_data = sh_set_mdio,
1262 .get_mdio_data = sh_get_mdio,
1265 /* free Tx skb function */
1266 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1268 struct sh_eth_private *mdp = netdev_priv(ndev);
1269 struct sh_eth_txdesc *txdesc;
1270 int free_num = 0;
1271 int entry;
1272 bool sent;
1274 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1275 entry = mdp->dirty_tx % mdp->num_tx_ring;
1276 txdesc = &mdp->tx_ring[entry];
1277 sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1278 if (sent_only && !sent)
1279 break;
1280 /* TACT bit must be checked before all the following reads */
1281 dma_rmb();
1282 netif_info(mdp, tx_done, ndev,
1283 "tx entry %d status 0x%08x\n",
1284 entry, le32_to_cpu(txdesc->status));
1285 /* Free the original skb. */
1286 if (mdp->tx_skbuff[entry]) {
1287 dma_unmap_single(&mdp->pdev->dev,
1288 le32_to_cpu(txdesc->addr),
1289 le32_to_cpu(txdesc->len) >> 16,
1290 DMA_TO_DEVICE);
1291 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1292 mdp->tx_skbuff[entry] = NULL;
1293 free_num++;
1295 txdesc->status = cpu_to_le32(TD_TFP);
1296 if (entry >= mdp->num_tx_ring - 1)
1297 txdesc->status |= cpu_to_le32(TD_TDLE);
1299 if (sent) {
1300 ndev->stats.tx_packets++;
1301 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1304 return free_num;
1307 /* free skb and descriptor buffer */
1308 static void sh_eth_ring_free(struct net_device *ndev)
1310 struct sh_eth_private *mdp = netdev_priv(ndev);
1311 int ringsize, i;
1313 if (mdp->rx_ring) {
1314 for (i = 0; i < mdp->num_rx_ring; i++) {
1315 if (mdp->rx_skbuff[i]) {
1316 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1318 dma_unmap_single(&mdp->pdev->dev,
1319 le32_to_cpu(rxdesc->addr),
1320 ALIGN(mdp->rx_buf_sz, 32),
1321 DMA_FROM_DEVICE);
1324 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1325 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1326 mdp->rx_desc_dma);
1327 mdp->rx_ring = NULL;
1330 /* Free Rx skb ringbuffer */
1331 if (mdp->rx_skbuff) {
1332 for (i = 0; i < mdp->num_rx_ring; i++)
1333 dev_kfree_skb(mdp->rx_skbuff[i]);
1335 kfree(mdp->rx_skbuff);
1336 mdp->rx_skbuff = NULL;
1338 if (mdp->tx_ring) {
1339 sh_eth_tx_free(ndev, false);
1341 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1342 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1343 mdp->tx_desc_dma);
1344 mdp->tx_ring = NULL;
1347 /* Free Tx skb ringbuffer */
1348 kfree(mdp->tx_skbuff);
1349 mdp->tx_skbuff = NULL;
1352 /* format skb and descriptor buffer */
1353 static void sh_eth_ring_format(struct net_device *ndev)
1355 struct sh_eth_private *mdp = netdev_priv(ndev);
1356 int i;
1357 struct sk_buff *skb;
1358 struct sh_eth_rxdesc *rxdesc = NULL;
1359 struct sh_eth_txdesc *txdesc = NULL;
1360 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1361 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1362 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1363 dma_addr_t dma_addr;
1364 u32 buf_len;
1366 mdp->cur_rx = 0;
1367 mdp->cur_tx = 0;
1368 mdp->dirty_rx = 0;
1369 mdp->dirty_tx = 0;
1371 memset(mdp->rx_ring, 0, rx_ringsize);
1373 /* build Rx ring buffer */
1374 for (i = 0; i < mdp->num_rx_ring; i++) {
1375 /* skb */
1376 mdp->rx_skbuff[i] = NULL;
1377 skb = netdev_alloc_skb(ndev, skbuff_size);
1378 if (skb == NULL)
1379 break;
1380 sh_eth_set_receive_align(skb);
1382 /* The size of the buffer is a multiple of 32 bytes. */
1383 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1384 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1385 DMA_FROM_DEVICE);
1386 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1387 kfree_skb(skb);
1388 break;
1390 mdp->rx_skbuff[i] = skb;
1392 /* RX descriptor */
1393 rxdesc = &mdp->rx_ring[i];
1394 rxdesc->len = cpu_to_le32(buf_len << 16);
1395 rxdesc->addr = cpu_to_le32(dma_addr);
1396 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1398 /* Rx descriptor address set */
1399 if (i == 0) {
1400 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1401 if (mdp->cd->xdfar_rw)
1402 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1406 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1408 /* Mark the last entry as wrapping the ring. */
1409 if (rxdesc)
1410 rxdesc->status |= cpu_to_le32(RD_RDLE);
1412 memset(mdp->tx_ring, 0, tx_ringsize);
1414 /* build Tx ring buffer */
1415 for (i = 0; i < mdp->num_tx_ring; i++) {
1416 mdp->tx_skbuff[i] = NULL;
1417 txdesc = &mdp->tx_ring[i];
1418 txdesc->status = cpu_to_le32(TD_TFP);
1419 txdesc->len = cpu_to_le32(0);
1420 if (i == 0) {
1421 /* Tx descriptor address set */
1422 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1423 if (mdp->cd->xdfar_rw)
1424 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1428 txdesc->status |= cpu_to_le32(TD_TDLE);
1431 /* Get skb and descriptor buffer */
1432 static int sh_eth_ring_init(struct net_device *ndev)
1434 struct sh_eth_private *mdp = netdev_priv(ndev);
1435 int rx_ringsize, tx_ringsize;
1437 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1438 * card needs room to do 8 byte alignment, +2 so we can reserve
1439 * the first 2 bytes, and +16 gets room for the status word from the
1440 * card.
1442 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1443 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1444 if (mdp->cd->rpadir)
1445 mdp->rx_buf_sz += NET_IP_ALIGN;
1447 /* Allocate RX and TX skb rings */
1448 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1449 GFP_KERNEL);
1450 if (!mdp->rx_skbuff)
1451 return -ENOMEM;
1453 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1454 GFP_KERNEL);
1455 if (!mdp->tx_skbuff)
1456 goto ring_free;
1458 /* Allocate all Rx descriptors. */
1459 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1460 mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1461 &mdp->rx_desc_dma, GFP_KERNEL);
1462 if (!mdp->rx_ring)
1463 goto ring_free;
1465 mdp->dirty_rx = 0;
1467 /* Allocate all Tx descriptors. */
1468 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1469 mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1470 &mdp->tx_desc_dma, GFP_KERNEL);
1471 if (!mdp->tx_ring)
1472 goto ring_free;
1473 return 0;
1475 ring_free:
1476 /* Free Rx and Tx skb ring buffer and DMA buffer */
1477 sh_eth_ring_free(ndev);
1479 return -ENOMEM;
1482 static int sh_eth_dev_init(struct net_device *ndev)
1484 struct sh_eth_private *mdp = netdev_priv(ndev);
1485 int ret;
1487 /* Soft Reset */
1488 ret = mdp->cd->soft_reset(ndev);
1489 if (ret)
1490 return ret;
1492 if (mdp->cd->rmiimode)
1493 sh_eth_write(ndev, 0x1, RMIIMODE);
1495 /* Descriptor format */
1496 sh_eth_ring_format(ndev);
1497 if (mdp->cd->rpadir)
1498 sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1500 /* all sh_eth int mask */
1501 sh_eth_write(ndev, 0, EESIPR);
1503 #if defined(__LITTLE_ENDIAN)
1504 if (mdp->cd->hw_swap)
1505 sh_eth_write(ndev, EDMR_EL, EDMR);
1506 else
1507 #endif
1508 sh_eth_write(ndev, 0, EDMR);
1510 /* FIFO size set */
1511 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1512 sh_eth_write(ndev, 0, TFTR);
1514 /* Frame recv control (enable multiple-packets per rx irq) */
1515 sh_eth_write(ndev, RMCR_RNC, RMCR);
1517 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1519 /* DMA transfer burst mode */
1520 if (mdp->cd->nbst)
1521 sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1523 /* Burst cycle count upper-limit */
1524 if (mdp->cd->bculr)
1525 sh_eth_write(ndev, 0x800, BCULR);
1527 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1529 if (!mdp->cd->no_trimd)
1530 sh_eth_write(ndev, 0, TRIMD);
1532 /* Recv frame limit set register */
1533 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1534 RFLR);
1536 sh_eth_modify(ndev, EESR, 0, 0);
1537 mdp->irq_enabled = true;
1538 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1540 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1541 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1542 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1543 ECMR_TE | ECMR_RE, ECMR);
1545 if (mdp->cd->set_rate)
1546 mdp->cd->set_rate(ndev);
1548 /* E-MAC Status Register clear */
1549 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1551 /* E-MAC Interrupt Enable register */
1552 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1554 /* Set MAC address */
1555 update_mac_address(ndev);
1557 /* mask reset */
1558 if (mdp->cd->apr)
1559 sh_eth_write(ndev, 1, APR);
1560 if (mdp->cd->mpr)
1561 sh_eth_write(ndev, 1, MPR);
1562 if (mdp->cd->tpauser)
1563 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1565 /* Setting the Rx mode will start the Rx process. */
1566 sh_eth_write(ndev, EDRRR_R, EDRRR);
1568 return ret;
1571 static void sh_eth_dev_exit(struct net_device *ndev)
1573 struct sh_eth_private *mdp = netdev_priv(ndev);
1574 int i;
1576 /* Deactivate all TX descriptors, so DMA should stop at next
1577 * packet boundary if it's currently running
1579 for (i = 0; i < mdp->num_tx_ring; i++)
1580 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1582 /* Disable TX FIFO egress to MAC */
1583 sh_eth_rcv_snd_disable(ndev);
1585 /* Stop RX DMA at next packet boundary */
1586 sh_eth_write(ndev, 0, EDRRR);
1588 /* Aside from TX DMA, we can't tell when the hardware is
1589 * really stopped, so we need to reset to make sure.
1590 * Before doing that, wait for long enough to *probably*
1591 * finish transmitting the last packet and poll stats.
1593 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1594 sh_eth_get_stats(ndev);
1595 mdp->cd->soft_reset(ndev);
1597 /* Set MAC address again */
1598 update_mac_address(ndev);
1601 static void sh_eth_rx_csum(struct sk_buff *skb)
1603 u8 *hw_csum;
1605 /* The hardware checksum is 2 bytes appended to packet data */
1606 if (unlikely(skb->len < sizeof(__sum16)))
1607 return;
1608 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1609 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
1610 skb->ip_summed = CHECKSUM_COMPLETE;
1611 skb_trim(skb, skb->len - sizeof(__sum16));
1614 /* Packet receive function */
1615 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1617 struct sh_eth_private *mdp = netdev_priv(ndev);
1618 struct sh_eth_rxdesc *rxdesc;
1620 int entry = mdp->cur_rx % mdp->num_rx_ring;
1621 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1622 int limit;
1623 struct sk_buff *skb;
1624 u32 desc_status;
1625 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1626 dma_addr_t dma_addr;
1627 u16 pkt_len;
1628 u32 buf_len;
1630 boguscnt = min(boguscnt, *quota);
1631 limit = boguscnt;
1632 rxdesc = &mdp->rx_ring[entry];
1633 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1634 /* RACT bit must be checked before all the following reads */
1635 dma_rmb();
1636 desc_status = le32_to_cpu(rxdesc->status);
1637 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1639 if (--boguscnt < 0)
1640 break;
1642 netif_info(mdp, rx_status, ndev,
1643 "rx entry %d status 0x%08x len %d\n",
1644 entry, desc_status, pkt_len);
1646 if (!(desc_status & RDFEND))
1647 ndev->stats.rx_length_errors++;
1649 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1650 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1651 * bit 0. However, in case of the R8A7740 and R7S72100
1652 * the RFS bits are from bit 25 to bit 16. So, the
1653 * driver needs right shifting by 16.
1655 if (mdp->cd->csmr)
1656 desc_status >>= 16;
1658 skb = mdp->rx_skbuff[entry];
1659 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1660 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1661 ndev->stats.rx_errors++;
1662 if (desc_status & RD_RFS1)
1663 ndev->stats.rx_crc_errors++;
1664 if (desc_status & RD_RFS2)
1665 ndev->stats.rx_frame_errors++;
1666 if (desc_status & RD_RFS3)
1667 ndev->stats.rx_length_errors++;
1668 if (desc_status & RD_RFS4)
1669 ndev->stats.rx_length_errors++;
1670 if (desc_status & RD_RFS6)
1671 ndev->stats.rx_missed_errors++;
1672 if (desc_status & RD_RFS10)
1673 ndev->stats.rx_over_errors++;
1674 } else if (skb) {
1675 dma_addr = le32_to_cpu(rxdesc->addr);
1676 if (!mdp->cd->hw_swap)
1677 sh_eth_soft_swap(
1678 phys_to_virt(ALIGN(dma_addr, 4)),
1679 pkt_len + 2);
1680 mdp->rx_skbuff[entry] = NULL;
1681 if (mdp->cd->rpadir)
1682 skb_reserve(skb, NET_IP_ALIGN);
1683 dma_unmap_single(&mdp->pdev->dev, dma_addr,
1684 ALIGN(mdp->rx_buf_sz, 32),
1685 DMA_FROM_DEVICE);
1686 skb_put(skb, pkt_len);
1687 skb->protocol = eth_type_trans(skb, ndev);
1688 if (ndev->features & NETIF_F_RXCSUM)
1689 sh_eth_rx_csum(skb);
1690 netif_receive_skb(skb);
1691 ndev->stats.rx_packets++;
1692 ndev->stats.rx_bytes += pkt_len;
1693 if (desc_status & RD_RFS8)
1694 ndev->stats.multicast++;
1696 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1697 rxdesc = &mdp->rx_ring[entry];
1700 /* Refill the Rx ring buffers. */
1701 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1702 entry = mdp->dirty_rx % mdp->num_rx_ring;
1703 rxdesc = &mdp->rx_ring[entry];
1704 /* The size of the buffer is 32 byte boundary. */
1705 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1706 rxdesc->len = cpu_to_le32(buf_len << 16);
1708 if (mdp->rx_skbuff[entry] == NULL) {
1709 skb = netdev_alloc_skb(ndev, skbuff_size);
1710 if (skb == NULL)
1711 break; /* Better luck next round. */
1712 sh_eth_set_receive_align(skb);
1713 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1714 buf_len, DMA_FROM_DEVICE);
1715 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1716 kfree_skb(skb);
1717 break;
1719 mdp->rx_skbuff[entry] = skb;
1721 skb_checksum_none_assert(skb);
1722 rxdesc->addr = cpu_to_le32(dma_addr);
1724 dma_wmb(); /* RACT bit must be set after all the above writes */
1725 if (entry >= mdp->num_rx_ring - 1)
1726 rxdesc->status |=
1727 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1728 else
1729 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1732 /* Restart Rx engine if stopped. */
1733 /* If we don't need to check status, don't. -KDU */
1734 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1735 /* fix the values for the next receiving if RDE is set */
1736 if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1737 u32 count = (sh_eth_read(ndev, RDFAR) -
1738 sh_eth_read(ndev, RDLAR)) >> 4;
1740 mdp->cur_rx = count;
1741 mdp->dirty_rx = count;
1743 sh_eth_write(ndev, EDRRR_R, EDRRR);
1746 *quota -= limit - boguscnt - 1;
1748 return *quota <= 0;
1751 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1753 /* disable tx and rx */
1754 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1757 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1759 /* enable tx and rx */
1760 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1763 /* E-MAC interrupt handler */
1764 static void sh_eth_emac_interrupt(struct net_device *ndev)
1766 struct sh_eth_private *mdp = netdev_priv(ndev);
1767 u32 felic_stat;
1768 u32 link_stat;
1770 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1771 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1772 if (felic_stat & ECSR_ICD)
1773 ndev->stats.tx_carrier_errors++;
1774 if (felic_stat & ECSR_MPD)
1775 pm_wakeup_event(&mdp->pdev->dev, 0);
1776 if (felic_stat & ECSR_LCHNG) {
1777 /* Link Changed */
1778 if (mdp->cd->no_psr || mdp->no_ether_link)
1779 return;
1780 link_stat = sh_eth_read(ndev, PSR);
1781 if (mdp->ether_link_active_low)
1782 link_stat = ~link_stat;
1783 if (!(link_stat & PHY_ST_LINK)) {
1784 sh_eth_rcv_snd_disable(ndev);
1785 } else {
1786 /* Link Up */
1787 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1788 /* clear int */
1789 sh_eth_modify(ndev, ECSR, 0, 0);
1790 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1791 /* enable tx and rx */
1792 sh_eth_rcv_snd_enable(ndev);
1797 /* error control function */
1798 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1800 struct sh_eth_private *mdp = netdev_priv(ndev);
1801 u32 mask;
1803 if (intr_status & EESR_TWB) {
1804 /* Unused write back interrupt */
1805 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1806 ndev->stats.tx_aborted_errors++;
1807 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1811 if (intr_status & EESR_RABT) {
1812 /* Receive Abort int */
1813 if (intr_status & EESR_RFRMER) {
1814 /* Receive Frame Overflow int */
1815 ndev->stats.rx_frame_errors++;
1819 if (intr_status & EESR_TDE) {
1820 /* Transmit Descriptor Empty int */
1821 ndev->stats.tx_fifo_errors++;
1822 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1825 if (intr_status & EESR_TFE) {
1826 /* FIFO under flow */
1827 ndev->stats.tx_fifo_errors++;
1828 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1831 if (intr_status & EESR_RDE) {
1832 /* Receive Descriptor Empty int */
1833 ndev->stats.rx_over_errors++;
1836 if (intr_status & EESR_RFE) {
1837 /* Receive FIFO Overflow int */
1838 ndev->stats.rx_fifo_errors++;
1841 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1842 /* Address Error */
1843 ndev->stats.tx_fifo_errors++;
1844 netif_err(mdp, tx_err, ndev, "Address Error\n");
1847 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1848 if (mdp->cd->no_ade)
1849 mask &= ~EESR_ADE;
1850 if (intr_status & mask) {
1851 /* Tx error */
1852 u32 edtrr = sh_eth_read(ndev, EDTRR);
1854 /* dmesg */
1855 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1856 intr_status, mdp->cur_tx, mdp->dirty_tx,
1857 (u32)ndev->state, edtrr);
1858 /* dirty buffer free */
1859 sh_eth_tx_free(ndev, true);
1861 /* SH7712 BUG */
1862 if (edtrr ^ mdp->cd->edtrr_trns) {
1863 /* tx dma start */
1864 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1866 /* wakeup */
1867 netif_wake_queue(ndev);
1871 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1873 struct net_device *ndev = netdev;
1874 struct sh_eth_private *mdp = netdev_priv(ndev);
1875 struct sh_eth_cpu_data *cd = mdp->cd;
1876 irqreturn_t ret = IRQ_NONE;
1877 u32 intr_status, intr_enable;
1879 spin_lock(&mdp->lock);
1881 /* Get interrupt status */
1882 intr_status = sh_eth_read(ndev, EESR);
1883 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1884 * enabled since it's the one that comes thru regardless of the mask,
1885 * and we need to fully handle it in sh_eth_emac_interrupt() in order
1886 * to quench it as it doesn't get cleared by just writing 1 to the ECI
1887 * bit...
1889 intr_enable = sh_eth_read(ndev, EESIPR);
1890 intr_status &= intr_enable | EESIPR_ECIIP;
1891 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1892 cd->eesr_err_check))
1893 ret = IRQ_HANDLED;
1894 else
1895 goto out;
1897 if (unlikely(!mdp->irq_enabled)) {
1898 sh_eth_write(ndev, 0, EESIPR);
1899 goto out;
1902 if (intr_status & EESR_RX_CHECK) {
1903 if (napi_schedule_prep(&mdp->napi)) {
1904 /* Mask Rx interrupts */
1905 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1906 EESIPR);
1907 __napi_schedule(&mdp->napi);
1908 } else {
1909 netdev_warn(ndev,
1910 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1911 intr_status, intr_enable);
1915 /* Tx Check */
1916 if (intr_status & cd->tx_check) {
1917 /* Clear Tx interrupts */
1918 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1920 sh_eth_tx_free(ndev, true);
1921 netif_wake_queue(ndev);
1924 /* E-MAC interrupt */
1925 if (intr_status & EESR_ECI)
1926 sh_eth_emac_interrupt(ndev);
1928 if (intr_status & cd->eesr_err_check) {
1929 /* Clear error interrupts */
1930 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1932 sh_eth_error(ndev, intr_status);
1935 out:
1936 spin_unlock(&mdp->lock);
1938 return ret;
1941 static int sh_eth_poll(struct napi_struct *napi, int budget)
1943 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1944 napi);
1945 struct net_device *ndev = napi->dev;
1946 int quota = budget;
1947 u32 intr_status;
1949 for (;;) {
1950 intr_status = sh_eth_read(ndev, EESR);
1951 if (!(intr_status & EESR_RX_CHECK))
1952 break;
1953 /* Clear Rx interrupts */
1954 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1956 if (sh_eth_rx(ndev, intr_status, &quota))
1957 goto out;
1960 napi_complete(napi);
1962 /* Reenable Rx interrupts */
1963 if (mdp->irq_enabled)
1964 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1965 out:
1966 return budget - quota;
1969 /* PHY state control function */
1970 static void sh_eth_adjust_link(struct net_device *ndev)
1972 struct sh_eth_private *mdp = netdev_priv(ndev);
1973 struct phy_device *phydev = ndev->phydev;
1974 unsigned long flags;
1975 int new_state = 0;
1977 spin_lock_irqsave(&mdp->lock, flags);
1979 /* Disable TX and RX right over here, if E-MAC change is ignored */
1980 if (mdp->cd->no_psr || mdp->no_ether_link)
1981 sh_eth_rcv_snd_disable(ndev);
1983 if (phydev->link) {
1984 if (phydev->duplex != mdp->duplex) {
1985 new_state = 1;
1986 mdp->duplex = phydev->duplex;
1987 if (mdp->cd->set_duplex)
1988 mdp->cd->set_duplex(ndev);
1991 if (phydev->speed != mdp->speed) {
1992 new_state = 1;
1993 mdp->speed = phydev->speed;
1994 if (mdp->cd->set_rate)
1995 mdp->cd->set_rate(ndev);
1997 if (!mdp->link) {
1998 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1999 new_state = 1;
2000 mdp->link = phydev->link;
2002 } else if (mdp->link) {
2003 new_state = 1;
2004 mdp->link = 0;
2005 mdp->speed = 0;
2006 mdp->duplex = -1;
2009 /* Enable TX and RX right over here, if E-MAC change is ignored */
2010 if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
2011 sh_eth_rcv_snd_enable(ndev);
2013 mmiowb();
2014 spin_unlock_irqrestore(&mdp->lock, flags);
2016 if (new_state && netif_msg_link(mdp))
2017 phy_print_status(phydev);
2020 /* PHY init function */
2021 static int sh_eth_phy_init(struct net_device *ndev)
2023 struct device_node *np = ndev->dev.parent->of_node;
2024 struct sh_eth_private *mdp = netdev_priv(ndev);
2025 struct phy_device *phydev;
2027 mdp->link = 0;
2028 mdp->speed = 0;
2029 mdp->duplex = -1;
2031 /* Try connect to PHY */
2032 if (np) {
2033 struct device_node *pn;
2035 pn = of_parse_phandle(np, "phy-handle", 0);
2036 phydev = of_phy_connect(ndev, pn,
2037 sh_eth_adjust_link, 0,
2038 mdp->phy_interface);
2040 of_node_put(pn);
2041 if (!phydev)
2042 phydev = ERR_PTR(-ENOENT);
2043 } else {
2044 char phy_id[MII_BUS_ID_SIZE + 3];
2046 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
2047 mdp->mii_bus->id, mdp->phy_id);
2049 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2050 mdp->phy_interface);
2053 if (IS_ERR(phydev)) {
2054 netdev_err(ndev, "failed to connect PHY\n");
2055 return PTR_ERR(phydev);
2058 /* mask with MAC supported features */
2059 if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2060 int err = phy_set_max_speed(phydev, SPEED_100);
2061 if (err) {
2062 netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2063 phy_disconnect(phydev);
2064 return err;
2068 phy_attached_info(phydev);
2070 return 0;
2073 /* PHY control start function */
2074 static int sh_eth_phy_start(struct net_device *ndev)
2076 int ret;
2078 ret = sh_eth_phy_init(ndev);
2079 if (ret)
2080 return ret;
2082 phy_start(ndev->phydev);
2084 return 0;
2087 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2088 * version must be bumped as well. Just adding registers up to that
2089 * limit is fine, as long as the existing register indices don't
2090 * change.
2092 #define SH_ETH_REG_DUMP_VERSION 1
2093 #define SH_ETH_REG_DUMP_MAX_REGS 256
2095 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2097 struct sh_eth_private *mdp = netdev_priv(ndev);
2098 struct sh_eth_cpu_data *cd = mdp->cd;
2099 u32 *valid_map;
2100 size_t len;
2102 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2104 /* Dump starts with a bitmap that tells ethtool which
2105 * registers are defined for this chip.
2107 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2108 if (buf) {
2109 valid_map = buf;
2110 buf += len;
2111 } else {
2112 valid_map = NULL;
2115 /* Add a register to the dump, if it has a defined offset.
2116 * This automatically skips most undefined registers, but for
2117 * some it is also necessary to check a capability flag in
2118 * struct sh_eth_cpu_data.
2120 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2121 #define add_reg_from(reg, read_expr) do { \
2122 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
2123 if (buf) { \
2124 mark_reg_valid(reg); \
2125 *buf++ = read_expr; \
2127 ++len; \
2129 } while (0)
2130 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2131 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2133 add_reg(EDSR);
2134 add_reg(EDMR);
2135 add_reg(EDTRR);
2136 add_reg(EDRRR);
2137 add_reg(EESR);
2138 add_reg(EESIPR);
2139 add_reg(TDLAR);
2140 add_reg(TDFAR);
2141 add_reg(TDFXR);
2142 add_reg(TDFFR);
2143 add_reg(RDLAR);
2144 add_reg(RDFAR);
2145 add_reg(RDFXR);
2146 add_reg(RDFFR);
2147 add_reg(TRSCER);
2148 add_reg(RMFCR);
2149 add_reg(TFTR);
2150 add_reg(FDR);
2151 add_reg(RMCR);
2152 add_reg(TFUCR);
2153 add_reg(RFOCR);
2154 if (cd->rmiimode)
2155 add_reg(RMIIMODE);
2156 add_reg(FCFTR);
2157 if (cd->rpadir)
2158 add_reg(RPADIR);
2159 if (!cd->no_trimd)
2160 add_reg(TRIMD);
2161 add_reg(ECMR);
2162 add_reg(ECSR);
2163 add_reg(ECSIPR);
2164 add_reg(PIR);
2165 if (!cd->no_psr)
2166 add_reg(PSR);
2167 add_reg(RDMLR);
2168 add_reg(RFLR);
2169 add_reg(IPGR);
2170 if (cd->apr)
2171 add_reg(APR);
2172 if (cd->mpr)
2173 add_reg(MPR);
2174 add_reg(RFCR);
2175 add_reg(RFCF);
2176 if (cd->tpauser)
2177 add_reg(TPAUSER);
2178 add_reg(TPAUSECR);
2179 add_reg(GECMR);
2180 if (cd->bculr)
2181 add_reg(BCULR);
2182 add_reg(MAHR);
2183 add_reg(MALR);
2184 add_reg(TROCR);
2185 add_reg(CDCR);
2186 add_reg(LCCR);
2187 add_reg(CNDCR);
2188 add_reg(CEFCR);
2189 add_reg(FRECR);
2190 add_reg(TSFRCR);
2191 add_reg(TLFRCR);
2192 add_reg(CERCR);
2193 add_reg(CEECR);
2194 add_reg(MAFCR);
2195 if (cd->rtrate)
2196 add_reg(RTRATE);
2197 if (cd->csmr)
2198 add_reg(CSMR);
2199 if (cd->select_mii)
2200 add_reg(RMII_MII);
2201 if (cd->tsu) {
2202 add_tsu_reg(ARSTR);
2203 add_tsu_reg(TSU_CTRST);
2204 add_tsu_reg(TSU_FWEN0);
2205 add_tsu_reg(TSU_FWEN1);
2206 add_tsu_reg(TSU_FCM);
2207 add_tsu_reg(TSU_BSYSL0);
2208 add_tsu_reg(TSU_BSYSL1);
2209 add_tsu_reg(TSU_PRISL0);
2210 add_tsu_reg(TSU_PRISL1);
2211 add_tsu_reg(TSU_FWSL0);
2212 add_tsu_reg(TSU_FWSL1);
2213 add_tsu_reg(TSU_FWSLC);
2214 add_tsu_reg(TSU_QTAGM0);
2215 add_tsu_reg(TSU_QTAGM1);
2216 add_tsu_reg(TSU_FWSR);
2217 add_tsu_reg(TSU_FWINMK);
2218 add_tsu_reg(TSU_ADQT0);
2219 add_tsu_reg(TSU_ADQT1);
2220 add_tsu_reg(TSU_VTAG0);
2221 add_tsu_reg(TSU_VTAG1);
2222 add_tsu_reg(TSU_ADSBSY);
2223 add_tsu_reg(TSU_TEN);
2224 add_tsu_reg(TSU_POST1);
2225 add_tsu_reg(TSU_POST2);
2226 add_tsu_reg(TSU_POST3);
2227 add_tsu_reg(TSU_POST4);
2228 /* This is the start of a table, not just a single register. */
2229 if (buf) {
2230 unsigned int i;
2232 mark_reg_valid(TSU_ADRH0);
2233 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2234 *buf++ = ioread32(mdp->tsu_addr +
2235 mdp->reg_offset[TSU_ADRH0] +
2236 i * 4);
2238 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2241 #undef mark_reg_valid
2242 #undef add_reg_from
2243 #undef add_reg
2244 #undef add_tsu_reg
2246 return len * 4;
2249 static int sh_eth_get_regs_len(struct net_device *ndev)
2251 return __sh_eth_get_regs(ndev, NULL);
2254 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2255 void *buf)
2257 struct sh_eth_private *mdp = netdev_priv(ndev);
2259 regs->version = SH_ETH_REG_DUMP_VERSION;
2261 pm_runtime_get_sync(&mdp->pdev->dev);
2262 __sh_eth_get_regs(ndev, buf);
2263 pm_runtime_put_sync(&mdp->pdev->dev);
2266 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2268 struct sh_eth_private *mdp = netdev_priv(ndev);
2269 return mdp->msg_enable;
2272 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2274 struct sh_eth_private *mdp = netdev_priv(ndev);
2275 mdp->msg_enable = value;
2278 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2279 "rx_current", "tx_current",
2280 "rx_dirty", "tx_dirty",
2282 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2284 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2286 switch (sset) {
2287 case ETH_SS_STATS:
2288 return SH_ETH_STATS_LEN;
2289 default:
2290 return -EOPNOTSUPP;
2294 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2295 struct ethtool_stats *stats, u64 *data)
2297 struct sh_eth_private *mdp = netdev_priv(ndev);
2298 int i = 0;
2300 /* device-specific stats */
2301 data[i++] = mdp->cur_rx;
2302 data[i++] = mdp->cur_tx;
2303 data[i++] = mdp->dirty_rx;
2304 data[i++] = mdp->dirty_tx;
2307 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2309 switch (stringset) {
2310 case ETH_SS_STATS:
2311 memcpy(data, *sh_eth_gstrings_stats,
2312 sizeof(sh_eth_gstrings_stats));
2313 break;
2317 static void sh_eth_get_ringparam(struct net_device *ndev,
2318 struct ethtool_ringparam *ring)
2320 struct sh_eth_private *mdp = netdev_priv(ndev);
2322 ring->rx_max_pending = RX_RING_MAX;
2323 ring->tx_max_pending = TX_RING_MAX;
2324 ring->rx_pending = mdp->num_rx_ring;
2325 ring->tx_pending = mdp->num_tx_ring;
2328 static int sh_eth_set_ringparam(struct net_device *ndev,
2329 struct ethtool_ringparam *ring)
2331 struct sh_eth_private *mdp = netdev_priv(ndev);
2332 int ret;
2334 if (ring->tx_pending > TX_RING_MAX ||
2335 ring->rx_pending > RX_RING_MAX ||
2336 ring->tx_pending < TX_RING_MIN ||
2337 ring->rx_pending < RX_RING_MIN)
2338 return -EINVAL;
2339 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2340 return -EINVAL;
2342 if (netif_running(ndev)) {
2343 netif_device_detach(ndev);
2344 netif_tx_disable(ndev);
2346 /* Serialise with the interrupt handler and NAPI, then
2347 * disable interrupts. We have to clear the
2348 * irq_enabled flag first to ensure that interrupts
2349 * won't be re-enabled.
2351 mdp->irq_enabled = false;
2352 synchronize_irq(ndev->irq);
2353 napi_synchronize(&mdp->napi);
2354 sh_eth_write(ndev, 0x0000, EESIPR);
2356 sh_eth_dev_exit(ndev);
2358 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2359 sh_eth_ring_free(ndev);
2362 /* Set new parameters */
2363 mdp->num_rx_ring = ring->rx_pending;
2364 mdp->num_tx_ring = ring->tx_pending;
2366 if (netif_running(ndev)) {
2367 ret = sh_eth_ring_init(ndev);
2368 if (ret < 0) {
2369 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2370 __func__);
2371 return ret;
2373 ret = sh_eth_dev_init(ndev);
2374 if (ret < 0) {
2375 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2376 __func__);
2377 return ret;
2380 netif_device_attach(ndev);
2383 return 0;
2386 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2388 struct sh_eth_private *mdp = netdev_priv(ndev);
2390 wol->supported = 0;
2391 wol->wolopts = 0;
2393 if (mdp->cd->magic) {
2394 wol->supported = WAKE_MAGIC;
2395 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2399 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2401 struct sh_eth_private *mdp = netdev_priv(ndev);
2403 if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2404 return -EOPNOTSUPP;
2406 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2408 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2410 return 0;
2413 static const struct ethtool_ops sh_eth_ethtool_ops = {
2414 .get_regs_len = sh_eth_get_regs_len,
2415 .get_regs = sh_eth_get_regs,
2416 .nway_reset = phy_ethtool_nway_reset,
2417 .get_msglevel = sh_eth_get_msglevel,
2418 .set_msglevel = sh_eth_set_msglevel,
2419 .get_link = ethtool_op_get_link,
2420 .get_strings = sh_eth_get_strings,
2421 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2422 .get_sset_count = sh_eth_get_sset_count,
2423 .get_ringparam = sh_eth_get_ringparam,
2424 .set_ringparam = sh_eth_set_ringparam,
2425 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2426 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2427 .get_wol = sh_eth_get_wol,
2428 .set_wol = sh_eth_set_wol,
2431 /* network device open function */
2432 static int sh_eth_open(struct net_device *ndev)
2434 struct sh_eth_private *mdp = netdev_priv(ndev);
2435 int ret;
2437 pm_runtime_get_sync(&mdp->pdev->dev);
2439 napi_enable(&mdp->napi);
2441 ret = request_irq(ndev->irq, sh_eth_interrupt,
2442 mdp->cd->irq_flags, ndev->name, ndev);
2443 if (ret) {
2444 netdev_err(ndev, "Can not assign IRQ number\n");
2445 goto out_napi_off;
2448 /* Descriptor set */
2449 ret = sh_eth_ring_init(ndev);
2450 if (ret)
2451 goto out_free_irq;
2453 /* device init */
2454 ret = sh_eth_dev_init(ndev);
2455 if (ret)
2456 goto out_free_irq;
2458 /* PHY control start*/
2459 ret = sh_eth_phy_start(ndev);
2460 if (ret)
2461 goto out_free_irq;
2463 netif_start_queue(ndev);
2465 mdp->is_opened = 1;
2467 return ret;
2469 out_free_irq:
2470 free_irq(ndev->irq, ndev);
2471 out_napi_off:
2472 napi_disable(&mdp->napi);
2473 pm_runtime_put_sync(&mdp->pdev->dev);
2474 return ret;
2477 /* Timeout function */
2478 static void sh_eth_tx_timeout(struct net_device *ndev)
2480 struct sh_eth_private *mdp = netdev_priv(ndev);
2481 struct sh_eth_rxdesc *rxdesc;
2482 int i;
2484 netif_stop_queue(ndev);
2486 netif_err(mdp, timer, ndev,
2487 "transmit timed out, status %8.8x, resetting...\n",
2488 sh_eth_read(ndev, EESR));
2490 /* tx_errors count up */
2491 ndev->stats.tx_errors++;
2493 /* Free all the skbuffs in the Rx queue. */
2494 for (i = 0; i < mdp->num_rx_ring; i++) {
2495 rxdesc = &mdp->rx_ring[i];
2496 rxdesc->status = cpu_to_le32(0);
2497 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2498 dev_kfree_skb(mdp->rx_skbuff[i]);
2499 mdp->rx_skbuff[i] = NULL;
2501 for (i = 0; i < mdp->num_tx_ring; i++) {
2502 dev_kfree_skb(mdp->tx_skbuff[i]);
2503 mdp->tx_skbuff[i] = NULL;
2506 /* device init */
2507 sh_eth_dev_init(ndev);
2509 netif_start_queue(ndev);
2512 /* Packet transmit function */
2513 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2515 struct sh_eth_private *mdp = netdev_priv(ndev);
2516 struct sh_eth_txdesc *txdesc;
2517 dma_addr_t dma_addr;
2518 u32 entry;
2519 unsigned long flags;
2521 spin_lock_irqsave(&mdp->lock, flags);
2522 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2523 if (!sh_eth_tx_free(ndev, true)) {
2524 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2525 netif_stop_queue(ndev);
2526 spin_unlock_irqrestore(&mdp->lock, flags);
2527 return NETDEV_TX_BUSY;
2530 spin_unlock_irqrestore(&mdp->lock, flags);
2532 if (skb_put_padto(skb, ETH_ZLEN))
2533 return NETDEV_TX_OK;
2535 entry = mdp->cur_tx % mdp->num_tx_ring;
2536 mdp->tx_skbuff[entry] = skb;
2537 txdesc = &mdp->tx_ring[entry];
2538 /* soft swap. */
2539 if (!mdp->cd->hw_swap)
2540 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2541 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2542 DMA_TO_DEVICE);
2543 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2544 kfree_skb(skb);
2545 return NETDEV_TX_OK;
2547 txdesc->addr = cpu_to_le32(dma_addr);
2548 txdesc->len = cpu_to_le32(skb->len << 16);
2550 dma_wmb(); /* TACT bit must be set after all the above writes */
2551 if (entry >= mdp->num_tx_ring - 1)
2552 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2553 else
2554 txdesc->status |= cpu_to_le32(TD_TACT);
2556 mdp->cur_tx++;
2558 if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2559 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2561 return NETDEV_TX_OK;
2564 /* The statistics registers have write-clear behaviour, which means we
2565 * will lose any increment between the read and write. We mitigate
2566 * this by only clearing when we read a non-zero value, so we will
2567 * never falsely report a total of zero.
2569 static void
2570 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2572 u32 delta = sh_eth_read(ndev, reg);
2574 if (delta) {
2575 *stat += delta;
2576 sh_eth_write(ndev, 0, reg);
2580 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2582 struct sh_eth_private *mdp = netdev_priv(ndev);
2584 if (mdp->cd->no_tx_cntrs)
2585 return &ndev->stats;
2587 if (!mdp->is_opened)
2588 return &ndev->stats;
2590 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2591 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2592 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2594 if (mdp->cd->cexcr) {
2595 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2596 CERCR);
2597 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2598 CEECR);
2599 } else {
2600 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2601 CNDCR);
2604 return &ndev->stats;
2607 /* device close function */
2608 static int sh_eth_close(struct net_device *ndev)
2610 struct sh_eth_private *mdp = netdev_priv(ndev);
2612 netif_stop_queue(ndev);
2614 /* Serialise with the interrupt handler and NAPI, then disable
2615 * interrupts. We have to clear the irq_enabled flag first to
2616 * ensure that interrupts won't be re-enabled.
2618 mdp->irq_enabled = false;
2619 synchronize_irq(ndev->irq);
2620 napi_disable(&mdp->napi);
2621 sh_eth_write(ndev, 0x0000, EESIPR);
2623 sh_eth_dev_exit(ndev);
2625 /* PHY Disconnect */
2626 if (ndev->phydev) {
2627 phy_stop(ndev->phydev);
2628 phy_disconnect(ndev->phydev);
2631 free_irq(ndev->irq, ndev);
2633 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2634 sh_eth_ring_free(ndev);
2636 pm_runtime_put_sync(&mdp->pdev->dev);
2638 mdp->is_opened = 0;
2640 return 0;
2643 /* ioctl to device function */
2644 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2646 struct phy_device *phydev = ndev->phydev;
2648 if (!netif_running(ndev))
2649 return -EINVAL;
2651 if (!phydev)
2652 return -ENODEV;
2654 return phy_mii_ioctl(phydev, rq, cmd);
2657 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2659 if (netif_running(ndev))
2660 return -EBUSY;
2662 ndev->mtu = new_mtu;
2663 netdev_update_features(ndev);
2665 return 0;
2668 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2669 static u32 sh_eth_tsu_get_post_mask(int entry)
2671 return 0x0f << (28 - ((entry % 8) * 4));
2674 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2676 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2679 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2680 int entry)
2682 struct sh_eth_private *mdp = netdev_priv(ndev);
2683 int reg = TSU_POST1 + entry / 8;
2684 u32 tmp;
2686 tmp = sh_eth_tsu_read(mdp, reg);
2687 sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2690 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2691 int entry)
2693 struct sh_eth_private *mdp = netdev_priv(ndev);
2694 int reg = TSU_POST1 + entry / 8;
2695 u32 post_mask, ref_mask, tmp;
2697 post_mask = sh_eth_tsu_get_post_mask(entry);
2698 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2700 tmp = sh_eth_tsu_read(mdp, reg);
2701 sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2703 /* If other port enables, the function returns "true" */
2704 return tmp & ref_mask;
2707 static int sh_eth_tsu_busy(struct net_device *ndev)
2709 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2710 struct sh_eth_private *mdp = netdev_priv(ndev);
2712 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2713 udelay(10);
2714 timeout--;
2715 if (timeout <= 0) {
2716 netdev_err(ndev, "%s: timeout\n", __func__);
2717 return -ETIMEDOUT;
2721 return 0;
2724 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2725 const u8 *addr)
2727 struct sh_eth_private *mdp = netdev_priv(ndev);
2728 u32 val;
2730 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2731 iowrite32(val, mdp->tsu_addr + offset);
2732 if (sh_eth_tsu_busy(ndev) < 0)
2733 return -EBUSY;
2735 val = addr[4] << 8 | addr[5];
2736 iowrite32(val, mdp->tsu_addr + offset + 4);
2737 if (sh_eth_tsu_busy(ndev) < 0)
2738 return -EBUSY;
2740 return 0;
2743 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2745 struct sh_eth_private *mdp = netdev_priv(ndev);
2746 u32 val;
2748 val = ioread32(mdp->tsu_addr + offset);
2749 addr[0] = (val >> 24) & 0xff;
2750 addr[1] = (val >> 16) & 0xff;
2751 addr[2] = (val >> 8) & 0xff;
2752 addr[3] = val & 0xff;
2753 val = ioread32(mdp->tsu_addr + offset + 4);
2754 addr[4] = (val >> 8) & 0xff;
2755 addr[5] = val & 0xff;
2759 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2761 struct sh_eth_private *mdp = netdev_priv(ndev);
2762 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2763 int i;
2764 u8 c_addr[ETH_ALEN];
2766 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2767 sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2768 if (ether_addr_equal(addr, c_addr))
2769 return i;
2772 return -ENOENT;
2775 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2777 u8 blank[ETH_ALEN];
2778 int entry;
2780 memset(blank, 0, sizeof(blank));
2781 entry = sh_eth_tsu_find_entry(ndev, blank);
2782 return (entry < 0) ? -ENOMEM : entry;
2785 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2786 int entry)
2788 struct sh_eth_private *mdp = netdev_priv(ndev);
2789 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2790 int ret;
2791 u8 blank[ETH_ALEN];
2793 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2794 ~(1 << (31 - entry)), TSU_TEN);
2796 memset(blank, 0, sizeof(blank));
2797 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2798 if (ret < 0)
2799 return ret;
2800 return 0;
2803 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2805 struct sh_eth_private *mdp = netdev_priv(ndev);
2806 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2807 int i, ret;
2809 if (!mdp->cd->tsu)
2810 return 0;
2812 i = sh_eth_tsu_find_entry(ndev, addr);
2813 if (i < 0) {
2814 /* No entry found, create one */
2815 i = sh_eth_tsu_find_empty(ndev);
2816 if (i < 0)
2817 return -ENOMEM;
2818 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2819 if (ret < 0)
2820 return ret;
2822 /* Enable the entry */
2823 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2824 (1 << (31 - i)), TSU_TEN);
2827 /* Entry found or created, enable POST */
2828 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2830 return 0;
2833 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2835 struct sh_eth_private *mdp = netdev_priv(ndev);
2836 int i, ret;
2838 if (!mdp->cd->tsu)
2839 return 0;
2841 i = sh_eth_tsu_find_entry(ndev, addr);
2842 if (i) {
2843 /* Entry found */
2844 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2845 goto done;
2847 /* Disable the entry if both ports was disabled */
2848 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2849 if (ret < 0)
2850 return ret;
2852 done:
2853 return 0;
2856 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2858 struct sh_eth_private *mdp = netdev_priv(ndev);
2859 int i, ret;
2861 if (!mdp->cd->tsu)
2862 return 0;
2864 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2865 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2866 continue;
2868 /* Disable the entry if both ports was disabled */
2869 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2870 if (ret < 0)
2871 return ret;
2874 return 0;
2877 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2879 struct sh_eth_private *mdp = netdev_priv(ndev);
2880 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2881 u8 addr[ETH_ALEN];
2882 int i;
2884 if (!mdp->cd->tsu)
2885 return;
2887 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2888 sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2889 if (is_multicast_ether_addr(addr))
2890 sh_eth_tsu_del_entry(ndev, addr);
2894 /* Update promiscuous flag and multicast filter */
2895 static void sh_eth_set_rx_mode(struct net_device *ndev)
2897 struct sh_eth_private *mdp = netdev_priv(ndev);
2898 u32 ecmr_bits;
2899 int mcast_all = 0;
2900 unsigned long flags;
2902 spin_lock_irqsave(&mdp->lock, flags);
2903 /* Initial condition is MCT = 1, PRM = 0.
2904 * Depending on ndev->flags, set PRM or clear MCT
2906 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2907 if (mdp->cd->tsu)
2908 ecmr_bits |= ECMR_MCT;
2910 if (!(ndev->flags & IFF_MULTICAST)) {
2911 sh_eth_tsu_purge_mcast(ndev);
2912 mcast_all = 1;
2914 if (ndev->flags & IFF_ALLMULTI) {
2915 sh_eth_tsu_purge_mcast(ndev);
2916 ecmr_bits &= ~ECMR_MCT;
2917 mcast_all = 1;
2920 if (ndev->flags & IFF_PROMISC) {
2921 sh_eth_tsu_purge_all(ndev);
2922 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2923 } else if (mdp->cd->tsu) {
2924 struct netdev_hw_addr *ha;
2925 netdev_for_each_mc_addr(ha, ndev) {
2926 if (mcast_all && is_multicast_ether_addr(ha->addr))
2927 continue;
2929 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2930 if (!mcast_all) {
2931 sh_eth_tsu_purge_mcast(ndev);
2932 ecmr_bits &= ~ECMR_MCT;
2933 mcast_all = 1;
2939 /* update the ethernet mode */
2940 sh_eth_write(ndev, ecmr_bits, ECMR);
2942 spin_unlock_irqrestore(&mdp->lock, flags);
2945 static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2947 struct sh_eth_private *mdp = netdev_priv(ndev);
2948 unsigned long flags;
2950 spin_lock_irqsave(&mdp->lock, flags);
2952 /* Disable TX and RX */
2953 sh_eth_rcv_snd_disable(ndev);
2955 /* Modify RX Checksum setting */
2956 sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2958 /* Enable TX and RX */
2959 sh_eth_rcv_snd_enable(ndev);
2961 spin_unlock_irqrestore(&mdp->lock, flags);
2964 static int sh_eth_set_features(struct net_device *ndev,
2965 netdev_features_t features)
2967 netdev_features_t changed = ndev->features ^ features;
2968 struct sh_eth_private *mdp = netdev_priv(ndev);
2970 if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2971 sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2973 ndev->features = features;
2975 return 0;
2978 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2980 if (!mdp->port)
2981 return TSU_VTAG0;
2982 else
2983 return TSU_VTAG1;
2986 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2987 __be16 proto, u16 vid)
2989 struct sh_eth_private *mdp = netdev_priv(ndev);
2990 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2992 if (unlikely(!mdp->cd->tsu))
2993 return -EPERM;
2995 /* No filtering if vid = 0 */
2996 if (!vid)
2997 return 0;
2999 mdp->vlan_num_ids++;
3001 /* The controller has one VLAN tag HW filter. So, if the filter is
3002 * already enabled, the driver disables it and the filte
3004 if (mdp->vlan_num_ids > 1) {
3005 /* disable VLAN filter */
3006 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
3007 return 0;
3010 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
3011 vtag_reg_index);
3013 return 0;
3016 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
3017 __be16 proto, u16 vid)
3019 struct sh_eth_private *mdp = netdev_priv(ndev);
3020 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
3022 if (unlikely(!mdp->cd->tsu))
3023 return -EPERM;
3025 /* No filtering if vid = 0 */
3026 if (!vid)
3027 return 0;
3029 mdp->vlan_num_ids--;
3030 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
3032 return 0;
3035 /* SuperH's TSU register init function */
3036 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
3038 if (!mdp->cd->dual_port) {
3039 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3040 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3041 TSU_FWSLC); /* Enable POST registers */
3042 return;
3045 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
3046 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
3047 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
3048 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
3049 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
3050 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3051 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3052 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3053 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3054 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3055 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
3056 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
3057 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
3058 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
3059 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3060 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
3061 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
3062 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
3063 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
3066 /* MDIO bus release function */
3067 static int sh_mdio_release(struct sh_eth_private *mdp)
3069 /* unregister mdio bus */
3070 mdiobus_unregister(mdp->mii_bus);
3072 /* free bitbang info */
3073 free_mdio_bitbang(mdp->mii_bus);
3075 return 0;
3078 /* MDIO bus init function */
3079 static int sh_mdio_init(struct sh_eth_private *mdp,
3080 struct sh_eth_plat_data *pd)
3082 int ret;
3083 struct bb_info *bitbang;
3084 struct platform_device *pdev = mdp->pdev;
3085 struct device *dev = &mdp->pdev->dev;
3087 /* create bit control struct for PHY */
3088 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3089 if (!bitbang)
3090 return -ENOMEM;
3092 /* bitbang init */
3093 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3094 bitbang->set_gate = pd->set_mdio_gate;
3095 bitbang->ctrl.ops = &bb_ops;
3097 /* MII controller setting */
3098 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3099 if (!mdp->mii_bus)
3100 return -ENOMEM;
3102 /* Hook up MII support for ethtool */
3103 mdp->mii_bus->name = "sh_mii";
3104 mdp->mii_bus->parent = dev;
3105 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3106 pdev->name, pdev->id);
3108 /* register MDIO bus */
3109 if (pd->phy_irq > 0)
3110 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3112 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3113 if (ret)
3114 goto out_free_bus;
3116 return 0;
3118 out_free_bus:
3119 free_mdio_bitbang(mdp->mii_bus);
3120 return ret;
3123 static const u16 *sh_eth_get_register_offset(int register_type)
3125 const u16 *reg_offset = NULL;
3127 switch (register_type) {
3128 case SH_ETH_REG_GIGABIT:
3129 reg_offset = sh_eth_offset_gigabit;
3130 break;
3131 case SH_ETH_REG_FAST_RZ:
3132 reg_offset = sh_eth_offset_fast_rz;
3133 break;
3134 case SH_ETH_REG_FAST_RCAR:
3135 reg_offset = sh_eth_offset_fast_rcar;
3136 break;
3137 case SH_ETH_REG_FAST_SH4:
3138 reg_offset = sh_eth_offset_fast_sh4;
3139 break;
3140 case SH_ETH_REG_FAST_SH3_SH2:
3141 reg_offset = sh_eth_offset_fast_sh3_sh2;
3142 break;
3145 return reg_offset;
3148 static const struct net_device_ops sh_eth_netdev_ops = {
3149 .ndo_open = sh_eth_open,
3150 .ndo_stop = sh_eth_close,
3151 .ndo_start_xmit = sh_eth_start_xmit,
3152 .ndo_get_stats = sh_eth_get_stats,
3153 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3154 .ndo_tx_timeout = sh_eth_tx_timeout,
3155 .ndo_do_ioctl = sh_eth_do_ioctl,
3156 .ndo_change_mtu = sh_eth_change_mtu,
3157 .ndo_validate_addr = eth_validate_addr,
3158 .ndo_set_mac_address = eth_mac_addr,
3159 .ndo_set_features = sh_eth_set_features,
3162 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3163 .ndo_open = sh_eth_open,
3164 .ndo_stop = sh_eth_close,
3165 .ndo_start_xmit = sh_eth_start_xmit,
3166 .ndo_get_stats = sh_eth_get_stats,
3167 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3168 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
3169 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
3170 .ndo_tx_timeout = sh_eth_tx_timeout,
3171 .ndo_do_ioctl = sh_eth_do_ioctl,
3172 .ndo_change_mtu = sh_eth_change_mtu,
3173 .ndo_validate_addr = eth_validate_addr,
3174 .ndo_set_mac_address = eth_mac_addr,
3175 .ndo_set_features = sh_eth_set_features,
3178 #ifdef CONFIG_OF
3179 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3181 struct device_node *np = dev->of_node;
3182 struct sh_eth_plat_data *pdata;
3183 const char *mac_addr;
3184 int ret;
3186 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3187 if (!pdata)
3188 return NULL;
3190 ret = of_get_phy_mode(np);
3191 if (ret < 0)
3192 return NULL;
3193 pdata->phy_interface = ret;
3195 mac_addr = of_get_mac_address(np);
3196 if (mac_addr)
3197 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3199 pdata->no_ether_link =
3200 of_property_read_bool(np, "renesas,no-ether-link");
3201 pdata->ether_link_active_low =
3202 of_property_read_bool(np, "renesas,ether-link-active-low");
3204 return pdata;
3207 static const struct of_device_id sh_eth_match_table[] = {
3208 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3209 { .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3210 { .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3211 { .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3212 { .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3213 { .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3214 { .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3215 { .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3216 { .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3217 { .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3218 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3219 { .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3220 { .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3221 { .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3224 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3225 #else
3226 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3228 return NULL;
3230 #endif
3232 static int sh_eth_drv_probe(struct platform_device *pdev)
3234 struct resource *res;
3235 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3236 const struct platform_device_id *id = platform_get_device_id(pdev);
3237 struct sh_eth_private *mdp;
3238 struct net_device *ndev;
3239 int ret;
3241 /* get base addr */
3242 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3244 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3245 if (!ndev)
3246 return -ENOMEM;
3248 pm_runtime_enable(&pdev->dev);
3249 pm_runtime_get_sync(&pdev->dev);
3251 ret = platform_get_irq(pdev, 0);
3252 if (ret < 0)
3253 goto out_release;
3254 ndev->irq = ret;
3256 SET_NETDEV_DEV(ndev, &pdev->dev);
3258 mdp = netdev_priv(ndev);
3259 mdp->num_tx_ring = TX_RING_SIZE;
3260 mdp->num_rx_ring = RX_RING_SIZE;
3261 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3262 if (IS_ERR(mdp->addr)) {
3263 ret = PTR_ERR(mdp->addr);
3264 goto out_release;
3267 ndev->base_addr = res->start;
3269 spin_lock_init(&mdp->lock);
3270 mdp->pdev = pdev;
3272 if (pdev->dev.of_node)
3273 pd = sh_eth_parse_dt(&pdev->dev);
3274 if (!pd) {
3275 dev_err(&pdev->dev, "no platform data\n");
3276 ret = -EINVAL;
3277 goto out_release;
3280 /* get PHY ID */
3281 mdp->phy_id = pd->phy;
3282 mdp->phy_interface = pd->phy_interface;
3283 mdp->no_ether_link = pd->no_ether_link;
3284 mdp->ether_link_active_low = pd->ether_link_active_low;
3286 /* set cpu data */
3287 if (id)
3288 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3289 else
3290 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3292 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3293 if (!mdp->reg_offset) {
3294 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3295 mdp->cd->register_type);
3296 ret = -EINVAL;
3297 goto out_release;
3299 sh_eth_set_default_cpu_data(mdp->cd);
3301 /* User's manual states max MTU should be 2048 but due to the
3302 * alignment calculations in sh_eth_ring_init() the practical
3303 * MTU is a bit less. Maybe this can be optimized some more.
3305 ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3306 ndev->min_mtu = ETH_MIN_MTU;
3308 if (mdp->cd->rx_csum) {
3309 ndev->features = NETIF_F_RXCSUM;
3310 ndev->hw_features = NETIF_F_RXCSUM;
3313 /* set function */
3314 if (mdp->cd->tsu)
3315 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3316 else
3317 ndev->netdev_ops = &sh_eth_netdev_ops;
3318 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3319 ndev->watchdog_timeo = TX_TIMEOUT;
3321 /* debug message level */
3322 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3324 /* read and set MAC address */
3325 read_mac_address(ndev, pd->mac_addr);
3326 if (!is_valid_ether_addr(ndev->dev_addr)) {
3327 dev_warn(&pdev->dev,
3328 "no valid MAC address supplied, using a random one.\n");
3329 eth_hw_addr_random(ndev);
3332 if (mdp->cd->tsu) {
3333 int port = pdev->id < 0 ? 0 : pdev->id % 2;
3334 struct resource *rtsu;
3336 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3337 if (!rtsu) {
3338 dev_err(&pdev->dev, "no TSU resource\n");
3339 ret = -ENODEV;
3340 goto out_release;
3342 /* We can only request the TSU region for the first port
3343 * of the two sharing this TSU for the probe to succeed...
3345 if (port == 0 &&
3346 !devm_request_mem_region(&pdev->dev, rtsu->start,
3347 resource_size(rtsu),
3348 dev_name(&pdev->dev))) {
3349 dev_err(&pdev->dev, "can't request TSU resource.\n");
3350 ret = -EBUSY;
3351 goto out_release;
3353 /* ioremap the TSU registers */
3354 mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3355 resource_size(rtsu));
3356 if (!mdp->tsu_addr) {
3357 dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3358 ret = -ENOMEM;
3359 goto out_release;
3361 mdp->port = port;
3362 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3364 /* Need to init only the first port of the two sharing a TSU */
3365 if (port == 0) {
3366 if (mdp->cd->chip_reset)
3367 mdp->cd->chip_reset(ndev);
3369 /* TSU init (Init only)*/
3370 sh_eth_tsu_init(mdp);
3374 if (mdp->cd->rmiimode)
3375 sh_eth_write(ndev, 0x1, RMIIMODE);
3377 /* MDIO bus init */
3378 ret = sh_mdio_init(mdp, pd);
3379 if (ret) {
3380 if (ret != -EPROBE_DEFER)
3381 dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3382 goto out_release;
3385 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3387 /* network device register */
3388 ret = register_netdev(ndev);
3389 if (ret)
3390 goto out_napi_del;
3392 if (mdp->cd->magic)
3393 device_set_wakeup_capable(&pdev->dev, 1);
3395 /* print device information */
3396 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3397 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3399 pm_runtime_put(&pdev->dev);
3400 platform_set_drvdata(pdev, ndev);
3402 return ret;
3404 out_napi_del:
3405 netif_napi_del(&mdp->napi);
3406 sh_mdio_release(mdp);
3408 out_release:
3409 /* net_dev free */
3410 free_netdev(ndev);
3412 pm_runtime_put(&pdev->dev);
3413 pm_runtime_disable(&pdev->dev);
3414 return ret;
3417 static int sh_eth_drv_remove(struct platform_device *pdev)
3419 struct net_device *ndev = platform_get_drvdata(pdev);
3420 struct sh_eth_private *mdp = netdev_priv(ndev);
3422 unregister_netdev(ndev);
3423 netif_napi_del(&mdp->napi);
3424 sh_mdio_release(mdp);
3425 pm_runtime_disable(&pdev->dev);
3426 free_netdev(ndev);
3428 return 0;
3431 #ifdef CONFIG_PM
3432 #ifdef CONFIG_PM_SLEEP
3433 static int sh_eth_wol_setup(struct net_device *ndev)
3435 struct sh_eth_private *mdp = netdev_priv(ndev);
3437 /* Only allow ECI interrupts */
3438 synchronize_irq(ndev->irq);
3439 napi_disable(&mdp->napi);
3440 sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3442 /* Enable MagicPacket */
3443 sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3445 return enable_irq_wake(ndev->irq);
3448 static int sh_eth_wol_restore(struct net_device *ndev)
3450 struct sh_eth_private *mdp = netdev_priv(ndev);
3451 int ret;
3453 napi_enable(&mdp->napi);
3455 /* Disable MagicPacket */
3456 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3458 /* The device needs to be reset to restore MagicPacket logic
3459 * for next wakeup. If we close and open the device it will
3460 * both be reset and all registers restored. This is what
3461 * happens during suspend and resume without WoL enabled.
3463 ret = sh_eth_close(ndev);
3464 if (ret < 0)
3465 return ret;
3466 ret = sh_eth_open(ndev);
3467 if (ret < 0)
3468 return ret;
3470 return disable_irq_wake(ndev->irq);
3473 static int sh_eth_suspend(struct device *dev)
3475 struct net_device *ndev = dev_get_drvdata(dev);
3476 struct sh_eth_private *mdp = netdev_priv(ndev);
3477 int ret = 0;
3479 if (!netif_running(ndev))
3480 return 0;
3482 netif_device_detach(ndev);
3484 if (mdp->wol_enabled)
3485 ret = sh_eth_wol_setup(ndev);
3486 else
3487 ret = sh_eth_close(ndev);
3489 return ret;
3492 static int sh_eth_resume(struct device *dev)
3494 struct net_device *ndev = dev_get_drvdata(dev);
3495 struct sh_eth_private *mdp = netdev_priv(ndev);
3496 int ret = 0;
3498 if (!netif_running(ndev))
3499 return 0;
3501 if (mdp->wol_enabled)
3502 ret = sh_eth_wol_restore(ndev);
3503 else
3504 ret = sh_eth_open(ndev);
3506 if (ret < 0)
3507 return ret;
3509 netif_device_attach(ndev);
3511 return ret;
3513 #endif
3515 static int sh_eth_runtime_nop(struct device *dev)
3517 /* Runtime PM callback shared between ->runtime_suspend()
3518 * and ->runtime_resume(). Simply returns success.
3520 * This driver re-initializes all registers after
3521 * pm_runtime_get_sync() anyway so there is no need
3522 * to save and restore registers here.
3524 return 0;
3527 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3528 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3529 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3531 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3532 #else
3533 #define SH_ETH_PM_OPS NULL
3534 #endif
3536 static const struct platform_device_id sh_eth_id_table[] = {
3537 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3538 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3539 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3540 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3541 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3542 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3543 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3546 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3548 static struct platform_driver sh_eth_driver = {
3549 .probe = sh_eth_drv_probe,
3550 .remove = sh_eth_drv_remove,
3551 .id_table = sh_eth_id_table,
3552 .driver = {
3553 .name = CARDNAME,
3554 .pm = SH_ETH_PM_OPS,
3555 .of_match_table = of_match_ptr(sh_eth_match_table),
3559 module_platform_driver(sh_eth_driver);
3561 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3562 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3563 MODULE_LICENSE("GPL v2");