2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
33 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
40 static void ath9k_hw_set_clockrate(struct ath_hw
*ah
)
42 struct ath_common
*common
= ath9k_hw_common(ah
);
43 struct ath9k_channel
*chan
= ah
->curchan
;
44 unsigned int clockrate
;
46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
))
49 else if (!chan
) /* should really check for CCK instead */
50 clockrate
= ATH9K_CLOCK_RATE_CCK
;
51 else if (IS_CHAN_2GHZ(chan
))
52 clockrate
= ATH9K_CLOCK_RATE_2GHZ_OFDM
;
53 else if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_FASTCLOCK
)
54 clockrate
= ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM
;
56 clockrate
= ATH9K_CLOCK_RATE_5GHZ_OFDM
;
59 if (IS_CHAN_HT40(chan
))
61 if (IS_CHAN_HALF_RATE(chan
))
63 if (IS_CHAN_QUARTER_RATE(chan
))
67 common
->clockrate
= clockrate
;
70 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
72 struct ath_common
*common
= ath9k_hw_common(ah
);
74 return usecs
* common
->clockrate
;
77 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
81 BUG_ON(timeout
< AH_TIME_QUANTUM
);
83 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
84 if ((REG_READ(ah
, reg
) & mask
) == val
)
87 udelay(AH_TIME_QUANTUM
);
90 ath_dbg(ath9k_hw_common(ah
), ANY
,
91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
96 EXPORT_SYMBOL(ath9k_hw_wait
);
98 void ath9k_hw_synth_delay(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
103 if (IS_CHAN_HALF_RATE(chan
))
105 else if (IS_CHAN_QUARTER_RATE(chan
))
108 udelay(hw_delay
+ BASE_ACTIVATE_DELAY
);
111 void ath9k_hw_write_array(struct ath_hw
*ah
, const struct ar5416IniArray
*array
,
112 int column
, unsigned int *writecnt
)
116 ENABLE_REGWRITE_BUFFER(ah
);
117 for (r
= 0; r
< array
->ia_rows
; r
++) {
118 REG_WRITE(ah
, INI_RA(array
, r
, 0),
119 INI_RA(array
, r
, column
));
122 REGWRITE_BUFFER_FLUSH(ah
);
125 void ath9k_hw_read_array(struct ath_hw
*ah
, u32 array
[][2], int size
)
127 u32
*tmp_reg_list
, *tmp_data
;
130 tmp_reg_list
= kmalloc_array(size
, sizeof(u32
), GFP_KERNEL
);
132 dev_err(ah
->dev
, "%s: tmp_reg_list: alloc filed\n", __func__
);
136 tmp_data
= kmalloc_array(size
, sizeof(u32
), GFP_KERNEL
);
138 dev_err(ah
->dev
, "%s tmp_data: alloc filed\n", __func__
);
142 for (i
= 0; i
< size
; i
++)
143 tmp_reg_list
[i
] = array
[i
][0];
145 REG_READ_MULTI(ah
, tmp_reg_list
, tmp_data
, size
);
147 for (i
= 0; i
< size
; i
++)
148 array
[i
][1] = tmp_data
[i
];
155 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
160 for (i
= 0, retval
= 0; i
< n
; i
++) {
161 retval
= (retval
<< 1) | (val
& 1);
167 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
169 u32 frameLen
, u16 rateix
,
172 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
178 case WLAN_RC_PHY_CCK
:
179 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
182 numBits
= frameLen
<< 3;
183 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
185 case WLAN_RC_PHY_OFDM
:
186 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
188 ((kbps
>> 2) * OFDM_SYMBOL_TIME_QUARTER
) / 1000;
189 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
190 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
191 txTime
= OFDM_SIFS_TIME_QUARTER
192 + OFDM_PREAMBLE_TIME_QUARTER
193 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
194 } else if (ah
->curchan
&&
195 IS_CHAN_HALF_RATE(ah
->curchan
)) {
197 ((kbps
>> 1) * OFDM_SYMBOL_TIME_HALF
) / 1000;
198 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
199 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
200 txTime
= OFDM_SIFS_TIME_HALF
+
201 OFDM_PREAMBLE_TIME_HALF
202 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
204 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
205 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
206 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
207 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
208 + (numSymbols
* OFDM_SYMBOL_TIME
);
212 ath_err(ath9k_hw_common(ah
),
213 "Unknown phy %u (rate ix %u)\n", phy
, rateix
);
220 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
222 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
223 struct ath9k_channel
*chan
,
224 struct chan_centers
*centers
)
228 if (!IS_CHAN_HT40(chan
)) {
229 centers
->ctl_center
= centers
->ext_center
=
230 centers
->synth_center
= chan
->channel
;
234 if (IS_CHAN_HT40PLUS(chan
)) {
235 centers
->synth_center
=
236 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
239 centers
->synth_center
=
240 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
244 centers
->ctl_center
=
245 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
246 /* 25 MHz spacing is supported by hw but not on upper layers */
247 centers
->ext_center
=
248 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
255 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
259 if (ah
->get_mac_revision
)
260 ah
->hw_version
.macRev
= ah
->get_mac_revision();
262 switch (ah
->hw_version
.devid
) {
263 case AR5416_AR9100_DEVID
:
264 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
266 case AR9300_DEVID_AR9330
:
267 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9330
;
268 if (!ah
->get_mac_revision
) {
269 val
= REG_READ(ah
, AR_SREV
);
270 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
273 case AR9300_DEVID_AR9340
:
274 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9340
;
276 case AR9300_DEVID_QCA955X
:
277 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9550
;
279 case AR9300_DEVID_AR953X
:
280 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9531
;
282 case AR9300_DEVID_QCA956X
:
283 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9561
;
287 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
290 val
= REG_READ(ah
, AR_SREV
);
291 ah
->hw_version
.macVersion
=
292 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
293 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
295 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
296 ah
->is_pciexpress
= true;
298 ah
->is_pciexpress
= (val
&
299 AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
301 if (!AR_SREV_9100(ah
))
302 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
304 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
306 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
307 ah
->is_pciexpress
= true;
311 /************************************/
312 /* HW Attach, Detach, Init Routines */
313 /************************************/
315 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
317 if (!AR_SREV_5416(ah
))
320 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
321 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
322 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
323 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
324 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
325 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
326 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
327 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
328 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
330 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
333 /* This should work for all families including legacy */
334 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
336 struct ath_common
*common
= ath9k_hw_common(ah
);
337 u32 regAddr
[2] = { AR_STA_ID0
};
339 static const u32 patternData
[4] = {
340 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
344 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
346 regAddr
[1] = AR_PHY_BASE
+ (8 << 2);
350 for (i
= 0; i
< loop_max
; i
++) {
351 u32 addr
= regAddr
[i
];
354 regHold
[i
] = REG_READ(ah
, addr
);
355 for (j
= 0; j
< 0x100; j
++) {
356 wrData
= (j
<< 16) | j
;
357 REG_WRITE(ah
, addr
, wrData
);
358 rdData
= REG_READ(ah
, addr
);
359 if (rdData
!= wrData
) {
361 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
362 addr
, wrData
, rdData
);
366 for (j
= 0; j
< 4; j
++) {
367 wrData
= patternData
[j
];
368 REG_WRITE(ah
, addr
, wrData
);
369 rdData
= REG_READ(ah
, addr
);
370 if (wrData
!= rdData
) {
372 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
373 addr
, wrData
, rdData
);
377 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
384 static void ath9k_hw_init_config(struct ath_hw
*ah
)
386 struct ath_common
*common
= ath9k_hw_common(ah
);
388 ah
->config
.dma_beacon_response_time
= 1;
389 ah
->config
.sw_beacon_response_time
= 6;
390 ah
->config
.cwm_ignore_extcca
= false;
391 ah
->config
.analog_shiftreg
= 1;
393 ah
->config
.rx_intr_mitigation
= true;
395 if (AR_SREV_9300_20_OR_LATER(ah
)) {
396 ah
->config
.rimt_last
= 500;
397 ah
->config
.rimt_first
= 2000;
399 ah
->config
.rimt_last
= 250;
400 ah
->config
.rimt_first
= 700;
403 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
404 ah
->config
.pll_pwrsave
= 7;
407 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
408 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
409 * This means we use it for all AR5416 devices, and the few
410 * minor PCI AR9280 devices out there.
412 * Serialization is required because these devices do not handle
413 * well the case of two concurrent reads/writes due to the latency
414 * involved. During one read/write another read/write can be issued
415 * on another CPU while the previous read/write may still be working
416 * on our hardware, if we hit this case the hardware poops in a loop.
417 * We prevent this by serializing reads and writes.
419 * This issue is not present on PCI-Express devices or pre-AR5416
420 * devices (legacy, 802.11abg).
422 if (num_possible_cpus() > 1)
423 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
425 if (NR_CPUS
> 1 && ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
426 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
427 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
) || AR_SREV_9287(ah
)) &&
428 !ah
->is_pciexpress
)) {
429 ah
->config
.serialize_regmode
= SER_REG_MODE_ON
;
431 ah
->config
.serialize_regmode
= SER_REG_MODE_OFF
;
435 ath_dbg(common
, RESET
, "serialize_regmode is %d\n",
436 ah
->config
.serialize_regmode
);
438 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
439 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
441 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
444 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
446 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
448 regulatory
->country_code
= CTRY_DEFAULT
;
449 regulatory
->power_limit
= MAX_RATE_POWER
;
451 ah
->hw_version
.magic
= AR5416_MAGIC
;
452 ah
->hw_version
.subvendorid
= 0;
454 ah
->sta_id1_defaults
= AR_STA_ID1_CRPT_MIC_ENABLE
|
455 AR_STA_ID1_MCAST_KSRCH
;
456 if (AR_SREV_9100(ah
))
457 ah
->sta_id1_defaults
|= AR_STA_ID1_AR9100_BA_FIX
;
460 ah
->globaltxtimeout
= (u32
) -1;
461 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
462 ah
->htc_reset_init
= true;
464 ah
->tpc_enabled
= false;
466 ah
->ani_function
= ATH9K_ANI_ALL
;
467 if (!AR_SREV_9300_20_OR_LATER(ah
))
468 ah
->ani_function
&= ~ATH9K_ANI_MRC_CCK
;
470 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
471 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
473 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
476 static void ath9k_hw_init_macaddr(struct ath_hw
*ah
)
478 struct ath_common
*common
= ath9k_hw_common(ah
);
481 static const u32 EEP_MAC
[] = { EEP_MAC_LSW
, EEP_MAC_MID
, EEP_MAC_MSW
};
483 /* MAC address may already be loaded via ath9k_platform_data */
484 if (is_valid_ether_addr(common
->macaddr
))
487 for (i
= 0; i
< 3; i
++) {
488 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_MAC
[i
]);
489 common
->macaddr
[2 * i
] = eeval
>> 8;
490 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
493 if (is_valid_ether_addr(common
->macaddr
))
496 ath_err(common
, "eeprom contains invalid mac address: %pM\n",
499 eth_random_addr(common
->macaddr
);
500 ath_err(common
, "random mac address will be used: %pM\n",
506 static int ath9k_hw_post_init(struct ath_hw
*ah
)
508 struct ath_common
*common
= ath9k_hw_common(ah
);
511 if (common
->bus_ops
->ath_bus_type
!= ATH_USB
) {
512 if (!ath9k_hw_chip_test(ah
))
516 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
517 ecode
= ar9002_hw_rf_claim(ah
);
522 ecode
= ath9k_hw_eeprom_init(ah
);
526 ath_dbg(ath9k_hw_common(ah
), CONFIG
, "Eeprom VER: %d, REV: %d\n",
527 ah
->eep_ops
->get_eeprom_ver(ah
),
528 ah
->eep_ops
->get_eeprom_rev(ah
));
530 ath9k_hw_ani_init(ah
);
533 * EEPROM needs to be initialized before we do this.
534 * This is required for regulatory compliance.
536 if (AR_SREV_9300_20_OR_LATER(ah
)) {
537 u16 regdmn
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
538 if ((regdmn
& 0xF0) == CTL_FCC
) {
539 ah
->nf_2g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ
;
540 ah
->nf_5g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ
;
547 static int ath9k_hw_attach_ops(struct ath_hw
*ah
)
549 if (!AR_SREV_9300_20_OR_LATER(ah
))
550 return ar9002_hw_attach_ops(ah
);
552 ar9003_hw_attach_ops(ah
);
556 /* Called for all hardware families */
557 static int __ath9k_hw_init(struct ath_hw
*ah
)
559 struct ath_common
*common
= ath9k_hw_common(ah
);
562 ath9k_hw_read_revisions(ah
);
564 switch (ah
->hw_version
.macVersion
) {
565 case AR_SREV_VERSION_5416_PCI
:
566 case AR_SREV_VERSION_5416_PCIE
:
567 case AR_SREV_VERSION_9160
:
568 case AR_SREV_VERSION_9100
:
569 case AR_SREV_VERSION_9280
:
570 case AR_SREV_VERSION_9285
:
571 case AR_SREV_VERSION_9287
:
572 case AR_SREV_VERSION_9271
:
573 case AR_SREV_VERSION_9300
:
574 case AR_SREV_VERSION_9330
:
575 case AR_SREV_VERSION_9485
:
576 case AR_SREV_VERSION_9340
:
577 case AR_SREV_VERSION_9462
:
578 case AR_SREV_VERSION_9550
:
579 case AR_SREV_VERSION_9565
:
580 case AR_SREV_VERSION_9531
:
581 case AR_SREV_VERSION_9561
:
585 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
586 ah
->hw_version
.macVersion
, ah
->hw_version
.macRev
);
591 * Read back AR_WA into a permanent copy and set bits 14 and 17.
592 * We need to do this to avoid RMW of this register. We cannot
593 * read the reg when chip is asleep.
595 if (AR_SREV_9300_20_OR_LATER(ah
)) {
596 ah
->WARegVal
= REG_READ(ah
, AR_WA
);
597 ah
->WARegVal
|= (AR_WA_D3_L1_DISABLE
|
598 AR_WA_ASPM_TIMER_BASED_DISABLE
);
601 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
602 ath_err(common
, "Couldn't reset chip\n");
606 if (AR_SREV_9565(ah
)) {
607 ah
->WARegVal
|= AR_WA_BIT22
;
608 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
611 ath9k_hw_init_defaults(ah
);
612 ath9k_hw_init_config(ah
);
614 r
= ath9k_hw_attach_ops(ah
);
618 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
619 ath_err(common
, "Couldn't wakeup chip\n");
623 if (AR_SREV_9271(ah
) || AR_SREV_9100(ah
) || AR_SREV_9340(ah
) ||
624 AR_SREV_9330(ah
) || AR_SREV_9550(ah
))
625 ah
->is_pciexpress
= false;
627 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
628 ath9k_hw_init_cal_settings(ah
);
630 if (!ah
->is_pciexpress
)
631 ath9k_hw_disablepcie(ah
);
633 r
= ath9k_hw_post_init(ah
);
637 ath9k_hw_init_mode_gain_regs(ah
);
638 r
= ath9k_hw_fill_cap_info(ah
);
642 ath9k_hw_init_macaddr(ah
);
643 ath9k_hw_init_hang_checks(ah
);
645 common
->state
= ATH_HW_INITIALIZED
;
650 int ath9k_hw_init(struct ath_hw
*ah
)
653 struct ath_common
*common
= ath9k_hw_common(ah
);
655 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
656 switch (ah
->hw_version
.devid
) {
657 case AR5416_DEVID_PCI
:
658 case AR5416_DEVID_PCIE
:
659 case AR5416_AR9100_DEVID
:
660 case AR9160_DEVID_PCI
:
661 case AR9280_DEVID_PCI
:
662 case AR9280_DEVID_PCIE
:
663 case AR9285_DEVID_PCIE
:
664 case AR9287_DEVID_PCI
:
665 case AR9287_DEVID_PCIE
:
666 case AR2427_DEVID_PCIE
:
667 case AR9300_DEVID_PCIE
:
668 case AR9300_DEVID_AR9485_PCIE
:
669 case AR9300_DEVID_AR9330
:
670 case AR9300_DEVID_AR9340
:
671 case AR9300_DEVID_QCA955X
:
672 case AR9300_DEVID_AR9580
:
673 case AR9300_DEVID_AR9462
:
674 case AR9485_DEVID_AR1111
:
675 case AR9300_DEVID_AR9565
:
676 case AR9300_DEVID_AR953X
:
677 case AR9300_DEVID_QCA956X
:
680 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
682 ath_err(common
, "Hardware device ID 0x%04x not supported\n",
683 ah
->hw_version
.devid
);
687 ret
= __ath9k_hw_init(ah
);
690 "Unable to initialize hardware; initialization status: %d\n",
699 EXPORT_SYMBOL(ath9k_hw_init
);
701 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
703 ENABLE_REGWRITE_BUFFER(ah
);
705 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
706 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
708 REG_WRITE(ah
, AR_QOS_NO_ACK
,
709 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
710 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
711 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
713 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
714 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
715 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
716 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
717 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
719 REGWRITE_BUFFER_FLUSH(ah
);
722 u32
ar9003_get_pll_sqsum_dvc(struct ath_hw
*ah
)
724 struct ath_common
*common
= ath9k_hw_common(ah
);
727 REG_CLR_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
729 REG_SET_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
731 while ((REG_READ(ah
, PLL4
) & PLL4_MEAS_DONE
) == 0) {
735 if (WARN_ON_ONCE(i
>= 100)) {
736 ath_err(common
, "PLL4 measurement not done\n");
743 return (REG_READ(ah
, PLL3
) & SQSUM_DVC_MASK
) >> 3;
745 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc
);
747 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
748 struct ath9k_channel
*chan
)
752 pll
= ath9k_hw_compute_pll_control(ah
, chan
);
754 if (AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
755 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
756 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
757 AR_CH0_BB_DPLL2_PLL_PWD
, 0x1);
758 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
759 AR_CH0_DPLL2_KD
, 0x40);
760 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
761 AR_CH0_DPLL2_KI
, 0x4);
763 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
764 AR_CH0_BB_DPLL1_REFDIV
, 0x5);
765 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
766 AR_CH0_BB_DPLL1_NINI
, 0x58);
767 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
768 AR_CH0_BB_DPLL1_NFRAC
, 0x0);
770 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
771 AR_CH0_BB_DPLL2_OUTDIV
, 0x1);
772 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
773 AR_CH0_BB_DPLL2_LOCAL_PLL
, 0x1);
774 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
775 AR_CH0_BB_DPLL2_EN_NEGTRIG
, 0x1);
777 /* program BB PLL phase_shift to 0x6 */
778 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
779 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x6);
781 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
782 AR_CH0_BB_DPLL2_PLL_PWD
, 0x0);
784 } else if (AR_SREV_9330(ah
)) {
785 u32 ddr_dpll2
, pll_control2
, kd
;
787 if (ah
->is_clk_25mhz
) {
788 ddr_dpll2
= 0x18e82f01;
789 pll_control2
= 0xe04a3d;
792 ddr_dpll2
= 0x19e82f01;
793 pll_control2
= 0x886666;
797 /* program DDR PLL ki and kd value */
798 REG_WRITE(ah
, AR_CH0_DDR_DPLL2
, ddr_dpll2
);
800 /* program DDR PLL phase_shift */
801 REG_RMW_FIELD(ah
, AR_CH0_DDR_DPLL3
,
802 AR_CH0_DPLL3_PHASE_SHIFT
, 0x1);
804 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
,
805 pll
| AR_RTC_9300_PLL_BYPASS
);
808 /* program refdiv, nint, frac to RTC register */
809 REG_WRITE(ah
, AR_RTC_PLL_CONTROL2
, pll_control2
);
811 /* program BB PLL kd and ki value */
812 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KD
, kd
);
813 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KI
, 0x06);
815 /* program BB PLL phase_shift */
816 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
817 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x1);
818 } else if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
820 u32 regval
, pll2_divint
, pll2_divfrac
, refdiv
;
822 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
,
823 pll
| AR_RTC_9300_SOC_PLL_BYPASS
);
826 REG_SET_BIT(ah
, AR_PHY_PLL_MODE
, 0x1 << 16);
829 if (ah
->is_clk_25mhz
) {
830 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
)) {
832 pll2_divfrac
= 0xa3d2;
836 pll2_divfrac
= 0x1eb85;
840 if (AR_SREV_9340(ah
)) {
846 pll2_divfrac
= (AR_SREV_9531(ah
) ||
853 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
854 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
))
855 regval
|= (0x1 << 22);
857 regval
|= (0x1 << 16);
858 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
861 REG_WRITE(ah
, AR_PHY_PLL_CONTROL
, (refdiv
<< 27) |
862 (pll2_divint
<< 18) | pll2_divfrac
);
865 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
866 if (AR_SREV_9340(ah
))
867 regval
= (regval
& 0x80071fff) |
872 else if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
)) {
873 regval
= (regval
& 0x01c00fff) |
879 if (AR_SREV_9531(ah
))
880 regval
|= (0x6 << 12);
882 regval
= (regval
& 0x80071fff) |
887 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
889 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
))
890 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
891 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xffbfffff);
893 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
894 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xfffeffff);
899 if (AR_SREV_9565(ah
))
901 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
903 if (AR_SREV_9485(ah
) || AR_SREV_9340(ah
) || AR_SREV_9330(ah
) ||
907 /* Switch the core clock for ar9271 to 117Mhz */
908 if (AR_SREV_9271(ah
)) {
910 REG_WRITE(ah
, 0x50040, 0x304);
913 udelay(RTC_PLL_SETTLE_DELAY
);
915 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
918 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
919 enum nl80211_iftype opmode
)
921 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
922 u32 imr_reg
= AR_IMR_TXERR
|
929 if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
931 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
933 if (AR_SREV_9300_20_OR_LATER(ah
)) {
934 imr_reg
|= AR_IMR_RXOK_HP
;
935 if (ah
->config
.rx_intr_mitigation
) {
936 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
937 msi_cfg
|= AR_INTCFG_MSI_RXINTM
| AR_INTCFG_MSI_RXMINTR
;
939 imr_reg
|= AR_IMR_RXOK_LP
;
940 msi_cfg
|= AR_INTCFG_MSI_RXOK
;
943 if (ah
->config
.rx_intr_mitigation
) {
944 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
945 msi_cfg
|= AR_INTCFG_MSI_RXINTM
| AR_INTCFG_MSI_RXMINTR
;
947 imr_reg
|= AR_IMR_RXOK
;
948 msi_cfg
|= AR_INTCFG_MSI_RXOK
;
952 if (ah
->config
.tx_intr_mitigation
) {
953 imr_reg
|= AR_IMR_TXINTM
| AR_IMR_TXMINTR
;
954 msi_cfg
|= AR_INTCFG_MSI_TXINTM
| AR_INTCFG_MSI_TXMINTR
;
956 imr_reg
|= AR_IMR_TXOK
;
957 msi_cfg
|= AR_INTCFG_MSI_TXOK
;
960 ENABLE_REGWRITE_BUFFER(ah
);
962 REG_WRITE(ah
, AR_IMR
, imr_reg
);
963 ah
->imrs2_reg
|= AR_IMR_S2_GTT
;
964 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
966 if (ah
->msi_enabled
) {
967 ah
->msi_reg
= REG_READ(ah
, AR_PCIE_MSI
);
968 ah
->msi_reg
|= AR_PCIE_MSI_HW_DBI_WR_EN
;
969 ah
->msi_reg
&= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64
;
970 REG_WRITE(ah
, AR_INTCFG
, msi_cfg
);
971 ath_dbg(ath9k_hw_common(ah
), ANY
,
972 "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
973 REG_READ(ah
, AR_INTCFG
), msi_cfg
);
976 if (!AR_SREV_9100(ah
)) {
977 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
978 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
979 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
982 REGWRITE_BUFFER_FLUSH(ah
);
984 if (AR_SREV_9300_20_OR_LATER(ah
)) {
985 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, 0);
986 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK
, 0);
987 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_ENABLE
, 0);
988 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_MASK
, 0);
992 static void ath9k_hw_set_sifs_time(struct ath_hw
*ah
, u32 us
)
994 u32 val
= ath9k_hw_mac_to_clks(ah
, us
- 2);
995 val
= min(val
, (u32
) 0xFFFF);
996 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
, val
);
999 void ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
1001 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1002 val
= min(val
, (u32
) 0xFFFF);
1003 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, val
);
1006 void ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
1008 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1009 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_ACK
));
1010 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK
, val
);
1013 void ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
1015 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1016 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_CTS
));
1017 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_CTS
, val
);
1020 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
1023 ath_dbg(ath9k_hw_common(ah
), XMIT
, "bad global tx timeout %u\n",
1025 ah
->globaltxtimeout
= (u32
) -1;
1028 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
1029 ah
->globaltxtimeout
= tu
;
1034 void ath9k_hw_init_global_settings(struct ath_hw
*ah
)
1036 struct ath_common
*common
= ath9k_hw_common(ah
);
1037 const struct ath9k_channel
*chan
= ah
->curchan
;
1038 int acktimeout
, ctstimeout
, ack_offset
= 0;
1041 int rx_lat
= 0, tx_lat
= 0, eifs
= 0, ack_shift
= 0;
1044 ath_dbg(ath9k_hw_common(ah
), RESET
, "ah->misc_mode 0x%x\n",
1050 if (ah
->misc_mode
!= 0)
1051 REG_SET_BIT(ah
, AR_PCU_MISC
, ah
->misc_mode
);
1053 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1059 if (IS_CHAN_5GHZ(chan
))
1064 if (IS_CHAN_HALF_RATE(chan
)) {
1068 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1075 } else if (IS_CHAN_QUARTER_RATE(chan
)) {
1077 rx_lat
= (rx_lat
* 4) - 1;
1079 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1087 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1088 eifs
= AR_D_GBL_IFS_EIFS_ASYNC_FIFO
;
1089 reg
= AR_USEC_ASYNC_FIFO
;
1091 eifs
= REG_READ(ah
, AR_D_GBL_IFS_EIFS
)/
1093 reg
= REG_READ(ah
, AR_USEC
);
1095 rx_lat
= MS(reg
, AR_USEC_RX_LAT
);
1096 tx_lat
= MS(reg
, AR_USEC_TX_LAT
);
1098 slottime
= ah
->slottime
;
1101 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1102 slottime
+= 3 * ah
->coverage_class
;
1103 acktimeout
= slottime
+ sifstime
+ ack_offset
;
1104 ctstimeout
= acktimeout
;
1107 * Workaround for early ACK timeouts, add an offset to match the
1108 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1109 * This was initially only meant to work around an issue with delayed
1110 * BA frames in some implementations, but it has been found to fix ACK
1111 * timeout issues in other cases as well.
1113 if (IS_CHAN_2GHZ(chan
) &&
1114 !IS_CHAN_HALF_RATE(chan
) && !IS_CHAN_QUARTER_RATE(chan
)) {
1115 acktimeout
+= 64 - sifstime
- ah
->slottime
;
1116 ctstimeout
+= 48 - sifstime
- ah
->slottime
;
1119 if (ah
->dynack
.enabled
) {
1120 acktimeout
= ah
->dynack
.ackto
;
1121 ctstimeout
= acktimeout
;
1122 slottime
= (acktimeout
- 3) / 2;
1124 ah
->dynack
.ackto
= acktimeout
;
1127 ath9k_hw_set_sifs_time(ah
, sifstime
);
1128 ath9k_hw_setslottime(ah
, slottime
);
1129 ath9k_hw_set_ack_timeout(ah
, acktimeout
);
1130 ath9k_hw_set_cts_timeout(ah
, ctstimeout
);
1131 if (ah
->globaltxtimeout
!= (u32
) -1)
1132 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1134 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
, ath9k_hw_mac_to_clks(ah
, eifs
));
1135 REG_RMW(ah
, AR_USEC
,
1136 (common
->clockrate
- 1) |
1137 SM(rx_lat
, AR_USEC_RX_LAT
) |
1138 SM(tx_lat
, AR_USEC_TX_LAT
),
1139 AR_USEC_TX_LAT
| AR_USEC_RX_LAT
| AR_USEC_USEC
);
1141 if (IS_CHAN_HALF_RATE(chan
) || IS_CHAN_QUARTER_RATE(chan
))
1142 REG_RMW(ah
, AR_TXSIFS
,
1143 sifstime
| SM(ack_shift
, AR_TXSIFS_ACK_SHIFT
),
1144 (AR_TXSIFS_TIME
| AR_TXSIFS_ACK_SHIFT
));
1146 EXPORT_SYMBOL(ath9k_hw_init_global_settings
);
1148 void ath9k_hw_deinit(struct ath_hw
*ah
)
1150 struct ath_common
*common
= ath9k_hw_common(ah
);
1152 if (common
->state
< ATH_HW_INITIALIZED
)
1155 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1157 EXPORT_SYMBOL(ath9k_hw_deinit
);
1163 u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
, struct ath9k_channel
*chan
)
1165 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1167 if (IS_CHAN_2GHZ(chan
))
1175 /****************************************/
1176 /* Reset and Channel Switching Routines */
1177 /****************************************/
1179 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1181 struct ath_common
*common
= ath9k_hw_common(ah
);
1184 ENABLE_REGWRITE_BUFFER(ah
);
1187 * set AHB_MODE not to do cacheline prefetches
1189 if (!AR_SREV_9300_20_OR_LATER(ah
))
1190 REG_SET_BIT(ah
, AR_AHB_MODE
, AR_AHB_PREFETCH_RD_EN
);
1193 * let mac dma reads be in 128 byte chunks
1195 REG_RMW(ah
, AR_TXCFG
, AR_TXCFG_DMASZ_128B
, AR_TXCFG_DMASZ_MASK
);
1197 REGWRITE_BUFFER_FLUSH(ah
);
1200 * Restore TX Trigger Level to its pre-reset value.
1201 * The initial value depends on whether aggregation is enabled, and is
1202 * adjusted whenever underruns are detected.
1204 if (!AR_SREV_9300_20_OR_LATER(ah
))
1205 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1207 ENABLE_REGWRITE_BUFFER(ah
);
1210 * let mac dma writes be in 128 byte chunks
1212 REG_RMW(ah
, AR_RXCFG
, AR_RXCFG_DMASZ_128B
, AR_RXCFG_DMASZ_MASK
);
1215 * Setup receive FIFO threshold to hold off TX activities
1217 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1219 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1220 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_HP
, 0x1);
1221 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_LP
, 0x1);
1223 ath9k_hw_set_rx_bufsize(ah
, common
->rx_bufsize
-
1224 ah
->caps
.rx_status_len
);
1228 * reduce the number of usable entries in PCU TXBUF to avoid
1229 * wrap around issues.
1231 if (AR_SREV_9285(ah
)) {
1232 /* For AR9285 the number of Fifos are reduced to half.
1233 * So set the usable tx buf size also to half to
1234 * avoid data/delimiter underruns
1236 txbuf_size
= AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
;
1237 } else if (AR_SREV_9340_13_OR_LATER(ah
)) {
1238 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1239 txbuf_size
= AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE
;
1241 txbuf_size
= AR_PCU_TXBUF_CTRL_USABLE_SIZE
;
1244 if (!AR_SREV_9271(ah
))
1245 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
, txbuf_size
);
1247 REGWRITE_BUFFER_FLUSH(ah
);
1249 if (AR_SREV_9300_20_OR_LATER(ah
))
1250 ath9k_hw_reset_txstatus_ring(ah
);
1253 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1255 u32 mask
= AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
;
1256 u32 set
= AR_STA_ID1_KSRCH_MODE
;
1258 ENABLE_REG_RMW_BUFFER(ah
);
1260 case NL80211_IFTYPE_ADHOC
:
1261 if (!AR_SREV_9340_13(ah
)) {
1262 set
|= AR_STA_ID1_ADHOC
;
1263 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1267 case NL80211_IFTYPE_OCB
:
1268 case NL80211_IFTYPE_MESH_POINT
:
1269 case NL80211_IFTYPE_AP
:
1270 set
|= AR_STA_ID1_STA_AP
;
1272 case NL80211_IFTYPE_STATION
:
1273 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1276 if (!ah
->is_monitoring
)
1280 REG_RMW(ah
, AR_STA_ID1
, set
, mask
);
1281 REG_RMW_BUFFER_FLUSH(ah
);
1284 void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
, u32 coef_scaled
,
1285 u32
*coef_mantissa
, u32
*coef_exponent
)
1287 u32 coef_exp
, coef_man
;
1289 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1290 if ((coef_scaled
>> coef_exp
) & 0x1)
1293 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1295 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1297 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1298 *coef_exponent
= coef_exp
- 16;
1302 * call external reset function to reset WMAC if:
1303 * - doing a cold reset
1304 * - we have pending frames in the TX queues.
1306 static bool ath9k_hw_ar9330_reset_war(struct ath_hw
*ah
, int type
)
1310 for (i
= 0; i
< AR_NUM_QCU
; i
++) {
1311 npend
= ath9k_hw_numtxpending(ah
, i
);
1316 if (ah
->external_reset
&&
1317 (npend
|| type
== ATH9K_RESET_COLD
)) {
1320 ath_dbg(ath9k_hw_common(ah
), RESET
,
1321 "reset MAC via external reset\n");
1323 reset_err
= ah
->external_reset();
1325 ath_err(ath9k_hw_common(ah
),
1326 "External reset failed, err=%d\n",
1331 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1337 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1342 if (AR_SREV_9100(ah
)) {
1343 REG_RMW_FIELD(ah
, AR_RTC_DERIVED_CLK
,
1344 AR_RTC_DERIVED_CLK_PERIOD
, 1);
1345 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1348 ENABLE_REGWRITE_BUFFER(ah
);
1350 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1351 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1355 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1356 AR_RTC_FORCE_WAKE_ON_INT
);
1358 if (AR_SREV_9100(ah
)) {
1359 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1360 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1362 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1363 if (AR_SREV_9340(ah
))
1364 tmpReg
&= AR9340_INTR_SYNC_LOCAL_TIMEOUT
;
1366 tmpReg
&= AR_INTR_SYNC_LOCAL_TIMEOUT
|
1367 AR_INTR_SYNC_RADM_CPL_TIMEOUT
;
1371 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1374 if (!AR_SREV_9300_20_OR_LATER(ah
))
1376 REG_WRITE(ah
, AR_RC
, val
);
1378 } else if (!AR_SREV_9300_20_OR_LATER(ah
))
1379 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1381 rst_flags
= AR_RTC_RC_MAC_WARM
;
1382 if (type
== ATH9K_RESET_COLD
)
1383 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1386 if (AR_SREV_9330(ah
)) {
1387 if (!ath9k_hw_ar9330_reset_war(ah
, type
))
1391 if (ath9k_hw_mci_is_enabled(ah
))
1392 ar9003_mci_check_gpm_offset(ah
);
1394 /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1397 if (AR_SREV_9300(ah
) || AR_SREV_9580(ah
)) {
1398 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_HALT_REQ
);
1399 ath9k_hw_wait(ah
, AR_CFG
, AR_CFG_HALT_ACK
, AR_CFG_HALT_ACK
,
1400 20 * AH_WAIT_TIMEOUT
);
1401 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_HALT_REQ
);
1404 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1406 REGWRITE_BUFFER_FLUSH(ah
);
1408 if (AR_SREV_9300_20_OR_LATER(ah
))
1410 else if (AR_SREV_9100(ah
))
1415 REG_WRITE(ah
, AR_RTC_RC
, 0);
1416 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1417 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC stuck in MAC reset\n");
1421 if (!AR_SREV_9100(ah
))
1422 REG_WRITE(ah
, AR_RC
, 0);
1424 if (AR_SREV_9100(ah
))
1430 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1432 ENABLE_REGWRITE_BUFFER(ah
);
1434 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1435 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1439 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1440 AR_RTC_FORCE_WAKE_ON_INT
);
1442 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1443 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1445 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1447 REGWRITE_BUFFER_FLUSH(ah
);
1451 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1452 REG_WRITE(ah
, AR_RC
, 0);
1454 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1456 if (!ath9k_hw_wait(ah
,
1461 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC not waking up\n");
1465 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1468 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1472 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1473 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1477 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1478 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1480 if (!ah
->reset_power_on
)
1481 type
= ATH9K_RESET_POWER_ON
;
1484 case ATH9K_RESET_POWER_ON
:
1485 ret
= ath9k_hw_set_reset_power_on(ah
);
1487 ah
->reset_power_on
= true;
1489 case ATH9K_RESET_WARM
:
1490 case ATH9K_RESET_COLD
:
1491 ret
= ath9k_hw_set_reset(ah
, type
);
1500 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1501 struct ath9k_channel
*chan
)
1503 int reset_type
= ATH9K_RESET_WARM
;
1505 if (AR_SREV_9280(ah
)) {
1506 if (ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
))
1507 reset_type
= ATH9K_RESET_POWER_ON
;
1509 reset_type
= ATH9K_RESET_COLD
;
1510 } else if (ah
->chip_fullsleep
|| REG_READ(ah
, AR_Q_TXE
) ||
1511 (REG_READ(ah
, AR_CR
) & AR_CR_RXE
))
1512 reset_type
= ATH9K_RESET_COLD
;
1514 if (!ath9k_hw_set_reset_reg(ah
, reset_type
))
1517 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1520 ah
->chip_fullsleep
= false;
1522 if (AR_SREV_9330(ah
))
1523 ar9003_hw_internal_regulator_apply(ah
);
1524 ath9k_hw_init_pll(ah
, chan
);
1529 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1530 struct ath9k_channel
*chan
)
1532 struct ath_common
*common
= ath9k_hw_common(ah
);
1533 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1534 bool band_switch
= false, mode_diff
= false;
1535 u8 ini_reloaded
= 0;
1539 if (pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) {
1540 u32 flags_diff
= chan
->channelFlags
^ ah
->curchan
->channelFlags
;
1541 band_switch
= !!(flags_diff
& CHANNEL_5GHZ
);
1542 mode_diff
= !!(flags_diff
& ~CHANNEL_HT
);
1545 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1546 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1547 ath_dbg(common
, QUEUE
,
1548 "Transmit frames pending on queue %d\n", qnum
);
1553 if (!ath9k_hw_rfbus_req(ah
)) {
1554 ath_err(common
, "Could not kill baseband RX\n");
1558 if (band_switch
|| mode_diff
) {
1559 ath9k_hw_mark_phy_inactive(ah
);
1563 ath9k_hw_init_pll(ah
, chan
);
1565 if (ath9k_hw_fast_chan_change(ah
, chan
, &ini_reloaded
)) {
1566 ath_err(common
, "Failed to do fast channel change\n");
1571 ath9k_hw_set_channel_regs(ah
, chan
);
1573 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1575 ath_err(common
, "Failed to set channel\n");
1578 ath9k_hw_set_clockrate(ah
);
1579 ath9k_hw_apply_txpower(ah
, chan
, false);
1581 ath9k_hw_set_delta_slope(ah
, chan
);
1582 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1584 if (band_switch
|| ini_reloaded
)
1585 ah
->eep_ops
->set_board_values(ah
, chan
);
1587 ath9k_hw_init_bb(ah
, chan
);
1588 ath9k_hw_rfbus_done(ah
);
1590 if (band_switch
|| ini_reloaded
) {
1591 ah
->ah_flags
|= AH_FASTCC
;
1592 ath9k_hw_init_cal(ah
, chan
);
1593 ah
->ah_flags
&= ~AH_FASTCC
;
1599 static void ath9k_hw_apply_gpio_override(struct ath_hw
*ah
)
1601 u32 gpio_mask
= ah
->gpio_mask
;
1604 for (i
= 0; gpio_mask
; i
++, gpio_mask
>>= 1) {
1605 if (!(gpio_mask
& 1))
1608 ath9k_hw_gpio_request_out(ah
, i
, NULL
,
1609 AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1610 ath9k_hw_set_gpio(ah
, i
, !!(ah
->gpio_val
& BIT(i
)));
1611 ath9k_hw_gpio_free(ah
, i
);
1615 void ath9k_hw_check_nav(struct ath_hw
*ah
)
1617 struct ath_common
*common
= ath9k_hw_common(ah
);
1620 val
= REG_READ(ah
, AR_NAV
);
1621 if (val
!= 0xdeadbeef && val
> 0x7fff) {
1622 ath_dbg(common
, BSTUCK
, "Abnormal NAV: 0x%x\n", val
);
1623 REG_WRITE(ah
, AR_NAV
, 0);
1626 EXPORT_SYMBOL(ath9k_hw_check_nav
);
1628 bool ath9k_hw_check_alive(struct ath_hw
*ah
)
1633 /* Check if chip failed to wake up */
1634 if (REG_READ(ah
, AR_CFG
) == 0xdeadbeef)
1637 if (AR_SREV_9300(ah
))
1638 return !ath9k_hw_detect_mac_hang(ah
);
1640 if (AR_SREV_9285_12_OR_LATER(ah
))
1643 last_val
= REG_READ(ah
, AR_OBS_BUS_1
);
1645 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
1646 if (reg
!= last_val
)
1651 if ((reg
& 0x7E7FFFEF) == 0x00702400)
1654 switch (reg
& 0x7E000B00) {
1662 } while (count
-- > 0);
1666 EXPORT_SYMBOL(ath9k_hw_check_alive
);
1668 static void ath9k_hw_init_mfp(struct ath_hw
*ah
)
1670 /* Setup MFP options for CCMP */
1671 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1672 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1673 * frames when constructing CCMP AAD. */
1674 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
1676 if (AR_SREV_9271(ah
) || AR_DEVID_7010(ah
))
1677 ah
->sw_mgmt_crypto_tx
= true;
1679 ah
->sw_mgmt_crypto_tx
= false;
1680 ah
->sw_mgmt_crypto_rx
= false;
1681 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1682 /* Disable hardware crypto for management frames */
1683 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
1684 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
1685 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1686 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
1687 ah
->sw_mgmt_crypto_tx
= true;
1688 ah
->sw_mgmt_crypto_rx
= true;
1690 ah
->sw_mgmt_crypto_tx
= true;
1691 ah
->sw_mgmt_crypto_rx
= true;
1695 static void ath9k_hw_reset_opmode(struct ath_hw
*ah
,
1696 u32 macStaId1
, u32 saveDefAntenna
)
1698 struct ath_common
*common
= ath9k_hw_common(ah
);
1700 ENABLE_REGWRITE_BUFFER(ah
);
1702 REG_RMW(ah
, AR_STA_ID1
, macStaId1
1703 | AR_STA_ID1_RTS_USE_DEF
1704 | ah
->sta_id1_defaults
,
1705 ~AR_STA_ID1_SADH_MASK
);
1706 ath_hw_setbssidmask(common
);
1707 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
1708 ath9k_hw_write_associd(ah
);
1709 REG_WRITE(ah
, AR_ISR
, ~0);
1710 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
1712 REGWRITE_BUFFER_FLUSH(ah
);
1714 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
1717 static void ath9k_hw_init_queues(struct ath_hw
*ah
)
1721 ENABLE_REGWRITE_BUFFER(ah
);
1723 for (i
= 0; i
< AR_NUM_DCU
; i
++)
1724 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
1726 REGWRITE_BUFFER_FLUSH(ah
);
1729 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1730 ath9k_hw_resettxqueue(ah
, i
);
1734 * For big endian systems turn on swapping for descriptors
1736 static void ath9k_hw_init_desc(struct ath_hw
*ah
)
1738 struct ath_common
*common
= ath9k_hw_common(ah
);
1740 if (AR_SREV_9100(ah
)) {
1742 mask
= REG_READ(ah
, AR_CFG
);
1743 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
1744 ath_dbg(common
, RESET
, "CFG Byte Swap Set 0x%x\n",
1747 mask
= INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
1748 REG_WRITE(ah
, AR_CFG
, mask
);
1749 ath_dbg(common
, RESET
, "Setting CFG 0x%x\n",
1750 REG_READ(ah
, AR_CFG
));
1753 if (common
->bus_ops
->ath_bus_type
== ATH_USB
) {
1754 /* Configure AR9271 target WLAN */
1755 if (AR_SREV_9271(ah
))
1756 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
1758 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1761 else if (AR_SREV_9330(ah
) || AR_SREV_9340(ah
) ||
1762 AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
1764 REG_RMW(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
, 0);
1766 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1772 * Fast channel change:
1773 * (Change synthesizer based on channel freq without resetting chip)
1775 static int ath9k_hw_do_fastcc(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1777 struct ath_common
*common
= ath9k_hw_common(ah
);
1778 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1781 if (AR_SREV_9280(ah
) && common
->bus_ops
->ath_bus_type
== ATH_PCI
)
1784 if (ah
->chip_fullsleep
)
1790 if (chan
->channel
== ah
->curchan
->channel
)
1793 if ((ah
->curchan
->channelFlags
| chan
->channelFlags
) &
1794 (CHANNEL_HALF
| CHANNEL_QUARTER
))
1798 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1800 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) &&
1801 ((chan
->channelFlags
^ ah
->curchan
->channelFlags
) & ~CHANNEL_HT
))
1804 if (!ath9k_hw_check_alive(ah
))
1808 * For AR9462, make sure that calibration data for
1809 * re-using are present.
1811 if (AR_SREV_9462(ah
) && (ah
->caldata
&&
1812 (!test_bit(TXIQCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1813 !test_bit(TXCLCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1814 !test_bit(RTT_DONE
, &ah
->caldata
->cal_flags
))))
1817 ath_dbg(common
, RESET
, "FastChannelChange for %d -> %d\n",
1818 ah
->curchan
->channel
, chan
->channel
);
1820 ret
= ath9k_hw_channel_change(ah
, chan
);
1824 if (ath9k_hw_mci_is_enabled(ah
))
1825 ar9003_mci_2g5g_switch(ah
, false);
1827 ath9k_hw_loadnf(ah
, ah
->curchan
);
1828 ath9k_hw_start_nfcal(ah
, true);
1830 if (AR_SREV_9271(ah
))
1831 ar9002_hw_load_ani_reg(ah
, chan
);
1838 u32
ath9k_hw_get_tsf_offset(struct timespec64
*last
, struct timespec64
*cur
)
1840 struct timespec64 ts
;
1844 ktime_get_raw_ts64(&ts
);
1848 usec
= cur
->tv_sec
* 1000000ULL + cur
->tv_nsec
/ 1000;
1849 usec
-= last
->tv_sec
* 1000000ULL + last
->tv_nsec
/ 1000;
1853 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset
);
1855 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1856 struct ath9k_hw_cal_data
*caldata
, bool fastcc
)
1858 struct ath_common
*common
= ath9k_hw_common(ah
);
1862 struct timespec64 tsf_ts
;
1866 bool start_mci_reset
= false;
1867 bool save_fullsleep
= ah
->chip_fullsleep
;
1869 if (ath9k_hw_mci_is_enabled(ah
)) {
1870 start_mci_reset
= ar9003_mci_start_reset(ah
, chan
);
1871 if (start_mci_reset
)
1875 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1878 if (ah
->curchan
&& !ah
->chip_fullsleep
)
1879 ath9k_hw_getnf(ah
, ah
->curchan
);
1881 ah
->caldata
= caldata
;
1882 if (caldata
&& (chan
->channel
!= caldata
->channel
||
1883 chan
->channelFlags
!= caldata
->channelFlags
)) {
1884 /* Operating channel changed, reset channel calibration data */
1885 memset(caldata
, 0, sizeof(*caldata
));
1886 ath9k_init_nfcal_hist_buffer(ah
, chan
);
1887 } else if (caldata
) {
1888 clear_bit(PAPRD_PACKET_SENT
, &caldata
->cal_flags
);
1890 ah
->noise
= ath9k_hw_getchan_noise(ah
, chan
, chan
->noisefloor
);
1893 r
= ath9k_hw_do_fastcc(ah
, chan
);
1898 if (ath9k_hw_mci_is_enabled(ah
))
1899 ar9003_mci_stop_bt(ah
, save_fullsleep
);
1901 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
1902 if (saveDefAntenna
== 0)
1905 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
1907 /* Save TSF before chip reset, a cold reset clears it */
1908 ktime_get_raw_ts64(&tsf_ts
);
1909 tsf
= ath9k_hw_gettsf64(ah
);
1911 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
1912 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
1913 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
1915 ath9k_hw_mark_phy_inactive(ah
);
1917 ah
->paprd_table_write_done
= false;
1919 /* Only required on the first reset */
1920 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1922 AR9271_RESET_POWER_DOWN_CONTROL
,
1923 AR9271_RADIO_RF_RST
);
1927 if (!ath9k_hw_chip_reset(ah
, chan
)) {
1928 ath_err(common
, "Chip reset failed\n");
1932 /* Only required on the first reset */
1933 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1934 ah
->htc_reset_init
= false;
1936 AR9271_RESET_POWER_DOWN_CONTROL
,
1937 AR9271_GATE_MAC_CTL
);
1942 tsf_offset
= ath9k_hw_get_tsf_offset(&tsf_ts
, NULL
);
1943 ath9k_hw_settsf64(ah
, tsf
+ tsf_offset
);
1945 if (AR_SREV_9280_20_OR_LATER(ah
))
1946 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
1948 if (!AR_SREV_9300_20_OR_LATER(ah
))
1949 ar9002_hw_enable_async_fifo(ah
);
1951 r
= ath9k_hw_process_ini(ah
, chan
);
1955 ath9k_hw_set_rfmode(ah
, chan
);
1957 if (ath9k_hw_mci_is_enabled(ah
))
1958 ar9003_mci_reset(ah
, false, IS_CHAN_2GHZ(chan
), save_fullsleep
);
1961 * Some AR91xx SoC devices frequently fail to accept TSF writes
1962 * right after the chip reset. When that happens, write a new
1963 * value after the initvals have been applied.
1965 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
1966 tsf_offset
= ath9k_hw_get_tsf_offset(&tsf_ts
, NULL
);
1967 ath9k_hw_settsf64(ah
, tsf
+ tsf_offset
);
1970 ath9k_hw_init_mfp(ah
);
1972 ath9k_hw_set_delta_slope(ah
, chan
);
1973 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1974 ah
->eep_ops
->set_board_values(ah
, chan
);
1976 ath9k_hw_reset_opmode(ah
, macStaId1
, saveDefAntenna
);
1978 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1982 ath9k_hw_set_clockrate(ah
);
1984 ath9k_hw_init_queues(ah
);
1985 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
1986 ath9k_hw_ani_cache_ini_regs(ah
);
1987 ath9k_hw_init_qos(ah
);
1989 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1990 ath9k_hw_gpio_request_in(ah
, ah
->rfkill_gpio
, "ath9k-rfkill");
1992 ath9k_hw_init_global_settings(ah
);
1994 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1995 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
1996 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
1997 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
1998 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
1999 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
2000 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
2003 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PRESERVE_SEQNUM
);
2005 ath9k_hw_set_dma(ah
);
2007 if (!ath9k_hw_mci_is_enabled(ah
))
2008 REG_WRITE(ah
, AR_OBS
, 8);
2010 ENABLE_REG_RMW_BUFFER(ah
);
2011 if (ah
->config
.rx_intr_mitigation
) {
2012 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, ah
->config
.rimt_last
);
2013 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, ah
->config
.rimt_first
);
2016 if (ah
->config
.tx_intr_mitigation
) {
2017 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_LAST
, 300);
2018 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_FIRST
, 750);
2020 REG_RMW_BUFFER_FLUSH(ah
);
2022 ath9k_hw_init_bb(ah
, chan
);
2025 clear_bit(TXIQCAL_DONE
, &caldata
->cal_flags
);
2026 clear_bit(TXCLCAL_DONE
, &caldata
->cal_flags
);
2028 if (!ath9k_hw_init_cal(ah
, chan
))
2031 if (ath9k_hw_mci_is_enabled(ah
) && ar9003_mci_end_reset(ah
, chan
, caldata
))
2034 ENABLE_REGWRITE_BUFFER(ah
);
2036 ath9k_hw_restore_chainmask(ah
);
2037 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
2039 REGWRITE_BUFFER_FLUSH(ah
);
2041 ath9k_hw_gen_timer_start_tsf2(ah
);
2043 ath9k_hw_init_desc(ah
);
2045 if (ath9k_hw_btcoex_is_enabled(ah
))
2046 ath9k_hw_btcoex_enable(ah
);
2048 if (ath9k_hw_mci_is_enabled(ah
))
2049 ar9003_mci_check_bt(ah
);
2051 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2052 ath9k_hw_loadnf(ah
, chan
);
2053 ath9k_hw_start_nfcal(ah
, true);
2056 if (AR_SREV_9300_20_OR_LATER(ah
))
2057 ar9003_hw_bb_watchdog_config(ah
);
2059 if (ah
->config
.hw_hang_checks
& HW_PHYRESTART_CLC_WAR
)
2060 ar9003_hw_disable_phy_restart(ah
);
2062 ath9k_hw_apply_gpio_override(ah
);
2064 if (AR_SREV_9565(ah
) && common
->bt_ant_diversity
)
2065 REG_SET_BIT(ah
, AR_BTCOEX_WL_LNADIV
, AR_BTCOEX_WL_LNADIV_FORCE_ON
);
2067 if (ah
->hw
->conf
.radar_enabled
) {
2068 /* set HW specific DFS configuration */
2069 ah
->radar_conf
.ext_channel
= IS_CHAN_HT40(chan
);
2070 ath9k_hw_set_radar_params(ah
);
2075 EXPORT_SYMBOL(ath9k_hw_reset
);
2077 /******************************/
2078 /* Power Management (Chipset) */
2079 /******************************/
2082 * Notify Power Mgt is disabled in self-generated frames.
2083 * If requested, force chip to sleep.
2085 static void ath9k_set_power_sleep(struct ath_hw
*ah
)
2087 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2089 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2090 REG_CLR_BIT(ah
, AR_TIMER_MODE
, 0xff);
2091 REG_CLR_BIT(ah
, AR_NDP2_TIMER_MODE
, 0xff);
2092 REG_CLR_BIT(ah
, AR_SLP32_INC
, 0xfffff);
2093 /* xxx Required for WLAN only case ? */
2094 REG_WRITE(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
, 0);
2099 * Clear the RTC force wake bit to allow the
2100 * mac to go to sleep.
2102 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
2104 if (ath9k_hw_mci_is_enabled(ah
))
2107 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
2108 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
2110 /* Shutdown chip. Active low */
2111 if (!AR_SREV_5416(ah
) && !AR_SREV_9271(ah
)) {
2112 REG_CLR_BIT(ah
, AR_RTC_RESET
, AR_RTC_RESET_EN
);
2116 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2117 if (AR_SREV_9300_20_OR_LATER(ah
))
2118 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2122 * Notify Power Management is enabled in self-generating
2123 * frames. If request, set power mode of chip to
2124 * auto/normal. Duration in units of 128us (1/8 TU).
2126 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
)
2128 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2130 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2132 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
2133 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2134 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
2135 AR_RTC_FORCE_WAKE_ON_INT
);
2138 /* When chip goes into network sleep, it could be waken
2139 * up by MCI_INT interrupt caused by BT's HW messages
2140 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2141 * rate (~100us). This will cause chip to leave and
2142 * re-enter network sleep mode frequently, which in
2143 * consequence will have WLAN MCI HW to generate lots of
2144 * SYS_WAKING and SYS_SLEEPING messages which will make
2145 * BT CPU to busy to process.
2147 if (ath9k_hw_mci_is_enabled(ah
))
2148 REG_CLR_BIT(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
,
2149 AR_MCI_INTERRUPT_RX_HW_MSG_MASK
);
2151 * Clear the RTC force wake bit to allow the
2152 * mac to go to sleep.
2154 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
2156 if (ath9k_hw_mci_is_enabled(ah
))
2160 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2161 if (AR_SREV_9300_20_OR_LATER(ah
))
2162 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2165 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
)
2170 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2171 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2172 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
2176 if ((REG_READ(ah
, AR_RTC_STATUS
) &
2177 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
2178 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
2181 if (!AR_SREV_9300_20_OR_LATER(ah
))
2182 ath9k_hw_init_pll(ah
, NULL
);
2184 if (AR_SREV_9100(ah
))
2185 REG_SET_BIT(ah
, AR_RTC_RESET
,
2188 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2189 AR_RTC_FORCE_WAKE_EN
);
2190 if (AR_SREV_9100(ah
))
2195 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
2196 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
2197 if (val
== AR_RTC_STATUS_ON
)
2200 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2201 AR_RTC_FORCE_WAKE_EN
);
2204 ath_err(ath9k_hw_common(ah
),
2205 "Failed to wakeup in %uus\n",
2206 POWER_UP_TIME
/ 20);
2210 if (ath9k_hw_mci_is_enabled(ah
))
2211 ar9003_mci_set_power_awake(ah
);
2213 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2218 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
2220 struct ath_common
*common
= ath9k_hw_common(ah
);
2222 static const char *modes
[] = {
2229 if (ah
->power_mode
== mode
)
2232 ath_dbg(common
, RESET
, "%s -> %s\n",
2233 modes
[ah
->power_mode
], modes
[mode
]);
2236 case ATH9K_PM_AWAKE
:
2237 status
= ath9k_hw_set_power_awake(ah
);
2239 case ATH9K_PM_FULL_SLEEP
:
2240 if (ath9k_hw_mci_is_enabled(ah
))
2241 ar9003_mci_set_full_sleep(ah
);
2243 ath9k_set_power_sleep(ah
);
2244 ah
->chip_fullsleep
= true;
2246 case ATH9K_PM_NETWORK_SLEEP
:
2247 ath9k_set_power_network_sleep(ah
);
2250 ath_err(common
, "Unknown power mode %u\n", mode
);
2253 ah
->power_mode
= mode
;
2256 * XXX: If this warning never comes up after a while then
2257 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2258 * ath9k_hw_setpower() return type void.
2261 if (!(ah
->ah_flags
& AH_UNPLUGGED
))
2262 ATH_DBG_WARN_ON_ONCE(!status
);
2266 EXPORT_SYMBOL(ath9k_hw_setpower
);
2268 /*******************/
2269 /* Beacon Handling */
2270 /*******************/
2272 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
2276 ENABLE_REGWRITE_BUFFER(ah
);
2278 switch (ah
->opmode
) {
2279 case NL80211_IFTYPE_ADHOC
:
2280 REG_SET_BIT(ah
, AR_TXCFG
,
2281 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
2283 case NL80211_IFTYPE_MESH_POINT
:
2284 case NL80211_IFTYPE_AP
:
2285 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, next_beacon
);
2286 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, next_beacon
-
2287 TU_TO_USEC(ah
->config
.dma_beacon_response_time
));
2288 REG_WRITE(ah
, AR_NEXT_SWBA
, next_beacon
-
2289 TU_TO_USEC(ah
->config
.sw_beacon_response_time
));
2291 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
2294 ath_dbg(ath9k_hw_common(ah
), BEACON
,
2295 "%s: unsupported opmode: %d\n", __func__
, ah
->opmode
);
2300 REG_WRITE(ah
, AR_BEACON_PERIOD
, beacon_period
);
2301 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, beacon_period
);
2302 REG_WRITE(ah
, AR_SWBA_PERIOD
, beacon_period
);
2304 REGWRITE_BUFFER_FLUSH(ah
);
2306 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
2308 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
2310 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
2311 const struct ath9k_beacon_state
*bs
)
2313 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
2314 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2315 struct ath_common
*common
= ath9k_hw_common(ah
);
2317 ENABLE_REGWRITE_BUFFER(ah
);
2319 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, bs
->bs_nexttbtt
);
2320 REG_WRITE(ah
, AR_BEACON_PERIOD
, bs
->bs_intval
);
2321 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, bs
->bs_intval
);
2323 REGWRITE_BUFFER_FLUSH(ah
);
2325 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
2326 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
2328 beaconintval
= bs
->bs_intval
;
2330 if (bs
->bs_sleepduration
> beaconintval
)
2331 beaconintval
= bs
->bs_sleepduration
;
2333 dtimperiod
= bs
->bs_dtimperiod
;
2334 if (bs
->bs_sleepduration
> dtimperiod
)
2335 dtimperiod
= bs
->bs_sleepduration
;
2337 if (beaconintval
== dtimperiod
)
2338 nextTbtt
= bs
->bs_nextdtim
;
2340 nextTbtt
= bs
->bs_nexttbtt
;
2342 ath_dbg(common
, BEACON
, "next DTIM %u\n", bs
->bs_nextdtim
);
2343 ath_dbg(common
, BEACON
, "next beacon %u\n", nextTbtt
);
2344 ath_dbg(common
, BEACON
, "beacon period %u\n", beaconintval
);
2345 ath_dbg(common
, BEACON
, "DTIM period %u\n", dtimperiod
);
2347 ENABLE_REGWRITE_BUFFER(ah
);
2349 REG_WRITE(ah
, AR_NEXT_DTIM
, bs
->bs_nextdtim
- SLEEP_SLOP
);
2350 REG_WRITE(ah
, AR_NEXT_TIM
, nextTbtt
- SLEEP_SLOP
);
2352 REG_WRITE(ah
, AR_SLEEP1
,
2353 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
2354 | AR_SLEEP1_ASSUME_DTIM
);
2356 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
2357 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
2359 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
2361 REG_WRITE(ah
, AR_SLEEP2
,
2362 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
2364 REG_WRITE(ah
, AR_TIM_PERIOD
, beaconintval
);
2365 REG_WRITE(ah
, AR_DTIM_PERIOD
, dtimperiod
);
2367 REGWRITE_BUFFER_FLUSH(ah
);
2369 REG_SET_BIT(ah
, AR_TIMER_MODE
,
2370 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
2373 /* TSF Out of Range Threshold */
2374 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
2376 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
2378 /*******************/
2379 /* HW Capabilities */
2380 /*******************/
2382 static u8
fixup_chainmask(u8 chip_chainmask
, u8 eeprom_chainmask
)
2384 eeprom_chainmask
&= chip_chainmask
;
2385 if (eeprom_chainmask
)
2386 return eeprom_chainmask
;
2388 return chip_chainmask
;
2392 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2393 * @ah: the atheros hardware data structure
2395 * We enable DFS support upstream on chipsets which have passed a series
2396 * of tests. The testing requirements are going to be documented. Desired
2397 * test requirements are documented at:
2399 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2401 * Once a new chipset gets properly tested an individual commit can be used
2402 * to document the testing for DFS for that chipset.
2404 static bool ath9k_hw_dfs_tested(struct ath_hw
*ah
)
2407 switch (ah
->hw_version
.macVersion
) {
2408 /* for temporary testing DFS with 9280 */
2409 case AR_SREV_VERSION_9280
:
2410 /* AR9580 will likely be our first target to get testing on */
2411 case AR_SREV_VERSION_9580
:
2418 static void ath9k_gpio_cap_init(struct ath_hw
*ah
)
2420 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2422 if (AR_SREV_9271(ah
)) {
2423 pCap
->num_gpio_pins
= AR9271_NUM_GPIO
;
2424 pCap
->gpio_mask
= AR9271_GPIO_MASK
;
2425 } else if (AR_DEVID_7010(ah
)) {
2426 pCap
->num_gpio_pins
= AR7010_NUM_GPIO
;
2427 pCap
->gpio_mask
= AR7010_GPIO_MASK
;
2428 } else if (AR_SREV_9287(ah
)) {
2429 pCap
->num_gpio_pins
= AR9287_NUM_GPIO
;
2430 pCap
->gpio_mask
= AR9287_GPIO_MASK
;
2431 } else if (AR_SREV_9285(ah
)) {
2432 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
2433 pCap
->gpio_mask
= AR9285_GPIO_MASK
;
2434 } else if (AR_SREV_9280(ah
)) {
2435 pCap
->num_gpio_pins
= AR9280_NUM_GPIO
;
2436 pCap
->gpio_mask
= AR9280_GPIO_MASK
;
2437 } else if (AR_SREV_9300(ah
)) {
2438 pCap
->num_gpio_pins
= AR9300_NUM_GPIO
;
2439 pCap
->gpio_mask
= AR9300_GPIO_MASK
;
2440 } else if (AR_SREV_9330(ah
)) {
2441 pCap
->num_gpio_pins
= AR9330_NUM_GPIO
;
2442 pCap
->gpio_mask
= AR9330_GPIO_MASK
;
2443 } else if (AR_SREV_9340(ah
)) {
2444 pCap
->num_gpio_pins
= AR9340_NUM_GPIO
;
2445 pCap
->gpio_mask
= AR9340_GPIO_MASK
;
2446 } else if (AR_SREV_9462(ah
)) {
2447 pCap
->num_gpio_pins
= AR9462_NUM_GPIO
;
2448 pCap
->gpio_mask
= AR9462_GPIO_MASK
;
2449 } else if (AR_SREV_9485(ah
)) {
2450 pCap
->num_gpio_pins
= AR9485_NUM_GPIO
;
2451 pCap
->gpio_mask
= AR9485_GPIO_MASK
;
2452 } else if (AR_SREV_9531(ah
)) {
2453 pCap
->num_gpio_pins
= AR9531_NUM_GPIO
;
2454 pCap
->gpio_mask
= AR9531_GPIO_MASK
;
2455 } else if (AR_SREV_9550(ah
)) {
2456 pCap
->num_gpio_pins
= AR9550_NUM_GPIO
;
2457 pCap
->gpio_mask
= AR9550_GPIO_MASK
;
2458 } else if (AR_SREV_9561(ah
)) {
2459 pCap
->num_gpio_pins
= AR9561_NUM_GPIO
;
2460 pCap
->gpio_mask
= AR9561_GPIO_MASK
;
2461 } else if (AR_SREV_9565(ah
)) {
2462 pCap
->num_gpio_pins
= AR9565_NUM_GPIO
;
2463 pCap
->gpio_mask
= AR9565_GPIO_MASK
;
2464 } else if (AR_SREV_9580(ah
)) {
2465 pCap
->num_gpio_pins
= AR9580_NUM_GPIO
;
2466 pCap
->gpio_mask
= AR9580_GPIO_MASK
;
2468 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
2469 pCap
->gpio_mask
= AR_GPIO_MASK
;
2473 int ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
2475 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2476 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
2477 struct ath_common
*common
= ath9k_hw_common(ah
);
2480 u8 ant_div_ctl1
, tx_chainmask
, rx_chainmask
;
2482 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
2483 regulatory
->current_rd
= eeval
;
2485 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
2486 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
2487 if (regulatory
->current_rd
== 0x64 ||
2488 regulatory
->current_rd
== 0x65)
2489 regulatory
->current_rd
+= 5;
2490 else if (regulatory
->current_rd
== 0x41)
2491 regulatory
->current_rd
= 0x43;
2492 ath_dbg(common
, REGULATORY
, "regdomain mapped to 0x%x\n",
2493 regulatory
->current_rd
);
2496 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
2498 if (eeval
& AR5416_OPFLAGS_11A
) {
2499 if (ah
->disable_5ghz
)
2500 ath_warn(common
, "disabling 5GHz band\n");
2502 pCap
->hw_caps
|= ATH9K_HW_CAP_5GHZ
;
2505 if (eeval
& AR5416_OPFLAGS_11G
) {
2506 if (ah
->disable_2ghz
)
2507 ath_warn(common
, "disabling 2GHz band\n");
2509 pCap
->hw_caps
|= ATH9K_HW_CAP_2GHZ
;
2512 if ((pCap
->hw_caps
& (ATH9K_HW_CAP_2GHZ
| ATH9K_HW_CAP_5GHZ
)) == 0) {
2513 ath_err(common
, "both bands are disabled\n");
2517 ath9k_gpio_cap_init(ah
);
2519 if (AR_SREV_9485(ah
) ||
2523 pCap
->chip_chainmask
= 1;
2524 else if (!AR_SREV_9280_20_OR_LATER(ah
))
2525 pCap
->chip_chainmask
= 7;
2526 else if (!AR_SREV_9300_20_OR_LATER(ah
) ||
2530 pCap
->chip_chainmask
= 3;
2532 pCap
->chip_chainmask
= 7;
2534 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
2536 * For AR9271 we will temporarilly uses the rx chainmax as read from
2539 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
2540 !(eeval
& AR5416_OPFLAGS_11A
) &&
2541 !(AR_SREV_9271(ah
)))
2542 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2543 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
2544 else if (AR_SREV_9100(ah
))
2545 pCap
->rx_chainmask
= 0x7;
2547 /* Use rx_chainmask from EEPROM. */
2548 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
2550 pCap
->tx_chainmask
= fixup_chainmask(pCap
->chip_chainmask
, pCap
->tx_chainmask
);
2551 pCap
->rx_chainmask
= fixup_chainmask(pCap
->chip_chainmask
, pCap
->rx_chainmask
);
2552 ah
->txchainmask
= pCap
->tx_chainmask
;
2553 ah
->rxchainmask
= pCap
->rx_chainmask
;
2555 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
2557 /* enable key search for every frame in an aggregate */
2558 if (AR_SREV_9300_20_OR_LATER(ah
))
2559 ah
->misc_mode
|= AR_PCU_ALWAYS_PERFORM_KEYSEARCH
;
2561 common
->crypt_caps
|= ATH_CRYPT_CAP_CIPHER_AESCCM
;
2563 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
2564 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
2566 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
2568 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
))
2569 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
2571 pCap
->rts_aggr_limit
= (8 * 1024);
2573 #ifdef CONFIG_ATH9K_RFKILL
2574 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
2575 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
2577 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
2578 ah
->rfkill_polarity
=
2579 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
2581 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
2584 if (AR_SREV_9271(ah
) || AR_SREV_9300_20_OR_LATER(ah
))
2585 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
2587 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
2589 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
2590 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
2592 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
2594 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2595 pCap
->hw_caps
|= ATH9K_HW_CAP_EDMA
| ATH9K_HW_CAP_FASTCLOCK
;
2596 if (!AR_SREV_9330(ah
) && !AR_SREV_9485(ah
) &&
2597 !AR_SREV_9561(ah
) && !AR_SREV_9565(ah
))
2598 pCap
->hw_caps
|= ATH9K_HW_CAP_LDPC
;
2600 pCap
->rx_hp_qdepth
= ATH9K_HW_RX_HP_QDEPTH
;
2601 pCap
->rx_lp_qdepth
= ATH9K_HW_RX_LP_QDEPTH
;
2602 pCap
->rx_status_len
= sizeof(struct ar9003_rxs
);
2603 pCap
->tx_desc_len
= sizeof(struct ar9003_txc
);
2604 pCap
->txs_len
= sizeof(struct ar9003_txs
);
2606 pCap
->tx_desc_len
= sizeof(struct ath_desc
);
2607 if (AR_SREV_9280_20(ah
))
2608 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCLOCK
;
2611 if (AR_SREV_9300_20_OR_LATER(ah
))
2612 pCap
->hw_caps
|= ATH9K_HW_CAP_RAC_SUPPORTED
;
2614 if (AR_SREV_9561(ah
))
2615 ah
->ent_mode
= 0x3BDA000;
2616 else if (AR_SREV_9300_20_OR_LATER(ah
))
2617 ah
->ent_mode
= REG_READ(ah
, AR_ENT_OTP
);
2619 if (AR_SREV_9287_11_OR_LATER(ah
) || AR_SREV_9271(ah
))
2620 pCap
->hw_caps
|= ATH9K_HW_CAP_SGI_20
;
2622 if (AR_SREV_9285(ah
)) {
2623 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MODAL_VER
) >= 3) {
2625 ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2626 if ((ant_div_ctl1
& 0x1) && ((ant_div_ctl1
>> 3) & 0x1)) {
2627 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2628 ath_info(common
, "Enable LNA combining\n");
2633 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2634 if (ah
->eep_ops
->get_eeprom(ah
, EEP_CHAIN_MASK_REDUCE
))
2635 pCap
->hw_caps
|= ATH9K_HW_CAP_APM
;
2638 if (AR_SREV_9330(ah
) || AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
2639 ant_div_ctl1
= ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2640 if ((ant_div_ctl1
>> 0x6) == 0x3) {
2641 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2642 ath_info(common
, "Enable LNA combining\n");
2646 if (ath9k_hw_dfs_tested(ah
))
2647 pCap
->hw_caps
|= ATH9K_HW_CAP_DFS
;
2649 tx_chainmask
= pCap
->tx_chainmask
;
2650 rx_chainmask
= pCap
->rx_chainmask
;
2651 while (tx_chainmask
|| rx_chainmask
) {
2652 if (tx_chainmask
& BIT(0))
2653 pCap
->max_txchains
++;
2654 if (rx_chainmask
& BIT(0))
2655 pCap
->max_rxchains
++;
2661 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2662 if (!(ah
->ent_mode
& AR_ENT_OTP_49GHZ_DISABLE
))
2663 pCap
->hw_caps
|= ATH9K_HW_CAP_MCI
;
2665 if (AR_SREV_9462_20_OR_LATER(ah
))
2666 pCap
->hw_caps
|= ATH9K_HW_CAP_RTT
;
2669 if (AR_SREV_9300_20_OR_LATER(ah
) &&
2670 ah
->eep_ops
->get_eeprom(ah
, EEP_PAPRD
))
2671 pCap
->hw_caps
|= ATH9K_HW_CAP_PAPRD
;
2673 #ifdef CONFIG_ATH9K_WOW
2674 if (AR_SREV_9462_20_OR_LATER(ah
) || AR_SREV_9565_11_OR_LATER(ah
))
2675 ah
->wow
.max_patterns
= MAX_NUM_PATTERN
;
2677 ah
->wow
.max_patterns
= MAX_NUM_PATTERN_LEGACY
;
2683 /****************************/
2684 /* GPIO / RFKILL / Antennae */
2685 /****************************/
2687 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
, u32 gpio
, u32 type
)
2690 u32 gpio_shift
, tmp
;
2693 addr
= AR_GPIO_OUTPUT_MUX3
;
2695 addr
= AR_GPIO_OUTPUT_MUX2
;
2697 addr
= AR_GPIO_OUTPUT_MUX1
;
2699 gpio_shift
= (gpio
% 6) * 5;
2701 if (AR_SREV_9280_20_OR_LATER(ah
) ||
2702 (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
2703 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
2704 (0x1f << gpio_shift
));
2706 tmp
= REG_READ(ah
, addr
);
2707 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
2708 tmp
&= ~(0x1f << gpio_shift
);
2709 tmp
|= (type
<< gpio_shift
);
2710 REG_WRITE(ah
, addr
, tmp
);
2714 /* BSP should set the corresponding MUX register correctly.
2716 static void ath9k_hw_gpio_cfg_soc(struct ath_hw
*ah
, u32 gpio
, bool out
,
2719 if (ah
->caps
.gpio_requested
& BIT(gpio
))
2722 /* may be requested by BSP, free anyway */
2725 if (gpio_request_one(gpio
, out
? GPIOF_OUT_INIT_LOW
: GPIOF_IN
, label
))
2728 ah
->caps
.gpio_requested
|= BIT(gpio
);
2731 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw
*ah
, u32 gpio
, bool out
,
2734 u32 gpio_set
, gpio_shift
= gpio
;
2736 if (AR_DEVID_7010(ah
)) {
2738 AR7010_GPIO_OE_AS_OUTPUT
: AR7010_GPIO_OE_AS_INPUT
;
2739 REG_RMW(ah
, AR7010_GPIO_OE
, gpio_set
<< gpio_shift
,
2740 AR7010_GPIO_OE_MASK
<< gpio_shift
);
2741 } else if (AR_SREV_SOC(ah
)) {
2742 gpio_set
= out
? 1 : 0;
2743 REG_RMW(ah
, AR_GPIO_OE_OUT
, gpio_set
<< gpio_shift
,
2744 gpio_set
<< gpio_shift
);
2746 gpio_shift
= gpio
<< 1;
2748 AR_GPIO_OE_OUT_DRV_ALL
: AR_GPIO_OE_OUT_DRV_NO
;
2749 REG_RMW(ah
, AR_GPIO_OE_OUT
, gpio_set
<< gpio_shift
,
2750 AR_GPIO_OE_OUT_DRV
<< gpio_shift
);
2753 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
2757 static void ath9k_hw_gpio_request(struct ath_hw
*ah
, u32 gpio
, bool out
,
2758 const char *label
, u32 ah_signal_type
)
2760 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2762 if (BIT(gpio
) & ah
->caps
.gpio_mask
)
2763 ath9k_hw_gpio_cfg_wmac(ah
, gpio
, out
, ah_signal_type
);
2764 else if (AR_SREV_SOC(ah
))
2765 ath9k_hw_gpio_cfg_soc(ah
, gpio
, out
, label
);
2770 void ath9k_hw_gpio_request_in(struct ath_hw
*ah
, u32 gpio
, const char *label
)
2772 ath9k_hw_gpio_request(ah
, gpio
, false, label
, 0);
2774 EXPORT_SYMBOL(ath9k_hw_gpio_request_in
);
2776 void ath9k_hw_gpio_request_out(struct ath_hw
*ah
, u32 gpio
, const char *label
,
2779 ath9k_hw_gpio_request(ah
, gpio
, true, label
, ah_signal_type
);
2781 EXPORT_SYMBOL(ath9k_hw_gpio_request_out
);
2783 void ath9k_hw_gpio_free(struct ath_hw
*ah
, u32 gpio
)
2785 if (!AR_SREV_SOC(ah
))
2788 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2790 if (ah
->caps
.gpio_requested
& BIT(gpio
)) {
2792 ah
->caps
.gpio_requested
&= ~BIT(gpio
);
2795 EXPORT_SYMBOL(ath9k_hw_gpio_free
);
2797 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
2799 u32 val
= 0xffffffff;
2801 #define MS_REG_READ(x, y) \
2802 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2804 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2806 if (BIT(gpio
) & ah
->caps
.gpio_mask
) {
2807 if (AR_SREV_9271(ah
))
2808 val
= MS_REG_READ(AR9271
, gpio
);
2809 else if (AR_SREV_9287(ah
))
2810 val
= MS_REG_READ(AR9287
, gpio
);
2811 else if (AR_SREV_9285(ah
))
2812 val
= MS_REG_READ(AR9285
, gpio
);
2813 else if (AR_SREV_9280(ah
))
2814 val
= MS_REG_READ(AR928X
, gpio
);
2815 else if (AR_DEVID_7010(ah
))
2816 val
= REG_READ(ah
, AR7010_GPIO_IN
) & BIT(gpio
);
2817 else if (AR_SREV_9300_20_OR_LATER(ah
))
2818 val
= REG_READ(ah
, AR_GPIO_IN
) & BIT(gpio
);
2820 val
= MS_REG_READ(AR
, gpio
);
2821 } else if (BIT(gpio
) & ah
->caps
.gpio_requested
) {
2822 val
= gpio_get_value(gpio
) & BIT(gpio
);
2829 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
2831 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
2833 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2835 if (AR_DEVID_7010(ah
) || AR_SREV_9271(ah
))
2840 if (BIT(gpio
) & ah
->caps
.gpio_mask
) {
2841 u32 out_addr
= AR_DEVID_7010(ah
) ?
2842 AR7010_GPIO_OUT
: AR_GPIO_IN_OUT
;
2844 REG_RMW(ah
, out_addr
, val
<< gpio
, BIT(gpio
));
2845 } else if (BIT(gpio
) & ah
->caps
.gpio_requested
) {
2846 gpio_set_value(gpio
, val
);
2851 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
2853 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
2855 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
2857 EXPORT_SYMBOL(ath9k_hw_setantenna
);
2859 /*********************/
2860 /* General Operation */
2861 /*********************/
2863 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
2865 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
2866 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
2868 if (phybits
& AR_PHY_ERR_RADAR
)
2869 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
2870 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
2871 bits
|= ATH9K_RX_FILTER_PHYERR
;
2875 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
2877 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
2881 ENABLE_REGWRITE_BUFFER(ah
);
2883 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
2886 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
2887 phybits
|= AR_PHY_ERR_RADAR
;
2888 if (bits
& ATH9K_RX_FILTER_PHYERR
)
2889 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
2890 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
2893 REG_SET_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2895 REG_CLR_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2897 REGWRITE_BUFFER_FLUSH(ah
);
2899 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
2901 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
2903 if (ath9k_hw_mci_is_enabled(ah
))
2904 ar9003_mci_bt_gain_ctrl(ah
);
2906 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
2909 ath9k_hw_init_pll(ah
, NULL
);
2910 ah
->htc_reset_init
= true;
2913 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
2915 bool ath9k_hw_disable(struct ath_hw
*ah
)
2917 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2920 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
2923 ath9k_hw_init_pll(ah
, NULL
);
2926 EXPORT_SYMBOL(ath9k_hw_disable
);
2928 static int get_antenna_gain(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2930 enum eeprom_param gain_param
;
2932 if (IS_CHAN_2GHZ(chan
))
2933 gain_param
= EEP_ANTENNA_GAIN_2G
;
2935 gain_param
= EEP_ANTENNA_GAIN_5G
;
2937 return ah
->eep_ops
->get_eeprom(ah
, gain_param
);
2940 void ath9k_hw_apply_txpower(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
2943 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2944 struct ieee80211_channel
*channel
;
2945 int chan_pwr
, new_pwr
;
2952 ctl
= ath9k_regd_get_ctl(reg
, chan
);
2954 channel
= chan
->chan
;
2955 chan_pwr
= min_t(int, channel
->max_power
* 2, MAX_RATE_POWER
);
2956 new_pwr
= min_t(int, chan_pwr
, reg
->power_limit
);
2958 ah
->eep_ops
->set_txpower(ah
, chan
, ctl
,
2959 get_antenna_gain(ah
, chan
), new_pwr
, test
);
2962 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
, bool test
)
2964 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2965 struct ath9k_channel
*chan
= ah
->curchan
;
2966 struct ieee80211_channel
*channel
= chan
->chan
;
2968 reg
->power_limit
= min_t(u32
, limit
, MAX_RATE_POWER
);
2970 channel
->max_power
= MAX_RATE_POWER
/ 2;
2972 ath9k_hw_apply_txpower(ah
, chan
, test
);
2975 channel
->max_power
= DIV_ROUND_UP(reg
->max_power_level
, 2);
2977 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
2979 void ath9k_hw_setopmode(struct ath_hw
*ah
)
2981 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2983 EXPORT_SYMBOL(ath9k_hw_setopmode
);
2985 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
2987 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
2988 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
2990 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
2992 void ath9k_hw_write_associd(struct ath_hw
*ah
)
2994 struct ath_common
*common
= ath9k_hw_common(ah
);
2996 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
2997 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
2998 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
3000 EXPORT_SYMBOL(ath9k_hw_write_associd
);
3002 #define ATH9K_MAX_TSF_READ 10
3004 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
3006 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
3009 tsf_upper1
= REG_READ(ah
, AR_TSF_U32
);
3010 for (i
= 0; i
< ATH9K_MAX_TSF_READ
; i
++) {
3011 tsf_lower
= REG_READ(ah
, AR_TSF_L32
);
3012 tsf_upper2
= REG_READ(ah
, AR_TSF_U32
);
3013 if (tsf_upper2
== tsf_upper1
)
3015 tsf_upper1
= tsf_upper2
;
3018 WARN_ON( i
== ATH9K_MAX_TSF_READ
);
3020 return (((u64
)tsf_upper1
<< 32) | tsf_lower
);
3022 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
3024 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
3026 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
3027 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
3029 EXPORT_SYMBOL(ath9k_hw_settsf64
);
3031 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
3033 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
3034 AH_TSF_WRITE_TIMEOUT
))
3035 ath_dbg(ath9k_hw_common(ah
), RESET
,
3036 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3038 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
3040 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
3042 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, bool set
)
3045 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
3047 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
3049 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
3051 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
3055 if (IS_CHAN_HT40(chan
) && !ah
->config
.cwm_ignore_extcca
)
3056 macmode
= AR_2040_JOINED_RX_CLEAR
;
3060 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
3063 /* HW Generic timers configuration */
3065 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
3067 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3068 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3069 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3070 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3071 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3072 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3073 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3074 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3075 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
3076 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
3077 AR_NDP2_TIMER_MODE
, 0x0002},
3078 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
3079 AR_NDP2_TIMER_MODE
, 0x0004},
3080 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
3081 AR_NDP2_TIMER_MODE
, 0x0008},
3082 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
3083 AR_NDP2_TIMER_MODE
, 0x0010},
3084 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
3085 AR_NDP2_TIMER_MODE
, 0x0020},
3086 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
3087 AR_NDP2_TIMER_MODE
, 0x0040},
3088 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
3089 AR_NDP2_TIMER_MODE
, 0x0080}
3092 /* HW generic timer primitives */
3094 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
3096 return REG_READ(ah
, AR_TSF_L32
);
3098 EXPORT_SYMBOL(ath9k_hw_gettsf32
);
3100 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw
*ah
)
3102 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3104 if (timer_table
->tsf2_enabled
) {
3105 REG_SET_BIT(ah
, AR_DIRECT_CONNECT
, AR_DC_AP_STA_EN
);
3106 REG_SET_BIT(ah
, AR_RESET_TSF
, AR_RESET_TSF2_ONCE
);
3110 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
3111 void (*trigger
)(void *),
3112 void (*overflow
)(void *),
3116 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3117 struct ath_gen_timer
*timer
;
3119 if ((timer_index
< AR_FIRST_NDP_TIMER
) ||
3120 (timer_index
>= ATH_MAX_GEN_TIMER
))
3123 if ((timer_index
> AR_FIRST_NDP_TIMER
) &&
3124 !AR_SREV_9300_20_OR_LATER(ah
))
3127 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
3131 /* allocate a hardware generic timer slot */
3132 timer_table
->timers
[timer_index
] = timer
;
3133 timer
->index
= timer_index
;
3134 timer
->trigger
= trigger
;
3135 timer
->overflow
= overflow
;
3138 if ((timer_index
> AR_FIRST_NDP_TIMER
) && !timer_table
->tsf2_enabled
) {
3139 timer_table
->tsf2_enabled
= true;
3140 ath9k_hw_gen_timer_start_tsf2(ah
);
3145 EXPORT_SYMBOL(ath_gen_timer_alloc
);
3147 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
3148 struct ath_gen_timer
*timer
,
3152 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3155 timer_table
->timer_mask
|= BIT(timer
->index
);
3158 * Program generic timer registers
3160 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
3162 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
3164 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
3165 gen_tmr_configuration
[timer
->index
].mode_mask
);
3167 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3169 * Starting from AR9462, each generic timer can select which tsf
3170 * to use. But we still follow the old rule, 0 - 7 use tsf and
3173 if ((timer
->index
< AR_GEN_TIMER_BANK_1_LEN
))
3174 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3175 (1 << timer
->index
));
3177 REG_SET_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3178 (1 << timer
->index
));
3182 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
3183 AR_IMR_S5_GENTIMER_TRIG
);
3184 if (timer
->overflow
)
3185 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
3186 AR_IMR_S5_GENTIMER_THRESH
);
3188 REG_SET_BIT(ah
, AR_IMR_S5
, mask
);
3190 if ((ah
->imask
& ATH9K_INT_GENTIMER
) == 0) {
3191 ah
->imask
|= ATH9K_INT_GENTIMER
;
3192 ath9k_hw_set_interrupts(ah
);
3195 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
3197 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3199 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3201 /* Clear generic timer enable bits. */
3202 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
3203 gen_tmr_configuration
[timer
->index
].mode_mask
);
3205 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3207 * Need to switch back to TSF if it was using TSF2.
3209 if ((timer
->index
>= AR_GEN_TIMER_BANK_1_LEN
)) {
3210 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3211 (1 << timer
->index
));
3215 /* Disable both trigger and thresh interrupt masks */
3216 REG_CLR_BIT(ah
, AR_IMR_S5
,
3217 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
3218 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
3220 timer_table
->timer_mask
&= ~BIT(timer
->index
);
3222 if (timer_table
->timer_mask
== 0) {
3223 ah
->imask
&= ~ATH9K_INT_GENTIMER
;
3224 ath9k_hw_set_interrupts(ah
);
3227 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
3229 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3231 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3233 /* free the hardware generic timer slot */
3234 timer_table
->timers
[timer
->index
] = NULL
;
3237 EXPORT_SYMBOL(ath_gen_timer_free
);
3240 * Generic Timer Interrupts handling
3242 void ath_gen_timer_isr(struct ath_hw
*ah
)
3244 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3245 struct ath_gen_timer
*timer
;
3246 unsigned long trigger_mask
, thresh_mask
;
3249 /* get hardware generic timer interrupt status */
3250 trigger_mask
= ah
->intr_gen_timer_trigger
;
3251 thresh_mask
= ah
->intr_gen_timer_thresh
;
3252 trigger_mask
&= timer_table
->timer_mask
;
3253 thresh_mask
&= timer_table
->timer_mask
;
3255 for_each_set_bit(index
, &thresh_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3256 timer
= timer_table
->timers
[index
];
3259 if (!timer
->overflow
)
3262 trigger_mask
&= ~BIT(index
);
3263 timer
->overflow(timer
->arg
);
3266 for_each_set_bit(index
, &trigger_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3267 timer
= timer_table
->timers
[index
];
3270 if (!timer
->trigger
)
3272 timer
->trigger(timer
->arg
);
3275 EXPORT_SYMBOL(ath_gen_timer_isr
);
3284 } ath_mac_bb_names
[] = {
3285 /* Devices with external radios */
3286 { AR_SREV_VERSION_5416_PCI
, "5416" },
3287 { AR_SREV_VERSION_5416_PCIE
, "5418" },
3288 { AR_SREV_VERSION_9100
, "9100" },
3289 { AR_SREV_VERSION_9160
, "9160" },
3290 /* Single-chip solutions */
3291 { AR_SREV_VERSION_9280
, "9280" },
3292 { AR_SREV_VERSION_9285
, "9285" },
3293 { AR_SREV_VERSION_9287
, "9287" },
3294 { AR_SREV_VERSION_9271
, "9271" },
3295 { AR_SREV_VERSION_9300
, "9300" },
3296 { AR_SREV_VERSION_9330
, "9330" },
3297 { AR_SREV_VERSION_9340
, "9340" },
3298 { AR_SREV_VERSION_9485
, "9485" },
3299 { AR_SREV_VERSION_9462
, "9462" },
3300 { AR_SREV_VERSION_9550
, "9550" },
3301 { AR_SREV_VERSION_9565
, "9565" },
3302 { AR_SREV_VERSION_9531
, "9531" },
3303 { AR_SREV_VERSION_9561
, "9561" },
3306 /* For devices with external radios */
3310 } ath_rf_names
[] = {
3312 { AR_RAD5133_SREV_MAJOR
, "5133" },
3313 { AR_RAD5122_SREV_MAJOR
, "5122" },
3314 { AR_RAD2133_SREV_MAJOR
, "2133" },
3315 { AR_RAD2122_SREV_MAJOR
, "2122" }
3319 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3321 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
3325 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
3326 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
3327 return ath_mac_bb_names
[i
].name
;
3335 * Return the RF name. "????" is returned if the RF is unknown.
3336 * Used for devices with external radios.
3338 static const char *ath9k_hw_rf_name(u16 rf_version
)
3342 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
3343 if (ath_rf_names
[i
].version
== rf_version
) {
3344 return ath_rf_names
[i
].name
;
3351 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
3355 /* chipsets >= AR9280 are single-chip */
3356 if (AR_SREV_9280_20_OR_LATER(ah
)) {
3357 used
= scnprintf(hw_name
, len
,
3358 "Atheros AR%s Rev:%x",
3359 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3360 ah
->hw_version
.macRev
);
3363 used
= scnprintf(hw_name
, len
,
3364 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3365 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3366 ah
->hw_version
.macRev
,
3367 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
3368 & AR_RADIO_SREV_MAJOR
)),
3369 ah
->hw_version
.phyRev
);
3372 hw_name
[used
] = '\0';
3374 EXPORT_SYMBOL(ath9k_hw_name
);