dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / net / wireless / ralink / rt2x00 / rt2400pci.c
blob49a732798395db6fa6437b88111a31de226a0de3
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
20 Module: rt2400pci
21 Abstract: rt2400pci device specific routines.
22 Supported chipsets: RT2460.
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2400pci.h"
39 * Register access.
40 * All access to the CSR registers will go through the methods
41 * rt2x00mmio_register_read and rt2x00mmio_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attempt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57 const unsigned int word, const u8 value)
59 u32 reg;
61 mutex_lock(&rt2x00dev->csr_mutex);
64 * Wait until the BBP becomes available, afterwards we
65 * can safely write the new data into the register.
67 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
68 reg = 0;
69 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
70 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
71 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
72 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
77 mutex_unlock(&rt2x00dev->csr_mutex);
80 static u8 rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81 const unsigned int word)
83 u32 reg;
84 u8 value;
86 mutex_lock(&rt2x00dev->csr_mutex);
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
96 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 reg = 0;
98 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
104 WAIT_FOR_BBP(rt2x00dev, &reg);
107 value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 mutex_unlock(&rt2x00dev->csr_mutex);
111 return value;
114 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
115 const unsigned int word, const u32 value)
117 u32 reg;
119 mutex_lock(&rt2x00dev->csr_mutex);
122 * Wait until the RF becomes available, afterwards we
123 * can safely write the new data into the register.
125 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
126 reg = 0;
127 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
128 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
129 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
130 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
132 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
133 rt2x00_rf_write(rt2x00dev, word, value);
136 mutex_unlock(&rt2x00dev->csr_mutex);
139 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
141 struct rt2x00_dev *rt2x00dev = eeprom->data;
142 u32 reg;
144 reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
146 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
147 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
148 eeprom->reg_data_clock =
149 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
150 eeprom->reg_chip_select =
151 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
154 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
156 struct rt2x00_dev *rt2x00dev = eeprom->data;
157 u32 reg = 0;
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
160 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
161 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
162 !!eeprom->reg_data_clock);
163 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
164 !!eeprom->reg_chip_select);
166 rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
169 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
170 static const struct rt2x00debug rt2400pci_rt2x00debug = {
171 .owner = THIS_MODULE,
172 .csr = {
173 .read = rt2x00mmio_register_read,
174 .write = rt2x00mmio_register_write,
175 .flags = RT2X00DEBUGFS_OFFSET,
176 .word_base = CSR_REG_BASE,
177 .word_size = sizeof(u32),
178 .word_count = CSR_REG_SIZE / sizeof(u32),
180 .eeprom = {
181 .read = rt2x00_eeprom_read,
182 .write = rt2x00_eeprom_write,
183 .word_base = EEPROM_BASE,
184 .word_size = sizeof(u16),
185 .word_count = EEPROM_SIZE / sizeof(u16),
187 .bbp = {
188 .read = rt2400pci_bbp_read,
189 .write = rt2400pci_bbp_write,
190 .word_base = BBP_BASE,
191 .word_size = sizeof(u8),
192 .word_count = BBP_SIZE / sizeof(u8),
194 .rf = {
195 .read = rt2x00_rf_read,
196 .write = rt2400pci_rf_write,
197 .word_base = RF_BASE,
198 .word_size = sizeof(u32),
199 .word_count = RF_SIZE / sizeof(u32),
202 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
204 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
206 u32 reg;
208 reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
209 return rt2x00_get_field32(reg, GPIOCSR_VAL0);
212 #ifdef CONFIG_RT2X00_LIB_LEDS
213 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
214 enum led_brightness brightness)
216 struct rt2x00_led *led =
217 container_of(led_cdev, struct rt2x00_led, led_dev);
218 unsigned int enabled = brightness != LED_OFF;
219 u32 reg;
221 reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
223 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
224 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
225 else if (led->type == LED_TYPE_ACTIVITY)
226 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
228 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
231 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
232 unsigned long *delay_on,
233 unsigned long *delay_off)
235 struct rt2x00_led *led =
236 container_of(led_cdev, struct rt2x00_led, led_dev);
237 u32 reg;
239 reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
240 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
241 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
242 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
244 return 0;
247 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
248 struct rt2x00_led *led,
249 enum led_type type)
251 led->rt2x00dev = rt2x00dev;
252 led->type = type;
253 led->led_dev.brightness_set = rt2400pci_brightness_set;
254 led->led_dev.blink_set = rt2400pci_blink_set;
255 led->flags = LED_INITIALIZED;
257 #endif /* CONFIG_RT2X00_LIB_LEDS */
260 * Configuration handlers.
262 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
263 const unsigned int filter_flags)
265 u32 reg;
268 * Start configuration steps.
269 * Note that the version error will always be dropped
270 * since there is no filter for it at this time.
272 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
273 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274 !(filter_flags & FIF_FCSFAIL));
275 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276 !(filter_flags & FIF_PLCPFAIL));
277 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278 !(filter_flags & FIF_CONTROL));
279 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
281 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
282 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
283 !rt2x00dev->intf_ap_count);
284 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
288 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
289 struct rt2x00_intf *intf,
290 struct rt2x00intf_conf *conf,
291 const unsigned int flags)
293 unsigned int bcn_preload;
294 u32 reg;
296 if (flags & CONFIG_UPDATE_TYPE) {
298 * Enable beacon config
300 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
301 reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
302 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
303 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
306 * Enable synchronisation.
308 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
309 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
313 if (flags & CONFIG_UPDATE_MAC)
314 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
315 conf->mac, sizeof(conf->mac));
317 if (flags & CONFIG_UPDATE_BSSID)
318 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
319 conf->bssid,
320 sizeof(conf->bssid));
323 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
324 struct rt2x00lib_erp *erp,
325 u32 changed)
327 int preamble_mask;
328 u32 reg;
331 * When short preamble is enabled, we should set bit 0x08
333 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
334 preamble_mask = erp->short_preamble << 3;
336 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
337 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
338 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
339 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
340 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
341 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
343 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
344 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
345 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
346 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
347 GET_DURATION(ACK_SIZE, 10));
348 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
350 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
351 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
352 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
353 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
354 GET_DURATION(ACK_SIZE, 20));
355 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
357 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
358 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
359 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
360 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
361 GET_DURATION(ACK_SIZE, 55));
362 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
364 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
365 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
366 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
367 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
368 GET_DURATION(ACK_SIZE, 110));
369 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
372 if (changed & BSS_CHANGED_BASIC_RATES)
373 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
375 if (changed & BSS_CHANGED_ERP_SLOT) {
376 reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
377 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
378 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
380 reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
381 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
382 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
383 rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
385 reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
386 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
387 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
388 rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
391 if (changed & BSS_CHANGED_BEACON_INT) {
392 reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
393 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
394 erp->beacon_int * 16);
395 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
396 erp->beacon_int * 16);
397 rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
401 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
402 struct antenna_setup *ant)
404 u8 r1;
405 u8 r4;
408 * We should never come here because rt2x00lib is supposed
409 * to catch this and send us the correct antenna explicitely.
411 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
412 ant->tx == ANTENNA_SW_DIVERSITY);
414 r4 = rt2400pci_bbp_read(rt2x00dev, 4);
415 r1 = rt2400pci_bbp_read(rt2x00dev, 1);
418 * Configure the TX antenna.
420 switch (ant->tx) {
421 case ANTENNA_HW_DIVERSITY:
422 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
423 break;
424 case ANTENNA_A:
425 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
426 break;
427 case ANTENNA_B:
428 default:
429 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
430 break;
434 * Configure the RX antenna.
436 switch (ant->rx) {
437 case ANTENNA_HW_DIVERSITY:
438 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
439 break;
440 case ANTENNA_A:
441 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
442 break;
443 case ANTENNA_B:
444 default:
445 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
446 break;
449 rt2400pci_bbp_write(rt2x00dev, 4, r4);
450 rt2400pci_bbp_write(rt2x00dev, 1, r1);
453 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
454 struct rf_channel *rf)
457 * Switch on tuning bits.
459 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
460 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
462 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
463 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
464 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
467 * RF2420 chipset don't need any additional actions.
469 if (rt2x00_rf(rt2x00dev, RF2420))
470 return;
473 * For the RT2421 chipsets we need to write an invalid
474 * reference clock rate to activate auto_tune.
475 * After that we set the value back to the correct channel.
477 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
478 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
479 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
481 msleep(1);
483 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
484 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
485 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
487 msleep(1);
490 * Switch off tuning bits.
492 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
493 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
495 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
496 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
499 * Clear false CRC during channel switch.
501 rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
504 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
506 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
509 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
510 struct rt2x00lib_conf *libconf)
512 u32 reg;
514 reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
515 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
516 libconf->conf->long_frame_max_tx_count);
517 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
518 libconf->conf->short_frame_max_tx_count);
519 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
522 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
523 struct rt2x00lib_conf *libconf)
525 enum dev_state state =
526 (libconf->conf->flags & IEEE80211_CONF_PS) ?
527 STATE_SLEEP : STATE_AWAKE;
528 u32 reg;
530 if (state == STATE_SLEEP) {
531 reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
532 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
533 (rt2x00dev->beacon_int - 20) * 16);
534 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
535 libconf->conf->listen_interval - 1);
537 /* We must first disable autowake before it can be enabled */
538 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
539 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
541 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
542 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
543 } else {
544 reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
545 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
546 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
549 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
552 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
553 struct rt2x00lib_conf *libconf,
554 const unsigned int flags)
556 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
557 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
558 if (flags & IEEE80211_CONF_CHANGE_POWER)
559 rt2400pci_config_txpower(rt2x00dev,
560 libconf->conf->power_level);
561 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
562 rt2400pci_config_retry_limit(rt2x00dev, libconf);
563 if (flags & IEEE80211_CONF_CHANGE_PS)
564 rt2400pci_config_ps(rt2x00dev, libconf);
567 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
568 const int cw_min, const int cw_max)
570 u32 reg;
572 reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
573 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
574 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
575 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
579 * Link tuning
581 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
582 struct link_qual *qual)
584 u32 reg;
585 u8 bbp;
588 * Update FCS error count from register.
590 reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
591 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
594 * Update False CCA count from register.
596 bbp = rt2400pci_bbp_read(rt2x00dev, 39);
597 qual->false_cca = bbp;
600 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
601 struct link_qual *qual, u8 vgc_level)
603 if (qual->vgc_level_reg != vgc_level) {
604 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
605 qual->vgc_level = vgc_level;
606 qual->vgc_level_reg = vgc_level;
610 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
611 struct link_qual *qual)
613 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
616 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
617 struct link_qual *qual, const u32 count)
620 * The link tuner should not run longer then 60 seconds,
621 * and should run once every 2 seconds.
623 if (count > 60 || !(count & 1))
624 return;
627 * Base r13 link tuning on the false cca count.
629 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
630 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
631 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
632 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
636 * Queue handlers.
638 static void rt2400pci_start_queue(struct data_queue *queue)
640 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
641 u32 reg;
643 switch (queue->qid) {
644 case QID_RX:
645 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
646 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
647 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
648 break;
649 case QID_BEACON:
650 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
651 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
652 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
653 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
654 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
655 break;
656 default:
657 break;
661 static void rt2400pci_kick_queue(struct data_queue *queue)
663 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
664 u32 reg;
666 switch (queue->qid) {
667 case QID_AC_VO:
668 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
669 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
670 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
671 break;
672 case QID_AC_VI:
673 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
674 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
675 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
676 break;
677 case QID_ATIM:
678 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
679 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
680 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
681 break;
682 default:
683 break;
687 static void rt2400pci_stop_queue(struct data_queue *queue)
689 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
690 u32 reg;
692 switch (queue->qid) {
693 case QID_AC_VO:
694 case QID_AC_VI:
695 case QID_ATIM:
696 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
697 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
698 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
699 break;
700 case QID_RX:
701 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
702 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
703 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
704 break;
705 case QID_BEACON:
706 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
707 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
708 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
709 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
710 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
713 * Wait for possibly running tbtt tasklets.
715 tasklet_kill(&rt2x00dev->tbtt_tasklet);
716 break;
717 default:
718 break;
723 * Initialization functions.
725 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
727 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
728 u32 word;
730 if (entry->queue->qid == QID_RX) {
731 word = rt2x00_desc_read(entry_priv->desc, 0);
733 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
734 } else {
735 word = rt2x00_desc_read(entry_priv->desc, 0);
737 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
738 rt2x00_get_field32(word, TXD_W0_VALID));
742 static void rt2400pci_clear_entry(struct queue_entry *entry)
744 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
745 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
746 u32 word;
748 if (entry->queue->qid == QID_RX) {
749 word = rt2x00_desc_read(entry_priv->desc, 2);
750 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
751 rt2x00_desc_write(entry_priv->desc, 2, word);
753 word = rt2x00_desc_read(entry_priv->desc, 1);
754 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
755 rt2x00_desc_write(entry_priv->desc, 1, word);
757 word = rt2x00_desc_read(entry_priv->desc, 0);
758 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
759 rt2x00_desc_write(entry_priv->desc, 0, word);
760 } else {
761 word = rt2x00_desc_read(entry_priv->desc, 0);
762 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
763 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
764 rt2x00_desc_write(entry_priv->desc, 0, word);
768 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
770 struct queue_entry_priv_mmio *entry_priv;
771 u32 reg;
774 * Initialize registers.
776 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
777 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
778 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
779 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
780 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
781 rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
783 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
784 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
785 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
786 entry_priv->desc_dma);
787 rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
789 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
790 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
791 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
792 entry_priv->desc_dma);
793 rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
795 entry_priv = rt2x00dev->atim->entries[0].priv_data;
796 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
797 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
798 entry_priv->desc_dma);
799 rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
801 entry_priv = rt2x00dev->bcn->entries[0].priv_data;
802 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
803 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
804 entry_priv->desc_dma);
805 rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
807 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
808 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
809 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
810 rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
812 entry_priv = rt2x00dev->rx->entries[0].priv_data;
813 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
814 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
815 entry_priv->desc_dma);
816 rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
818 return 0;
821 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
823 u32 reg;
825 rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
826 rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
827 rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
828 rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
830 reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
831 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
832 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
833 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
834 rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
836 reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
837 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
838 (rt2x00dev->rx->data_size / 128));
839 rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
841 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
842 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
843 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
844 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
845 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
846 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
847 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
848 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
849 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
850 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
852 rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
854 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR0);
855 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
856 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
857 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
858 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
859 rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
861 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
862 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
863 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
864 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
865 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
866 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
867 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
868 rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
870 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
872 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
873 return -EBUSY;
875 rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
876 rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
878 reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
879 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
880 rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
882 reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
883 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
884 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
885 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
886 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
887 rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
889 reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
890 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
891 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
892 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
893 rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
895 reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
896 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
897 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
898 rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
901 * We must clear the FCS and FIFO error count.
902 * These registers are cleared on read,
903 * so we may pass a useless variable to store the value.
905 reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
906 reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
908 return 0;
911 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
913 unsigned int i;
914 u8 value;
916 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
917 value = rt2400pci_bbp_read(rt2x00dev, 0);
918 if ((value != 0xff) && (value != 0x00))
919 return 0;
920 udelay(REGISTER_BUSY_DELAY);
923 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
924 return -EACCES;
927 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
929 unsigned int i;
930 u16 eeprom;
931 u8 reg_id;
932 u8 value;
934 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
935 return -EACCES;
937 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
938 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
939 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
940 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
941 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
942 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
943 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
944 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
945 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
946 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
947 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
948 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
949 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
950 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
952 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
953 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
955 if (eeprom != 0xffff && eeprom != 0x0000) {
956 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
957 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
958 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
962 return 0;
966 * Device state switch handlers.
968 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
969 enum dev_state state)
971 int mask = (state == STATE_RADIO_IRQ_OFF);
972 u32 reg;
973 unsigned long flags;
976 * When interrupts are being enabled, the interrupt registers
977 * should clear the register to assure a clean state.
979 if (state == STATE_RADIO_IRQ_ON) {
980 reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
981 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
985 * Only toggle the interrupts bits we are going to use.
986 * Non-checked interrupt bits are disabled by default.
988 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
990 reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
991 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
992 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
993 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
994 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
995 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
996 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
998 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1000 if (state == STATE_RADIO_IRQ_OFF) {
1002 * Ensure that all tasklets are finished before
1003 * disabling the interrupts.
1005 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1006 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1007 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1011 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1014 * Initialize all registers.
1016 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1017 rt2400pci_init_registers(rt2x00dev) ||
1018 rt2400pci_init_bbp(rt2x00dev)))
1019 return -EIO;
1021 return 0;
1024 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1027 * Disable power
1029 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1032 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1033 enum dev_state state)
1035 u32 reg, reg2;
1036 unsigned int i;
1037 char put_to_sleep;
1038 char bbp_state;
1039 char rf_state;
1041 put_to_sleep = (state != STATE_AWAKE);
1043 reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1044 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1045 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1046 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1047 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1048 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1051 * Device is not guaranteed to be in the requested state yet.
1052 * We must wait until the register indicates that the
1053 * device has entered the correct state.
1055 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1056 reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1057 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1058 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1059 if (bbp_state == state && rf_state == state)
1060 return 0;
1061 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1062 msleep(10);
1065 return -EBUSY;
1068 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1069 enum dev_state state)
1071 int retval = 0;
1073 switch (state) {
1074 case STATE_RADIO_ON:
1075 retval = rt2400pci_enable_radio(rt2x00dev);
1076 break;
1077 case STATE_RADIO_OFF:
1078 rt2400pci_disable_radio(rt2x00dev);
1079 break;
1080 case STATE_RADIO_IRQ_ON:
1081 case STATE_RADIO_IRQ_OFF:
1082 rt2400pci_toggle_irq(rt2x00dev, state);
1083 break;
1084 case STATE_DEEP_SLEEP:
1085 case STATE_SLEEP:
1086 case STATE_STANDBY:
1087 case STATE_AWAKE:
1088 retval = rt2400pci_set_state(rt2x00dev, state);
1089 break;
1090 default:
1091 retval = -ENOTSUPP;
1092 break;
1095 if (unlikely(retval))
1096 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1097 state, retval);
1099 return retval;
1103 * TX descriptor initialization
1105 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1106 struct txentry_desc *txdesc)
1108 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1109 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1110 __le32 *txd = entry_priv->desc;
1111 u32 word;
1114 * Start writing the descriptor words.
1116 word = rt2x00_desc_read(txd, 1);
1117 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1118 rt2x00_desc_write(txd, 1, word);
1120 word = rt2x00_desc_read(txd, 2);
1121 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1122 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1123 rt2x00_desc_write(txd, 2, word);
1125 word = rt2x00_desc_read(txd, 3);
1126 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1127 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1128 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1129 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1130 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1131 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1132 rt2x00_desc_write(txd, 3, word);
1134 word = rt2x00_desc_read(txd, 4);
1135 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1136 txdesc->u.plcp.length_low);
1137 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1138 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1139 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1140 txdesc->u.plcp.length_high);
1141 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1142 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1143 rt2x00_desc_write(txd, 4, word);
1146 * Writing TXD word 0 must the last to prevent a race condition with
1147 * the device, whereby the device may take hold of the TXD before we
1148 * finished updating it.
1150 word = rt2x00_desc_read(txd, 0);
1151 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1152 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1153 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1154 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1155 rt2x00_set_field32(&word, TXD_W0_ACK,
1156 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1157 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1158 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1159 rt2x00_set_field32(&word, TXD_W0_RTS,
1160 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1161 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1162 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1163 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1164 rt2x00_desc_write(txd, 0, word);
1167 * Register descriptor details in skb frame descriptor.
1169 skbdesc->desc = txd;
1170 skbdesc->desc_len = TXD_DESC_SIZE;
1174 * TX data initialization
1176 static void rt2400pci_write_beacon(struct queue_entry *entry,
1177 struct txentry_desc *txdesc)
1179 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1180 u32 reg;
1183 * Disable beaconing while we are reloading the beacon data,
1184 * otherwise we might be sending out invalid data.
1186 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1187 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1188 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1190 if (rt2x00queue_map_txskb(entry)) {
1191 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1192 goto out;
1195 * Enable beaconing again.
1197 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1199 * Write the TX descriptor for the beacon.
1201 rt2400pci_write_tx_desc(entry, txdesc);
1204 * Dump beacon to userspace through debugfs.
1206 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1207 out:
1209 * Enable beaconing again.
1211 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1212 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1216 * RX control handlers
1218 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1219 struct rxdone_entry_desc *rxdesc)
1221 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1222 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1223 u32 word0;
1224 u32 word2;
1225 u32 word3;
1226 u32 word4;
1227 u64 tsf;
1228 u32 rx_low;
1229 u32 rx_high;
1231 word0 = rt2x00_desc_read(entry_priv->desc, 0);
1232 word2 = rt2x00_desc_read(entry_priv->desc, 2);
1233 word3 = rt2x00_desc_read(entry_priv->desc, 3);
1234 word4 = rt2x00_desc_read(entry_priv->desc, 4);
1236 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1237 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1238 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1239 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1242 * We only get the lower 32bits from the timestamp,
1243 * to get the full 64bits we must complement it with
1244 * the timestamp from get_tsf().
1245 * Note that when a wraparound of the lower 32bits
1246 * has occurred between the frame arrival and the get_tsf()
1247 * call, we must decrease the higher 32bits with 1 to get
1248 * to correct value.
1250 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1251 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1252 rx_high = upper_32_bits(tsf);
1254 if ((u32)tsf <= rx_low)
1255 rx_high--;
1258 * Obtain the status about this packet.
1259 * The signal is the PLCP value, and needs to be stripped
1260 * of the preamble bit (0x08).
1262 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1263 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1264 rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
1265 entry->queue->rt2x00dev->rssi_offset;
1266 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1268 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1269 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1270 rxdesc->dev_flags |= RXDONE_MY_BSS;
1274 * Interrupt functions.
1276 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1277 const enum data_queue_qid queue_idx)
1279 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1280 struct queue_entry_priv_mmio *entry_priv;
1281 struct queue_entry *entry;
1282 struct txdone_entry_desc txdesc;
1283 u32 word;
1285 while (!rt2x00queue_empty(queue)) {
1286 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1287 entry_priv = entry->priv_data;
1288 word = rt2x00_desc_read(entry_priv->desc, 0);
1290 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1291 !rt2x00_get_field32(word, TXD_W0_VALID))
1292 break;
1295 * Obtain the status about this packet.
1297 txdesc.flags = 0;
1298 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1299 case 0: /* Success */
1300 case 1: /* Success with retry */
1301 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1302 break;
1303 case 2: /* Failure, excessive retries */
1304 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1305 /* Fall through - this is a failed frame! */
1306 default: /* Failure */
1307 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1309 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1311 rt2x00lib_txdone(entry, &txdesc);
1315 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1316 struct rt2x00_field32 irq_field)
1318 u32 reg;
1321 * Enable a single interrupt. The interrupt mask register
1322 * access needs locking.
1324 spin_lock_irq(&rt2x00dev->irqmask_lock);
1326 reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1327 rt2x00_set_field32(&reg, irq_field, 0);
1328 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1330 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1333 static void rt2400pci_txstatus_tasklet(unsigned long data)
1335 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1336 u32 reg;
1339 * Handle all tx queues.
1341 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1342 rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1343 rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1346 * Enable all TXDONE interrupts again.
1348 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1349 spin_lock_irq(&rt2x00dev->irqmask_lock);
1351 reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1352 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1353 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1354 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1355 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1357 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1361 static void rt2400pci_tbtt_tasklet(unsigned long data)
1363 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1364 rt2x00lib_beacondone(rt2x00dev);
1365 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1366 rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1369 static void rt2400pci_rxdone_tasklet(unsigned long data)
1371 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1372 if (rt2x00mmio_rxdone(rt2x00dev))
1373 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1374 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1375 rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1378 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1380 struct rt2x00_dev *rt2x00dev = dev_instance;
1381 u32 reg, mask;
1384 * Get the interrupt sources & saved to local variable.
1385 * Write register value back to clear pending interrupts.
1387 reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1388 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1390 if (!reg)
1391 return IRQ_NONE;
1393 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1394 return IRQ_HANDLED;
1396 mask = reg;
1399 * Schedule tasklets for interrupt handling.
1401 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1402 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1404 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1405 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1407 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1408 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1409 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1410 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1412 * Mask out all txdone interrupts.
1414 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1415 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1416 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1420 * Disable all interrupts for which a tasklet was scheduled right now,
1421 * the tasklet will reenable the appropriate interrupts.
1423 spin_lock(&rt2x00dev->irqmask_lock);
1425 reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1426 reg |= mask;
1427 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1429 spin_unlock(&rt2x00dev->irqmask_lock);
1433 return IRQ_HANDLED;
1437 * Device probe functions.
1439 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1441 struct eeprom_93cx6 eeprom;
1442 u32 reg;
1443 u16 word;
1444 u8 *mac;
1446 reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1448 eeprom.data = rt2x00dev;
1449 eeprom.register_read = rt2400pci_eepromregister_read;
1450 eeprom.register_write = rt2400pci_eepromregister_write;
1451 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1452 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1453 eeprom.reg_data_in = 0;
1454 eeprom.reg_data_out = 0;
1455 eeprom.reg_data_clock = 0;
1456 eeprom.reg_chip_select = 0;
1458 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1459 EEPROM_SIZE / sizeof(u16));
1462 * Start validation of the data that has been read.
1464 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1465 rt2x00lib_set_mac_address(rt2x00dev, mac);
1467 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1468 if (word == 0xffff) {
1469 rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
1470 return -EINVAL;
1473 return 0;
1476 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1478 u32 reg;
1479 u16 value;
1480 u16 eeprom;
1483 * Read EEPROM word for configuration.
1485 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1488 * Identify RF chipset.
1490 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1491 reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1492 rt2x00_set_chip(rt2x00dev, RT2460, value,
1493 rt2x00_get_field32(reg, CSR0_REVISION));
1495 if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1496 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1497 return -ENODEV;
1501 * Identify default antenna configuration.
1503 rt2x00dev->default_ant.tx =
1504 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1505 rt2x00dev->default_ant.rx =
1506 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1509 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1510 * I am not 100% sure about this, but the legacy drivers do not
1511 * indicate antenna swapping in software is required when
1512 * diversity is enabled.
1514 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1515 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1516 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1517 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1520 * Store led mode, for correct led behaviour.
1522 #ifdef CONFIG_RT2X00_LIB_LEDS
1523 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1525 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1526 if (value == LED_MODE_TXRX_ACTIVITY ||
1527 value == LED_MODE_DEFAULT ||
1528 value == LED_MODE_ASUS)
1529 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1530 LED_TYPE_ACTIVITY);
1531 #endif /* CONFIG_RT2X00_LIB_LEDS */
1534 * Detect if this device has an hardware controlled radio.
1536 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1537 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1540 * Check if the BBP tuning should be enabled.
1542 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1543 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1545 return 0;
1549 * RF value list for RF2420 & RF2421
1550 * Supports: 2.4 GHz
1552 static const struct rf_channel rf_vals_b[] = {
1553 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1554 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1555 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1556 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1557 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1558 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1559 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1560 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1561 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1562 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1563 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1564 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1565 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1566 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1569 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1571 struct hw_mode_spec *spec = &rt2x00dev->spec;
1572 struct channel_info *info;
1573 char *tx_power;
1574 unsigned int i;
1577 * Initialize all hw fields.
1579 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1580 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1581 ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1582 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1584 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1585 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1586 rt2x00_eeprom_addr(rt2x00dev,
1587 EEPROM_MAC_ADDR_0));
1590 * Initialize hw_mode information.
1592 spec->supported_bands = SUPPORT_BAND_2GHZ;
1593 spec->supported_rates = SUPPORT_RATE_CCK;
1595 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1596 spec->channels = rf_vals_b;
1599 * Create channel information array
1601 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1602 if (!info)
1603 return -ENOMEM;
1605 spec->channels_info = info;
1607 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1608 for (i = 0; i < 14; i++) {
1609 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1610 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1613 return 0;
1616 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1618 int retval;
1619 u32 reg;
1622 * Allocate eeprom data.
1624 retval = rt2400pci_validate_eeprom(rt2x00dev);
1625 if (retval)
1626 return retval;
1628 retval = rt2400pci_init_eeprom(rt2x00dev);
1629 if (retval)
1630 return retval;
1633 * Enable rfkill polling by setting GPIO direction of the
1634 * rfkill switch GPIO pin correctly.
1636 reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1637 rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1638 rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1641 * Initialize hw specifications.
1643 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1644 if (retval)
1645 return retval;
1648 * This device requires the atim queue and DMA-mapped skbs.
1650 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1651 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1652 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1655 * Set the rssi offset.
1657 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1659 return 0;
1663 * IEEE80211 stack callback functions.
1665 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1666 struct ieee80211_vif *vif, u16 queue,
1667 const struct ieee80211_tx_queue_params *params)
1669 struct rt2x00_dev *rt2x00dev = hw->priv;
1672 * We don't support variating cw_min and cw_max variables
1673 * per queue. So by default we only configure the TX queue,
1674 * and ignore all other configurations.
1676 if (queue != 0)
1677 return -EINVAL;
1679 if (rt2x00mac_conf_tx(hw, vif, queue, params))
1680 return -EINVAL;
1683 * Write configuration to register.
1685 rt2400pci_config_cw(rt2x00dev,
1686 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1688 return 0;
1691 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1692 struct ieee80211_vif *vif)
1694 struct rt2x00_dev *rt2x00dev = hw->priv;
1695 u64 tsf;
1696 u32 reg;
1698 reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1699 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1700 reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1701 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1703 return tsf;
1706 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1708 struct rt2x00_dev *rt2x00dev = hw->priv;
1709 u32 reg;
1711 reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
1712 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1715 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1716 .tx = rt2x00mac_tx,
1717 .start = rt2x00mac_start,
1718 .stop = rt2x00mac_stop,
1719 .add_interface = rt2x00mac_add_interface,
1720 .remove_interface = rt2x00mac_remove_interface,
1721 .config = rt2x00mac_config,
1722 .configure_filter = rt2x00mac_configure_filter,
1723 .sw_scan_start = rt2x00mac_sw_scan_start,
1724 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1725 .get_stats = rt2x00mac_get_stats,
1726 .bss_info_changed = rt2x00mac_bss_info_changed,
1727 .conf_tx = rt2400pci_conf_tx,
1728 .get_tsf = rt2400pci_get_tsf,
1729 .tx_last_beacon = rt2400pci_tx_last_beacon,
1730 .rfkill_poll = rt2x00mac_rfkill_poll,
1731 .flush = rt2x00mac_flush,
1732 .set_antenna = rt2x00mac_set_antenna,
1733 .get_antenna = rt2x00mac_get_antenna,
1734 .get_ringparam = rt2x00mac_get_ringparam,
1735 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1738 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1739 .irq_handler = rt2400pci_interrupt,
1740 .txstatus_tasklet = rt2400pci_txstatus_tasklet,
1741 .tbtt_tasklet = rt2400pci_tbtt_tasklet,
1742 .rxdone_tasklet = rt2400pci_rxdone_tasklet,
1743 .probe_hw = rt2400pci_probe_hw,
1744 .initialize = rt2x00mmio_initialize,
1745 .uninitialize = rt2x00mmio_uninitialize,
1746 .get_entry_state = rt2400pci_get_entry_state,
1747 .clear_entry = rt2400pci_clear_entry,
1748 .set_device_state = rt2400pci_set_device_state,
1749 .rfkill_poll = rt2400pci_rfkill_poll,
1750 .link_stats = rt2400pci_link_stats,
1751 .reset_tuner = rt2400pci_reset_tuner,
1752 .link_tuner = rt2400pci_link_tuner,
1753 .start_queue = rt2400pci_start_queue,
1754 .kick_queue = rt2400pci_kick_queue,
1755 .stop_queue = rt2400pci_stop_queue,
1756 .flush_queue = rt2x00mmio_flush_queue,
1757 .write_tx_desc = rt2400pci_write_tx_desc,
1758 .write_beacon = rt2400pci_write_beacon,
1759 .fill_rxdone = rt2400pci_fill_rxdone,
1760 .config_filter = rt2400pci_config_filter,
1761 .config_intf = rt2400pci_config_intf,
1762 .config_erp = rt2400pci_config_erp,
1763 .config_ant = rt2400pci_config_ant,
1764 .config = rt2400pci_config,
1767 static void rt2400pci_queue_init(struct data_queue *queue)
1769 switch (queue->qid) {
1770 case QID_RX:
1771 queue->limit = 24;
1772 queue->data_size = DATA_FRAME_SIZE;
1773 queue->desc_size = RXD_DESC_SIZE;
1774 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1775 break;
1777 case QID_AC_VO:
1778 case QID_AC_VI:
1779 case QID_AC_BE:
1780 case QID_AC_BK:
1781 queue->limit = 24;
1782 queue->data_size = DATA_FRAME_SIZE;
1783 queue->desc_size = TXD_DESC_SIZE;
1784 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1785 break;
1787 case QID_BEACON:
1788 queue->limit = 1;
1789 queue->data_size = MGMT_FRAME_SIZE;
1790 queue->desc_size = TXD_DESC_SIZE;
1791 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1792 break;
1794 case QID_ATIM:
1795 queue->limit = 8;
1796 queue->data_size = DATA_FRAME_SIZE;
1797 queue->desc_size = TXD_DESC_SIZE;
1798 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1799 break;
1801 default:
1802 BUG();
1803 break;
1807 static const struct rt2x00_ops rt2400pci_ops = {
1808 .name = KBUILD_MODNAME,
1809 .max_ap_intf = 1,
1810 .eeprom_size = EEPROM_SIZE,
1811 .rf_size = RF_SIZE,
1812 .tx_queues = NUM_TX_QUEUES,
1813 .queue_init = rt2400pci_queue_init,
1814 .lib = &rt2400pci_rt2x00_ops,
1815 .hw = &rt2400pci_mac80211_ops,
1816 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1817 .debugfs = &rt2400pci_rt2x00debug,
1818 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1822 * RT2400pci module information.
1824 static const struct pci_device_id rt2400pci_device_table[] = {
1825 { PCI_DEVICE(0x1814, 0x0101) },
1826 { 0, }
1830 MODULE_AUTHOR(DRV_PROJECT);
1831 MODULE_VERSION(DRV_VERSION);
1832 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1833 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1834 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1835 MODULE_LICENSE("GPL");
1837 static int rt2400pci_probe(struct pci_dev *pci_dev,
1838 const struct pci_device_id *id)
1840 return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1843 static struct pci_driver rt2400pci_driver = {
1844 .name = KBUILD_MODNAME,
1845 .id_table = rt2400pci_device_table,
1846 .probe = rt2400pci_probe,
1847 .remove = rt2x00pci_remove,
1848 .suspend = rt2x00pci_suspend,
1849 .resume = rt2x00pci_resume,
1852 module_pci_driver(rt2400pci_driver);