2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 Abstract: rt2400pci device specific routines.
22 Supported chipsets: RT2460.
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2400pci.h"
40 * All access to the CSR registers will go through the methods
41 * rt2x00mmio_register_read and rt2x00mmio_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attempt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56 static void rt2400pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
57 const unsigned int word
, const u8 value
)
61 mutex_lock(&rt2x00dev
->csr_mutex
);
64 * Wait until the BBP becomes available, afterwards we
65 * can safely write the new data into the register.
67 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
69 rt2x00_set_field32(®
, BBPCSR_VALUE
, value
);
70 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
71 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
72 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 1);
74 rt2x00mmio_register_write(rt2x00dev
, BBPCSR
, reg
);
77 mutex_unlock(&rt2x00dev
->csr_mutex
);
80 static u8
rt2400pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
81 const unsigned int word
)
86 mutex_lock(&rt2x00dev
->csr_mutex
);
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
96 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
98 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
99 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
100 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 0);
102 rt2x00mmio_register_write(rt2x00dev
, BBPCSR
, reg
);
104 WAIT_FOR_BBP(rt2x00dev
, ®
);
107 value
= rt2x00_get_field32(reg
, BBPCSR_VALUE
);
109 mutex_unlock(&rt2x00dev
->csr_mutex
);
114 static void rt2400pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
115 const unsigned int word
, const u32 value
)
119 mutex_lock(&rt2x00dev
->csr_mutex
);
122 * Wait until the RF becomes available, afterwards we
123 * can safely write the new data into the register.
125 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
127 rt2x00_set_field32(®
, RFCSR_VALUE
, value
);
128 rt2x00_set_field32(®
, RFCSR_NUMBER_OF_BITS
, 20);
129 rt2x00_set_field32(®
, RFCSR_IF_SELECT
, 0);
130 rt2x00_set_field32(®
, RFCSR_BUSY
, 1);
132 rt2x00mmio_register_write(rt2x00dev
, RFCSR
, reg
);
133 rt2x00_rf_write(rt2x00dev
, word
, value
);
136 mutex_unlock(&rt2x00dev
->csr_mutex
);
139 static void rt2400pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
141 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
144 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR21
);
146 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_IN
);
147 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_OUT
);
148 eeprom
->reg_data_clock
=
149 !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_CLOCK
);
150 eeprom
->reg_chip_select
=
151 !!rt2x00_get_field32(reg
, CSR21_EEPROM_CHIP_SELECT
);
154 static void rt2400pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
156 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
159 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_IN
, !!eeprom
->reg_data_in
);
160 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_OUT
, !!eeprom
->reg_data_out
);
161 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_CLOCK
,
162 !!eeprom
->reg_data_clock
);
163 rt2x00_set_field32(®
, CSR21_EEPROM_CHIP_SELECT
,
164 !!eeprom
->reg_chip_select
);
166 rt2x00mmio_register_write(rt2x00dev
, CSR21
, reg
);
169 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
170 static const struct rt2x00debug rt2400pci_rt2x00debug
= {
171 .owner
= THIS_MODULE
,
173 .read
= rt2x00mmio_register_read
,
174 .write
= rt2x00mmio_register_write
,
175 .flags
= RT2X00DEBUGFS_OFFSET
,
176 .word_base
= CSR_REG_BASE
,
177 .word_size
= sizeof(u32
),
178 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
181 .read
= rt2x00_eeprom_read
,
182 .write
= rt2x00_eeprom_write
,
183 .word_base
= EEPROM_BASE
,
184 .word_size
= sizeof(u16
),
185 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
188 .read
= rt2400pci_bbp_read
,
189 .write
= rt2400pci_bbp_write
,
190 .word_base
= BBP_BASE
,
191 .word_size
= sizeof(u8
),
192 .word_count
= BBP_SIZE
/ sizeof(u8
),
195 .read
= rt2x00_rf_read
,
196 .write
= rt2400pci_rf_write
,
197 .word_base
= RF_BASE
,
198 .word_size
= sizeof(u32
),
199 .word_count
= RF_SIZE
/ sizeof(u32
),
202 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
204 static int rt2400pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
208 reg
= rt2x00mmio_register_read(rt2x00dev
, GPIOCSR
);
209 return rt2x00_get_field32(reg
, GPIOCSR_VAL0
);
212 #ifdef CONFIG_RT2X00_LIB_LEDS
213 static void rt2400pci_brightness_set(struct led_classdev
*led_cdev
,
214 enum led_brightness brightness
)
216 struct rt2x00_led
*led
=
217 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
218 unsigned int enabled
= brightness
!= LED_OFF
;
221 reg
= rt2x00mmio_register_read(led
->rt2x00dev
, LEDCSR
);
223 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
224 rt2x00_set_field32(®
, LEDCSR_LINK
, enabled
);
225 else if (led
->type
== LED_TYPE_ACTIVITY
)
226 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, enabled
);
228 rt2x00mmio_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
231 static int rt2400pci_blink_set(struct led_classdev
*led_cdev
,
232 unsigned long *delay_on
,
233 unsigned long *delay_off
)
235 struct rt2x00_led
*led
=
236 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
239 reg
= rt2x00mmio_register_read(led
->rt2x00dev
, LEDCSR
);
240 rt2x00_set_field32(®
, LEDCSR_ON_PERIOD
, *delay_on
);
241 rt2x00_set_field32(®
, LEDCSR_OFF_PERIOD
, *delay_off
);
242 rt2x00mmio_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
247 static void rt2400pci_init_led(struct rt2x00_dev
*rt2x00dev
,
248 struct rt2x00_led
*led
,
251 led
->rt2x00dev
= rt2x00dev
;
253 led
->led_dev
.brightness_set
= rt2400pci_brightness_set
;
254 led
->led_dev
.blink_set
= rt2400pci_blink_set
;
255 led
->flags
= LED_INITIALIZED
;
257 #endif /* CONFIG_RT2X00_LIB_LEDS */
260 * Configuration handlers.
262 static void rt2400pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
263 const unsigned int filter_flags
)
268 * Start configuration steps.
269 * Note that the version error will always be dropped
270 * since there is no filter for it at this time.
272 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
273 rt2x00_set_field32(®
, RXCSR0_DROP_CRC
,
274 !(filter_flags
& FIF_FCSFAIL
));
275 rt2x00_set_field32(®
, RXCSR0_DROP_PHYSICAL
,
276 !(filter_flags
& FIF_PLCPFAIL
));
277 rt2x00_set_field32(®
, RXCSR0_DROP_CONTROL
,
278 !(filter_flags
& FIF_CONTROL
));
279 rt2x00_set_field32(®
, RXCSR0_DROP_NOT_TO_ME
,
280 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
));
281 rt2x00_set_field32(®
, RXCSR0_DROP_TODS
,
282 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
) &&
283 !rt2x00dev
->intf_ap_count
);
284 rt2x00_set_field32(®
, RXCSR0_DROP_VERSION_ERROR
, 1);
285 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
288 static void rt2400pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
289 struct rt2x00_intf
*intf
,
290 struct rt2x00intf_conf
*conf
,
291 const unsigned int flags
)
293 unsigned int bcn_preload
;
296 if (flags
& CONFIG_UPDATE_TYPE
) {
298 * Enable beacon config
300 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
301 reg
= rt2x00mmio_register_read(rt2x00dev
, BCNCSR1
);
302 rt2x00_set_field32(®
, BCNCSR1_PRELOAD
, bcn_preload
);
303 rt2x00mmio_register_write(rt2x00dev
, BCNCSR1
, reg
);
306 * Enable synchronisation.
308 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
309 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, conf
->sync
);
310 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
313 if (flags
& CONFIG_UPDATE_MAC
)
314 rt2x00mmio_register_multiwrite(rt2x00dev
, CSR3
,
315 conf
->mac
, sizeof(conf
->mac
));
317 if (flags
& CONFIG_UPDATE_BSSID
)
318 rt2x00mmio_register_multiwrite(rt2x00dev
, CSR5
,
320 sizeof(conf
->bssid
));
323 static void rt2400pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
324 struct rt2x00lib_erp
*erp
,
331 * When short preamble is enabled, we should set bit 0x08
333 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
334 preamble_mask
= erp
->short_preamble
<< 3;
336 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR1
);
337 rt2x00_set_field32(®
, TXCSR1_ACK_TIMEOUT
, 0x1ff);
338 rt2x00_set_field32(®
, TXCSR1_ACK_CONSUME_TIME
, 0x13a);
339 rt2x00_set_field32(®
, TXCSR1_TSF_OFFSET
, IEEE80211_HEADER
);
340 rt2x00_set_field32(®
, TXCSR1_AUTORESPONDER
, 1);
341 rt2x00mmio_register_write(rt2x00dev
, TXCSR1
, reg
);
343 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR2
);
344 rt2x00_set_field32(®
, ARCSR2_SIGNAL
, 0x00);
345 rt2x00_set_field32(®
, ARCSR2_SERVICE
, 0x04);
346 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
347 GET_DURATION(ACK_SIZE
, 10));
348 rt2x00mmio_register_write(rt2x00dev
, ARCSR2
, reg
);
350 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR3
);
351 rt2x00_set_field32(®
, ARCSR3_SIGNAL
, 0x01 | preamble_mask
);
352 rt2x00_set_field32(®
, ARCSR3_SERVICE
, 0x04);
353 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
354 GET_DURATION(ACK_SIZE
, 20));
355 rt2x00mmio_register_write(rt2x00dev
, ARCSR3
, reg
);
357 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR4
);
358 rt2x00_set_field32(®
, ARCSR4_SIGNAL
, 0x02 | preamble_mask
);
359 rt2x00_set_field32(®
, ARCSR4_SERVICE
, 0x04);
360 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
361 GET_DURATION(ACK_SIZE
, 55));
362 rt2x00mmio_register_write(rt2x00dev
, ARCSR4
, reg
);
364 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR5
);
365 rt2x00_set_field32(®
, ARCSR5_SIGNAL
, 0x03 | preamble_mask
);
366 rt2x00_set_field32(®
, ARCSR5_SERVICE
, 0x84);
367 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
368 GET_DURATION(ACK_SIZE
, 110));
369 rt2x00mmio_register_write(rt2x00dev
, ARCSR5
, reg
);
372 if (changed
& BSS_CHANGED_BASIC_RATES
)
373 rt2x00mmio_register_write(rt2x00dev
, ARCSR1
, erp
->basic_rates
);
375 if (changed
& BSS_CHANGED_ERP_SLOT
) {
376 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
377 rt2x00_set_field32(®
, CSR11_SLOT_TIME
, erp
->slot_time
);
378 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
380 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR18
);
381 rt2x00_set_field32(®
, CSR18_SIFS
, erp
->sifs
);
382 rt2x00_set_field32(®
, CSR18_PIFS
, erp
->pifs
);
383 rt2x00mmio_register_write(rt2x00dev
, CSR18
, reg
);
385 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR19
);
386 rt2x00_set_field32(®
, CSR19_DIFS
, erp
->difs
);
387 rt2x00_set_field32(®
, CSR19_EIFS
, erp
->eifs
);
388 rt2x00mmio_register_write(rt2x00dev
, CSR19
, reg
);
391 if (changed
& BSS_CHANGED_BEACON_INT
) {
392 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR12
);
393 rt2x00_set_field32(®
, CSR12_BEACON_INTERVAL
,
394 erp
->beacon_int
* 16);
395 rt2x00_set_field32(®
, CSR12_CFP_MAX_DURATION
,
396 erp
->beacon_int
* 16);
397 rt2x00mmio_register_write(rt2x00dev
, CSR12
, reg
);
401 static void rt2400pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
402 struct antenna_setup
*ant
)
408 * We should never come here because rt2x00lib is supposed
409 * to catch this and send us the correct antenna explicitely.
411 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
412 ant
->tx
== ANTENNA_SW_DIVERSITY
);
414 r4
= rt2400pci_bbp_read(rt2x00dev
, 4);
415 r1
= rt2400pci_bbp_read(rt2x00dev
, 1);
418 * Configure the TX antenna.
421 case ANTENNA_HW_DIVERSITY
:
422 rt2x00_set_field8(&r1
, BBP_R1_TX_ANTENNA
, 1);
425 rt2x00_set_field8(&r1
, BBP_R1_TX_ANTENNA
, 0);
429 rt2x00_set_field8(&r1
, BBP_R1_TX_ANTENNA
, 2);
434 * Configure the RX antenna.
437 case ANTENNA_HW_DIVERSITY
:
438 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 1);
441 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 0);
445 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 2);
449 rt2400pci_bbp_write(rt2x00dev
, 4, r4
);
450 rt2400pci_bbp_write(rt2x00dev
, 1, r1
);
453 static void rt2400pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
454 struct rf_channel
*rf
)
457 * Switch on tuning bits.
459 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 1);
460 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 1);
462 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
463 rt2400pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
464 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
467 * RF2420 chipset don't need any additional actions.
469 if (rt2x00_rf(rt2x00dev
, RF2420
))
473 * For the RT2421 chipsets we need to write an invalid
474 * reference clock rate to activate auto_tune.
475 * After that we set the value back to the correct channel.
477 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
478 rt2400pci_rf_write(rt2x00dev
, 2, 0x000c2a32);
479 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
483 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
484 rt2400pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
485 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
490 * Switch off tuning bits.
492 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 0);
493 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 0);
495 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
496 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
499 * Clear false CRC during channel switch.
501 rf
->rf1
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
504 static void rt2400pci_config_txpower(struct rt2x00_dev
*rt2x00dev
, int txpower
)
506 rt2400pci_bbp_write(rt2x00dev
, 3, TXPOWER_TO_DEV(txpower
));
509 static void rt2400pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
510 struct rt2x00lib_conf
*libconf
)
514 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
515 rt2x00_set_field32(®
, CSR11_LONG_RETRY
,
516 libconf
->conf
->long_frame_max_tx_count
);
517 rt2x00_set_field32(®
, CSR11_SHORT_RETRY
,
518 libconf
->conf
->short_frame_max_tx_count
);
519 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
522 static void rt2400pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
523 struct rt2x00lib_conf
*libconf
)
525 enum dev_state state
=
526 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
527 STATE_SLEEP
: STATE_AWAKE
;
530 if (state
== STATE_SLEEP
) {
531 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR20
);
532 rt2x00_set_field32(®
, CSR20_DELAY_AFTER_TBCN
,
533 (rt2x00dev
->beacon_int
- 20) * 16);
534 rt2x00_set_field32(®
, CSR20_TBCN_BEFORE_WAKEUP
,
535 libconf
->conf
->listen_interval
- 1);
537 /* We must first disable autowake before it can be enabled */
538 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
539 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
541 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 1);
542 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
544 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR20
);
545 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
546 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
549 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
552 static void rt2400pci_config(struct rt2x00_dev
*rt2x00dev
,
553 struct rt2x00lib_conf
*libconf
,
554 const unsigned int flags
)
556 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
557 rt2400pci_config_channel(rt2x00dev
, &libconf
->rf
);
558 if (flags
& IEEE80211_CONF_CHANGE_POWER
)
559 rt2400pci_config_txpower(rt2x00dev
,
560 libconf
->conf
->power_level
);
561 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
562 rt2400pci_config_retry_limit(rt2x00dev
, libconf
);
563 if (flags
& IEEE80211_CONF_CHANGE_PS
)
564 rt2400pci_config_ps(rt2x00dev
, libconf
);
567 static void rt2400pci_config_cw(struct rt2x00_dev
*rt2x00dev
,
568 const int cw_min
, const int cw_max
)
572 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
573 rt2x00_set_field32(®
, CSR11_CWMIN
, cw_min
);
574 rt2x00_set_field32(®
, CSR11_CWMAX
, cw_max
);
575 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
581 static void rt2400pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
582 struct link_qual
*qual
)
588 * Update FCS error count from register.
590 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
591 qual
->rx_failed
= rt2x00_get_field32(reg
, CNT0_FCS_ERROR
);
594 * Update False CCA count from register.
596 bbp
= rt2400pci_bbp_read(rt2x00dev
, 39);
597 qual
->false_cca
= bbp
;
600 static inline void rt2400pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
601 struct link_qual
*qual
, u8 vgc_level
)
603 if (qual
->vgc_level_reg
!= vgc_level
) {
604 rt2400pci_bbp_write(rt2x00dev
, 13, vgc_level
);
605 qual
->vgc_level
= vgc_level
;
606 qual
->vgc_level_reg
= vgc_level
;
610 static void rt2400pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
611 struct link_qual
*qual
)
613 rt2400pci_set_vgc(rt2x00dev
, qual
, 0x08);
616 static void rt2400pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
617 struct link_qual
*qual
, const u32 count
)
620 * The link tuner should not run longer then 60 seconds,
621 * and should run once every 2 seconds.
623 if (count
> 60 || !(count
& 1))
627 * Base r13 link tuning on the false cca count.
629 if ((qual
->false_cca
> 512) && (qual
->vgc_level
< 0x20))
630 rt2400pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level
);
631 else if ((qual
->false_cca
< 100) && (qual
->vgc_level
> 0x08))
632 rt2400pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level
);
638 static void rt2400pci_start_queue(struct data_queue
*queue
)
640 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
643 switch (queue
->qid
) {
645 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
646 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 0);
647 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
650 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
651 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
652 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
653 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
654 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
661 static void rt2400pci_kick_queue(struct data_queue
*queue
)
663 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
666 switch (queue
->qid
) {
668 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
669 rt2x00_set_field32(®
, TXCSR0_KICK_PRIO
, 1);
670 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
673 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
674 rt2x00_set_field32(®
, TXCSR0_KICK_TX
, 1);
675 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
678 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
679 rt2x00_set_field32(®
, TXCSR0_KICK_ATIM
, 1);
680 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
687 static void rt2400pci_stop_queue(struct data_queue
*queue
)
689 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
692 switch (queue
->qid
) {
696 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
697 rt2x00_set_field32(®
, TXCSR0_ABORT
, 1);
698 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
701 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
702 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 1);
703 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
706 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
707 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
708 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
709 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
710 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
713 * Wait for possibly running tbtt tasklets.
715 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
723 * Initialization functions.
725 static bool rt2400pci_get_entry_state(struct queue_entry
*entry
)
727 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
730 if (entry
->queue
->qid
== QID_RX
) {
731 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
733 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
735 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
737 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
738 rt2x00_get_field32(word
, TXD_W0_VALID
));
742 static void rt2400pci_clear_entry(struct queue_entry
*entry
)
744 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
745 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
748 if (entry
->queue
->qid
== QID_RX
) {
749 word
= rt2x00_desc_read(entry_priv
->desc
, 2);
750 rt2x00_set_field32(&word
, RXD_W2_BUFFER_LENGTH
, entry
->skb
->len
);
751 rt2x00_desc_write(entry_priv
->desc
, 2, word
);
753 word
= rt2x00_desc_read(entry_priv
->desc
, 1);
754 rt2x00_set_field32(&word
, RXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
755 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
757 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
758 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
759 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
761 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
762 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
763 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
764 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
768 static int rt2400pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
770 struct queue_entry_priv_mmio
*entry_priv
;
774 * Initialize registers.
776 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR2
);
777 rt2x00_set_field32(®
, TXCSR2_TXD_SIZE
, rt2x00dev
->tx
[0].desc_size
);
778 rt2x00_set_field32(®
, TXCSR2_NUM_TXD
, rt2x00dev
->tx
[1].limit
);
779 rt2x00_set_field32(®
, TXCSR2_NUM_ATIM
, rt2x00dev
->atim
->limit
);
780 rt2x00_set_field32(®
, TXCSR2_NUM_PRIO
, rt2x00dev
->tx
[0].limit
);
781 rt2x00mmio_register_write(rt2x00dev
, TXCSR2
, reg
);
783 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
784 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR3
);
785 rt2x00_set_field32(®
, TXCSR3_TX_RING_REGISTER
,
786 entry_priv
->desc_dma
);
787 rt2x00mmio_register_write(rt2x00dev
, TXCSR3
, reg
);
789 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
790 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR5
);
791 rt2x00_set_field32(®
, TXCSR5_PRIO_RING_REGISTER
,
792 entry_priv
->desc_dma
);
793 rt2x00mmio_register_write(rt2x00dev
, TXCSR5
, reg
);
795 entry_priv
= rt2x00dev
->atim
->entries
[0].priv_data
;
796 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR4
);
797 rt2x00_set_field32(®
, TXCSR4_ATIM_RING_REGISTER
,
798 entry_priv
->desc_dma
);
799 rt2x00mmio_register_write(rt2x00dev
, TXCSR4
, reg
);
801 entry_priv
= rt2x00dev
->bcn
->entries
[0].priv_data
;
802 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR6
);
803 rt2x00_set_field32(®
, TXCSR6_BEACON_RING_REGISTER
,
804 entry_priv
->desc_dma
);
805 rt2x00mmio_register_write(rt2x00dev
, TXCSR6
, reg
);
807 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR1
);
808 rt2x00_set_field32(®
, RXCSR1_RXD_SIZE
, rt2x00dev
->rx
->desc_size
);
809 rt2x00_set_field32(®
, RXCSR1_NUM_RXD
, rt2x00dev
->rx
->limit
);
810 rt2x00mmio_register_write(rt2x00dev
, RXCSR1
, reg
);
812 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
813 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR2
);
814 rt2x00_set_field32(®
, RXCSR2_RX_RING_REGISTER
,
815 entry_priv
->desc_dma
);
816 rt2x00mmio_register_write(rt2x00dev
, RXCSR2
, reg
);
821 static int rt2400pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
825 rt2x00mmio_register_write(rt2x00dev
, PSCSR0
, 0x00020002);
826 rt2x00mmio_register_write(rt2x00dev
, PSCSR1
, 0x00000002);
827 rt2x00mmio_register_write(rt2x00dev
, PSCSR2
, 0x00023f20);
828 rt2x00mmio_register_write(rt2x00dev
, PSCSR3
, 0x00000002);
830 reg
= rt2x00mmio_register_read(rt2x00dev
, TIMECSR
);
831 rt2x00_set_field32(®
, TIMECSR_US_COUNT
, 33);
832 rt2x00_set_field32(®
, TIMECSR_US_64_COUNT
, 63);
833 rt2x00_set_field32(®
, TIMECSR_BEACON_EXPECT
, 0);
834 rt2x00mmio_register_write(rt2x00dev
, TIMECSR
, reg
);
836 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR9
);
837 rt2x00_set_field32(®
, CSR9_MAX_FRAME_UNIT
,
838 (rt2x00dev
->rx
->data_size
/ 128));
839 rt2x00mmio_register_write(rt2x00dev
, CSR9
, reg
);
841 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
842 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
843 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, 0);
844 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
845 rt2x00_set_field32(®
, CSR14_TCFP
, 0);
846 rt2x00_set_field32(®
, CSR14_TATIMW
, 0);
847 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
848 rt2x00_set_field32(®
, CSR14_CFP_COUNT_PRELOAD
, 0);
849 rt2x00_set_field32(®
, CSR14_TBCM_PRELOAD
, 0);
850 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
852 rt2x00mmio_register_write(rt2x00dev
, CNT3
, 0x3f080000);
854 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR0
);
855 rt2x00_set_field32(®
, ARCSR0_AR_BBP_DATA0
, 133);
856 rt2x00_set_field32(®
, ARCSR0_AR_BBP_ID0
, 134);
857 rt2x00_set_field32(®
, ARCSR0_AR_BBP_DATA1
, 136);
858 rt2x00_set_field32(®
, ARCSR0_AR_BBP_ID1
, 135);
859 rt2x00mmio_register_write(rt2x00dev
, ARCSR0
, reg
);
861 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR3
);
862 rt2x00_set_field32(®
, RXCSR3_BBP_ID0
, 3); /* Tx power.*/
863 rt2x00_set_field32(®
, RXCSR3_BBP_ID0_VALID
, 1);
864 rt2x00_set_field32(®
, RXCSR3_BBP_ID1
, 32); /* Signal */
865 rt2x00_set_field32(®
, RXCSR3_BBP_ID1_VALID
, 1);
866 rt2x00_set_field32(®
, RXCSR3_BBP_ID2
, 36); /* Rssi */
867 rt2x00_set_field32(®
, RXCSR3_BBP_ID2_VALID
, 1);
868 rt2x00mmio_register_write(rt2x00dev
, RXCSR3
, reg
);
870 rt2x00mmio_register_write(rt2x00dev
, PWRCSR0
, 0x3f3b3100);
872 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
875 rt2x00mmio_register_write(rt2x00dev
, MACCSR0
, 0x00217223);
876 rt2x00mmio_register_write(rt2x00dev
, MACCSR1
, 0x00235518);
878 reg
= rt2x00mmio_register_read(rt2x00dev
, MACCSR2
);
879 rt2x00_set_field32(®
, MACCSR2_DELAY
, 64);
880 rt2x00mmio_register_write(rt2x00dev
, MACCSR2
, reg
);
882 reg
= rt2x00mmio_register_read(rt2x00dev
, RALINKCSR
);
883 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA0
, 17);
884 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID0
, 154);
885 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA1
, 0);
886 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID1
, 154);
887 rt2x00mmio_register_write(rt2x00dev
, RALINKCSR
, reg
);
889 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR1
);
890 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 1);
891 rt2x00_set_field32(®
, CSR1_BBP_RESET
, 0);
892 rt2x00_set_field32(®
, CSR1_HOST_READY
, 0);
893 rt2x00mmio_register_write(rt2x00dev
, CSR1
, reg
);
895 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR1
);
896 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 0);
897 rt2x00_set_field32(®
, CSR1_HOST_READY
, 1);
898 rt2x00mmio_register_write(rt2x00dev
, CSR1
, reg
);
901 * We must clear the FCS and FIFO error count.
902 * These registers are cleared on read,
903 * so we may pass a useless variable to store the value.
905 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
906 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT4
);
911 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
916 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
917 value
= rt2400pci_bbp_read(rt2x00dev
, 0);
918 if ((value
!= 0xff) && (value
!= 0x00))
920 udelay(REGISTER_BUSY_DELAY
);
923 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
927 static int rt2400pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
934 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev
)))
937 rt2400pci_bbp_write(rt2x00dev
, 1, 0x00);
938 rt2400pci_bbp_write(rt2x00dev
, 3, 0x27);
939 rt2400pci_bbp_write(rt2x00dev
, 4, 0x08);
940 rt2400pci_bbp_write(rt2x00dev
, 10, 0x0f);
941 rt2400pci_bbp_write(rt2x00dev
, 15, 0x72);
942 rt2400pci_bbp_write(rt2x00dev
, 16, 0x74);
943 rt2400pci_bbp_write(rt2x00dev
, 17, 0x20);
944 rt2400pci_bbp_write(rt2x00dev
, 18, 0x72);
945 rt2400pci_bbp_write(rt2x00dev
, 19, 0x0b);
946 rt2400pci_bbp_write(rt2x00dev
, 20, 0x00);
947 rt2400pci_bbp_write(rt2x00dev
, 28, 0x11);
948 rt2400pci_bbp_write(rt2x00dev
, 29, 0x04);
949 rt2400pci_bbp_write(rt2x00dev
, 30, 0x21);
950 rt2400pci_bbp_write(rt2x00dev
, 31, 0x00);
952 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
953 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
);
955 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
956 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
957 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
958 rt2400pci_bbp_write(rt2x00dev
, reg_id
, value
);
966 * Device state switch handlers.
968 static void rt2400pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
969 enum dev_state state
)
971 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
976 * When interrupts are being enabled, the interrupt registers
977 * should clear the register to assure a clean state.
979 if (state
== STATE_RADIO_IRQ_ON
) {
980 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR7
);
981 rt2x00mmio_register_write(rt2x00dev
, CSR7
, reg
);
985 * Only toggle the interrupts bits we are going to use.
986 * Non-checked interrupt bits are disabled by default.
988 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
990 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
991 rt2x00_set_field32(®
, CSR8_TBCN_EXPIRE
, mask
);
992 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, mask
);
993 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, mask
);
994 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, mask
);
995 rt2x00_set_field32(®
, CSR8_RXDONE
, mask
);
996 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
998 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
1000 if (state
== STATE_RADIO_IRQ_OFF
) {
1002 * Ensure that all tasklets are finished before
1003 * disabling the interrupts.
1005 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1006 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1007 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1011 static int rt2400pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1014 * Initialize all registers.
1016 if (unlikely(rt2400pci_init_queues(rt2x00dev
) ||
1017 rt2400pci_init_registers(rt2x00dev
) ||
1018 rt2400pci_init_bbp(rt2x00dev
)))
1024 static void rt2400pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1029 rt2x00mmio_register_write(rt2x00dev
, PWRCSR0
, 0);
1032 static int rt2400pci_set_state(struct rt2x00_dev
*rt2x00dev
,
1033 enum dev_state state
)
1041 put_to_sleep
= (state
!= STATE_AWAKE
);
1043 reg
= rt2x00mmio_register_read(rt2x00dev
, PWRCSR1
);
1044 rt2x00_set_field32(®
, PWRCSR1_SET_STATE
, 1);
1045 rt2x00_set_field32(®
, PWRCSR1_BBP_DESIRE_STATE
, state
);
1046 rt2x00_set_field32(®
, PWRCSR1_RF_DESIRE_STATE
, state
);
1047 rt2x00_set_field32(®
, PWRCSR1_PUT_TO_SLEEP
, put_to_sleep
);
1048 rt2x00mmio_register_write(rt2x00dev
, PWRCSR1
, reg
);
1051 * Device is not guaranteed to be in the requested state yet.
1052 * We must wait until the register indicates that the
1053 * device has entered the correct state.
1055 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1056 reg2
= rt2x00mmio_register_read(rt2x00dev
, PWRCSR1
);
1057 bbp_state
= rt2x00_get_field32(reg2
, PWRCSR1_BBP_CURR_STATE
);
1058 rf_state
= rt2x00_get_field32(reg2
, PWRCSR1_RF_CURR_STATE
);
1059 if (bbp_state
== state
&& rf_state
== state
)
1061 rt2x00mmio_register_write(rt2x00dev
, PWRCSR1
, reg
);
1068 static int rt2400pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1069 enum dev_state state
)
1074 case STATE_RADIO_ON
:
1075 retval
= rt2400pci_enable_radio(rt2x00dev
);
1077 case STATE_RADIO_OFF
:
1078 rt2400pci_disable_radio(rt2x00dev
);
1080 case STATE_RADIO_IRQ_ON
:
1081 case STATE_RADIO_IRQ_OFF
:
1082 rt2400pci_toggle_irq(rt2x00dev
, state
);
1084 case STATE_DEEP_SLEEP
:
1088 retval
= rt2400pci_set_state(rt2x00dev
, state
);
1095 if (unlikely(retval
))
1096 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1103 * TX descriptor initialization
1105 static void rt2400pci_write_tx_desc(struct queue_entry
*entry
,
1106 struct txentry_desc
*txdesc
)
1108 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1109 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1110 __le32
*txd
= entry_priv
->desc
;
1114 * Start writing the descriptor words.
1116 word
= rt2x00_desc_read(txd
, 1);
1117 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
1118 rt2x00_desc_write(txd
, 1, word
);
1120 word
= rt2x00_desc_read(txd
, 2);
1121 rt2x00_set_field32(&word
, TXD_W2_BUFFER_LENGTH
, txdesc
->length
);
1122 rt2x00_set_field32(&word
, TXD_W2_DATABYTE_COUNT
, txdesc
->length
);
1123 rt2x00_desc_write(txd
, 2, word
);
1125 word
= rt2x00_desc_read(txd
, 3);
1126 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1127 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL_REGNUM
, 5);
1128 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL_BUSY
, 1);
1129 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1130 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE_REGNUM
, 6);
1131 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE_BUSY
, 1);
1132 rt2x00_desc_write(txd
, 3, word
);
1134 word
= rt2x00_desc_read(txd
, 4);
1135 rt2x00_set_field32(&word
, TXD_W4_PLCP_LENGTH_LOW
,
1136 txdesc
->u
.plcp
.length_low
);
1137 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW_REGNUM
, 8);
1138 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW_BUSY
, 1);
1139 rt2x00_set_field32(&word
, TXD_W4_PLCP_LENGTH_HIGH
,
1140 txdesc
->u
.plcp
.length_high
);
1141 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH_REGNUM
, 7);
1142 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH_BUSY
, 1);
1143 rt2x00_desc_write(txd
, 4, word
);
1146 * Writing TXD word 0 must the last to prevent a race condition with
1147 * the device, whereby the device may take hold of the TXD before we
1148 * finished updating it.
1150 word
= rt2x00_desc_read(txd
, 0);
1151 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1152 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1153 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1154 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1155 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1156 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1157 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1158 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1159 rt2x00_set_field32(&word
, TXD_W0_RTS
,
1160 test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
));
1161 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1162 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1163 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1164 rt2x00_desc_write(txd
, 0, word
);
1167 * Register descriptor details in skb frame descriptor.
1169 skbdesc
->desc
= txd
;
1170 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1174 * TX data initialization
1176 static void rt2400pci_write_beacon(struct queue_entry
*entry
,
1177 struct txentry_desc
*txdesc
)
1179 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1183 * Disable beaconing while we are reloading the beacon data,
1184 * otherwise we might be sending out invalid data.
1186 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
1187 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
1188 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
1190 if (rt2x00queue_map_txskb(entry
)) {
1191 rt2x00_err(rt2x00dev
, "Fail to map beacon, aborting\n");
1195 * Enable beaconing again.
1197 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1199 * Write the TX descriptor for the beacon.
1201 rt2400pci_write_tx_desc(entry
, txdesc
);
1204 * Dump beacon to userspace through debugfs.
1206 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
);
1209 * Enable beaconing again.
1211 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1212 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
1216 * RX control handlers
1218 static void rt2400pci_fill_rxdone(struct queue_entry
*entry
,
1219 struct rxdone_entry_desc
*rxdesc
)
1221 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1222 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1231 word0
= rt2x00_desc_read(entry_priv
->desc
, 0);
1232 word2
= rt2x00_desc_read(entry_priv
->desc
, 2);
1233 word3
= rt2x00_desc_read(entry_priv
->desc
, 3);
1234 word4
= rt2x00_desc_read(entry_priv
->desc
, 4);
1236 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1237 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1238 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1239 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1242 * We only get the lower 32bits from the timestamp,
1243 * to get the full 64bits we must complement it with
1244 * the timestamp from get_tsf().
1245 * Note that when a wraparound of the lower 32bits
1246 * has occurred between the frame arrival and the get_tsf()
1247 * call, we must decrease the higher 32bits with 1 to get
1250 tsf
= rt2x00dev
->ops
->hw
->get_tsf(rt2x00dev
->hw
, NULL
);
1251 rx_low
= rt2x00_get_field32(word4
, RXD_W4_RX_END_TIME
);
1252 rx_high
= upper_32_bits(tsf
);
1254 if ((u32
)tsf
<= rx_low
)
1258 * Obtain the status about this packet.
1259 * The signal is the PLCP value, and needs to be stripped
1260 * of the preamble bit (0x08).
1262 rxdesc
->timestamp
= ((u64
)rx_high
<< 32) | rx_low
;
1263 rxdesc
->signal
= rt2x00_get_field32(word2
, RXD_W2_SIGNAL
) & ~0x08;
1264 rxdesc
->rssi
= rt2x00_get_field32(word3
, RXD_W3_RSSI
) -
1265 entry
->queue
->rt2x00dev
->rssi_offset
;
1266 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1268 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1269 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1270 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1274 * Interrupt functions.
1276 static void rt2400pci_txdone(struct rt2x00_dev
*rt2x00dev
,
1277 const enum data_queue_qid queue_idx
)
1279 struct data_queue
*queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
1280 struct queue_entry_priv_mmio
*entry_priv
;
1281 struct queue_entry
*entry
;
1282 struct txdone_entry_desc txdesc
;
1285 while (!rt2x00queue_empty(queue
)) {
1286 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
1287 entry_priv
= entry
->priv_data
;
1288 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1290 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1291 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1295 * Obtain the status about this packet.
1298 switch (rt2x00_get_field32(word
, TXD_W0_RESULT
)) {
1299 case 0: /* Success */
1300 case 1: /* Success with retry */
1301 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
1303 case 2: /* Failure, excessive retries */
1304 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
1305 /* Fall through - this is a failed frame! */
1306 default: /* Failure */
1307 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
1309 txdesc
.retry
= rt2x00_get_field32(word
, TXD_W0_RETRY_COUNT
);
1311 rt2x00lib_txdone(entry
, &txdesc
);
1315 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
1316 struct rt2x00_field32 irq_field
)
1321 * Enable a single interrupt. The interrupt mask register
1322 * access needs locking.
1324 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
1326 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1327 rt2x00_set_field32(®
, irq_field
, 0);
1328 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1330 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
1333 static void rt2400pci_txstatus_tasklet(unsigned long data
)
1335 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1339 * Handle all tx queues.
1341 rt2400pci_txdone(rt2x00dev
, QID_ATIM
);
1342 rt2400pci_txdone(rt2x00dev
, QID_AC_VO
);
1343 rt2400pci_txdone(rt2x00dev
, QID_AC_VI
);
1346 * Enable all TXDONE interrupts again.
1348 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
)) {
1349 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
1351 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1352 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, 0);
1353 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, 0);
1354 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, 0);
1355 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1357 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
1361 static void rt2400pci_tbtt_tasklet(unsigned long data
)
1363 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1364 rt2x00lib_beacondone(rt2x00dev
);
1365 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1366 rt2400pci_enable_interrupt(rt2x00dev
, CSR8_TBCN_EXPIRE
);
1369 static void rt2400pci_rxdone_tasklet(unsigned long data
)
1371 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1372 if (rt2x00mmio_rxdone(rt2x00dev
))
1373 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
1374 else if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1375 rt2400pci_enable_interrupt(rt2x00dev
, CSR8_RXDONE
);
1378 static irqreturn_t
rt2400pci_interrupt(int irq
, void *dev_instance
)
1380 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1384 * Get the interrupt sources & saved to local variable.
1385 * Write register value back to clear pending interrupts.
1387 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR7
);
1388 rt2x00mmio_register_write(rt2x00dev
, CSR7
, reg
);
1393 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1399 * Schedule tasklets for interrupt handling.
1401 if (rt2x00_get_field32(reg
, CSR7_TBCN_EXPIRE
))
1402 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
1404 if (rt2x00_get_field32(reg
, CSR7_RXDONE
))
1405 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
1407 if (rt2x00_get_field32(reg
, CSR7_TXDONE_ATIMRING
) ||
1408 rt2x00_get_field32(reg
, CSR7_TXDONE_PRIORING
) ||
1409 rt2x00_get_field32(reg
, CSR7_TXDONE_TXRING
)) {
1410 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
1412 * Mask out all txdone interrupts.
1414 rt2x00_set_field32(&mask
, CSR8_TXDONE_TXRING
, 1);
1415 rt2x00_set_field32(&mask
, CSR8_TXDONE_ATIMRING
, 1);
1416 rt2x00_set_field32(&mask
, CSR8_TXDONE_PRIORING
, 1);
1420 * Disable all interrupts for which a tasklet was scheduled right now,
1421 * the tasklet will reenable the appropriate interrupts.
1423 spin_lock(&rt2x00dev
->irqmask_lock
);
1425 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1427 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1429 spin_unlock(&rt2x00dev
->irqmask_lock
);
1437 * Device probe functions.
1439 static int rt2400pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1441 struct eeprom_93cx6 eeprom
;
1446 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR21
);
1448 eeprom
.data
= rt2x00dev
;
1449 eeprom
.register_read
= rt2400pci_eepromregister_read
;
1450 eeprom
.register_write
= rt2400pci_eepromregister_write
;
1451 eeprom
.width
= rt2x00_get_field32(reg
, CSR21_TYPE_93C46
) ?
1452 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1453 eeprom
.reg_data_in
= 0;
1454 eeprom
.reg_data_out
= 0;
1455 eeprom
.reg_data_clock
= 0;
1456 eeprom
.reg_chip_select
= 0;
1458 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1459 EEPROM_SIZE
/ sizeof(u16
));
1462 * Start validation of the data that has been read.
1464 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1465 rt2x00lib_set_mac_address(rt2x00dev
, mac
);
1467 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1468 if (word
== 0xffff) {
1469 rt2x00_err(rt2x00dev
, "Invalid EEPROM data detected\n");
1476 static int rt2400pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1483 * Read EEPROM word for configuration.
1485 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1488 * Identify RF chipset.
1490 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1491 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR0
);
1492 rt2x00_set_chip(rt2x00dev
, RT2460
, value
,
1493 rt2x00_get_field32(reg
, CSR0_REVISION
));
1495 if (!rt2x00_rf(rt2x00dev
, RF2420
) && !rt2x00_rf(rt2x00dev
, RF2421
)) {
1496 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
1501 * Identify default antenna configuration.
1503 rt2x00dev
->default_ant
.tx
=
1504 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1505 rt2x00dev
->default_ant
.rx
=
1506 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1509 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1510 * I am not 100% sure about this, but the legacy drivers do not
1511 * indicate antenna swapping in software is required when
1512 * diversity is enabled.
1514 if (rt2x00dev
->default_ant
.tx
== ANTENNA_SW_DIVERSITY
)
1515 rt2x00dev
->default_ant
.tx
= ANTENNA_HW_DIVERSITY
;
1516 if (rt2x00dev
->default_ant
.rx
== ANTENNA_SW_DIVERSITY
)
1517 rt2x00dev
->default_ant
.rx
= ANTENNA_HW_DIVERSITY
;
1520 * Store led mode, for correct led behaviour.
1522 #ifdef CONFIG_RT2X00_LIB_LEDS
1523 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1525 rt2400pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1526 if (value
== LED_MODE_TXRX_ACTIVITY
||
1527 value
== LED_MODE_DEFAULT
||
1528 value
== LED_MODE_ASUS
)
1529 rt2400pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1531 #endif /* CONFIG_RT2X00_LIB_LEDS */
1534 * Detect if this device has an hardware controlled radio.
1536 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1537 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
1540 * Check if the BBP tuning should be enabled.
1542 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_AGCVGC_TUNING
))
1543 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
1549 * RF value list for RF2420 & RF2421
1552 static const struct rf_channel rf_vals_b
[] = {
1553 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1554 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1555 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1556 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1557 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1558 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1559 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1560 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1561 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1562 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1563 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1564 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1565 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1566 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1569 static int rt2400pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1571 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1572 struct channel_info
*info
;
1577 * Initialize all hw fields.
1579 ieee80211_hw_set(rt2x00dev
->hw
, PS_NULLFUNC_STACK
);
1580 ieee80211_hw_set(rt2x00dev
->hw
, SUPPORTS_PS
);
1581 ieee80211_hw_set(rt2x00dev
->hw
, HOST_BROADCAST_PS_BUFFERING
);
1582 ieee80211_hw_set(rt2x00dev
->hw
, SIGNAL_DBM
);
1584 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1585 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1586 rt2x00_eeprom_addr(rt2x00dev
,
1587 EEPROM_MAC_ADDR_0
));
1590 * Initialize hw_mode information.
1592 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1593 spec
->supported_rates
= SUPPORT_RATE_CCK
;
1595 spec
->num_channels
= ARRAY_SIZE(rf_vals_b
);
1596 spec
->channels
= rf_vals_b
;
1599 * Create channel information array
1601 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
1605 spec
->channels_info
= info
;
1607 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1608 for (i
= 0; i
< 14; i
++) {
1609 info
[i
].max_power
= TXPOWER_FROM_DEV(MAX_TXPOWER
);
1610 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1616 static int rt2400pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1622 * Allocate eeprom data.
1624 retval
= rt2400pci_validate_eeprom(rt2x00dev
);
1628 retval
= rt2400pci_init_eeprom(rt2x00dev
);
1633 * Enable rfkill polling by setting GPIO direction of the
1634 * rfkill switch GPIO pin correctly.
1636 reg
= rt2x00mmio_register_read(rt2x00dev
, GPIOCSR
);
1637 rt2x00_set_field32(®
, GPIOCSR_DIR0
, 1);
1638 rt2x00mmio_register_write(rt2x00dev
, GPIOCSR
, reg
);
1641 * Initialize hw specifications.
1643 retval
= rt2400pci_probe_hw_mode(rt2x00dev
);
1648 * This device requires the atim queue and DMA-mapped skbs.
1650 __set_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1651 __set_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
);
1652 __set_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
);
1655 * Set the rssi offset.
1657 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1663 * IEEE80211 stack callback functions.
1665 static int rt2400pci_conf_tx(struct ieee80211_hw
*hw
,
1666 struct ieee80211_vif
*vif
, u16 queue
,
1667 const struct ieee80211_tx_queue_params
*params
)
1669 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1672 * We don't support variating cw_min and cw_max variables
1673 * per queue. So by default we only configure the TX queue,
1674 * and ignore all other configurations.
1679 if (rt2x00mac_conf_tx(hw
, vif
, queue
, params
))
1683 * Write configuration to register.
1685 rt2400pci_config_cw(rt2x00dev
,
1686 rt2x00dev
->tx
->cw_min
, rt2x00dev
->tx
->cw_max
);
1691 static u64
rt2400pci_get_tsf(struct ieee80211_hw
*hw
,
1692 struct ieee80211_vif
*vif
)
1694 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1698 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR17
);
1699 tsf
= (u64
) rt2x00_get_field32(reg
, CSR17_HIGH_TSFTIMER
) << 32;
1700 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR16
);
1701 tsf
|= rt2x00_get_field32(reg
, CSR16_LOW_TSFTIMER
);
1706 static int rt2400pci_tx_last_beacon(struct ieee80211_hw
*hw
)
1708 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1711 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR15
);
1712 return rt2x00_get_field32(reg
, CSR15_BEACON_SENT
);
1715 static const struct ieee80211_ops rt2400pci_mac80211_ops
= {
1717 .start
= rt2x00mac_start
,
1718 .stop
= rt2x00mac_stop
,
1719 .add_interface
= rt2x00mac_add_interface
,
1720 .remove_interface
= rt2x00mac_remove_interface
,
1721 .config
= rt2x00mac_config
,
1722 .configure_filter
= rt2x00mac_configure_filter
,
1723 .sw_scan_start
= rt2x00mac_sw_scan_start
,
1724 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
1725 .get_stats
= rt2x00mac_get_stats
,
1726 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1727 .conf_tx
= rt2400pci_conf_tx
,
1728 .get_tsf
= rt2400pci_get_tsf
,
1729 .tx_last_beacon
= rt2400pci_tx_last_beacon
,
1730 .rfkill_poll
= rt2x00mac_rfkill_poll
,
1731 .flush
= rt2x00mac_flush
,
1732 .set_antenna
= rt2x00mac_set_antenna
,
1733 .get_antenna
= rt2x00mac_get_antenna
,
1734 .get_ringparam
= rt2x00mac_get_ringparam
,
1735 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
1738 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops
= {
1739 .irq_handler
= rt2400pci_interrupt
,
1740 .txstatus_tasklet
= rt2400pci_txstatus_tasklet
,
1741 .tbtt_tasklet
= rt2400pci_tbtt_tasklet
,
1742 .rxdone_tasklet
= rt2400pci_rxdone_tasklet
,
1743 .probe_hw
= rt2400pci_probe_hw
,
1744 .initialize
= rt2x00mmio_initialize
,
1745 .uninitialize
= rt2x00mmio_uninitialize
,
1746 .get_entry_state
= rt2400pci_get_entry_state
,
1747 .clear_entry
= rt2400pci_clear_entry
,
1748 .set_device_state
= rt2400pci_set_device_state
,
1749 .rfkill_poll
= rt2400pci_rfkill_poll
,
1750 .link_stats
= rt2400pci_link_stats
,
1751 .reset_tuner
= rt2400pci_reset_tuner
,
1752 .link_tuner
= rt2400pci_link_tuner
,
1753 .start_queue
= rt2400pci_start_queue
,
1754 .kick_queue
= rt2400pci_kick_queue
,
1755 .stop_queue
= rt2400pci_stop_queue
,
1756 .flush_queue
= rt2x00mmio_flush_queue
,
1757 .write_tx_desc
= rt2400pci_write_tx_desc
,
1758 .write_beacon
= rt2400pci_write_beacon
,
1759 .fill_rxdone
= rt2400pci_fill_rxdone
,
1760 .config_filter
= rt2400pci_config_filter
,
1761 .config_intf
= rt2400pci_config_intf
,
1762 .config_erp
= rt2400pci_config_erp
,
1763 .config_ant
= rt2400pci_config_ant
,
1764 .config
= rt2400pci_config
,
1767 static void rt2400pci_queue_init(struct data_queue
*queue
)
1769 switch (queue
->qid
) {
1772 queue
->data_size
= DATA_FRAME_SIZE
;
1773 queue
->desc_size
= RXD_DESC_SIZE
;
1774 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
1782 queue
->data_size
= DATA_FRAME_SIZE
;
1783 queue
->desc_size
= TXD_DESC_SIZE
;
1784 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
1789 queue
->data_size
= MGMT_FRAME_SIZE
;
1790 queue
->desc_size
= TXD_DESC_SIZE
;
1791 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
1796 queue
->data_size
= DATA_FRAME_SIZE
;
1797 queue
->desc_size
= TXD_DESC_SIZE
;
1798 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
1807 static const struct rt2x00_ops rt2400pci_ops
= {
1808 .name
= KBUILD_MODNAME
,
1810 .eeprom_size
= EEPROM_SIZE
,
1812 .tx_queues
= NUM_TX_QUEUES
,
1813 .queue_init
= rt2400pci_queue_init
,
1814 .lib
= &rt2400pci_rt2x00_ops
,
1815 .hw
= &rt2400pci_mac80211_ops
,
1816 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1817 .debugfs
= &rt2400pci_rt2x00debug
,
1818 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1822 * RT2400pci module information.
1824 static const struct pci_device_id rt2400pci_device_table
[] = {
1825 { PCI_DEVICE(0x1814, 0x0101) },
1830 MODULE_AUTHOR(DRV_PROJECT
);
1831 MODULE_VERSION(DRV_VERSION
);
1832 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1833 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1834 MODULE_DEVICE_TABLE(pci
, rt2400pci_device_table
);
1835 MODULE_LICENSE("GPL");
1837 static int rt2400pci_probe(struct pci_dev
*pci_dev
,
1838 const struct pci_device_id
*id
)
1840 return rt2x00pci_probe(pci_dev
, &rt2400pci_ops
);
1843 static struct pci_driver rt2400pci_driver
= {
1844 .name
= KBUILD_MODNAME
,
1845 .id_table
= rt2400pci_device_table
,
1846 .probe
= rt2400pci_probe
,
1847 .remove
= rt2x00pci_remove
,
1848 .suspend
= rt2x00pci_suspend
,
1849 .resume
= rt2x00pci_resume
,
1852 module_pci_driver(rt2400pci_driver
);