dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / net / wireless / ralink / rt2x00 / rt2500usb.c
blob3df8c4b895e71539b5f6073da2fbf3eefcda317d
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
20 Module: rt2500usb
21 Abstract: rt2500usb device specific routines.
22 Supported chipsets: RT2570.
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
37 * Allow hardware encryption to be disabled.
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
44 * Register access.
45 * All access to the CSR registers will go through the methods
46 * rt2500usb_register_read and rt2500usb_register_write.
47 * BBP and RF register require indirect register access,
48 * and use the CSR registers BBPCSR and RFCSR to achieve this.
49 * These indirect registers work with busy bits,
50 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51 * the register while taking a REGISTER_BUSY_DELAY us delay
52 * between each attampt. When the busy bit is still set at that time,
53 * the access attempt is considered to have failed,
54 * and we will print an error.
55 * If the csr_mutex is already held then the _lock variants must
56 * be used instead.
58 static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59 const unsigned int offset)
61 __le16 reg;
62 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
63 USB_VENDOR_REQUEST_IN, offset,
64 &reg, sizeof(reg));
65 return le16_to_cpu(reg);
68 static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
69 const unsigned int offset)
71 __le16 reg;
72 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
73 USB_VENDOR_REQUEST_IN, offset,
74 &reg, sizeof(reg), REGISTER_TIMEOUT);
75 return le16_to_cpu(reg);
78 static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
79 const unsigned int offset,
80 u16 value)
82 __le16 reg = cpu_to_le16(value);
83 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
84 USB_VENDOR_REQUEST_OUT, offset,
85 &reg, sizeof(reg));
88 static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
89 const unsigned int offset,
90 u16 value)
92 __le16 reg = cpu_to_le16(value);
93 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
94 USB_VENDOR_REQUEST_OUT, offset,
95 &reg, sizeof(reg), REGISTER_TIMEOUT);
98 static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
99 const unsigned int offset,
100 void *value, const u16 length)
102 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
103 USB_VENDOR_REQUEST_OUT, offset,
104 value, length);
107 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
108 const unsigned int offset,
109 struct rt2x00_field16 field,
110 u16 *reg)
112 unsigned int i;
114 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
115 *reg = rt2500usb_register_read_lock(rt2x00dev, offset);
116 if (!rt2x00_get_field16(*reg, field))
117 return 1;
118 udelay(REGISTER_BUSY_DELAY);
121 rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
122 offset, *reg);
123 *reg = ~0;
125 return 0;
128 #define WAIT_FOR_BBP(__dev, __reg) \
129 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
130 #define WAIT_FOR_RF(__dev, __reg) \
131 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
133 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
134 const unsigned int word, const u8 value)
136 u16 reg;
138 mutex_lock(&rt2x00dev->csr_mutex);
141 * Wait until the BBP becomes available, afterwards we
142 * can safely write the new data into the register.
144 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
145 reg = 0;
146 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
147 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
148 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
150 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
153 mutex_unlock(&rt2x00dev->csr_mutex);
156 static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
157 const unsigned int word)
159 u16 reg;
160 u8 value;
162 mutex_lock(&rt2x00dev->csr_mutex);
165 * Wait until the BBP becomes available, afterwards we
166 * can safely write the read request into the register.
167 * After the data has been written, we wait until hardware
168 * returns the correct value, if at any time the register
169 * doesn't become available in time, reg will be 0xffffffff
170 * which means we return 0xff to the caller.
172 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
173 reg = 0;
174 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
175 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
177 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
179 if (WAIT_FOR_BBP(rt2x00dev, &reg))
180 reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
183 value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
185 mutex_unlock(&rt2x00dev->csr_mutex);
187 return value;
190 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
191 const unsigned int word, const u32 value)
193 u16 reg;
195 mutex_lock(&rt2x00dev->csr_mutex);
198 * Wait until the RF becomes available, afterwards we
199 * can safely write the new data into the register.
201 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
202 reg = 0;
203 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
204 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
206 reg = 0;
207 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
208 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
209 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
210 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
212 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
213 rt2x00_rf_write(rt2x00dev, word, value);
216 mutex_unlock(&rt2x00dev->csr_mutex);
219 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
220 static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
221 const unsigned int offset)
223 return rt2500usb_register_read(rt2x00dev, offset);
226 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
227 const unsigned int offset,
228 u32 value)
230 rt2500usb_register_write(rt2x00dev, offset, value);
233 static const struct rt2x00debug rt2500usb_rt2x00debug = {
234 .owner = THIS_MODULE,
235 .csr = {
236 .read = _rt2500usb_register_read,
237 .write = _rt2500usb_register_write,
238 .flags = RT2X00DEBUGFS_OFFSET,
239 .word_base = CSR_REG_BASE,
240 .word_size = sizeof(u16),
241 .word_count = CSR_REG_SIZE / sizeof(u16),
243 .eeprom = {
244 .read = rt2x00_eeprom_read,
245 .write = rt2x00_eeprom_write,
246 .word_base = EEPROM_BASE,
247 .word_size = sizeof(u16),
248 .word_count = EEPROM_SIZE / sizeof(u16),
250 .bbp = {
251 .read = rt2500usb_bbp_read,
252 .write = rt2500usb_bbp_write,
253 .word_base = BBP_BASE,
254 .word_size = sizeof(u8),
255 .word_count = BBP_SIZE / sizeof(u8),
257 .rf = {
258 .read = rt2x00_rf_read,
259 .write = rt2500usb_rf_write,
260 .word_base = RF_BASE,
261 .word_size = sizeof(u32),
262 .word_count = RF_SIZE / sizeof(u32),
265 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
267 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
269 u16 reg;
271 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
272 return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
275 #ifdef CONFIG_RT2X00_LIB_LEDS
276 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
277 enum led_brightness brightness)
279 struct rt2x00_led *led =
280 container_of(led_cdev, struct rt2x00_led, led_dev);
281 unsigned int enabled = brightness != LED_OFF;
282 u16 reg;
284 reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
286 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
287 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
288 else if (led->type == LED_TYPE_ACTIVITY)
289 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
291 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
294 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
295 unsigned long *delay_on,
296 unsigned long *delay_off)
298 struct rt2x00_led *led =
299 container_of(led_cdev, struct rt2x00_led, led_dev);
300 u16 reg;
302 reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
303 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
304 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
305 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
307 return 0;
310 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
311 struct rt2x00_led *led,
312 enum led_type type)
314 led->rt2x00dev = rt2x00dev;
315 led->type = type;
316 led->led_dev.brightness_set = rt2500usb_brightness_set;
317 led->led_dev.blink_set = rt2500usb_blink_set;
318 led->flags = LED_INITIALIZED;
320 #endif /* CONFIG_RT2X00_LIB_LEDS */
323 * Configuration handlers.
327 * rt2500usb does not differentiate between shared and pairwise
328 * keys, so we should use the same function for both key types.
330 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
331 struct rt2x00lib_crypto *crypto,
332 struct ieee80211_key_conf *key)
334 u32 mask;
335 u16 reg;
336 enum cipher curr_cipher;
338 if (crypto->cmd == SET_KEY) {
340 * Disallow to set WEP key other than with index 0,
341 * it is known that not work at least on some hardware.
342 * SW crypto will be used in that case.
344 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
345 key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
346 key->keyidx != 0)
347 return -EOPNOTSUPP;
350 * Pairwise key will always be entry 0, but this
351 * could collide with a shared key on the same
352 * position...
354 mask = TXRX_CSR0_KEY_ID.bit_mask;
356 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
357 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
358 reg &= mask;
360 if (reg && reg == mask)
361 return -ENOSPC;
363 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
365 key->hw_key_idx += reg ? ffz(reg) : 0;
367 * Hardware requires that all keys use the same cipher
368 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
369 * If this is not the first key, compare the cipher with the
370 * first one and fall back to SW crypto if not the same.
372 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
373 return -EOPNOTSUPP;
375 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
376 crypto->key, sizeof(crypto->key));
379 * The driver does not support the IV/EIV generation
380 * in hardware. However it demands the data to be provided
381 * both separately as well as inside the frame.
382 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
383 * to ensure rt2x00lib will not strip the data from the
384 * frame after the copy, now we must tell mac80211
385 * to generate the IV/EIV data.
387 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
388 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
392 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
393 * a particular key is valid.
395 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
396 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
397 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
399 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
400 if (crypto->cmd == SET_KEY)
401 mask |= 1 << key->hw_key_idx;
402 else if (crypto->cmd == DISABLE_KEY)
403 mask &= ~(1 << key->hw_key_idx);
404 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
405 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
407 return 0;
410 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
411 const unsigned int filter_flags)
413 u16 reg;
416 * Start configuration steps.
417 * Note that the version error will always be dropped
418 * and broadcast frames will always be accepted since
419 * there is no filter for it at this time.
421 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
422 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
423 !(filter_flags & FIF_FCSFAIL));
424 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
425 !(filter_flags & FIF_PLCPFAIL));
426 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
427 !(filter_flags & FIF_CONTROL));
428 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
429 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
430 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
431 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
432 !rt2x00dev->intf_ap_count);
433 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
434 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
435 !(filter_flags & FIF_ALLMULTI));
436 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
437 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
440 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
441 struct rt2x00_intf *intf,
442 struct rt2x00intf_conf *conf,
443 const unsigned int flags)
445 unsigned int bcn_preload;
446 u16 reg;
448 if (flags & CONFIG_UPDATE_TYPE) {
450 * Enable beacon config
452 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
453 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
454 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
455 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
456 2 * (conf->type != NL80211_IFTYPE_STATION));
457 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
460 * Enable synchronisation.
462 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
463 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
464 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
466 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
467 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
468 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
471 if (flags & CONFIG_UPDATE_MAC)
472 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
473 (3 * sizeof(__le16)));
475 if (flags & CONFIG_UPDATE_BSSID)
476 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
477 (3 * sizeof(__le16)));
480 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
481 struct rt2x00lib_erp *erp,
482 u32 changed)
484 u16 reg;
486 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
487 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
488 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
489 !!erp->short_preamble);
490 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
493 if (changed & BSS_CHANGED_BASIC_RATES)
494 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
495 erp->basic_rates);
497 if (changed & BSS_CHANGED_BEACON_INT) {
498 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
499 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
500 erp->beacon_int * 4);
501 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
504 if (changed & BSS_CHANGED_ERP_SLOT) {
505 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
506 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
507 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
511 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
512 struct antenna_setup *ant)
514 u8 r2;
515 u8 r14;
516 u16 csr5;
517 u16 csr6;
520 * We should never come here because rt2x00lib is supposed
521 * to catch this and send us the correct antenna explicitely.
523 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
524 ant->tx == ANTENNA_SW_DIVERSITY);
526 r2 = rt2500usb_bbp_read(rt2x00dev, 2);
527 r14 = rt2500usb_bbp_read(rt2x00dev, 14);
528 csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
529 csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
532 * Configure the TX antenna.
534 switch (ant->tx) {
535 case ANTENNA_HW_DIVERSITY:
536 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
537 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
538 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
539 break;
540 case ANTENNA_A:
541 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
542 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
543 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
544 break;
545 case ANTENNA_B:
546 default:
547 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
548 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
549 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
550 break;
554 * Configure the RX antenna.
556 switch (ant->rx) {
557 case ANTENNA_HW_DIVERSITY:
558 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
559 break;
560 case ANTENNA_A:
561 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
562 break;
563 case ANTENNA_B:
564 default:
565 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
566 break;
570 * RT2525E and RT5222 need to flip TX I/Q
572 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
573 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
574 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
575 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
578 * RT2525E does not need RX I/Q Flip.
580 if (rt2x00_rf(rt2x00dev, RF2525E))
581 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
582 } else {
583 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
584 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
587 rt2500usb_bbp_write(rt2x00dev, 2, r2);
588 rt2500usb_bbp_write(rt2x00dev, 14, r14);
589 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
590 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
593 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
594 struct rf_channel *rf, const int txpower)
597 * Set TXpower.
599 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
602 * For RT2525E we should first set the channel to half band higher.
604 if (rt2x00_rf(rt2x00dev, RF2525E)) {
605 static const u32 vals[] = {
606 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
607 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
608 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
609 0x00000902, 0x00000906
612 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
613 if (rf->rf4)
614 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
617 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
618 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
619 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
620 if (rf->rf4)
621 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
624 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
625 const int txpower)
627 u32 rf3;
629 rf3 = rt2x00_rf_read(rt2x00dev, 3);
630 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
631 rt2500usb_rf_write(rt2x00dev, 3, rf3);
634 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
635 struct rt2x00lib_conf *libconf)
637 enum dev_state state =
638 (libconf->conf->flags & IEEE80211_CONF_PS) ?
639 STATE_SLEEP : STATE_AWAKE;
640 u16 reg;
642 if (state == STATE_SLEEP) {
643 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
644 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
645 rt2x00dev->beacon_int - 20);
646 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
647 libconf->conf->listen_interval - 1);
649 /* We must first disable autowake before it can be enabled */
650 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
651 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
653 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
654 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
655 } else {
656 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
657 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
658 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
661 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
664 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
665 struct rt2x00lib_conf *libconf,
666 const unsigned int flags)
668 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
669 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
670 libconf->conf->power_level);
671 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
672 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
673 rt2500usb_config_txpower(rt2x00dev,
674 libconf->conf->power_level);
675 if (flags & IEEE80211_CONF_CHANGE_PS)
676 rt2500usb_config_ps(rt2x00dev, libconf);
680 * Link tuning
682 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
683 struct link_qual *qual)
685 u16 reg;
688 * Update FCS error count from register.
690 reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
691 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
694 * Update False CCA count from register.
696 reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
697 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
700 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
701 struct link_qual *qual)
703 u16 eeprom;
704 u16 value;
706 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
707 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
708 rt2500usb_bbp_write(rt2x00dev, 24, value);
710 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
711 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
712 rt2500usb_bbp_write(rt2x00dev, 25, value);
714 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
715 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
716 rt2500usb_bbp_write(rt2x00dev, 61, value);
718 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
719 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
720 rt2500usb_bbp_write(rt2x00dev, 17, value);
722 qual->vgc_level = value;
726 * Queue handlers.
728 static void rt2500usb_start_queue(struct data_queue *queue)
730 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
731 u16 reg;
733 switch (queue->qid) {
734 case QID_RX:
735 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
736 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
737 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
738 break;
739 case QID_BEACON:
740 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
741 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
742 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
743 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
744 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
745 break;
746 default:
747 break;
751 static void rt2500usb_stop_queue(struct data_queue *queue)
753 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
754 u16 reg;
756 switch (queue->qid) {
757 case QID_RX:
758 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
759 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
760 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
761 break;
762 case QID_BEACON:
763 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
764 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
765 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
766 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
767 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
768 break;
769 default:
770 break;
775 * Initialization functions.
777 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
779 u16 reg;
781 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
782 USB_MODE_TEST, REGISTER_TIMEOUT);
783 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
784 0x00f0, REGISTER_TIMEOUT);
786 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
787 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
788 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
790 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
791 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
793 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
794 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
795 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
796 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
797 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
799 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
800 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
801 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
802 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
803 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
805 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
806 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
807 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
808 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
809 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
810 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
812 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
813 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
814 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
815 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
816 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
817 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
819 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
820 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
821 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
822 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
823 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
824 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
826 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
827 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
828 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
829 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
830 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
831 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
833 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
834 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
835 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
836 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
837 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
838 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
840 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
841 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
843 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
844 return -EBUSY;
846 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
847 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
848 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
849 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
850 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
852 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
853 reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
854 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
855 } else {
856 reg = 0;
857 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
858 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
860 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
862 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
863 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
864 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
865 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
867 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
868 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
869 rt2x00dev->rx->data_size);
870 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
872 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
873 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
874 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
875 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
876 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
878 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
879 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
880 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
882 reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
883 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
884 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
886 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
887 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
888 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
890 return 0;
893 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
895 unsigned int i;
896 u8 value;
898 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
899 value = rt2500usb_bbp_read(rt2x00dev, 0);
900 if ((value != 0xff) && (value != 0x00))
901 return 0;
902 udelay(REGISTER_BUSY_DELAY);
905 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
906 return -EACCES;
909 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
911 unsigned int i;
912 u16 eeprom;
913 u8 value;
914 u8 reg_id;
916 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
917 return -EACCES;
919 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
920 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
921 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
922 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
923 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
924 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
925 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
926 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
927 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
928 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
929 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
930 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
931 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
932 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
933 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
934 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
935 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
936 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
937 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
938 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
939 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
940 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
941 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
942 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
943 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
944 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
945 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
946 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
947 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
948 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
949 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
951 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
952 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
954 if (eeprom != 0xffff && eeprom != 0x0000) {
955 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
956 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
957 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
961 return 0;
965 * Device state switch handlers.
967 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
970 * Initialize all registers.
972 if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
973 rt2500usb_init_bbp(rt2x00dev)))
974 return -EIO;
976 return 0;
979 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
981 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
982 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
985 * Disable synchronisation.
987 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
989 rt2x00usb_disable_radio(rt2x00dev);
992 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
993 enum dev_state state)
995 u16 reg;
996 u16 reg2;
997 unsigned int i;
998 char put_to_sleep;
999 char bbp_state;
1000 char rf_state;
1002 put_to_sleep = (state != STATE_AWAKE);
1004 reg = 0;
1005 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1006 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1007 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1008 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1009 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1010 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1013 * Device is not guaranteed to be in the requested state yet.
1014 * We must wait until the register indicates that the
1015 * device has entered the correct state.
1017 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1018 reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
1019 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1020 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1021 if (bbp_state == state && rf_state == state)
1022 return 0;
1023 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1024 msleep(30);
1027 return -EBUSY;
1030 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1031 enum dev_state state)
1033 int retval = 0;
1035 switch (state) {
1036 case STATE_RADIO_ON:
1037 retval = rt2500usb_enable_radio(rt2x00dev);
1038 break;
1039 case STATE_RADIO_OFF:
1040 rt2500usb_disable_radio(rt2x00dev);
1041 break;
1042 case STATE_RADIO_IRQ_ON:
1043 case STATE_RADIO_IRQ_OFF:
1044 /* No support, but no error either */
1045 break;
1046 case STATE_DEEP_SLEEP:
1047 case STATE_SLEEP:
1048 case STATE_STANDBY:
1049 case STATE_AWAKE:
1050 retval = rt2500usb_set_state(rt2x00dev, state);
1051 break;
1052 default:
1053 retval = -ENOTSUPP;
1054 break;
1057 if (unlikely(retval))
1058 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1059 state, retval);
1061 return retval;
1065 * TX descriptor initialization
1067 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1068 struct txentry_desc *txdesc)
1070 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1071 __le32 *txd = (__le32 *) entry->skb->data;
1072 u32 word;
1075 * Start writing the descriptor words.
1077 word = rt2x00_desc_read(txd, 0);
1078 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1079 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1080 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1081 rt2x00_set_field32(&word, TXD_W0_ACK,
1082 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1083 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1084 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1085 rt2x00_set_field32(&word, TXD_W0_OFDM,
1086 (txdesc->rate_mode == RATE_MODE_OFDM));
1087 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1088 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1089 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1090 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1091 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1092 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1093 rt2x00_desc_write(txd, 0, word);
1095 word = rt2x00_desc_read(txd, 1);
1096 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1097 rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1098 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1099 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1100 rt2x00_desc_write(txd, 1, word);
1102 word = rt2x00_desc_read(txd, 2);
1103 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1104 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1105 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1106 txdesc->u.plcp.length_low);
1107 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1108 txdesc->u.plcp.length_high);
1109 rt2x00_desc_write(txd, 2, word);
1111 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1112 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1113 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1117 * Register descriptor details in skb frame descriptor.
1119 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1120 skbdesc->desc = txd;
1121 skbdesc->desc_len = TXD_DESC_SIZE;
1125 * TX data initialization
1127 static void rt2500usb_beacondone(struct urb *urb);
1129 static void rt2500usb_write_beacon(struct queue_entry *entry,
1130 struct txentry_desc *txdesc)
1132 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1133 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1134 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1135 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1136 int length;
1137 u16 reg, reg0;
1140 * Disable beaconing while we are reloading the beacon data,
1141 * otherwise we might be sending out invalid data.
1143 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
1144 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1145 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1148 * Add space for the descriptor in front of the skb.
1150 skb_push(entry->skb, TXD_DESC_SIZE);
1151 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1154 * Write the TX descriptor for the beacon.
1156 rt2500usb_write_tx_desc(entry, txdesc);
1159 * Dump beacon to userspace through debugfs.
1161 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1164 * USB devices cannot blindly pass the skb->len as the
1165 * length of the data to usb_fill_bulk_urb. Pass the skb
1166 * to the driver to determine what the length should be.
1168 length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1170 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1171 entry->skb->data, length, rt2500usb_beacondone,
1172 entry);
1175 * Second we need to create the guardian byte.
1176 * We only need a single byte, so lets recycle
1177 * the 'flags' field we are not using for beacons.
1179 bcn_priv->guardian_data = 0;
1180 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1181 &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1182 entry);
1185 * Send out the guardian byte.
1187 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1190 * Enable beaconing again.
1192 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1193 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1194 reg0 = reg;
1195 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1197 * Beacon generation will fail initially.
1198 * To prevent this we need to change the TXRX_CSR19
1199 * register several times (reg0 is the same as reg
1200 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1201 * and 1 in reg).
1203 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1204 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1205 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1206 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1207 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1210 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1212 int length;
1215 * The length _must_ be a multiple of 2,
1216 * but it must _not_ be a multiple of the USB packet size.
1218 length = roundup(entry->skb->len, 2);
1219 length += (2 * !(length % entry->queue->usb_maxpacket));
1221 return length;
1225 * RX control handlers
1227 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1228 struct rxdone_entry_desc *rxdesc)
1230 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1231 struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1232 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1233 __le32 *rxd =
1234 (__le32 *)(entry->skb->data +
1235 (entry_priv->urb->actual_length -
1236 entry->queue->desc_size));
1237 u32 word0;
1238 u32 word1;
1241 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1242 * frame data in rt2x00usb.
1244 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1245 rxd = (__le32 *)skbdesc->desc;
1248 * It is now safe to read the descriptor on all architectures.
1250 word0 = rt2x00_desc_read(rxd, 0);
1251 word1 = rt2x00_desc_read(rxd, 1);
1253 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1254 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1255 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1256 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1258 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1259 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1260 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1262 if (rxdesc->cipher != CIPHER_NONE) {
1263 rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1264 rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1265 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1267 /* ICV is located at the end of frame */
1269 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1270 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1271 rxdesc->flags |= RX_FLAG_DECRYPTED;
1272 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1273 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1277 * Obtain the status about this packet.
1278 * When frame was received with an OFDM bitrate,
1279 * the signal is the PLCP value. If it was received with
1280 * a CCK bitrate the signal is the rate in 100kbit/s.
1282 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1283 rxdesc->rssi =
1284 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1285 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1287 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1288 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1289 else
1290 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1291 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1292 rxdesc->dev_flags |= RXDONE_MY_BSS;
1295 * Adjust the skb memory window to the frame boundaries.
1297 skb_trim(entry->skb, rxdesc->size);
1301 * Interrupt functions.
1303 static void rt2500usb_beacondone(struct urb *urb)
1305 struct queue_entry *entry = (struct queue_entry *)urb->context;
1306 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1308 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1309 return;
1312 * Check if this was the guardian beacon,
1313 * if that was the case we need to send the real beacon now.
1314 * Otherwise we should free the sk_buffer, the device
1315 * should be doing the rest of the work now.
1317 if (bcn_priv->guardian_urb == urb) {
1318 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1319 } else if (bcn_priv->urb == urb) {
1320 dev_kfree_skb(entry->skb);
1321 entry->skb = NULL;
1326 * Device probe functions.
1328 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1330 u16 word;
1331 u8 *mac;
1332 u8 bbp;
1334 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1337 * Start validation of the data that has been read.
1339 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1340 rt2x00lib_set_mac_address(rt2x00dev, mac);
1342 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1343 if (word == 0xffff) {
1344 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1345 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1346 ANTENNA_SW_DIVERSITY);
1347 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1348 ANTENNA_SW_DIVERSITY);
1349 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1350 LED_MODE_DEFAULT);
1351 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1352 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1353 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1354 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1355 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1358 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1359 if (word == 0xffff) {
1360 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1361 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1362 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1363 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1364 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1367 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1368 if (word == 0xffff) {
1369 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1370 DEFAULT_RSSI_OFFSET);
1371 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1372 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1373 word);
1376 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE);
1377 if (word == 0xffff) {
1378 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1379 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1380 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1384 * Switch lower vgc bound to current BBP R17 value,
1385 * lower the value a bit for better quality.
1387 bbp = rt2500usb_bbp_read(rt2x00dev, 17);
1388 bbp -= 6;
1390 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
1391 if (word == 0xffff) {
1392 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1393 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1394 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1395 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1396 } else {
1397 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1398 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1401 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17);
1402 if (word == 0xffff) {
1403 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1404 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1405 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1406 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1409 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
1410 if (word == 0xffff) {
1411 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1412 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1413 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1414 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1417 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
1418 if (word == 0xffff) {
1419 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1420 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1421 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1422 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1425 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
1426 if (word == 0xffff) {
1427 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1428 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1429 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1430 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1433 return 0;
1436 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1438 u16 reg;
1439 u16 value;
1440 u16 eeprom;
1443 * Read EEPROM word for configuration.
1445 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1448 * Identify RF chipset.
1450 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1451 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
1452 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1454 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1455 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1456 return -ENODEV;
1459 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1460 !rt2x00_rf(rt2x00dev, RF2523) &&
1461 !rt2x00_rf(rt2x00dev, RF2524) &&
1462 !rt2x00_rf(rt2x00dev, RF2525) &&
1463 !rt2x00_rf(rt2x00dev, RF2525E) &&
1464 !rt2x00_rf(rt2x00dev, RF5222)) {
1465 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1466 return -ENODEV;
1470 * Identify default antenna configuration.
1472 rt2x00dev->default_ant.tx =
1473 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1474 rt2x00dev->default_ant.rx =
1475 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1478 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1479 * I am not 100% sure about this, but the legacy drivers do not
1480 * indicate antenna swapping in software is required when
1481 * diversity is enabled.
1483 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1484 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1485 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1486 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1489 * Store led mode, for correct led behaviour.
1491 #ifdef CONFIG_RT2X00_LIB_LEDS
1492 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1494 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1495 if (value == LED_MODE_TXRX_ACTIVITY ||
1496 value == LED_MODE_DEFAULT ||
1497 value == LED_MODE_ASUS)
1498 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1499 LED_TYPE_ACTIVITY);
1500 #endif /* CONFIG_RT2X00_LIB_LEDS */
1503 * Detect if this device has an hardware controlled radio.
1505 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1506 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1509 * Read the RSSI <-> dBm offset information.
1511 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1512 rt2x00dev->rssi_offset =
1513 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1515 return 0;
1519 * RF value list for RF2522
1520 * Supports: 2.4 GHz
1522 static const struct rf_channel rf_vals_bg_2522[] = {
1523 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1524 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1525 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1526 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1527 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1528 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1529 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1530 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1531 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1532 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1533 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1534 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1535 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1536 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1540 * RF value list for RF2523
1541 * Supports: 2.4 GHz
1543 static const struct rf_channel rf_vals_bg_2523[] = {
1544 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1545 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1546 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1547 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1548 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1549 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1550 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1551 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1552 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1553 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1554 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1555 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1556 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1557 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1561 * RF value list for RF2524
1562 * Supports: 2.4 GHz
1564 static const struct rf_channel rf_vals_bg_2524[] = {
1565 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1566 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1567 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1568 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1569 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1570 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1571 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1572 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1573 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1574 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1575 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1576 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1577 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1578 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1582 * RF value list for RF2525
1583 * Supports: 2.4 GHz
1585 static const struct rf_channel rf_vals_bg_2525[] = {
1586 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1587 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1588 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1589 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1590 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1591 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1592 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1593 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1594 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1595 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1596 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1597 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1598 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1599 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1603 * RF value list for RF2525e
1604 * Supports: 2.4 GHz
1606 static const struct rf_channel rf_vals_bg_2525e[] = {
1607 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1608 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1609 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1610 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1611 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1612 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1613 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1614 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1615 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1616 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1617 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1618 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1619 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1620 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1624 * RF value list for RF5222
1625 * Supports: 2.4 GHz & 5.2 GHz
1627 static const struct rf_channel rf_vals_5222[] = {
1628 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1629 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1630 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1631 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1632 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1633 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1634 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1635 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1636 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1637 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1638 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1639 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1640 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1641 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1643 /* 802.11 UNI / HyperLan 2 */
1644 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1645 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1646 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1647 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1648 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1649 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1650 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1651 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1653 /* 802.11 HyperLan 2 */
1654 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1655 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1656 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1657 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1658 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1659 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1660 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1661 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1662 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1663 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1665 /* 802.11 UNII */
1666 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1667 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1668 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1669 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1670 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1673 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1675 struct hw_mode_spec *spec = &rt2x00dev->spec;
1676 struct channel_info *info;
1677 char *tx_power;
1678 unsigned int i;
1681 * Initialize all hw fields.
1683 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1684 * capable of sending the buffered frames out after the DTIM
1685 * transmission using rt2x00lib_beacondone. This will send out
1686 * multicast and broadcast traffic immediately instead of buffering it
1687 * infinitly and thus dropping it after some time.
1689 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1690 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1691 ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1692 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1695 * Disable powersaving as default.
1697 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1699 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1700 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1701 rt2x00_eeprom_addr(rt2x00dev,
1702 EEPROM_MAC_ADDR_0));
1705 * Initialize hw_mode information.
1707 spec->supported_bands = SUPPORT_BAND_2GHZ;
1708 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1710 if (rt2x00_rf(rt2x00dev, RF2522)) {
1711 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1712 spec->channels = rf_vals_bg_2522;
1713 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1714 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1715 spec->channels = rf_vals_bg_2523;
1716 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1717 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1718 spec->channels = rf_vals_bg_2524;
1719 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1720 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1721 spec->channels = rf_vals_bg_2525;
1722 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1723 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1724 spec->channels = rf_vals_bg_2525e;
1725 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1726 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1727 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1728 spec->channels = rf_vals_5222;
1732 * Create channel information array
1734 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1735 if (!info)
1736 return -ENOMEM;
1738 spec->channels_info = info;
1740 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1741 for (i = 0; i < 14; i++) {
1742 info[i].max_power = MAX_TXPOWER;
1743 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1746 if (spec->num_channels > 14) {
1747 for (i = 14; i < spec->num_channels; i++) {
1748 info[i].max_power = MAX_TXPOWER;
1749 info[i].default_power1 = DEFAULT_TXPOWER;
1753 return 0;
1756 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1758 int retval;
1759 u16 reg;
1762 * Allocate eeprom data.
1764 retval = rt2500usb_validate_eeprom(rt2x00dev);
1765 if (retval)
1766 return retval;
1768 retval = rt2500usb_init_eeprom(rt2x00dev);
1769 if (retval)
1770 return retval;
1773 * Enable rfkill polling by setting GPIO direction of the
1774 * rfkill switch GPIO pin correctly.
1776 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
1777 rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1778 rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1781 * Initialize hw specifications.
1783 retval = rt2500usb_probe_hw_mode(rt2x00dev);
1784 if (retval)
1785 return retval;
1788 * This device requires the atim queue
1790 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1791 __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1792 if (!modparam_nohwcrypt) {
1793 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1794 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1796 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1797 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1800 * Set the rssi offset.
1802 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1804 return 0;
1807 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1808 .tx = rt2x00mac_tx,
1809 .start = rt2x00mac_start,
1810 .stop = rt2x00mac_stop,
1811 .add_interface = rt2x00mac_add_interface,
1812 .remove_interface = rt2x00mac_remove_interface,
1813 .config = rt2x00mac_config,
1814 .configure_filter = rt2x00mac_configure_filter,
1815 .set_tim = rt2x00mac_set_tim,
1816 .set_key = rt2x00mac_set_key,
1817 .sw_scan_start = rt2x00mac_sw_scan_start,
1818 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1819 .get_stats = rt2x00mac_get_stats,
1820 .bss_info_changed = rt2x00mac_bss_info_changed,
1821 .conf_tx = rt2x00mac_conf_tx,
1822 .rfkill_poll = rt2x00mac_rfkill_poll,
1823 .flush = rt2x00mac_flush,
1824 .set_antenna = rt2x00mac_set_antenna,
1825 .get_antenna = rt2x00mac_get_antenna,
1826 .get_ringparam = rt2x00mac_get_ringparam,
1827 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1830 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1831 .probe_hw = rt2500usb_probe_hw,
1832 .initialize = rt2x00usb_initialize,
1833 .uninitialize = rt2x00usb_uninitialize,
1834 .clear_entry = rt2x00usb_clear_entry,
1835 .set_device_state = rt2500usb_set_device_state,
1836 .rfkill_poll = rt2500usb_rfkill_poll,
1837 .link_stats = rt2500usb_link_stats,
1838 .reset_tuner = rt2500usb_reset_tuner,
1839 .watchdog = rt2x00usb_watchdog,
1840 .start_queue = rt2500usb_start_queue,
1841 .kick_queue = rt2x00usb_kick_queue,
1842 .stop_queue = rt2500usb_stop_queue,
1843 .flush_queue = rt2x00usb_flush_queue,
1844 .write_tx_desc = rt2500usb_write_tx_desc,
1845 .write_beacon = rt2500usb_write_beacon,
1846 .get_tx_data_len = rt2500usb_get_tx_data_len,
1847 .fill_rxdone = rt2500usb_fill_rxdone,
1848 .config_shared_key = rt2500usb_config_key,
1849 .config_pairwise_key = rt2500usb_config_key,
1850 .config_filter = rt2500usb_config_filter,
1851 .config_intf = rt2500usb_config_intf,
1852 .config_erp = rt2500usb_config_erp,
1853 .config_ant = rt2500usb_config_ant,
1854 .config = rt2500usb_config,
1857 static void rt2500usb_queue_init(struct data_queue *queue)
1859 switch (queue->qid) {
1860 case QID_RX:
1861 queue->limit = 32;
1862 queue->data_size = DATA_FRAME_SIZE;
1863 queue->desc_size = RXD_DESC_SIZE;
1864 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1865 break;
1867 case QID_AC_VO:
1868 case QID_AC_VI:
1869 case QID_AC_BE:
1870 case QID_AC_BK:
1871 queue->limit = 32;
1872 queue->data_size = DATA_FRAME_SIZE;
1873 queue->desc_size = TXD_DESC_SIZE;
1874 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1875 break;
1877 case QID_BEACON:
1878 queue->limit = 1;
1879 queue->data_size = MGMT_FRAME_SIZE;
1880 queue->desc_size = TXD_DESC_SIZE;
1881 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1882 break;
1884 case QID_ATIM:
1885 queue->limit = 8;
1886 queue->data_size = DATA_FRAME_SIZE;
1887 queue->desc_size = TXD_DESC_SIZE;
1888 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1889 break;
1891 default:
1892 BUG();
1893 break;
1897 static const struct rt2x00_ops rt2500usb_ops = {
1898 .name = KBUILD_MODNAME,
1899 .max_ap_intf = 1,
1900 .eeprom_size = EEPROM_SIZE,
1901 .rf_size = RF_SIZE,
1902 .tx_queues = NUM_TX_QUEUES,
1903 .queue_init = rt2500usb_queue_init,
1904 .lib = &rt2500usb_rt2x00_ops,
1905 .hw = &rt2500usb_mac80211_ops,
1906 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1907 .debugfs = &rt2500usb_rt2x00debug,
1908 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1912 * rt2500usb module information.
1914 static const struct usb_device_id rt2500usb_device_table[] = {
1915 /* ASUS */
1916 { USB_DEVICE(0x0b05, 0x1706) },
1917 { USB_DEVICE(0x0b05, 0x1707) },
1918 /* Belkin */
1919 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1920 { USB_DEVICE(0x050d, 0x7051) },
1921 /* Cisco Systems */
1922 { USB_DEVICE(0x13b1, 0x000d) },
1923 { USB_DEVICE(0x13b1, 0x0011) },
1924 { USB_DEVICE(0x13b1, 0x001a) },
1925 /* Conceptronic */
1926 { USB_DEVICE(0x14b2, 0x3c02) },
1927 /* D-LINK */
1928 { USB_DEVICE(0x2001, 0x3c00) },
1929 /* Gigabyte */
1930 { USB_DEVICE(0x1044, 0x8001) },
1931 { USB_DEVICE(0x1044, 0x8007) },
1932 /* Hercules */
1933 { USB_DEVICE(0x06f8, 0xe000) },
1934 /* Melco */
1935 { USB_DEVICE(0x0411, 0x005e) },
1936 { USB_DEVICE(0x0411, 0x0066) },
1937 { USB_DEVICE(0x0411, 0x0067) },
1938 { USB_DEVICE(0x0411, 0x008b) },
1939 { USB_DEVICE(0x0411, 0x0097) },
1940 /* MSI */
1941 { USB_DEVICE(0x0db0, 0x6861) },
1942 { USB_DEVICE(0x0db0, 0x6865) },
1943 { USB_DEVICE(0x0db0, 0x6869) },
1944 /* Ralink */
1945 { USB_DEVICE(0x148f, 0x1706) },
1946 { USB_DEVICE(0x148f, 0x2570) },
1947 { USB_DEVICE(0x148f, 0x9020) },
1948 /* Sagem */
1949 { USB_DEVICE(0x079b, 0x004b) },
1950 /* Siemens */
1951 { USB_DEVICE(0x0681, 0x3c06) },
1952 /* SMC */
1953 { USB_DEVICE(0x0707, 0xee13) },
1954 /* Spairon */
1955 { USB_DEVICE(0x114b, 0x0110) },
1956 /* SURECOM */
1957 { USB_DEVICE(0x0769, 0x11f3) },
1958 /* Trust */
1959 { USB_DEVICE(0x0eb0, 0x9020) },
1960 /* VTech */
1961 { USB_DEVICE(0x0f88, 0x3012) },
1962 /* Zinwell */
1963 { USB_DEVICE(0x5a57, 0x0260) },
1964 { 0, }
1967 MODULE_AUTHOR(DRV_PROJECT);
1968 MODULE_VERSION(DRV_VERSION);
1969 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1970 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1971 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1972 MODULE_LICENSE("GPL");
1974 static int rt2500usb_probe(struct usb_interface *usb_intf,
1975 const struct usb_device_id *id)
1977 return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1980 static struct usb_driver rt2500usb_driver = {
1981 .name = KBUILD_MODNAME,
1982 .id_table = rt2500usb_device_table,
1983 .probe = rt2500usb_probe,
1984 .disconnect = rt2x00usb_disconnect,
1985 .suspend = rt2x00usb_suspend,
1986 .resume = rt2x00usb_resume,
1987 .reset_resume = rt2x00usb_resume,
1988 .disable_hub_initiated_lpm = 1,
1991 module_usb_driver(rt2500usb_driver);