2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 Abstract: rt2500usb device specific routines.
22 Supported chipsets: RT2570.
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
37 * Allow hardware encryption to be disabled.
39 static bool modparam_nohwcrypt
;
40 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, 0444);
41 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
45 * All access to the CSR registers will go through the methods
46 * rt2500usb_register_read and rt2500usb_register_write.
47 * BBP and RF register require indirect register access,
48 * and use the CSR registers BBPCSR and RFCSR to achieve this.
49 * These indirect registers work with busy bits,
50 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51 * the register while taking a REGISTER_BUSY_DELAY us delay
52 * between each attampt. When the busy bit is still set at that time,
53 * the access attempt is considered to have failed,
54 * and we will print an error.
55 * If the csr_mutex is already held then the _lock variants must
58 static u16
rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
59 const unsigned int offset
)
62 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
63 USB_VENDOR_REQUEST_IN
, offset
,
65 return le16_to_cpu(reg
);
68 static u16
rt2500usb_register_read_lock(struct rt2x00_dev
*rt2x00dev
,
69 const unsigned int offset
)
72 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_READ
,
73 USB_VENDOR_REQUEST_IN
, offset
,
74 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
75 return le16_to_cpu(reg
);
78 static void rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
79 const unsigned int offset
,
82 __le16 reg
= cpu_to_le16(value
);
83 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
84 USB_VENDOR_REQUEST_OUT
, offset
,
88 static void rt2500usb_register_write_lock(struct rt2x00_dev
*rt2x00dev
,
89 const unsigned int offset
,
92 __le16 reg
= cpu_to_le16(value
);
93 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_WRITE
,
94 USB_VENDOR_REQUEST_OUT
, offset
,
95 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
98 static void rt2500usb_register_multiwrite(struct rt2x00_dev
*rt2x00dev
,
99 const unsigned int offset
,
100 void *value
, const u16 length
)
102 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
103 USB_VENDOR_REQUEST_OUT
, offset
,
107 static int rt2500usb_regbusy_read(struct rt2x00_dev
*rt2x00dev
,
108 const unsigned int offset
,
109 struct rt2x00_field16 field
,
114 for (i
= 0; i
< REGISTER_USB_BUSY_COUNT
; i
++) {
115 *reg
= rt2500usb_register_read_lock(rt2x00dev
, offset
);
116 if (!rt2x00_get_field16(*reg
, field
))
118 udelay(REGISTER_BUSY_DELAY
);
121 rt2x00_err(rt2x00dev
, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
128 #define WAIT_FOR_BBP(__dev, __reg) \
129 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
130 #define WAIT_FOR_RF(__dev, __reg) \
131 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
133 static void rt2500usb_bbp_write(struct rt2x00_dev
*rt2x00dev
,
134 const unsigned int word
, const u8 value
)
138 mutex_lock(&rt2x00dev
->csr_mutex
);
141 * Wait until the BBP becomes available, afterwards we
142 * can safely write the new data into the register.
144 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
146 rt2x00_set_field16(®
, PHY_CSR7_DATA
, value
);
147 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
148 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 0);
150 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
153 mutex_unlock(&rt2x00dev
->csr_mutex
);
156 static u8
rt2500usb_bbp_read(struct rt2x00_dev
*rt2x00dev
,
157 const unsigned int word
)
162 mutex_lock(&rt2x00dev
->csr_mutex
);
165 * Wait until the BBP becomes available, afterwards we
166 * can safely write the read request into the register.
167 * After the data has been written, we wait until hardware
168 * returns the correct value, if at any time the register
169 * doesn't become available in time, reg will be 0xffffffff
170 * which means we return 0xff to the caller.
172 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
174 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
175 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 1);
177 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
179 if (WAIT_FOR_BBP(rt2x00dev
, ®
))
180 reg
= rt2500usb_register_read_lock(rt2x00dev
, PHY_CSR7
);
183 value
= rt2x00_get_field16(reg
, PHY_CSR7_DATA
);
185 mutex_unlock(&rt2x00dev
->csr_mutex
);
190 static void rt2500usb_rf_write(struct rt2x00_dev
*rt2x00dev
,
191 const unsigned int word
, const u32 value
)
195 mutex_lock(&rt2x00dev
->csr_mutex
);
198 * Wait until the RF becomes available, afterwards we
199 * can safely write the new data into the register.
201 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
203 rt2x00_set_field16(®
, PHY_CSR9_RF_VALUE
, value
);
204 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR9
, reg
);
207 rt2x00_set_field16(®
, PHY_CSR10_RF_VALUE
, value
>> 16);
208 rt2x00_set_field16(®
, PHY_CSR10_RF_NUMBER_OF_BITS
, 20);
209 rt2x00_set_field16(®
, PHY_CSR10_RF_IF_SELECT
, 0);
210 rt2x00_set_field16(®
, PHY_CSR10_RF_BUSY
, 1);
212 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR10
, reg
);
213 rt2x00_rf_write(rt2x00dev
, word
, value
);
216 mutex_unlock(&rt2x00dev
->csr_mutex
);
219 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
220 static u32
_rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
221 const unsigned int offset
)
223 return rt2500usb_register_read(rt2x00dev
, offset
);
226 static void _rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
227 const unsigned int offset
,
230 rt2500usb_register_write(rt2x00dev
, offset
, value
);
233 static const struct rt2x00debug rt2500usb_rt2x00debug
= {
234 .owner
= THIS_MODULE
,
236 .read
= _rt2500usb_register_read
,
237 .write
= _rt2500usb_register_write
,
238 .flags
= RT2X00DEBUGFS_OFFSET
,
239 .word_base
= CSR_REG_BASE
,
240 .word_size
= sizeof(u16
),
241 .word_count
= CSR_REG_SIZE
/ sizeof(u16
),
244 .read
= rt2x00_eeprom_read
,
245 .write
= rt2x00_eeprom_write
,
246 .word_base
= EEPROM_BASE
,
247 .word_size
= sizeof(u16
),
248 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
251 .read
= rt2500usb_bbp_read
,
252 .write
= rt2500usb_bbp_write
,
253 .word_base
= BBP_BASE
,
254 .word_size
= sizeof(u8
),
255 .word_count
= BBP_SIZE
/ sizeof(u8
),
258 .read
= rt2x00_rf_read
,
259 .write
= rt2500usb_rf_write
,
260 .word_base
= RF_BASE
,
261 .word_size
= sizeof(u32
),
262 .word_count
= RF_SIZE
/ sizeof(u32
),
265 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
267 static int rt2500usb_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
271 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR19
);
272 return rt2x00_get_field16(reg
, MAC_CSR19_VAL7
);
275 #ifdef CONFIG_RT2X00_LIB_LEDS
276 static void rt2500usb_brightness_set(struct led_classdev
*led_cdev
,
277 enum led_brightness brightness
)
279 struct rt2x00_led
*led
=
280 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
281 unsigned int enabled
= brightness
!= LED_OFF
;
284 reg
= rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR20
);
286 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
287 rt2x00_set_field16(®
, MAC_CSR20_LINK
, enabled
);
288 else if (led
->type
== LED_TYPE_ACTIVITY
)
289 rt2x00_set_field16(®
, MAC_CSR20_ACTIVITY
, enabled
);
291 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR20
, reg
);
294 static int rt2500usb_blink_set(struct led_classdev
*led_cdev
,
295 unsigned long *delay_on
,
296 unsigned long *delay_off
)
298 struct rt2x00_led
*led
=
299 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
302 reg
= rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR21
);
303 rt2x00_set_field16(®
, MAC_CSR21_ON_PERIOD
, *delay_on
);
304 rt2x00_set_field16(®
, MAC_CSR21_OFF_PERIOD
, *delay_off
);
305 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR21
, reg
);
310 static void rt2500usb_init_led(struct rt2x00_dev
*rt2x00dev
,
311 struct rt2x00_led
*led
,
314 led
->rt2x00dev
= rt2x00dev
;
316 led
->led_dev
.brightness_set
= rt2500usb_brightness_set
;
317 led
->led_dev
.blink_set
= rt2500usb_blink_set
;
318 led
->flags
= LED_INITIALIZED
;
320 #endif /* CONFIG_RT2X00_LIB_LEDS */
323 * Configuration handlers.
327 * rt2500usb does not differentiate between shared and pairwise
328 * keys, so we should use the same function for both key types.
330 static int rt2500usb_config_key(struct rt2x00_dev
*rt2x00dev
,
331 struct rt2x00lib_crypto
*crypto
,
332 struct ieee80211_key_conf
*key
)
336 enum cipher curr_cipher
;
338 if (crypto
->cmd
== SET_KEY
) {
340 * Disallow to set WEP key other than with index 0,
341 * it is known that not work at least on some hardware.
342 * SW crypto will be used in that case.
344 if ((key
->cipher
== WLAN_CIPHER_SUITE_WEP40
||
345 key
->cipher
== WLAN_CIPHER_SUITE_WEP104
) &&
350 * Pairwise key will always be entry 0, but this
351 * could collide with a shared key on the same
354 mask
= TXRX_CSR0_KEY_ID
.bit_mask
;
356 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
);
357 curr_cipher
= rt2x00_get_field16(reg
, TXRX_CSR0_ALGORITHM
);
360 if (reg
&& reg
== mask
)
363 reg
= rt2x00_get_field16(reg
, TXRX_CSR0_KEY_ID
);
365 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
367 * Hardware requires that all keys use the same cipher
368 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
369 * If this is not the first key, compare the cipher with the
370 * first one and fall back to SW crypto if not the same.
372 if (key
->hw_key_idx
> 0 && crypto
->cipher
!= curr_cipher
)
375 rt2500usb_register_multiwrite(rt2x00dev
, KEY_ENTRY(key
->hw_key_idx
),
376 crypto
->key
, sizeof(crypto
->key
));
379 * The driver does not support the IV/EIV generation
380 * in hardware. However it demands the data to be provided
381 * both separately as well as inside the frame.
382 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
383 * to ensure rt2x00lib will not strip the data from the
384 * frame after the copy, now we must tell mac80211
385 * to generate the IV/EIV data.
387 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
388 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_MMIC
;
392 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
393 * a particular key is valid.
395 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
);
396 rt2x00_set_field16(®
, TXRX_CSR0_ALGORITHM
, crypto
->cipher
);
397 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
399 mask
= rt2x00_get_field16(reg
, TXRX_CSR0_KEY_ID
);
400 if (crypto
->cmd
== SET_KEY
)
401 mask
|= 1 << key
->hw_key_idx
;
402 else if (crypto
->cmd
== DISABLE_KEY
)
403 mask
&= ~(1 << key
->hw_key_idx
);
404 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, mask
);
405 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
410 static void rt2500usb_config_filter(struct rt2x00_dev
*rt2x00dev
,
411 const unsigned int filter_flags
)
416 * Start configuration steps.
417 * Note that the version error will always be dropped
418 * and broadcast frames will always be accepted since
419 * there is no filter for it at this time.
421 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
);
422 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CRC
,
423 !(filter_flags
& FIF_FCSFAIL
));
424 rt2x00_set_field16(®
, TXRX_CSR2_DROP_PHYSICAL
,
425 !(filter_flags
& FIF_PLCPFAIL
));
426 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CONTROL
,
427 !(filter_flags
& FIF_CONTROL
));
428 rt2x00_set_field16(®
, TXRX_CSR2_DROP_NOT_TO_ME
,
429 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
));
430 rt2x00_set_field16(®
, TXRX_CSR2_DROP_TODS
,
431 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
) &&
432 !rt2x00dev
->intf_ap_count
);
433 rt2x00_set_field16(®
, TXRX_CSR2_DROP_VERSION_ERROR
, 1);
434 rt2x00_set_field16(®
, TXRX_CSR2_DROP_MULTICAST
,
435 !(filter_flags
& FIF_ALLMULTI
));
436 rt2x00_set_field16(®
, TXRX_CSR2_DROP_BROADCAST
, 0);
437 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
440 static void rt2500usb_config_intf(struct rt2x00_dev
*rt2x00dev
,
441 struct rt2x00_intf
*intf
,
442 struct rt2x00intf_conf
*conf
,
443 const unsigned int flags
)
445 unsigned int bcn_preload
;
448 if (flags
& CONFIG_UPDATE_TYPE
) {
450 * Enable beacon config
452 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
453 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR20
);
454 rt2x00_set_field16(®
, TXRX_CSR20_OFFSET
, bcn_preload
>> 6);
455 rt2x00_set_field16(®
, TXRX_CSR20_BCN_EXPECT_WINDOW
,
456 2 * (conf
->type
!= NL80211_IFTYPE_STATION
));
457 rt2500usb_register_write(rt2x00dev
, TXRX_CSR20
, reg
);
460 * Enable synchronisation.
462 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
);
463 rt2x00_set_field16(®
, TXRX_CSR18_OFFSET
, 0);
464 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
466 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
);
467 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, conf
->sync
);
468 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
471 if (flags
& CONFIG_UPDATE_MAC
)
472 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR2
, conf
->mac
,
473 (3 * sizeof(__le16
)));
475 if (flags
& CONFIG_UPDATE_BSSID
)
476 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR5
, conf
->bssid
,
477 (3 * sizeof(__le16
)));
480 static void rt2500usb_config_erp(struct rt2x00_dev
*rt2x00dev
,
481 struct rt2x00lib_erp
*erp
,
486 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
487 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR10
);
488 rt2x00_set_field16(®
, TXRX_CSR10_AUTORESPOND_PREAMBLE
,
489 !!erp
->short_preamble
);
490 rt2500usb_register_write(rt2x00dev
, TXRX_CSR10
, reg
);
493 if (changed
& BSS_CHANGED_BASIC_RATES
)
494 rt2500usb_register_write(rt2x00dev
, TXRX_CSR11
,
497 if (changed
& BSS_CHANGED_BEACON_INT
) {
498 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
);
499 rt2x00_set_field16(®
, TXRX_CSR18_INTERVAL
,
500 erp
->beacon_int
* 4);
501 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
504 if (changed
& BSS_CHANGED_ERP_SLOT
) {
505 rt2500usb_register_write(rt2x00dev
, MAC_CSR10
, erp
->slot_time
);
506 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, erp
->sifs
);
507 rt2500usb_register_write(rt2x00dev
, MAC_CSR12
, erp
->eifs
);
511 static void rt2500usb_config_ant(struct rt2x00_dev
*rt2x00dev
,
512 struct antenna_setup
*ant
)
520 * We should never come here because rt2x00lib is supposed
521 * to catch this and send us the correct antenna explicitely.
523 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
524 ant
->tx
== ANTENNA_SW_DIVERSITY
);
526 r2
= rt2500usb_bbp_read(rt2x00dev
, 2);
527 r14
= rt2500usb_bbp_read(rt2x00dev
, 14);
528 csr5
= rt2500usb_register_read(rt2x00dev
, PHY_CSR5
);
529 csr6
= rt2500usb_register_read(rt2x00dev
, PHY_CSR6
);
532 * Configure the TX antenna.
535 case ANTENNA_HW_DIVERSITY
:
536 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 1);
537 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 1);
538 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 1);
541 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
542 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 0);
543 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 0);
547 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
548 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 2);
549 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 2);
554 * Configure the RX antenna.
557 case ANTENNA_HW_DIVERSITY
:
558 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 1);
561 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
565 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
570 * RT2525E and RT5222 need to flip TX I/Q
572 if (rt2x00_rf(rt2x00dev
, RF2525E
) || rt2x00_rf(rt2x00dev
, RF5222
)) {
573 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
574 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 1);
575 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 1);
578 * RT2525E does not need RX I/Q Flip.
580 if (rt2x00_rf(rt2x00dev
, RF2525E
))
581 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
583 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 0);
584 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 0);
587 rt2500usb_bbp_write(rt2x00dev
, 2, r2
);
588 rt2500usb_bbp_write(rt2x00dev
, 14, r14
);
589 rt2500usb_register_write(rt2x00dev
, PHY_CSR5
, csr5
);
590 rt2500usb_register_write(rt2x00dev
, PHY_CSR6
, csr6
);
593 static void rt2500usb_config_channel(struct rt2x00_dev
*rt2x00dev
,
594 struct rf_channel
*rf
, const int txpower
)
599 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
602 * For RT2525E we should first set the channel to half band higher.
604 if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
605 static const u32 vals
[] = {
606 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
607 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
608 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
609 0x00000902, 0x00000906
612 rt2500usb_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
614 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
617 rt2500usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
618 rt2500usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
619 rt2500usb_rf_write(rt2x00dev
, 3, rf
->rf3
);
621 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
624 static void rt2500usb_config_txpower(struct rt2x00_dev
*rt2x00dev
,
629 rf3
= rt2x00_rf_read(rt2x00dev
, 3);
630 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
631 rt2500usb_rf_write(rt2x00dev
, 3, rf3
);
634 static void rt2500usb_config_ps(struct rt2x00_dev
*rt2x00dev
,
635 struct rt2x00lib_conf
*libconf
)
637 enum dev_state state
=
638 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
639 STATE_SLEEP
: STATE_AWAKE
;
642 if (state
== STATE_SLEEP
) {
643 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR18
);
644 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
,
645 rt2x00dev
->beacon_int
- 20);
646 rt2x00_set_field16(®
, MAC_CSR18_BEACONS_BEFORE_WAKEUP
,
647 libconf
->conf
->listen_interval
- 1);
649 /* We must first disable autowake before it can be enabled */
650 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 0);
651 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
653 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 1);
654 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
656 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR18
);
657 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 0);
658 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
661 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
664 static void rt2500usb_config(struct rt2x00_dev
*rt2x00dev
,
665 struct rt2x00lib_conf
*libconf
,
666 const unsigned int flags
)
668 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
669 rt2500usb_config_channel(rt2x00dev
, &libconf
->rf
,
670 libconf
->conf
->power_level
);
671 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
672 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
673 rt2500usb_config_txpower(rt2x00dev
,
674 libconf
->conf
->power_level
);
675 if (flags
& IEEE80211_CONF_CHANGE_PS
)
676 rt2500usb_config_ps(rt2x00dev
, libconf
);
682 static void rt2500usb_link_stats(struct rt2x00_dev
*rt2x00dev
,
683 struct link_qual
*qual
)
688 * Update FCS error count from register.
690 reg
= rt2500usb_register_read(rt2x00dev
, STA_CSR0
);
691 qual
->rx_failed
= rt2x00_get_field16(reg
, STA_CSR0_FCS_ERROR
);
694 * Update False CCA count from register.
696 reg
= rt2500usb_register_read(rt2x00dev
, STA_CSR3
);
697 qual
->false_cca
= rt2x00_get_field16(reg
, STA_CSR3_FALSE_CCA_ERROR
);
700 static void rt2500usb_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
701 struct link_qual
*qual
)
706 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
);
707 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R24_LOW
);
708 rt2500usb_bbp_write(rt2x00dev
, 24, value
);
710 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
);
711 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R25_LOW
);
712 rt2500usb_bbp_write(rt2x00dev
, 25, value
);
714 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
);
715 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R61_LOW
);
716 rt2500usb_bbp_write(rt2x00dev
, 61, value
);
718 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
);
719 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_VGCUPPER
);
720 rt2500usb_bbp_write(rt2x00dev
, 17, value
);
722 qual
->vgc_level
= value
;
728 static void rt2500usb_start_queue(struct data_queue
*queue
)
730 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
733 switch (queue
->qid
) {
735 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
);
736 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 0);
737 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
740 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
);
741 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
742 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
743 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 1);
744 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
751 static void rt2500usb_stop_queue(struct data_queue
*queue
)
753 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
756 switch (queue
->qid
) {
758 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
);
759 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 1);
760 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
763 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
);
764 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 0);
765 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 0);
766 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
767 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
775 * Initialization functions.
777 static int rt2500usb_init_registers(struct rt2x00_dev
*rt2x00dev
)
781 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0x0001,
782 USB_MODE_TEST
, REGISTER_TIMEOUT
);
783 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_SINGLE_WRITE
, 0x0308,
784 0x00f0, REGISTER_TIMEOUT
);
786 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
);
787 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 1);
788 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
790 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x1111);
791 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x1e11);
793 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR1
);
794 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 1);
795 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 1);
796 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
797 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
799 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR1
);
800 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
801 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
802 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
803 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
805 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR5
);
806 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0
, 13);
807 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0_VALID
, 1);
808 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1
, 12);
809 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1_VALID
, 1);
810 rt2500usb_register_write(rt2x00dev
, TXRX_CSR5
, reg
);
812 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR6
);
813 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0
, 10);
814 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0_VALID
, 1);
815 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1
, 11);
816 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1_VALID
, 1);
817 rt2500usb_register_write(rt2x00dev
, TXRX_CSR6
, reg
);
819 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR7
);
820 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0
, 7);
821 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0_VALID
, 1);
822 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1
, 6);
823 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1_VALID
, 1);
824 rt2500usb_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
826 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR8
);
827 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0
, 5);
828 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0_VALID
, 1);
829 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1
, 0);
830 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1_VALID
, 0);
831 rt2500usb_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
833 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
);
834 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 0);
835 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, 0);
836 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 0);
837 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
838 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
840 rt2500usb_register_write(rt2x00dev
, TXRX_CSR21
, 0xe78f);
841 rt2500usb_register_write(rt2x00dev
, MAC_CSR9
, 0xff1d);
843 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
846 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR1
);
847 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
848 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
849 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 1);
850 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
852 if (rt2x00_rev(rt2x00dev
) >= RT2570_VERSION_C
) {
853 reg
= rt2500usb_register_read(rt2x00dev
, PHY_CSR2
);
854 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 0);
857 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 1);
858 rt2x00_set_field16(®
, PHY_CSR2_LNA_MODE
, 3);
860 rt2500usb_register_write(rt2x00dev
, PHY_CSR2
, reg
);
862 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, 0x0002);
863 rt2500usb_register_write(rt2x00dev
, MAC_CSR22
, 0x0053);
864 rt2500usb_register_write(rt2x00dev
, MAC_CSR15
, 0x01ee);
865 rt2500usb_register_write(rt2x00dev
, MAC_CSR16
, 0x0000);
867 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR8
);
868 rt2x00_set_field16(®
, MAC_CSR8_MAX_FRAME_UNIT
,
869 rt2x00dev
->rx
->data_size
);
870 rt2500usb_register_write(rt2x00dev
, MAC_CSR8
, reg
);
872 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
);
873 rt2x00_set_field16(®
, TXRX_CSR0_ALGORITHM
, CIPHER_NONE
);
874 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
875 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, 0);
876 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
878 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR18
);
879 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
, 90);
880 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
882 reg
= rt2500usb_register_read(rt2x00dev
, PHY_CSR4
);
883 rt2x00_set_field16(®
, PHY_CSR4_LOW_RF_LE
, 1);
884 rt2500usb_register_write(rt2x00dev
, PHY_CSR4
, reg
);
886 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR1
);
887 rt2x00_set_field16(®
, TXRX_CSR1_AUTO_SEQUENCE
, 1);
888 rt2500usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
893 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
898 for (i
= 0; i
< REGISTER_USB_BUSY_COUNT
; i
++) {
899 value
= rt2500usb_bbp_read(rt2x00dev
, 0);
900 if ((value
!= 0xff) && (value
!= 0x00))
902 udelay(REGISTER_BUSY_DELAY
);
905 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
909 static int rt2500usb_init_bbp(struct rt2x00_dev
*rt2x00dev
)
916 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev
)))
919 rt2500usb_bbp_write(rt2x00dev
, 3, 0x02);
920 rt2500usb_bbp_write(rt2x00dev
, 4, 0x19);
921 rt2500usb_bbp_write(rt2x00dev
, 14, 0x1c);
922 rt2500usb_bbp_write(rt2x00dev
, 15, 0x30);
923 rt2500usb_bbp_write(rt2x00dev
, 16, 0xac);
924 rt2500usb_bbp_write(rt2x00dev
, 18, 0x18);
925 rt2500usb_bbp_write(rt2x00dev
, 19, 0xff);
926 rt2500usb_bbp_write(rt2x00dev
, 20, 0x1e);
927 rt2500usb_bbp_write(rt2x00dev
, 21, 0x08);
928 rt2500usb_bbp_write(rt2x00dev
, 22, 0x08);
929 rt2500usb_bbp_write(rt2x00dev
, 23, 0x08);
930 rt2500usb_bbp_write(rt2x00dev
, 24, 0x80);
931 rt2500usb_bbp_write(rt2x00dev
, 25, 0x50);
932 rt2500usb_bbp_write(rt2x00dev
, 26, 0x08);
933 rt2500usb_bbp_write(rt2x00dev
, 27, 0x23);
934 rt2500usb_bbp_write(rt2x00dev
, 30, 0x10);
935 rt2500usb_bbp_write(rt2x00dev
, 31, 0x2b);
936 rt2500usb_bbp_write(rt2x00dev
, 32, 0xb9);
937 rt2500usb_bbp_write(rt2x00dev
, 34, 0x12);
938 rt2500usb_bbp_write(rt2x00dev
, 35, 0x50);
939 rt2500usb_bbp_write(rt2x00dev
, 39, 0xc4);
940 rt2500usb_bbp_write(rt2x00dev
, 40, 0x02);
941 rt2500usb_bbp_write(rt2x00dev
, 41, 0x60);
942 rt2500usb_bbp_write(rt2x00dev
, 53, 0x10);
943 rt2500usb_bbp_write(rt2x00dev
, 54, 0x18);
944 rt2500usb_bbp_write(rt2x00dev
, 56, 0x08);
945 rt2500usb_bbp_write(rt2x00dev
, 57, 0x10);
946 rt2500usb_bbp_write(rt2x00dev
, 58, 0x08);
947 rt2500usb_bbp_write(rt2x00dev
, 61, 0x60);
948 rt2500usb_bbp_write(rt2x00dev
, 62, 0x10);
949 rt2500usb_bbp_write(rt2x00dev
, 75, 0xff);
951 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
952 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
);
954 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
955 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
956 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
957 rt2500usb_bbp_write(rt2x00dev
, reg_id
, value
);
965 * Device state switch handlers.
967 static int rt2500usb_enable_radio(struct rt2x00_dev
*rt2x00dev
)
970 * Initialize all registers.
972 if (unlikely(rt2500usb_init_registers(rt2x00dev
) ||
973 rt2500usb_init_bbp(rt2x00dev
)))
979 static void rt2500usb_disable_radio(struct rt2x00_dev
*rt2x00dev
)
981 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x2121);
982 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x2121);
985 * Disable synchronisation.
987 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
989 rt2x00usb_disable_radio(rt2x00dev
);
992 static int rt2500usb_set_state(struct rt2x00_dev
*rt2x00dev
,
993 enum dev_state state
)
1002 put_to_sleep
= (state
!= STATE_AWAKE
);
1005 rt2x00_set_field16(®
, MAC_CSR17_BBP_DESIRE_STATE
, state
);
1006 rt2x00_set_field16(®
, MAC_CSR17_RF_DESIRE_STATE
, state
);
1007 rt2x00_set_field16(®
, MAC_CSR17_PUT_TO_SLEEP
, put_to_sleep
);
1008 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1009 rt2x00_set_field16(®
, MAC_CSR17_SET_STATE
, 1);
1010 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1013 * Device is not guaranteed to be in the requested state yet.
1014 * We must wait until the register indicates that the
1015 * device has entered the correct state.
1017 for (i
= 0; i
< REGISTER_USB_BUSY_COUNT
; i
++) {
1018 reg2
= rt2500usb_register_read(rt2x00dev
, MAC_CSR17
);
1019 bbp_state
= rt2x00_get_field16(reg2
, MAC_CSR17_BBP_CURR_STATE
);
1020 rf_state
= rt2x00_get_field16(reg2
, MAC_CSR17_RF_CURR_STATE
);
1021 if (bbp_state
== state
&& rf_state
== state
)
1023 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1030 static int rt2500usb_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1031 enum dev_state state
)
1036 case STATE_RADIO_ON
:
1037 retval
= rt2500usb_enable_radio(rt2x00dev
);
1039 case STATE_RADIO_OFF
:
1040 rt2500usb_disable_radio(rt2x00dev
);
1042 case STATE_RADIO_IRQ_ON
:
1043 case STATE_RADIO_IRQ_OFF
:
1044 /* No support, but no error either */
1046 case STATE_DEEP_SLEEP
:
1050 retval
= rt2500usb_set_state(rt2x00dev
, state
);
1057 if (unlikely(retval
))
1058 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1065 * TX descriptor initialization
1067 static void rt2500usb_write_tx_desc(struct queue_entry
*entry
,
1068 struct txentry_desc
*txdesc
)
1070 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1071 __le32
*txd
= (__le32
*) entry
->skb
->data
;
1075 * Start writing the descriptor words.
1077 word
= rt2x00_desc_read(txd
, 0);
1078 rt2x00_set_field32(&word
, TXD_W0_RETRY_LIMIT
, txdesc
->retry_limit
);
1079 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1080 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1081 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1082 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1083 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1084 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1085 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1086 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1087 rt2x00_set_field32(&word
, TXD_W0_NEW_SEQ
,
1088 test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
));
1089 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1090 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1091 rt2x00_set_field32(&word
, TXD_W0_CIPHER
, !!txdesc
->cipher
);
1092 rt2x00_set_field32(&word
, TXD_W0_KEY_ID
, txdesc
->key_idx
);
1093 rt2x00_desc_write(txd
, 0, word
);
1095 word
= rt2x00_desc_read(txd
, 1);
1096 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1097 rt2x00_set_field32(&word
, TXD_W1_AIFS
, entry
->queue
->aifs
);
1098 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, entry
->queue
->cw_min
);
1099 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, entry
->queue
->cw_max
);
1100 rt2x00_desc_write(txd
, 1, word
);
1102 word
= rt2x00_desc_read(txd
, 2);
1103 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1104 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1105 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
,
1106 txdesc
->u
.plcp
.length_low
);
1107 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
,
1108 txdesc
->u
.plcp
.length_high
);
1109 rt2x00_desc_write(txd
, 2, word
);
1111 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1112 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1113 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1117 * Register descriptor details in skb frame descriptor.
1119 skbdesc
->flags
|= SKBDESC_DESC_IN_SKB
;
1120 skbdesc
->desc
= txd
;
1121 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1125 * TX data initialization
1127 static void rt2500usb_beacondone(struct urb
*urb
);
1129 static void rt2500usb_write_beacon(struct queue_entry
*entry
,
1130 struct txentry_desc
*txdesc
)
1132 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1133 struct usb_device
*usb_dev
= to_usb_device_intf(rt2x00dev
->dev
);
1134 struct queue_entry_priv_usb_bcn
*bcn_priv
= entry
->priv_data
;
1135 int pipe
= usb_sndbulkpipe(usb_dev
, entry
->queue
->usb_endpoint
);
1140 * Disable beaconing while we are reloading the beacon data,
1141 * otherwise we might be sending out invalid data.
1143 reg
= rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
);
1144 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
1145 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1148 * Add space for the descriptor in front of the skb.
1150 skb_push(entry
->skb
, TXD_DESC_SIZE
);
1151 memset(entry
->skb
->data
, 0, TXD_DESC_SIZE
);
1154 * Write the TX descriptor for the beacon.
1156 rt2500usb_write_tx_desc(entry
, txdesc
);
1159 * Dump beacon to userspace through debugfs.
1161 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
);
1164 * USB devices cannot blindly pass the skb->len as the
1165 * length of the data to usb_fill_bulk_urb. Pass the skb
1166 * to the driver to determine what the length should be.
1168 length
= rt2x00dev
->ops
->lib
->get_tx_data_len(entry
);
1170 usb_fill_bulk_urb(bcn_priv
->urb
, usb_dev
, pipe
,
1171 entry
->skb
->data
, length
, rt2500usb_beacondone
,
1175 * Second we need to create the guardian byte.
1176 * We only need a single byte, so lets recycle
1177 * the 'flags' field we are not using for beacons.
1179 bcn_priv
->guardian_data
= 0;
1180 usb_fill_bulk_urb(bcn_priv
->guardian_urb
, usb_dev
, pipe
,
1181 &bcn_priv
->guardian_data
, 1, rt2500usb_beacondone
,
1185 * Send out the guardian byte.
1187 usb_submit_urb(bcn_priv
->guardian_urb
, GFP_ATOMIC
);
1190 * Enable beaconing again.
1192 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
1193 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
1195 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 1);
1197 * Beacon generation will fail initially.
1198 * To prevent this we need to change the TXRX_CSR19
1199 * register several times (reg0 is the same as reg
1200 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1203 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1204 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg0
);
1205 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1206 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg0
);
1207 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1210 static int rt2500usb_get_tx_data_len(struct queue_entry
*entry
)
1215 * The length _must_ be a multiple of 2,
1216 * but it must _not_ be a multiple of the USB packet size.
1218 length
= roundup(entry
->skb
->len
, 2);
1219 length
+= (2 * !(length
% entry
->queue
->usb_maxpacket
));
1225 * RX control handlers
1227 static void rt2500usb_fill_rxdone(struct queue_entry
*entry
,
1228 struct rxdone_entry_desc
*rxdesc
)
1230 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1231 struct queue_entry_priv_usb
*entry_priv
= entry
->priv_data
;
1232 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1234 (__le32
*)(entry
->skb
->data
+
1235 (entry_priv
->urb
->actual_length
-
1236 entry
->queue
->desc_size
));
1241 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1242 * frame data in rt2x00usb.
1244 memcpy(skbdesc
->desc
, rxd
, skbdesc
->desc_len
);
1245 rxd
= (__le32
*)skbdesc
->desc
;
1248 * It is now safe to read the descriptor on all architectures.
1250 word0
= rt2x00_desc_read(rxd
, 0);
1251 word1
= rt2x00_desc_read(rxd
, 1);
1253 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1254 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1255 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1256 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1258 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER
);
1259 if (rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
))
1260 rxdesc
->cipher_status
= RX_CRYPTO_FAIL_KEY
;
1262 if (rxdesc
->cipher
!= CIPHER_NONE
) {
1263 rxdesc
->iv
[0] = _rt2x00_desc_read(rxd
, 2);
1264 rxdesc
->iv
[1] = _rt2x00_desc_read(rxd
, 3);
1265 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
1267 /* ICV is located at the end of frame */
1269 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
1270 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
1271 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
1272 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
1273 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
1277 * Obtain the status about this packet.
1278 * When frame was received with an OFDM bitrate,
1279 * the signal is the PLCP value. If it was received with
1280 * a CCK bitrate the signal is the rate in 100kbit/s.
1282 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1284 rt2x00_get_field32(word1
, RXD_W1_RSSI
) - rt2x00dev
->rssi_offset
;
1285 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1287 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1288 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1290 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1291 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1292 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1295 * Adjust the skb memory window to the frame boundaries.
1297 skb_trim(entry
->skb
, rxdesc
->size
);
1301 * Interrupt functions.
1303 static void rt2500usb_beacondone(struct urb
*urb
)
1305 struct queue_entry
*entry
= (struct queue_entry
*)urb
->context
;
1306 struct queue_entry_priv_usb_bcn
*bcn_priv
= entry
->priv_data
;
1308 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &entry
->queue
->rt2x00dev
->flags
))
1312 * Check if this was the guardian beacon,
1313 * if that was the case we need to send the real beacon now.
1314 * Otherwise we should free the sk_buffer, the device
1315 * should be doing the rest of the work now.
1317 if (bcn_priv
->guardian_urb
== urb
) {
1318 usb_submit_urb(bcn_priv
->urb
, GFP_ATOMIC
);
1319 } else if (bcn_priv
->urb
== urb
) {
1320 dev_kfree_skb(entry
->skb
);
1326 * Device probe functions.
1328 static int rt2500usb_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1334 rt2x00usb_eeprom_read(rt2x00dev
, rt2x00dev
->eeprom
, EEPROM_SIZE
);
1337 * Start validation of the data that has been read.
1339 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1340 rt2x00lib_set_mac_address(rt2x00dev
, mac
);
1342 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1343 if (word
== 0xffff) {
1344 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1345 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1346 ANTENNA_SW_DIVERSITY
);
1347 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1348 ANTENNA_SW_DIVERSITY
);
1349 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1351 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1352 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1353 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1354 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1355 rt2x00_eeprom_dbg(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1358 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
1359 if (word
== 0xffff) {
1360 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1361 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1362 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1363 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1364 rt2x00_eeprom_dbg(rt2x00dev
, "NIC: 0x%04x\n", word
);
1367 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
);
1368 if (word
== 0xffff) {
1369 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1370 DEFAULT_RSSI_OFFSET
);
1371 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1372 rt2x00_eeprom_dbg(rt2x00dev
, "Calibrate offset: 0x%04x\n",
1376 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE
);
1377 if (word
== 0xffff) {
1378 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_THRESHOLD
, 45);
1379 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE
, word
);
1380 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune: 0x%04x\n", word
);
1384 * Switch lower vgc bound to current BBP R17 value,
1385 * lower the value a bit for better quality.
1387 bbp
= rt2500usb_bbp_read(rt2x00dev
, 17);
1390 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
);
1391 if (word
== 0xffff) {
1392 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCUPPER
, 0x40);
1393 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1394 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1395 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune vgc: 0x%04x\n", word
);
1397 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1398 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1401 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R17
);
1402 if (word
== 0xffff) {
1403 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_LOW
, 0x48);
1404 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_HIGH
, 0x41);
1405 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R17
, word
);
1406 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune r17: 0x%04x\n", word
);
1409 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
);
1410 if (word
== 0xffff) {
1411 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_LOW
, 0x40);
1412 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_HIGH
, 0x80);
1413 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R24
, word
);
1414 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune r24: 0x%04x\n", word
);
1417 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
);
1418 if (word
== 0xffff) {
1419 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_LOW
, 0x40);
1420 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_HIGH
, 0x50);
1421 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R25
, word
);
1422 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune r25: 0x%04x\n", word
);
1425 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
);
1426 if (word
== 0xffff) {
1427 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_LOW
, 0x60);
1428 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_HIGH
, 0x6d);
1429 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R61
, word
);
1430 rt2x00_eeprom_dbg(rt2x00dev
, "BBPtune r61: 0x%04x\n", word
);
1436 static int rt2500usb_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1443 * Read EEPROM word for configuration.
1445 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1448 * Identify RF chipset.
1450 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1451 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR0
);
1452 rt2x00_set_chip(rt2x00dev
, RT2570
, value
, reg
);
1454 if (((reg
& 0xfff0) != 0) || ((reg
& 0x0000000f) == 0)) {
1455 rt2x00_err(rt2x00dev
, "Invalid RT chipset detected\n");
1459 if (!rt2x00_rf(rt2x00dev
, RF2522
) &&
1460 !rt2x00_rf(rt2x00dev
, RF2523
) &&
1461 !rt2x00_rf(rt2x00dev
, RF2524
) &&
1462 !rt2x00_rf(rt2x00dev
, RF2525
) &&
1463 !rt2x00_rf(rt2x00dev
, RF2525E
) &&
1464 !rt2x00_rf(rt2x00dev
, RF5222
)) {
1465 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
1470 * Identify default antenna configuration.
1472 rt2x00dev
->default_ant
.tx
=
1473 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1474 rt2x00dev
->default_ant
.rx
=
1475 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1478 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1479 * I am not 100% sure about this, but the legacy drivers do not
1480 * indicate antenna swapping in software is required when
1481 * diversity is enabled.
1483 if (rt2x00dev
->default_ant
.tx
== ANTENNA_SW_DIVERSITY
)
1484 rt2x00dev
->default_ant
.tx
= ANTENNA_HW_DIVERSITY
;
1485 if (rt2x00dev
->default_ant
.rx
== ANTENNA_SW_DIVERSITY
)
1486 rt2x00dev
->default_ant
.rx
= ANTENNA_HW_DIVERSITY
;
1489 * Store led mode, for correct led behaviour.
1491 #ifdef CONFIG_RT2X00_LIB_LEDS
1492 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1494 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1495 if (value
== LED_MODE_TXRX_ACTIVITY
||
1496 value
== LED_MODE_DEFAULT
||
1497 value
== LED_MODE_ASUS
)
1498 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1500 #endif /* CONFIG_RT2X00_LIB_LEDS */
1503 * Detect if this device has an hardware controlled radio.
1505 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1506 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
1509 * Read the RSSI <-> dBm offset information.
1511 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
);
1512 rt2x00dev
->rssi_offset
=
1513 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1519 * RF value list for RF2522
1522 static const struct rf_channel rf_vals_bg_2522
[] = {
1523 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1524 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1525 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1526 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1527 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1528 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1529 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1530 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1531 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1532 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1533 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1534 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1535 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1536 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1540 * RF value list for RF2523
1543 static const struct rf_channel rf_vals_bg_2523
[] = {
1544 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1545 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1546 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1547 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1548 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1549 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1550 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1551 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1552 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1553 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1554 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1555 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1556 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1557 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1561 * RF value list for RF2524
1564 static const struct rf_channel rf_vals_bg_2524
[] = {
1565 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1566 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1567 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1568 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1569 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1570 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1571 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1572 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1573 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1574 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1575 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1576 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1577 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1578 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1582 * RF value list for RF2525
1585 static const struct rf_channel rf_vals_bg_2525
[] = {
1586 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1587 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1588 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1589 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1590 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1591 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1592 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1593 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1594 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1595 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1596 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1597 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1598 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1599 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1603 * RF value list for RF2525e
1606 static const struct rf_channel rf_vals_bg_2525e
[] = {
1607 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1608 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1609 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1610 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1611 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1612 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1613 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1614 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1615 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1616 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1617 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1618 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1619 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1620 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1624 * RF value list for RF5222
1625 * Supports: 2.4 GHz & 5.2 GHz
1627 static const struct rf_channel rf_vals_5222
[] = {
1628 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1629 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1630 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1631 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1632 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1633 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1634 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1635 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1636 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1637 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1638 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1639 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1640 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1641 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1643 /* 802.11 UNI / HyperLan 2 */
1644 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1645 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1646 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1647 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1648 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1649 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1650 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1651 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1653 /* 802.11 HyperLan 2 */
1654 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1655 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1656 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1657 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1658 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1659 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1660 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1661 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1662 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1663 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1666 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1667 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1668 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1669 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1670 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1673 static int rt2500usb_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1675 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1676 struct channel_info
*info
;
1681 * Initialize all hw fields.
1683 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1684 * capable of sending the buffered frames out after the DTIM
1685 * transmission using rt2x00lib_beacondone. This will send out
1686 * multicast and broadcast traffic immediately instead of buffering it
1687 * infinitly and thus dropping it after some time.
1689 ieee80211_hw_set(rt2x00dev
->hw
, PS_NULLFUNC_STACK
);
1690 ieee80211_hw_set(rt2x00dev
->hw
, SUPPORTS_PS
);
1691 ieee80211_hw_set(rt2x00dev
->hw
, RX_INCLUDES_FCS
);
1692 ieee80211_hw_set(rt2x00dev
->hw
, SIGNAL_DBM
);
1695 * Disable powersaving as default.
1697 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
1699 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1700 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1701 rt2x00_eeprom_addr(rt2x00dev
,
1702 EEPROM_MAC_ADDR_0
));
1705 * Initialize hw_mode information.
1707 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1708 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1710 if (rt2x00_rf(rt2x00dev
, RF2522
)) {
1711 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1712 spec
->channels
= rf_vals_bg_2522
;
1713 } else if (rt2x00_rf(rt2x00dev
, RF2523
)) {
1714 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1715 spec
->channels
= rf_vals_bg_2523
;
1716 } else if (rt2x00_rf(rt2x00dev
, RF2524
)) {
1717 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1718 spec
->channels
= rf_vals_bg_2524
;
1719 } else if (rt2x00_rf(rt2x00dev
, RF2525
)) {
1720 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1721 spec
->channels
= rf_vals_bg_2525
;
1722 } else if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
1723 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1724 spec
->channels
= rf_vals_bg_2525e
;
1725 } else if (rt2x00_rf(rt2x00dev
, RF5222
)) {
1726 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1727 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1728 spec
->channels
= rf_vals_5222
;
1732 * Create channel information array
1734 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
1738 spec
->channels_info
= info
;
1740 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1741 for (i
= 0; i
< 14; i
++) {
1742 info
[i
].max_power
= MAX_TXPOWER
;
1743 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1746 if (spec
->num_channels
> 14) {
1747 for (i
= 14; i
< spec
->num_channels
; i
++) {
1748 info
[i
].max_power
= MAX_TXPOWER
;
1749 info
[i
].default_power1
= DEFAULT_TXPOWER
;
1756 static int rt2500usb_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1762 * Allocate eeprom data.
1764 retval
= rt2500usb_validate_eeprom(rt2x00dev
);
1768 retval
= rt2500usb_init_eeprom(rt2x00dev
);
1773 * Enable rfkill polling by setting GPIO direction of the
1774 * rfkill switch GPIO pin correctly.
1776 reg
= rt2500usb_register_read(rt2x00dev
, MAC_CSR19
);
1777 rt2x00_set_field16(®
, MAC_CSR19_DIR0
, 0);
1778 rt2500usb_register_write(rt2x00dev
, MAC_CSR19
, reg
);
1781 * Initialize hw specifications.
1783 retval
= rt2500usb_probe_hw_mode(rt2x00dev
);
1788 * This device requires the atim queue
1790 __set_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1791 __set_bit(REQUIRE_BEACON_GUARD
, &rt2x00dev
->cap_flags
);
1792 if (!modparam_nohwcrypt
) {
1793 __set_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
);
1794 __set_bit(REQUIRE_COPY_IV
, &rt2x00dev
->cap_flags
);
1796 __set_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
);
1797 __set_bit(REQUIRE_PS_AUTOWAKE
, &rt2x00dev
->cap_flags
);
1800 * Set the rssi offset.
1802 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1807 static const struct ieee80211_ops rt2500usb_mac80211_ops
= {
1809 .start
= rt2x00mac_start
,
1810 .stop
= rt2x00mac_stop
,
1811 .add_interface
= rt2x00mac_add_interface
,
1812 .remove_interface
= rt2x00mac_remove_interface
,
1813 .config
= rt2x00mac_config
,
1814 .configure_filter
= rt2x00mac_configure_filter
,
1815 .set_tim
= rt2x00mac_set_tim
,
1816 .set_key
= rt2x00mac_set_key
,
1817 .sw_scan_start
= rt2x00mac_sw_scan_start
,
1818 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
1819 .get_stats
= rt2x00mac_get_stats
,
1820 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1821 .conf_tx
= rt2x00mac_conf_tx
,
1822 .rfkill_poll
= rt2x00mac_rfkill_poll
,
1823 .flush
= rt2x00mac_flush
,
1824 .set_antenna
= rt2x00mac_set_antenna
,
1825 .get_antenna
= rt2x00mac_get_antenna
,
1826 .get_ringparam
= rt2x00mac_get_ringparam
,
1827 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
1830 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops
= {
1831 .probe_hw
= rt2500usb_probe_hw
,
1832 .initialize
= rt2x00usb_initialize
,
1833 .uninitialize
= rt2x00usb_uninitialize
,
1834 .clear_entry
= rt2x00usb_clear_entry
,
1835 .set_device_state
= rt2500usb_set_device_state
,
1836 .rfkill_poll
= rt2500usb_rfkill_poll
,
1837 .link_stats
= rt2500usb_link_stats
,
1838 .reset_tuner
= rt2500usb_reset_tuner
,
1839 .watchdog
= rt2x00usb_watchdog
,
1840 .start_queue
= rt2500usb_start_queue
,
1841 .kick_queue
= rt2x00usb_kick_queue
,
1842 .stop_queue
= rt2500usb_stop_queue
,
1843 .flush_queue
= rt2x00usb_flush_queue
,
1844 .write_tx_desc
= rt2500usb_write_tx_desc
,
1845 .write_beacon
= rt2500usb_write_beacon
,
1846 .get_tx_data_len
= rt2500usb_get_tx_data_len
,
1847 .fill_rxdone
= rt2500usb_fill_rxdone
,
1848 .config_shared_key
= rt2500usb_config_key
,
1849 .config_pairwise_key
= rt2500usb_config_key
,
1850 .config_filter
= rt2500usb_config_filter
,
1851 .config_intf
= rt2500usb_config_intf
,
1852 .config_erp
= rt2500usb_config_erp
,
1853 .config_ant
= rt2500usb_config_ant
,
1854 .config
= rt2500usb_config
,
1857 static void rt2500usb_queue_init(struct data_queue
*queue
)
1859 switch (queue
->qid
) {
1862 queue
->data_size
= DATA_FRAME_SIZE
;
1863 queue
->desc_size
= RXD_DESC_SIZE
;
1864 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
1872 queue
->data_size
= DATA_FRAME_SIZE
;
1873 queue
->desc_size
= TXD_DESC_SIZE
;
1874 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
1879 queue
->data_size
= MGMT_FRAME_SIZE
;
1880 queue
->desc_size
= TXD_DESC_SIZE
;
1881 queue
->priv_size
= sizeof(struct queue_entry_priv_usb_bcn
);
1886 queue
->data_size
= DATA_FRAME_SIZE
;
1887 queue
->desc_size
= TXD_DESC_SIZE
;
1888 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
1897 static const struct rt2x00_ops rt2500usb_ops
= {
1898 .name
= KBUILD_MODNAME
,
1900 .eeprom_size
= EEPROM_SIZE
,
1902 .tx_queues
= NUM_TX_QUEUES
,
1903 .queue_init
= rt2500usb_queue_init
,
1904 .lib
= &rt2500usb_rt2x00_ops
,
1905 .hw
= &rt2500usb_mac80211_ops
,
1906 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1907 .debugfs
= &rt2500usb_rt2x00debug
,
1908 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1912 * rt2500usb module information.
1914 static const struct usb_device_id rt2500usb_device_table
[] = {
1916 { USB_DEVICE(0x0b05, 0x1706) },
1917 { USB_DEVICE(0x0b05, 0x1707) },
1919 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1920 { USB_DEVICE(0x050d, 0x7051) },
1922 { USB_DEVICE(0x13b1, 0x000d) },
1923 { USB_DEVICE(0x13b1, 0x0011) },
1924 { USB_DEVICE(0x13b1, 0x001a) },
1926 { USB_DEVICE(0x14b2, 0x3c02) },
1928 { USB_DEVICE(0x2001, 0x3c00) },
1930 { USB_DEVICE(0x1044, 0x8001) },
1931 { USB_DEVICE(0x1044, 0x8007) },
1933 { USB_DEVICE(0x06f8, 0xe000) },
1935 { USB_DEVICE(0x0411, 0x005e) },
1936 { USB_DEVICE(0x0411, 0x0066) },
1937 { USB_DEVICE(0x0411, 0x0067) },
1938 { USB_DEVICE(0x0411, 0x008b) },
1939 { USB_DEVICE(0x0411, 0x0097) },
1941 { USB_DEVICE(0x0db0, 0x6861) },
1942 { USB_DEVICE(0x0db0, 0x6865) },
1943 { USB_DEVICE(0x0db0, 0x6869) },
1945 { USB_DEVICE(0x148f, 0x1706) },
1946 { USB_DEVICE(0x148f, 0x2570) },
1947 { USB_DEVICE(0x148f, 0x9020) },
1949 { USB_DEVICE(0x079b, 0x004b) },
1951 { USB_DEVICE(0x0681, 0x3c06) },
1953 { USB_DEVICE(0x0707, 0xee13) },
1955 { USB_DEVICE(0x114b, 0x0110) },
1957 { USB_DEVICE(0x0769, 0x11f3) },
1959 { USB_DEVICE(0x0eb0, 0x9020) },
1961 { USB_DEVICE(0x0f88, 0x3012) },
1963 { USB_DEVICE(0x5a57, 0x0260) },
1967 MODULE_AUTHOR(DRV_PROJECT
);
1968 MODULE_VERSION(DRV_VERSION
);
1969 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1970 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1971 MODULE_DEVICE_TABLE(usb
, rt2500usb_device_table
);
1972 MODULE_LICENSE("GPL");
1974 static int rt2500usb_probe(struct usb_interface
*usb_intf
,
1975 const struct usb_device_id
*id
)
1977 return rt2x00usb_probe(usb_intf
, &rt2500usb_ops
);
1980 static struct usb_driver rt2500usb_driver
= {
1981 .name
= KBUILD_MODNAME
,
1982 .id_table
= rt2500usb_device_table
,
1983 .probe
= rt2500usb_probe
,
1984 .disconnect
= rt2x00usb_disconnect
,
1985 .suspend
= rt2x00usb_suspend
,
1986 .resume
= rt2x00usb_resume
,
1987 .reset_resume
= rt2x00usb_resume
,
1988 .disable_hub_initiated_lpm
= 1,
1991 module_usb_driver(rt2500usb_driver
);