dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / net / wireless / ralink / rt2x00 / rt2800mmio.c
blobddb88cfeace21816c5490fba5a1f07b8a1787d6d
1 /* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
2 * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
3 * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
4 * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
5 * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
6 * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
7 * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
8 * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
9 * <http://rt2x00.serialmonkey.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
25 /* Module: rt2800mmio
26 * Abstract: rt2800 MMIO device routines.
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/export.h>
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2800.h"
36 #include "rt2800lib.h"
37 #include "rt2800mmio.h"
40 * TX descriptor initialization
42 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
44 return (__le32 *) entry->skb->data;
46 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
48 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
49 struct txentry_desc *txdesc)
51 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
52 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
53 __le32 *txd = entry_priv->desc;
54 u32 word;
55 const unsigned int txwi_size = entry->queue->winfo_size;
58 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
59 * must contains a TXWI structure + 802.11 header + padding + 802.11
60 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
61 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
62 * data. It means that LAST_SEC0 is always 0.
66 * Initialize TX descriptor
68 word = 0;
69 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
70 rt2x00_desc_write(txd, 0, word);
72 word = 0;
73 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
74 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
75 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
76 rt2x00_set_field32(&word, TXD_W1_BURST,
77 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
78 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
79 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
80 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
81 rt2x00_desc_write(txd, 1, word);
83 word = 0;
84 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
85 skbdesc->skb_dma + txwi_size);
86 rt2x00_desc_write(txd, 2, word);
88 word = 0;
89 rt2x00_set_field32(&word, TXD_W3_WIV,
90 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
91 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
92 rt2x00_desc_write(txd, 3, word);
95 * Register descriptor details in skb frame descriptor.
97 skbdesc->desc = txd;
98 skbdesc->desc_len = TXD_DESC_SIZE;
100 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
103 * RX control handlers
105 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
106 struct rxdone_entry_desc *rxdesc)
108 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
109 __le32 *rxd = entry_priv->desc;
110 u32 word;
112 word = rt2x00_desc_read(rxd, 3);
114 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
115 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
118 * Unfortunately we don't know the cipher type used during
119 * decryption. This prevents us from correct providing
120 * correct statistics through debugfs.
122 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
124 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
126 * Hardware has stripped IV/EIV data from 802.11 frame during
127 * decryption. Unfortunately the descriptor doesn't contain
128 * any fields with the EIV/IV data either, so they can't
129 * be restored by rt2x00lib.
131 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
134 * The hardware has already checked the Michael Mic and has
135 * stripped it from the frame. Signal this to mac80211.
137 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
139 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
140 rxdesc->flags |= RX_FLAG_DECRYPTED;
141 } else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
143 * In order to check the Michael Mic, the packet must have
144 * been decrypted. Mac80211 doesnt check the MMIC failure
145 * flag to initiate MMIC countermeasures if the decoded flag
146 * has not been set.
148 rxdesc->flags |= RX_FLAG_DECRYPTED;
150 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
154 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
155 rxdesc->dev_flags |= RXDONE_MY_BSS;
157 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
158 rxdesc->dev_flags |= RXDONE_L2PAD;
161 * Process the RXWI structure that is at the start of the buffer.
163 rt2800_process_rxwi(entry, rxdesc);
165 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
168 * Interrupt functions.
170 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
172 struct ieee80211_conf conf = { .flags = 0 };
173 struct rt2x00lib_conf libconf = { .conf = &conf };
175 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
178 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
179 struct rt2x00_field32 irq_field)
181 u32 reg;
184 * Enable a single interrupt. The interrupt mask register
185 * access needs locking.
187 spin_lock_irq(&rt2x00dev->irqmask_lock);
188 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
189 rt2x00_set_field32(&reg, irq_field, 1);
190 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
191 spin_unlock_irq(&rt2x00dev->irqmask_lock);
194 void rt2800mmio_pretbtt_tasklet(unsigned long data)
196 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
197 rt2x00lib_pretbtt(rt2x00dev);
198 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
199 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
201 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
203 void rt2800mmio_tbtt_tasklet(unsigned long data)
205 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
206 struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
207 u32 reg;
209 rt2x00lib_beacondone(rt2x00dev);
211 if (rt2x00dev->intf_ap_count) {
213 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
214 * causing beacon skew and as a result causing problems with
215 * some powersaving clients over time. Shorten the beacon
216 * interval every 64 beacons by 64us to mitigate this effect.
218 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
219 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
220 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
221 (rt2x00dev->beacon_int * 16) - 1);
222 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
223 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
224 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
225 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
226 (rt2x00dev->beacon_int * 16));
227 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
229 drv_data->tbtt_tick++;
230 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
233 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
234 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
236 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
238 void rt2800mmio_rxdone_tasklet(unsigned long data)
240 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
241 if (rt2x00mmio_rxdone(rt2x00dev))
242 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
243 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
244 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
246 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
248 void rt2800mmio_autowake_tasklet(unsigned long data)
250 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
251 rt2800mmio_wakeup(rt2x00dev);
252 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
253 rt2800mmio_enable_interrupt(rt2x00dev,
254 INT_MASK_CSR_AUTO_WAKEUP);
256 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
258 static void rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev)
260 bool timeout = false;
262 while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
263 (timeout = rt2800_txstatus_timeout(rt2x00dev))) {
265 rt2800_txdone(rt2x00dev);
267 if (timeout)
268 rt2800_txdone_nostatus(rt2x00dev);
272 static bool rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
274 u32 status;
275 bool more = false;
277 /* FIXEME: rewrite this comment
278 * The TX_FIFO_STATUS interrupt needs special care. We should
279 * read TX_STA_FIFO but we should do it immediately as otherwise
280 * the register can overflow and we would lose status reports.
282 * Hence, read the TX_STA_FIFO register and copy all tx status
283 * reports into a kernel FIFO which is handled in the txstatus
284 * tasklet. We use a tasklet to process the tx status reports
285 * because we can schedule the tasklet multiple times (when the
286 * interrupt fires again during tx status processing).
288 * txstatus tasklet is called with INT_SOURCE_CSR_TX_FIFO_STATUS
289 * disabled so have only one producer and one consumer - we don't
290 * need to lock the kfifo.
292 while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
293 status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
294 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
295 break;
297 kfifo_put(&rt2x00dev->txstatus_fifo, status);
298 more = true;
301 return more;
304 void rt2800mmio_txstatus_tasklet(unsigned long data)
306 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
308 do {
309 rt2800mmio_txdone(rt2x00dev);
311 } while (rt2800mmio_fetch_txstatus(rt2x00dev));
313 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
314 rt2800mmio_enable_interrupt(rt2x00dev,
315 INT_SOURCE_CSR_TX_FIFO_STATUS);
317 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
319 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
321 struct rt2x00_dev *rt2x00dev = dev_instance;
322 u32 reg, mask;
324 /* Read status and ACK all interrupts */
325 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
326 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
328 if (!reg)
329 return IRQ_NONE;
331 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
332 return IRQ_HANDLED;
335 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
336 * for interrupts and interrupt masks we can just use the value of
337 * INT_SOURCE_CSR to create the interrupt mask.
339 mask = ~reg;
341 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
342 rt2800mmio_fetch_txstatus(rt2x00dev);
343 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
346 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
347 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
349 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
350 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
352 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
353 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
355 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
356 tasklet_schedule(&rt2x00dev->autowake_tasklet);
359 * Disable all interrupts for which a tasklet was scheduled right now,
360 * the tasklet will reenable the appropriate interrupts.
362 spin_lock(&rt2x00dev->irqmask_lock);
363 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
364 reg &= mask;
365 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
366 spin_unlock(&rt2x00dev->irqmask_lock);
368 return IRQ_HANDLED;
370 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
372 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
373 enum dev_state state)
375 u32 reg;
376 unsigned long flags;
379 * When interrupts are being enabled, the interrupt registers
380 * should clear the register to assure a clean state.
382 if (state == STATE_RADIO_IRQ_ON) {
383 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
384 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
387 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
388 reg = 0;
389 if (state == STATE_RADIO_IRQ_ON) {
390 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
391 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
392 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
393 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
394 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
396 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
397 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
399 if (state == STATE_RADIO_IRQ_OFF) {
401 * Wait for possibly running tasklets to finish.
403 tasklet_kill(&rt2x00dev->txstatus_tasklet);
404 tasklet_kill(&rt2x00dev->rxdone_tasklet);
405 tasklet_kill(&rt2x00dev->autowake_tasklet);
406 tasklet_kill(&rt2x00dev->tbtt_tasklet);
407 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
410 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
413 * Queue handlers.
415 void rt2800mmio_start_queue(struct data_queue *queue)
417 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
418 u32 reg;
420 switch (queue->qid) {
421 case QID_RX:
422 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
423 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
424 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
425 break;
426 case QID_BEACON:
427 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
428 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
429 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
430 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
431 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
433 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
434 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
435 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
436 break;
437 default:
438 break;
441 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
443 void rt2800mmio_kick_queue(struct data_queue *queue)
445 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
446 struct queue_entry *entry;
448 switch (queue->qid) {
449 case QID_AC_VO:
450 case QID_AC_VI:
451 case QID_AC_BE:
452 case QID_AC_BK:
453 WARN_ON_ONCE(rt2x00queue_empty(queue));
454 entry = rt2x00queue_get_entry(queue, Q_INDEX);
455 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
456 entry->entry_idx);
457 break;
458 case QID_MGMT:
459 entry = rt2x00queue_get_entry(queue, Q_INDEX);
460 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
461 entry->entry_idx);
462 break;
463 default:
464 break;
467 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
469 void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
471 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
472 bool tx_queue = false;
473 unsigned int i;
475 switch (queue->qid) {
476 case QID_AC_VO:
477 case QID_AC_VI:
478 case QID_AC_BE:
479 case QID_AC_BK:
480 tx_queue = true;
481 break;
482 case QID_RX:
483 break;
484 default:
485 return;
488 for (i = 0; i < 5; i++) {
490 * Check if the driver is already done, otherwise we
491 * have to sleep a little while to give the driver/hw
492 * the oppurtunity to complete interrupt process itself.
494 if (rt2x00queue_empty(queue))
495 break;
498 * For TX queues schedule completion tasklet to catch
499 * tx status timeouts, othewise just wait.
501 if (tx_queue) {
502 tasklet_disable(&rt2x00dev->txstatus_tasklet);
503 rt2800mmio_txdone(rt2x00dev);
504 tasklet_enable(&rt2x00dev->txstatus_tasklet);
508 * Wait for a little while to give the driver
509 * the oppurtunity to recover itself.
511 msleep(50);
514 EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
516 void rt2800mmio_stop_queue(struct data_queue *queue)
518 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
519 u32 reg;
521 switch (queue->qid) {
522 case QID_RX:
523 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
524 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
525 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
526 break;
527 case QID_BEACON:
528 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
529 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
530 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
531 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
532 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
534 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
535 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
536 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
539 * Wait for current invocation to finish. The tasklet
540 * won't be scheduled anymore afterwards since we disabled
541 * the TBTT and PRE TBTT timer.
543 tasklet_kill(&rt2x00dev->tbtt_tasklet);
544 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
546 break;
547 default:
548 break;
551 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
553 void rt2800mmio_queue_init(struct data_queue *queue)
555 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
556 unsigned short txwi_size, rxwi_size;
558 rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
560 switch (queue->qid) {
561 case QID_RX:
562 queue->limit = 128;
563 queue->data_size = AGGREGATION_SIZE;
564 queue->desc_size = RXD_DESC_SIZE;
565 queue->winfo_size = rxwi_size;
566 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
567 break;
569 case QID_AC_VO:
570 case QID_AC_VI:
571 case QID_AC_BE:
572 case QID_AC_BK:
573 queue->limit = 64;
574 queue->data_size = AGGREGATION_SIZE;
575 queue->desc_size = TXD_DESC_SIZE;
576 queue->winfo_size = txwi_size;
577 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
578 break;
580 case QID_BEACON:
581 queue->limit = 8;
582 queue->data_size = 0; /* No DMA required for beacons */
583 queue->desc_size = TXD_DESC_SIZE;
584 queue->winfo_size = txwi_size;
585 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
586 break;
588 case QID_ATIM:
589 /* fallthrough */
590 default:
591 BUG();
592 break;
595 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
598 * Initialization functions.
600 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
602 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
603 u32 word;
605 if (entry->queue->qid == QID_RX) {
606 word = rt2x00_desc_read(entry_priv->desc, 1);
608 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
609 } else {
610 word = rt2x00_desc_read(entry_priv->desc, 1);
612 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
615 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
617 void rt2800mmio_clear_entry(struct queue_entry *entry)
619 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
620 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
621 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
622 u32 word;
624 if (entry->queue->qid == QID_RX) {
625 word = rt2x00_desc_read(entry_priv->desc, 0);
626 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
627 rt2x00_desc_write(entry_priv->desc, 0, word);
629 word = rt2x00_desc_read(entry_priv->desc, 1);
630 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
631 rt2x00_desc_write(entry_priv->desc, 1, word);
634 * Set RX IDX in register to inform hardware that we have
635 * handled this entry and it is available for reuse again.
637 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
638 entry->entry_idx);
639 } else {
640 word = rt2x00_desc_read(entry_priv->desc, 1);
641 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
642 rt2x00_desc_write(entry_priv->desc, 1, word);
645 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
647 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
649 struct queue_entry_priv_mmio *entry_priv;
652 * Initialize registers.
654 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
655 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
656 entry_priv->desc_dma);
657 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
658 rt2x00dev->tx[0].limit);
659 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
660 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
662 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
663 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
664 entry_priv->desc_dma);
665 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
666 rt2x00dev->tx[1].limit);
667 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
668 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
670 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
671 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
672 entry_priv->desc_dma);
673 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
674 rt2x00dev->tx[2].limit);
675 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
676 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
678 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
679 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
680 entry_priv->desc_dma);
681 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
682 rt2x00dev->tx[3].limit);
683 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
684 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
686 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
687 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
688 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
689 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
691 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
692 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
693 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
694 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
696 entry_priv = rt2x00dev->rx->entries[0].priv_data;
697 rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
698 entry_priv->desc_dma);
699 rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
700 rt2x00dev->rx[0].limit);
701 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
702 rt2x00dev->rx[0].limit - 1);
703 rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
705 rt2800_disable_wpdma(rt2x00dev);
707 rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
709 return 0;
711 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
713 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
715 u32 reg;
718 * Reset DMA indexes
720 reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
721 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
722 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
723 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
724 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
725 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
726 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
727 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
728 rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
730 rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
731 rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
733 if (rt2x00_is_pcie(rt2x00dev) &&
734 (rt2x00_rt(rt2x00dev, RT3090) ||
735 rt2x00_rt(rt2x00dev, RT3390) ||
736 rt2x00_rt(rt2x00dev, RT3572) ||
737 rt2x00_rt(rt2x00dev, RT3593) ||
738 rt2x00_rt(rt2x00dev, RT5390) ||
739 rt2x00_rt(rt2x00dev, RT5392) ||
740 rt2x00_rt(rt2x00dev, RT5592))) {
741 reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
742 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
743 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
744 rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
747 rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
749 reg = 0;
750 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
751 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
752 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
754 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
756 return 0;
758 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
761 * Device state switch handlers.
763 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
765 /* Wait for DMA, ignore error until we initialize queues. */
766 rt2800_wait_wpdma_ready(rt2x00dev);
768 if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
769 return -EIO;
771 return rt2800_enable_radio(rt2x00dev);
773 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
775 MODULE_AUTHOR(DRV_PROJECT);
776 MODULE_VERSION(DRV_VERSION);
777 MODULE_DESCRIPTION("rt2800 MMIO library");
778 MODULE_LICENSE("GPL");