2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 Abstract: rt61pci device specific routines.
22 Supported chipsets: RT2561, RT2561s, RT2661.
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/pci.h>
32 #include <linux/eeprom_93cx6.h>
35 #include "rt2x00mmio.h"
36 #include "rt2x00pci.h"
40 * Allow hardware encryption to be disabled.
42 static bool modparam_nohwcrypt
= false;
43 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, 0444);
44 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attempt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
57 #define WAIT_FOR_BBP(__dev, __reg) \
58 rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
59 #define WAIT_FOR_RF(__dev, __reg) \
60 rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
61 #define WAIT_FOR_MCU(__dev, __reg) \
62 rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
63 H2M_MAILBOX_CSR_OWNER, (__reg))
65 static void rt61pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
66 const unsigned int word
, const u8 value
)
70 mutex_lock(&rt2x00dev
->csr_mutex
);
73 * Wait until the BBP becomes available, afterwards we
74 * can safely write the new data into the register.
76 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
78 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
79 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
80 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
81 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
83 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR3
, reg
);
86 mutex_unlock(&rt2x00dev
->csr_mutex
);
89 static u8
rt61pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
90 const unsigned int word
)
95 mutex_lock(&rt2x00dev
->csr_mutex
);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
107 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
108 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
109 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
111 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR3
, reg
);
113 WAIT_FOR_BBP(rt2x00dev
, ®
);
116 value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
118 mutex_unlock(&rt2x00dev
->csr_mutex
);
123 static void rt61pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
124 const unsigned int word
, const u32 value
)
128 mutex_lock(&rt2x00dev
->csr_mutex
);
131 * Wait until the RF becomes available, afterwards we
132 * can safely write the new data into the register.
134 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
136 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
137 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
, 21);
138 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
139 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
141 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR4
, reg
);
142 rt2x00_rf_write(rt2x00dev
, word
, value
);
145 mutex_unlock(&rt2x00dev
->csr_mutex
);
148 static void rt61pci_mcu_request(struct rt2x00_dev
*rt2x00dev
,
149 const u8 command
, const u8 token
,
150 const u8 arg0
, const u8 arg1
)
154 mutex_lock(&rt2x00dev
->csr_mutex
);
157 * Wait until the MCU becomes available, afterwards we
158 * can safely write the new data into the register.
160 if (WAIT_FOR_MCU(rt2x00dev
, ®
)) {
161 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_OWNER
, 1);
162 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_CMD_TOKEN
, token
);
163 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG0
, arg0
);
164 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG1
, arg1
);
165 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, reg
);
167 reg
= rt2x00mmio_register_read(rt2x00dev
, HOST_CMD_CSR
);
168 rt2x00_set_field32(®
, HOST_CMD_CSR_HOST_COMMAND
, command
);
169 rt2x00_set_field32(®
, HOST_CMD_CSR_INTERRUPT_MCU
, 1);
170 rt2x00mmio_register_write(rt2x00dev
, HOST_CMD_CSR
, reg
);
173 mutex_unlock(&rt2x00dev
->csr_mutex
);
177 static void rt61pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
179 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
182 reg
= rt2x00mmio_register_read(rt2x00dev
, E2PROM_CSR
);
184 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_IN
);
185 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_OUT
);
186 eeprom
->reg_data_clock
=
187 !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_CLOCK
);
188 eeprom
->reg_chip_select
=
189 !!rt2x00_get_field32(reg
, E2PROM_CSR_CHIP_SELECT
);
192 static void rt61pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
194 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
197 rt2x00_set_field32(®
, E2PROM_CSR_DATA_IN
, !!eeprom
->reg_data_in
);
198 rt2x00_set_field32(®
, E2PROM_CSR_DATA_OUT
, !!eeprom
->reg_data_out
);
199 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
,
200 !!eeprom
->reg_data_clock
);
201 rt2x00_set_field32(®
, E2PROM_CSR_CHIP_SELECT
,
202 !!eeprom
->reg_chip_select
);
204 rt2x00mmio_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
207 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
208 static const struct rt2x00debug rt61pci_rt2x00debug
= {
209 .owner
= THIS_MODULE
,
211 .read
= rt2x00mmio_register_read
,
212 .write
= rt2x00mmio_register_write
,
213 .flags
= RT2X00DEBUGFS_OFFSET
,
214 .word_base
= CSR_REG_BASE
,
215 .word_size
= sizeof(u32
),
216 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
219 .read
= rt2x00_eeprom_read
,
220 .write
= rt2x00_eeprom_write
,
221 .word_base
= EEPROM_BASE
,
222 .word_size
= sizeof(u16
),
223 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
226 .read
= rt61pci_bbp_read
,
227 .write
= rt61pci_bbp_write
,
228 .word_base
= BBP_BASE
,
229 .word_size
= sizeof(u8
),
230 .word_count
= BBP_SIZE
/ sizeof(u8
),
233 .read
= rt2x00_rf_read
,
234 .write
= rt61pci_rf_write
,
235 .word_base
= RF_BASE
,
236 .word_size
= sizeof(u32
),
237 .word_count
= RF_SIZE
/ sizeof(u32
),
240 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
242 static int rt61pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
246 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR13
);
247 return rt2x00_get_field32(reg
, MAC_CSR13_VAL5
);
250 #ifdef CONFIG_RT2X00_LIB_LEDS
251 static void rt61pci_brightness_set(struct led_classdev
*led_cdev
,
252 enum led_brightness brightness
)
254 struct rt2x00_led
*led
=
255 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
256 unsigned int enabled
= brightness
!= LED_OFF
;
257 unsigned int a_mode
=
258 (enabled
&& led
->rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
);
259 unsigned int bg_mode
=
260 (enabled
&& led
->rt2x00dev
->curr_band
== NL80211_BAND_2GHZ
);
262 if (led
->type
== LED_TYPE_RADIO
) {
263 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
264 MCU_LEDCS_RADIO_STATUS
, enabled
);
266 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
267 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
268 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
269 } else if (led
->type
== LED_TYPE_ASSOC
) {
270 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
271 MCU_LEDCS_LINK_BG_STATUS
, bg_mode
);
272 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
273 MCU_LEDCS_LINK_A_STATUS
, a_mode
);
275 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
276 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
277 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
278 } else if (led
->type
== LED_TYPE_QUALITY
) {
280 * The brightness is divided into 6 levels (0 - 5),
281 * this means we need to convert the brightness
282 * argument into the matching level within that range.
284 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED_STRENGTH
, 0xff,
285 brightness
/ (LED_FULL
/ 6), 0);
289 static int rt61pci_blink_set(struct led_classdev
*led_cdev
,
290 unsigned long *delay_on
,
291 unsigned long *delay_off
)
293 struct rt2x00_led
*led
=
294 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
297 reg
= rt2x00mmio_register_read(led
->rt2x00dev
, MAC_CSR14
);
298 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, *delay_on
);
299 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, *delay_off
);
300 rt2x00mmio_register_write(led
->rt2x00dev
, MAC_CSR14
, reg
);
305 static void rt61pci_init_led(struct rt2x00_dev
*rt2x00dev
,
306 struct rt2x00_led
*led
,
309 led
->rt2x00dev
= rt2x00dev
;
311 led
->led_dev
.brightness_set
= rt61pci_brightness_set
;
312 led
->led_dev
.blink_set
= rt61pci_blink_set
;
313 led
->flags
= LED_INITIALIZED
;
315 #endif /* CONFIG_RT2X00_LIB_LEDS */
318 * Configuration handlers.
320 static int rt61pci_config_shared_key(struct rt2x00_dev
*rt2x00dev
,
321 struct rt2x00lib_crypto
*crypto
,
322 struct ieee80211_key_conf
*key
)
325 * Let the software handle the shared keys,
326 * since the hardware decryption does not work reliably,
327 * because the firmware does not know the key's keyidx.
332 static int rt61pci_config_pairwise_key(struct rt2x00_dev
*rt2x00dev
,
333 struct rt2x00lib_crypto
*crypto
,
334 struct ieee80211_key_conf
*key
)
336 struct hw_pairwise_ta_entry addr_entry
;
337 struct hw_key_entry key_entry
;
341 if (crypto
->cmd
== SET_KEY
) {
343 * rt2x00lib can't determine the correct free
344 * key_idx for pairwise keys. We have 2 registers
345 * with key valid bits. The goal is simple: read
346 * the first register. If that is full, move to
348 * When both registers are full, we drop the key.
349 * Otherwise, we use the first invalid entry.
351 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR2
);
352 if (reg
&& reg
== ~0) {
353 key
->hw_key_idx
= 32;
354 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR3
);
355 if (reg
&& reg
== ~0)
359 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
362 * Upload key to hardware
364 memcpy(key_entry
.key
, crypto
->key
,
365 sizeof(key_entry
.key
));
366 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
367 sizeof(key_entry
.tx_mic
));
368 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
369 sizeof(key_entry
.rx_mic
));
371 memset(&addr_entry
, 0, sizeof(addr_entry
));
372 memcpy(&addr_entry
, crypto
->address
, ETH_ALEN
);
373 addr_entry
.cipher
= crypto
->cipher
;
375 reg
= PAIRWISE_KEY_ENTRY(key
->hw_key_idx
);
376 rt2x00mmio_register_multiwrite(rt2x00dev
, reg
,
377 &key_entry
, sizeof(key_entry
));
379 reg
= PAIRWISE_TA_ENTRY(key
->hw_key_idx
);
380 rt2x00mmio_register_multiwrite(rt2x00dev
, reg
,
381 &addr_entry
, sizeof(addr_entry
));
384 * Enable pairwise lookup table for given BSS idx.
385 * Without this, received frames will not be decrypted
388 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR4
);
389 reg
|= (1 << crypto
->bssidx
);
390 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR4
, reg
);
393 * The driver does not support the IV/EIV generation
394 * in hardware. However it doesn't support the IV/EIV
395 * inside the ieee80211 frame either, but requires it
396 * to be provided separately for the descriptor.
397 * rt2x00lib will cut the IV/EIV data out of all frames
398 * given to us by mac80211, but we must tell mac80211
399 * to generate the IV/EIV data.
401 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
405 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
406 * a particular key is valid. Because using the FIELD32()
407 * defines directly will cause a lot of overhead, we use
408 * a calculation to determine the correct bit directly.
410 if (key
->hw_key_idx
< 32) {
411 mask
= 1 << key
->hw_key_idx
;
413 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR2
);
414 if (crypto
->cmd
== SET_KEY
)
416 else if (crypto
->cmd
== DISABLE_KEY
)
418 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR2
, reg
);
420 mask
= 1 << (key
->hw_key_idx
- 32);
422 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR3
);
423 if (crypto
->cmd
== SET_KEY
)
425 else if (crypto
->cmd
== DISABLE_KEY
)
427 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR3
, reg
);
433 static void rt61pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
434 const unsigned int filter_flags
)
439 * Start configuration steps.
440 * Note that the version error will always be dropped
441 * and broadcast frames will always be accepted since
442 * there is no filter for it at this time.
444 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
);
445 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
446 !(filter_flags
& FIF_FCSFAIL
));
447 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
448 !(filter_flags
& FIF_PLCPFAIL
));
449 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
450 !(filter_flags
& (FIF_CONTROL
| FIF_PSPOLL
)));
451 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
,
452 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
));
453 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
454 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
) &&
455 !rt2x00dev
->intf_ap_count
);
456 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
457 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
458 !(filter_flags
& FIF_ALLMULTI
));
459 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BROADCAST
, 0);
460 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
,
461 !(filter_flags
& FIF_CONTROL
));
462 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
465 static void rt61pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
466 struct rt2x00_intf
*intf
,
467 struct rt2x00intf_conf
*conf
,
468 const unsigned int flags
)
472 if (flags
& CONFIG_UPDATE_TYPE
) {
474 * Enable synchronisation.
476 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
477 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, conf
->sync
);
478 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
481 if (flags
& CONFIG_UPDATE_MAC
) {
482 reg
= le32_to_cpu(conf
->mac
[1]);
483 rt2x00_set_field32(®
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
484 conf
->mac
[1] = cpu_to_le32(reg
);
486 rt2x00mmio_register_multiwrite(rt2x00dev
, MAC_CSR2
,
487 conf
->mac
, sizeof(conf
->mac
));
490 if (flags
& CONFIG_UPDATE_BSSID
) {
491 reg
= le32_to_cpu(conf
->bssid
[1]);
492 rt2x00_set_field32(®
, MAC_CSR5_BSS_ID_MASK
, 3);
493 conf
->bssid
[1] = cpu_to_le32(reg
);
495 rt2x00mmio_register_multiwrite(rt2x00dev
, MAC_CSR4
,
497 sizeof(conf
->bssid
));
501 static void rt61pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
502 struct rt2x00lib_erp
*erp
,
507 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
);
508 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, 0x32);
509 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
510 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
512 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
513 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR4
);
514 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
515 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
516 !!erp
->short_preamble
);
517 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
520 if (changed
& BSS_CHANGED_BASIC_RATES
)
521 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR5
,
524 if (changed
& BSS_CHANGED_BEACON_INT
) {
525 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
526 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
527 erp
->beacon_int
* 16);
528 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
531 if (changed
& BSS_CHANGED_ERP_SLOT
) {
532 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR9
);
533 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, erp
->slot_time
);
534 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR9
, reg
);
536 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR8
);
537 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, erp
->sifs
);
538 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
539 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, erp
->eifs
);
540 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR8
, reg
);
544 static void rt61pci_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
545 struct antenna_setup
*ant
)
551 r3
= rt61pci_bbp_read(rt2x00dev
, 3);
552 r4
= rt61pci_bbp_read(rt2x00dev
, 4);
553 r77
= rt61pci_bbp_read(rt2x00dev
, 77);
555 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, rt2x00_rf(rt2x00dev
, RF5325
));
558 * Configure the RX antenna.
561 case ANTENNA_HW_DIVERSITY
:
562 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
563 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
564 (rt2x00dev
->curr_band
!= NL80211_BAND_5GHZ
));
567 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
568 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
569 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
)
570 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
572 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
576 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
577 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
578 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
)
579 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
581 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
585 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
586 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
587 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
590 static void rt61pci_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
591 struct antenna_setup
*ant
)
597 r3
= rt61pci_bbp_read(rt2x00dev
, 3);
598 r4
= rt61pci_bbp_read(rt2x00dev
, 4);
599 r77
= rt61pci_bbp_read(rt2x00dev
, 77);
601 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, rt2x00_rf(rt2x00dev
, RF2529
));
602 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
603 !rt2x00_has_cap_frame_type(rt2x00dev
));
606 * Configure the RX antenna.
609 case ANTENNA_HW_DIVERSITY
:
610 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
613 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
614 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
618 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
619 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
623 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
624 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
625 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
628 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev
*rt2x00dev
,
629 const int p1
, const int p2
)
633 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR13
);
635 rt2x00_set_field32(®
, MAC_CSR13_DIR4
, 0);
636 rt2x00_set_field32(®
, MAC_CSR13_VAL4
, p1
);
638 rt2x00_set_field32(®
, MAC_CSR13_DIR3
, 0);
639 rt2x00_set_field32(®
, MAC_CSR13_VAL3
, !p2
);
641 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR13
, reg
);
644 static void rt61pci_config_antenna_2529(struct rt2x00_dev
*rt2x00dev
,
645 struct antenna_setup
*ant
)
651 r3
= rt61pci_bbp_read(rt2x00dev
, 3);
652 r4
= rt61pci_bbp_read(rt2x00dev
, 4);
653 r77
= rt61pci_bbp_read(rt2x00dev
, 77);
656 * Configure the RX antenna.
660 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
661 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
662 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 0);
664 case ANTENNA_HW_DIVERSITY
:
666 * FIXME: Antenna selection for the rf 2529 is very confusing
667 * in the legacy driver. Just default to antenna B until the
668 * legacy code can be properly translated into rt2x00 code.
672 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
673 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
674 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 1);
678 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
679 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
680 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
686 * value[0] -> non-LNA
692 static const struct antenna_sel antenna_sel_a
[] = {
693 { 96, { 0x58, 0x78 } },
694 { 104, { 0x38, 0x48 } },
695 { 75, { 0xfe, 0x80 } },
696 { 86, { 0xfe, 0x80 } },
697 { 88, { 0xfe, 0x80 } },
698 { 35, { 0x60, 0x60 } },
699 { 97, { 0x58, 0x58 } },
700 { 98, { 0x58, 0x58 } },
703 static const struct antenna_sel antenna_sel_bg
[] = {
704 { 96, { 0x48, 0x68 } },
705 { 104, { 0x2c, 0x3c } },
706 { 75, { 0xfe, 0x80 } },
707 { 86, { 0xfe, 0x80 } },
708 { 88, { 0xfe, 0x80 } },
709 { 35, { 0x50, 0x50 } },
710 { 97, { 0x48, 0x48 } },
711 { 98, { 0x48, 0x48 } },
714 static void rt61pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
715 struct antenna_setup
*ant
)
717 const struct antenna_sel
*sel
;
723 * We should never come here because rt2x00lib is supposed
724 * to catch this and send us the correct antenna explicitely.
726 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
727 ant
->tx
== ANTENNA_SW_DIVERSITY
);
729 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
) {
731 lna
= rt2x00_has_cap_external_lna_a(rt2x00dev
);
733 sel
= antenna_sel_bg
;
734 lna
= rt2x00_has_cap_external_lna_bg(rt2x00dev
);
737 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
738 rt61pci_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
740 reg
= rt2x00mmio_register_read(rt2x00dev
, PHY_CSR0
);
742 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
,
743 rt2x00dev
->curr_band
== NL80211_BAND_2GHZ
);
744 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
,
745 rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
);
747 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR0
, reg
);
749 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF5325
))
750 rt61pci_config_antenna_5x(rt2x00dev
, ant
);
751 else if (rt2x00_rf(rt2x00dev
, RF2527
))
752 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
753 else if (rt2x00_rf(rt2x00dev
, RF2529
)) {
754 if (rt2x00_has_cap_double_antenna(rt2x00dev
))
755 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
757 rt61pci_config_antenna_2529(rt2x00dev
, ant
);
761 static void rt61pci_config_lna_gain(struct rt2x00_dev
*rt2x00dev
,
762 struct rt2x00lib_conf
*libconf
)
767 if (libconf
->conf
->chandef
.chan
->band
== NL80211_BAND_2GHZ
) {
768 if (rt2x00_has_cap_external_lna_bg(rt2x00dev
))
771 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
);
772 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
774 if (rt2x00_has_cap_external_lna_a(rt2x00dev
))
777 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
);
778 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
781 rt2x00dev
->lna_gain
= lna_gain
;
784 static void rt61pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
785 struct rf_channel
*rf
, const int txpower
)
791 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
792 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
794 smart
= !(rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
));
796 r3
= rt61pci_bbp_read(rt2x00dev
, 3);
797 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
798 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
801 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
802 r94
+= txpower
- MAX_TXPOWER
;
803 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
805 rt61pci_bbp_write(rt2x00dev
, 94, r94
);
807 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
808 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
809 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
810 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
814 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
815 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
816 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
817 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
821 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
822 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
823 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
824 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
829 static void rt61pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
832 struct rf_channel rf
;
834 rf
.rf1
= rt2x00_rf_read(rt2x00dev
, 1);
835 rf
.rf2
= rt2x00_rf_read(rt2x00dev
, 2);
836 rf
.rf3
= rt2x00_rf_read(rt2x00dev
, 3);
837 rf
.rf4
= rt2x00_rf_read(rt2x00dev
, 4);
839 rt61pci_config_channel(rt2x00dev
, &rf
, txpower
);
842 static void rt61pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
843 struct rt2x00lib_conf
*libconf
)
847 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR4
);
848 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_DOWN
, 1);
849 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_STEP
, 0);
850 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_FALLBACK_CCK
, 0);
851 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
,
852 libconf
->conf
->long_frame_max_tx_count
);
853 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
,
854 libconf
->conf
->short_frame_max_tx_count
);
855 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
858 static void rt61pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
859 struct rt2x00lib_conf
*libconf
)
861 enum dev_state state
=
862 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
863 STATE_SLEEP
: STATE_AWAKE
;
866 if (state
== STATE_SLEEP
) {
867 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR11
);
868 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
,
869 rt2x00dev
->beacon_int
- 10);
870 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
,
871 libconf
->conf
->listen_interval
- 1);
872 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 5);
874 /* We must first disable autowake before it can be enabled */
875 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
876 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR11
, reg
);
878 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 1);
879 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR11
, reg
);
881 rt2x00mmio_register_write(rt2x00dev
, SOFT_RESET_CSR
,
883 rt2x00mmio_register_write(rt2x00dev
, IO_CNTL_CSR
, 0x0000001c);
884 rt2x00mmio_register_write(rt2x00dev
, PCI_USEC_CSR
, 0x00000060);
886 rt61pci_mcu_request(rt2x00dev
, MCU_SLEEP
, 0xff, 0, 0);
888 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR11
);
889 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
, 0);
890 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
, 0);
891 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
892 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 0);
893 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR11
, reg
);
895 rt2x00mmio_register_write(rt2x00dev
, SOFT_RESET_CSR
,
897 rt2x00mmio_register_write(rt2x00dev
, IO_CNTL_CSR
, 0x00000018);
898 rt2x00mmio_register_write(rt2x00dev
, PCI_USEC_CSR
, 0x00000020);
900 rt61pci_mcu_request(rt2x00dev
, MCU_WAKEUP
, 0xff, 0, 0);
904 static void rt61pci_config(struct rt2x00_dev
*rt2x00dev
,
905 struct rt2x00lib_conf
*libconf
,
906 const unsigned int flags
)
908 /* Always recalculate LNA gain before changing configuration */
909 rt61pci_config_lna_gain(rt2x00dev
, libconf
);
911 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
912 rt61pci_config_channel(rt2x00dev
, &libconf
->rf
,
913 libconf
->conf
->power_level
);
914 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
915 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
916 rt61pci_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
917 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
918 rt61pci_config_retry_limit(rt2x00dev
, libconf
);
919 if (flags
& IEEE80211_CONF_CHANGE_PS
)
920 rt61pci_config_ps(rt2x00dev
, libconf
);
926 static void rt61pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
927 struct link_qual
*qual
)
932 * Update FCS error count from register.
934 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR0
);
935 qual
->rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
938 * Update False CCA count from register.
940 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR1
);
941 qual
->false_cca
= rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
944 static inline void rt61pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
945 struct link_qual
*qual
, u8 vgc_level
)
947 if (qual
->vgc_level
!= vgc_level
) {
948 rt61pci_bbp_write(rt2x00dev
, 17, vgc_level
);
949 qual
->vgc_level
= vgc_level
;
950 qual
->vgc_level_reg
= vgc_level
;
954 static void rt61pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
955 struct link_qual
*qual
)
957 rt61pci_set_vgc(rt2x00dev
, qual
, 0x20);
960 static void rt61pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
961 struct link_qual
*qual
, const u32 count
)
967 * Determine r17 bounds.
969 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
) {
972 if (rt2x00_has_cap_external_lna_a(rt2x00dev
)) {
979 if (rt2x00_has_cap_external_lna_bg(rt2x00dev
)) {
986 * If we are not associated, we should go straight to the
987 * dynamic CCA tuning.
989 if (!rt2x00dev
->intf_associated
)
990 goto dynamic_cca_tune
;
993 * Special big-R17 for very short distance
995 if (qual
->rssi
>= -35) {
996 rt61pci_set_vgc(rt2x00dev
, qual
, 0x60);
1001 * Special big-R17 for short distance
1003 if (qual
->rssi
>= -58) {
1004 rt61pci_set_vgc(rt2x00dev
, qual
, up_bound
);
1009 * Special big-R17 for middle-short distance
1011 if (qual
->rssi
>= -66) {
1012 rt61pci_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x10);
1017 * Special mid-R17 for middle distance
1019 if (qual
->rssi
>= -74) {
1020 rt61pci_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x08);
1025 * Special case: Change up_bound based on the rssi.
1026 * Lower up_bound when rssi is weaker then -74 dBm.
1028 up_bound
-= 2 * (-74 - qual
->rssi
);
1029 if (low_bound
> up_bound
)
1030 up_bound
= low_bound
;
1032 if (qual
->vgc_level
> up_bound
) {
1033 rt61pci_set_vgc(rt2x00dev
, qual
, up_bound
);
1040 * r17 does not yet exceed upper limit, continue and base
1041 * the r17 tuning on the false CCA count.
1043 if ((qual
->false_cca
> 512) && (qual
->vgc_level
< up_bound
))
1044 rt61pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level
);
1045 else if ((qual
->false_cca
< 100) && (qual
->vgc_level
> low_bound
))
1046 rt61pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level
);
1052 static void rt61pci_start_queue(struct data_queue
*queue
)
1054 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1057 switch (queue
->qid
) {
1059 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
);
1060 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1061 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1064 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
1065 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
1066 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
1067 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1068 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1075 static void rt61pci_kick_queue(struct data_queue
*queue
)
1077 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1080 switch (queue
->qid
) {
1082 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1083 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC0
, 1);
1084 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1087 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1088 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC1
, 1);
1089 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1092 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1093 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC2
, 1);
1094 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1097 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1098 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC3
, 1);
1099 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1106 static void rt61pci_stop_queue(struct data_queue
*queue
)
1108 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1111 switch (queue
->qid
) {
1113 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1114 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC0
, 1);
1115 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1118 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1119 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC1
, 1);
1120 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1123 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1124 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC2
, 1);
1125 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1128 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1129 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC3
, 1);
1130 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1133 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
);
1134 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 1);
1135 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1138 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
1139 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1140 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1141 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1142 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1145 * Wait for possibly running tbtt tasklets.
1147 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1155 * Firmware functions
1157 static char *rt61pci_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
1162 pci_read_config_word(to_pci_dev(rt2x00dev
->dev
), PCI_DEVICE_ID
, &chip
);
1165 fw_name
= FIRMWARE_RT2561
;
1167 case RT2561s_PCI_ID
:
1168 fw_name
= FIRMWARE_RT2561s
;
1171 fw_name
= FIRMWARE_RT2661
;
1181 static int rt61pci_check_firmware(struct rt2x00_dev
*rt2x00dev
,
1182 const u8
*data
, const size_t len
)
1188 * Only support 8kb firmware files.
1191 return FW_BAD_LENGTH
;
1194 * The last 2 bytes in the firmware array are the crc checksum itself.
1195 * This means that we should never pass those 2 bytes to the crc
1198 fw_crc
= (data
[len
- 2] << 8 | data
[len
- 1]);
1201 * Use the crc itu-t algorithm.
1203 crc
= crc_itu_t(0, data
, len
- 2);
1204 crc
= crc_itu_t_byte(crc
, 0);
1205 crc
= crc_itu_t_byte(crc
, 0);
1207 return (fw_crc
== crc
) ? FW_OK
: FW_BAD_CRC
;
1210 static int rt61pci_load_firmware(struct rt2x00_dev
*rt2x00dev
,
1211 const u8
*data
, const size_t len
)
1217 * Wait for stable hardware.
1219 for (i
= 0; i
< 100; i
++) {
1220 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR0
);
1227 rt2x00_err(rt2x00dev
, "Unstable hardware\n");
1232 * Prepare MCU and mailbox for firmware loading.
1235 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
1236 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1237 rt2x00mmio_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1238 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
1239 rt2x00mmio_register_write(rt2x00dev
, HOST_CMD_CSR
, 0);
1242 * Write firmware to device.
1245 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
1246 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 1);
1247 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1249 rt2x00mmio_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
,
1252 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 0);
1253 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1255 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 0);
1256 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1258 for (i
= 0; i
< 100; i
++) {
1259 reg
= rt2x00mmio_register_read(rt2x00dev
, MCU_CNTL_CSR
);
1260 if (rt2x00_get_field32(reg
, MCU_CNTL_CSR_READY
))
1266 rt2x00_err(rt2x00dev
, "MCU Control register not ready\n");
1271 * Hardware needs another millisecond before it is ready.
1276 * Reset MAC and BBP registers.
1279 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1280 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1281 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1283 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
);
1284 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1285 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1286 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1288 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
);
1289 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1290 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1296 * Initialization functions.
1298 static bool rt61pci_get_entry_state(struct queue_entry
*entry
)
1300 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1303 if (entry
->queue
->qid
== QID_RX
) {
1304 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1306 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
1308 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1310 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1311 rt2x00_get_field32(word
, TXD_W0_VALID
));
1315 static void rt61pci_clear_entry(struct queue_entry
*entry
)
1317 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1318 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1321 if (entry
->queue
->qid
== QID_RX
) {
1322 word
= rt2x00_desc_read(entry_priv
->desc
, 5);
1323 rt2x00_set_field32(&word
, RXD_W5_BUFFER_PHYSICAL_ADDRESS
,
1325 rt2x00_desc_write(entry_priv
->desc
, 5, word
);
1327 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1328 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
1329 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
1331 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1332 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
1333 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
1334 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
1338 static int rt61pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
1340 struct queue_entry_priv_mmio
*entry_priv
;
1344 * Initialize registers.
1346 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_RING_CSR0
);
1347 rt2x00_set_field32(®
, TX_RING_CSR0_AC0_RING_SIZE
,
1348 rt2x00dev
->tx
[0].limit
);
1349 rt2x00_set_field32(®
, TX_RING_CSR0_AC1_RING_SIZE
,
1350 rt2x00dev
->tx
[1].limit
);
1351 rt2x00_set_field32(®
, TX_RING_CSR0_AC2_RING_SIZE
,
1352 rt2x00dev
->tx
[2].limit
);
1353 rt2x00_set_field32(®
, TX_RING_CSR0_AC3_RING_SIZE
,
1354 rt2x00dev
->tx
[3].limit
);
1355 rt2x00mmio_register_write(rt2x00dev
, TX_RING_CSR0
, reg
);
1357 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_RING_CSR1
);
1358 rt2x00_set_field32(®
, TX_RING_CSR1_TXD_SIZE
,
1359 rt2x00dev
->tx
[0].desc_size
/ 4);
1360 rt2x00mmio_register_write(rt2x00dev
, TX_RING_CSR1
, reg
);
1362 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
1363 reg
= rt2x00mmio_register_read(rt2x00dev
, AC0_BASE_CSR
);
1364 rt2x00_set_field32(®
, AC0_BASE_CSR_RING_REGISTER
,
1365 entry_priv
->desc_dma
);
1366 rt2x00mmio_register_write(rt2x00dev
, AC0_BASE_CSR
, reg
);
1368 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
1369 reg
= rt2x00mmio_register_read(rt2x00dev
, AC1_BASE_CSR
);
1370 rt2x00_set_field32(®
, AC1_BASE_CSR_RING_REGISTER
,
1371 entry_priv
->desc_dma
);
1372 rt2x00mmio_register_write(rt2x00dev
, AC1_BASE_CSR
, reg
);
1374 entry_priv
= rt2x00dev
->tx
[2].entries
[0].priv_data
;
1375 reg
= rt2x00mmio_register_read(rt2x00dev
, AC2_BASE_CSR
);
1376 rt2x00_set_field32(®
, AC2_BASE_CSR_RING_REGISTER
,
1377 entry_priv
->desc_dma
);
1378 rt2x00mmio_register_write(rt2x00dev
, AC2_BASE_CSR
, reg
);
1380 entry_priv
= rt2x00dev
->tx
[3].entries
[0].priv_data
;
1381 reg
= rt2x00mmio_register_read(rt2x00dev
, AC3_BASE_CSR
);
1382 rt2x00_set_field32(®
, AC3_BASE_CSR_RING_REGISTER
,
1383 entry_priv
->desc_dma
);
1384 rt2x00mmio_register_write(rt2x00dev
, AC3_BASE_CSR
, reg
);
1386 reg
= rt2x00mmio_register_read(rt2x00dev
, RX_RING_CSR
);
1387 rt2x00_set_field32(®
, RX_RING_CSR_RING_SIZE
, rt2x00dev
->rx
->limit
);
1388 rt2x00_set_field32(®
, RX_RING_CSR_RXD_SIZE
,
1389 rt2x00dev
->rx
->desc_size
/ 4);
1390 rt2x00_set_field32(®
, RX_RING_CSR_RXD_WRITEBACK_SIZE
, 4);
1391 rt2x00mmio_register_write(rt2x00dev
, RX_RING_CSR
, reg
);
1393 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
1394 reg
= rt2x00mmio_register_read(rt2x00dev
, RX_BASE_CSR
);
1395 rt2x00_set_field32(®
, RX_BASE_CSR_RING_REGISTER
,
1396 entry_priv
->desc_dma
);
1397 rt2x00mmio_register_write(rt2x00dev
, RX_BASE_CSR
, reg
);
1399 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_DMA_DST_CSR
);
1400 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC0
, 2);
1401 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC1
, 2);
1402 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC2
, 2);
1403 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC3
, 2);
1404 rt2x00mmio_register_write(rt2x00dev
, TX_DMA_DST_CSR
, reg
);
1406 reg
= rt2x00mmio_register_read(rt2x00dev
, LOAD_TX_RING_CSR
);
1407 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC0
, 1);
1408 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC1
, 1);
1409 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC2
, 1);
1410 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC3
, 1);
1411 rt2x00mmio_register_write(rt2x00dev
, LOAD_TX_RING_CSR
, reg
);
1413 reg
= rt2x00mmio_register_read(rt2x00dev
, RX_CNTL_CSR
);
1414 rt2x00_set_field32(®
, RX_CNTL_CSR_LOAD_RXD
, 1);
1415 rt2x00mmio_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1420 static int rt61pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
1424 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
);
1425 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1426 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1427 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1428 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1430 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR1
);
1431 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1432 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1433 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1434 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1435 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1436 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1437 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1438 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1439 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1442 * CCK TXD BBP registers
1444 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR2
);
1445 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1446 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1447 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1448 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1449 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1450 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1451 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1452 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1453 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1456 * OFDM TXD BBP registers
1458 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR3
);
1459 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1460 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1461 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1462 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1463 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1464 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1465 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1467 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR7
);
1468 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1469 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1470 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1471 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1472 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1474 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR8
);
1475 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1476 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1477 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1478 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1479 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1481 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
1482 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
, 0);
1483 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1484 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, 0);
1485 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1486 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1487 rt2x00_set_field32(®
, TXRX_CSR9_TIMESTAMP_COMPENSATE
, 0);
1488 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1490 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1492 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR6
, 0x00000fff);
1494 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR9
);
1495 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1496 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1498 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR10
, 0x0000071c);
1500 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1503 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR13
, 0x0000e000);
1506 * Invalidate all Shared Keys (SEC_CSR0),
1507 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1509 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1510 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1511 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1513 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR1
, 0x000023b0);
1514 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR5
, 0x060a100c);
1515 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1516 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR7
, 0x00000a08);
1518 rt2x00mmio_register_write(rt2x00dev
, PCI_CFG_CSR
, 0x28ca4404);
1520 rt2x00mmio_register_write(rt2x00dev
, TEST_MODE_CSR
, 0x00000200);
1522 rt2x00mmio_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1526 * For the Beacon base registers we only need to clear
1527 * the first byte since that byte contains the VALID and OWNER
1528 * bits which (when set to 0) will invalidate the entire beacon.
1530 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
1531 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
1532 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
1533 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
1536 * We must clear the error counters.
1537 * These registers are cleared on read,
1538 * so we may pass a useless variable to store the value.
1540 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR0
);
1541 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR1
);
1542 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR2
);
1545 * Reset MAC and BBP registers.
1547 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
);
1548 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1549 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1550 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1552 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
);
1553 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1554 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1555 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1557 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
);
1558 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1559 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1564 static int rt61pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1569 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1570 value
= rt61pci_bbp_read(rt2x00dev
, 0);
1571 if ((value
!= 0xff) && (value
!= 0x00))
1573 udelay(REGISTER_BUSY_DELAY
);
1576 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
1580 static int rt61pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1587 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev
)))
1590 rt61pci_bbp_write(rt2x00dev
, 3, 0x00);
1591 rt61pci_bbp_write(rt2x00dev
, 15, 0x30);
1592 rt61pci_bbp_write(rt2x00dev
, 21, 0xc8);
1593 rt61pci_bbp_write(rt2x00dev
, 22, 0x38);
1594 rt61pci_bbp_write(rt2x00dev
, 23, 0x06);
1595 rt61pci_bbp_write(rt2x00dev
, 24, 0xfe);
1596 rt61pci_bbp_write(rt2x00dev
, 25, 0x0a);
1597 rt61pci_bbp_write(rt2x00dev
, 26, 0x0d);
1598 rt61pci_bbp_write(rt2x00dev
, 34, 0x12);
1599 rt61pci_bbp_write(rt2x00dev
, 37, 0x07);
1600 rt61pci_bbp_write(rt2x00dev
, 39, 0xf8);
1601 rt61pci_bbp_write(rt2x00dev
, 41, 0x60);
1602 rt61pci_bbp_write(rt2x00dev
, 53, 0x10);
1603 rt61pci_bbp_write(rt2x00dev
, 54, 0x18);
1604 rt61pci_bbp_write(rt2x00dev
, 60, 0x10);
1605 rt61pci_bbp_write(rt2x00dev
, 61, 0x04);
1606 rt61pci_bbp_write(rt2x00dev
, 62, 0x04);
1607 rt61pci_bbp_write(rt2x00dev
, 75, 0xfe);
1608 rt61pci_bbp_write(rt2x00dev
, 86, 0xfe);
1609 rt61pci_bbp_write(rt2x00dev
, 88, 0xfe);
1610 rt61pci_bbp_write(rt2x00dev
, 90, 0x0f);
1611 rt61pci_bbp_write(rt2x00dev
, 99, 0x00);
1612 rt61pci_bbp_write(rt2x00dev
, 102, 0x16);
1613 rt61pci_bbp_write(rt2x00dev
, 107, 0x04);
1615 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1616 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
);
1618 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1619 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1620 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1621 rt61pci_bbp_write(rt2x00dev
, reg_id
, value
);
1629 * Device state switch handlers.
1631 static void rt61pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1632 enum dev_state state
)
1634 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1636 unsigned long flags
;
1639 * When interrupts are being enabled, the interrupt registers
1640 * should clear the register to assure a clean state.
1642 if (state
== STATE_RADIO_IRQ_ON
) {
1643 reg
= rt2x00mmio_register_read(rt2x00dev
, INT_SOURCE_CSR
);
1644 rt2x00mmio_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1646 reg
= rt2x00mmio_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
);
1647 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg
);
1651 * Only toggle the interrupts bits we are going to use.
1652 * Non-checked interrupt bits are disabled by default.
1654 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
1656 reg
= rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
);
1657 rt2x00_set_field32(®
, INT_MASK_CSR_TXDONE
, mask
);
1658 rt2x00_set_field32(®
, INT_MASK_CSR_RXDONE
, mask
);
1659 rt2x00_set_field32(®
, INT_MASK_CSR_BEACON_DONE
, mask
);
1660 rt2x00_set_field32(®
, INT_MASK_CSR_ENABLE_MITIGATION
, mask
);
1661 rt2x00_set_field32(®
, INT_MASK_CSR_MITIGATION_PERIOD
, 0xff);
1662 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
1664 reg
= rt2x00mmio_register_read(rt2x00dev
, MCU_INT_MASK_CSR
);
1665 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_0
, mask
);
1666 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_1
, mask
);
1667 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_2
, mask
);
1668 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_3
, mask
);
1669 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_4
, mask
);
1670 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_5
, mask
);
1671 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_6
, mask
);
1672 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_7
, mask
);
1673 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_TWAKEUP
, mask
);
1674 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
1676 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
1678 if (state
== STATE_RADIO_IRQ_OFF
) {
1680 * Ensure that all tasklets are finished.
1682 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1683 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1684 tasklet_kill(&rt2x00dev
->autowake_tasklet
);
1685 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1689 static int rt61pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1694 * Initialize all registers.
1696 if (unlikely(rt61pci_init_queues(rt2x00dev
) ||
1697 rt61pci_init_registers(rt2x00dev
) ||
1698 rt61pci_init_bbp(rt2x00dev
)))
1704 reg
= rt2x00mmio_register_read(rt2x00dev
, RX_CNTL_CSR
);
1705 rt2x00_set_field32(®
, RX_CNTL_CSR_ENABLE_RX_DMA
, 1);
1706 rt2x00mmio_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1711 static void rt61pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1716 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1719 static int rt61pci_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1725 put_to_sleep
= (state
!= STATE_AWAKE
);
1727 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR12
);
1728 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1729 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1730 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1733 * Device is not guaranteed to be in the requested state yet.
1734 * We must wait until the register indicates that the
1735 * device has entered the correct state.
1737 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1738 reg2
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR12
);
1739 state
= rt2x00_get_field32(reg2
, MAC_CSR12_BBP_CURRENT_STATE
);
1740 if (state
== !put_to_sleep
)
1742 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1749 static int rt61pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1750 enum dev_state state
)
1755 case STATE_RADIO_ON
:
1756 retval
= rt61pci_enable_radio(rt2x00dev
);
1758 case STATE_RADIO_OFF
:
1759 rt61pci_disable_radio(rt2x00dev
);
1761 case STATE_RADIO_IRQ_ON
:
1762 case STATE_RADIO_IRQ_OFF
:
1763 rt61pci_toggle_irq(rt2x00dev
, state
);
1765 case STATE_DEEP_SLEEP
:
1769 retval
= rt61pci_set_state(rt2x00dev
, state
);
1776 if (unlikely(retval
))
1777 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1784 * TX descriptor initialization
1786 static void rt61pci_write_tx_desc(struct queue_entry
*entry
,
1787 struct txentry_desc
*txdesc
)
1789 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1790 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1791 __le32
*txd
= entry_priv
->desc
;
1795 * Start writing the descriptor words.
1797 word
= rt2x00_desc_read(txd
, 1);
1798 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, entry
->queue
->qid
);
1799 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, entry
->queue
->aifs
);
1800 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, entry
->queue
->cw_min
);
1801 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, entry
->queue
->cw_max
);
1802 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1803 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
,
1804 test_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
));
1805 rt2x00_set_field32(&word
, TXD_W1_BUFFER_COUNT
, 1);
1806 rt2x00_desc_write(txd
, 1, word
);
1808 word
= rt2x00_desc_read(txd
, 2);
1809 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1810 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1811 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
,
1812 txdesc
->u
.plcp
.length_low
);
1813 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
,
1814 txdesc
->u
.plcp
.length_high
);
1815 rt2x00_desc_write(txd
, 2, word
);
1817 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1818 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1819 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1822 word
= rt2x00_desc_read(txd
, 5);
1823 rt2x00_set_field32(&word
, TXD_W5_PID_TYPE
, entry
->queue
->qid
);
1824 rt2x00_set_field32(&word
, TXD_W5_PID_SUBTYPE
, entry
->entry_idx
);
1825 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1826 TXPOWER_TO_DEV(entry
->queue
->rt2x00dev
->tx_power
));
1827 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1828 rt2x00_desc_write(txd
, 5, word
);
1830 if (entry
->queue
->qid
!= QID_BEACON
) {
1831 word
= rt2x00_desc_read(txd
, 6);
1832 rt2x00_set_field32(&word
, TXD_W6_BUFFER_PHYSICAL_ADDRESS
,
1834 rt2x00_desc_write(txd
, 6, word
);
1836 word
= rt2x00_desc_read(txd
, 11);
1837 rt2x00_set_field32(&word
, TXD_W11_BUFFER_LENGTH0
,
1839 rt2x00_desc_write(txd
, 11, word
);
1843 * Writing TXD word 0 must the last to prevent a race condition with
1844 * the device, whereby the device may take hold of the TXD before we
1845 * finished updating it.
1847 word
= rt2x00_desc_read(txd
, 0);
1848 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1849 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1850 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1851 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1852 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1853 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1854 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1855 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1856 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1857 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1858 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1859 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1860 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1861 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
,
1862 test_bit(ENTRY_TXD_ENCRYPT_MMIC
, &txdesc
->flags
));
1863 rt2x00_set_field32(&word
, TXD_W0_KEY_TABLE
,
1864 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE
, &txdesc
->flags
));
1865 rt2x00_set_field32(&word
, TXD_W0_KEY_INDEX
, txdesc
->key_idx
);
1866 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1867 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1868 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1869 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, txdesc
->cipher
);
1870 rt2x00_desc_write(txd
, 0, word
);
1873 * Register descriptor details in skb frame descriptor.
1875 skbdesc
->desc
= txd
;
1876 skbdesc
->desc_len
= (entry
->queue
->qid
== QID_BEACON
) ? TXINFO_SIZE
:
1881 * TX data initialization
1883 static void rt61pci_write_beacon(struct queue_entry
*entry
,
1884 struct txentry_desc
*txdesc
)
1886 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1887 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1888 unsigned int beacon_base
;
1889 unsigned int padding_len
;
1893 * Disable beaconing while we are reloading the beacon data,
1894 * otherwise we might be sending out invalid data.
1896 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
1898 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1899 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1902 * Write the TX descriptor for the beacon.
1904 rt61pci_write_tx_desc(entry
, txdesc
);
1907 * Dump beacon to userspace through debugfs.
1909 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
);
1912 * Write entire beacon with descriptor and padding to register.
1914 padding_len
= roundup(entry
->skb
->len
, 4) - entry
->skb
->len
;
1915 if (padding_len
&& skb_pad(entry
->skb
, padding_len
)) {
1916 rt2x00_err(rt2x00dev
, "Failure padding beacon, aborting\n");
1917 /* skb freed by skb_pad() on failure */
1919 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
1923 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
1924 rt2x00mmio_register_multiwrite(rt2x00dev
, beacon_base
,
1925 entry_priv
->desc
, TXINFO_SIZE
);
1926 rt2x00mmio_register_multiwrite(rt2x00dev
, beacon_base
+ TXINFO_SIZE
,
1928 entry
->skb
->len
+ padding_len
);
1931 * Enable beaconing again.
1933 * For Wi-Fi faily generated beacons between participating
1934 * stations. Set TBTT phase adaptive adjustment step to 8us.
1936 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
1938 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1939 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1942 * Clean up beacon skb.
1944 dev_kfree_skb_any(entry
->skb
);
1948 static void rt61pci_clear_beacon(struct queue_entry
*entry
)
1950 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1954 * Disable beaconing while we are reloading the beacon data,
1955 * otherwise we might be sending out invalid data.
1957 orig_reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
1959 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1960 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1965 rt2x00mmio_register_write(rt2x00dev
,
1966 HW_BEACON_OFFSET(entry
->entry_idx
), 0);
1969 * Restore global beaconing state.
1971 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
1975 * RX control handlers
1977 static int rt61pci_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
1979 u8 offset
= rt2x00dev
->lna_gain
;
1982 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
1997 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
) {
1998 if (lna
== 3 || lna
== 2)
2002 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
2005 static void rt61pci_fill_rxdone(struct queue_entry
*entry
,
2006 struct rxdone_entry_desc
*rxdesc
)
2008 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
2009 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
2013 word0
= rt2x00_desc_read(entry_priv
->desc
, 0);
2014 word1
= rt2x00_desc_read(entry_priv
->desc
, 1);
2016 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
2017 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
2019 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ALG
);
2020 rxdesc
->cipher_status
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
);
2022 if (rxdesc
->cipher
!= CIPHER_NONE
) {
2023 rxdesc
->iv
[0] = _rt2x00_desc_read(entry_priv
->desc
, 2);
2024 rxdesc
->iv
[1] = _rt2x00_desc_read(entry_priv
->desc
, 3);
2025 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
2027 rxdesc
->icv
= _rt2x00_desc_read(entry_priv
->desc
, 4);
2028 rxdesc
->dev_flags
|= RXDONE_CRYPTO_ICV
;
2031 * Hardware has stripped IV/EIV data from 802.11 frame during
2032 * decryption. It has provided the data separately but rt2x00lib
2033 * should decide if it should be reinserted.
2035 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
2038 * The hardware has already checked the Michael Mic and has
2039 * stripped it from the frame. Signal this to mac80211.
2041 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
2043 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
2044 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
2045 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
2046 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
2050 * Obtain the status about this packet.
2051 * When frame was received with an OFDM bitrate,
2052 * the signal is the PLCP value. If it was received with
2053 * a CCK bitrate the signal is the rate in 100kbit/s.
2055 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
2056 rxdesc
->rssi
= rt61pci_agc_to_rssi(rt2x00dev
, word1
);
2057 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
2059 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
2060 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
2062 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
2063 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
2064 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
2068 * Interrupt functions.
2070 static void rt61pci_txdone(struct rt2x00_dev
*rt2x00dev
)
2072 struct data_queue
*queue
;
2073 struct queue_entry
*entry
;
2074 struct queue_entry
*entry_done
;
2075 struct queue_entry_priv_mmio
*entry_priv
;
2076 struct txdone_entry_desc txdesc
;
2084 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2085 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2086 * flag is not set anymore.
2088 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2089 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2090 * tx ring size for now.
2092 for (i
= 0; i
< rt2x00dev
->tx
->limit
; i
++) {
2093 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR4
);
2094 if (!rt2x00_get_field32(reg
, STA_CSR4_VALID
))
2098 * Skip this entry when it contains an invalid
2099 * queue identication number.
2101 type
= rt2x00_get_field32(reg
, STA_CSR4_PID_TYPE
);
2102 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, type
);
2103 if (unlikely(!queue
))
2107 * Skip this entry when it contains an invalid
2110 index
= rt2x00_get_field32(reg
, STA_CSR4_PID_SUBTYPE
);
2111 if (unlikely(index
>= queue
->limit
))
2114 entry
= &queue
->entries
[index
];
2115 entry_priv
= entry
->priv_data
;
2116 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
2118 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
2119 !rt2x00_get_field32(word
, TXD_W0_VALID
))
2122 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
2123 while (entry
!= entry_done
) {
2125 * Just report any entries we missed as failed.
2127 rt2x00_warn(rt2x00dev
, "TX status report missed for entry %d\n",
2128 entry_done
->entry_idx
);
2130 rt2x00lib_txdone_noinfo(entry_done
, TXDONE_UNKNOWN
);
2131 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
2135 * Obtain the status about this packet.
2138 switch (rt2x00_get_field32(reg
, STA_CSR4_TX_RESULT
)) {
2139 case 0: /* Success, maybe with retry */
2140 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
2142 case 6: /* Failure, excessive retries */
2143 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
2144 /* Fall through - this is a failed frame! */
2145 default: /* Failure */
2146 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
2148 txdesc
.retry
= rt2x00_get_field32(reg
, STA_CSR4_RETRY_COUNT
);
2151 * the frame was retried at least once
2152 * -> hw used fallback rates
2155 __set_bit(TXDONE_FALLBACK
, &txdesc
.flags
);
2157 rt2x00lib_txdone(entry
, &txdesc
);
2161 static void rt61pci_wakeup(struct rt2x00_dev
*rt2x00dev
)
2163 struct rt2x00lib_conf libconf
= { .conf
= &rt2x00dev
->hw
->conf
};
2165 rt61pci_config(rt2x00dev
, &libconf
, IEEE80211_CONF_CHANGE_PS
);
2168 static inline void rt61pci_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
2169 struct rt2x00_field32 irq_field
)
2174 * Enable a single interrupt. The interrupt mask register
2175 * access needs locking.
2177 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
2179 reg
= rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
);
2180 rt2x00_set_field32(®
, irq_field
, 0);
2181 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
2183 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
2186 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev
*rt2x00dev
,
2187 struct rt2x00_field32 irq_field
)
2192 * Enable a single MCU interrupt. The interrupt mask register
2193 * access needs locking.
2195 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
2197 reg
= rt2x00mmio_register_read(rt2x00dev
, MCU_INT_MASK_CSR
);
2198 rt2x00_set_field32(®
, irq_field
, 0);
2199 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
2201 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
2204 static void rt61pci_txstatus_tasklet(unsigned long data
)
2206 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2207 rt61pci_txdone(rt2x00dev
);
2208 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2209 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_TXDONE
);
2212 static void rt61pci_tbtt_tasklet(unsigned long data
)
2214 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2215 rt2x00lib_beacondone(rt2x00dev
);
2216 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2217 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_BEACON_DONE
);
2220 static void rt61pci_rxdone_tasklet(unsigned long data
)
2222 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2223 if (rt2x00mmio_rxdone(rt2x00dev
))
2224 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
2225 else if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2226 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_RXDONE
);
2229 static void rt61pci_autowake_tasklet(unsigned long data
)
2231 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2232 rt61pci_wakeup(rt2x00dev
);
2233 rt2x00mmio_register_write(rt2x00dev
,
2234 M2H_CMD_DONE_CSR
, 0xffffffff);
2235 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2236 rt61pci_enable_mcu_interrupt(rt2x00dev
, MCU_INT_MASK_CSR_TWAKEUP
);
2239 static irqreturn_t
rt61pci_interrupt(int irq
, void *dev_instance
)
2241 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
2242 u32 reg_mcu
, mask_mcu
;
2246 * Get the interrupt sources & saved to local variable.
2247 * Write register value back to clear pending interrupts.
2249 reg_mcu
= rt2x00mmio_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
);
2250 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg_mcu
);
2252 reg
= rt2x00mmio_register_read(rt2x00dev
, INT_SOURCE_CSR
);
2253 rt2x00mmio_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
2255 if (!reg
&& !reg_mcu
)
2258 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2262 * Schedule tasklets for interrupt handling.
2264 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RXDONE
))
2265 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
2267 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TXDONE
))
2268 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
2270 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_BEACON_DONE
))
2271 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
2273 if (rt2x00_get_field32(reg_mcu
, MCU_INT_SOURCE_CSR_TWAKEUP
))
2274 tasklet_schedule(&rt2x00dev
->autowake_tasklet
);
2277 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2278 * for interrupts and interrupt masks we can just use the value of
2279 * INT_SOURCE_CSR to create the interrupt mask.
2285 * Disable all interrupts for which a tasklet was scheduled right now,
2286 * the tasklet will reenable the appropriate interrupts.
2288 spin_lock(&rt2x00dev
->irqmask_lock
);
2290 reg
= rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
);
2292 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
2294 reg
= rt2x00mmio_register_read(rt2x00dev
, MCU_INT_MASK_CSR
);
2296 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
2298 spin_unlock(&rt2x00dev
->irqmask_lock
);
2304 * Device probe functions.
2306 static int rt61pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
2308 struct eeprom_93cx6 eeprom
;
2314 reg
= rt2x00mmio_register_read(rt2x00dev
, E2PROM_CSR
);
2316 eeprom
.data
= rt2x00dev
;
2317 eeprom
.register_read
= rt61pci_eepromregister_read
;
2318 eeprom
.register_write
= rt61pci_eepromregister_write
;
2319 eeprom
.width
= rt2x00_get_field32(reg
, E2PROM_CSR_TYPE_93C46
) ?
2320 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
2321 eeprom
.reg_data_in
= 0;
2322 eeprom
.reg_data_out
= 0;
2323 eeprom
.reg_data_clock
= 0;
2324 eeprom
.reg_chip_select
= 0;
2326 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
2327 EEPROM_SIZE
/ sizeof(u16
));
2330 * Start validation of the data that has been read.
2332 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
2333 rt2x00lib_set_mac_address(rt2x00dev
, mac
);
2335 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
2336 if (word
== 0xffff) {
2337 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
2338 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
2340 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
2342 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
2343 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
2344 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
2345 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5225
);
2346 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
2347 rt2x00_eeprom_dbg(rt2x00dev
, "Antenna: 0x%04x\n", word
);
2350 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
2351 if (word
== 0xffff) {
2352 rt2x00_set_field16(&word
, EEPROM_NIC_ENABLE_DIVERSITY
, 0);
2353 rt2x00_set_field16(&word
, EEPROM_NIC_TX_DIVERSITY
, 0);
2354 rt2x00_set_field16(&word
, EEPROM_NIC_RX_FIXED
, 0);
2355 rt2x00_set_field16(&word
, EEPROM_NIC_TX_FIXED
, 0);
2356 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_BG
, 0);
2357 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
2358 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_A
, 0);
2359 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
2360 rt2x00_eeprom_dbg(rt2x00dev
, "NIC: 0x%04x\n", word
);
2363 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
);
2364 if (word
== 0xffff) {
2365 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
2367 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
2368 rt2x00_eeprom_dbg(rt2x00dev
, "Led: 0x%04x\n", word
);
2371 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
);
2372 if (word
== 0xffff) {
2373 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
2374 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
2375 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
2376 rt2x00_eeprom_dbg(rt2x00dev
, "Freq: 0x%04x\n", word
);
2379 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
);
2380 if (word
== 0xffff) {
2381 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
2382 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
2383 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
2384 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
2386 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
2387 if (value
< -10 || value
> 10)
2388 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
2389 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
2390 if (value
< -10 || value
> 10)
2391 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
2392 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
2395 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
);
2396 if (word
== 0xffff) {
2397 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
2398 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
2399 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
2400 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET A: 0x%04x\n", word
);
2402 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
2403 if (value
< -10 || value
> 10)
2404 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
2405 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
2406 if (value
< -10 || value
> 10)
2407 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
2408 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
2414 static int rt61pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
2421 * Read EEPROM word for configuration.
2423 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
2426 * Identify RF chipset.
2428 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
2429 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR0
);
2430 rt2x00_set_chip(rt2x00dev
, rt2x00_get_field32(reg
, MAC_CSR0_CHIPSET
),
2431 value
, rt2x00_get_field32(reg
, MAC_CSR0_REVISION
));
2433 if (!rt2x00_rf(rt2x00dev
, RF5225
) &&
2434 !rt2x00_rf(rt2x00dev
, RF5325
) &&
2435 !rt2x00_rf(rt2x00dev
, RF2527
) &&
2436 !rt2x00_rf(rt2x00dev
, RF2529
)) {
2437 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
2442 * Determine number of antennas.
2444 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_NUM
) == 2)
2445 __set_bit(CAPABILITY_DOUBLE_ANTENNA
, &rt2x00dev
->cap_flags
);
2448 * Identify default antenna configuration.
2450 rt2x00dev
->default_ant
.tx
=
2451 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
2452 rt2x00dev
->default_ant
.rx
=
2453 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
2456 * Read the Frame type.
2458 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
2459 __set_bit(CAPABILITY_FRAME_TYPE
, &rt2x00dev
->cap_flags
);
2462 * Detect if this device has a hardware controlled radio.
2464 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
2465 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
2468 * Read frequency offset and RF programming sequence.
2470 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
);
2471 if (rt2x00_get_field16(eeprom
, EEPROM_FREQ_SEQ
))
2472 __set_bit(CAPABILITY_RF_SEQUENCE
, &rt2x00dev
->cap_flags
);
2474 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
2477 * Read external LNA informations.
2479 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
2481 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_A
))
2482 __set_bit(CAPABILITY_EXTERNAL_LNA_A
, &rt2x00dev
->cap_flags
);
2483 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_BG
))
2484 __set_bit(CAPABILITY_EXTERNAL_LNA_BG
, &rt2x00dev
->cap_flags
);
2487 * When working with a RF2529 chip without double antenna,
2488 * the antenna settings should be gathered from the NIC
2491 if (rt2x00_rf(rt2x00dev
, RF2529
) &&
2492 !rt2x00_has_cap_double_antenna(rt2x00dev
)) {
2493 rt2x00dev
->default_ant
.rx
=
2494 ANTENNA_A
+ rt2x00_get_field16(eeprom
, EEPROM_NIC_RX_FIXED
);
2495 rt2x00dev
->default_ant
.tx
=
2496 ANTENNA_B
- rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_FIXED
);
2498 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_DIVERSITY
))
2499 rt2x00dev
->default_ant
.tx
= ANTENNA_SW_DIVERSITY
;
2500 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_ENABLE_DIVERSITY
))
2501 rt2x00dev
->default_ant
.rx
= ANTENNA_SW_DIVERSITY
;
2505 * Store led settings, for correct led behaviour.
2506 * If the eeprom value is invalid,
2507 * switch to default led mode.
2509 #ifdef CONFIG_RT2X00_LIB_LEDS
2510 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
);
2511 value
= rt2x00_get_field16(eeprom
, EEPROM_LED_LED_MODE
);
2513 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
2514 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_assoc
, LED_TYPE_ASSOC
);
2515 if (value
== LED_MODE_SIGNAL_STRENGTH
)
2516 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
2519 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_LED_MODE
, value
);
2520 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
2521 rt2x00_get_field16(eeprom
,
2522 EEPROM_LED_POLARITY_GPIO_0
));
2523 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
2524 rt2x00_get_field16(eeprom
,
2525 EEPROM_LED_POLARITY_GPIO_1
));
2526 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
2527 rt2x00_get_field16(eeprom
,
2528 EEPROM_LED_POLARITY_GPIO_2
));
2529 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
2530 rt2x00_get_field16(eeprom
,
2531 EEPROM_LED_POLARITY_GPIO_3
));
2532 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
2533 rt2x00_get_field16(eeprom
,
2534 EEPROM_LED_POLARITY_GPIO_4
));
2535 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_ACT
,
2536 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
2537 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_BG
,
2538 rt2x00_get_field16(eeprom
,
2539 EEPROM_LED_POLARITY_RDY_G
));
2540 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_A
,
2541 rt2x00_get_field16(eeprom
,
2542 EEPROM_LED_POLARITY_RDY_A
));
2543 #endif /* CONFIG_RT2X00_LIB_LEDS */
2549 * RF value list for RF5225 & RF5325
2550 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2552 static const struct rf_channel rf_vals_noseq
[] = {
2553 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2554 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2555 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2556 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2557 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2558 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2559 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2560 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2561 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2562 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2563 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2564 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2565 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2566 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2568 /* 802.11 UNI / HyperLan 2 */
2569 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2570 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2571 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2572 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2573 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2574 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2575 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2576 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2578 /* 802.11 HyperLan 2 */
2579 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2580 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2581 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2582 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2583 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2584 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2585 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2586 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2587 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2588 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2591 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2592 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2593 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2594 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2595 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2596 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2598 /* MMAC(Japan)J52 ch 34,38,42,46 */
2599 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2600 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2601 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2602 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2606 * RF value list for RF5225 & RF5325
2607 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2609 static const struct rf_channel rf_vals_seq
[] = {
2610 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2611 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2612 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2613 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2614 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2615 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2616 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2617 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2618 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2619 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2620 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2621 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2622 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2623 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2625 /* 802.11 UNI / HyperLan 2 */
2626 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2627 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2628 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2629 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2630 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2631 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2632 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2633 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2635 /* 802.11 HyperLan 2 */
2636 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2637 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2638 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2639 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2640 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2641 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2642 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2643 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2644 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2645 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2648 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2649 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2650 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2651 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2652 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2653 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2655 /* MMAC(Japan)J52 ch 34,38,42,46 */
2656 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2657 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2658 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2659 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2662 static int rt61pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2664 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2665 struct channel_info
*info
;
2670 * Disable powersaving as default.
2672 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
2675 * Initialize all hw fields.
2677 ieee80211_hw_set(rt2x00dev
->hw
, PS_NULLFUNC_STACK
);
2678 ieee80211_hw_set(rt2x00dev
->hw
, SUPPORTS_PS
);
2679 ieee80211_hw_set(rt2x00dev
->hw
, HOST_BROADCAST_PS_BUFFERING
);
2680 ieee80211_hw_set(rt2x00dev
->hw
, SIGNAL_DBM
);
2682 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
2683 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2684 rt2x00_eeprom_addr(rt2x00dev
,
2685 EEPROM_MAC_ADDR_0
));
2688 * As rt61 has a global fallback table we cannot specify
2689 * more then one tx rate per frame but since the hw will
2690 * try several rates (based on the fallback table) we should
2691 * initialize max_report_rates to the maximum number of rates
2692 * we are going to try. Otherwise mac80211 will truncate our
2693 * reported tx rates and the rc algortihm will end up with
2696 rt2x00dev
->hw
->max_rates
= 1;
2697 rt2x00dev
->hw
->max_report_rates
= 7;
2698 rt2x00dev
->hw
->max_rate_tries
= 1;
2701 * Initialize hw_mode information.
2703 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
2704 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
2706 if (!rt2x00_has_cap_rf_sequence(rt2x00dev
)) {
2707 spec
->num_channels
= 14;
2708 spec
->channels
= rf_vals_noseq
;
2710 spec
->num_channels
= 14;
2711 spec
->channels
= rf_vals_seq
;
2714 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF5325
)) {
2715 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2716 spec
->num_channels
= ARRAY_SIZE(rf_vals_seq
);
2720 * Create channel information array
2722 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
2726 spec
->channels_info
= info
;
2728 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2729 for (i
= 0; i
< 14; i
++) {
2730 info
[i
].max_power
= MAX_TXPOWER
;
2731 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2734 if (spec
->num_channels
> 14) {
2735 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2736 for (i
= 14; i
< spec
->num_channels
; i
++) {
2737 info
[i
].max_power
= MAX_TXPOWER
;
2738 info
[i
].default_power1
=
2739 TXPOWER_FROM_DEV(tx_power
[i
- 14]);
2746 static int rt61pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2752 * Disable power saving.
2754 rt2x00mmio_register_write(rt2x00dev
, SOFT_RESET_CSR
, 0x00000007);
2757 * Allocate eeprom data.
2759 retval
= rt61pci_validate_eeprom(rt2x00dev
);
2763 retval
= rt61pci_init_eeprom(rt2x00dev
);
2768 * Enable rfkill polling by setting GPIO direction of the
2769 * rfkill switch GPIO pin correctly.
2771 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR13
);
2772 rt2x00_set_field32(®
, MAC_CSR13_DIR5
, 1);
2773 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR13
, reg
);
2776 * Initialize hw specifications.
2778 retval
= rt61pci_probe_hw_mode(rt2x00dev
);
2783 * This device has multiple filters for control frames,
2784 * but has no a separate filter for PS Poll frames.
2786 __set_bit(CAPABILITY_CONTROL_FILTERS
, &rt2x00dev
->cap_flags
);
2789 * This device requires firmware and DMA mapped skbs.
2791 __set_bit(REQUIRE_FIRMWARE
, &rt2x00dev
->cap_flags
);
2792 __set_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
);
2793 if (!modparam_nohwcrypt
)
2794 __set_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
);
2795 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
2798 * Set the rssi offset.
2800 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2806 * IEEE80211 stack callback functions.
2808 static int rt61pci_conf_tx(struct ieee80211_hw
*hw
,
2809 struct ieee80211_vif
*vif
, u16 queue_idx
,
2810 const struct ieee80211_tx_queue_params
*params
)
2812 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2813 struct data_queue
*queue
;
2814 struct rt2x00_field32 field
;
2820 * First pass the configuration through rt2x00lib, that will
2821 * update the queue settings and validate the input. After that
2822 * we are free to update the registers based on the value
2823 * in the queue parameter.
2825 retval
= rt2x00mac_conf_tx(hw
, vif
, queue_idx
, params
);
2830 * We only need to perform additional register initialization
2836 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
2838 /* Update WMM TXOP register */
2839 offset
= AC_TXOP_CSR0
+ (sizeof(u32
) * (!!(queue_idx
& 2)));
2840 field
.bit_offset
= (queue_idx
& 1) * 16;
2841 field
.bit_mask
= 0xffff << field
.bit_offset
;
2843 reg
= rt2x00mmio_register_read(rt2x00dev
, offset
);
2844 rt2x00_set_field32(®
, field
, queue
->txop
);
2845 rt2x00mmio_register_write(rt2x00dev
, offset
, reg
);
2847 /* Update WMM registers */
2848 field
.bit_offset
= queue_idx
* 4;
2849 field
.bit_mask
= 0xf << field
.bit_offset
;
2851 reg
= rt2x00mmio_register_read(rt2x00dev
, AIFSN_CSR
);
2852 rt2x00_set_field32(®
, field
, queue
->aifs
);
2853 rt2x00mmio_register_write(rt2x00dev
, AIFSN_CSR
, reg
);
2855 reg
= rt2x00mmio_register_read(rt2x00dev
, CWMIN_CSR
);
2856 rt2x00_set_field32(®
, field
, queue
->cw_min
);
2857 rt2x00mmio_register_write(rt2x00dev
, CWMIN_CSR
, reg
);
2859 reg
= rt2x00mmio_register_read(rt2x00dev
, CWMAX_CSR
);
2860 rt2x00_set_field32(®
, field
, queue
->cw_max
);
2861 rt2x00mmio_register_write(rt2x00dev
, CWMAX_CSR
, reg
);
2866 static u64
rt61pci_get_tsf(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
2868 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2872 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR13
);
2873 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2874 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR12
);
2875 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2880 static const struct ieee80211_ops rt61pci_mac80211_ops
= {
2882 .start
= rt2x00mac_start
,
2883 .stop
= rt2x00mac_stop
,
2884 .add_interface
= rt2x00mac_add_interface
,
2885 .remove_interface
= rt2x00mac_remove_interface
,
2886 .config
= rt2x00mac_config
,
2887 .configure_filter
= rt2x00mac_configure_filter
,
2888 .set_key
= rt2x00mac_set_key
,
2889 .sw_scan_start
= rt2x00mac_sw_scan_start
,
2890 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
2891 .get_stats
= rt2x00mac_get_stats
,
2892 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2893 .conf_tx
= rt61pci_conf_tx
,
2894 .get_tsf
= rt61pci_get_tsf
,
2895 .rfkill_poll
= rt2x00mac_rfkill_poll
,
2896 .flush
= rt2x00mac_flush
,
2897 .set_antenna
= rt2x00mac_set_antenna
,
2898 .get_antenna
= rt2x00mac_get_antenna
,
2899 .get_ringparam
= rt2x00mac_get_ringparam
,
2900 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
2903 static const struct rt2x00lib_ops rt61pci_rt2x00_ops
= {
2904 .irq_handler
= rt61pci_interrupt
,
2905 .txstatus_tasklet
= rt61pci_txstatus_tasklet
,
2906 .tbtt_tasklet
= rt61pci_tbtt_tasklet
,
2907 .rxdone_tasklet
= rt61pci_rxdone_tasklet
,
2908 .autowake_tasklet
= rt61pci_autowake_tasklet
,
2909 .probe_hw
= rt61pci_probe_hw
,
2910 .get_firmware_name
= rt61pci_get_firmware_name
,
2911 .check_firmware
= rt61pci_check_firmware
,
2912 .load_firmware
= rt61pci_load_firmware
,
2913 .initialize
= rt2x00mmio_initialize
,
2914 .uninitialize
= rt2x00mmio_uninitialize
,
2915 .get_entry_state
= rt61pci_get_entry_state
,
2916 .clear_entry
= rt61pci_clear_entry
,
2917 .set_device_state
= rt61pci_set_device_state
,
2918 .rfkill_poll
= rt61pci_rfkill_poll
,
2919 .link_stats
= rt61pci_link_stats
,
2920 .reset_tuner
= rt61pci_reset_tuner
,
2921 .link_tuner
= rt61pci_link_tuner
,
2922 .start_queue
= rt61pci_start_queue
,
2923 .kick_queue
= rt61pci_kick_queue
,
2924 .stop_queue
= rt61pci_stop_queue
,
2925 .flush_queue
= rt2x00mmio_flush_queue
,
2926 .write_tx_desc
= rt61pci_write_tx_desc
,
2927 .write_beacon
= rt61pci_write_beacon
,
2928 .clear_beacon
= rt61pci_clear_beacon
,
2929 .fill_rxdone
= rt61pci_fill_rxdone
,
2930 .config_shared_key
= rt61pci_config_shared_key
,
2931 .config_pairwise_key
= rt61pci_config_pairwise_key
,
2932 .config_filter
= rt61pci_config_filter
,
2933 .config_intf
= rt61pci_config_intf
,
2934 .config_erp
= rt61pci_config_erp
,
2935 .config_ant
= rt61pci_config_ant
,
2936 .config
= rt61pci_config
,
2939 static void rt61pci_queue_init(struct data_queue
*queue
)
2941 switch (queue
->qid
) {
2944 queue
->data_size
= DATA_FRAME_SIZE
;
2945 queue
->desc_size
= RXD_DESC_SIZE
;
2946 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2954 queue
->data_size
= DATA_FRAME_SIZE
;
2955 queue
->desc_size
= TXD_DESC_SIZE
;
2956 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2961 queue
->data_size
= 0; /* No DMA required for beacons */
2962 queue
->desc_size
= TXINFO_SIZE
;
2963 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2974 static const struct rt2x00_ops rt61pci_ops
= {
2975 .name
= KBUILD_MODNAME
,
2977 .eeprom_size
= EEPROM_SIZE
,
2979 .tx_queues
= NUM_TX_QUEUES
,
2980 .queue_init
= rt61pci_queue_init
,
2981 .lib
= &rt61pci_rt2x00_ops
,
2982 .hw
= &rt61pci_mac80211_ops
,
2983 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2984 .debugfs
= &rt61pci_rt2x00debug
,
2985 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2989 * RT61pci module information.
2991 static const struct pci_device_id rt61pci_device_table
[] = {
2993 { PCI_DEVICE(0x1814, 0x0301) },
2995 { PCI_DEVICE(0x1814, 0x0302) },
2997 { PCI_DEVICE(0x1814, 0x0401) },
3001 MODULE_AUTHOR(DRV_PROJECT
);
3002 MODULE_VERSION(DRV_VERSION
);
3003 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3004 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3005 "PCI & PCMCIA chipset based cards");
3006 MODULE_DEVICE_TABLE(pci
, rt61pci_device_table
);
3007 MODULE_FIRMWARE(FIRMWARE_RT2561
);
3008 MODULE_FIRMWARE(FIRMWARE_RT2561s
);
3009 MODULE_FIRMWARE(FIRMWARE_RT2661
);
3010 MODULE_LICENSE("GPL");
3012 static int rt61pci_probe(struct pci_dev
*pci_dev
,
3013 const struct pci_device_id
*id
)
3015 return rt2x00pci_probe(pci_dev
, &rt61pci_ops
);
3018 static struct pci_driver rt61pci_driver
= {
3019 .name
= KBUILD_MODNAME
,
3020 .id_table
= rt61pci_device_table
,
3021 .probe
= rt61pci_probe
,
3022 .remove
= rt2x00pci_remove
,
3023 .suspend
= rt2x00pci_suspend
,
3024 .resume
= rt2x00pci_resume
,
3027 module_pci_driver(rt61pci_driver
);