dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / net / wireless / ralink / rt2x00 / rt61pci.c
blob52b9fc480f8b3a386622f69a2f6373803ab6f7ef
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
20 Module: rt61pci
21 Abstract: rt61pci device specific routines.
22 Supported chipsets: RT2561, RT2561s, RT2661.
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/pci.h>
32 #include <linux/eeprom_93cx6.h>
34 #include "rt2x00.h"
35 #include "rt2x00mmio.h"
36 #include "rt2x00pci.h"
37 #include "rt61pci.h"
40 * Allow hardware encryption to be disabled.
42 static bool modparam_nohwcrypt = false;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47 * Register access.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attempt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
57 #define WAIT_FOR_BBP(__dev, __reg) \
58 rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
59 #define WAIT_FOR_RF(__dev, __reg) \
60 rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
61 #define WAIT_FOR_MCU(__dev, __reg) \
62 rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
63 H2M_MAILBOX_CSR_OWNER, (__reg))
65 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
66 const unsigned int word, const u8 value)
68 u32 reg;
70 mutex_lock(&rt2x00dev->csr_mutex);
73 * Wait until the BBP becomes available, afterwards we
74 * can safely write the new data into the register.
76 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77 reg = 0;
78 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
86 mutex_unlock(&rt2x00dev->csr_mutex);
89 static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
90 const unsigned int word)
92 u32 reg;
93 u8 value;
95 mutex_lock(&rt2x00dev->csr_mutex);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
113 WAIT_FOR_BBP(rt2x00dev, &reg);
116 value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118 mutex_unlock(&rt2x00dev->csr_mutex);
120 return value;
123 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
124 const unsigned int word, const u32 value)
126 u32 reg;
128 mutex_lock(&rt2x00dev->csr_mutex);
131 * Wait until the RF becomes available, afterwards we
132 * can safely write the new data into the register.
134 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
135 reg = 0;
136 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
137 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
138 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
139 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
141 rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
142 rt2x00_rf_write(rt2x00dev, word, value);
145 mutex_unlock(&rt2x00dev->csr_mutex);
148 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
149 const u8 command, const u8 token,
150 const u8 arg0, const u8 arg1)
152 u32 reg;
154 mutex_lock(&rt2x00dev->csr_mutex);
157 * Wait until the MCU becomes available, afterwards we
158 * can safely write the new data into the register.
160 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
163 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
164 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
165 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
167 reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR);
168 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
169 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
170 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
173 mutex_unlock(&rt2x00dev->csr_mutex);
177 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
179 struct rt2x00_dev *rt2x00dev = eeprom->data;
180 u32 reg;
182 reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
184 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
185 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
186 eeprom->reg_data_clock =
187 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
188 eeprom->reg_chip_select =
189 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
192 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
194 struct rt2x00_dev *rt2x00dev = eeprom->data;
195 u32 reg = 0;
197 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
198 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
199 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
200 !!eeprom->reg_data_clock);
201 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
202 !!eeprom->reg_chip_select);
204 rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
207 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
208 static const struct rt2x00debug rt61pci_rt2x00debug = {
209 .owner = THIS_MODULE,
210 .csr = {
211 .read = rt2x00mmio_register_read,
212 .write = rt2x00mmio_register_write,
213 .flags = RT2X00DEBUGFS_OFFSET,
214 .word_base = CSR_REG_BASE,
215 .word_size = sizeof(u32),
216 .word_count = CSR_REG_SIZE / sizeof(u32),
218 .eeprom = {
219 .read = rt2x00_eeprom_read,
220 .write = rt2x00_eeprom_write,
221 .word_base = EEPROM_BASE,
222 .word_size = sizeof(u16),
223 .word_count = EEPROM_SIZE / sizeof(u16),
225 .bbp = {
226 .read = rt61pci_bbp_read,
227 .write = rt61pci_bbp_write,
228 .word_base = BBP_BASE,
229 .word_size = sizeof(u8),
230 .word_count = BBP_SIZE / sizeof(u8),
232 .rf = {
233 .read = rt2x00_rf_read,
234 .write = rt61pci_rf_write,
235 .word_base = RF_BASE,
236 .word_size = sizeof(u32),
237 .word_count = RF_SIZE / sizeof(u32),
240 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
242 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
244 u32 reg;
246 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
247 return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
250 #ifdef CONFIG_RT2X00_LIB_LEDS
251 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
252 enum led_brightness brightness)
254 struct rt2x00_led *led =
255 container_of(led_cdev, struct rt2x00_led, led_dev);
256 unsigned int enabled = brightness != LED_OFF;
257 unsigned int a_mode =
258 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
259 unsigned int bg_mode =
260 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
262 if (led->type == LED_TYPE_RADIO) {
263 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
264 MCU_LEDCS_RADIO_STATUS, enabled);
266 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
267 (led->rt2x00dev->led_mcu_reg & 0xff),
268 ((led->rt2x00dev->led_mcu_reg >> 8)));
269 } else if (led->type == LED_TYPE_ASSOC) {
270 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
271 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
272 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
273 MCU_LEDCS_LINK_A_STATUS, a_mode);
275 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
276 (led->rt2x00dev->led_mcu_reg & 0xff),
277 ((led->rt2x00dev->led_mcu_reg >> 8)));
278 } else if (led->type == LED_TYPE_QUALITY) {
280 * The brightness is divided into 6 levels (0 - 5),
281 * this means we need to convert the brightness
282 * argument into the matching level within that range.
284 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
285 brightness / (LED_FULL / 6), 0);
289 static int rt61pci_blink_set(struct led_classdev *led_cdev,
290 unsigned long *delay_on,
291 unsigned long *delay_off)
293 struct rt2x00_led *led =
294 container_of(led_cdev, struct rt2x00_led, led_dev);
295 u32 reg;
297 reg = rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14);
298 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
299 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
300 rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
302 return 0;
305 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
306 struct rt2x00_led *led,
307 enum led_type type)
309 led->rt2x00dev = rt2x00dev;
310 led->type = type;
311 led->led_dev.brightness_set = rt61pci_brightness_set;
312 led->led_dev.blink_set = rt61pci_blink_set;
313 led->flags = LED_INITIALIZED;
315 #endif /* CONFIG_RT2X00_LIB_LEDS */
318 * Configuration handlers.
320 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
321 struct rt2x00lib_crypto *crypto,
322 struct ieee80211_key_conf *key)
325 * Let the software handle the shared keys,
326 * since the hardware decryption does not work reliably,
327 * because the firmware does not know the key's keyidx.
329 return -EOPNOTSUPP;
332 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
333 struct rt2x00lib_crypto *crypto,
334 struct ieee80211_key_conf *key)
336 struct hw_pairwise_ta_entry addr_entry;
337 struct hw_key_entry key_entry;
338 u32 mask;
339 u32 reg;
341 if (crypto->cmd == SET_KEY) {
343 * rt2x00lib can't determine the correct free
344 * key_idx for pairwise keys. We have 2 registers
345 * with key valid bits. The goal is simple: read
346 * the first register. If that is full, move to
347 * the next register.
348 * When both registers are full, we drop the key.
349 * Otherwise, we use the first invalid entry.
351 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
352 if (reg && reg == ~0) {
353 key->hw_key_idx = 32;
354 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
355 if (reg && reg == ~0)
356 return -ENOSPC;
359 key->hw_key_idx += reg ? ffz(reg) : 0;
362 * Upload key to hardware
364 memcpy(key_entry.key, crypto->key,
365 sizeof(key_entry.key));
366 memcpy(key_entry.tx_mic, crypto->tx_mic,
367 sizeof(key_entry.tx_mic));
368 memcpy(key_entry.rx_mic, crypto->rx_mic,
369 sizeof(key_entry.rx_mic));
371 memset(&addr_entry, 0, sizeof(addr_entry));
372 memcpy(&addr_entry, crypto->address, ETH_ALEN);
373 addr_entry.cipher = crypto->cipher;
375 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
376 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
377 &key_entry, sizeof(key_entry));
379 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
380 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
381 &addr_entry, sizeof(addr_entry));
384 * Enable pairwise lookup table for given BSS idx.
385 * Without this, received frames will not be decrypted
386 * by the hardware.
388 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4);
389 reg |= (1 << crypto->bssidx);
390 rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
393 * The driver does not support the IV/EIV generation
394 * in hardware. However it doesn't support the IV/EIV
395 * inside the ieee80211 frame either, but requires it
396 * to be provided separately for the descriptor.
397 * rt2x00lib will cut the IV/EIV data out of all frames
398 * given to us by mac80211, but we must tell mac80211
399 * to generate the IV/EIV data.
401 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
405 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
406 * a particular key is valid. Because using the FIELD32()
407 * defines directly will cause a lot of overhead, we use
408 * a calculation to determine the correct bit directly.
410 if (key->hw_key_idx < 32) {
411 mask = 1 << key->hw_key_idx;
413 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
414 if (crypto->cmd == SET_KEY)
415 reg |= mask;
416 else if (crypto->cmd == DISABLE_KEY)
417 reg &= ~mask;
418 rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
419 } else {
420 mask = 1 << (key->hw_key_idx - 32);
422 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
423 if (crypto->cmd == SET_KEY)
424 reg |= mask;
425 else if (crypto->cmd == DISABLE_KEY)
426 reg &= ~mask;
427 rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
430 return 0;
433 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
434 const unsigned int filter_flags)
436 u32 reg;
439 * Start configuration steps.
440 * Note that the version error will always be dropped
441 * and broadcast frames will always be accepted since
442 * there is no filter for it at this time.
444 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
445 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
446 !(filter_flags & FIF_FCSFAIL));
447 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
448 !(filter_flags & FIF_PLCPFAIL));
449 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
450 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
451 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
452 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
453 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
454 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
455 !rt2x00dev->intf_ap_count);
456 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
457 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
458 !(filter_flags & FIF_ALLMULTI));
459 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
460 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
461 !(filter_flags & FIF_CONTROL));
462 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
465 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
466 struct rt2x00_intf *intf,
467 struct rt2x00intf_conf *conf,
468 const unsigned int flags)
470 u32 reg;
472 if (flags & CONFIG_UPDATE_TYPE) {
474 * Enable synchronisation.
476 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
477 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
478 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
481 if (flags & CONFIG_UPDATE_MAC) {
482 reg = le32_to_cpu(conf->mac[1]);
483 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
484 conf->mac[1] = cpu_to_le32(reg);
486 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
487 conf->mac, sizeof(conf->mac));
490 if (flags & CONFIG_UPDATE_BSSID) {
491 reg = le32_to_cpu(conf->bssid[1]);
492 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
493 conf->bssid[1] = cpu_to_le32(reg);
495 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
496 conf->bssid,
497 sizeof(conf->bssid));
501 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
502 struct rt2x00lib_erp *erp,
503 u32 changed)
505 u32 reg;
507 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
508 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
509 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
510 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
512 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
513 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
514 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
515 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
516 !!erp->short_preamble);
517 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
520 if (changed & BSS_CHANGED_BASIC_RATES)
521 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
522 erp->basic_rates);
524 if (changed & BSS_CHANGED_BEACON_INT) {
525 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
526 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
527 erp->beacon_int * 16);
528 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
531 if (changed & BSS_CHANGED_ERP_SLOT) {
532 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
533 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
534 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
536 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8);
537 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
538 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
539 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
540 rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
544 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
545 struct antenna_setup *ant)
547 u8 r3;
548 u8 r4;
549 u8 r77;
551 r3 = rt61pci_bbp_read(rt2x00dev, 3);
552 r4 = rt61pci_bbp_read(rt2x00dev, 4);
553 r77 = rt61pci_bbp_read(rt2x00dev, 77);
555 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
558 * Configure the RX antenna.
560 switch (ant->rx) {
561 case ANTENNA_HW_DIVERSITY:
562 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
563 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
564 (rt2x00dev->curr_band != NL80211_BAND_5GHZ));
565 break;
566 case ANTENNA_A:
567 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
568 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
569 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
570 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
571 else
572 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
573 break;
574 case ANTENNA_B:
575 default:
576 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
577 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
578 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
579 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
580 else
581 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
582 break;
585 rt61pci_bbp_write(rt2x00dev, 77, r77);
586 rt61pci_bbp_write(rt2x00dev, 3, r3);
587 rt61pci_bbp_write(rt2x00dev, 4, r4);
590 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
591 struct antenna_setup *ant)
593 u8 r3;
594 u8 r4;
595 u8 r77;
597 r3 = rt61pci_bbp_read(rt2x00dev, 3);
598 r4 = rt61pci_bbp_read(rt2x00dev, 4);
599 r77 = rt61pci_bbp_read(rt2x00dev, 77);
601 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
602 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
603 !rt2x00_has_cap_frame_type(rt2x00dev));
606 * Configure the RX antenna.
608 switch (ant->rx) {
609 case ANTENNA_HW_DIVERSITY:
610 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
611 break;
612 case ANTENNA_A:
613 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
614 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
615 break;
616 case ANTENNA_B:
617 default:
618 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
619 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
620 break;
623 rt61pci_bbp_write(rt2x00dev, 77, r77);
624 rt61pci_bbp_write(rt2x00dev, 3, r3);
625 rt61pci_bbp_write(rt2x00dev, 4, r4);
628 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
629 const int p1, const int p2)
631 u32 reg;
633 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
635 rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
636 rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
638 rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
639 rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
641 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
644 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
645 struct antenna_setup *ant)
647 u8 r3;
648 u8 r4;
649 u8 r77;
651 r3 = rt61pci_bbp_read(rt2x00dev, 3);
652 r4 = rt61pci_bbp_read(rt2x00dev, 4);
653 r77 = rt61pci_bbp_read(rt2x00dev, 77);
656 * Configure the RX antenna.
658 switch (ant->rx) {
659 case ANTENNA_A:
660 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
661 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
662 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
663 break;
664 case ANTENNA_HW_DIVERSITY:
666 * FIXME: Antenna selection for the rf 2529 is very confusing
667 * in the legacy driver. Just default to antenna B until the
668 * legacy code can be properly translated into rt2x00 code.
670 case ANTENNA_B:
671 default:
672 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
673 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
674 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
675 break;
678 rt61pci_bbp_write(rt2x00dev, 77, r77);
679 rt61pci_bbp_write(rt2x00dev, 3, r3);
680 rt61pci_bbp_write(rt2x00dev, 4, r4);
683 struct antenna_sel {
684 u8 word;
686 * value[0] -> non-LNA
687 * value[1] -> LNA
689 u8 value[2];
692 static const struct antenna_sel antenna_sel_a[] = {
693 { 96, { 0x58, 0x78 } },
694 { 104, { 0x38, 0x48 } },
695 { 75, { 0xfe, 0x80 } },
696 { 86, { 0xfe, 0x80 } },
697 { 88, { 0xfe, 0x80 } },
698 { 35, { 0x60, 0x60 } },
699 { 97, { 0x58, 0x58 } },
700 { 98, { 0x58, 0x58 } },
703 static const struct antenna_sel antenna_sel_bg[] = {
704 { 96, { 0x48, 0x68 } },
705 { 104, { 0x2c, 0x3c } },
706 { 75, { 0xfe, 0x80 } },
707 { 86, { 0xfe, 0x80 } },
708 { 88, { 0xfe, 0x80 } },
709 { 35, { 0x50, 0x50 } },
710 { 97, { 0x48, 0x48 } },
711 { 98, { 0x48, 0x48 } },
714 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
715 struct antenna_setup *ant)
717 const struct antenna_sel *sel;
718 unsigned int lna;
719 unsigned int i;
720 u32 reg;
723 * We should never come here because rt2x00lib is supposed
724 * to catch this and send us the correct antenna explicitely.
726 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
727 ant->tx == ANTENNA_SW_DIVERSITY);
729 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
730 sel = antenna_sel_a;
731 lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
732 } else {
733 sel = antenna_sel_bg;
734 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
737 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
738 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
740 reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0);
742 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
743 rt2x00dev->curr_band == NL80211_BAND_2GHZ);
744 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
745 rt2x00dev->curr_band == NL80211_BAND_5GHZ);
747 rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
749 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
750 rt61pci_config_antenna_5x(rt2x00dev, ant);
751 else if (rt2x00_rf(rt2x00dev, RF2527))
752 rt61pci_config_antenna_2x(rt2x00dev, ant);
753 else if (rt2x00_rf(rt2x00dev, RF2529)) {
754 if (rt2x00_has_cap_double_antenna(rt2x00dev))
755 rt61pci_config_antenna_2x(rt2x00dev, ant);
756 else
757 rt61pci_config_antenna_2529(rt2x00dev, ant);
761 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
762 struct rt2x00lib_conf *libconf)
764 u16 eeprom;
765 short lna_gain = 0;
767 if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
768 if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
769 lna_gain += 14;
771 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
772 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
773 } else {
774 if (rt2x00_has_cap_external_lna_a(rt2x00dev))
775 lna_gain += 14;
777 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
778 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
781 rt2x00dev->lna_gain = lna_gain;
784 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
785 struct rf_channel *rf, const int txpower)
787 u8 r3;
788 u8 r94;
789 u8 smart;
791 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
792 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
794 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
796 r3 = rt61pci_bbp_read(rt2x00dev, 3);
797 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
798 rt61pci_bbp_write(rt2x00dev, 3, r3);
800 r94 = 6;
801 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
802 r94 += txpower - MAX_TXPOWER;
803 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
804 r94 += txpower;
805 rt61pci_bbp_write(rt2x00dev, 94, r94);
807 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
808 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
809 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
810 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
812 udelay(200);
814 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
815 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
816 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
817 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
819 udelay(200);
821 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
822 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
823 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
824 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
826 msleep(1);
829 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
830 const int txpower)
832 struct rf_channel rf;
834 rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
835 rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
836 rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
837 rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
839 rt61pci_config_channel(rt2x00dev, &rf, txpower);
842 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
843 struct rt2x00lib_conf *libconf)
845 u32 reg;
847 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
848 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
849 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
850 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
851 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
852 libconf->conf->long_frame_max_tx_count);
853 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
854 libconf->conf->short_frame_max_tx_count);
855 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
858 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
859 struct rt2x00lib_conf *libconf)
861 enum dev_state state =
862 (libconf->conf->flags & IEEE80211_CONF_PS) ?
863 STATE_SLEEP : STATE_AWAKE;
864 u32 reg;
866 if (state == STATE_SLEEP) {
867 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
868 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
869 rt2x00dev->beacon_int - 10);
870 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
871 libconf->conf->listen_interval - 1);
872 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
874 /* We must first disable autowake before it can be enabled */
875 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
876 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
878 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
879 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
881 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
882 0x00000005);
883 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
884 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
886 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
887 } else {
888 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
889 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
890 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
891 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
892 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
893 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
895 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
896 0x00000007);
897 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
898 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
900 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
904 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
905 struct rt2x00lib_conf *libconf,
906 const unsigned int flags)
908 /* Always recalculate LNA gain before changing configuration */
909 rt61pci_config_lna_gain(rt2x00dev, libconf);
911 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
912 rt61pci_config_channel(rt2x00dev, &libconf->rf,
913 libconf->conf->power_level);
914 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
915 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
916 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
917 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
918 rt61pci_config_retry_limit(rt2x00dev, libconf);
919 if (flags & IEEE80211_CONF_CHANGE_PS)
920 rt61pci_config_ps(rt2x00dev, libconf);
924 * Link tuning
926 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
927 struct link_qual *qual)
929 u32 reg;
932 * Update FCS error count from register.
934 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
935 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
938 * Update False CCA count from register.
940 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
941 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
944 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
945 struct link_qual *qual, u8 vgc_level)
947 if (qual->vgc_level != vgc_level) {
948 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
949 qual->vgc_level = vgc_level;
950 qual->vgc_level_reg = vgc_level;
954 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
955 struct link_qual *qual)
957 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
960 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
961 struct link_qual *qual, const u32 count)
963 u8 up_bound;
964 u8 low_bound;
967 * Determine r17 bounds.
969 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
970 low_bound = 0x28;
971 up_bound = 0x48;
972 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
973 low_bound += 0x10;
974 up_bound += 0x10;
976 } else {
977 low_bound = 0x20;
978 up_bound = 0x40;
979 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
980 low_bound += 0x10;
981 up_bound += 0x10;
986 * If we are not associated, we should go straight to the
987 * dynamic CCA tuning.
989 if (!rt2x00dev->intf_associated)
990 goto dynamic_cca_tune;
993 * Special big-R17 for very short distance
995 if (qual->rssi >= -35) {
996 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
997 return;
1001 * Special big-R17 for short distance
1003 if (qual->rssi >= -58) {
1004 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1005 return;
1009 * Special big-R17 for middle-short distance
1011 if (qual->rssi >= -66) {
1012 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1013 return;
1017 * Special mid-R17 for middle distance
1019 if (qual->rssi >= -74) {
1020 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1021 return;
1025 * Special case: Change up_bound based on the rssi.
1026 * Lower up_bound when rssi is weaker then -74 dBm.
1028 up_bound -= 2 * (-74 - qual->rssi);
1029 if (low_bound > up_bound)
1030 up_bound = low_bound;
1032 if (qual->vgc_level > up_bound) {
1033 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1034 return;
1037 dynamic_cca_tune:
1040 * r17 does not yet exceed upper limit, continue and base
1041 * the r17 tuning on the false CCA count.
1043 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1044 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1045 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1046 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1050 * Queue handlers.
1052 static void rt61pci_start_queue(struct data_queue *queue)
1054 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1055 u32 reg;
1057 switch (queue->qid) {
1058 case QID_RX:
1059 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1060 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1061 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1062 break;
1063 case QID_BEACON:
1064 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1065 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1066 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1067 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1068 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1069 break;
1070 default:
1071 break;
1075 static void rt61pci_kick_queue(struct data_queue *queue)
1077 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1078 u32 reg;
1080 switch (queue->qid) {
1081 case QID_AC_VO:
1082 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1083 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1084 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1085 break;
1086 case QID_AC_VI:
1087 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1088 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1089 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1090 break;
1091 case QID_AC_BE:
1092 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1093 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1094 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1095 break;
1096 case QID_AC_BK:
1097 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1098 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1099 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1100 break;
1101 default:
1102 break;
1106 static void rt61pci_stop_queue(struct data_queue *queue)
1108 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1109 u32 reg;
1111 switch (queue->qid) {
1112 case QID_AC_VO:
1113 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1114 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1115 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1116 break;
1117 case QID_AC_VI:
1118 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1119 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1120 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1121 break;
1122 case QID_AC_BE:
1123 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1124 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1125 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1126 break;
1127 case QID_AC_BK:
1128 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1129 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1130 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1131 break;
1132 case QID_RX:
1133 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1134 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1135 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1136 break;
1137 case QID_BEACON:
1138 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1139 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1140 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1141 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1142 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1145 * Wait for possibly running tbtt tasklets.
1147 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1148 break;
1149 default:
1150 break;
1155 * Firmware functions
1157 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1159 u16 chip;
1160 char *fw_name;
1162 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1163 switch (chip) {
1164 case RT2561_PCI_ID:
1165 fw_name = FIRMWARE_RT2561;
1166 break;
1167 case RT2561s_PCI_ID:
1168 fw_name = FIRMWARE_RT2561s;
1169 break;
1170 case RT2661_PCI_ID:
1171 fw_name = FIRMWARE_RT2661;
1172 break;
1173 default:
1174 fw_name = NULL;
1175 break;
1178 return fw_name;
1181 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1182 const u8 *data, const size_t len)
1184 u16 fw_crc;
1185 u16 crc;
1188 * Only support 8kb firmware files.
1190 if (len != 8192)
1191 return FW_BAD_LENGTH;
1194 * The last 2 bytes in the firmware array are the crc checksum itself.
1195 * This means that we should never pass those 2 bytes to the crc
1196 * algorithm.
1198 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1201 * Use the crc itu-t algorithm.
1203 crc = crc_itu_t(0, data, len - 2);
1204 crc = crc_itu_t_byte(crc, 0);
1205 crc = crc_itu_t_byte(crc, 0);
1207 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1210 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1211 const u8 *data, const size_t len)
1213 int i;
1214 u32 reg;
1217 * Wait for stable hardware.
1219 for (i = 0; i < 100; i++) {
1220 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
1221 if (reg)
1222 break;
1223 msleep(1);
1226 if (!reg) {
1227 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1228 return -EBUSY;
1232 * Prepare MCU and mailbox for firmware loading.
1234 reg = 0;
1235 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1236 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1237 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1238 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1239 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1242 * Write firmware to device.
1244 reg = 0;
1245 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1246 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1247 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1249 rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1250 data, len);
1252 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1253 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1255 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1256 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1258 for (i = 0; i < 100; i++) {
1259 reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR);
1260 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1261 break;
1262 msleep(1);
1265 if (i == 100) {
1266 rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1267 return -EBUSY;
1271 * Hardware needs another millisecond before it is ready.
1273 msleep(1);
1276 * Reset MAC and BBP registers.
1278 reg = 0;
1279 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1280 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1281 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1283 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1284 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1285 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1286 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1288 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1289 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1290 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1292 return 0;
1296 * Initialization functions.
1298 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1300 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1301 u32 word;
1303 if (entry->queue->qid == QID_RX) {
1304 word = rt2x00_desc_read(entry_priv->desc, 0);
1306 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1307 } else {
1308 word = rt2x00_desc_read(entry_priv->desc, 0);
1310 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1311 rt2x00_get_field32(word, TXD_W0_VALID));
1315 static void rt61pci_clear_entry(struct queue_entry *entry)
1317 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1318 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1319 u32 word;
1321 if (entry->queue->qid == QID_RX) {
1322 word = rt2x00_desc_read(entry_priv->desc, 5);
1323 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1324 skbdesc->skb_dma);
1325 rt2x00_desc_write(entry_priv->desc, 5, word);
1327 word = rt2x00_desc_read(entry_priv->desc, 0);
1328 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1329 rt2x00_desc_write(entry_priv->desc, 0, word);
1330 } else {
1331 word = rt2x00_desc_read(entry_priv->desc, 0);
1332 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1333 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1334 rt2x00_desc_write(entry_priv->desc, 0, word);
1338 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1340 struct queue_entry_priv_mmio *entry_priv;
1341 u32 reg;
1344 * Initialize registers.
1346 reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0);
1347 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1348 rt2x00dev->tx[0].limit);
1349 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1350 rt2x00dev->tx[1].limit);
1351 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1352 rt2x00dev->tx[2].limit);
1353 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1354 rt2x00dev->tx[3].limit);
1355 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1357 reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1);
1358 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1359 rt2x00dev->tx[0].desc_size / 4);
1360 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1362 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1363 reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR);
1364 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1365 entry_priv->desc_dma);
1366 rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1368 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1369 reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR);
1370 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1371 entry_priv->desc_dma);
1372 rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1374 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1375 reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR);
1376 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1377 entry_priv->desc_dma);
1378 rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1380 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1381 reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR);
1382 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1383 entry_priv->desc_dma);
1384 rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1386 reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR);
1387 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1388 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1389 rt2x00dev->rx->desc_size / 4);
1390 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1391 rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1393 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1394 reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR);
1395 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1396 entry_priv->desc_dma);
1397 rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1399 reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR);
1400 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1401 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1402 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1403 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1404 rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1406 reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR);
1407 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1408 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1409 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1410 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1411 rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1413 reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1414 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1415 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1417 return 0;
1420 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1422 u32 reg;
1424 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1425 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1426 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1427 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1428 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1430 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1);
1431 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1432 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1433 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1434 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1435 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1436 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1437 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1438 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1439 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1442 * CCK TXD BBP registers
1444 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2);
1445 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1446 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1447 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1448 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1449 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1450 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1451 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1452 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1453 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1456 * OFDM TXD BBP registers
1458 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3);
1459 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1460 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1461 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1462 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1463 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1464 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1465 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1467 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7);
1468 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1469 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1470 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1471 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1472 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1474 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8);
1475 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1476 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1477 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1478 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1479 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1481 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1482 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1483 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1484 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1485 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1486 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1487 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1488 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1490 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1492 rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1494 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
1495 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1496 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1498 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1500 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1501 return -EBUSY;
1503 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1506 * Invalidate all Shared Keys (SEC_CSR0),
1507 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1509 rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1510 rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1511 rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1513 rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1514 rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1515 rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1516 rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1518 rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1520 rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1522 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1525 * Clear all beacons
1526 * For the Beacon base registers we only need to clear
1527 * the first byte since that byte contains the VALID and OWNER
1528 * bits which (when set to 0) will invalidate the entire beacon.
1530 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1531 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1532 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1533 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1536 * We must clear the error counters.
1537 * These registers are cleared on read,
1538 * so we may pass a useless variable to store the value.
1540 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
1541 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
1542 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2);
1545 * Reset MAC and BBP registers.
1547 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1548 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1549 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1550 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1552 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1553 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1554 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1555 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1557 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1558 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1559 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1561 return 0;
1564 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1566 unsigned int i;
1567 u8 value;
1569 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1570 value = rt61pci_bbp_read(rt2x00dev, 0);
1571 if ((value != 0xff) && (value != 0x00))
1572 return 0;
1573 udelay(REGISTER_BUSY_DELAY);
1576 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1577 return -EACCES;
1580 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1582 unsigned int i;
1583 u16 eeprom;
1584 u8 reg_id;
1585 u8 value;
1587 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1588 return -EACCES;
1590 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1591 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1592 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1593 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1594 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1595 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1596 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1597 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1598 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1599 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1600 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1601 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1602 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1603 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1604 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1605 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1606 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1607 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1608 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1609 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1610 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1611 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1612 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1613 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1615 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1616 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1618 if (eeprom != 0xffff && eeprom != 0x0000) {
1619 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1620 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1621 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1625 return 0;
1629 * Device state switch handlers.
1631 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1632 enum dev_state state)
1634 int mask = (state == STATE_RADIO_IRQ_OFF);
1635 u32 reg;
1636 unsigned long flags;
1639 * When interrupts are being enabled, the interrupt registers
1640 * should clear the register to assure a clean state.
1642 if (state == STATE_RADIO_IRQ_ON) {
1643 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
1644 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1646 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
1647 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1651 * Only toggle the interrupts bits we are going to use.
1652 * Non-checked interrupt bits are disabled by default.
1654 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1656 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
1657 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1658 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1659 rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1660 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1661 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1662 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1664 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
1665 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1666 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1667 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1668 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1669 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1670 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1671 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1672 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1673 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1674 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1676 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1678 if (state == STATE_RADIO_IRQ_OFF) {
1680 * Ensure that all tasklets are finished.
1682 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1683 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1684 tasklet_kill(&rt2x00dev->autowake_tasklet);
1685 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1689 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1691 u32 reg;
1694 * Initialize all registers.
1696 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1697 rt61pci_init_registers(rt2x00dev) ||
1698 rt61pci_init_bbp(rt2x00dev)))
1699 return -EIO;
1702 * Enable RX.
1704 reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1705 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1706 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1708 return 0;
1711 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1714 * Disable power
1716 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1719 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1721 u32 reg, reg2;
1722 unsigned int i;
1723 char put_to_sleep;
1725 put_to_sleep = (state != STATE_AWAKE);
1727 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1728 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1729 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1730 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1733 * Device is not guaranteed to be in the requested state yet.
1734 * We must wait until the register indicates that the
1735 * device has entered the correct state.
1737 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1738 reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1739 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1740 if (state == !put_to_sleep)
1741 return 0;
1742 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1743 msleep(10);
1746 return -EBUSY;
1749 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1750 enum dev_state state)
1752 int retval = 0;
1754 switch (state) {
1755 case STATE_RADIO_ON:
1756 retval = rt61pci_enable_radio(rt2x00dev);
1757 break;
1758 case STATE_RADIO_OFF:
1759 rt61pci_disable_radio(rt2x00dev);
1760 break;
1761 case STATE_RADIO_IRQ_ON:
1762 case STATE_RADIO_IRQ_OFF:
1763 rt61pci_toggle_irq(rt2x00dev, state);
1764 break;
1765 case STATE_DEEP_SLEEP:
1766 case STATE_SLEEP:
1767 case STATE_STANDBY:
1768 case STATE_AWAKE:
1769 retval = rt61pci_set_state(rt2x00dev, state);
1770 break;
1771 default:
1772 retval = -ENOTSUPP;
1773 break;
1776 if (unlikely(retval))
1777 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1778 state, retval);
1780 return retval;
1784 * TX descriptor initialization
1786 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1787 struct txentry_desc *txdesc)
1789 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1790 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1791 __le32 *txd = entry_priv->desc;
1792 u32 word;
1795 * Start writing the descriptor words.
1797 word = rt2x00_desc_read(txd, 1);
1798 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1799 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1800 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1801 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1802 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1803 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1804 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1805 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1806 rt2x00_desc_write(txd, 1, word);
1808 word = rt2x00_desc_read(txd, 2);
1809 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1810 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1811 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1812 txdesc->u.plcp.length_low);
1813 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1814 txdesc->u.plcp.length_high);
1815 rt2x00_desc_write(txd, 2, word);
1817 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1818 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1819 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1822 word = rt2x00_desc_read(txd, 5);
1823 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1824 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
1825 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1826 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1827 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1828 rt2x00_desc_write(txd, 5, word);
1830 if (entry->queue->qid != QID_BEACON) {
1831 word = rt2x00_desc_read(txd, 6);
1832 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1833 skbdesc->skb_dma);
1834 rt2x00_desc_write(txd, 6, word);
1836 word = rt2x00_desc_read(txd, 11);
1837 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1838 txdesc->length);
1839 rt2x00_desc_write(txd, 11, word);
1843 * Writing TXD word 0 must the last to prevent a race condition with
1844 * the device, whereby the device may take hold of the TXD before we
1845 * finished updating it.
1847 word = rt2x00_desc_read(txd, 0);
1848 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1849 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1850 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1851 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1852 rt2x00_set_field32(&word, TXD_W0_ACK,
1853 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1854 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1855 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1856 rt2x00_set_field32(&word, TXD_W0_OFDM,
1857 (txdesc->rate_mode == RATE_MODE_OFDM));
1858 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1859 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1860 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1861 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1862 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1863 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1864 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1865 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1866 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1867 rt2x00_set_field32(&word, TXD_W0_BURST,
1868 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1869 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1870 rt2x00_desc_write(txd, 0, word);
1873 * Register descriptor details in skb frame descriptor.
1875 skbdesc->desc = txd;
1876 skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1877 TXD_DESC_SIZE;
1881 * TX data initialization
1883 static void rt61pci_write_beacon(struct queue_entry *entry,
1884 struct txentry_desc *txdesc)
1886 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1887 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1888 unsigned int beacon_base;
1889 unsigned int padding_len;
1890 u32 orig_reg, reg;
1893 * Disable beaconing while we are reloading the beacon data,
1894 * otherwise we might be sending out invalid data.
1896 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1897 orig_reg = reg;
1898 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1899 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1902 * Write the TX descriptor for the beacon.
1904 rt61pci_write_tx_desc(entry, txdesc);
1907 * Dump beacon to userspace through debugfs.
1909 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1912 * Write entire beacon with descriptor and padding to register.
1914 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1915 if (padding_len && skb_pad(entry->skb, padding_len)) {
1916 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1917 /* skb freed by skb_pad() on failure */
1918 entry->skb = NULL;
1919 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1920 return;
1923 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1924 rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
1925 entry_priv->desc, TXINFO_SIZE);
1926 rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1927 entry->skb->data,
1928 entry->skb->len + padding_len);
1931 * Enable beaconing again.
1933 * For Wi-Fi faily generated beacons between participating
1934 * stations. Set TBTT phase adaptive adjustment step to 8us.
1936 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1938 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1939 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1942 * Clean up beacon skb.
1944 dev_kfree_skb_any(entry->skb);
1945 entry->skb = NULL;
1948 static void rt61pci_clear_beacon(struct queue_entry *entry)
1950 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1951 u32 orig_reg, reg;
1954 * Disable beaconing while we are reloading the beacon data,
1955 * otherwise we might be sending out invalid data.
1957 orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1958 reg = orig_reg;
1959 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1960 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1963 * Clear beacon.
1965 rt2x00mmio_register_write(rt2x00dev,
1966 HW_BEACON_OFFSET(entry->entry_idx), 0);
1969 * Restore global beaconing state.
1971 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1975 * RX control handlers
1977 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1979 u8 offset = rt2x00dev->lna_gain;
1980 u8 lna;
1982 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1983 switch (lna) {
1984 case 3:
1985 offset += 90;
1986 break;
1987 case 2:
1988 offset += 74;
1989 break;
1990 case 1:
1991 offset += 64;
1992 break;
1993 default:
1994 return 0;
1997 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
1998 if (lna == 3 || lna == 2)
1999 offset += 10;
2002 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2005 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2006 struct rxdone_entry_desc *rxdesc)
2008 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2009 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
2010 u32 word0;
2011 u32 word1;
2013 word0 = rt2x00_desc_read(entry_priv->desc, 0);
2014 word1 = rt2x00_desc_read(entry_priv->desc, 1);
2016 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2017 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2019 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2020 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2022 if (rxdesc->cipher != CIPHER_NONE) {
2023 rxdesc->iv[0] = _rt2x00_desc_read(entry_priv->desc, 2);
2024 rxdesc->iv[1] = _rt2x00_desc_read(entry_priv->desc, 3);
2025 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2027 rxdesc->icv = _rt2x00_desc_read(entry_priv->desc, 4);
2028 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2031 * Hardware has stripped IV/EIV data from 802.11 frame during
2032 * decryption. It has provided the data separately but rt2x00lib
2033 * should decide if it should be reinserted.
2035 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2038 * The hardware has already checked the Michael Mic and has
2039 * stripped it from the frame. Signal this to mac80211.
2041 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2043 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2044 rxdesc->flags |= RX_FLAG_DECRYPTED;
2045 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2046 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2050 * Obtain the status about this packet.
2051 * When frame was received with an OFDM bitrate,
2052 * the signal is the PLCP value. If it was received with
2053 * a CCK bitrate the signal is the rate in 100kbit/s.
2055 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2056 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2057 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2059 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2060 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2061 else
2062 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2063 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2064 rxdesc->dev_flags |= RXDONE_MY_BSS;
2068 * Interrupt functions.
2070 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2072 struct data_queue *queue;
2073 struct queue_entry *entry;
2074 struct queue_entry *entry_done;
2075 struct queue_entry_priv_mmio *entry_priv;
2076 struct txdone_entry_desc txdesc;
2077 u32 word;
2078 u32 reg;
2079 int type;
2080 int index;
2081 int i;
2084 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2085 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2086 * flag is not set anymore.
2088 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2089 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2090 * tx ring size for now.
2092 for (i = 0; i < rt2x00dev->tx->limit; i++) {
2093 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4);
2094 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2095 break;
2098 * Skip this entry when it contains an invalid
2099 * queue identication number.
2101 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2102 queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2103 if (unlikely(!queue))
2104 continue;
2107 * Skip this entry when it contains an invalid
2108 * index number.
2110 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2111 if (unlikely(index >= queue->limit))
2112 continue;
2114 entry = &queue->entries[index];
2115 entry_priv = entry->priv_data;
2116 word = rt2x00_desc_read(entry_priv->desc, 0);
2118 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2119 !rt2x00_get_field32(word, TXD_W0_VALID))
2120 return;
2122 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2123 while (entry != entry_done) {
2124 /* Catch up.
2125 * Just report any entries we missed as failed.
2127 rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2128 entry_done->entry_idx);
2130 rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2131 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2135 * Obtain the status about this packet.
2137 txdesc.flags = 0;
2138 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2139 case 0: /* Success, maybe with retry */
2140 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2141 break;
2142 case 6: /* Failure, excessive retries */
2143 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2144 /* Fall through - this is a failed frame! */
2145 default: /* Failure */
2146 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2148 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2151 * the frame was retried at least once
2152 * -> hw used fallback rates
2154 if (txdesc.retry)
2155 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2157 rt2x00lib_txdone(entry, &txdesc);
2161 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2163 struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2165 rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2168 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2169 struct rt2x00_field32 irq_field)
2171 u32 reg;
2174 * Enable a single interrupt. The interrupt mask register
2175 * access needs locking.
2177 spin_lock_irq(&rt2x00dev->irqmask_lock);
2179 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2180 rt2x00_set_field32(&reg, irq_field, 0);
2181 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2183 spin_unlock_irq(&rt2x00dev->irqmask_lock);
2186 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2187 struct rt2x00_field32 irq_field)
2189 u32 reg;
2192 * Enable a single MCU interrupt. The interrupt mask register
2193 * access needs locking.
2195 spin_lock_irq(&rt2x00dev->irqmask_lock);
2197 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2198 rt2x00_set_field32(&reg, irq_field, 0);
2199 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2201 spin_unlock_irq(&rt2x00dev->irqmask_lock);
2204 static void rt61pci_txstatus_tasklet(unsigned long data)
2206 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2207 rt61pci_txdone(rt2x00dev);
2208 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2209 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2212 static void rt61pci_tbtt_tasklet(unsigned long data)
2214 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2215 rt2x00lib_beacondone(rt2x00dev);
2216 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2217 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2220 static void rt61pci_rxdone_tasklet(unsigned long data)
2222 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2223 if (rt2x00mmio_rxdone(rt2x00dev))
2224 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2225 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2226 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2229 static void rt61pci_autowake_tasklet(unsigned long data)
2231 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2232 rt61pci_wakeup(rt2x00dev);
2233 rt2x00mmio_register_write(rt2x00dev,
2234 M2H_CMD_DONE_CSR, 0xffffffff);
2235 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2236 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2239 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2241 struct rt2x00_dev *rt2x00dev = dev_instance;
2242 u32 reg_mcu, mask_mcu;
2243 u32 reg, mask;
2246 * Get the interrupt sources & saved to local variable.
2247 * Write register value back to clear pending interrupts.
2249 reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
2250 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2252 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
2253 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2255 if (!reg && !reg_mcu)
2256 return IRQ_NONE;
2258 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2259 return IRQ_HANDLED;
2262 * Schedule tasklets for interrupt handling.
2264 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2265 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2267 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2268 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2270 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2271 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2273 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2274 tasklet_schedule(&rt2x00dev->autowake_tasklet);
2277 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2278 * for interrupts and interrupt masks we can just use the value of
2279 * INT_SOURCE_CSR to create the interrupt mask.
2281 mask = reg;
2282 mask_mcu = reg_mcu;
2285 * Disable all interrupts for which a tasklet was scheduled right now,
2286 * the tasklet will reenable the appropriate interrupts.
2288 spin_lock(&rt2x00dev->irqmask_lock);
2290 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2291 reg |= mask;
2292 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2294 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2295 reg |= mask_mcu;
2296 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2298 spin_unlock(&rt2x00dev->irqmask_lock);
2300 return IRQ_HANDLED;
2304 * Device probe functions.
2306 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2308 struct eeprom_93cx6 eeprom;
2309 u32 reg;
2310 u16 word;
2311 u8 *mac;
2312 s8 value;
2314 reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
2316 eeprom.data = rt2x00dev;
2317 eeprom.register_read = rt61pci_eepromregister_read;
2318 eeprom.register_write = rt61pci_eepromregister_write;
2319 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2320 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2321 eeprom.reg_data_in = 0;
2322 eeprom.reg_data_out = 0;
2323 eeprom.reg_data_clock = 0;
2324 eeprom.reg_chip_select = 0;
2326 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2327 EEPROM_SIZE / sizeof(u16));
2330 * Start validation of the data that has been read.
2332 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2333 rt2x00lib_set_mac_address(rt2x00dev, mac);
2335 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2336 if (word == 0xffff) {
2337 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2338 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2339 ANTENNA_B);
2340 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2341 ANTENNA_B);
2342 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2343 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2344 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2345 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2346 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2347 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2350 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2351 if (word == 0xffff) {
2352 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2353 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2354 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2355 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2356 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2357 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2358 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2359 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2360 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2363 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2364 if (word == 0xffff) {
2365 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2366 LED_MODE_DEFAULT);
2367 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2368 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2371 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2372 if (word == 0xffff) {
2373 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2374 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2375 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2376 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2379 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
2380 if (word == 0xffff) {
2381 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2382 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2383 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2384 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2385 } else {
2386 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2387 if (value < -10 || value > 10)
2388 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2389 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2390 if (value < -10 || value > 10)
2391 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2392 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2395 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
2396 if (word == 0xffff) {
2397 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2398 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2399 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2400 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2401 } else {
2402 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2403 if (value < -10 || value > 10)
2404 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2405 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2406 if (value < -10 || value > 10)
2407 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2408 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2411 return 0;
2414 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2416 u32 reg;
2417 u16 value;
2418 u16 eeprom;
2421 * Read EEPROM word for configuration.
2423 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2426 * Identify RF chipset.
2428 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2429 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
2430 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2431 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2433 if (!rt2x00_rf(rt2x00dev, RF5225) &&
2434 !rt2x00_rf(rt2x00dev, RF5325) &&
2435 !rt2x00_rf(rt2x00dev, RF2527) &&
2436 !rt2x00_rf(rt2x00dev, RF2529)) {
2437 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2438 return -ENODEV;
2442 * Determine number of antennas.
2444 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2445 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2448 * Identify default antenna configuration.
2450 rt2x00dev->default_ant.tx =
2451 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2452 rt2x00dev->default_ant.rx =
2453 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2456 * Read the Frame type.
2458 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2459 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2462 * Detect if this device has a hardware controlled radio.
2464 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2465 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2468 * Read frequency offset and RF programming sequence.
2470 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2471 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2472 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2474 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2477 * Read external LNA informations.
2479 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2481 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2482 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2483 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2484 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2487 * When working with a RF2529 chip without double antenna,
2488 * the antenna settings should be gathered from the NIC
2489 * eeprom word.
2491 if (rt2x00_rf(rt2x00dev, RF2529) &&
2492 !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2493 rt2x00dev->default_ant.rx =
2494 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2495 rt2x00dev->default_ant.tx =
2496 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2498 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2499 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2500 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2501 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2505 * Store led settings, for correct led behaviour.
2506 * If the eeprom value is invalid,
2507 * switch to default led mode.
2509 #ifdef CONFIG_RT2X00_LIB_LEDS
2510 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2511 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2513 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2514 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2515 if (value == LED_MODE_SIGNAL_STRENGTH)
2516 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2517 LED_TYPE_QUALITY);
2519 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2520 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2521 rt2x00_get_field16(eeprom,
2522 EEPROM_LED_POLARITY_GPIO_0));
2523 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2524 rt2x00_get_field16(eeprom,
2525 EEPROM_LED_POLARITY_GPIO_1));
2526 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2527 rt2x00_get_field16(eeprom,
2528 EEPROM_LED_POLARITY_GPIO_2));
2529 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2530 rt2x00_get_field16(eeprom,
2531 EEPROM_LED_POLARITY_GPIO_3));
2532 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2533 rt2x00_get_field16(eeprom,
2534 EEPROM_LED_POLARITY_GPIO_4));
2535 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2536 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2537 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2538 rt2x00_get_field16(eeprom,
2539 EEPROM_LED_POLARITY_RDY_G));
2540 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2541 rt2x00_get_field16(eeprom,
2542 EEPROM_LED_POLARITY_RDY_A));
2543 #endif /* CONFIG_RT2X00_LIB_LEDS */
2545 return 0;
2549 * RF value list for RF5225 & RF5325
2550 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2552 static const struct rf_channel rf_vals_noseq[] = {
2553 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2554 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2555 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2556 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2557 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2558 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2559 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2560 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2561 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2562 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2563 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2564 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2565 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2566 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2568 /* 802.11 UNI / HyperLan 2 */
2569 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2570 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2571 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2572 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2573 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2574 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2575 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2576 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2578 /* 802.11 HyperLan 2 */
2579 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2580 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2581 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2582 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2583 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2584 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2585 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2586 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2587 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2588 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2590 /* 802.11 UNII */
2591 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2592 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2593 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2594 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2595 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2596 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2598 /* MMAC(Japan)J52 ch 34,38,42,46 */
2599 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2600 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2601 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2602 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2606 * RF value list for RF5225 & RF5325
2607 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2609 static const struct rf_channel rf_vals_seq[] = {
2610 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2611 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2612 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2613 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2614 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2615 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2616 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2617 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2618 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2619 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2620 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2621 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2622 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2623 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2625 /* 802.11 UNI / HyperLan 2 */
2626 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2627 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2628 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2629 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2630 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2631 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2632 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2633 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2635 /* 802.11 HyperLan 2 */
2636 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2637 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2638 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2639 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2640 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2641 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2642 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2643 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2644 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2645 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2647 /* 802.11 UNII */
2648 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2649 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2650 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2651 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2652 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2653 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2655 /* MMAC(Japan)J52 ch 34,38,42,46 */
2656 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2657 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2658 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2659 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2662 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2664 struct hw_mode_spec *spec = &rt2x00dev->spec;
2665 struct channel_info *info;
2666 char *tx_power;
2667 unsigned int i;
2670 * Disable powersaving as default.
2672 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2675 * Initialize all hw fields.
2677 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2678 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2679 ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
2680 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2682 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2683 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2684 rt2x00_eeprom_addr(rt2x00dev,
2685 EEPROM_MAC_ADDR_0));
2688 * As rt61 has a global fallback table we cannot specify
2689 * more then one tx rate per frame but since the hw will
2690 * try several rates (based on the fallback table) we should
2691 * initialize max_report_rates to the maximum number of rates
2692 * we are going to try. Otherwise mac80211 will truncate our
2693 * reported tx rates and the rc algortihm will end up with
2694 * incorrect data.
2696 rt2x00dev->hw->max_rates = 1;
2697 rt2x00dev->hw->max_report_rates = 7;
2698 rt2x00dev->hw->max_rate_tries = 1;
2701 * Initialize hw_mode information.
2703 spec->supported_bands = SUPPORT_BAND_2GHZ;
2704 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2706 if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2707 spec->num_channels = 14;
2708 spec->channels = rf_vals_noseq;
2709 } else {
2710 spec->num_channels = 14;
2711 spec->channels = rf_vals_seq;
2714 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2715 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2716 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2720 * Create channel information array
2722 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2723 if (!info)
2724 return -ENOMEM;
2726 spec->channels_info = info;
2728 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2729 for (i = 0; i < 14; i++) {
2730 info[i].max_power = MAX_TXPOWER;
2731 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2734 if (spec->num_channels > 14) {
2735 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2736 for (i = 14; i < spec->num_channels; i++) {
2737 info[i].max_power = MAX_TXPOWER;
2738 info[i].default_power1 =
2739 TXPOWER_FROM_DEV(tx_power[i - 14]);
2743 return 0;
2746 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2748 int retval;
2749 u32 reg;
2752 * Disable power saving.
2754 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2757 * Allocate eeprom data.
2759 retval = rt61pci_validate_eeprom(rt2x00dev);
2760 if (retval)
2761 return retval;
2763 retval = rt61pci_init_eeprom(rt2x00dev);
2764 if (retval)
2765 return retval;
2768 * Enable rfkill polling by setting GPIO direction of the
2769 * rfkill switch GPIO pin correctly.
2771 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
2772 rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2773 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2776 * Initialize hw specifications.
2778 retval = rt61pci_probe_hw_mode(rt2x00dev);
2779 if (retval)
2780 return retval;
2783 * This device has multiple filters for control frames,
2784 * but has no a separate filter for PS Poll frames.
2786 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2789 * This device requires firmware and DMA mapped skbs.
2791 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2792 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2793 if (!modparam_nohwcrypt)
2794 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2795 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2798 * Set the rssi offset.
2800 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2802 return 0;
2806 * IEEE80211 stack callback functions.
2808 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2809 struct ieee80211_vif *vif, u16 queue_idx,
2810 const struct ieee80211_tx_queue_params *params)
2812 struct rt2x00_dev *rt2x00dev = hw->priv;
2813 struct data_queue *queue;
2814 struct rt2x00_field32 field;
2815 int retval;
2816 u32 reg;
2817 u32 offset;
2820 * First pass the configuration through rt2x00lib, that will
2821 * update the queue settings and validate the input. After that
2822 * we are free to update the registers based on the value
2823 * in the queue parameter.
2825 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2826 if (retval)
2827 return retval;
2830 * We only need to perform additional register initialization
2831 * for WMM queues.
2833 if (queue_idx >= 4)
2834 return 0;
2836 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2838 /* Update WMM TXOP register */
2839 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2840 field.bit_offset = (queue_idx & 1) * 16;
2841 field.bit_mask = 0xffff << field.bit_offset;
2843 reg = rt2x00mmio_register_read(rt2x00dev, offset);
2844 rt2x00_set_field32(&reg, field, queue->txop);
2845 rt2x00mmio_register_write(rt2x00dev, offset, reg);
2847 /* Update WMM registers */
2848 field.bit_offset = queue_idx * 4;
2849 field.bit_mask = 0xf << field.bit_offset;
2851 reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR);
2852 rt2x00_set_field32(&reg, field, queue->aifs);
2853 rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2855 reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR);
2856 rt2x00_set_field32(&reg, field, queue->cw_min);
2857 rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2859 reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR);
2860 rt2x00_set_field32(&reg, field, queue->cw_max);
2861 rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2863 return 0;
2866 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2868 struct rt2x00_dev *rt2x00dev = hw->priv;
2869 u64 tsf;
2870 u32 reg;
2872 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13);
2873 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2874 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12);
2875 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2877 return tsf;
2880 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2881 .tx = rt2x00mac_tx,
2882 .start = rt2x00mac_start,
2883 .stop = rt2x00mac_stop,
2884 .add_interface = rt2x00mac_add_interface,
2885 .remove_interface = rt2x00mac_remove_interface,
2886 .config = rt2x00mac_config,
2887 .configure_filter = rt2x00mac_configure_filter,
2888 .set_key = rt2x00mac_set_key,
2889 .sw_scan_start = rt2x00mac_sw_scan_start,
2890 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2891 .get_stats = rt2x00mac_get_stats,
2892 .bss_info_changed = rt2x00mac_bss_info_changed,
2893 .conf_tx = rt61pci_conf_tx,
2894 .get_tsf = rt61pci_get_tsf,
2895 .rfkill_poll = rt2x00mac_rfkill_poll,
2896 .flush = rt2x00mac_flush,
2897 .set_antenna = rt2x00mac_set_antenna,
2898 .get_antenna = rt2x00mac_get_antenna,
2899 .get_ringparam = rt2x00mac_get_ringparam,
2900 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2903 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2904 .irq_handler = rt61pci_interrupt,
2905 .txstatus_tasklet = rt61pci_txstatus_tasklet,
2906 .tbtt_tasklet = rt61pci_tbtt_tasklet,
2907 .rxdone_tasklet = rt61pci_rxdone_tasklet,
2908 .autowake_tasklet = rt61pci_autowake_tasklet,
2909 .probe_hw = rt61pci_probe_hw,
2910 .get_firmware_name = rt61pci_get_firmware_name,
2911 .check_firmware = rt61pci_check_firmware,
2912 .load_firmware = rt61pci_load_firmware,
2913 .initialize = rt2x00mmio_initialize,
2914 .uninitialize = rt2x00mmio_uninitialize,
2915 .get_entry_state = rt61pci_get_entry_state,
2916 .clear_entry = rt61pci_clear_entry,
2917 .set_device_state = rt61pci_set_device_state,
2918 .rfkill_poll = rt61pci_rfkill_poll,
2919 .link_stats = rt61pci_link_stats,
2920 .reset_tuner = rt61pci_reset_tuner,
2921 .link_tuner = rt61pci_link_tuner,
2922 .start_queue = rt61pci_start_queue,
2923 .kick_queue = rt61pci_kick_queue,
2924 .stop_queue = rt61pci_stop_queue,
2925 .flush_queue = rt2x00mmio_flush_queue,
2926 .write_tx_desc = rt61pci_write_tx_desc,
2927 .write_beacon = rt61pci_write_beacon,
2928 .clear_beacon = rt61pci_clear_beacon,
2929 .fill_rxdone = rt61pci_fill_rxdone,
2930 .config_shared_key = rt61pci_config_shared_key,
2931 .config_pairwise_key = rt61pci_config_pairwise_key,
2932 .config_filter = rt61pci_config_filter,
2933 .config_intf = rt61pci_config_intf,
2934 .config_erp = rt61pci_config_erp,
2935 .config_ant = rt61pci_config_ant,
2936 .config = rt61pci_config,
2939 static void rt61pci_queue_init(struct data_queue *queue)
2941 switch (queue->qid) {
2942 case QID_RX:
2943 queue->limit = 32;
2944 queue->data_size = DATA_FRAME_SIZE;
2945 queue->desc_size = RXD_DESC_SIZE;
2946 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2947 break;
2949 case QID_AC_VO:
2950 case QID_AC_VI:
2951 case QID_AC_BE:
2952 case QID_AC_BK:
2953 queue->limit = 32;
2954 queue->data_size = DATA_FRAME_SIZE;
2955 queue->desc_size = TXD_DESC_SIZE;
2956 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2957 break;
2959 case QID_BEACON:
2960 queue->limit = 4;
2961 queue->data_size = 0; /* No DMA required for beacons */
2962 queue->desc_size = TXINFO_SIZE;
2963 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2964 break;
2966 case QID_ATIM:
2967 /* fallthrough */
2968 default:
2969 BUG();
2970 break;
2974 static const struct rt2x00_ops rt61pci_ops = {
2975 .name = KBUILD_MODNAME,
2976 .max_ap_intf = 4,
2977 .eeprom_size = EEPROM_SIZE,
2978 .rf_size = RF_SIZE,
2979 .tx_queues = NUM_TX_QUEUES,
2980 .queue_init = rt61pci_queue_init,
2981 .lib = &rt61pci_rt2x00_ops,
2982 .hw = &rt61pci_mac80211_ops,
2983 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2984 .debugfs = &rt61pci_rt2x00debug,
2985 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2989 * RT61pci module information.
2991 static const struct pci_device_id rt61pci_device_table[] = {
2992 /* RT2561s */
2993 { PCI_DEVICE(0x1814, 0x0301) },
2994 /* RT2561 v2 */
2995 { PCI_DEVICE(0x1814, 0x0302) },
2996 /* RT2661 */
2997 { PCI_DEVICE(0x1814, 0x0401) },
2998 { 0, }
3001 MODULE_AUTHOR(DRV_PROJECT);
3002 MODULE_VERSION(DRV_VERSION);
3003 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3004 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3005 "PCI & PCMCIA chipset based cards");
3006 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3007 MODULE_FIRMWARE(FIRMWARE_RT2561);
3008 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3009 MODULE_FIRMWARE(FIRMWARE_RT2661);
3010 MODULE_LICENSE("GPL");
3012 static int rt61pci_probe(struct pci_dev *pci_dev,
3013 const struct pci_device_id *id)
3015 return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3018 static struct pci_driver rt61pci_driver = {
3019 .name = KBUILD_MODNAME,
3020 .id_table = rt61pci_device_table,
3021 .probe = rt61pci_probe,
3022 .remove = rt2x00pci_remove,
3023 .suspend = rt2x00pci_suspend,
3024 .resume = rt2x00pci_resume,
3027 module_pci_driver(rt61pci_driver);