dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / pci / controller / pcie-iproc.c
blobc20fd6bd68fd80e19fcfe51e7c7268ff8847662e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
4 * Copyright (C) 2015 Broadcom Corporation
5 */
7 #include <linux/kernel.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/clk.h>
11 #include <linux/module.h>
12 #include <linux/mbus.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqchip/arm-gic-v3.h>
17 #include <linux/platform_device.h>
18 #include <linux/of_address.h>
19 #include <linux/of_pci.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/phy/phy.h>
24 #include "pcie-iproc.h"
26 #define EP_PERST_SOURCE_SELECT_SHIFT 2
27 #define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT)
28 #define EP_MODE_SURVIVE_PERST_SHIFT 1
29 #define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT)
30 #define RC_PCIE_RST_OUTPUT_SHIFT 0
31 #define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT)
32 #define PAXC_RESET_MASK 0x7f
34 #define GIC_V3_CFG_SHIFT 0
35 #define GIC_V3_CFG BIT(GIC_V3_CFG_SHIFT)
37 #define MSI_ENABLE_CFG_SHIFT 0
38 #define MSI_ENABLE_CFG BIT(MSI_ENABLE_CFG_SHIFT)
40 #define CFG_IND_ADDR_MASK 0x00001ffc
42 #define CFG_ADDR_BUS_NUM_SHIFT 20
43 #define CFG_ADDR_BUS_NUM_MASK 0x0ff00000
44 #define CFG_ADDR_DEV_NUM_SHIFT 15
45 #define CFG_ADDR_DEV_NUM_MASK 0x000f8000
46 #define CFG_ADDR_FUNC_NUM_SHIFT 12
47 #define CFG_ADDR_FUNC_NUM_MASK 0x00007000
48 #define CFG_ADDR_REG_NUM_SHIFT 2
49 #define CFG_ADDR_REG_NUM_MASK 0x00000ffc
50 #define CFG_ADDR_CFG_TYPE_SHIFT 0
51 #define CFG_ADDR_CFG_TYPE_MASK 0x00000003
53 #define SYS_RC_INTX_MASK 0xf
55 #define PCIE_PHYLINKUP_SHIFT 3
56 #define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT)
57 #define PCIE_DL_ACTIVE_SHIFT 2
58 #define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT)
60 #define APB_ERR_EN_SHIFT 0
61 #define APB_ERR_EN BIT(APB_ERR_EN_SHIFT)
63 #define CFG_RETRY_STATUS 0xffff0001
64 #define CFG_RETRY_STATUS_TIMEOUT_US 500000 /* 500 milliseconds */
66 /* derive the enum index of the outbound/inbound mapping registers */
67 #define MAP_REG(base_reg, index) ((base_reg) + (index) * 2)
70 * Maximum number of outbound mapping window sizes that can be supported by any
71 * OARR/OMAP mapping pair
73 #define MAX_NUM_OB_WINDOW_SIZES 4
75 #define OARR_VALID_SHIFT 0
76 #define OARR_VALID BIT(OARR_VALID_SHIFT)
77 #define OARR_SIZE_CFG_SHIFT 1
80 * Maximum number of inbound mapping region sizes that can be supported by an
81 * IARR
83 #define MAX_NUM_IB_REGION_SIZES 9
85 #define IMAP_VALID_SHIFT 0
86 #define IMAP_VALID BIT(IMAP_VALID_SHIFT)
88 #define IPROC_PCI_PM_CAP 0x48
89 #define IPROC_PCI_PM_CAP_MASK 0xffff
90 #define IPROC_PCI_EXP_CAP 0xac
92 #define IPROC_PCIE_REG_INVALID 0xffff
94 /**
95 * iProc PCIe outbound mapping controller specific parameters
97 * @window_sizes: list of supported outbound mapping window sizes in MB
98 * @nr_sizes: number of supported outbound mapping window sizes
100 struct iproc_pcie_ob_map {
101 resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
102 unsigned int nr_sizes;
105 static const struct iproc_pcie_ob_map paxb_ob_map[] = {
107 /* OARR0/OMAP0 */
108 .window_sizes = { 128, 256 },
109 .nr_sizes = 2,
112 /* OARR1/OMAP1 */
113 .window_sizes = { 128, 256 },
114 .nr_sizes = 2,
118 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
120 /* OARR0/OMAP0 */
121 .window_sizes = { 128, 256 },
122 .nr_sizes = 2,
125 /* OARR1/OMAP1 */
126 .window_sizes = { 128, 256 },
127 .nr_sizes = 2,
130 /* OARR2/OMAP2 */
131 .window_sizes = { 128, 256, 512, 1024 },
132 .nr_sizes = 4,
135 /* OARR3/OMAP3 */
136 .window_sizes = { 128, 256, 512, 1024 },
137 .nr_sizes = 4,
142 * iProc PCIe inbound mapping type
144 enum iproc_pcie_ib_map_type {
145 /* for DDR memory */
146 IPROC_PCIE_IB_MAP_MEM = 0,
148 /* for device I/O memory */
149 IPROC_PCIE_IB_MAP_IO,
151 /* invalid or unused */
152 IPROC_PCIE_IB_MAP_INVALID
156 * iProc PCIe inbound mapping controller specific parameters
158 * @type: inbound mapping region type
159 * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
160 * SZ_1G
161 * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
162 * GB, depedning on the size unit
163 * @nr_sizes: number of supported inbound mapping region sizes
164 * @nr_windows: number of supported inbound mapping windows for the region
165 * @imap_addr_offset: register offset between the upper and lower 32-bit
166 * IMAP address registers
167 * @imap_window_offset: register offset between each IMAP window
169 struct iproc_pcie_ib_map {
170 enum iproc_pcie_ib_map_type type;
171 unsigned int size_unit;
172 resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
173 unsigned int nr_sizes;
174 unsigned int nr_windows;
175 u16 imap_addr_offset;
176 u16 imap_window_offset;
179 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
181 /* IARR0/IMAP0 */
182 .type = IPROC_PCIE_IB_MAP_IO,
183 .size_unit = SZ_1K,
184 .region_sizes = { 32 },
185 .nr_sizes = 1,
186 .nr_windows = 8,
187 .imap_addr_offset = 0x40,
188 .imap_window_offset = 0x4,
191 /* IARR1/IMAP1 (currently unused) */
192 .type = IPROC_PCIE_IB_MAP_INVALID,
195 /* IARR2/IMAP2 */
196 .type = IPROC_PCIE_IB_MAP_MEM,
197 .size_unit = SZ_1M,
198 .region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
199 16384 },
200 .nr_sizes = 9,
201 .nr_windows = 1,
202 .imap_addr_offset = 0x4,
203 .imap_window_offset = 0x8,
206 /* IARR3/IMAP3 */
207 .type = IPROC_PCIE_IB_MAP_MEM,
208 .size_unit = SZ_1G,
209 .region_sizes = { 1, 2, 4, 8, 16, 32 },
210 .nr_sizes = 6,
211 .nr_windows = 8,
212 .imap_addr_offset = 0x4,
213 .imap_window_offset = 0x8,
216 /* IARR4/IMAP4 */
217 .type = IPROC_PCIE_IB_MAP_MEM,
218 .size_unit = SZ_1G,
219 .region_sizes = { 32, 64, 128, 256, 512 },
220 .nr_sizes = 5,
221 .nr_windows = 8,
222 .imap_addr_offset = 0x4,
223 .imap_window_offset = 0x8,
228 * iProc PCIe host registers
230 enum iproc_pcie_reg {
231 /* clock/reset signal control */
232 IPROC_PCIE_CLK_CTRL = 0,
235 * To allow MSI to be steered to an external MSI controller (e.g., ARM
236 * GICv3 ITS)
238 IPROC_PCIE_MSI_GIC_MODE,
241 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
242 * window where the MSI posted writes are written, for the writes to be
243 * interpreted as MSI writes.
245 IPROC_PCIE_MSI_BASE_ADDR,
246 IPROC_PCIE_MSI_WINDOW_SIZE,
249 * To hold the address of the register where the MSI writes are
250 * programed. When ARM GICv3 ITS is used, this should be programmed
251 * with the address of the GITS_TRANSLATER register.
253 IPROC_PCIE_MSI_ADDR_LO,
254 IPROC_PCIE_MSI_ADDR_HI,
256 /* enable MSI */
257 IPROC_PCIE_MSI_EN_CFG,
259 /* allow access to root complex configuration space */
260 IPROC_PCIE_CFG_IND_ADDR,
261 IPROC_PCIE_CFG_IND_DATA,
263 /* allow access to device configuration space */
264 IPROC_PCIE_CFG_ADDR,
265 IPROC_PCIE_CFG_DATA,
267 /* enable INTx */
268 IPROC_PCIE_INTX_EN,
270 /* outbound address mapping */
271 IPROC_PCIE_OARR0,
272 IPROC_PCIE_OMAP0,
273 IPROC_PCIE_OARR1,
274 IPROC_PCIE_OMAP1,
275 IPROC_PCIE_OARR2,
276 IPROC_PCIE_OMAP2,
277 IPROC_PCIE_OARR3,
278 IPROC_PCIE_OMAP3,
280 /* inbound address mapping */
281 IPROC_PCIE_IARR0,
282 IPROC_PCIE_IMAP0,
283 IPROC_PCIE_IARR1,
284 IPROC_PCIE_IMAP1,
285 IPROC_PCIE_IARR2,
286 IPROC_PCIE_IMAP2,
287 IPROC_PCIE_IARR3,
288 IPROC_PCIE_IMAP3,
289 IPROC_PCIE_IARR4,
290 IPROC_PCIE_IMAP4,
292 /* link status */
293 IPROC_PCIE_LINK_STATUS,
295 /* enable APB error for unsupported requests */
296 IPROC_PCIE_APB_ERR_EN,
298 /* total number of core registers */
299 IPROC_PCIE_MAX_NUM_REG,
302 /* iProc PCIe PAXB BCMA registers */
303 static const u16 iproc_pcie_reg_paxb_bcma[] = {
304 [IPROC_PCIE_CLK_CTRL] = 0x000,
305 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
306 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
307 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
308 [IPROC_PCIE_CFG_DATA] = 0x1fc,
309 [IPROC_PCIE_INTX_EN] = 0x330,
310 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
313 /* iProc PCIe PAXB registers */
314 static const u16 iproc_pcie_reg_paxb[] = {
315 [IPROC_PCIE_CLK_CTRL] = 0x000,
316 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
317 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
318 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
319 [IPROC_PCIE_CFG_DATA] = 0x1fc,
320 [IPROC_PCIE_INTX_EN] = 0x330,
321 [IPROC_PCIE_OARR0] = 0xd20,
322 [IPROC_PCIE_OMAP0] = 0xd40,
323 [IPROC_PCIE_OARR1] = 0xd28,
324 [IPROC_PCIE_OMAP1] = 0xd48,
325 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
326 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
329 /* iProc PCIe PAXB v2 registers */
330 static const u16 iproc_pcie_reg_paxb_v2[] = {
331 [IPROC_PCIE_CLK_CTRL] = 0x000,
332 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
333 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
334 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
335 [IPROC_PCIE_CFG_DATA] = 0x1fc,
336 [IPROC_PCIE_INTX_EN] = 0x330,
337 [IPROC_PCIE_OARR0] = 0xd20,
338 [IPROC_PCIE_OMAP0] = 0xd40,
339 [IPROC_PCIE_OARR1] = 0xd28,
340 [IPROC_PCIE_OMAP1] = 0xd48,
341 [IPROC_PCIE_OARR2] = 0xd60,
342 [IPROC_PCIE_OMAP2] = 0xd68,
343 [IPROC_PCIE_OARR3] = 0xdf0,
344 [IPROC_PCIE_OMAP3] = 0xdf8,
345 [IPROC_PCIE_IARR0] = 0xd00,
346 [IPROC_PCIE_IMAP0] = 0xc00,
347 [IPROC_PCIE_IARR2] = 0xd10,
348 [IPROC_PCIE_IMAP2] = 0xcc0,
349 [IPROC_PCIE_IARR3] = 0xe00,
350 [IPROC_PCIE_IMAP3] = 0xe08,
351 [IPROC_PCIE_IARR4] = 0xe68,
352 [IPROC_PCIE_IMAP4] = 0xe70,
353 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
354 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
357 /* iProc PCIe PAXC v1 registers */
358 static const u16 iproc_pcie_reg_paxc[] = {
359 [IPROC_PCIE_CLK_CTRL] = 0x000,
360 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
361 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
362 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
363 [IPROC_PCIE_CFG_DATA] = 0x1fc,
366 /* iProc PCIe PAXC v2 registers */
367 static const u16 iproc_pcie_reg_paxc_v2[] = {
368 [IPROC_PCIE_MSI_GIC_MODE] = 0x050,
369 [IPROC_PCIE_MSI_BASE_ADDR] = 0x074,
370 [IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078,
371 [IPROC_PCIE_MSI_ADDR_LO] = 0x07c,
372 [IPROC_PCIE_MSI_ADDR_HI] = 0x080,
373 [IPROC_PCIE_MSI_EN_CFG] = 0x09c,
374 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
375 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
376 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
377 [IPROC_PCIE_CFG_DATA] = 0x1fc,
381 * List of device IDs of controllers that have corrupted capability list that
382 * require SW fixup
384 static const u16 iproc_pcie_corrupt_cap_did[] = {
385 0x16cd,
386 0x16f0,
387 0xd802,
388 0xd804
391 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
393 struct iproc_pcie *pcie = bus->sysdata;
394 return pcie;
397 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
399 return !!(reg_offset == IPROC_PCIE_REG_INVALID);
402 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
403 enum iproc_pcie_reg reg)
405 return pcie->reg_offsets[reg];
408 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
409 enum iproc_pcie_reg reg)
411 u16 offset = iproc_pcie_reg_offset(pcie, reg);
413 if (iproc_pcie_reg_is_invalid(offset))
414 return 0;
416 return readl(pcie->base + offset);
419 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
420 enum iproc_pcie_reg reg, u32 val)
422 u16 offset = iproc_pcie_reg_offset(pcie, reg);
424 if (iproc_pcie_reg_is_invalid(offset))
425 return;
427 writel(val, pcie->base + offset);
431 * APB error forwarding can be disabled during access of configuration
432 * registers of the endpoint device, to prevent unsupported requests
433 * (typically seen during enumeration with multi-function devices) from
434 * triggering a system exception.
436 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
437 bool disable)
439 struct iproc_pcie *pcie = iproc_data(bus);
440 u32 val;
442 if (bus->number && pcie->has_apb_err_disable) {
443 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
444 if (disable)
445 val &= ~APB_ERR_EN;
446 else
447 val |= APB_ERR_EN;
448 iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
452 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
453 unsigned int busno,
454 unsigned int slot,
455 unsigned int fn,
456 int where)
458 u16 offset;
459 u32 val;
461 /* EP device access */
462 val = (busno << CFG_ADDR_BUS_NUM_SHIFT) |
463 (slot << CFG_ADDR_DEV_NUM_SHIFT) |
464 (fn << CFG_ADDR_FUNC_NUM_SHIFT) |
465 (where & CFG_ADDR_REG_NUM_MASK) |
466 (1 & CFG_ADDR_CFG_TYPE_MASK);
468 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
469 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
471 if (iproc_pcie_reg_is_invalid(offset))
472 return NULL;
474 return (pcie->base + offset);
477 static unsigned int iproc_pcie_cfg_retry(void __iomem *cfg_data_p)
479 int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
480 unsigned int data;
483 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
484 * affects config reads of the Vendor ID. For config writes or any
485 * other config reads, the Root may automatically reissue the
486 * configuration request again as a new request.
488 * For config reads, this hardware returns CFG_RETRY_STATUS data
489 * when it receives a CRS completion, regardless of the address of
490 * the read or the CRS Software Visibility Enable bit. As a
491 * partial workaround for this, we retry in software any read that
492 * returns CFG_RETRY_STATUS.
494 * Note that a non-Vendor ID config register may have a value of
495 * CFG_RETRY_STATUS. If we read that, we can't distinguish it from
496 * a CRS completion, so we will incorrectly retry the read and
497 * eventually return the wrong data (0xffffffff).
499 data = readl(cfg_data_p);
500 while (data == CFG_RETRY_STATUS && timeout--) {
501 udelay(1);
502 data = readl(cfg_data_p);
505 if (data == CFG_RETRY_STATUS)
506 data = 0xffffffff;
508 return data;
511 static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
513 u32 i, dev_id;
515 switch (where & ~0x3) {
516 case PCI_VENDOR_ID:
517 dev_id = *val >> 16;
520 * Activate fixup for those controllers that have corrupted
521 * capability list registers
523 for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
524 if (dev_id == iproc_pcie_corrupt_cap_did[i])
525 pcie->fix_paxc_cap = true;
526 break;
528 case IPROC_PCI_PM_CAP:
529 if (pcie->fix_paxc_cap) {
530 /* advertise PM, force next capability to PCIe */
531 *val &= ~IPROC_PCI_PM_CAP_MASK;
532 *val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
534 break;
536 case IPROC_PCI_EXP_CAP:
537 if (pcie->fix_paxc_cap) {
538 /* advertise root port, version 2, terminate here */
539 *val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
540 PCI_CAP_ID_EXP;
542 break;
544 case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
545 /* Don't advertise CRS SV support */
546 *val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
547 break;
549 default:
550 break;
554 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
555 int where, int size, u32 *val)
557 struct iproc_pcie *pcie = iproc_data(bus);
558 unsigned int slot = PCI_SLOT(devfn);
559 unsigned int fn = PCI_FUNC(devfn);
560 unsigned int busno = bus->number;
561 void __iomem *cfg_data_p;
562 unsigned int data;
563 int ret;
565 /* root complex access */
566 if (busno == 0) {
567 ret = pci_generic_config_read32(bus, devfn, where, size, val);
568 if (ret == PCIBIOS_SUCCESSFUL)
569 iproc_pcie_fix_cap(pcie, where, val);
571 return ret;
574 cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
576 if (!cfg_data_p)
577 return PCIBIOS_DEVICE_NOT_FOUND;
579 data = iproc_pcie_cfg_retry(cfg_data_p);
581 *val = data;
582 if (size <= 2)
583 *val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
586 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
587 * depends on the firmware configuration. Unfortunately, due to an ASIC
588 * bug, unconfigured PFs cannot be properly hidden from the root
589 * complex. As a result, write access to these PFs will cause bus lock
590 * up on the embedded processor
592 * Since all unconfigured PFs are left with an incorrect, staled device
593 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
594 * early here and reject them all
596 #define DEVICE_ID_MASK 0xffff0000
597 #define DEVICE_ID_SHIFT 16
598 if (pcie->rej_unconfig_pf &&
599 (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
600 if ((*val & DEVICE_ID_MASK) ==
601 (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
602 return PCIBIOS_FUNC_NOT_SUPPORTED;
604 return PCIBIOS_SUCCESSFUL;
608 * Note access to the configuration registers are protected at the higher layer
609 * by 'pci_lock' in drivers/pci/access.c
611 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
612 int busno, unsigned int devfn,
613 int where)
615 unsigned slot = PCI_SLOT(devfn);
616 unsigned fn = PCI_FUNC(devfn);
617 u16 offset;
619 /* root complex access */
620 if (busno == 0) {
621 if (slot > 0 || fn > 0)
622 return NULL;
624 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
625 where & CFG_IND_ADDR_MASK);
626 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
627 if (iproc_pcie_reg_is_invalid(offset))
628 return NULL;
629 else
630 return (pcie->base + offset);
633 return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
636 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
637 unsigned int devfn,
638 int where)
640 return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
641 where);
644 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
645 unsigned int devfn, int where,
646 int size, u32 *val)
648 void __iomem *addr;
650 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
651 if (!addr) {
652 *val = ~0;
653 return PCIBIOS_DEVICE_NOT_FOUND;
656 *val = readl(addr);
658 if (size <= 2)
659 *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
661 return PCIBIOS_SUCCESSFUL;
664 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
665 unsigned int devfn, int where,
666 int size, u32 val)
668 void __iomem *addr;
669 u32 mask, tmp;
671 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
672 if (!addr)
673 return PCIBIOS_DEVICE_NOT_FOUND;
675 if (size == 4) {
676 writel(val, addr);
677 return PCIBIOS_SUCCESSFUL;
680 mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
681 tmp = readl(addr) & mask;
682 tmp |= val << ((where & 0x3) * 8);
683 writel(tmp, addr);
685 return PCIBIOS_SUCCESSFUL;
688 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
689 int where, int size, u32 *val)
691 int ret;
692 struct iproc_pcie *pcie = iproc_data(bus);
694 iproc_pcie_apb_err_disable(bus, true);
695 if (pcie->iproc_cfg_read)
696 ret = iproc_pcie_config_read(bus, devfn, where, size, val);
697 else
698 ret = pci_generic_config_read32(bus, devfn, where, size, val);
699 iproc_pcie_apb_err_disable(bus, false);
701 return ret;
704 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
705 int where, int size, u32 val)
707 int ret;
709 iproc_pcie_apb_err_disable(bus, true);
710 ret = pci_generic_config_write32(bus, devfn, where, size, val);
711 iproc_pcie_apb_err_disable(bus, false);
713 return ret;
716 static struct pci_ops iproc_pcie_ops = {
717 .map_bus = iproc_pcie_bus_map_cfg_bus,
718 .read = iproc_pcie_config_read32,
719 .write = iproc_pcie_config_write32,
722 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
724 u32 val;
727 * PAXC and the internal emulated endpoint device downstream should not
728 * be reset. If firmware has been loaded on the endpoint device at an
729 * earlier boot stage, reset here causes issues.
731 if (pcie->ep_is_internal)
732 return;
734 if (assert) {
735 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
736 val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
737 ~RC_PCIE_RST_OUTPUT;
738 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
739 udelay(250);
740 } else {
741 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
742 val |= RC_PCIE_RST_OUTPUT;
743 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
744 msleep(100);
748 int iproc_pcie_shutdown(struct iproc_pcie *pcie)
750 iproc_pcie_perst_ctrl(pcie, true);
751 msleep(500);
753 return 0;
755 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
757 static int iproc_pcie_check_link(struct iproc_pcie *pcie)
759 struct device *dev = pcie->dev;
760 u32 hdr_type, link_ctrl, link_status, class, val;
761 bool link_is_active = false;
764 * PAXC connects to emulated endpoint devices directly and does not
765 * have a Serdes. Therefore skip the link detection logic here.
767 if (pcie->ep_is_internal)
768 return 0;
770 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
771 if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
772 dev_err(dev, "PHY or data link is INACTIVE!\n");
773 return -ENODEV;
776 /* make sure we are not in EP mode */
777 iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
778 if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
779 dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
780 return -EFAULT;
783 /* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
784 #define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c
785 #define PCI_CLASS_BRIDGE_MASK 0xffff00
786 #define PCI_CLASS_BRIDGE_SHIFT 8
787 iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
788 4, &class);
789 class &= ~PCI_CLASS_BRIDGE_MASK;
790 class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
791 iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
792 4, class);
794 /* check link status to see if link is active */
795 iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
796 2, &link_status);
797 if (link_status & PCI_EXP_LNKSTA_NLW)
798 link_is_active = true;
800 if (!link_is_active) {
801 /* try GEN 1 link speed */
802 #define PCI_TARGET_LINK_SPEED_MASK 0xf
803 #define PCI_TARGET_LINK_SPEED_GEN2 0x2
804 #define PCI_TARGET_LINK_SPEED_GEN1 0x1
805 iproc_pci_raw_config_read32(pcie, 0,
806 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
807 4, &link_ctrl);
808 if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
809 PCI_TARGET_LINK_SPEED_GEN2) {
810 link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
811 link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
812 iproc_pci_raw_config_write32(pcie, 0,
813 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
814 4, link_ctrl);
815 msleep(100);
817 iproc_pci_raw_config_read32(pcie, 0,
818 IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
819 2, &link_status);
820 if (link_status & PCI_EXP_LNKSTA_NLW)
821 link_is_active = true;
825 dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
827 return link_is_active ? 0 : -ENODEV;
830 static void iproc_pcie_enable(struct iproc_pcie *pcie)
832 iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
835 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
836 int window_idx)
838 u32 val;
840 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
842 return !!(val & OARR_VALID);
845 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
846 int size_idx, u64 axi_addr, u64 pci_addr)
848 struct device *dev = pcie->dev;
849 u16 oarr_offset, omap_offset;
852 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
853 * on window index.
855 oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
856 window_idx));
857 omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
858 window_idx));
859 if (iproc_pcie_reg_is_invalid(oarr_offset) ||
860 iproc_pcie_reg_is_invalid(omap_offset))
861 return -EINVAL;
864 * Program the OARR registers. The upper 32-bit OARR register is
865 * always right after the lower 32-bit OARR register.
867 writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
868 OARR_VALID, pcie->base + oarr_offset);
869 writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
871 /* now program the OMAP registers */
872 writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
873 writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
875 dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
876 window_idx, oarr_offset, &axi_addr, &pci_addr);
877 dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
878 readl(pcie->base + oarr_offset),
879 readl(pcie->base + oarr_offset + 4));
880 dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
881 readl(pcie->base + omap_offset),
882 readl(pcie->base + omap_offset + 4));
884 return 0;
888 * Some iProc SoCs require the SW to configure the outbound address mapping
890 * Outbound address translation:
892 * iproc_pcie_address = axi_address - axi_offset
893 * OARR = iproc_pcie_address
894 * OMAP = pci_addr
896 * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
898 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
899 u64 pci_addr, resource_size_t size)
901 struct iproc_pcie_ob *ob = &pcie->ob;
902 struct device *dev = pcie->dev;
903 int ret = -EINVAL, window_idx, size_idx;
905 if (axi_addr < ob->axi_offset) {
906 dev_err(dev, "axi address %pap less than offset %pap\n",
907 &axi_addr, &ob->axi_offset);
908 return -EINVAL;
912 * Translate the AXI address to the internal address used by the iProc
913 * PCIe core before programming the OARR
915 axi_addr -= ob->axi_offset;
917 /* iterate through all OARR/OMAP mapping windows */
918 for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
919 const struct iproc_pcie_ob_map *ob_map =
920 &pcie->ob_map[window_idx];
923 * If current outbound window is already in use, move on to the
924 * next one.
926 if (iproc_pcie_ob_is_valid(pcie, window_idx))
927 continue;
930 * Iterate through all supported window sizes within the
931 * OARR/OMAP pair to find a match. Go through the window sizes
932 * in a descending order.
934 for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
935 size_idx--) {
936 resource_size_t window_size =
937 ob_map->window_sizes[size_idx] * SZ_1M;
939 if (size < window_size)
940 continue;
942 if (!IS_ALIGNED(axi_addr, window_size) ||
943 !IS_ALIGNED(pci_addr, window_size)) {
944 dev_err(dev,
945 "axi %pap or pci %pap not aligned\n",
946 &axi_addr, &pci_addr);
947 return -EINVAL;
951 * Match found! Program both OARR and OMAP and mark
952 * them as a valid entry.
954 ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
955 axi_addr, pci_addr);
956 if (ret)
957 goto err_ob;
959 size -= window_size;
960 if (size == 0)
961 return 0;
964 * If we are here, we are done with the current window,
965 * but not yet finished all mappings. Need to move on
966 * to the next window.
968 axi_addr += window_size;
969 pci_addr += window_size;
970 break;
974 err_ob:
975 dev_err(dev, "unable to configure outbound mapping\n");
976 dev_err(dev,
977 "axi %pap, axi offset %pap, pci %pap, res size %pap\n",
978 &axi_addr, &ob->axi_offset, &pci_addr, &size);
980 return ret;
983 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
984 struct list_head *resources)
986 struct device *dev = pcie->dev;
987 struct resource_entry *window;
988 int ret;
990 resource_list_for_each_entry(window, resources) {
991 struct resource *res = window->res;
992 u64 res_type = resource_type(res);
994 switch (res_type) {
995 case IORESOURCE_IO:
996 case IORESOURCE_BUS:
997 break;
998 case IORESOURCE_MEM:
999 ret = iproc_pcie_setup_ob(pcie, res->start,
1000 res->start - window->offset,
1001 resource_size(res));
1002 if (ret)
1003 return ret;
1004 break;
1005 default:
1006 dev_err(dev, "invalid resource %pR\n", res);
1007 return -EINVAL;
1011 return 0;
1014 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1015 int region_idx)
1017 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1018 u32 val;
1020 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1022 return !!(val & (BIT(ib_map->nr_sizes) - 1));
1025 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1026 enum iproc_pcie_ib_map_type type)
1028 return !!(ib_map->type == type);
1031 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1032 int size_idx, int nr_windows, u64 axi_addr,
1033 u64 pci_addr, resource_size_t size)
1035 struct device *dev = pcie->dev;
1036 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1037 u16 iarr_offset, imap_offset;
1038 u32 val;
1039 int window_idx;
1041 iarr_offset = iproc_pcie_reg_offset(pcie,
1042 MAP_REG(IPROC_PCIE_IARR0, region_idx));
1043 imap_offset = iproc_pcie_reg_offset(pcie,
1044 MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1045 if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1046 iproc_pcie_reg_is_invalid(imap_offset))
1047 return -EINVAL;
1049 dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1050 region_idx, iarr_offset, &axi_addr, &pci_addr);
1053 * Program the IARR registers. The upper 32-bit IARR register is
1054 * always right after the lower 32-bit IARR register.
1056 writel(lower_32_bits(pci_addr) | BIT(size_idx),
1057 pcie->base + iarr_offset);
1058 writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1060 dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1061 readl(pcie->base + iarr_offset),
1062 readl(pcie->base + iarr_offset + 4));
1065 * Now program the IMAP registers. Each IARR region may have one or
1066 * more IMAP windows.
1068 size >>= ilog2(nr_windows);
1069 for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1070 val = readl(pcie->base + imap_offset);
1071 val |= lower_32_bits(axi_addr) | IMAP_VALID;
1072 writel(val, pcie->base + imap_offset);
1073 writel(upper_32_bits(axi_addr),
1074 pcie->base + imap_offset + ib_map->imap_addr_offset);
1076 dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1077 window_idx, readl(pcie->base + imap_offset),
1078 readl(pcie->base + imap_offset +
1079 ib_map->imap_addr_offset));
1081 imap_offset += ib_map->imap_window_offset;
1082 axi_addr += size;
1085 return 0;
1088 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1089 struct of_pci_range *range,
1090 enum iproc_pcie_ib_map_type type)
1092 struct device *dev = pcie->dev;
1093 struct iproc_pcie_ib *ib = &pcie->ib;
1094 int ret;
1095 unsigned int region_idx, size_idx;
1096 u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr;
1097 resource_size_t size = range->size;
1099 /* iterate through all IARR mapping regions */
1100 for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1101 const struct iproc_pcie_ib_map *ib_map =
1102 &pcie->ib_map[region_idx];
1105 * If current inbound region is already in use or not a
1106 * compatible type, move on to the next.
1108 if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1109 !iproc_pcie_ib_check_type(ib_map, type))
1110 continue;
1112 /* iterate through all supported region sizes to find a match */
1113 for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1114 resource_size_t region_size =
1115 ib_map->region_sizes[size_idx] * ib_map->size_unit;
1117 if (size != region_size)
1118 continue;
1120 if (!IS_ALIGNED(axi_addr, region_size) ||
1121 !IS_ALIGNED(pci_addr, region_size)) {
1122 dev_err(dev,
1123 "axi %pap or pci %pap not aligned\n",
1124 &axi_addr, &pci_addr);
1125 return -EINVAL;
1128 /* Match found! Program IARR and all IMAP windows. */
1129 ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1130 ib_map->nr_windows, axi_addr,
1131 pci_addr, size);
1132 if (ret)
1133 goto err_ib;
1134 else
1135 return 0;
1139 ret = -EINVAL;
1141 err_ib:
1142 dev_err(dev, "unable to configure inbound mapping\n");
1143 dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1144 &axi_addr, &pci_addr, &size);
1146 return ret;
1149 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1151 struct of_pci_range range;
1152 struct of_pci_range_parser parser;
1153 int ret;
1155 /* Get the dma-ranges from DT */
1156 ret = of_pci_dma_range_parser_init(&parser, pcie->dev->of_node);
1157 if (ret)
1158 return ret;
1160 for_each_of_pci_range(&parser, &range) {
1161 /* Each range entry corresponds to an inbound mapping region */
1162 ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM);
1163 if (ret)
1164 return ret;
1167 return 0;
1170 static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1171 struct device_node *msi_node,
1172 u64 *msi_addr)
1174 struct device *dev = pcie->dev;
1175 int ret;
1176 struct resource res;
1179 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1180 * supported external MSI controller that requires steering.
1182 if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1183 dev_err(dev, "unable to find compatible MSI controller\n");
1184 return -ENODEV;
1187 /* derive GITS_TRANSLATER address from GICv3 */
1188 ret = of_address_to_resource(msi_node, 0, &res);
1189 if (ret < 0) {
1190 dev_err(dev, "unable to obtain MSI controller resources\n");
1191 return ret;
1194 *msi_addr = res.start + GITS_TRANSLATER;
1195 return 0;
1198 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1200 int ret;
1201 struct of_pci_range range;
1203 memset(&range, 0, sizeof(range));
1204 range.size = SZ_32K;
1205 range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1);
1207 ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO);
1208 return ret;
1211 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1212 bool enable)
1214 u32 val;
1216 if (!enable) {
1218 * Disable PAXC MSI steering. All write transfers will be
1219 * treated as non-MSI transfers
1221 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1222 val &= ~MSI_ENABLE_CFG;
1223 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1224 return;
1228 * Program bits [43:13] of address of GITS_TRANSLATER register into
1229 * bits [30:0] of the MSI base address register. In fact, in all iProc
1230 * based SoCs, all I/O register bases are well below the 32-bit
1231 * boundary, so we can safely assume bits [43:32] are always zeros.
1233 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1234 (u32)(msi_addr >> 13));
1236 /* use a default 8K window size */
1237 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1239 /* steering MSI to GICv3 ITS */
1240 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1241 val |= GIC_V3_CFG;
1242 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1245 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1246 * iProc MSI address registers.
1248 msi_addr >>= 2;
1249 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1250 upper_32_bits(msi_addr));
1251 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1252 lower_32_bits(msi_addr));
1254 /* enable MSI */
1255 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1256 val |= MSI_ENABLE_CFG;
1257 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1260 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1261 struct device_node *msi_node)
1263 struct device *dev = pcie->dev;
1264 int ret;
1265 u64 msi_addr;
1267 ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1268 if (ret < 0) {
1269 dev_err(dev, "msi steering failed\n");
1270 return ret;
1273 switch (pcie->type) {
1274 case IPROC_PCIE_PAXB_V2:
1275 ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1276 if (ret)
1277 return ret;
1278 break;
1279 case IPROC_PCIE_PAXC_V2:
1280 iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1281 break;
1282 default:
1283 return -EINVAL;
1286 return 0;
1289 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1291 struct device_node *msi_node;
1292 int ret;
1295 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1296 * for us to obtain the MSI node.
1299 msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1300 if (!msi_node) {
1301 const __be32 *msi_map = NULL;
1302 int len;
1303 u32 phandle;
1305 msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1306 if (!msi_map)
1307 return -ENODEV;
1309 phandle = be32_to_cpup(msi_map + 1);
1310 msi_node = of_find_node_by_phandle(phandle);
1311 if (!msi_node)
1312 return -ENODEV;
1316 * Certain revisions of the iProc PCIe controller require additional
1317 * configurations to steer the MSI writes towards an external MSI
1318 * controller.
1320 if (pcie->need_msi_steer) {
1321 ret = iproc_pcie_msi_steer(pcie, msi_node);
1322 if (ret)
1323 return ret;
1327 * If another MSI controller is being used, the call below should fail
1328 * but that is okay
1330 return iproc_msi_init(pcie, msi_node);
1333 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1335 iproc_msi_exit(pcie);
1338 static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1340 struct device *dev = pcie->dev;
1341 unsigned int reg_idx;
1342 const u16 *regs;
1344 switch (pcie->type) {
1345 case IPROC_PCIE_PAXB_BCMA:
1346 regs = iproc_pcie_reg_paxb_bcma;
1347 break;
1348 case IPROC_PCIE_PAXB:
1349 regs = iproc_pcie_reg_paxb;
1350 pcie->iproc_cfg_read = true;
1351 pcie->has_apb_err_disable = true;
1352 if (pcie->need_ob_cfg) {
1353 pcie->ob_map = paxb_ob_map;
1354 pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1356 break;
1357 case IPROC_PCIE_PAXB_V2:
1358 regs = iproc_pcie_reg_paxb_v2;
1359 pcie->has_apb_err_disable = true;
1360 if (pcie->need_ob_cfg) {
1361 pcie->ob_map = paxb_v2_ob_map;
1362 pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1364 pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1365 pcie->ib_map = paxb_v2_ib_map;
1366 pcie->need_msi_steer = true;
1367 dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1368 CFG_RETRY_STATUS);
1369 break;
1370 case IPROC_PCIE_PAXC:
1371 regs = iproc_pcie_reg_paxc;
1372 pcie->ep_is_internal = true;
1373 pcie->iproc_cfg_read = true;
1374 pcie->rej_unconfig_pf = true;
1375 break;
1376 case IPROC_PCIE_PAXC_V2:
1377 regs = iproc_pcie_reg_paxc_v2;
1378 pcie->ep_is_internal = true;
1379 pcie->iproc_cfg_read = true;
1380 pcie->rej_unconfig_pf = true;
1381 pcie->need_msi_steer = true;
1382 break;
1383 default:
1384 dev_err(dev, "incompatible iProc PCIe interface\n");
1385 return -EINVAL;
1388 pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1389 sizeof(*pcie->reg_offsets),
1390 GFP_KERNEL);
1391 if (!pcie->reg_offsets)
1392 return -ENOMEM;
1394 /* go through the register table and populate all valid registers */
1395 pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1396 IPROC_PCIE_REG_INVALID : regs[0];
1397 for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1398 pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1399 regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1401 return 0;
1404 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1406 struct device *dev;
1407 int ret;
1408 struct pci_bus *child;
1409 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1411 dev = pcie->dev;
1413 ret = iproc_pcie_rev_init(pcie);
1414 if (ret) {
1415 dev_err(dev, "unable to initialize controller parameters\n");
1416 return ret;
1419 ret = devm_request_pci_bus_resources(dev, res);
1420 if (ret)
1421 return ret;
1423 ret = phy_init(pcie->phy);
1424 if (ret) {
1425 dev_err(dev, "unable to initialize PCIe PHY\n");
1426 return ret;
1429 ret = phy_power_on(pcie->phy);
1430 if (ret) {
1431 dev_err(dev, "unable to power on PCIe PHY\n");
1432 goto err_exit_phy;
1435 iproc_pcie_perst_ctrl(pcie, true);
1436 iproc_pcie_perst_ctrl(pcie, false);
1438 if (pcie->need_ob_cfg) {
1439 ret = iproc_pcie_map_ranges(pcie, res);
1440 if (ret) {
1441 dev_err(dev, "map failed\n");
1442 goto err_power_off_phy;
1446 if (pcie->need_ib_cfg) {
1447 ret = iproc_pcie_map_dma_ranges(pcie);
1448 if (ret && ret != -ENOENT)
1449 goto err_power_off_phy;
1452 ret = iproc_pcie_check_link(pcie);
1453 if (ret) {
1454 dev_err(dev, "no PCIe EP device detected\n");
1455 goto err_power_off_phy;
1458 iproc_pcie_enable(pcie);
1460 if (IS_ENABLED(CONFIG_PCI_MSI))
1461 if (iproc_pcie_msi_enable(pcie))
1462 dev_info(dev, "not using iProc MSI\n");
1464 list_splice_init(res, &host->windows);
1465 host->busnr = 0;
1466 host->dev.parent = dev;
1467 host->ops = &iproc_pcie_ops;
1468 host->sysdata = pcie;
1469 host->map_irq = pcie->map_irq;
1470 host->swizzle_irq = pci_common_swizzle;
1472 ret = pci_scan_root_bus_bridge(host);
1473 if (ret < 0) {
1474 dev_err(dev, "failed to scan host: %d\n", ret);
1475 goto err_power_off_phy;
1478 pci_assign_unassigned_bus_resources(host->bus);
1480 pcie->root_bus = host->bus;
1482 list_for_each_entry(child, &host->bus->children, node)
1483 pcie_bus_configure_settings(child);
1485 pci_bus_add_devices(host->bus);
1487 return 0;
1489 err_power_off_phy:
1490 phy_power_off(pcie->phy);
1491 err_exit_phy:
1492 phy_exit(pcie->phy);
1493 return ret;
1495 EXPORT_SYMBOL(iproc_pcie_setup);
1497 int iproc_pcie_remove(struct iproc_pcie *pcie)
1499 pci_stop_root_bus(pcie->root_bus);
1500 pci_remove_root_bus(pcie->root_bus);
1502 iproc_pcie_msi_disable(pcie);
1504 phy_power_off(pcie->phy);
1505 phy_exit(pcie->phy);
1507 return 0;
1509 EXPORT_SYMBOL(iproc_pcie_remove);
1512 * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1513 * complex does not work and needs to be disabled
1515 static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1517 struct iproc_pcie *pcie = iproc_data(pdev->bus);
1519 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1520 iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1522 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1523 quirk_paxc_disable_msi_parsing);
1524 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1525 quirk_paxc_disable_msi_parsing);
1526 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1527 quirk_paxc_disable_msi_parsing);
1529 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1530 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1531 MODULE_LICENSE("GPL v2");