dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / pci / p2pdma.c
blobc52298d76e64debef6ea1c02d984e4dadd58f3c8
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Peer 2 Peer DMA support.
5 * Copyright (c) 2016-2018, Logan Gunthorpe
6 * Copyright (c) 2016-2017, Microsemi Corporation
7 * Copyright (c) 2017, Christoph Hellwig
8 * Copyright (c) 2018, Eideticom Inc.
9 */
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
22 struct pci_p2pdma {
23 struct percpu_ref devmap_ref;
24 struct completion devmap_ref_done;
25 struct gen_pool *pool;
26 bool p2pmem_published;
29 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
30 char *buf)
32 struct pci_dev *pdev = to_pci_dev(dev);
33 size_t size = 0;
35 if (pdev->p2pdma->pool)
36 size = gen_pool_size(pdev->p2pdma->pool);
38 return snprintf(buf, PAGE_SIZE, "%zd\n", size);
40 static DEVICE_ATTR_RO(size);
42 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
43 char *buf)
45 struct pci_dev *pdev = to_pci_dev(dev);
46 size_t avail = 0;
48 if (pdev->p2pdma->pool)
49 avail = gen_pool_avail(pdev->p2pdma->pool);
51 return snprintf(buf, PAGE_SIZE, "%zd\n", avail);
53 static DEVICE_ATTR_RO(available);
55 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
56 char *buf)
58 struct pci_dev *pdev = to_pci_dev(dev);
60 return snprintf(buf, PAGE_SIZE, "%d\n",
61 pdev->p2pdma->p2pmem_published);
63 static DEVICE_ATTR_RO(published);
65 static struct attribute *p2pmem_attrs[] = {
66 &dev_attr_size.attr,
67 &dev_attr_available.attr,
68 &dev_attr_published.attr,
69 NULL,
72 static const struct attribute_group p2pmem_group = {
73 .attrs = p2pmem_attrs,
74 .name = "p2pmem",
77 static void pci_p2pdma_percpu_release(struct percpu_ref *ref)
79 struct pci_p2pdma *p2p =
80 container_of(ref, struct pci_p2pdma, devmap_ref);
82 complete_all(&p2p->devmap_ref_done);
85 static void pci_p2pdma_percpu_kill(struct percpu_ref *ref)
88 * pci_p2pdma_add_resource() may be called multiple times
89 * by a driver and may register the percpu_kill devm action multiple
90 * times. We only want the first action to actually kill the
91 * percpu_ref.
93 if (percpu_ref_is_dying(ref))
94 return;
96 percpu_ref_kill(ref);
99 static void pci_p2pdma_release(void *data)
101 struct pci_dev *pdev = data;
103 if (!pdev->p2pdma)
104 return;
106 wait_for_completion(&pdev->p2pdma->devmap_ref_done);
107 percpu_ref_exit(&pdev->p2pdma->devmap_ref);
109 gen_pool_destroy(pdev->p2pdma->pool);
110 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
111 pdev->p2pdma = NULL;
114 static int pci_p2pdma_setup(struct pci_dev *pdev)
116 int error = -ENOMEM;
117 struct pci_p2pdma *p2p;
119 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
120 if (!p2p)
121 return -ENOMEM;
123 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
124 if (!p2p->pool)
125 goto out;
127 init_completion(&p2p->devmap_ref_done);
128 error = percpu_ref_init(&p2p->devmap_ref,
129 pci_p2pdma_percpu_release, 0, GFP_KERNEL);
130 if (error)
131 goto out_pool_destroy;
133 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
134 if (error)
135 goto out_pool_destroy;
137 pdev->p2pdma = p2p;
139 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
140 if (error)
141 goto out_pool_destroy;
143 return 0;
145 out_pool_destroy:
146 pdev->p2pdma = NULL;
147 gen_pool_destroy(p2p->pool);
148 out:
149 devm_kfree(&pdev->dev, p2p);
150 return error;
154 * pci_p2pdma_add_resource - add memory for use as p2p memory
155 * @pdev: the device to add the memory to
156 * @bar: PCI BAR to add
157 * @size: size of the memory to add, may be zero to use the whole BAR
158 * @offset: offset into the PCI BAR
160 * The memory will be given ZONE_DEVICE struct pages so that it may
161 * be used with any DMA request.
163 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
164 u64 offset)
166 struct dev_pagemap *pgmap;
167 void *addr;
168 int error;
170 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
171 return -EINVAL;
173 if (offset >= pci_resource_len(pdev, bar))
174 return -EINVAL;
176 if (!size)
177 size = pci_resource_len(pdev, bar) - offset;
179 if (size + offset > pci_resource_len(pdev, bar))
180 return -EINVAL;
182 if (!pdev->p2pdma) {
183 error = pci_p2pdma_setup(pdev);
184 if (error)
185 return error;
188 pgmap = devm_kzalloc(&pdev->dev, sizeof(*pgmap), GFP_KERNEL);
189 if (!pgmap)
190 return -ENOMEM;
192 pgmap->res.start = pci_resource_start(pdev, bar) + offset;
193 pgmap->res.end = pgmap->res.start + size - 1;
194 pgmap->res.flags = pci_resource_flags(pdev, bar);
195 pgmap->ref = &pdev->p2pdma->devmap_ref;
196 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
197 pgmap->pci_p2pdma_bus_offset = pci_bus_address(pdev, bar) -
198 pci_resource_start(pdev, bar);
199 pgmap->kill = pci_p2pdma_percpu_kill;
201 addr = devm_memremap_pages(&pdev->dev, pgmap);
202 if (IS_ERR(addr)) {
203 error = PTR_ERR(addr);
204 goto pgmap_free;
207 error = gen_pool_add_virt(pdev->p2pdma->pool, (unsigned long)addr,
208 pci_bus_address(pdev, bar) + offset,
209 resource_size(&pgmap->res), dev_to_node(&pdev->dev));
210 if (error)
211 goto pgmap_free;
213 pci_info(pdev, "added peer-to-peer DMA memory %pR\n",
214 &pgmap->res);
216 return 0;
218 pgmap_free:
219 devm_kfree(&pdev->dev, pgmap);
220 return error;
222 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
225 * Note this function returns the parent PCI device with a
226 * reference taken. It is the caller's responsibily to drop
227 * the reference.
229 static struct pci_dev *find_parent_pci_dev(struct device *dev)
231 struct device *parent;
233 dev = get_device(dev);
235 while (dev) {
236 if (dev_is_pci(dev))
237 return to_pci_dev(dev);
239 parent = get_device(dev->parent);
240 put_device(dev);
241 dev = parent;
244 return NULL;
248 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
249 * TLPs upstream via ACS. Returns 1 if the packets will be redirected
250 * upstream, 0 otherwise.
252 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
254 int pos;
255 u16 ctrl;
257 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
258 if (!pos)
259 return 0;
261 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
263 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
264 return 1;
266 return 0;
269 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
271 if (!buf)
272 return;
274 seq_buf_printf(buf, "%s;", pci_name(pdev));
278 * Find the distance through the nearest common upstream bridge between
279 * two PCI devices.
281 * If the two devices are the same device then 0 will be returned.
283 * If there are two virtual functions of the same device behind the same
284 * bridge port then 2 will be returned (one step down to the PCIe switch,
285 * then one step back to the same device).
287 * In the case where two devices are connected to the same PCIe switch, the
288 * value 4 will be returned. This corresponds to the following PCI tree:
290 * -+ Root Port
291 * \+ Switch Upstream Port
292 * +-+ Switch Downstream Port
293 * + \- Device A
294 * \-+ Switch Downstream Port
295 * \- Device B
297 * The distance is 4 because we traverse from Device A through the downstream
298 * port of the switch, to the common upstream port, back up to the second
299 * downstream port and then to Device B.
301 * Any two devices that don't have a common upstream bridge will return -1.
302 * In this way devices on separate PCIe root ports will be rejected, which
303 * is what we want for peer-to-peer seeing each PCIe root port defines a
304 * separate hierarchy domain and there's no way to determine whether the root
305 * complex supports forwarding between them.
307 * In the case where two devices are connected to different PCIe switches,
308 * this function will still return a positive distance as long as both
309 * switches eventually have a common upstream bridge. Note this covers
310 * the case of using multiple PCIe switches to achieve a desired level of
311 * fan-out from a root port. The exact distance will be a function of the
312 * number of switches between Device A and Device B.
314 * If a bridge which has any ACS redirection bits set is in the path
315 * then this functions will return -2. This is so we reject any
316 * cases where the TLPs are forwarded up into the root complex.
317 * In this case, a list of all infringing bridge addresses will be
318 * populated in acs_list (assuming it's non-null) for printk purposes.
320 static int upstream_bridge_distance(struct pci_dev *a,
321 struct pci_dev *b,
322 struct seq_buf *acs_list)
324 int dist_a = 0;
325 int dist_b = 0;
326 struct pci_dev *bb = NULL;
327 int acs_cnt = 0;
330 * Note, we don't need to take references to devices returned by
331 * pci_upstream_bridge() seeing we hold a reference to a child
332 * device which will already hold a reference to the upstream bridge.
335 while (a) {
336 dist_b = 0;
338 if (pci_bridge_has_acs_redir(a)) {
339 seq_buf_print_bus_devfn(acs_list, a);
340 acs_cnt++;
343 bb = b;
345 while (bb) {
346 if (a == bb)
347 goto check_b_path_acs;
349 bb = pci_upstream_bridge(bb);
350 dist_b++;
353 a = pci_upstream_bridge(a);
354 dist_a++;
357 return -1;
359 check_b_path_acs:
360 bb = b;
362 while (bb) {
363 if (a == bb)
364 break;
366 if (pci_bridge_has_acs_redir(bb)) {
367 seq_buf_print_bus_devfn(acs_list, bb);
368 acs_cnt++;
371 bb = pci_upstream_bridge(bb);
374 if (acs_cnt)
375 return -2;
377 return dist_a + dist_b;
380 static int upstream_bridge_distance_warn(struct pci_dev *provider,
381 struct pci_dev *client)
383 struct seq_buf acs_list;
384 int ret;
386 seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
387 if (!acs_list.buffer)
388 return -ENOMEM;
390 ret = upstream_bridge_distance(provider, client, &acs_list);
391 if (ret == -2) {
392 pci_warn(client, "cannot be used for peer-to-peer DMA as ACS redirect is set between the client and provider (%s)\n",
393 pci_name(provider));
394 /* Drop final semicolon */
395 acs_list.buffer[acs_list.len-1] = 0;
396 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
397 acs_list.buffer);
399 } else if (ret < 0) {
400 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge\n",
401 pci_name(provider));
404 kfree(acs_list.buffer);
406 return ret;
410 * pci_p2pdma_distance_many - Determive the cumulative distance between
411 * a p2pdma provider and the clients in use.
412 * @provider: p2pdma provider to check against the client list
413 * @clients: array of devices to check (NULL-terminated)
414 * @num_clients: number of clients in the array
415 * @verbose: if true, print warnings for devices when we return -1
417 * Returns -1 if any of the clients are not compatible (behind the same
418 * root port as the provider), otherwise returns a positive number where
419 * a lower number is the preferable choice. (If there's one client
420 * that's the same as the provider it will return 0, which is best choice).
422 * For now, "compatible" means the provider and the clients are all behind
423 * the same PCI root port. This cuts out cases that may work but is safest
424 * for the user. Future work can expand this to white-list root complexes that
425 * can safely forward between each ports.
427 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
428 int num_clients, bool verbose)
430 bool not_supported = false;
431 struct pci_dev *pci_client;
432 int distance = 0;
433 int i, ret;
435 if (num_clients == 0)
436 return -1;
438 for (i = 0; i < num_clients; i++) {
439 pci_client = find_parent_pci_dev(clients[i]);
440 if (!pci_client) {
441 if (verbose)
442 dev_warn(clients[i],
443 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
444 return -1;
447 if (verbose)
448 ret = upstream_bridge_distance_warn(provider,
449 pci_client);
450 else
451 ret = upstream_bridge_distance(provider, pci_client,
452 NULL);
454 pci_dev_put(pci_client);
456 if (ret < 0)
457 not_supported = true;
459 if (not_supported && !verbose)
460 break;
462 distance += ret;
465 if (not_supported)
466 return -1;
468 return distance;
470 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
473 * pci_has_p2pmem - check if a given PCI device has published any p2pmem
474 * @pdev: PCI device to check
476 bool pci_has_p2pmem(struct pci_dev *pdev)
478 return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
480 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
483 * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
484 * the specified list of clients and shortest distance (as determined
485 * by pci_p2pmem_dma())
486 * @clients: array of devices to check (NULL-terminated)
487 * @num_clients: number of client devices in the list
489 * If multiple devices are behind the same switch, the one "closest" to the
490 * client devices in use will be chosen first. (So if one of the providers is
491 * the same as one of the clients, that provider will be used ahead of any
492 * other providers that are unrelated). If multiple providers are an equal
493 * distance away, one will be chosen at random.
495 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
496 * to return the reference) or NULL if no compatible device is found. The
497 * found provider will also be assigned to the client list.
499 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
501 struct pci_dev *pdev = NULL;
502 int distance;
503 int closest_distance = INT_MAX;
504 struct pci_dev **closest_pdevs;
505 int dev_cnt = 0;
506 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
507 int i;
509 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
510 if (!closest_pdevs)
511 return NULL;
513 while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
514 if (!pci_has_p2pmem(pdev))
515 continue;
517 distance = pci_p2pdma_distance_many(pdev, clients,
518 num_clients, false);
519 if (distance < 0 || distance > closest_distance)
520 continue;
522 if (distance == closest_distance && dev_cnt >= max_devs)
523 continue;
525 if (distance < closest_distance) {
526 for (i = 0; i < dev_cnt; i++)
527 pci_dev_put(closest_pdevs[i]);
529 dev_cnt = 0;
530 closest_distance = distance;
533 closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
536 if (dev_cnt)
537 pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
539 for (i = 0; i < dev_cnt; i++)
540 pci_dev_put(closest_pdevs[i]);
542 kfree(closest_pdevs);
543 return pdev;
545 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
548 * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
549 * @pdev: the device to allocate memory from
550 * @size: number of bytes to allocate
552 * Returns the allocated memory or NULL on error.
554 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
556 void *ret;
558 if (unlikely(!pdev->p2pdma))
559 return NULL;
561 if (unlikely(!percpu_ref_tryget_live(&pdev->p2pdma->devmap_ref)))
562 return NULL;
564 ret = (void *)gen_pool_alloc(pdev->p2pdma->pool, size);
566 if (unlikely(!ret))
567 percpu_ref_put(&pdev->p2pdma->devmap_ref);
569 return ret;
571 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
574 * pci_free_p2pmem - free peer-to-peer DMA memory
575 * @pdev: the device the memory was allocated from
576 * @addr: address of the memory that was allocated
577 * @size: number of bytes that were allocated
579 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
581 gen_pool_free(pdev->p2pdma->pool, (uintptr_t)addr, size);
582 percpu_ref_put(&pdev->p2pdma->devmap_ref);
584 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
587 * pci_virt_to_bus - return the PCI bus address for a given virtual
588 * address obtained with pci_alloc_p2pmem()
589 * @pdev: the device the memory was allocated from
590 * @addr: address of the memory that was allocated
592 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
594 if (!addr)
595 return 0;
596 if (!pdev->p2pdma)
597 return 0;
600 * Note: when we added the memory to the pool we used the PCI
601 * bus address as the physical address. So gen_pool_virt_to_phys()
602 * actually returns the bus address despite the misleading name.
604 return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
606 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
609 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
610 * @pdev: the device to allocate memory from
611 * @nents: the number of SG entries in the list
612 * @length: number of bytes to allocate
614 * Return: %NULL on error or &struct scatterlist pointer and @nents on success
616 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
617 unsigned int *nents, u32 length)
619 struct scatterlist *sg;
620 void *addr;
622 sg = kzalloc(sizeof(*sg), GFP_KERNEL);
623 if (!sg)
624 return NULL;
626 sg_init_table(sg, 1);
628 addr = pci_alloc_p2pmem(pdev, length);
629 if (!addr)
630 goto out_free_sg;
632 sg_set_buf(sg, addr, length);
633 *nents = 1;
634 return sg;
636 out_free_sg:
637 kfree(sg);
638 return NULL;
640 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
643 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
644 * @pdev: the device to allocate memory from
645 * @sgl: the allocated scatterlist
647 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
649 struct scatterlist *sg;
650 int count;
652 for_each_sg(sgl, sg, INT_MAX, count) {
653 if (!sg)
654 break;
656 pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
658 kfree(sgl);
660 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
663 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
664 * other devices with pci_p2pmem_find()
665 * @pdev: the device with peer-to-peer DMA memory to publish
666 * @publish: set to true to publish the memory, false to unpublish it
668 * Published memory can be used by other PCI device drivers for
669 * peer-2-peer DMA operations. Non-published memory is reserved for
670 * exclusive use of the device driver that registers the peer-to-peer
671 * memory.
673 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
675 if (pdev->p2pdma)
676 pdev->p2pdma->p2pmem_published = publish;
678 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
681 * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
682 * @dev: device doing the DMA request
683 * @sg: scatter list to map
684 * @nents: elements in the scatterlist
685 * @dir: DMA direction
687 * Scatterlists mapped with this function should not be unmapped in any way.
689 * Returns the number of SG entries mapped or 0 on error.
691 int pci_p2pdma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
692 enum dma_data_direction dir)
694 struct dev_pagemap *pgmap;
695 struct scatterlist *s;
696 phys_addr_t paddr;
697 int i;
700 * p2pdma mappings are not compatible with devices that use
701 * dma_virt_ops. If the upper layers do the right thing
702 * this should never happen because it will be prevented
703 * by the check in pci_p2pdma_add_client()
705 if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
706 dev->dma_ops == &dma_virt_ops))
707 return 0;
709 for_each_sg(sg, s, nents, i) {
710 pgmap = sg_page(s)->pgmap;
711 paddr = sg_phys(s);
713 s->dma_address = paddr - pgmap->pci_p2pdma_bus_offset;
714 sg_dma_len(s) = s->length;
717 return nents;
719 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg);
722 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
723 * to enable p2pdma
724 * @page: contents of the value to be stored
725 * @p2p_dev: returns the PCI device that was selected to be used
726 * (if one was specified in the stored value)
727 * @use_p2pdma: returns whether to enable p2pdma or not
729 * Parses an attribute value to decide whether to enable p2pdma.
730 * The value can select a PCI device (using its full BDF device
731 * name) or a boolean (in any format strtobool() accepts). A false
732 * value disables p2pdma, a true value expects the caller
733 * to automatically find a compatible device and specifying a PCI device
734 * expects the caller to use the specific provider.
736 * pci_p2pdma_enable_show() should be used as the show operation for
737 * the attribute.
739 * Returns 0 on success
741 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
742 bool *use_p2pdma)
744 struct device *dev;
746 dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
747 if (dev) {
748 *use_p2pdma = true;
749 *p2p_dev = to_pci_dev(dev);
751 if (!pci_has_p2pmem(*p2p_dev)) {
752 pci_err(*p2p_dev,
753 "PCI device has no peer-to-peer memory: %s\n",
754 page);
755 pci_dev_put(*p2p_dev);
756 return -ENODEV;
759 return 0;
760 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
762 * If the user enters a PCI device that doesn't exist
763 * like "0000:01:00.1", we don't want strtobool to think
764 * it's a '0' when it's clearly not what the user wanted.
765 * So we require 0's and 1's to be exactly one character.
767 } else if (!strtobool(page, use_p2pdma)) {
768 return 0;
771 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
772 return -ENODEV;
774 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
777 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
778 * whether p2pdma is enabled
779 * @page: contents of the stored value
780 * @p2p_dev: the selected p2p device (NULL if no device is selected)
781 * @use_p2pdma: whether p2pdma has been enabled
783 * Attributes that use pci_p2pdma_enable_store() should use this function
784 * to show the value of the attribute.
786 * Returns 0 on success
788 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
789 bool use_p2pdma)
791 if (!use_p2pdma)
792 return sprintf(page, "0\n");
794 if (!p2p_dev)
795 return sprintf(page, "1\n");
797 return sprintf(page, "%s\n", pci_name(p2p_dev));
799 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);