dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / pci / pci.c
blob7c1b362f599aebc4bbf66acb09fe67fb5d76ea39
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
38 DEFINE_MUTEX(pci_slot_mutex);
40 const char *pci_power_names[] = {
41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 EXPORT_SYMBOL_GPL(pci_power_names);
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
51 unsigned int pci_pm_d3_delay;
53 static void pci_pme_list_scan(struct work_struct *work);
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 unsigned int delay = dev->d3_delay;
70 if (delay < pci_pm_d3_delay)
71 delay = pci_pm_d3_delay;
73 if (delay)
74 msleep(delay);
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported = 1;
79 #endif
81 #define DEFAULT_CARDBUS_IO_SIZE (256)
82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87 #define DEFAULT_HOTPLUG_IO_SIZE (256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
93 #define DEFAULT_HOTPLUG_BUS_SIZE 1
94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
99 * The default CLS is used if arch didn't set CLS explicitly and not
100 * all pci devices agree on the same value. Arch can override either
101 * the dfl or actual value as it sees fit. Don't forget this is
102 * measured in 32-bit words, not bytes.
104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105 u8 pci_cache_line_size;
108 * If we set up a device for bus mastering, we need to check the latency
109 * timer as certain BIOSes forget to set it properly.
111 unsigned int pcibios_max_latency = 255;
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled;
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled;
119 /* If set, the PCI config space of each device is printed during boot. */
120 bool pci_early_dump;
122 bool pci_ats_disabled(void)
124 return pcie_ats_disabled;
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force;
132 static int __init pcie_port_pm_setup(char *str)
134 if (!strcmp(str, "off"))
135 pci_bridge_d3_disable = true;
136 else if (!strcmp(str, "force"))
137 pci_bridge_d3_force = true;
138 return 1;
140 __setup("pcie_port_pm=", pcie_port_pm_setup);
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147 * @bus: pointer to PCI bus structure to search
149 * Given a PCI bus, returns the highest PCI bus number present in the set
150 * including the given PCI bus and its list of child PCI buses.
152 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
154 struct pci_bus *tmp;
155 unsigned char max, n;
157 max = bus->busn_res.end;
158 list_for_each_entry(tmp, &bus->children, node) {
159 n = pci_bus_max_busnr(tmp);
160 if (n > max)
161 max = n;
163 return max;
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
167 #ifdef CONFIG_HAS_IOMEM
168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
170 struct resource *res = &pdev->resource[bar];
173 * Make sure the BAR is actually a memory resource, not an IO resource
175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 return NULL;
179 return ioremap_nocache(res->start, resource_size(res));
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
186 * Make sure the BAR is actually a memory resource, not an IO resource
188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 WARN_ON(1);
190 return NULL;
192 return ioremap_wc(pci_resource_start(pdev, bar),
193 pci_resource_len(pdev, bar));
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196 #endif
199 * pci_dev_str_match_path - test if a path string matches a device
200 * @dev: the PCI device to test
201 * @path: string to match the device against
202 * @endptr: pointer to the string after the match
204 * Test if a string (typically from a kernel parameter) formatted as a
205 * path of device/function addresses matches a PCI device. The string must
206 * be of the form:
208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
210 * A path for a device can be obtained using 'lspci -t'. Using a path
211 * is more robust against bus renumbering than using only a single bus,
212 * device and function address.
214 * Returns 1 if the string matches the device, 0 if it does not and
215 * a negative error code if it fails to parse the string.
217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 const char **endptr)
220 int ret;
221 int seg, bus, slot, func;
222 char *wpath, *p;
223 char end;
225 *endptr = strchrnul(path, ';');
227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 if (!wpath)
229 return -ENOMEM;
231 while (1) {
232 p = strrchr(wpath, '/');
233 if (!p)
234 break;
235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 if (ret != 2) {
237 ret = -EINVAL;
238 goto free_and_exit;
241 if (dev->devfn != PCI_DEVFN(slot, func)) {
242 ret = 0;
243 goto free_and_exit;
247 * Note: we don't need to get a reference to the upstream
248 * bridge because we hold a reference to the top level
249 * device which should hold a reference to the bridge,
250 * and so on.
252 dev = pci_upstream_bridge(dev);
253 if (!dev) {
254 ret = 0;
255 goto free_and_exit;
258 *p = 0;
261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 &func, &end);
263 if (ret != 4) {
264 seg = 0;
265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 if (ret != 3) {
267 ret = -EINVAL;
268 goto free_and_exit;
272 ret = (seg == pci_domain_nr(dev->bus) &&
273 bus == dev->bus->number &&
274 dev->devfn == PCI_DEVFN(slot, func));
276 free_and_exit:
277 kfree(wpath);
278 return ret;
282 * pci_dev_str_match - test if a string matches a device
283 * @dev: the PCI device to test
284 * @p: string to match the device against
285 * @endptr: pointer to the string after the match
287 * Test if a string (typically from a kernel parameter) matches a specified
288 * PCI device. The string may be of one of the following formats:
290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
293 * The first format specifies a PCI bus/device/function address which
294 * may change if new hardware is inserted, if motherboard firmware changes,
295 * or due to changes caused in kernel parameters. If the domain is
296 * left unspecified, it is taken to be 0. In order to be robust against
297 * bus renumbering issues, a path of PCI device/function numbers may be used
298 * to address the specific device. The path for a device can be determined
299 * through the use of 'lspci -t'.
301 * The second format matches devices using IDs in the configuration
302 * space which may match multiple devices in the system. A value of 0
303 * for any field will match all devices. (Note: this differs from
304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305 * legacy reasons and convenience so users don't have to specify
306 * FFFFFFFFs on the command line.)
308 * Returns 1 if the string matches the device, 0 if it does not and
309 * a negative error code if the string cannot be parsed.
311 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 const char **endptr)
314 int ret;
315 int count;
316 unsigned short vendor, device, subsystem_vendor, subsystem_device;
318 if (strncmp(p, "pci:", 4) == 0) {
319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 p += 4;
321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 &subsystem_vendor, &subsystem_device, &count);
323 if (ret != 4) {
324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 if (ret != 2)
326 return -EINVAL;
328 subsystem_vendor = 0;
329 subsystem_device = 0;
332 p += count;
334 if ((!vendor || vendor == dev->vendor) &&
335 (!device || device == dev->device) &&
336 (!subsystem_vendor ||
337 subsystem_vendor == dev->subsystem_vendor) &&
338 (!subsystem_device ||
339 subsystem_device == dev->subsystem_device))
340 goto found;
341 } else {
343 * PCI Bus, Device, Function IDs are specified
344 * (optionally, may include a path of devfns following it)
346 ret = pci_dev_str_match_path(dev, p, &p);
347 if (ret < 0)
348 return ret;
349 else if (ret)
350 goto found;
353 *endptr = p;
354 return 0;
356 found:
357 *endptr = p;
358 return 1;
361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 u8 pos, int cap, int *ttl)
364 u8 id;
365 u16 ent;
367 pci_bus_read_config_byte(bus, devfn, pos, &pos);
369 while ((*ttl)--) {
370 if (pos < 0x40)
371 break;
372 pos &= ~3;
373 pci_bus_read_config_word(bus, devfn, pos, &ent);
375 id = ent & 0xff;
376 if (id == 0xff)
377 break;
378 if (id == cap)
379 return pos;
380 pos = (ent >> 8);
382 return 0;
385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 u8 pos, int cap)
388 int ttl = PCI_FIND_CAP_TTL;
390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
395 return __pci_find_next_cap(dev->bus, dev->devfn,
396 pos + PCI_CAP_LIST_NEXT, cap);
398 EXPORT_SYMBOL_GPL(pci_find_next_capability);
400 static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 unsigned int devfn, u8 hdr_type)
403 u16 status;
405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 if (!(status & PCI_STATUS_CAP_LIST))
407 return 0;
409 switch (hdr_type) {
410 case PCI_HEADER_TYPE_NORMAL:
411 case PCI_HEADER_TYPE_BRIDGE:
412 return PCI_CAPABILITY_LIST;
413 case PCI_HEADER_TYPE_CARDBUS:
414 return PCI_CB_CAPABILITY_LIST;
417 return 0;
421 * pci_find_capability - query for devices' capabilities
422 * @dev: PCI device to query
423 * @cap: capability code
425 * Tell if a device supports a given PCI capability.
426 * Returns the address of the requested capability structure within the
427 * device's PCI configuration space or 0 in case the device does not
428 * support it. Possible values for @cap:
430 * %PCI_CAP_ID_PM Power Management
431 * %PCI_CAP_ID_AGP Accelerated Graphics Port
432 * %PCI_CAP_ID_VPD Vital Product Data
433 * %PCI_CAP_ID_SLOTID Slot Identification
434 * %PCI_CAP_ID_MSI Message Signalled Interrupts
435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
436 * %PCI_CAP_ID_PCIX PCI-X
437 * %PCI_CAP_ID_EXP PCI Express
439 int pci_find_capability(struct pci_dev *dev, int cap)
441 int pos;
443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 if (pos)
445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
447 return pos;
449 EXPORT_SYMBOL(pci_find_capability);
452 * pci_bus_find_capability - query for devices' capabilities
453 * @bus: the PCI bus to query
454 * @devfn: PCI device to query
455 * @cap: capability code
457 * Like pci_find_capability() but works for pci devices that do not have a
458 * pci_dev structure set up yet.
460 * Returns the address of the requested capability structure within the
461 * device's PCI configuration space or 0 in case the device does not
462 * support it.
464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
466 int pos;
467 u8 hdr_type;
469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 if (pos)
473 pos = __pci_find_next_cap(bus, devfn, pos, cap);
475 return pos;
477 EXPORT_SYMBOL(pci_bus_find_capability);
480 * pci_find_next_ext_capability - Find an extended capability
481 * @dev: PCI device to query
482 * @start: address at which to start looking (0 to start at beginning of list)
483 * @cap: capability code
485 * Returns the address of the next matching extended capability structure
486 * within the device's PCI configuration space or 0 if the device does
487 * not support it. Some capabilities can occur several times, e.g., the
488 * vendor-specific capability, and this provides a way to find them all.
490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
492 u32 header;
493 int ttl;
494 int pos = PCI_CFG_SPACE_SIZE;
496 /* minimum 8 bytes per capability */
497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 return 0;
502 if (start)
503 pos = start;
505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 return 0;
509 * If we have no capabilities, this is indicated by cap ID,
510 * cap version and next pointer all being 0.
512 if (header == 0)
513 return 0;
515 while (ttl-- > 0) {
516 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 return pos;
519 pos = PCI_EXT_CAP_NEXT(header);
520 if (pos < PCI_CFG_SPACE_SIZE)
521 break;
523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 break;
527 return 0;
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
532 * pci_find_ext_capability - Find an extended capability
533 * @dev: PCI device to query
534 * @cap: capability code
536 * Returns the address of the requested extended capability structure
537 * within the device's PCI configuration space or 0 if the device does
538 * not support it. Possible values for @cap:
540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
541 * %PCI_EXT_CAP_ID_VC Virtual Channel
542 * %PCI_EXT_CAP_ID_DSN Device Serial Number
543 * %PCI_EXT_CAP_ID_PWR Power Budgeting
545 int pci_find_ext_capability(struct pci_dev *dev, int cap)
547 return pci_find_next_ext_capability(dev, 0, cap);
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
553 int rc, ttl = PCI_FIND_CAP_TTL;
554 u8 cap, mask;
556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 mask = HT_3BIT_CAP_MASK;
558 else
559 mask = HT_5BIT_CAP_MASK;
561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 PCI_CAP_ID_HT, &ttl);
563 while (pos) {
564 rc = pci_read_config_byte(dev, pos + 3, &cap);
565 if (rc != PCIBIOS_SUCCESSFUL)
566 return 0;
568 if ((cap & mask) == ht_cap)
569 return pos;
571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 pos + PCI_CAP_LIST_NEXT,
573 PCI_CAP_ID_HT, &ttl);
576 return 0;
579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580 * @dev: PCI device to query
581 * @pos: Position from which to continue searching
582 * @ht_cap: Hypertransport capability code
584 * To be used in conjunction with pci_find_ht_capability() to search for
585 * all capabilities matching @ht_cap. @pos should always be a value returned
586 * from pci_find_ht_capability().
588 * NB. To be 100% safe against broken PCI devices, the caller should take
589 * steps to avoid an infinite loop.
591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
598 * pci_find_ht_capability - query a device's Hypertransport capabilities
599 * @dev: PCI device to query
600 * @ht_cap: Hypertransport capability code
602 * Tell if a device supports a given Hypertransport capability.
603 * Returns an address within the device's PCI configuration space
604 * or 0 in case the device does not support the request capability.
605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606 * which has a Hypertransport capability matching @ht_cap.
608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
610 int pos;
612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 if (pos)
614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
616 return pos;
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
621 * pci_find_parent_resource - return resource region of parent bus of given region
622 * @dev: PCI device structure contains resources to be searched
623 * @res: child resource record for which parent is sought
625 * For given resource region of given device, return the resource
626 * region of parent bus the given region is contained in.
628 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
629 struct resource *res)
631 const struct pci_bus *bus = dev->bus;
632 struct resource *r;
633 int i;
635 pci_bus_for_each_resource(bus, r, i) {
636 if (!r)
637 continue;
638 if (resource_contains(r, res)) {
641 * If the window is prefetchable but the BAR is
642 * not, the allocator made a mistake.
644 if (r->flags & IORESOURCE_PREFETCH &&
645 !(res->flags & IORESOURCE_PREFETCH))
646 return NULL;
649 * If we're below a transparent bridge, there may
650 * be both a positively-decoded aperture and a
651 * subtractively-decoded region that contain the BAR.
652 * We want the positively-decoded one, so this depends
653 * on pci_bus_for_each_resource() giving us those
654 * first.
656 return r;
659 return NULL;
661 EXPORT_SYMBOL(pci_find_parent_resource);
664 * pci_find_resource - Return matching PCI device resource
665 * @dev: PCI device to query
666 * @res: Resource to look for
668 * Goes over standard PCI resources (BARs) and checks if the given resource
669 * is partially or fully contained in any of them. In that case the
670 * matching resource is returned, %NULL otherwise.
672 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
674 int i;
676 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
677 struct resource *r = &dev->resource[i];
679 if (r->start && resource_contains(r, res))
680 return r;
683 return NULL;
685 EXPORT_SYMBOL(pci_find_resource);
688 * pci_find_pcie_root_port - return PCIe Root Port
689 * @dev: PCI device to query
691 * Traverse up the parent chain and return the PCIe Root Port PCI Device
692 * for a given PCI Device.
694 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
696 struct pci_dev *bridge, *highest_pcie_bridge = dev;
698 bridge = pci_upstream_bridge(dev);
699 while (bridge && pci_is_pcie(bridge)) {
700 highest_pcie_bridge = bridge;
701 bridge = pci_upstream_bridge(bridge);
704 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
705 return NULL;
707 return highest_pcie_bridge;
709 EXPORT_SYMBOL(pci_find_pcie_root_port);
712 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
713 * @dev: the PCI device to operate on
714 * @pos: config space offset of status word
715 * @mask: mask of bit(s) to care about in status word
717 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
719 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
721 int i;
723 /* Wait for Transaction Pending bit clean */
724 for (i = 0; i < 4; i++) {
725 u16 status;
726 if (i)
727 msleep((1 << (i - 1)) * 100);
729 pci_read_config_word(dev, pos, &status);
730 if (!(status & mask))
731 return 1;
734 return 0;
738 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
739 * @dev: PCI device to have its BARs restored
741 * Restore the BAR values for a given device, so as to make it
742 * accessible by its driver.
744 static void pci_restore_bars(struct pci_dev *dev)
746 int i;
748 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
749 pci_update_resource(dev, i);
752 static const struct pci_platform_pm_ops *pci_platform_pm;
754 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
756 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
757 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
758 return -EINVAL;
759 pci_platform_pm = ops;
760 return 0;
763 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
765 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
768 static inline int platform_pci_set_power_state(struct pci_dev *dev,
769 pci_power_t t)
771 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
774 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
776 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
779 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
781 return pci_platform_pm ?
782 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
785 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
787 return pci_platform_pm ?
788 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
791 static inline bool platform_pci_need_resume(struct pci_dev *dev)
793 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
796 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
798 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
802 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
803 * given PCI device
804 * @dev: PCI device to handle.
805 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
807 * RETURN VALUE:
808 * -EINVAL if the requested state is invalid.
809 * -EIO if device does not support PCI PM or its PM capabilities register has a
810 * wrong version, or device doesn't support the requested state.
811 * 0 if device already is in the requested state.
812 * 0 if device's power state has been successfully changed.
814 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
816 u16 pmcsr;
817 bool need_restore = false;
819 /* Check if we're already there */
820 if (dev->current_state == state)
821 return 0;
823 if (!dev->pm_cap)
824 return -EIO;
826 if (state < PCI_D0 || state > PCI_D3hot)
827 return -EINVAL;
829 /* Validate current state:
830 * Can enter D0 from any state, but if we can only go deeper
831 * to sleep if we're already in a low power state
833 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
834 && dev->current_state > state) {
835 pci_err(dev, "invalid power transition (from state %d to %d)\n",
836 dev->current_state, state);
837 return -EINVAL;
840 /* check if this device supports the desired state */
841 if ((state == PCI_D1 && !dev->d1_support)
842 || (state == PCI_D2 && !dev->d2_support))
843 return -EIO;
845 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
847 /* If we're (effectively) in D3, force entire word to 0.
848 * This doesn't affect PME_Status, disables PME_En, and
849 * sets PowerState to 0.
851 switch (dev->current_state) {
852 case PCI_D0:
853 case PCI_D1:
854 case PCI_D2:
855 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
856 pmcsr |= state;
857 break;
858 case PCI_D3hot:
859 case PCI_D3cold:
860 case PCI_UNKNOWN: /* Boot-up */
861 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
862 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
863 need_restore = true;
864 /* Fall-through - force to D0 */
865 default:
866 pmcsr = 0;
867 break;
870 /* enter specified state */
871 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
873 /* Mandatory power management transition delays */
874 /* see PCI PM 1.1 5.6.1 table 18 */
875 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
876 pci_dev_d3_sleep(dev);
877 else if (state == PCI_D2 || dev->current_state == PCI_D2)
878 udelay(PCI_PM_D2_DELAY);
880 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
881 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
882 if (dev->current_state != state && printk_ratelimit())
883 pci_info(dev, "Refused to change power state, currently in D%d\n",
884 dev->current_state);
887 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
888 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
889 * from D3hot to D0 _may_ perform an internal reset, thereby
890 * going to "D0 Uninitialized" rather than "D0 Initialized".
891 * For example, at least some versions of the 3c905B and the
892 * 3c556B exhibit this behaviour.
894 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
895 * devices in a D3hot state at boot. Consequently, we need to
896 * restore at least the BARs so that the device will be
897 * accessible to its driver.
899 if (need_restore)
900 pci_restore_bars(dev);
902 if (dev->bus->self)
903 pcie_aspm_pm_state_change(dev->bus->self);
905 return 0;
909 * pci_update_current_state - Read power state of given device and cache it
910 * @dev: PCI device to handle.
911 * @state: State to cache in case the device doesn't have the PM capability
913 * The power state is read from the PMCSR register, which however is
914 * inaccessible in D3cold. The platform firmware is therefore queried first
915 * to detect accessibility of the register. In case the platform firmware
916 * reports an incorrect state or the device isn't power manageable by the
917 * platform at all, we try to detect D3cold by testing accessibility of the
918 * vendor ID in config space.
920 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
922 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
923 !pci_device_is_present(dev)) {
924 dev->current_state = PCI_D3cold;
925 } else if (dev->pm_cap) {
926 u16 pmcsr;
928 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
929 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
930 } else {
931 dev->current_state = state;
936 * pci_power_up - Put the given device into D0 forcibly
937 * @dev: PCI device to power up
939 void pci_power_up(struct pci_dev *dev)
941 if (platform_pci_power_manageable(dev))
942 platform_pci_set_power_state(dev, PCI_D0);
944 pci_raw_set_power_state(dev, PCI_D0);
945 pci_update_current_state(dev, PCI_D0);
949 * pci_platform_power_transition - Use platform to change device power state
950 * @dev: PCI device to handle.
951 * @state: State to put the device into.
953 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
955 int error;
957 if (platform_pci_power_manageable(dev)) {
958 error = platform_pci_set_power_state(dev, state);
959 if (!error)
960 pci_update_current_state(dev, state);
961 } else
962 error = -ENODEV;
964 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
965 dev->current_state = PCI_D0;
967 return error;
971 * pci_wakeup - Wake up a PCI device
972 * @pci_dev: Device to handle.
973 * @ign: ignored parameter
975 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
977 pci_wakeup_event(pci_dev);
978 pm_request_resume(&pci_dev->dev);
979 return 0;
983 * pci_wakeup_bus - Walk given bus and wake up devices on it
984 * @bus: Top bus of the subtree to walk.
986 void pci_wakeup_bus(struct pci_bus *bus)
988 if (bus)
989 pci_walk_bus(bus, pci_wakeup, NULL);
993 * __pci_start_power_transition - Start power transition of a PCI device
994 * @dev: PCI device to handle.
995 * @state: State to put the device into.
997 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
999 if (state == PCI_D0) {
1000 pci_platform_power_transition(dev, PCI_D0);
1002 * Mandatory power management transition delays, see
1003 * PCI Express Base Specification Revision 2.0 Section
1004 * 6.6.1: Conventional Reset. Do not delay for
1005 * devices powered on/off by corresponding bridge,
1006 * because have already delayed for the bridge.
1008 if (dev->runtime_d3cold) {
1009 if (dev->d3cold_delay && !dev->imm_ready)
1010 msleep(dev->d3cold_delay);
1012 * When powering on a bridge from D3cold, the
1013 * whole hierarchy may be powered on into
1014 * D0uninitialized state, resume them to give
1015 * them a chance to suspend again
1017 pci_wakeup_bus(dev->subordinate);
1023 * __pci_dev_set_current_state - Set current state of a PCI device
1024 * @dev: Device to handle
1025 * @data: pointer to state to be set
1027 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1029 pci_power_t state = *(pci_power_t *)data;
1031 dev->current_state = state;
1032 return 0;
1036 * pci_bus_set_current_state - Walk given bus and set current state of devices
1037 * @bus: Top bus of the subtree to walk.
1038 * @state: state to be set
1040 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1042 if (bus)
1043 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1047 * __pci_complete_power_transition - Complete power transition of a PCI device
1048 * @dev: PCI device to handle.
1049 * @state: State to put the device into.
1051 * This function should not be called directly by device drivers.
1053 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1055 int ret;
1057 if (state <= PCI_D0)
1058 return -EINVAL;
1059 ret = pci_platform_power_transition(dev, state);
1060 /* Power off the bridge may power off the whole hierarchy */
1061 if (!ret && state == PCI_D3cold)
1062 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1063 return ret;
1065 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1068 * pci_set_power_state - Set the power state of a PCI device
1069 * @dev: PCI device to handle.
1070 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1072 * Transition a device to a new power state, using the platform firmware and/or
1073 * the device's PCI PM registers.
1075 * RETURN VALUE:
1076 * -EINVAL if the requested state is invalid.
1077 * -EIO if device does not support PCI PM or its PM capabilities register has a
1078 * wrong version, or device doesn't support the requested state.
1079 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1080 * 0 if device already is in the requested state.
1081 * 0 if the transition is to D3 but D3 is not supported.
1082 * 0 if device's power state has been successfully changed.
1084 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1086 int error;
1088 /* bound the state we're entering */
1089 if (state > PCI_D3cold)
1090 state = PCI_D3cold;
1091 else if (state < PCI_D0)
1092 state = PCI_D0;
1093 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1095 * If the device or the parent bridge do not support PCI PM,
1096 * ignore the request if we're doing anything other than putting
1097 * it into D0 (which would only happen on boot).
1099 return 0;
1101 /* Check if we're already there */
1102 if (dev->current_state == state)
1103 return 0;
1105 __pci_start_power_transition(dev, state);
1107 /* This device is quirked not to be put into D3, so
1108 don't put it in D3 */
1109 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1110 return 0;
1113 * To put device in D3cold, we put device into D3hot in native
1114 * way, then put device into D3cold with platform ops
1116 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1117 PCI_D3hot : state);
1119 if (!__pci_complete_power_transition(dev, state))
1120 error = 0;
1122 return error;
1124 EXPORT_SYMBOL(pci_set_power_state);
1127 * pci_choose_state - Choose the power state of a PCI device
1128 * @dev: PCI device to be suspended
1129 * @state: target sleep state for the whole system. This is the value
1130 * that is passed to suspend() function.
1132 * Returns PCI power state suitable for given device and given system
1133 * message.
1136 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1138 pci_power_t ret;
1140 if (!dev->pm_cap)
1141 return PCI_D0;
1143 ret = platform_pci_choose_state(dev);
1144 if (ret != PCI_POWER_ERROR)
1145 return ret;
1147 switch (state.event) {
1148 case PM_EVENT_ON:
1149 return PCI_D0;
1150 case PM_EVENT_FREEZE:
1151 case PM_EVENT_PRETHAW:
1152 /* REVISIT both freeze and pre-thaw "should" use D0 */
1153 case PM_EVENT_SUSPEND:
1154 case PM_EVENT_HIBERNATE:
1155 return PCI_D3hot;
1156 default:
1157 pci_info(dev, "unrecognized suspend event %d\n",
1158 state.event);
1159 BUG();
1161 return PCI_D0;
1163 EXPORT_SYMBOL(pci_choose_state);
1165 #define PCI_EXP_SAVE_REGS 7
1167 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1168 u16 cap, bool extended)
1170 struct pci_cap_saved_state *tmp;
1172 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1173 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1174 return tmp;
1176 return NULL;
1179 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1181 return _pci_find_saved_cap(dev, cap, false);
1184 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1186 return _pci_find_saved_cap(dev, cap, true);
1189 static int pci_save_pcie_state(struct pci_dev *dev)
1191 int i = 0;
1192 struct pci_cap_saved_state *save_state;
1193 u16 *cap;
1195 if (!pci_is_pcie(dev))
1196 return 0;
1198 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1199 if (!save_state) {
1200 pci_err(dev, "buffer not found in %s\n", __func__);
1201 return -ENOMEM;
1204 cap = (u16 *)&save_state->cap.data[0];
1205 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1206 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1207 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1208 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1209 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1210 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1211 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1213 return 0;
1216 static void pci_restore_pcie_state(struct pci_dev *dev)
1218 int i = 0;
1219 struct pci_cap_saved_state *save_state;
1220 u16 *cap;
1222 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1223 if (!save_state)
1224 return;
1226 cap = (u16 *)&save_state->cap.data[0];
1227 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1228 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1229 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1230 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1231 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1232 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1233 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1236 static int pci_save_pcix_state(struct pci_dev *dev)
1238 int pos;
1239 struct pci_cap_saved_state *save_state;
1241 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1242 if (!pos)
1243 return 0;
1245 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1246 if (!save_state) {
1247 pci_err(dev, "buffer not found in %s\n", __func__);
1248 return -ENOMEM;
1251 pci_read_config_word(dev, pos + PCI_X_CMD,
1252 (u16 *)save_state->cap.data);
1254 return 0;
1257 static void pci_restore_pcix_state(struct pci_dev *dev)
1259 int i = 0, pos;
1260 struct pci_cap_saved_state *save_state;
1261 u16 *cap;
1263 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1264 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1265 if (!save_state || !pos)
1266 return;
1267 cap = (u16 *)&save_state->cap.data[0];
1269 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1272 static void pci_save_ltr_state(struct pci_dev *dev)
1274 int ltr;
1275 struct pci_cap_saved_state *save_state;
1276 u16 *cap;
1278 if (!pci_is_pcie(dev))
1279 return;
1281 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1282 if (!ltr)
1283 return;
1285 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1286 if (!save_state) {
1287 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1288 return;
1291 cap = (u16 *)&save_state->cap.data[0];
1292 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1293 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1296 static void pci_restore_ltr_state(struct pci_dev *dev)
1298 struct pci_cap_saved_state *save_state;
1299 int ltr;
1300 u16 *cap;
1302 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1303 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1304 if (!save_state || !ltr)
1305 return;
1307 cap = (u16 *)&save_state->cap.data[0];
1308 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1309 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1313 * pci_save_state - save the PCI configuration space of a device before suspending
1314 * @dev: - PCI device that we're dealing with
1316 int pci_save_state(struct pci_dev *dev)
1318 int i;
1319 /* XXX: 100% dword access ok here? */
1320 for (i = 0; i < 16; i++)
1321 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1322 dev->state_saved = true;
1324 i = pci_save_pcie_state(dev);
1325 if (i != 0)
1326 return i;
1328 i = pci_save_pcix_state(dev);
1329 if (i != 0)
1330 return i;
1332 pci_save_ltr_state(dev);
1333 pci_save_dpc_state(dev);
1334 return pci_save_vc_state(dev);
1336 EXPORT_SYMBOL(pci_save_state);
1338 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1339 u32 saved_val, int retry, bool force)
1341 u32 val;
1343 pci_read_config_dword(pdev, offset, &val);
1344 if (!force && val == saved_val)
1345 return;
1347 for (;;) {
1348 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1349 offset, val, saved_val);
1350 pci_write_config_dword(pdev, offset, saved_val);
1351 if (retry-- <= 0)
1352 return;
1354 pci_read_config_dword(pdev, offset, &val);
1355 if (val == saved_val)
1356 return;
1358 mdelay(1);
1362 static void pci_restore_config_space_range(struct pci_dev *pdev,
1363 int start, int end, int retry,
1364 bool force)
1366 int index;
1368 for (index = end; index >= start; index--)
1369 pci_restore_config_dword(pdev, 4 * index,
1370 pdev->saved_config_space[index],
1371 retry, force);
1374 static void pci_restore_config_space(struct pci_dev *pdev)
1376 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1377 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1378 /* Restore BARs before the command register. */
1379 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1380 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1381 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1382 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1385 * Force rewriting of prefetch registers to avoid S3 resume
1386 * issues on Intel PCI bridges that occur when these
1387 * registers are not explicitly written.
1389 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1390 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1391 } else {
1392 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1396 static void pci_restore_rebar_state(struct pci_dev *pdev)
1398 unsigned int pos, nbars, i;
1399 u32 ctrl;
1401 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1402 if (!pos)
1403 return;
1405 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1406 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1407 PCI_REBAR_CTRL_NBAR_SHIFT;
1409 for (i = 0; i < nbars; i++, pos += 8) {
1410 struct resource *res;
1411 int bar_idx, size;
1413 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1414 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1415 res = pdev->resource + bar_idx;
1416 size = order_base_2((resource_size(res) >> 20) | 1) - 1;
1417 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1418 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1419 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1424 * pci_restore_state - Restore the saved state of a PCI device
1425 * @dev: - PCI device that we're dealing with
1427 void pci_restore_state(struct pci_dev *dev)
1429 if (!dev->state_saved)
1430 return;
1433 * Restore max latencies (in the LTR capability) before enabling
1434 * LTR itself (in the PCIe capability).
1436 pci_restore_ltr_state(dev);
1438 pci_restore_pcie_state(dev);
1439 pci_restore_pasid_state(dev);
1440 pci_restore_pri_state(dev);
1441 pci_restore_ats_state(dev);
1442 pci_restore_vc_state(dev);
1443 pci_restore_rebar_state(dev);
1444 pci_restore_dpc_state(dev);
1446 pci_cleanup_aer_error_status_regs(dev);
1448 pci_restore_config_space(dev);
1450 pci_restore_pcix_state(dev);
1451 pci_restore_msi_state(dev);
1453 /* Restore ACS and IOV configuration state */
1454 pci_enable_acs(dev);
1455 pci_restore_iov_state(dev);
1457 dev->state_saved = false;
1459 EXPORT_SYMBOL(pci_restore_state);
1461 struct pci_saved_state {
1462 u32 config_space[16];
1463 struct pci_cap_saved_data cap[0];
1467 * pci_store_saved_state - Allocate and return an opaque struct containing
1468 * the device saved state.
1469 * @dev: PCI device that we're dealing with
1471 * Return NULL if no state or error.
1473 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1475 struct pci_saved_state *state;
1476 struct pci_cap_saved_state *tmp;
1477 struct pci_cap_saved_data *cap;
1478 size_t size;
1480 if (!dev->state_saved)
1481 return NULL;
1483 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1485 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1486 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1488 state = kzalloc(size, GFP_KERNEL);
1489 if (!state)
1490 return NULL;
1492 memcpy(state->config_space, dev->saved_config_space,
1493 sizeof(state->config_space));
1495 cap = state->cap;
1496 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1497 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1498 memcpy(cap, &tmp->cap, len);
1499 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1501 /* Empty cap_save terminates list */
1503 return state;
1505 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1508 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1509 * @dev: PCI device that we're dealing with
1510 * @state: Saved state returned from pci_store_saved_state()
1512 int pci_load_saved_state(struct pci_dev *dev,
1513 struct pci_saved_state *state)
1515 struct pci_cap_saved_data *cap;
1517 dev->state_saved = false;
1519 if (!state)
1520 return 0;
1522 memcpy(dev->saved_config_space, state->config_space,
1523 sizeof(state->config_space));
1525 cap = state->cap;
1526 while (cap->size) {
1527 struct pci_cap_saved_state *tmp;
1529 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1530 if (!tmp || tmp->cap.size != cap->size)
1531 return -EINVAL;
1533 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1534 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1535 sizeof(struct pci_cap_saved_data) + cap->size);
1538 dev->state_saved = true;
1539 return 0;
1541 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1544 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1545 * and free the memory allocated for it.
1546 * @dev: PCI device that we're dealing with
1547 * @state: Pointer to saved state returned from pci_store_saved_state()
1549 int pci_load_and_free_saved_state(struct pci_dev *dev,
1550 struct pci_saved_state **state)
1552 int ret = pci_load_saved_state(dev, *state);
1553 kfree(*state);
1554 *state = NULL;
1555 return ret;
1557 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1559 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1561 return pci_enable_resources(dev, bars);
1564 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1566 int err;
1567 struct pci_dev *bridge;
1568 u16 cmd;
1569 u8 pin;
1571 err = pci_set_power_state(dev, PCI_D0);
1572 if (err < 0 && err != -EIO)
1573 return err;
1575 bridge = pci_upstream_bridge(dev);
1576 if (bridge)
1577 pcie_aspm_powersave_config_link(bridge);
1579 err = pcibios_enable_device(dev, bars);
1580 if (err < 0)
1581 return err;
1582 pci_fixup_device(pci_fixup_enable, dev);
1584 if (dev->msi_enabled || dev->msix_enabled)
1585 return 0;
1587 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1588 if (pin) {
1589 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1590 if (cmd & PCI_COMMAND_INTX_DISABLE)
1591 pci_write_config_word(dev, PCI_COMMAND,
1592 cmd & ~PCI_COMMAND_INTX_DISABLE);
1595 return 0;
1599 * pci_reenable_device - Resume abandoned device
1600 * @dev: PCI device to be resumed
1602 * Note this function is a backend of pci_default_resume and is not supposed
1603 * to be called by normal code, write proper resume handler and use it instead.
1605 int pci_reenable_device(struct pci_dev *dev)
1607 if (pci_is_enabled(dev))
1608 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1609 return 0;
1611 EXPORT_SYMBOL(pci_reenable_device);
1613 static void pci_enable_bridge(struct pci_dev *dev)
1615 struct pci_dev *bridge;
1616 int retval;
1618 bridge = pci_upstream_bridge(dev);
1619 if (bridge)
1620 pci_enable_bridge(bridge);
1622 if (pci_is_enabled(dev)) {
1623 if (!dev->is_busmaster)
1624 pci_set_master(dev);
1625 return;
1628 retval = pci_enable_device(dev);
1629 if (retval)
1630 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1631 retval);
1632 pci_set_master(dev);
1635 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1637 struct pci_dev *bridge;
1638 int err;
1639 int i, bars = 0;
1642 * Power state could be unknown at this point, either due to a fresh
1643 * boot or a device removal call. So get the current power state
1644 * so that things like MSI message writing will behave as expected
1645 * (e.g. if the device really is in D0 at enable time).
1647 if (dev->pm_cap) {
1648 u16 pmcsr;
1649 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1650 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1653 if (atomic_inc_return(&dev->enable_cnt) > 1)
1654 return 0; /* already enabled */
1656 bridge = pci_upstream_bridge(dev);
1657 if (bridge)
1658 pci_enable_bridge(bridge);
1660 /* only skip sriov related */
1661 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1662 if (dev->resource[i].flags & flags)
1663 bars |= (1 << i);
1664 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1665 if (dev->resource[i].flags & flags)
1666 bars |= (1 << i);
1668 err = do_pci_enable_device(dev, bars);
1669 if (err < 0)
1670 atomic_dec(&dev->enable_cnt);
1671 return err;
1675 * pci_enable_device_io - Initialize a device for use with IO space
1676 * @dev: PCI device to be initialized
1678 * Initialize device before it's used by a driver. Ask low-level code
1679 * to enable I/O resources. Wake up the device if it was suspended.
1680 * Beware, this function can fail.
1682 int pci_enable_device_io(struct pci_dev *dev)
1684 return pci_enable_device_flags(dev, IORESOURCE_IO);
1686 EXPORT_SYMBOL(pci_enable_device_io);
1689 * pci_enable_device_mem - Initialize a device for use with Memory space
1690 * @dev: PCI device to be initialized
1692 * Initialize device before it's used by a driver. Ask low-level code
1693 * to enable Memory resources. Wake up the device if it was suspended.
1694 * Beware, this function can fail.
1696 int pci_enable_device_mem(struct pci_dev *dev)
1698 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1700 EXPORT_SYMBOL(pci_enable_device_mem);
1703 * pci_enable_device - Initialize device before it's used by a driver.
1704 * @dev: PCI device to be initialized
1706 * Initialize device before it's used by a driver. Ask low-level code
1707 * to enable I/O and memory. Wake up the device if it was suspended.
1708 * Beware, this function can fail.
1710 * Note we don't actually enable the device many times if we call
1711 * this function repeatedly (we just increment the count).
1713 int pci_enable_device(struct pci_dev *dev)
1715 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1717 EXPORT_SYMBOL(pci_enable_device);
1720 * Managed PCI resources. This manages device on/off, intx/msi/msix
1721 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1722 * there's no need to track it separately. pci_devres is initialized
1723 * when a device is enabled using managed PCI device enable interface.
1725 struct pci_devres {
1726 unsigned int enabled:1;
1727 unsigned int pinned:1;
1728 unsigned int orig_intx:1;
1729 unsigned int restore_intx:1;
1730 unsigned int mwi:1;
1731 u32 region_mask;
1734 static void pcim_release(struct device *gendev, void *res)
1736 struct pci_dev *dev = to_pci_dev(gendev);
1737 struct pci_devres *this = res;
1738 int i;
1740 if (dev->msi_enabled)
1741 pci_disable_msi(dev);
1742 if (dev->msix_enabled)
1743 pci_disable_msix(dev);
1745 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1746 if (this->region_mask & (1 << i))
1747 pci_release_region(dev, i);
1749 if (this->mwi)
1750 pci_clear_mwi(dev);
1752 if (this->restore_intx)
1753 pci_intx(dev, this->orig_intx);
1755 if (this->enabled && !this->pinned)
1756 pci_disable_device(dev);
1759 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1761 struct pci_devres *dr, *new_dr;
1763 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1764 if (dr)
1765 return dr;
1767 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1768 if (!new_dr)
1769 return NULL;
1770 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1773 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1775 if (pci_is_managed(pdev))
1776 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1777 return NULL;
1781 * pcim_enable_device - Managed pci_enable_device()
1782 * @pdev: PCI device to be initialized
1784 * Managed pci_enable_device().
1786 int pcim_enable_device(struct pci_dev *pdev)
1788 struct pci_devres *dr;
1789 int rc;
1791 dr = get_pci_dr(pdev);
1792 if (unlikely(!dr))
1793 return -ENOMEM;
1794 if (dr->enabled)
1795 return 0;
1797 rc = pci_enable_device(pdev);
1798 if (!rc) {
1799 pdev->is_managed = 1;
1800 dr->enabled = 1;
1802 return rc;
1804 EXPORT_SYMBOL(pcim_enable_device);
1807 * pcim_pin_device - Pin managed PCI device
1808 * @pdev: PCI device to pin
1810 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1811 * driver detach. @pdev must have been enabled with
1812 * pcim_enable_device().
1814 void pcim_pin_device(struct pci_dev *pdev)
1816 struct pci_devres *dr;
1818 dr = find_pci_dr(pdev);
1819 WARN_ON(!dr || !dr->enabled);
1820 if (dr)
1821 dr->pinned = 1;
1823 EXPORT_SYMBOL(pcim_pin_device);
1826 * pcibios_add_device - provide arch specific hooks when adding device dev
1827 * @dev: the PCI device being added
1829 * Permits the platform to provide architecture specific functionality when
1830 * devices are added. This is the default implementation. Architecture
1831 * implementations can override this.
1833 int __weak pcibios_add_device(struct pci_dev *dev)
1835 return 0;
1839 * pcibios_release_device - provide arch specific hooks when releasing device dev
1840 * @dev: the PCI device being released
1842 * Permits the platform to provide architecture specific functionality when
1843 * devices are released. This is the default implementation. Architecture
1844 * implementations can override this.
1846 void __weak pcibios_release_device(struct pci_dev *dev) {}
1849 * pcibios_disable_device - disable arch specific PCI resources for device dev
1850 * @dev: the PCI device to disable
1852 * Disables architecture specific PCI resources for the device. This
1853 * is the default implementation. Architecture implementations can
1854 * override this.
1856 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1859 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1860 * @irq: ISA IRQ to penalize
1861 * @active: IRQ active or not
1863 * Permits the platform to provide architecture-specific functionality when
1864 * penalizing ISA IRQs. This is the default implementation. Architecture
1865 * implementations can override this.
1867 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1869 static void do_pci_disable_device(struct pci_dev *dev)
1871 u16 pci_command;
1873 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1874 if (pci_command & PCI_COMMAND_MASTER) {
1875 pci_command &= ~PCI_COMMAND_MASTER;
1876 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1879 pcibios_disable_device(dev);
1883 * pci_disable_enabled_device - Disable device without updating enable_cnt
1884 * @dev: PCI device to disable
1886 * NOTE: This function is a backend of PCI power management routines and is
1887 * not supposed to be called drivers.
1889 void pci_disable_enabled_device(struct pci_dev *dev)
1891 if (pci_is_enabled(dev))
1892 do_pci_disable_device(dev);
1896 * pci_disable_device - Disable PCI device after use
1897 * @dev: PCI device to be disabled
1899 * Signal to the system that the PCI device is not in use by the system
1900 * anymore. This only involves disabling PCI bus-mastering, if active.
1902 * Note we don't actually disable the device until all callers of
1903 * pci_enable_device() have called pci_disable_device().
1905 void pci_disable_device(struct pci_dev *dev)
1907 struct pci_devres *dr;
1909 dr = find_pci_dr(dev);
1910 if (dr)
1911 dr->enabled = 0;
1913 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1914 "disabling already-disabled device");
1916 if (atomic_dec_return(&dev->enable_cnt) != 0)
1917 return;
1919 do_pci_disable_device(dev);
1921 dev->is_busmaster = 0;
1923 EXPORT_SYMBOL(pci_disable_device);
1926 * pcibios_set_pcie_reset_state - set reset state for device dev
1927 * @dev: the PCIe device reset
1928 * @state: Reset state to enter into
1931 * Sets the PCIe reset state for the device. This is the default
1932 * implementation. Architecture implementations can override this.
1934 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1935 enum pcie_reset_state state)
1937 return -EINVAL;
1941 * pci_set_pcie_reset_state - set reset state for device dev
1942 * @dev: the PCIe device reset
1943 * @state: Reset state to enter into
1946 * Sets the PCI reset state for the device.
1948 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1950 return pcibios_set_pcie_reset_state(dev, state);
1952 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1955 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1956 * @dev: PCIe root port or event collector.
1958 void pcie_clear_root_pme_status(struct pci_dev *dev)
1960 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1964 * pci_check_pme_status - Check if given device has generated PME.
1965 * @dev: Device to check.
1967 * Check the PME status of the device and if set, clear it and clear PME enable
1968 * (if set). Return 'true' if PME status and PME enable were both set or
1969 * 'false' otherwise.
1971 bool pci_check_pme_status(struct pci_dev *dev)
1973 int pmcsr_pos;
1974 u16 pmcsr;
1975 bool ret = false;
1977 if (!dev->pm_cap)
1978 return false;
1980 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1981 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1982 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1983 return false;
1985 /* Clear PME status. */
1986 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1987 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1988 /* Disable PME to avoid interrupt flood. */
1989 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1990 ret = true;
1993 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1995 return ret;
1999 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2000 * @dev: Device to handle.
2001 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2003 * Check if @dev has generated PME and queue a resume request for it in that
2004 * case.
2006 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2008 if (pme_poll_reset && dev->pme_poll)
2009 dev->pme_poll = false;
2011 if (pci_check_pme_status(dev)) {
2012 pci_wakeup_event(dev);
2013 pm_request_resume(&dev->dev);
2015 return 0;
2019 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2020 * @bus: Top bus of the subtree to walk.
2022 void pci_pme_wakeup_bus(struct pci_bus *bus)
2024 if (bus)
2025 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2030 * pci_pme_capable - check the capability of PCI device to generate PME#
2031 * @dev: PCI device to handle.
2032 * @state: PCI state from which device will issue PME#.
2034 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2036 if (!dev->pm_cap)
2037 return false;
2039 return !!(dev->pme_support & (1 << state));
2041 EXPORT_SYMBOL(pci_pme_capable);
2043 static void pci_pme_list_scan(struct work_struct *work)
2045 struct pci_pme_device *pme_dev, *n;
2047 mutex_lock(&pci_pme_list_mutex);
2048 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2049 if (pme_dev->dev->pme_poll) {
2050 struct pci_dev *bridge;
2052 bridge = pme_dev->dev->bus->self;
2054 * If bridge is in low power state, the
2055 * configuration space of subordinate devices
2056 * may be not accessible
2058 if (bridge && bridge->current_state != PCI_D0)
2059 continue;
2060 pci_pme_wakeup(pme_dev->dev, NULL);
2061 } else {
2062 list_del(&pme_dev->list);
2063 kfree(pme_dev);
2066 if (!list_empty(&pci_pme_list))
2067 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2068 msecs_to_jiffies(PME_TIMEOUT));
2069 mutex_unlock(&pci_pme_list_mutex);
2072 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2074 u16 pmcsr;
2076 if (!dev->pme_support)
2077 return;
2079 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2080 /* Clear PME_Status by writing 1 to it and enable PME# */
2081 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2082 if (!enable)
2083 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2085 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2089 * pci_pme_restore - Restore PME configuration after config space restore.
2090 * @dev: PCI device to update.
2092 void pci_pme_restore(struct pci_dev *dev)
2094 u16 pmcsr;
2096 if (!dev->pme_support)
2097 return;
2099 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2100 if (dev->wakeup_prepared) {
2101 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2102 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2103 } else {
2104 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2105 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2107 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2111 * pci_pme_active - enable or disable PCI device's PME# function
2112 * @dev: PCI device to handle.
2113 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2115 * The caller must verify that the device is capable of generating PME# before
2116 * calling this function with @enable equal to 'true'.
2118 void pci_pme_active(struct pci_dev *dev, bool enable)
2120 __pci_pme_active(dev, enable);
2123 * PCI (as opposed to PCIe) PME requires that the device have
2124 * its PME# line hooked up correctly. Not all hardware vendors
2125 * do this, so the PME never gets delivered and the device
2126 * remains asleep. The easiest way around this is to
2127 * periodically walk the list of suspended devices and check
2128 * whether any have their PME flag set. The assumption is that
2129 * we'll wake up often enough anyway that this won't be a huge
2130 * hit, and the power savings from the devices will still be a
2131 * win.
2133 * Although PCIe uses in-band PME message instead of PME# line
2134 * to report PME, PME does not work for some PCIe devices in
2135 * reality. For example, there are devices that set their PME
2136 * status bits, but don't really bother to send a PME message;
2137 * there are PCI Express Root Ports that don't bother to
2138 * trigger interrupts when they receive PME messages from the
2139 * devices below. So PME poll is used for PCIe devices too.
2142 if (dev->pme_poll) {
2143 struct pci_pme_device *pme_dev;
2144 if (enable) {
2145 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2146 GFP_KERNEL);
2147 if (!pme_dev) {
2148 pci_warn(dev, "can't enable PME#\n");
2149 return;
2151 pme_dev->dev = dev;
2152 mutex_lock(&pci_pme_list_mutex);
2153 list_add(&pme_dev->list, &pci_pme_list);
2154 if (list_is_singular(&pci_pme_list))
2155 queue_delayed_work(system_freezable_wq,
2156 &pci_pme_work,
2157 msecs_to_jiffies(PME_TIMEOUT));
2158 mutex_unlock(&pci_pme_list_mutex);
2159 } else {
2160 mutex_lock(&pci_pme_list_mutex);
2161 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2162 if (pme_dev->dev == dev) {
2163 list_del(&pme_dev->list);
2164 kfree(pme_dev);
2165 break;
2168 mutex_unlock(&pci_pme_list_mutex);
2172 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2174 EXPORT_SYMBOL(pci_pme_active);
2177 * __pci_enable_wake - enable PCI device as wakeup event source
2178 * @dev: PCI device affected
2179 * @state: PCI state from which device will issue wakeup events
2180 * @enable: True to enable event generation; false to disable
2182 * This enables the device as a wakeup event source, or disables it.
2183 * When such events involves platform-specific hooks, those hooks are
2184 * called automatically by this routine.
2186 * Devices with legacy power management (no standard PCI PM capabilities)
2187 * always require such platform hooks.
2189 * RETURN VALUE:
2190 * 0 is returned on success
2191 * -EINVAL is returned if device is not supposed to wake up the system
2192 * Error code depending on the platform is returned if both the platform and
2193 * the native mechanism fail to enable the generation of wake-up events
2195 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2197 int ret = 0;
2200 * Bridges that are not power-manageable directly only signal
2201 * wakeup on behalf of subordinate devices which is set up
2202 * elsewhere, so skip them. However, bridges that are
2203 * power-manageable may signal wakeup for themselves (for example,
2204 * on a hotplug event) and they need to be covered here.
2206 if (!pci_power_manageable(dev))
2207 return 0;
2209 /* Don't do the same thing twice in a row for one device. */
2210 if (!!enable == !!dev->wakeup_prepared)
2211 return 0;
2214 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2215 * Anderson we should be doing PME# wake enable followed by ACPI wake
2216 * enable. To disable wake-up we call the platform first, for symmetry.
2219 if (enable) {
2220 int error;
2222 if (pci_pme_capable(dev, state))
2223 pci_pme_active(dev, true);
2224 else
2225 ret = 1;
2226 error = platform_pci_set_wakeup(dev, true);
2227 if (ret)
2228 ret = error;
2229 if (!ret)
2230 dev->wakeup_prepared = true;
2231 } else {
2232 platform_pci_set_wakeup(dev, false);
2233 pci_pme_active(dev, false);
2234 dev->wakeup_prepared = false;
2237 return ret;
2241 * pci_enable_wake - change wakeup settings for a PCI device
2242 * @pci_dev: Target device
2243 * @state: PCI state from which device will issue wakeup events
2244 * @enable: Whether or not to enable event generation
2246 * If @enable is set, check device_may_wakeup() for the device before calling
2247 * __pci_enable_wake() for it.
2249 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2251 if (enable && !device_may_wakeup(&pci_dev->dev))
2252 return -EINVAL;
2254 return __pci_enable_wake(pci_dev, state, enable);
2256 EXPORT_SYMBOL(pci_enable_wake);
2259 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2260 * @dev: PCI device to prepare
2261 * @enable: True to enable wake-up event generation; false to disable
2263 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2264 * and this function allows them to set that up cleanly - pci_enable_wake()
2265 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2266 * ordering constraints.
2268 * This function only returns error code if the device is not allowed to wake
2269 * up the system from sleep or it is not capable of generating PME# from both
2270 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2272 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2274 return pci_pme_capable(dev, PCI_D3cold) ?
2275 pci_enable_wake(dev, PCI_D3cold, enable) :
2276 pci_enable_wake(dev, PCI_D3hot, enable);
2278 EXPORT_SYMBOL(pci_wake_from_d3);
2281 * pci_target_state - find an appropriate low power state for a given PCI dev
2282 * @dev: PCI device
2283 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2285 * Use underlying platform code to find a supported low power state for @dev.
2286 * If the platform can't manage @dev, return the deepest state from which it
2287 * can generate wake events, based on any available PME info.
2289 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2291 pci_power_t target_state = PCI_D3hot;
2293 if (platform_pci_power_manageable(dev)) {
2295 * Call the platform to find the target state for the device.
2297 pci_power_t state = platform_pci_choose_state(dev);
2299 switch (state) {
2300 case PCI_POWER_ERROR:
2301 case PCI_UNKNOWN:
2302 break;
2303 case PCI_D1:
2304 case PCI_D2:
2305 if (pci_no_d1d2(dev))
2306 break;
2307 /* else, fall through */
2308 default:
2309 target_state = state;
2312 return target_state;
2315 if (!dev->pm_cap)
2316 target_state = PCI_D0;
2319 * If the device is in D3cold even though it's not power-manageable by
2320 * the platform, it may have been powered down by non-standard means.
2321 * Best to let it slumber.
2323 if (dev->current_state == PCI_D3cold)
2324 target_state = PCI_D3cold;
2326 if (wakeup) {
2328 * Find the deepest state from which the device can generate
2329 * PME#.
2331 if (dev->pme_support) {
2332 while (target_state
2333 && !(dev->pme_support & (1 << target_state)))
2334 target_state--;
2338 return target_state;
2342 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2343 * @dev: Device to handle.
2345 * Choose the power state appropriate for the device depending on whether
2346 * it can wake up the system and/or is power manageable by the platform
2347 * (PCI_D3hot is the default) and put the device into that state.
2349 int pci_prepare_to_sleep(struct pci_dev *dev)
2351 bool wakeup = device_may_wakeup(&dev->dev);
2352 pci_power_t target_state = pci_target_state(dev, wakeup);
2353 int error;
2355 if (target_state == PCI_POWER_ERROR)
2356 return -EIO;
2358 pci_enable_wake(dev, target_state, wakeup);
2360 error = pci_set_power_state(dev, target_state);
2362 if (error)
2363 pci_enable_wake(dev, target_state, false);
2365 return error;
2367 EXPORT_SYMBOL(pci_prepare_to_sleep);
2370 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2371 * @dev: Device to handle.
2373 * Disable device's system wake-up capability and put it into D0.
2375 int pci_back_from_sleep(struct pci_dev *dev)
2377 pci_enable_wake(dev, PCI_D0, false);
2378 return pci_set_power_state(dev, PCI_D0);
2380 EXPORT_SYMBOL(pci_back_from_sleep);
2383 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2384 * @dev: PCI device being suspended.
2386 * Prepare @dev to generate wake-up events at run time and put it into a low
2387 * power state.
2389 int pci_finish_runtime_suspend(struct pci_dev *dev)
2391 pci_power_t target_state;
2392 int error;
2394 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2395 if (target_state == PCI_POWER_ERROR)
2396 return -EIO;
2398 dev->runtime_d3cold = target_state == PCI_D3cold;
2400 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2402 error = pci_set_power_state(dev, target_state);
2404 if (error) {
2405 pci_enable_wake(dev, target_state, false);
2406 dev->runtime_d3cold = false;
2409 return error;
2413 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2414 * @dev: Device to check.
2416 * Return true if the device itself is capable of generating wake-up events
2417 * (through the platform or using the native PCIe PME) or if the device supports
2418 * PME and one of its upstream bridges can generate wake-up events.
2420 bool pci_dev_run_wake(struct pci_dev *dev)
2422 struct pci_bus *bus = dev->bus;
2424 if (!dev->pme_support)
2425 return false;
2427 /* PME-capable in principle, but not from the target power state */
2428 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2429 return false;
2431 if (device_can_wakeup(&dev->dev))
2432 return true;
2434 while (bus->parent) {
2435 struct pci_dev *bridge = bus->self;
2437 if (device_can_wakeup(&bridge->dev))
2438 return true;
2440 bus = bus->parent;
2443 /* We have reached the root bus. */
2444 if (bus->bridge)
2445 return device_can_wakeup(bus->bridge);
2447 return false;
2449 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2452 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2453 * @pci_dev: Device to check.
2455 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2456 * reconfigured due to wakeup settings difference between system and runtime
2457 * suspend and the current power state of it is suitable for the upcoming
2458 * (system) transition.
2460 * If the device is not configured for system wakeup, disable PME for it before
2461 * returning 'true' to prevent it from waking up the system unnecessarily.
2463 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2465 struct device *dev = &pci_dev->dev;
2466 bool wakeup = device_may_wakeup(dev);
2468 if (!pm_runtime_suspended(dev)
2469 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2470 || platform_pci_need_resume(pci_dev))
2471 return false;
2474 * At this point the device is good to go unless it's been configured
2475 * to generate PME at the runtime suspend time, but it is not supposed
2476 * to wake up the system. In that case, simply disable PME for it
2477 * (it will have to be re-enabled on exit from system resume).
2479 * If the device's power state is D3cold and the platform check above
2480 * hasn't triggered, the device's configuration is suitable and we don't
2481 * need to manipulate it at all.
2483 spin_lock_irq(&dev->power.lock);
2485 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2486 !wakeup)
2487 __pci_pme_active(pci_dev, false);
2489 spin_unlock_irq(&dev->power.lock);
2490 return true;
2494 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2495 * @pci_dev: Device to handle.
2497 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2498 * it might have been disabled during the prepare phase of system suspend if
2499 * the device was not configured for system wakeup.
2501 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2503 struct device *dev = &pci_dev->dev;
2505 if (!pci_dev_run_wake(pci_dev))
2506 return;
2508 spin_lock_irq(&dev->power.lock);
2510 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2511 __pci_pme_active(pci_dev, true);
2513 spin_unlock_irq(&dev->power.lock);
2516 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2518 struct device *dev = &pdev->dev;
2519 struct device *parent = dev->parent;
2521 if (parent)
2522 pm_runtime_get_sync(parent);
2523 pm_runtime_get_noresume(dev);
2525 * pdev->current_state is set to PCI_D3cold during suspending,
2526 * so wait until suspending completes
2528 pm_runtime_barrier(dev);
2530 * Only need to resume devices in D3cold, because config
2531 * registers are still accessible for devices suspended but
2532 * not in D3cold.
2534 if (pdev->current_state == PCI_D3cold)
2535 pm_runtime_resume(dev);
2538 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2540 struct device *dev = &pdev->dev;
2541 struct device *parent = dev->parent;
2543 pm_runtime_put(dev);
2544 if (parent)
2545 pm_runtime_put_sync(parent);
2548 static const struct dmi_system_id bridge_d3_blacklist[] = {
2549 #ifdef CONFIG_X86
2552 * Gigabyte X299 root port is not marked as hotplug capable
2553 * which allows Linux to power manage it. However, this
2554 * confuses the BIOS SMI handler so don't power manage root
2555 * ports on that system.
2557 .ident = "X299 DESIGNARE EX-CF",
2558 .matches = {
2559 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2560 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2563 #endif
2568 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2569 * @bridge: Bridge to check
2571 * This function checks if it is possible to move the bridge to D3.
2572 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2574 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2576 if (!pci_is_pcie(bridge))
2577 return false;
2579 switch (pci_pcie_type(bridge)) {
2580 case PCI_EXP_TYPE_ROOT_PORT:
2581 case PCI_EXP_TYPE_UPSTREAM:
2582 case PCI_EXP_TYPE_DOWNSTREAM:
2583 if (pci_bridge_d3_disable)
2584 return false;
2587 * Hotplug ports handled by firmware in System Management Mode
2588 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2590 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2591 return false;
2593 if (pci_bridge_d3_force)
2594 return true;
2596 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2597 if (bridge->is_thunderbolt)
2598 return true;
2600 /* Platform might know better if the bridge supports D3 */
2601 if (platform_pci_bridge_d3(bridge))
2602 return true;
2605 * Hotplug ports handled natively by the OS were not validated
2606 * by vendors for runtime D3 at least until 2018 because there
2607 * was no OS support.
2609 if (bridge->is_hotplug_bridge)
2610 return false;
2612 if (dmi_check_system(bridge_d3_blacklist))
2613 return false;
2616 * It should be safe to put PCIe ports from 2015 or newer
2617 * to D3.
2619 if (dmi_get_bios_year() >= 2015)
2620 return true;
2621 break;
2624 return false;
2627 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2629 bool *d3cold_ok = data;
2631 if (/* The device needs to be allowed to go D3cold ... */
2632 dev->no_d3cold || !dev->d3cold_allowed ||
2634 /* ... and if it is wakeup capable to do so from D3cold. */
2635 (device_may_wakeup(&dev->dev) &&
2636 !pci_pme_capable(dev, PCI_D3cold)) ||
2638 /* If it is a bridge it must be allowed to go to D3. */
2639 !pci_power_manageable(dev))
2641 *d3cold_ok = false;
2643 return !*d3cold_ok;
2647 * pci_bridge_d3_update - Update bridge D3 capabilities
2648 * @dev: PCI device which is changed
2650 * Update upstream bridge PM capabilities accordingly depending on if the
2651 * device PM configuration was changed or the device is being removed. The
2652 * change is also propagated upstream.
2654 void pci_bridge_d3_update(struct pci_dev *dev)
2656 bool remove = !device_is_registered(&dev->dev);
2657 struct pci_dev *bridge;
2658 bool d3cold_ok = true;
2660 bridge = pci_upstream_bridge(dev);
2661 if (!bridge || !pci_bridge_d3_possible(bridge))
2662 return;
2665 * If D3 is currently allowed for the bridge, removing one of its
2666 * children won't change that.
2668 if (remove && bridge->bridge_d3)
2669 return;
2672 * If D3 is currently allowed for the bridge and a child is added or
2673 * changed, disallowance of D3 can only be caused by that child, so
2674 * we only need to check that single device, not any of its siblings.
2676 * If D3 is currently not allowed for the bridge, checking the device
2677 * first may allow us to skip checking its siblings.
2679 if (!remove)
2680 pci_dev_check_d3cold(dev, &d3cold_ok);
2683 * If D3 is currently not allowed for the bridge, this may be caused
2684 * either by the device being changed/removed or any of its siblings,
2685 * so we need to go through all children to find out if one of them
2686 * continues to block D3.
2688 if (d3cold_ok && !bridge->bridge_d3)
2689 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2690 &d3cold_ok);
2692 if (bridge->bridge_d3 != d3cold_ok) {
2693 bridge->bridge_d3 = d3cold_ok;
2694 /* Propagate change to upstream bridges */
2695 pci_bridge_d3_update(bridge);
2700 * pci_d3cold_enable - Enable D3cold for device
2701 * @dev: PCI device to handle
2703 * This function can be used in drivers to enable D3cold from the device
2704 * they handle. It also updates upstream PCI bridge PM capabilities
2705 * accordingly.
2707 void pci_d3cold_enable(struct pci_dev *dev)
2709 if (dev->no_d3cold) {
2710 dev->no_d3cold = false;
2711 pci_bridge_d3_update(dev);
2714 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2717 * pci_d3cold_disable - Disable D3cold for device
2718 * @dev: PCI device to handle
2720 * This function can be used in drivers to disable D3cold from the device
2721 * they handle. It also updates upstream PCI bridge PM capabilities
2722 * accordingly.
2724 void pci_d3cold_disable(struct pci_dev *dev)
2726 if (!dev->no_d3cold) {
2727 dev->no_d3cold = true;
2728 pci_bridge_d3_update(dev);
2731 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2734 * pci_pm_init - Initialize PM functions of given PCI device
2735 * @dev: PCI device to handle.
2737 void pci_pm_init(struct pci_dev *dev)
2739 int pm;
2740 u16 status;
2741 u16 pmc;
2743 pm_runtime_forbid(&dev->dev);
2744 pm_runtime_set_active(&dev->dev);
2745 pm_runtime_enable(&dev->dev);
2746 device_enable_async_suspend(&dev->dev);
2747 dev->wakeup_prepared = false;
2749 dev->pm_cap = 0;
2750 dev->pme_support = 0;
2752 /* find PCI PM capability in list */
2753 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2754 if (!pm)
2755 return;
2756 /* Check device's ability to generate PME# */
2757 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2759 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2760 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2761 pmc & PCI_PM_CAP_VER_MASK);
2762 return;
2765 dev->pm_cap = pm;
2766 dev->d3_delay = PCI_PM_D3_WAIT;
2767 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2768 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2769 dev->d3cold_allowed = true;
2771 dev->d1_support = false;
2772 dev->d2_support = false;
2773 if (!pci_no_d1d2(dev)) {
2774 if (pmc & PCI_PM_CAP_D1)
2775 dev->d1_support = true;
2776 if (pmc & PCI_PM_CAP_D2)
2777 dev->d2_support = true;
2779 if (dev->d1_support || dev->d2_support)
2780 pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2781 dev->d1_support ? " D1" : "",
2782 dev->d2_support ? " D2" : "");
2785 pmc &= PCI_PM_CAP_PME_MASK;
2786 if (pmc) {
2787 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2788 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2789 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2790 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2791 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2792 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2793 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2794 dev->pme_poll = true;
2796 * Make device's PM flags reflect the wake-up capability, but
2797 * let the user space enable it to wake up the system as needed.
2799 device_set_wakeup_capable(&dev->dev, true);
2800 /* Disable the PME# generation functionality */
2801 pci_pme_active(dev, false);
2804 pci_read_config_word(dev, PCI_STATUS, &status);
2805 if (status & PCI_STATUS_IMM_READY)
2806 dev->imm_ready = 1;
2809 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2811 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2813 switch (prop) {
2814 case PCI_EA_P_MEM:
2815 case PCI_EA_P_VF_MEM:
2816 flags |= IORESOURCE_MEM;
2817 break;
2818 case PCI_EA_P_MEM_PREFETCH:
2819 case PCI_EA_P_VF_MEM_PREFETCH:
2820 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2821 break;
2822 case PCI_EA_P_IO:
2823 flags |= IORESOURCE_IO;
2824 break;
2825 default:
2826 return 0;
2829 return flags;
2832 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2833 u8 prop)
2835 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2836 return &dev->resource[bei];
2837 #ifdef CONFIG_PCI_IOV
2838 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2839 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2840 return &dev->resource[PCI_IOV_RESOURCES +
2841 bei - PCI_EA_BEI_VF_BAR0];
2842 #endif
2843 else if (bei == PCI_EA_BEI_ROM)
2844 return &dev->resource[PCI_ROM_RESOURCE];
2845 else
2846 return NULL;
2849 /* Read an Enhanced Allocation (EA) entry */
2850 static int pci_ea_read(struct pci_dev *dev, int offset)
2852 struct resource *res;
2853 int ent_size, ent_offset = offset;
2854 resource_size_t start, end;
2855 unsigned long flags;
2856 u32 dw0, bei, base, max_offset;
2857 u8 prop;
2858 bool support_64 = (sizeof(resource_size_t) >= 8);
2860 pci_read_config_dword(dev, ent_offset, &dw0);
2861 ent_offset += 4;
2863 /* Entry size field indicates DWORDs after 1st */
2864 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2866 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2867 goto out;
2869 bei = (dw0 & PCI_EA_BEI) >> 4;
2870 prop = (dw0 & PCI_EA_PP) >> 8;
2873 * If the Property is in the reserved range, try the Secondary
2874 * Property instead.
2876 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2877 prop = (dw0 & PCI_EA_SP) >> 16;
2878 if (prop > PCI_EA_P_BRIDGE_IO)
2879 goto out;
2881 res = pci_ea_get_resource(dev, bei, prop);
2882 if (!res) {
2883 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2884 goto out;
2887 flags = pci_ea_flags(dev, prop);
2888 if (!flags) {
2889 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2890 goto out;
2893 /* Read Base */
2894 pci_read_config_dword(dev, ent_offset, &base);
2895 start = (base & PCI_EA_FIELD_MASK);
2896 ent_offset += 4;
2898 /* Read MaxOffset */
2899 pci_read_config_dword(dev, ent_offset, &max_offset);
2900 ent_offset += 4;
2902 /* Read Base MSBs (if 64-bit entry) */
2903 if (base & PCI_EA_IS_64) {
2904 u32 base_upper;
2906 pci_read_config_dword(dev, ent_offset, &base_upper);
2907 ent_offset += 4;
2909 flags |= IORESOURCE_MEM_64;
2911 /* entry starts above 32-bit boundary, can't use */
2912 if (!support_64 && base_upper)
2913 goto out;
2915 if (support_64)
2916 start |= ((u64)base_upper << 32);
2919 end = start + (max_offset | 0x03);
2921 /* Read MaxOffset MSBs (if 64-bit entry) */
2922 if (max_offset & PCI_EA_IS_64) {
2923 u32 max_offset_upper;
2925 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2926 ent_offset += 4;
2928 flags |= IORESOURCE_MEM_64;
2930 /* entry too big, can't use */
2931 if (!support_64 && max_offset_upper)
2932 goto out;
2934 if (support_64)
2935 end += ((u64)max_offset_upper << 32);
2938 if (end < start) {
2939 pci_err(dev, "EA Entry crosses address boundary\n");
2940 goto out;
2943 if (ent_size != ent_offset - offset) {
2944 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2945 ent_size, ent_offset - offset);
2946 goto out;
2949 res->name = pci_name(dev);
2950 res->start = start;
2951 res->end = end;
2952 res->flags = flags;
2954 if (bei <= PCI_EA_BEI_BAR5)
2955 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2956 bei, res, prop);
2957 else if (bei == PCI_EA_BEI_ROM)
2958 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2959 res, prop);
2960 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2961 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2962 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2963 else
2964 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2965 bei, res, prop);
2967 out:
2968 return offset + ent_size;
2971 /* Enhanced Allocation Initialization */
2972 void pci_ea_init(struct pci_dev *dev)
2974 int ea;
2975 u8 num_ent;
2976 int offset;
2977 int i;
2979 /* find PCI EA capability in list */
2980 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2981 if (!ea)
2982 return;
2984 /* determine the number of entries */
2985 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2986 &num_ent);
2987 num_ent &= PCI_EA_NUM_ENT_MASK;
2989 offset = ea + PCI_EA_FIRST_ENT;
2991 /* Skip DWORD 2 for type 1 functions */
2992 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2993 offset += 4;
2995 /* parse each EA entry */
2996 for (i = 0; i < num_ent; ++i)
2997 offset = pci_ea_read(dev, offset);
3000 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3001 struct pci_cap_saved_state *new_cap)
3003 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3007 * _pci_add_cap_save_buffer - allocate buffer for saving given
3008 * capability registers
3009 * @dev: the PCI device
3010 * @cap: the capability to allocate the buffer for
3011 * @extended: Standard or Extended capability ID
3012 * @size: requested size of the buffer
3014 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3015 bool extended, unsigned int size)
3017 int pos;
3018 struct pci_cap_saved_state *save_state;
3020 if (extended)
3021 pos = pci_find_ext_capability(dev, cap);
3022 else
3023 pos = pci_find_capability(dev, cap);
3025 if (!pos)
3026 return 0;
3028 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3029 if (!save_state)
3030 return -ENOMEM;
3032 save_state->cap.cap_nr = cap;
3033 save_state->cap.cap_extended = extended;
3034 save_state->cap.size = size;
3035 pci_add_saved_cap(dev, save_state);
3037 return 0;
3040 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3042 return _pci_add_cap_save_buffer(dev, cap, false, size);
3045 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3047 return _pci_add_cap_save_buffer(dev, cap, true, size);
3051 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3052 * @dev: the PCI device
3054 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3056 int error;
3058 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3059 PCI_EXP_SAVE_REGS * sizeof(u16));
3060 if (error)
3061 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3063 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3064 if (error)
3065 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3067 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3068 2 * sizeof(u16));
3069 if (error)
3070 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3072 pci_allocate_vc_save_buffers(dev);
3075 void pci_free_cap_save_buffers(struct pci_dev *dev)
3077 struct pci_cap_saved_state *tmp;
3078 struct hlist_node *n;
3080 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3081 kfree(tmp);
3085 * pci_configure_ari - enable or disable ARI forwarding
3086 * @dev: the PCI device
3088 * If @dev and its upstream bridge both support ARI, enable ARI in the
3089 * bridge. Otherwise, disable ARI in the bridge.
3091 void pci_configure_ari(struct pci_dev *dev)
3093 u32 cap;
3094 struct pci_dev *bridge;
3096 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3097 return;
3099 bridge = dev->bus->self;
3100 if (!bridge)
3101 return;
3103 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3104 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3105 return;
3107 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3108 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3109 PCI_EXP_DEVCTL2_ARI);
3110 bridge->ari_enabled = 1;
3111 } else {
3112 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3113 PCI_EXP_DEVCTL2_ARI);
3114 bridge->ari_enabled = 0;
3118 static int pci_acs_enable;
3121 * pci_request_acs - ask for ACS to be enabled if supported
3123 void pci_request_acs(void)
3125 pci_acs_enable = 1;
3128 static const char *disable_acs_redir_param;
3131 * pci_disable_acs_redir - disable ACS redirect capabilities
3132 * @dev: the PCI device
3134 * For only devices specified in the disable_acs_redir parameter.
3136 static void pci_disable_acs_redir(struct pci_dev *dev)
3138 int ret = 0;
3139 const char *p;
3140 int pos;
3141 u16 ctrl;
3143 if (!disable_acs_redir_param)
3144 return;
3146 p = disable_acs_redir_param;
3147 while (*p) {
3148 ret = pci_dev_str_match(dev, p, &p);
3149 if (ret < 0) {
3150 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3151 disable_acs_redir_param);
3153 break;
3154 } else if (ret == 1) {
3155 /* Found a match */
3156 break;
3159 if (*p != ';' && *p != ',') {
3160 /* End of param or invalid format */
3161 break;
3163 p++;
3166 if (ret != 1)
3167 return;
3169 if (!pci_dev_specific_disable_acs_redir(dev))
3170 return;
3172 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3173 if (!pos) {
3174 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3175 return;
3178 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3180 /* P2P Request & Completion Redirect */
3181 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3183 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3185 pci_info(dev, "disabled ACS redirect\n");
3189 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
3190 * @dev: the PCI device
3192 static void pci_std_enable_acs(struct pci_dev *dev)
3194 int pos;
3195 u16 cap;
3196 u16 ctrl;
3198 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3199 if (!pos)
3200 return;
3202 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3203 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3205 /* Source Validation */
3206 ctrl |= (cap & PCI_ACS_SV);
3208 /* P2P Request Redirect */
3209 ctrl |= (cap & PCI_ACS_RR);
3211 /* P2P Completion Redirect */
3212 ctrl |= (cap & PCI_ACS_CR);
3214 /* Upstream Forwarding */
3215 ctrl |= (cap & PCI_ACS_UF);
3217 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3221 * pci_enable_acs - enable ACS if hardware support it
3222 * @dev: the PCI device
3224 void pci_enable_acs(struct pci_dev *dev)
3226 if (!pci_acs_enable)
3227 goto disable_acs_redir;
3229 if (!pci_dev_specific_enable_acs(dev))
3230 goto disable_acs_redir;
3232 pci_std_enable_acs(dev);
3234 disable_acs_redir:
3236 * Note: pci_disable_acs_redir() must be called even if ACS was not
3237 * enabled by the kernel because it may have been enabled by
3238 * platform firmware. So if we are told to disable it, we should
3239 * always disable it after setting the kernel's default
3240 * preferences.
3242 pci_disable_acs_redir(dev);
3245 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3247 int pos;
3248 u16 cap, ctrl;
3250 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3251 if (!pos)
3252 return false;
3255 * Except for egress control, capabilities are either required
3256 * or only required if controllable. Features missing from the
3257 * capability field can therefore be assumed as hard-wired enabled.
3259 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3260 acs_flags &= (cap | PCI_ACS_EC);
3262 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3263 return (ctrl & acs_flags) == acs_flags;
3267 * pci_acs_enabled - test ACS against required flags for a given device
3268 * @pdev: device to test
3269 * @acs_flags: required PCI ACS flags
3271 * Return true if the device supports the provided flags. Automatically
3272 * filters out flags that are not implemented on multifunction devices.
3274 * Note that this interface checks the effective ACS capabilities of the
3275 * device rather than the actual capabilities. For instance, most single
3276 * function endpoints are not required to support ACS because they have no
3277 * opportunity for peer-to-peer access. We therefore return 'true'
3278 * regardless of whether the device exposes an ACS capability. This makes
3279 * it much easier for callers of this function to ignore the actual type
3280 * or topology of the device when testing ACS support.
3282 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3284 int ret;
3286 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3287 if (ret >= 0)
3288 return ret > 0;
3291 * Conventional PCI and PCI-X devices never support ACS, either
3292 * effectively or actually. The shared bus topology implies that
3293 * any device on the bus can receive or snoop DMA.
3295 if (!pci_is_pcie(pdev))
3296 return false;
3298 switch (pci_pcie_type(pdev)) {
3300 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3301 * but since their primary interface is PCI/X, we conservatively
3302 * handle them as we would a non-PCIe device.
3304 case PCI_EXP_TYPE_PCIE_BRIDGE:
3306 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3307 * applicable... must never implement an ACS Extended Capability...".
3308 * This seems arbitrary, but we take a conservative interpretation
3309 * of this statement.
3311 case PCI_EXP_TYPE_PCI_BRIDGE:
3312 case PCI_EXP_TYPE_RC_EC:
3313 return false;
3315 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3316 * implement ACS in order to indicate their peer-to-peer capabilities,
3317 * regardless of whether they are single- or multi-function devices.
3319 case PCI_EXP_TYPE_DOWNSTREAM:
3320 case PCI_EXP_TYPE_ROOT_PORT:
3321 return pci_acs_flags_enabled(pdev, acs_flags);
3323 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3324 * implemented by the remaining PCIe types to indicate peer-to-peer
3325 * capabilities, but only when they are part of a multifunction
3326 * device. The footnote for section 6.12 indicates the specific
3327 * PCIe types included here.
3329 case PCI_EXP_TYPE_ENDPOINT:
3330 case PCI_EXP_TYPE_UPSTREAM:
3331 case PCI_EXP_TYPE_LEG_END:
3332 case PCI_EXP_TYPE_RC_END:
3333 if (!pdev->multifunction)
3334 break;
3336 return pci_acs_flags_enabled(pdev, acs_flags);
3340 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3341 * to single function devices with the exception of downstream ports.
3343 return true;
3347 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3348 * @start: starting downstream device
3349 * @end: ending upstream device or NULL to search to the root bus
3350 * @acs_flags: required flags
3352 * Walk up a device tree from start to end testing PCI ACS support. If
3353 * any step along the way does not support the required flags, return false.
3355 bool pci_acs_path_enabled(struct pci_dev *start,
3356 struct pci_dev *end, u16 acs_flags)
3358 struct pci_dev *pdev, *parent = start;
3360 do {
3361 pdev = parent;
3363 if (!pci_acs_enabled(pdev, acs_flags))
3364 return false;
3366 if (pci_is_root_bus(pdev->bus))
3367 return (end == NULL);
3369 parent = pdev->bus->self;
3370 } while (pdev != end);
3372 return true;
3376 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3377 * @pdev: PCI device
3378 * @bar: BAR to find
3380 * Helper to find the position of the ctrl register for a BAR.
3381 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3382 * Returns -ENOENT if no ctrl register for the BAR could be found.
3384 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3386 unsigned int pos, nbars, i;
3387 u32 ctrl;
3389 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3390 if (!pos)
3391 return -ENOTSUPP;
3393 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3394 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3395 PCI_REBAR_CTRL_NBAR_SHIFT;
3397 for (i = 0; i < nbars; i++, pos += 8) {
3398 int bar_idx;
3400 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3401 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3402 if (bar_idx == bar)
3403 return pos;
3406 return -ENOENT;
3410 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3411 * @pdev: PCI device
3412 * @bar: BAR to query
3414 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3415 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3417 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3419 int pos;
3420 u32 cap;
3422 pos = pci_rebar_find_pos(pdev, bar);
3423 if (pos < 0)
3424 return 0;
3426 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3427 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3431 * pci_rebar_get_current_size - get the current size of a BAR
3432 * @pdev: PCI device
3433 * @bar: BAR to set size to
3435 * Read the size of a BAR from the resizable BAR config.
3436 * Returns size if found or negative error code.
3438 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3440 int pos;
3441 u32 ctrl;
3443 pos = pci_rebar_find_pos(pdev, bar);
3444 if (pos < 0)
3445 return pos;
3447 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3448 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3452 * pci_rebar_set_size - set a new size for a BAR
3453 * @pdev: PCI device
3454 * @bar: BAR to set size to
3455 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3457 * Set the new size of a BAR as defined in the spec.
3458 * Returns zero if resizing was successful, error code otherwise.
3460 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3462 int pos;
3463 u32 ctrl;
3465 pos = pci_rebar_find_pos(pdev, bar);
3466 if (pos < 0)
3467 return pos;
3469 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3470 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3471 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3472 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3473 return 0;
3477 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3478 * @dev: the PCI device
3479 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3480 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3481 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3482 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3484 * Return 0 if all upstream bridges support AtomicOp routing, egress
3485 * blocking is disabled on all upstream ports, and the root port supports
3486 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3487 * AtomicOp completion), or negative otherwise.
3489 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3491 struct pci_bus *bus = dev->bus;
3492 struct pci_dev *bridge;
3493 u32 cap, ctl2;
3495 if (!pci_is_pcie(dev))
3496 return -EINVAL;
3499 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3500 * AtomicOp requesters. For now, we only support endpoints as
3501 * requesters and root ports as completers. No endpoints as
3502 * completers, and no peer-to-peer.
3505 switch (pci_pcie_type(dev)) {
3506 case PCI_EXP_TYPE_ENDPOINT:
3507 case PCI_EXP_TYPE_LEG_END:
3508 case PCI_EXP_TYPE_RC_END:
3509 break;
3510 default:
3511 return -EINVAL;
3514 while (bus->parent) {
3515 bridge = bus->self;
3517 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3519 switch (pci_pcie_type(bridge)) {
3520 /* Ensure switch ports support AtomicOp routing */
3521 case PCI_EXP_TYPE_UPSTREAM:
3522 case PCI_EXP_TYPE_DOWNSTREAM:
3523 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3524 return -EINVAL;
3525 break;
3527 /* Ensure root port supports all the sizes we care about */
3528 case PCI_EXP_TYPE_ROOT_PORT:
3529 if ((cap & cap_mask) != cap_mask)
3530 return -EINVAL;
3531 break;
3534 /* Ensure upstream ports don't block AtomicOps on egress */
3535 if (!bridge->has_secondary_link) {
3536 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3537 &ctl2);
3538 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3539 return -EINVAL;
3542 bus = bus->parent;
3545 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3546 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3547 return 0;
3549 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3552 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3553 * @dev: the PCI device
3554 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3556 * Perform INTx swizzling for a device behind one level of bridge. This is
3557 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3558 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3559 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3560 * the PCI Express Base Specification, Revision 2.1)
3562 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3564 int slot;
3566 if (pci_ari_enabled(dev->bus))
3567 slot = 0;
3568 else
3569 slot = PCI_SLOT(dev->devfn);
3571 return (((pin - 1) + slot) % 4) + 1;
3574 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3576 u8 pin;
3578 pin = dev->pin;
3579 if (!pin)
3580 return -1;
3582 while (!pci_is_root_bus(dev->bus)) {
3583 pin = pci_swizzle_interrupt_pin(dev, pin);
3584 dev = dev->bus->self;
3586 *bridge = dev;
3587 return pin;
3591 * pci_common_swizzle - swizzle INTx all the way to root bridge
3592 * @dev: the PCI device
3593 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3595 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3596 * bridges all the way up to a PCI root bus.
3598 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3600 u8 pin = *pinp;
3602 while (!pci_is_root_bus(dev->bus)) {
3603 pin = pci_swizzle_interrupt_pin(dev, pin);
3604 dev = dev->bus->self;
3606 *pinp = pin;
3607 return PCI_SLOT(dev->devfn);
3609 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3612 * pci_release_region - Release a PCI bar
3613 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3614 * @bar: BAR to release
3616 * Releases the PCI I/O and memory resources previously reserved by a
3617 * successful call to pci_request_region. Call this function only
3618 * after all use of the PCI regions has ceased.
3620 void pci_release_region(struct pci_dev *pdev, int bar)
3622 struct pci_devres *dr;
3624 if (pci_resource_len(pdev, bar) == 0)
3625 return;
3626 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3627 release_region(pci_resource_start(pdev, bar),
3628 pci_resource_len(pdev, bar));
3629 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3630 release_mem_region(pci_resource_start(pdev, bar),
3631 pci_resource_len(pdev, bar));
3633 dr = find_pci_dr(pdev);
3634 if (dr)
3635 dr->region_mask &= ~(1 << bar);
3637 EXPORT_SYMBOL(pci_release_region);
3640 * __pci_request_region - Reserved PCI I/O and memory resource
3641 * @pdev: PCI device whose resources are to be reserved
3642 * @bar: BAR to be reserved
3643 * @res_name: Name to be associated with resource.
3644 * @exclusive: whether the region access is exclusive or not
3646 * Mark the PCI region associated with PCI device @pdev BR @bar as
3647 * being reserved by owner @res_name. Do not access any
3648 * address inside the PCI regions unless this call returns
3649 * successfully.
3651 * If @exclusive is set, then the region is marked so that userspace
3652 * is explicitly not allowed to map the resource via /dev/mem or
3653 * sysfs MMIO access.
3655 * Returns 0 on success, or %EBUSY on error. A warning
3656 * message is also printed on failure.
3658 static int __pci_request_region(struct pci_dev *pdev, int bar,
3659 const char *res_name, int exclusive)
3661 struct pci_devres *dr;
3663 if (pci_resource_len(pdev, bar) == 0)
3664 return 0;
3666 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3667 if (!request_region(pci_resource_start(pdev, bar),
3668 pci_resource_len(pdev, bar), res_name))
3669 goto err_out;
3670 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3671 if (!__request_mem_region(pci_resource_start(pdev, bar),
3672 pci_resource_len(pdev, bar), res_name,
3673 exclusive))
3674 goto err_out;
3677 dr = find_pci_dr(pdev);
3678 if (dr)
3679 dr->region_mask |= 1 << bar;
3681 return 0;
3683 err_out:
3684 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3685 &pdev->resource[bar]);
3686 return -EBUSY;
3690 * pci_request_region - Reserve PCI I/O and memory resource
3691 * @pdev: PCI device whose resources are to be reserved
3692 * @bar: BAR to be reserved
3693 * @res_name: Name to be associated with resource
3695 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3696 * being reserved by owner @res_name. Do not access any
3697 * address inside the PCI regions unless this call returns
3698 * successfully.
3700 * Returns 0 on success, or %EBUSY on error. A warning
3701 * message is also printed on failure.
3703 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3705 return __pci_request_region(pdev, bar, res_name, 0);
3707 EXPORT_SYMBOL(pci_request_region);
3710 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3711 * @pdev: PCI device whose resources are to be reserved
3712 * @bar: BAR to be reserved
3713 * @res_name: Name to be associated with resource.
3715 * Mark the PCI region associated with PCI device @pdev BR @bar as
3716 * being reserved by owner @res_name. Do not access any
3717 * address inside the PCI regions unless this call returns
3718 * successfully.
3720 * Returns 0 on success, or %EBUSY on error. A warning
3721 * message is also printed on failure.
3723 * The key difference that _exclusive makes it that userspace is
3724 * explicitly not allowed to map the resource via /dev/mem or
3725 * sysfs.
3727 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3728 const char *res_name)
3730 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3732 EXPORT_SYMBOL(pci_request_region_exclusive);
3735 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3736 * @pdev: PCI device whose resources were previously reserved
3737 * @bars: Bitmask of BARs to be released
3739 * Release selected PCI I/O and memory resources previously reserved.
3740 * Call this function only after all use of the PCI regions has ceased.
3742 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3744 int i;
3746 for (i = 0; i < 6; i++)
3747 if (bars & (1 << i))
3748 pci_release_region(pdev, i);
3750 EXPORT_SYMBOL(pci_release_selected_regions);
3752 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3753 const char *res_name, int excl)
3755 int i;
3757 for (i = 0; i < 6; i++)
3758 if (bars & (1 << i))
3759 if (__pci_request_region(pdev, i, res_name, excl))
3760 goto err_out;
3761 return 0;
3763 err_out:
3764 while (--i >= 0)
3765 if (bars & (1 << i))
3766 pci_release_region(pdev, i);
3768 return -EBUSY;
3773 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3774 * @pdev: PCI device whose resources are to be reserved
3775 * @bars: Bitmask of BARs to be requested
3776 * @res_name: Name to be associated with resource
3778 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3779 const char *res_name)
3781 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3783 EXPORT_SYMBOL(pci_request_selected_regions);
3785 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3786 const char *res_name)
3788 return __pci_request_selected_regions(pdev, bars, res_name,
3789 IORESOURCE_EXCLUSIVE);
3791 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3794 * pci_release_regions - Release reserved PCI I/O and memory resources
3795 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3797 * Releases all PCI I/O and memory resources previously reserved by a
3798 * successful call to pci_request_regions. Call this function only
3799 * after all use of the PCI regions has ceased.
3802 void pci_release_regions(struct pci_dev *pdev)
3804 pci_release_selected_regions(pdev, (1 << 6) - 1);
3806 EXPORT_SYMBOL(pci_release_regions);
3809 * pci_request_regions - Reserved PCI I/O and memory resources
3810 * @pdev: PCI device whose resources are to be reserved
3811 * @res_name: Name to be associated with resource.
3813 * Mark all PCI regions associated with PCI device @pdev as
3814 * being reserved by owner @res_name. Do not access any
3815 * address inside the PCI regions unless this call returns
3816 * successfully.
3818 * Returns 0 on success, or %EBUSY on error. A warning
3819 * message is also printed on failure.
3821 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3823 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3825 EXPORT_SYMBOL(pci_request_regions);
3828 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3829 * @pdev: PCI device whose resources are to be reserved
3830 * @res_name: Name to be associated with resource.
3832 * Mark all PCI regions associated with PCI device @pdev as
3833 * being reserved by owner @res_name. Do not access any
3834 * address inside the PCI regions unless this call returns
3835 * successfully.
3837 * pci_request_regions_exclusive() will mark the region so that
3838 * /dev/mem and the sysfs MMIO access will not be allowed.
3840 * Returns 0 on success, or %EBUSY on error. A warning
3841 * message is also printed on failure.
3843 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3845 return pci_request_selected_regions_exclusive(pdev,
3846 ((1 << 6) - 1), res_name);
3848 EXPORT_SYMBOL(pci_request_regions_exclusive);
3851 * Record the PCI IO range (expressed as CPU physical address + size).
3852 * Return a negative value if an error has occured, zero otherwise
3854 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3855 resource_size_t size)
3857 int ret = 0;
3858 #ifdef PCI_IOBASE
3859 struct logic_pio_hwaddr *range;
3861 if (!size || addr + size < addr)
3862 return -EINVAL;
3864 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3865 if (!range)
3866 return -ENOMEM;
3868 range->fwnode = fwnode;
3869 range->size = size;
3870 range->hw_start = addr;
3871 range->flags = LOGIC_PIO_CPU_MMIO;
3873 ret = logic_pio_register_range(range);
3874 if (ret)
3875 kfree(range);
3876 #endif
3878 return ret;
3881 phys_addr_t pci_pio_to_address(unsigned long pio)
3883 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3885 #ifdef PCI_IOBASE
3886 if (pio >= MMIO_UPPER_LIMIT)
3887 return address;
3889 address = logic_pio_to_hwaddr(pio);
3890 #endif
3892 return address;
3895 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3897 #ifdef PCI_IOBASE
3898 return logic_pio_trans_cpuaddr(address);
3899 #else
3900 if (address > IO_SPACE_LIMIT)
3901 return (unsigned long)-1;
3903 return (unsigned long) address;
3904 #endif
3908 * pci_remap_iospace - Remap the memory mapped I/O space
3909 * @res: Resource describing the I/O space
3910 * @phys_addr: physical address of range to be mapped
3912 * Remap the memory mapped I/O space described by the @res
3913 * and the CPU physical address @phys_addr into virtual address space.
3914 * Only architectures that have memory mapped IO functions defined
3915 * (and the PCI_IOBASE value defined) should call this function.
3917 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3919 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3920 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3922 if (!(res->flags & IORESOURCE_IO))
3923 return -EINVAL;
3925 if (res->end > IO_SPACE_LIMIT)
3926 return -EINVAL;
3928 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3929 pgprot_device(PAGE_KERNEL));
3930 #else
3931 /* this architecture does not have memory mapped I/O space,
3932 so this function should never be called */
3933 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3934 return -ENODEV;
3935 #endif
3937 EXPORT_SYMBOL(pci_remap_iospace);
3940 * pci_unmap_iospace - Unmap the memory mapped I/O space
3941 * @res: resource to be unmapped
3943 * Unmap the CPU virtual address @res from virtual address space.
3944 * Only architectures that have memory mapped IO functions defined
3945 * (and the PCI_IOBASE value defined) should call this function.
3947 void pci_unmap_iospace(struct resource *res)
3949 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3950 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3952 unmap_kernel_range(vaddr, resource_size(res));
3953 #endif
3955 EXPORT_SYMBOL(pci_unmap_iospace);
3957 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3959 struct resource **res = ptr;
3961 pci_unmap_iospace(*res);
3965 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3966 * @dev: Generic device to remap IO address for
3967 * @res: Resource describing the I/O space
3968 * @phys_addr: physical address of range to be mapped
3970 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3971 * detach.
3973 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3974 phys_addr_t phys_addr)
3976 const struct resource **ptr;
3977 int error;
3979 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3980 if (!ptr)
3981 return -ENOMEM;
3983 error = pci_remap_iospace(res, phys_addr);
3984 if (error) {
3985 devres_free(ptr);
3986 } else {
3987 *ptr = res;
3988 devres_add(dev, ptr);
3991 return error;
3993 EXPORT_SYMBOL(devm_pci_remap_iospace);
3996 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3997 * @dev: Generic device to remap IO address for
3998 * @offset: Resource address to map
3999 * @size: Size of map
4001 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4002 * detach.
4004 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4005 resource_size_t offset,
4006 resource_size_t size)
4008 void __iomem **ptr, *addr;
4010 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4011 if (!ptr)
4012 return NULL;
4014 addr = pci_remap_cfgspace(offset, size);
4015 if (addr) {
4016 *ptr = addr;
4017 devres_add(dev, ptr);
4018 } else
4019 devres_free(ptr);
4021 return addr;
4023 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4026 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4027 * @dev: generic device to handle the resource for
4028 * @res: configuration space resource to be handled
4030 * Checks that a resource is a valid memory region, requests the memory
4031 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4032 * proper PCI configuration space memory attributes are guaranteed.
4034 * All operations are managed and will be undone on driver detach.
4036 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4037 * on failure. Usage example::
4039 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4040 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4041 * if (IS_ERR(base))
4042 * return PTR_ERR(base);
4044 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4045 struct resource *res)
4047 resource_size_t size;
4048 const char *name;
4049 void __iomem *dest_ptr;
4051 BUG_ON(!dev);
4053 if (!res || resource_type(res) != IORESOURCE_MEM) {
4054 dev_err(dev, "invalid resource\n");
4055 return IOMEM_ERR_PTR(-EINVAL);
4058 size = resource_size(res);
4059 name = res->name ?: dev_name(dev);
4061 if (!devm_request_mem_region(dev, res->start, size, name)) {
4062 dev_err(dev, "can't request region for resource %pR\n", res);
4063 return IOMEM_ERR_PTR(-EBUSY);
4066 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4067 if (!dest_ptr) {
4068 dev_err(dev, "ioremap failed for resource %pR\n", res);
4069 devm_release_mem_region(dev, res->start, size);
4070 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4073 return dest_ptr;
4075 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4077 static void __pci_set_master(struct pci_dev *dev, bool enable)
4079 u16 old_cmd, cmd;
4081 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4082 if (enable)
4083 cmd = old_cmd | PCI_COMMAND_MASTER;
4084 else
4085 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4086 if (cmd != old_cmd) {
4087 pci_dbg(dev, "%s bus mastering\n",
4088 enable ? "enabling" : "disabling");
4089 pci_write_config_word(dev, PCI_COMMAND, cmd);
4091 dev->is_busmaster = enable;
4095 * pcibios_setup - process "pci=" kernel boot arguments
4096 * @str: string used to pass in "pci=" kernel boot arguments
4098 * Process kernel boot arguments. This is the default implementation.
4099 * Architecture specific implementations can override this as necessary.
4101 char * __weak __init pcibios_setup(char *str)
4103 return str;
4107 * pcibios_set_master - enable PCI bus-mastering for device dev
4108 * @dev: the PCI device to enable
4110 * Enables PCI bus-mastering for the device. This is the default
4111 * implementation. Architecture specific implementations can override
4112 * this if necessary.
4114 void __weak pcibios_set_master(struct pci_dev *dev)
4116 u8 lat;
4118 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4119 if (pci_is_pcie(dev))
4120 return;
4122 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4123 if (lat < 16)
4124 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4125 else if (lat > pcibios_max_latency)
4126 lat = pcibios_max_latency;
4127 else
4128 return;
4130 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4134 * pci_set_master - enables bus-mastering for device dev
4135 * @dev: the PCI device to enable
4137 * Enables bus-mastering on the device and calls pcibios_set_master()
4138 * to do the needed arch specific settings.
4140 void pci_set_master(struct pci_dev *dev)
4142 __pci_set_master(dev, true);
4143 pcibios_set_master(dev);
4145 EXPORT_SYMBOL(pci_set_master);
4148 * pci_clear_master - disables bus-mastering for device dev
4149 * @dev: the PCI device to disable
4151 void pci_clear_master(struct pci_dev *dev)
4153 __pci_set_master(dev, false);
4155 EXPORT_SYMBOL(pci_clear_master);
4158 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4159 * @dev: the PCI device for which MWI is to be enabled
4161 * Helper function for pci_set_mwi.
4162 * Originally copied from drivers/net/acenic.c.
4163 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4165 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4167 int pci_set_cacheline_size(struct pci_dev *dev)
4169 u8 cacheline_size;
4171 if (!pci_cache_line_size)
4172 return -EINVAL;
4174 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4175 equal to or multiple of the right value. */
4176 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4177 if (cacheline_size >= pci_cache_line_size &&
4178 (cacheline_size % pci_cache_line_size) == 0)
4179 return 0;
4181 /* Write the correct value. */
4182 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4183 /* Read it back. */
4184 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4185 if (cacheline_size == pci_cache_line_size)
4186 return 0;
4188 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
4189 pci_cache_line_size << 2);
4191 return -EINVAL;
4193 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4196 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4197 * @dev: the PCI device for which MWI is enabled
4199 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4201 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4203 int pci_set_mwi(struct pci_dev *dev)
4205 #ifdef PCI_DISABLE_MWI
4206 return 0;
4207 #else
4208 int rc;
4209 u16 cmd;
4211 rc = pci_set_cacheline_size(dev);
4212 if (rc)
4213 return rc;
4215 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4216 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4217 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4218 cmd |= PCI_COMMAND_INVALIDATE;
4219 pci_write_config_word(dev, PCI_COMMAND, cmd);
4221 return 0;
4222 #endif
4224 EXPORT_SYMBOL(pci_set_mwi);
4227 * pcim_set_mwi - a device-managed pci_set_mwi()
4228 * @dev: the PCI device for which MWI is enabled
4230 * Managed pci_set_mwi().
4232 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4234 int pcim_set_mwi(struct pci_dev *dev)
4236 struct pci_devres *dr;
4238 dr = find_pci_dr(dev);
4239 if (!dr)
4240 return -ENOMEM;
4242 dr->mwi = 1;
4243 return pci_set_mwi(dev);
4245 EXPORT_SYMBOL(pcim_set_mwi);
4248 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4249 * @dev: the PCI device for which MWI is enabled
4251 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4252 * Callers are not required to check the return value.
4254 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4256 int pci_try_set_mwi(struct pci_dev *dev)
4258 #ifdef PCI_DISABLE_MWI
4259 return 0;
4260 #else
4261 return pci_set_mwi(dev);
4262 #endif
4264 EXPORT_SYMBOL(pci_try_set_mwi);
4267 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4268 * @dev: the PCI device to disable
4270 * Disables PCI Memory-Write-Invalidate transaction on the device
4272 void pci_clear_mwi(struct pci_dev *dev)
4274 #ifndef PCI_DISABLE_MWI
4275 u16 cmd;
4277 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4278 if (cmd & PCI_COMMAND_INVALIDATE) {
4279 cmd &= ~PCI_COMMAND_INVALIDATE;
4280 pci_write_config_word(dev, PCI_COMMAND, cmd);
4282 #endif
4284 EXPORT_SYMBOL(pci_clear_mwi);
4287 * pci_intx - enables/disables PCI INTx for device dev
4288 * @pdev: the PCI device to operate on
4289 * @enable: boolean: whether to enable or disable PCI INTx
4291 * Enables/disables PCI INTx for device dev
4293 void pci_intx(struct pci_dev *pdev, int enable)
4295 u16 pci_command, new;
4297 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4299 if (enable)
4300 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4301 else
4302 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4304 if (new != pci_command) {
4305 struct pci_devres *dr;
4307 pci_write_config_word(pdev, PCI_COMMAND, new);
4309 dr = find_pci_dr(pdev);
4310 if (dr && !dr->restore_intx) {
4311 dr->restore_intx = 1;
4312 dr->orig_intx = !enable;
4316 EXPORT_SYMBOL_GPL(pci_intx);
4318 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4320 struct pci_bus *bus = dev->bus;
4321 bool mask_updated = true;
4322 u32 cmd_status_dword;
4323 u16 origcmd, newcmd;
4324 unsigned long flags;
4325 bool irq_pending;
4328 * We do a single dword read to retrieve both command and status.
4329 * Document assumptions that make this possible.
4331 BUILD_BUG_ON(PCI_COMMAND % 4);
4332 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4334 raw_spin_lock_irqsave(&pci_lock, flags);
4336 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4338 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4341 * Check interrupt status register to see whether our device
4342 * triggered the interrupt (when masking) or the next IRQ is
4343 * already pending (when unmasking).
4345 if (mask != irq_pending) {
4346 mask_updated = false;
4347 goto done;
4350 origcmd = cmd_status_dword;
4351 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4352 if (mask)
4353 newcmd |= PCI_COMMAND_INTX_DISABLE;
4354 if (newcmd != origcmd)
4355 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4357 done:
4358 raw_spin_unlock_irqrestore(&pci_lock, flags);
4360 return mask_updated;
4364 * pci_check_and_mask_intx - mask INTx on pending interrupt
4365 * @dev: the PCI device to operate on
4367 * Check if the device dev has its INTx line asserted, mask it and
4368 * return true in that case. False is returned if no interrupt was
4369 * pending.
4371 bool pci_check_and_mask_intx(struct pci_dev *dev)
4373 return pci_check_and_set_intx_mask(dev, true);
4375 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4378 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4379 * @dev: the PCI device to operate on
4381 * Check if the device dev has its INTx line asserted, unmask it if not
4382 * and return true. False is returned and the mask remains active if
4383 * there was still an interrupt pending.
4385 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4387 return pci_check_and_set_intx_mask(dev, false);
4389 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4392 * pci_wait_for_pending_transaction - waits for pending transaction
4393 * @dev: the PCI device to operate on
4395 * Return 0 if transaction is pending 1 otherwise.
4397 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4399 if (!pci_is_pcie(dev))
4400 return 1;
4402 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4403 PCI_EXP_DEVSTA_TRPND);
4405 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4407 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4409 int delay = 1;
4410 u32 id;
4413 * After reset, the device should not silently discard config
4414 * requests, but it may still indicate that it needs more time by
4415 * responding to them with CRS completions. The Root Port will
4416 * generally synthesize ~0 data to complete the read (except when
4417 * CRS SV is enabled and the read was for the Vendor ID; in that
4418 * case it synthesizes 0x0001 data).
4420 * Wait for the device to return a non-CRS completion. Read the
4421 * Command register instead of Vendor ID so we don't have to
4422 * contend with the CRS SV value.
4424 pci_read_config_dword(dev, PCI_COMMAND, &id);
4425 while (id == ~0) {
4426 if (delay > timeout) {
4427 pci_warn(dev, "not ready %dms after %s; giving up\n",
4428 delay - 1, reset_type);
4429 return -ENOTTY;
4432 if (delay > 1000)
4433 pci_info(dev, "not ready %dms after %s; waiting\n",
4434 delay - 1, reset_type);
4436 msleep(delay);
4437 delay *= 2;
4438 pci_read_config_dword(dev, PCI_COMMAND, &id);
4441 if (delay > 1000)
4442 pci_info(dev, "ready %dms after %s\n", delay - 1,
4443 reset_type);
4445 return 0;
4449 * pcie_has_flr - check if a device supports function level resets
4450 * @dev: device to check
4452 * Returns true if the device advertises support for PCIe function level
4453 * resets.
4455 bool pcie_has_flr(struct pci_dev *dev)
4457 u32 cap;
4459 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4460 return false;
4462 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4463 return cap & PCI_EXP_DEVCAP_FLR;
4465 EXPORT_SYMBOL_GPL(pcie_has_flr);
4468 * pcie_flr - initiate a PCIe function level reset
4469 * @dev: device to reset
4471 * Initiate a function level reset on @dev. The caller should ensure the
4472 * device supports FLR before calling this function, e.g. by using the
4473 * pcie_has_flr() helper.
4475 int pcie_flr(struct pci_dev *dev)
4477 if (!pci_wait_for_pending_transaction(dev))
4478 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4480 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4482 if (dev->imm_ready)
4483 return 0;
4486 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4487 * 100ms, but may silently discard requests while the FLR is in
4488 * progress. Wait 100ms before trying to access the device.
4490 msleep(100);
4492 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4494 EXPORT_SYMBOL_GPL(pcie_flr);
4496 static int pci_af_flr(struct pci_dev *dev, int probe)
4498 int pos;
4499 u8 cap;
4501 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4502 if (!pos)
4503 return -ENOTTY;
4505 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4506 return -ENOTTY;
4508 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4509 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4510 return -ENOTTY;
4512 if (probe)
4513 return 0;
4516 * Wait for Transaction Pending bit to clear. A word-aligned test
4517 * is used, so we use the conrol offset rather than status and shift
4518 * the test bit to match.
4520 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4521 PCI_AF_STATUS_TP << 8))
4522 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4524 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4526 if (dev->imm_ready)
4527 return 0;
4530 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4531 * updated 27 July 2006; a device must complete an FLR within
4532 * 100ms, but may silently discard requests while the FLR is in
4533 * progress. Wait 100ms before trying to access the device.
4535 msleep(100);
4537 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4541 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4542 * @dev: Device to reset.
4543 * @probe: If set, only check if the device can be reset this way.
4545 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4546 * unset, it will be reinitialized internally when going from PCI_D3hot to
4547 * PCI_D0. If that's the case and the device is not in a low-power state
4548 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4550 * NOTE: This causes the caller to sleep for twice the device power transition
4551 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4552 * by default (i.e. unless the @dev's d3_delay field has a different value).
4553 * Moreover, only devices in D0 can be reset by this function.
4555 static int pci_pm_reset(struct pci_dev *dev, int probe)
4557 u16 csr;
4559 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4560 return -ENOTTY;
4562 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4563 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4564 return -ENOTTY;
4566 if (probe)
4567 return 0;
4569 if (dev->current_state != PCI_D0)
4570 return -EINVAL;
4572 csr &= ~PCI_PM_CTRL_STATE_MASK;
4573 csr |= PCI_D3hot;
4574 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4575 pci_dev_d3_sleep(dev);
4577 csr &= ~PCI_PM_CTRL_STATE_MASK;
4578 csr |= PCI_D0;
4579 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4580 pci_dev_d3_sleep(dev);
4582 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4585 * pcie_wait_for_link - Wait until link is active or inactive
4586 * @pdev: Bridge device
4587 * @active: waiting for active or inactive?
4589 * Use this to wait till link becomes active or inactive.
4591 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4593 int timeout = 1000;
4594 bool ret;
4595 u16 lnk_status;
4598 * Some controllers might not implement link active reporting. In this
4599 * case, we wait for 1000 + 100 ms.
4601 if (!pdev->link_active_reporting) {
4602 msleep(1100);
4603 return true;
4607 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4608 * after which we should expect an link active if the reset was
4609 * successful. If so, software must wait a minimum 100ms before sending
4610 * configuration requests to devices downstream this port.
4612 * If the link fails to activate, either the device was physically
4613 * removed or the link is permanently failed.
4615 if (active)
4616 msleep(20);
4617 for (;;) {
4618 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4619 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4620 if (ret == active)
4621 break;
4622 if (timeout <= 0)
4623 break;
4624 msleep(10);
4625 timeout -= 10;
4627 if (active && ret)
4628 msleep(100);
4629 else if (ret != active)
4630 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4631 active ? "set" : "cleared");
4632 return ret == active;
4635 void pci_reset_secondary_bus(struct pci_dev *dev)
4637 u16 ctrl;
4639 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4640 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4641 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4644 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4645 * this to 2ms to ensure that we meet the minimum requirement.
4647 msleep(2);
4649 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4650 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4653 * Trhfa for conventional PCI is 2^25 clock cycles.
4654 * Assuming a minimum 33MHz clock this results in a 1s
4655 * delay before we can consider subordinate devices to
4656 * be re-initialized. PCIe has some ways to shorten this,
4657 * but we don't make use of them yet.
4659 ssleep(1);
4662 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4664 pci_reset_secondary_bus(dev);
4668 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4669 * @dev: Bridge device
4671 * Use the bridge control register to assert reset on the secondary bus.
4672 * Devices on the secondary bus are left in power-on state.
4674 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4676 pcibios_reset_secondary_bus(dev);
4678 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4680 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4682 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4684 struct pci_dev *pdev;
4686 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4687 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4688 return -ENOTTY;
4690 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4691 if (pdev != dev)
4692 return -ENOTTY;
4694 if (probe)
4695 return 0;
4697 return pci_bridge_secondary_bus_reset(dev->bus->self);
4700 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4702 int rc = -ENOTTY;
4704 if (!hotplug || !try_module_get(hotplug->owner))
4705 return rc;
4707 if (hotplug->ops->reset_slot)
4708 rc = hotplug->ops->reset_slot(hotplug, probe);
4710 module_put(hotplug->owner);
4712 return rc;
4715 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4717 struct pci_dev *pdev;
4719 if (dev->subordinate || !dev->slot ||
4720 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4721 return -ENOTTY;
4723 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4724 if (pdev != dev && pdev->slot == dev->slot)
4725 return -ENOTTY;
4727 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4730 static void pci_dev_lock(struct pci_dev *dev)
4732 pci_cfg_access_lock(dev);
4733 /* block PM suspend, driver probe, etc. */
4734 device_lock(&dev->dev);
4737 /* Return 1 on successful lock, 0 on contention */
4738 static int pci_dev_trylock(struct pci_dev *dev)
4740 if (pci_cfg_access_trylock(dev)) {
4741 if (device_trylock(&dev->dev))
4742 return 1;
4743 pci_cfg_access_unlock(dev);
4746 return 0;
4749 static void pci_dev_unlock(struct pci_dev *dev)
4751 device_unlock(&dev->dev);
4752 pci_cfg_access_unlock(dev);
4755 static void pci_dev_save_and_disable(struct pci_dev *dev)
4757 const struct pci_error_handlers *err_handler =
4758 dev->driver ? dev->driver->err_handler : NULL;
4761 * dev->driver->err_handler->reset_prepare() is protected against
4762 * races with ->remove() by the device lock, which must be held by
4763 * the caller.
4765 if (err_handler && err_handler->reset_prepare)
4766 err_handler->reset_prepare(dev);
4769 * Wake-up device prior to save. PM registers default to D0 after
4770 * reset and a simple register restore doesn't reliably return
4771 * to a non-D0 state anyway.
4773 pci_set_power_state(dev, PCI_D0);
4775 pci_save_state(dev);
4777 * Disable the device by clearing the Command register, except for
4778 * INTx-disable which is set. This not only disables MMIO and I/O port
4779 * BARs, but also prevents the device from being Bus Master, preventing
4780 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4781 * compliant devices, INTx-disable prevents legacy interrupts.
4783 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4786 static void pci_dev_restore(struct pci_dev *dev)
4788 const struct pci_error_handlers *err_handler =
4789 dev->driver ? dev->driver->err_handler : NULL;
4791 pci_restore_state(dev);
4794 * dev->driver->err_handler->reset_done() is protected against
4795 * races with ->remove() by the device lock, which must be held by
4796 * the caller.
4798 if (err_handler && err_handler->reset_done)
4799 err_handler->reset_done(dev);
4803 * __pci_reset_function_locked - reset a PCI device function while holding
4804 * the @dev mutex lock.
4805 * @dev: PCI device to reset
4807 * Some devices allow an individual function to be reset without affecting
4808 * other functions in the same device. The PCI device must be responsive
4809 * to PCI config space in order to use this function.
4811 * The device function is presumed to be unused and the caller is holding
4812 * the device mutex lock when this function is called.
4813 * Resetting the device will make the contents of PCI configuration space
4814 * random, so any caller of this must be prepared to reinitialise the
4815 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4816 * etc.
4818 * Returns 0 if the device function was successfully reset or negative if the
4819 * device doesn't support resetting a single function.
4821 int __pci_reset_function_locked(struct pci_dev *dev)
4823 int rc;
4825 might_sleep();
4828 * A reset method returns -ENOTTY if it doesn't support this device
4829 * and we should try the next method.
4831 * If it returns 0 (success), we're finished. If it returns any
4832 * other error, we're also finished: this indicates that further
4833 * reset mechanisms might be broken on the device.
4835 rc = pci_dev_specific_reset(dev, 0);
4836 if (rc != -ENOTTY)
4837 return rc;
4838 if (pcie_has_flr(dev)) {
4839 rc = pcie_flr(dev);
4840 if (rc != -ENOTTY)
4841 return rc;
4843 rc = pci_af_flr(dev, 0);
4844 if (rc != -ENOTTY)
4845 return rc;
4846 rc = pci_pm_reset(dev, 0);
4847 if (rc != -ENOTTY)
4848 return rc;
4849 rc = pci_dev_reset_slot_function(dev, 0);
4850 if (rc != -ENOTTY)
4851 return rc;
4852 return pci_parent_bus_reset(dev, 0);
4854 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4857 * pci_probe_reset_function - check whether the device can be safely reset
4858 * @dev: PCI device to reset
4860 * Some devices allow an individual function to be reset without affecting
4861 * other functions in the same device. The PCI device must be responsive
4862 * to PCI config space in order to use this function.
4864 * Returns 0 if the device function can be reset or negative if the
4865 * device doesn't support resetting a single function.
4867 int pci_probe_reset_function(struct pci_dev *dev)
4869 int rc;
4871 might_sleep();
4873 rc = pci_dev_specific_reset(dev, 1);
4874 if (rc != -ENOTTY)
4875 return rc;
4876 if (pcie_has_flr(dev))
4877 return 0;
4878 rc = pci_af_flr(dev, 1);
4879 if (rc != -ENOTTY)
4880 return rc;
4881 rc = pci_pm_reset(dev, 1);
4882 if (rc != -ENOTTY)
4883 return rc;
4884 rc = pci_dev_reset_slot_function(dev, 1);
4885 if (rc != -ENOTTY)
4886 return rc;
4888 return pci_parent_bus_reset(dev, 1);
4892 * pci_reset_function - quiesce and reset a PCI device function
4893 * @dev: PCI device to reset
4895 * Some devices allow an individual function to be reset without affecting
4896 * other functions in the same device. The PCI device must be responsive
4897 * to PCI config space in order to use this function.
4899 * This function does not just reset the PCI portion of a device, but
4900 * clears all the state associated with the device. This function differs
4901 * from __pci_reset_function_locked() in that it saves and restores device state
4902 * over the reset and takes the PCI device lock.
4904 * Returns 0 if the device function was successfully reset or negative if the
4905 * device doesn't support resetting a single function.
4907 int pci_reset_function(struct pci_dev *dev)
4909 int rc;
4911 if (!dev->reset_fn)
4912 return -ENOTTY;
4914 pci_dev_lock(dev);
4915 pci_dev_save_and_disable(dev);
4917 rc = __pci_reset_function_locked(dev);
4919 pci_dev_restore(dev);
4920 pci_dev_unlock(dev);
4922 return rc;
4924 EXPORT_SYMBOL_GPL(pci_reset_function);
4927 * pci_reset_function_locked - quiesce and reset a PCI device function
4928 * @dev: PCI device to reset
4930 * Some devices allow an individual function to be reset without affecting
4931 * other functions in the same device. The PCI device must be responsive
4932 * to PCI config space in order to use this function.
4934 * This function does not just reset the PCI portion of a device, but
4935 * clears all the state associated with the device. This function differs
4936 * from __pci_reset_function_locked() in that it saves and restores device state
4937 * over the reset. It also differs from pci_reset_function() in that it
4938 * requires the PCI device lock to be held.
4940 * Returns 0 if the device function was successfully reset or negative if the
4941 * device doesn't support resetting a single function.
4943 int pci_reset_function_locked(struct pci_dev *dev)
4945 int rc;
4947 if (!dev->reset_fn)
4948 return -ENOTTY;
4950 pci_dev_save_and_disable(dev);
4952 rc = __pci_reset_function_locked(dev);
4954 pci_dev_restore(dev);
4956 return rc;
4958 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4961 * pci_try_reset_function - quiesce and reset a PCI device function
4962 * @dev: PCI device to reset
4964 * Same as above, except return -EAGAIN if unable to lock device.
4966 int pci_try_reset_function(struct pci_dev *dev)
4968 int rc;
4970 if (!dev->reset_fn)
4971 return -ENOTTY;
4973 if (!pci_dev_trylock(dev))
4974 return -EAGAIN;
4976 pci_dev_save_and_disable(dev);
4977 rc = __pci_reset_function_locked(dev);
4978 pci_dev_restore(dev);
4979 pci_dev_unlock(dev);
4981 return rc;
4983 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4985 /* Do any devices on or below this bus prevent a bus reset? */
4986 static bool pci_bus_resetable(struct pci_bus *bus)
4988 struct pci_dev *dev;
4991 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4992 return false;
4994 list_for_each_entry(dev, &bus->devices, bus_list) {
4995 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4996 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4997 return false;
5000 return true;
5003 /* Lock devices from the top of the tree down */
5004 static void pci_bus_lock(struct pci_bus *bus)
5006 struct pci_dev *dev;
5008 list_for_each_entry(dev, &bus->devices, bus_list) {
5009 pci_dev_lock(dev);
5010 if (dev->subordinate)
5011 pci_bus_lock(dev->subordinate);
5015 /* Unlock devices from the bottom of the tree up */
5016 static void pci_bus_unlock(struct pci_bus *bus)
5018 struct pci_dev *dev;
5020 list_for_each_entry(dev, &bus->devices, bus_list) {
5021 if (dev->subordinate)
5022 pci_bus_unlock(dev->subordinate);
5023 pci_dev_unlock(dev);
5027 /* Return 1 on successful lock, 0 on contention */
5028 static int pci_bus_trylock(struct pci_bus *bus)
5030 struct pci_dev *dev;
5032 list_for_each_entry(dev, &bus->devices, bus_list) {
5033 if (!pci_dev_trylock(dev))
5034 goto unlock;
5035 if (dev->subordinate) {
5036 if (!pci_bus_trylock(dev->subordinate)) {
5037 pci_dev_unlock(dev);
5038 goto unlock;
5042 return 1;
5044 unlock:
5045 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5046 if (dev->subordinate)
5047 pci_bus_unlock(dev->subordinate);
5048 pci_dev_unlock(dev);
5050 return 0;
5053 /* Do any devices on or below this slot prevent a bus reset? */
5054 static bool pci_slot_resetable(struct pci_slot *slot)
5056 struct pci_dev *dev;
5058 if (slot->bus->self &&
5059 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5060 return false;
5062 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5063 if (!dev->slot || dev->slot != slot)
5064 continue;
5065 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5066 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5067 return false;
5070 return true;
5073 /* Lock devices from the top of the tree down */
5074 static void pci_slot_lock(struct pci_slot *slot)
5076 struct pci_dev *dev;
5078 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5079 if (!dev->slot || dev->slot != slot)
5080 continue;
5081 pci_dev_lock(dev);
5082 if (dev->subordinate)
5083 pci_bus_lock(dev->subordinate);
5087 /* Unlock devices from the bottom of the tree up */
5088 static void pci_slot_unlock(struct pci_slot *slot)
5090 struct pci_dev *dev;
5092 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5093 if (!dev->slot || dev->slot != slot)
5094 continue;
5095 if (dev->subordinate)
5096 pci_bus_unlock(dev->subordinate);
5097 pci_dev_unlock(dev);
5101 /* Return 1 on successful lock, 0 on contention */
5102 static int pci_slot_trylock(struct pci_slot *slot)
5104 struct pci_dev *dev;
5106 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5107 if (!dev->slot || dev->slot != slot)
5108 continue;
5109 if (!pci_dev_trylock(dev))
5110 goto unlock;
5111 if (dev->subordinate) {
5112 if (!pci_bus_trylock(dev->subordinate)) {
5113 pci_dev_unlock(dev);
5114 goto unlock;
5118 return 1;
5120 unlock:
5121 list_for_each_entry_continue_reverse(dev,
5122 &slot->bus->devices, bus_list) {
5123 if (!dev->slot || dev->slot != slot)
5124 continue;
5125 if (dev->subordinate)
5126 pci_bus_unlock(dev->subordinate);
5127 pci_dev_unlock(dev);
5129 return 0;
5133 * Save and disable devices from the top of the tree down while holding
5134 * the @dev mutex lock for the entire tree.
5136 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5138 struct pci_dev *dev;
5140 list_for_each_entry(dev, &bus->devices, bus_list) {
5141 pci_dev_save_and_disable(dev);
5142 if (dev->subordinate)
5143 pci_bus_save_and_disable_locked(dev->subordinate);
5148 * Restore devices from top of the tree down while holding @dev mutex lock
5149 * for the entire tree. Parent bridges need to be restored before we can
5150 * get to subordinate devices.
5152 static void pci_bus_restore_locked(struct pci_bus *bus)
5154 struct pci_dev *dev;
5156 list_for_each_entry(dev, &bus->devices, bus_list) {
5157 pci_dev_restore(dev);
5158 if (dev->subordinate)
5159 pci_bus_restore_locked(dev->subordinate);
5164 * Save and disable devices from the top of the tree down while holding
5165 * the @dev mutex lock for the entire tree.
5167 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5169 struct pci_dev *dev;
5171 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5172 if (!dev->slot || dev->slot != slot)
5173 continue;
5174 pci_dev_save_and_disable(dev);
5175 if (dev->subordinate)
5176 pci_bus_save_and_disable_locked(dev->subordinate);
5181 * Restore devices from top of the tree down while holding @dev mutex lock
5182 * for the entire tree. Parent bridges need to be restored before we can
5183 * get to subordinate devices.
5185 static void pci_slot_restore_locked(struct pci_slot *slot)
5187 struct pci_dev *dev;
5189 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5190 if (!dev->slot || dev->slot != slot)
5191 continue;
5192 pci_dev_restore(dev);
5193 if (dev->subordinate)
5194 pci_bus_restore_locked(dev->subordinate);
5198 static int pci_slot_reset(struct pci_slot *slot, int probe)
5200 int rc;
5202 if (!slot || !pci_slot_resetable(slot))
5203 return -ENOTTY;
5205 if (!probe)
5206 pci_slot_lock(slot);
5208 might_sleep();
5210 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5212 if (!probe)
5213 pci_slot_unlock(slot);
5215 return rc;
5219 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5220 * @slot: PCI slot to probe
5222 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5224 int pci_probe_reset_slot(struct pci_slot *slot)
5226 return pci_slot_reset(slot, 1);
5228 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5231 * __pci_reset_slot - Try to reset a PCI slot
5232 * @slot: PCI slot to reset
5234 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5235 * independent of other slots. For instance, some slots may support slot power
5236 * control. In the case of a 1:1 bus to slot architecture, this function may
5237 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5238 * Generally a slot reset should be attempted before a bus reset. All of the
5239 * function of the slot and any subordinate buses behind the slot are reset
5240 * through this function. PCI config space of all devices in the slot and
5241 * behind the slot is saved before and restored after reset.
5243 * Same as above except return -EAGAIN if the slot cannot be locked
5245 static int __pci_reset_slot(struct pci_slot *slot)
5247 int rc;
5249 rc = pci_slot_reset(slot, 1);
5250 if (rc)
5251 return rc;
5253 if (pci_slot_trylock(slot)) {
5254 pci_slot_save_and_disable_locked(slot);
5255 might_sleep();
5256 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5257 pci_slot_restore_locked(slot);
5258 pci_slot_unlock(slot);
5259 } else
5260 rc = -EAGAIN;
5262 return rc;
5265 static int pci_bus_reset(struct pci_bus *bus, int probe)
5267 int ret;
5269 if (!bus->self || !pci_bus_resetable(bus))
5270 return -ENOTTY;
5272 if (probe)
5273 return 0;
5275 pci_bus_lock(bus);
5277 might_sleep();
5279 ret = pci_bridge_secondary_bus_reset(bus->self);
5281 pci_bus_unlock(bus);
5283 return ret;
5287 * pci_bus_error_reset - reset the bridge's subordinate bus
5288 * @bridge: The parent device that connects to the bus to reset
5290 * This function will first try to reset the slots on this bus if the method is
5291 * available. If slot reset fails or is not available, this will fall back to a
5292 * secondary bus reset.
5294 int pci_bus_error_reset(struct pci_dev *bridge)
5296 struct pci_bus *bus = bridge->subordinate;
5297 struct pci_slot *slot;
5299 if (!bus)
5300 return -ENOTTY;
5302 mutex_lock(&pci_slot_mutex);
5303 if (list_empty(&bus->slots))
5304 goto bus_reset;
5306 list_for_each_entry(slot, &bus->slots, list)
5307 if (pci_probe_reset_slot(slot))
5308 goto bus_reset;
5310 list_for_each_entry(slot, &bus->slots, list)
5311 if (pci_slot_reset(slot, 0))
5312 goto bus_reset;
5314 mutex_unlock(&pci_slot_mutex);
5315 return 0;
5316 bus_reset:
5317 mutex_unlock(&pci_slot_mutex);
5318 return pci_bus_reset(bridge->subordinate, 0);
5322 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5323 * @bus: PCI bus to probe
5325 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5327 int pci_probe_reset_bus(struct pci_bus *bus)
5329 return pci_bus_reset(bus, 1);
5331 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5334 * __pci_reset_bus - Try to reset a PCI bus
5335 * @bus: top level PCI bus to reset
5337 * Same as above except return -EAGAIN if the bus cannot be locked
5339 static int __pci_reset_bus(struct pci_bus *bus)
5341 int rc;
5343 rc = pci_bus_reset(bus, 1);
5344 if (rc)
5345 return rc;
5347 if (pci_bus_trylock(bus)) {
5348 pci_bus_save_and_disable_locked(bus);
5349 might_sleep();
5350 rc = pci_bridge_secondary_bus_reset(bus->self);
5351 pci_bus_restore_locked(bus);
5352 pci_bus_unlock(bus);
5353 } else
5354 rc = -EAGAIN;
5356 return rc;
5360 * pci_reset_bus - Try to reset a PCI bus
5361 * @pdev: top level PCI device to reset via slot/bus
5363 * Same as above except return -EAGAIN if the bus cannot be locked
5365 int pci_reset_bus(struct pci_dev *pdev)
5367 return (!pci_probe_reset_slot(pdev->slot)) ?
5368 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5370 EXPORT_SYMBOL_GPL(pci_reset_bus);
5373 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5374 * @dev: PCI device to query
5376 * Returns mmrbc: maximum designed memory read count in bytes
5377 * or appropriate error value.
5379 int pcix_get_max_mmrbc(struct pci_dev *dev)
5381 int cap;
5382 u32 stat;
5384 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5385 if (!cap)
5386 return -EINVAL;
5388 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5389 return -EINVAL;
5391 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5393 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5396 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5397 * @dev: PCI device to query
5399 * Returns mmrbc: maximum memory read count in bytes
5400 * or appropriate error value.
5402 int pcix_get_mmrbc(struct pci_dev *dev)
5404 int cap;
5405 u16 cmd;
5407 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5408 if (!cap)
5409 return -EINVAL;
5411 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5412 return -EINVAL;
5414 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5416 EXPORT_SYMBOL(pcix_get_mmrbc);
5419 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5420 * @dev: PCI device to query
5421 * @mmrbc: maximum memory read count in bytes
5422 * valid values are 512, 1024, 2048, 4096
5424 * If possible sets maximum memory read byte count, some bridges have erratas
5425 * that prevent this.
5427 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5429 int cap;
5430 u32 stat, v, o;
5431 u16 cmd;
5433 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5434 return -EINVAL;
5436 v = ffs(mmrbc) - 10;
5438 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5439 if (!cap)
5440 return -EINVAL;
5442 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5443 return -EINVAL;
5445 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5446 return -E2BIG;
5448 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5449 return -EINVAL;
5451 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5452 if (o != v) {
5453 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5454 return -EIO;
5456 cmd &= ~PCI_X_CMD_MAX_READ;
5457 cmd |= v << 2;
5458 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5459 return -EIO;
5461 return 0;
5463 EXPORT_SYMBOL(pcix_set_mmrbc);
5466 * pcie_get_readrq - get PCI Express read request size
5467 * @dev: PCI device to query
5469 * Returns maximum memory read request in bytes
5470 * or appropriate error value.
5472 int pcie_get_readrq(struct pci_dev *dev)
5474 u16 ctl;
5476 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5478 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5480 EXPORT_SYMBOL(pcie_get_readrq);
5483 * pcie_set_readrq - set PCI Express maximum memory read request
5484 * @dev: PCI device to query
5485 * @rq: maximum memory read count in bytes
5486 * valid values are 128, 256, 512, 1024, 2048, 4096
5488 * If possible sets maximum memory read request in bytes
5490 int pcie_set_readrq(struct pci_dev *dev, int rq)
5492 u16 v;
5494 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5495 return -EINVAL;
5498 * If using the "performance" PCIe config, we clamp the
5499 * read rq size to the max packet size to prevent the
5500 * host bridge generating requests larger than we can
5501 * cope with
5503 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5504 int mps = pcie_get_mps(dev);
5506 if (mps < rq)
5507 rq = mps;
5510 v = (ffs(rq) - 8) << 12;
5512 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5513 PCI_EXP_DEVCTL_READRQ, v);
5515 EXPORT_SYMBOL(pcie_set_readrq);
5518 * pcie_get_mps - get PCI Express maximum payload size
5519 * @dev: PCI device to query
5521 * Returns maximum payload size in bytes
5523 int pcie_get_mps(struct pci_dev *dev)
5525 u16 ctl;
5527 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5529 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5531 EXPORT_SYMBOL(pcie_get_mps);
5534 * pcie_set_mps - set PCI Express maximum payload size
5535 * @dev: PCI device to query
5536 * @mps: maximum payload size in bytes
5537 * valid values are 128, 256, 512, 1024, 2048, 4096
5539 * If possible sets maximum payload size
5541 int pcie_set_mps(struct pci_dev *dev, int mps)
5543 u16 v;
5545 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5546 return -EINVAL;
5548 v = ffs(mps) - 8;
5549 if (v > dev->pcie_mpss)
5550 return -EINVAL;
5551 v <<= 5;
5553 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5554 PCI_EXP_DEVCTL_PAYLOAD, v);
5556 EXPORT_SYMBOL(pcie_set_mps);
5559 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5560 * device and its bandwidth limitation
5561 * @dev: PCI device to query
5562 * @limiting_dev: storage for device causing the bandwidth limitation
5563 * @speed: storage for speed of limiting device
5564 * @width: storage for width of limiting device
5566 * Walk up the PCI device chain and find the point where the minimum
5567 * bandwidth is available. Return the bandwidth available there and (if
5568 * limiting_dev, speed, and width pointers are supplied) information about
5569 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5570 * raw bandwidth.
5572 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5573 enum pci_bus_speed *speed,
5574 enum pcie_link_width *width)
5576 u16 lnksta;
5577 enum pci_bus_speed next_speed;
5578 enum pcie_link_width next_width;
5579 u32 bw, next_bw;
5581 if (speed)
5582 *speed = PCI_SPEED_UNKNOWN;
5583 if (width)
5584 *width = PCIE_LNK_WIDTH_UNKNOWN;
5586 bw = 0;
5588 while (dev) {
5589 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5591 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5592 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5593 PCI_EXP_LNKSTA_NLW_SHIFT;
5595 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5597 /* Check if current device limits the total bandwidth */
5598 if (!bw || next_bw <= bw) {
5599 bw = next_bw;
5601 if (limiting_dev)
5602 *limiting_dev = dev;
5603 if (speed)
5604 *speed = next_speed;
5605 if (width)
5606 *width = next_width;
5609 dev = pci_upstream_bridge(dev);
5612 return bw;
5614 EXPORT_SYMBOL(pcie_bandwidth_available);
5617 * pcie_get_speed_cap - query for the PCI device's link speed capability
5618 * @dev: PCI device to query
5620 * Query the PCI device speed capability. Return the maximum link speed
5621 * supported by the device.
5623 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5625 u32 lnkcap2, lnkcap;
5628 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5629 * implementation note there recommends using the Supported Link
5630 * Speeds Vector in Link Capabilities 2 when supported.
5632 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5633 * should use the Supported Link Speeds field in Link Capabilities,
5634 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5636 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5637 if (lnkcap2) { /* PCIe r3.0-compliant */
5638 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5639 return PCIE_SPEED_16_0GT;
5640 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5641 return PCIE_SPEED_8_0GT;
5642 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5643 return PCIE_SPEED_5_0GT;
5644 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5645 return PCIE_SPEED_2_5GT;
5646 return PCI_SPEED_UNKNOWN;
5649 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5650 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5651 return PCIE_SPEED_5_0GT;
5652 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5653 return PCIE_SPEED_2_5GT;
5655 return PCI_SPEED_UNKNOWN;
5657 EXPORT_SYMBOL(pcie_get_speed_cap);
5660 * pcie_get_width_cap - query for the PCI device's link width capability
5661 * @dev: PCI device to query
5663 * Query the PCI device width capability. Return the maximum link width
5664 * supported by the device.
5666 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5668 u32 lnkcap;
5670 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5671 if (lnkcap)
5672 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5674 return PCIE_LNK_WIDTH_UNKNOWN;
5676 EXPORT_SYMBOL(pcie_get_width_cap);
5679 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5680 * @dev: PCI device
5681 * @speed: storage for link speed
5682 * @width: storage for link width
5684 * Calculate a PCI device's link bandwidth by querying for its link speed
5685 * and width, multiplying them, and applying encoding overhead. The result
5686 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5688 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5689 enum pcie_link_width *width)
5691 *speed = pcie_get_speed_cap(dev);
5692 *width = pcie_get_width_cap(dev);
5694 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5695 return 0;
5697 return *width * PCIE_SPEED2MBS_ENC(*speed);
5701 * __pcie_print_link_status - Report the PCI device's link speed and width
5702 * @dev: PCI device to query
5703 * @verbose: Print info even when enough bandwidth is available
5705 * If the available bandwidth at the device is less than the device is
5706 * capable of, report the device's maximum possible bandwidth and the
5707 * upstream link that limits its performance. If @verbose, always print
5708 * the available bandwidth, even if the device isn't constrained.
5710 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5712 enum pcie_link_width width, width_cap;
5713 enum pci_bus_speed speed, speed_cap;
5714 struct pci_dev *limiting_dev = NULL;
5715 u32 bw_avail, bw_cap;
5717 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5718 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5720 if (bw_avail >= bw_cap && verbose)
5721 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5722 bw_cap / 1000, bw_cap % 1000,
5723 PCIE_SPEED2STR(speed_cap), width_cap);
5724 else if (bw_avail < bw_cap)
5725 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5726 bw_avail / 1000, bw_avail % 1000,
5727 PCIE_SPEED2STR(speed), width,
5728 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5729 bw_cap / 1000, bw_cap % 1000,
5730 PCIE_SPEED2STR(speed_cap), width_cap);
5734 * pcie_print_link_status - Report the PCI device's link speed and width
5735 * @dev: PCI device to query
5737 * Report the available bandwidth at the device.
5739 void pcie_print_link_status(struct pci_dev *dev)
5741 __pcie_print_link_status(dev, true);
5743 EXPORT_SYMBOL(pcie_print_link_status);
5746 * pci_select_bars - Make BAR mask from the type of resource
5747 * @dev: the PCI device for which BAR mask is made
5748 * @flags: resource type mask to be selected
5750 * This helper routine makes bar mask from the type of resource.
5752 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5754 int i, bars = 0;
5755 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5756 if (pci_resource_flags(dev, i) & flags)
5757 bars |= (1 << i);
5758 return bars;
5760 EXPORT_SYMBOL(pci_select_bars);
5762 /* Some architectures require additional programming to enable VGA */
5763 static arch_set_vga_state_t arch_set_vga_state;
5765 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5767 arch_set_vga_state = func; /* NULL disables */
5770 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5771 unsigned int command_bits, u32 flags)
5773 if (arch_set_vga_state)
5774 return arch_set_vga_state(dev, decode, command_bits,
5775 flags);
5776 return 0;
5780 * pci_set_vga_state - set VGA decode state on device and parents if requested
5781 * @dev: the PCI device
5782 * @decode: true = enable decoding, false = disable decoding
5783 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5784 * @flags: traverse ancestors and change bridges
5785 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5787 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5788 unsigned int command_bits, u32 flags)
5790 struct pci_bus *bus;
5791 struct pci_dev *bridge;
5792 u16 cmd;
5793 int rc;
5795 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5797 /* ARCH specific VGA enables */
5798 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5799 if (rc)
5800 return rc;
5802 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5803 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5804 if (decode == true)
5805 cmd |= command_bits;
5806 else
5807 cmd &= ~command_bits;
5808 pci_write_config_word(dev, PCI_COMMAND, cmd);
5811 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5812 return 0;
5814 bus = dev->bus;
5815 while (bus) {
5816 bridge = bus->self;
5817 if (bridge) {
5818 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5819 &cmd);
5820 if (decode == true)
5821 cmd |= PCI_BRIDGE_CTL_VGA;
5822 else
5823 cmd &= ~PCI_BRIDGE_CTL_VGA;
5824 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5825 cmd);
5827 bus = bus->parent;
5829 return 0;
5833 * pci_add_dma_alias - Add a DMA devfn alias for a device
5834 * @dev: the PCI device for which alias is added
5835 * @devfn: alias slot and function
5837 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5838 * which is used to program permissible bus-devfn source addresses for DMA
5839 * requests in an IOMMU. These aliases factor into IOMMU group creation
5840 * and are useful for devices generating DMA requests beyond or different
5841 * from their logical bus-devfn. Examples include device quirks where the
5842 * device simply uses the wrong devfn, as well as non-transparent bridges
5843 * where the alias may be a proxy for devices in another domain.
5845 * IOMMU group creation is performed during device discovery or addition,
5846 * prior to any potential DMA mapping and therefore prior to driver probing
5847 * (especially for userspace assigned devices where IOMMU group definition
5848 * cannot be left as a userspace activity). DMA aliases should therefore
5849 * be configured via quirks, such as the PCI fixup header quirk.
5851 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5853 if (!dev->dma_alias_mask)
5854 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5855 if (!dev->dma_alias_mask) {
5856 pci_warn(dev, "Unable to allocate DMA alias mask\n");
5857 return;
5860 set_bit(devfn, dev->dma_alias_mask);
5861 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5862 PCI_SLOT(devfn), PCI_FUNC(devfn));
5865 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5867 return (dev1->dma_alias_mask &&
5868 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5869 (dev2->dma_alias_mask &&
5870 test_bit(dev1->devfn, dev2->dma_alias_mask));
5873 bool pci_device_is_present(struct pci_dev *pdev)
5875 u32 v;
5877 if (pci_dev_is_disconnected(pdev))
5878 return false;
5879 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5881 EXPORT_SYMBOL_GPL(pci_device_is_present);
5883 void pci_ignore_hotplug(struct pci_dev *dev)
5885 struct pci_dev *bridge = dev->bus->self;
5887 dev->ignore_hotplug = 1;
5888 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5889 if (bridge)
5890 bridge->ignore_hotplug = 1;
5892 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5894 resource_size_t __weak pcibios_default_alignment(void)
5896 return 0;
5899 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5900 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5901 static DEFINE_SPINLOCK(resource_alignment_lock);
5904 * pci_specified_resource_alignment - get resource alignment specified by user.
5905 * @dev: the PCI device to get
5906 * @resize: whether or not to change resources' size when reassigning alignment
5908 * RETURNS: Resource alignment if it is specified.
5909 * Zero if it is not specified.
5911 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5912 bool *resize)
5914 int align_order, count;
5915 resource_size_t align = pcibios_default_alignment();
5916 const char *p;
5917 int ret;
5919 spin_lock(&resource_alignment_lock);
5920 p = resource_alignment_param;
5921 if (!*p && !align)
5922 goto out;
5923 if (pci_has_flag(PCI_PROBE_ONLY)) {
5924 align = 0;
5925 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5926 goto out;
5929 while (*p) {
5930 count = 0;
5931 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5932 p[count] == '@') {
5933 p += count + 1;
5934 } else {
5935 align_order = -1;
5938 ret = pci_dev_str_match(dev, p, &p);
5939 if (ret == 1) {
5940 *resize = true;
5941 if (align_order == -1)
5942 align = PAGE_SIZE;
5943 else
5944 align = 1 << align_order;
5945 break;
5946 } else if (ret < 0) {
5947 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5949 break;
5952 if (*p != ';' && *p != ',') {
5953 /* End of param or invalid format */
5954 break;
5956 p++;
5958 out:
5959 spin_unlock(&resource_alignment_lock);
5960 return align;
5963 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5964 resource_size_t align, bool resize)
5966 struct resource *r = &dev->resource[bar];
5967 resource_size_t size;
5969 if (!(r->flags & IORESOURCE_MEM))
5970 return;
5972 if (r->flags & IORESOURCE_PCI_FIXED) {
5973 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5974 bar, r, (unsigned long long)align);
5975 return;
5978 size = resource_size(r);
5979 if (size >= align)
5980 return;
5983 * Increase the alignment of the resource. There are two ways we
5984 * can do this:
5986 * 1) Increase the size of the resource. BARs are aligned on their
5987 * size, so when we reallocate space for this resource, we'll
5988 * allocate it with the larger alignment. This also prevents
5989 * assignment of any other BARs inside the alignment region, so
5990 * if we're requesting page alignment, this means no other BARs
5991 * will share the page.
5993 * The disadvantage is that this makes the resource larger than
5994 * the hardware BAR, which may break drivers that compute things
5995 * based on the resource size, e.g., to find registers at a
5996 * fixed offset before the end of the BAR.
5998 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5999 * set r->start to the desired alignment. By itself this
6000 * doesn't prevent other BARs being put inside the alignment
6001 * region, but if we realign *every* resource of every device in
6002 * the system, none of them will share an alignment region.
6004 * When the user has requested alignment for only some devices via
6005 * the "pci=resource_alignment" argument, "resize" is true and we
6006 * use the first method. Otherwise we assume we're aligning all
6007 * devices and we use the second.
6010 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6011 bar, r, (unsigned long long)align);
6013 if (resize) {
6014 r->start = 0;
6015 r->end = align - 1;
6016 } else {
6017 r->flags &= ~IORESOURCE_SIZEALIGN;
6018 r->flags |= IORESOURCE_STARTALIGN;
6019 r->start = align;
6020 r->end = r->start + size - 1;
6022 r->flags |= IORESOURCE_UNSET;
6026 * This function disables memory decoding and releases memory resources
6027 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6028 * It also rounds up size to specified alignment.
6029 * Later on, the kernel will assign page-aligned memory resource back
6030 * to the device.
6032 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6034 int i;
6035 struct resource *r;
6036 resource_size_t align;
6037 u16 command;
6038 bool resize = false;
6041 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6042 * 3.4.1.11. Their resources are allocated from the space
6043 * described by the VF BARx register in the PF's SR-IOV capability.
6044 * We can't influence their alignment here.
6046 if (dev->is_virtfn)
6047 return;
6049 /* check if specified PCI is target device to reassign */
6050 align = pci_specified_resource_alignment(dev, &resize);
6051 if (!align)
6052 return;
6054 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6055 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6056 pci_warn(dev, "Can't reassign resources to host bridge\n");
6057 return;
6060 pci_read_config_word(dev, PCI_COMMAND, &command);
6061 command &= ~PCI_COMMAND_MEMORY;
6062 pci_write_config_word(dev, PCI_COMMAND, command);
6064 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6065 pci_request_resource_alignment(dev, i, align, resize);
6068 * Need to disable bridge's resource window,
6069 * to enable the kernel to reassign new resource
6070 * window later on.
6072 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6073 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6074 r = &dev->resource[i];
6075 if (!(r->flags & IORESOURCE_MEM))
6076 continue;
6077 r->flags |= IORESOURCE_UNSET;
6078 r->end = resource_size(r) - 1;
6079 r->start = 0;
6081 pci_disable_bridge_window(dev);
6085 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
6087 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
6088 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
6089 spin_lock(&resource_alignment_lock);
6090 strncpy(resource_alignment_param, buf, count);
6091 resource_alignment_param[count] = '\0';
6092 spin_unlock(&resource_alignment_lock);
6093 return count;
6096 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
6098 size_t count;
6099 spin_lock(&resource_alignment_lock);
6100 count = snprintf(buf, size, "%s", resource_alignment_param);
6101 spin_unlock(&resource_alignment_lock);
6102 return count;
6105 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6107 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
6110 static ssize_t resource_alignment_store(struct bus_type *bus,
6111 const char *buf, size_t count)
6113 return pci_set_resource_alignment_param(buf, count);
6116 static BUS_ATTR_RW(resource_alignment);
6118 static int __init pci_resource_alignment_sysfs_init(void)
6120 return bus_create_file(&pci_bus_type,
6121 &bus_attr_resource_alignment);
6123 late_initcall(pci_resource_alignment_sysfs_init);
6125 static void pci_no_domains(void)
6127 #ifdef CONFIG_PCI_DOMAINS
6128 pci_domains_supported = 0;
6129 #endif
6132 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6133 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6135 static int pci_get_new_domain_nr(void)
6137 return atomic_inc_return(&__domain_nr);
6140 static int of_pci_bus_find_domain_nr(struct device *parent)
6142 static int use_dt_domains = -1;
6143 int domain = -1;
6145 if (parent)
6146 domain = of_get_pci_domain_nr(parent->of_node);
6148 * Check DT domain and use_dt_domains values.
6150 * If DT domain property is valid (domain >= 0) and
6151 * use_dt_domains != 0, the DT assignment is valid since this means
6152 * we have not previously allocated a domain number by using
6153 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6154 * 1, to indicate that we have just assigned a domain number from
6155 * DT.
6157 * If DT domain property value is not valid (ie domain < 0), and we
6158 * have not previously assigned a domain number from DT
6159 * (use_dt_domains != 1) we should assign a domain number by
6160 * using the:
6162 * pci_get_new_domain_nr()
6164 * API and update the use_dt_domains value to keep track of method we
6165 * are using to assign domain numbers (use_dt_domains = 0).
6167 * All other combinations imply we have a platform that is trying
6168 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6169 * which is a recipe for domain mishandling and it is prevented by
6170 * invalidating the domain value (domain = -1) and printing a
6171 * corresponding error.
6173 if (domain >= 0 && use_dt_domains) {
6174 use_dt_domains = 1;
6175 } else if (domain < 0 && use_dt_domains != 1) {
6176 use_dt_domains = 0;
6177 domain = pci_get_new_domain_nr();
6178 } else {
6179 if (parent)
6180 pr_err("Node %pOF has ", parent->of_node);
6181 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6182 domain = -1;
6185 return domain;
6188 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6190 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6191 acpi_pci_bus_find_domain_nr(bus);
6193 #endif
6196 * pci_ext_cfg_avail - can we access extended PCI config space?
6198 * Returns 1 if we can access PCI extended config space (offsets
6199 * greater than 0xff). This is the default implementation. Architecture
6200 * implementations can override this.
6202 int __weak pci_ext_cfg_avail(void)
6204 return 1;
6207 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6210 EXPORT_SYMBOL(pci_fixup_cardbus);
6212 static int __init pci_setup(char *str)
6214 while (str) {
6215 char *k = strchr(str, ',');
6216 if (k)
6217 *k++ = 0;
6218 if (*str && (str = pcibios_setup(str)) && *str) {
6219 if (!strcmp(str, "nomsi")) {
6220 pci_no_msi();
6221 } else if (!strncmp(str, "noats", 5)) {
6222 pr_info("PCIe: ATS is disabled\n");
6223 pcie_ats_disabled = true;
6224 } else if (!strcmp(str, "noaer")) {
6225 pci_no_aer();
6226 } else if (!strcmp(str, "earlydump")) {
6227 pci_early_dump = true;
6228 } else if (!strncmp(str, "realloc=", 8)) {
6229 pci_realloc_get_opt(str + 8);
6230 } else if (!strncmp(str, "realloc", 7)) {
6231 pci_realloc_get_opt("on");
6232 } else if (!strcmp(str, "nodomains")) {
6233 pci_no_domains();
6234 } else if (!strncmp(str, "noari", 5)) {
6235 pcie_ari_disabled = true;
6236 } else if (!strncmp(str, "cbiosize=", 9)) {
6237 pci_cardbus_io_size = memparse(str + 9, &str);
6238 } else if (!strncmp(str, "cbmemsize=", 10)) {
6239 pci_cardbus_mem_size = memparse(str + 10, &str);
6240 } else if (!strncmp(str, "resource_alignment=", 19)) {
6241 pci_set_resource_alignment_param(str + 19,
6242 strlen(str + 19));
6243 } else if (!strncmp(str, "ecrc=", 5)) {
6244 pcie_ecrc_get_policy(str + 5);
6245 } else if (!strncmp(str, "hpiosize=", 9)) {
6246 pci_hotplug_io_size = memparse(str + 9, &str);
6247 } else if (!strncmp(str, "hpmemsize=", 10)) {
6248 pci_hotplug_mem_size = memparse(str + 10, &str);
6249 } else if (!strncmp(str, "hpbussize=", 10)) {
6250 pci_hotplug_bus_size =
6251 simple_strtoul(str + 10, &str, 0);
6252 if (pci_hotplug_bus_size > 0xff)
6253 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6254 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6255 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6256 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6257 pcie_bus_config = PCIE_BUS_SAFE;
6258 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6259 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6260 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6261 pcie_bus_config = PCIE_BUS_PEER2PEER;
6262 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6263 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6264 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6265 disable_acs_redir_param =
6266 kstrdup(str + 18, GFP_KERNEL);
6267 } else {
6268 printk(KERN_ERR "PCI: Unknown option `%s'\n",
6269 str);
6272 str = k;
6274 return 0;
6276 early_param("pci", pci_setup);