1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
35 #include <linux/aer.h>
38 DEFINE_MUTEX(pci_slot_mutex
);
40 const char *pci_power_names
[] = {
41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 EXPORT_SYMBOL_GPL(pci_power_names
);
45 int isa_dma_bridge_buggy
;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
49 EXPORT_SYMBOL(pci_pci_problems
);
51 unsigned int pci_pm_d3_delay
;
53 static void pci_pme_list_scan(struct work_struct
*work
);
55 static LIST_HEAD(pci_pme_list
);
56 static DEFINE_MUTEX(pci_pme_list_mutex
);
57 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
59 struct pci_pme_device
{
60 struct list_head list
;
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
68 unsigned int delay
= dev
->d3_delay
;
70 if (delay
< pci_pm_d3_delay
)
71 delay
= pci_pm_d3_delay
;
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported
= 1;
81 #define DEFAULT_CARDBUS_IO_SIZE (256)
82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
85 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
87 #define DEFAULT_HOTPLUG_IO_SIZE (256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
91 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
93 #define DEFAULT_HOTPLUG_BUS_SIZE 1
94 unsigned long pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
96 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_DEFAULT
;
99 * The default CLS is used if arch didn't set CLS explicitly and not
100 * all pci devices agree on the same value. Arch can override either
101 * the dfl or actual value as it sees fit. Don't forget this is
102 * measured in 32-bit words, not bytes.
104 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
105 u8 pci_cache_line_size
;
108 * If we set up a device for bus mastering, we need to check the latency
109 * timer as certain BIOSes forget to set it properly.
111 unsigned int pcibios_max_latency
= 255;
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled
;
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled
;
119 /* If set, the PCI config space of each device is printed during boot. */
122 bool pci_ats_disabled(void)
124 return pcie_ats_disabled
;
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable
;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force
;
132 static int __init
pcie_port_pm_setup(char *str
)
134 if (!strcmp(str
, "off"))
135 pci_bridge_d3_disable
= true;
136 else if (!strcmp(str
, "force"))
137 pci_bridge_d3_force
= true;
140 __setup("pcie_port_pm=", pcie_port_pm_setup
);
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147 * @bus: pointer to PCI bus structure to search
149 * Given a PCI bus, returns the highest PCI bus number present in the set
150 * including the given PCI bus and its list of child PCI buses.
152 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
155 unsigned char max
, n
;
157 max
= bus
->busn_res
.end
;
158 list_for_each_entry(tmp
, &bus
->children
, node
) {
159 n
= pci_bus_max_busnr(tmp
);
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
167 #ifdef CONFIG_HAS_IOMEM
168 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
170 struct resource
*res
= &pdev
->resource
[bar
];
173 * Make sure the BAR is actually a memory resource, not an IO resource
175 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
176 pci_warn(pdev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
179 return ioremap_nocache(res
->start
, resource_size(res
));
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
183 void __iomem
*pci_ioremap_wc_bar(struct pci_dev
*pdev
, int bar
)
186 * Make sure the BAR is actually a memory resource, not an IO resource
188 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
192 return ioremap_wc(pci_resource_start(pdev
, bar
),
193 pci_resource_len(pdev
, bar
));
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar
);
199 * pci_dev_str_match_path - test if a path string matches a device
200 * @dev: the PCI device to test
201 * @path: string to match the device against
202 * @endptr: pointer to the string after the match
204 * Test if a string (typically from a kernel parameter) formatted as a
205 * path of device/function addresses matches a PCI device. The string must
208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
210 * A path for a device can be obtained using 'lspci -t'. Using a path
211 * is more robust against bus renumbering than using only a single bus,
212 * device and function address.
214 * Returns 1 if the string matches the device, 0 if it does not and
215 * a negative error code if it fails to parse the string.
217 static int pci_dev_str_match_path(struct pci_dev
*dev
, const char *path
,
221 int seg
, bus
, slot
, func
;
225 *endptr
= strchrnul(path
, ';');
227 wpath
= kmemdup_nul(path
, *endptr
- path
, GFP_KERNEL
);
232 p
= strrchr(wpath
, '/');
235 ret
= sscanf(p
, "/%x.%x%c", &slot
, &func
, &end
);
241 if (dev
->devfn
!= PCI_DEVFN(slot
, func
)) {
247 * Note: we don't need to get a reference to the upstream
248 * bridge because we hold a reference to the top level
249 * device which should hold a reference to the bridge,
252 dev
= pci_upstream_bridge(dev
);
261 ret
= sscanf(wpath
, "%x:%x:%x.%x%c", &seg
, &bus
, &slot
,
265 ret
= sscanf(wpath
, "%x:%x.%x%c", &bus
, &slot
, &func
, &end
);
272 ret
= (seg
== pci_domain_nr(dev
->bus
) &&
273 bus
== dev
->bus
->number
&&
274 dev
->devfn
== PCI_DEVFN(slot
, func
));
282 * pci_dev_str_match - test if a string matches a device
283 * @dev: the PCI device to test
284 * @p: string to match the device against
285 * @endptr: pointer to the string after the match
287 * Test if a string (typically from a kernel parameter) matches a specified
288 * PCI device. The string may be of one of the following formats:
290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
293 * The first format specifies a PCI bus/device/function address which
294 * may change if new hardware is inserted, if motherboard firmware changes,
295 * or due to changes caused in kernel parameters. If the domain is
296 * left unspecified, it is taken to be 0. In order to be robust against
297 * bus renumbering issues, a path of PCI device/function numbers may be used
298 * to address the specific device. The path for a device can be determined
299 * through the use of 'lspci -t'.
301 * The second format matches devices using IDs in the configuration
302 * space which may match multiple devices in the system. A value of 0
303 * for any field will match all devices. (Note: this differs from
304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305 * legacy reasons and convenience so users don't have to specify
306 * FFFFFFFFs on the command line.)
308 * Returns 1 if the string matches the device, 0 if it does not and
309 * a negative error code if the string cannot be parsed.
311 static int pci_dev_str_match(struct pci_dev
*dev
, const char *p
,
316 unsigned short vendor
, device
, subsystem_vendor
, subsystem_device
;
318 if (strncmp(p
, "pci:", 4) == 0) {
319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
321 ret
= sscanf(p
, "%hx:%hx:%hx:%hx%n", &vendor
, &device
,
322 &subsystem_vendor
, &subsystem_device
, &count
);
324 ret
= sscanf(p
, "%hx:%hx%n", &vendor
, &device
, &count
);
328 subsystem_vendor
= 0;
329 subsystem_device
= 0;
334 if ((!vendor
|| vendor
== dev
->vendor
) &&
335 (!device
|| device
== dev
->device
) &&
336 (!subsystem_vendor
||
337 subsystem_vendor
== dev
->subsystem_vendor
) &&
338 (!subsystem_device
||
339 subsystem_device
== dev
->subsystem_device
))
343 * PCI Bus, Device, Function IDs are specified
344 * (optionally, may include a path of devfns following it)
346 ret
= pci_dev_str_match_path(dev
, p
, &p
);
361 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
362 u8 pos
, int cap
, int *ttl
)
367 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
373 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
385 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
388 int ttl
= PCI_FIND_CAP_TTL
;
390 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
393 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
395 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
396 pos
+ PCI_CAP_LIST_NEXT
, cap
);
398 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
400 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
401 unsigned int devfn
, u8 hdr_type
)
405 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
406 if (!(status
& PCI_STATUS_CAP_LIST
))
410 case PCI_HEADER_TYPE_NORMAL
:
411 case PCI_HEADER_TYPE_BRIDGE
:
412 return PCI_CAPABILITY_LIST
;
413 case PCI_HEADER_TYPE_CARDBUS
:
414 return PCI_CB_CAPABILITY_LIST
;
421 * pci_find_capability - query for devices' capabilities
422 * @dev: PCI device to query
423 * @cap: capability code
425 * Tell if a device supports a given PCI capability.
426 * Returns the address of the requested capability structure within the
427 * device's PCI configuration space or 0 in case the device does not
428 * support it. Possible values for @cap:
430 * %PCI_CAP_ID_PM Power Management
431 * %PCI_CAP_ID_AGP Accelerated Graphics Port
432 * %PCI_CAP_ID_VPD Vital Product Data
433 * %PCI_CAP_ID_SLOTID Slot Identification
434 * %PCI_CAP_ID_MSI Message Signalled Interrupts
435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
436 * %PCI_CAP_ID_PCIX PCI-X
437 * %PCI_CAP_ID_EXP PCI Express
439 int pci_find_capability(struct pci_dev
*dev
, int cap
)
443 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
445 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
449 EXPORT_SYMBOL(pci_find_capability
);
452 * pci_bus_find_capability - query for devices' capabilities
453 * @bus: the PCI bus to query
454 * @devfn: PCI device to query
455 * @cap: capability code
457 * Like pci_find_capability() but works for pci devices that do not have a
458 * pci_dev structure set up yet.
460 * Returns the address of the requested capability structure within the
461 * device's PCI configuration space or 0 in case the device does not
464 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
469 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
471 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
473 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
477 EXPORT_SYMBOL(pci_bus_find_capability
);
480 * pci_find_next_ext_capability - Find an extended capability
481 * @dev: PCI device to query
482 * @start: address at which to start looking (0 to start at beginning of list)
483 * @cap: capability code
485 * Returns the address of the next matching extended capability structure
486 * within the device's PCI configuration space or 0 if the device does
487 * not support it. Some capabilities can occur several times, e.g., the
488 * vendor-specific capability, and this provides a way to find them all.
490 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
494 int pos
= PCI_CFG_SPACE_SIZE
;
496 /* minimum 8 bytes per capability */
497 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
499 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
505 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
509 * If we have no capabilities, this is indicated by cap ID,
510 * cap version and next pointer all being 0.
516 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
519 pos
= PCI_EXT_CAP_NEXT(header
);
520 if (pos
< PCI_CFG_SPACE_SIZE
)
523 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
532 * pci_find_ext_capability - Find an extended capability
533 * @dev: PCI device to query
534 * @cap: capability code
536 * Returns the address of the requested extended capability structure
537 * within the device's PCI configuration space or 0 if the device does
538 * not support it. Possible values for @cap:
540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
541 * %PCI_EXT_CAP_ID_VC Virtual Channel
542 * %PCI_EXT_CAP_ID_DSN Device Serial Number
543 * %PCI_EXT_CAP_ID_PWR Power Budgeting
545 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
547 return pci_find_next_ext_capability(dev
, 0, cap
);
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
551 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
553 int rc
, ttl
= PCI_FIND_CAP_TTL
;
556 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
557 mask
= HT_3BIT_CAP_MASK
;
559 mask
= HT_5BIT_CAP_MASK
;
561 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
562 PCI_CAP_ID_HT
, &ttl
);
564 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
565 if (rc
!= PCIBIOS_SUCCESSFUL
)
568 if ((cap
& mask
) == ht_cap
)
571 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
572 pos
+ PCI_CAP_LIST_NEXT
,
573 PCI_CAP_ID_HT
, &ttl
);
579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580 * @dev: PCI device to query
581 * @pos: Position from which to continue searching
582 * @ht_cap: Hypertransport capability code
584 * To be used in conjunction with pci_find_ht_capability() to search for
585 * all capabilities matching @ht_cap. @pos should always be a value returned
586 * from pci_find_ht_capability().
588 * NB. To be 100% safe against broken PCI devices, the caller should take
589 * steps to avoid an infinite loop.
591 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
593 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
598 * pci_find_ht_capability - query a device's Hypertransport capabilities
599 * @dev: PCI device to query
600 * @ht_cap: Hypertransport capability code
602 * Tell if a device supports a given Hypertransport capability.
603 * Returns an address within the device's PCI configuration space
604 * or 0 in case the device does not support the request capability.
605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606 * which has a Hypertransport capability matching @ht_cap.
608 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
612 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
614 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
621 * pci_find_parent_resource - return resource region of parent bus of given region
622 * @dev: PCI device structure contains resources to be searched
623 * @res: child resource record for which parent is sought
625 * For given resource region of given device, return the resource
626 * region of parent bus the given region is contained in.
628 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
629 struct resource
*res
)
631 const struct pci_bus
*bus
= dev
->bus
;
635 pci_bus_for_each_resource(bus
, r
, i
) {
638 if (resource_contains(r
, res
)) {
641 * If the window is prefetchable but the BAR is
642 * not, the allocator made a mistake.
644 if (r
->flags
& IORESOURCE_PREFETCH
&&
645 !(res
->flags
& IORESOURCE_PREFETCH
))
649 * If we're below a transparent bridge, there may
650 * be both a positively-decoded aperture and a
651 * subtractively-decoded region that contain the BAR.
652 * We want the positively-decoded one, so this depends
653 * on pci_bus_for_each_resource() giving us those
661 EXPORT_SYMBOL(pci_find_parent_resource
);
664 * pci_find_resource - Return matching PCI device resource
665 * @dev: PCI device to query
666 * @res: Resource to look for
668 * Goes over standard PCI resources (BARs) and checks if the given resource
669 * is partially or fully contained in any of them. In that case the
670 * matching resource is returned, %NULL otherwise.
672 struct resource
*pci_find_resource(struct pci_dev
*dev
, struct resource
*res
)
676 for (i
= 0; i
< PCI_ROM_RESOURCE
; i
++) {
677 struct resource
*r
= &dev
->resource
[i
];
679 if (r
->start
&& resource_contains(r
, res
))
685 EXPORT_SYMBOL(pci_find_resource
);
688 * pci_find_pcie_root_port - return PCIe Root Port
689 * @dev: PCI device to query
691 * Traverse up the parent chain and return the PCIe Root Port PCI Device
692 * for a given PCI Device.
694 struct pci_dev
*pci_find_pcie_root_port(struct pci_dev
*dev
)
696 struct pci_dev
*bridge
, *highest_pcie_bridge
= dev
;
698 bridge
= pci_upstream_bridge(dev
);
699 while (bridge
&& pci_is_pcie(bridge
)) {
700 highest_pcie_bridge
= bridge
;
701 bridge
= pci_upstream_bridge(bridge
);
704 if (pci_pcie_type(highest_pcie_bridge
) != PCI_EXP_TYPE_ROOT_PORT
)
707 return highest_pcie_bridge
;
709 EXPORT_SYMBOL(pci_find_pcie_root_port
);
712 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
713 * @dev: the PCI device to operate on
714 * @pos: config space offset of status word
715 * @mask: mask of bit(s) to care about in status word
717 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
719 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
723 /* Wait for Transaction Pending bit clean */
724 for (i
= 0; i
< 4; i
++) {
727 msleep((1 << (i
- 1)) * 100);
729 pci_read_config_word(dev
, pos
, &status
);
730 if (!(status
& mask
))
738 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
739 * @dev: PCI device to have its BARs restored
741 * Restore the BAR values for a given device, so as to make it
742 * accessible by its driver.
744 static void pci_restore_bars(struct pci_dev
*dev
)
748 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
749 pci_update_resource(dev
, i
);
752 static const struct pci_platform_pm_ops
*pci_platform_pm
;
754 int pci_set_platform_pm(const struct pci_platform_pm_ops
*ops
)
756 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->get_state
||
757 !ops
->choose_state
|| !ops
->set_wakeup
|| !ops
->need_resume
)
759 pci_platform_pm
= ops
;
763 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
765 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
768 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
771 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
774 static inline pci_power_t
platform_pci_get_power_state(struct pci_dev
*dev
)
776 return pci_platform_pm
? pci_platform_pm
->get_state(dev
) : PCI_UNKNOWN
;
779 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
781 return pci_platform_pm
?
782 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
785 static inline int platform_pci_set_wakeup(struct pci_dev
*dev
, bool enable
)
787 return pci_platform_pm
?
788 pci_platform_pm
->set_wakeup(dev
, enable
) : -ENODEV
;
791 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
793 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
796 static inline bool platform_pci_bridge_d3(struct pci_dev
*dev
)
798 return pci_platform_pm
? pci_platform_pm
->bridge_d3(dev
) : false;
802 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
804 * @dev: PCI device to handle.
805 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
808 * -EINVAL if the requested state is invalid.
809 * -EIO if device does not support PCI PM or its PM capabilities register has a
810 * wrong version, or device doesn't support the requested state.
811 * 0 if device already is in the requested state.
812 * 0 if device's power state has been successfully changed.
814 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
817 bool need_restore
= false;
819 /* Check if we're already there */
820 if (dev
->current_state
== state
)
826 if (state
< PCI_D0
|| state
> PCI_D3hot
)
829 /* Validate current state:
830 * Can enter D0 from any state, but if we can only go deeper
831 * to sleep if we're already in a low power state
833 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
834 && dev
->current_state
> state
) {
835 pci_err(dev
, "invalid power transition (from state %d to %d)\n",
836 dev
->current_state
, state
);
840 /* check if this device supports the desired state */
841 if ((state
== PCI_D1
&& !dev
->d1_support
)
842 || (state
== PCI_D2
&& !dev
->d2_support
))
845 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
847 /* If we're (effectively) in D3, force entire word to 0.
848 * This doesn't affect PME_Status, disables PME_En, and
849 * sets PowerState to 0.
851 switch (dev
->current_state
) {
855 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
860 case PCI_UNKNOWN
: /* Boot-up */
861 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
862 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
864 /* Fall-through - force to D0 */
870 /* enter specified state */
871 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
873 /* Mandatory power management transition delays */
874 /* see PCI PM 1.1 5.6.1 table 18 */
875 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
876 pci_dev_d3_sleep(dev
);
877 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
878 udelay(PCI_PM_D2_DELAY
);
880 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
881 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
882 if (dev
->current_state
!= state
&& printk_ratelimit())
883 pci_info(dev
, "Refused to change power state, currently in D%d\n",
887 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
888 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
889 * from D3hot to D0 _may_ perform an internal reset, thereby
890 * going to "D0 Uninitialized" rather than "D0 Initialized".
891 * For example, at least some versions of the 3c905B and the
892 * 3c556B exhibit this behaviour.
894 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
895 * devices in a D3hot state at boot. Consequently, we need to
896 * restore at least the BARs so that the device will be
897 * accessible to its driver.
900 pci_restore_bars(dev
);
903 pcie_aspm_pm_state_change(dev
->bus
->self
);
909 * pci_update_current_state - Read power state of given device and cache it
910 * @dev: PCI device to handle.
911 * @state: State to cache in case the device doesn't have the PM capability
913 * The power state is read from the PMCSR register, which however is
914 * inaccessible in D3cold. The platform firmware is therefore queried first
915 * to detect accessibility of the register. In case the platform firmware
916 * reports an incorrect state or the device isn't power manageable by the
917 * platform at all, we try to detect D3cold by testing accessibility of the
918 * vendor ID in config space.
920 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
922 if (platform_pci_get_power_state(dev
) == PCI_D3cold
||
923 !pci_device_is_present(dev
)) {
924 dev
->current_state
= PCI_D3cold
;
925 } else if (dev
->pm_cap
) {
928 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
929 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
931 dev
->current_state
= state
;
936 * pci_power_up - Put the given device into D0 forcibly
937 * @dev: PCI device to power up
939 void pci_power_up(struct pci_dev
*dev
)
941 if (platform_pci_power_manageable(dev
))
942 platform_pci_set_power_state(dev
, PCI_D0
);
944 pci_raw_set_power_state(dev
, PCI_D0
);
945 pci_update_current_state(dev
, PCI_D0
);
949 * pci_platform_power_transition - Use platform to change device power state
950 * @dev: PCI device to handle.
951 * @state: State to put the device into.
953 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
957 if (platform_pci_power_manageable(dev
)) {
958 error
= platform_pci_set_power_state(dev
, state
);
960 pci_update_current_state(dev
, state
);
964 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
965 dev
->current_state
= PCI_D0
;
971 * pci_wakeup - Wake up a PCI device
972 * @pci_dev: Device to handle.
973 * @ign: ignored parameter
975 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
977 pci_wakeup_event(pci_dev
);
978 pm_request_resume(&pci_dev
->dev
);
983 * pci_wakeup_bus - Walk given bus and wake up devices on it
984 * @bus: Top bus of the subtree to walk.
986 void pci_wakeup_bus(struct pci_bus
*bus
)
989 pci_walk_bus(bus
, pci_wakeup
, NULL
);
993 * __pci_start_power_transition - Start power transition of a PCI device
994 * @dev: PCI device to handle.
995 * @state: State to put the device into.
997 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
999 if (state
== PCI_D0
) {
1000 pci_platform_power_transition(dev
, PCI_D0
);
1002 * Mandatory power management transition delays, see
1003 * PCI Express Base Specification Revision 2.0 Section
1004 * 6.6.1: Conventional Reset. Do not delay for
1005 * devices powered on/off by corresponding bridge,
1006 * because have already delayed for the bridge.
1008 if (dev
->runtime_d3cold
) {
1009 if (dev
->d3cold_delay
&& !dev
->imm_ready
)
1010 msleep(dev
->d3cold_delay
);
1012 * When powering on a bridge from D3cold, the
1013 * whole hierarchy may be powered on into
1014 * D0uninitialized state, resume them to give
1015 * them a chance to suspend again
1017 pci_wakeup_bus(dev
->subordinate
);
1023 * __pci_dev_set_current_state - Set current state of a PCI device
1024 * @dev: Device to handle
1025 * @data: pointer to state to be set
1027 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
1029 pci_power_t state
= *(pci_power_t
*)data
;
1031 dev
->current_state
= state
;
1036 * pci_bus_set_current_state - Walk given bus and set current state of devices
1037 * @bus: Top bus of the subtree to walk.
1038 * @state: state to be set
1040 void pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
1043 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
1047 * __pci_complete_power_transition - Complete power transition of a PCI device
1048 * @dev: PCI device to handle.
1049 * @state: State to put the device into.
1051 * This function should not be called directly by device drivers.
1053 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
1057 if (state
<= PCI_D0
)
1059 ret
= pci_platform_power_transition(dev
, state
);
1060 /* Power off the bridge may power off the whole hierarchy */
1061 if (!ret
&& state
== PCI_D3cold
)
1062 pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
1065 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
1068 * pci_set_power_state - Set the power state of a PCI device
1069 * @dev: PCI device to handle.
1070 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1072 * Transition a device to a new power state, using the platform firmware and/or
1073 * the device's PCI PM registers.
1076 * -EINVAL if the requested state is invalid.
1077 * -EIO if device does not support PCI PM or its PM capabilities register has a
1078 * wrong version, or device doesn't support the requested state.
1079 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1080 * 0 if device already is in the requested state.
1081 * 0 if the transition is to D3 but D3 is not supported.
1082 * 0 if device's power state has been successfully changed.
1084 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
1088 /* bound the state we're entering */
1089 if (state
> PCI_D3cold
)
1091 else if (state
< PCI_D0
)
1093 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
1095 * If the device or the parent bridge do not support PCI PM,
1096 * ignore the request if we're doing anything other than putting
1097 * it into D0 (which would only happen on boot).
1101 /* Check if we're already there */
1102 if (dev
->current_state
== state
)
1105 __pci_start_power_transition(dev
, state
);
1107 /* This device is quirked not to be put into D3, so
1108 don't put it in D3 */
1109 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
1113 * To put device in D3cold, we put device into D3hot in native
1114 * way, then put device into D3cold with platform ops
1116 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
1119 if (!__pci_complete_power_transition(dev
, state
))
1124 EXPORT_SYMBOL(pci_set_power_state
);
1127 * pci_choose_state - Choose the power state of a PCI device
1128 * @dev: PCI device to be suspended
1129 * @state: target sleep state for the whole system. This is the value
1130 * that is passed to suspend() function.
1132 * Returns PCI power state suitable for given device and given system
1136 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
1143 ret
= platform_pci_choose_state(dev
);
1144 if (ret
!= PCI_POWER_ERROR
)
1147 switch (state
.event
) {
1150 case PM_EVENT_FREEZE
:
1151 case PM_EVENT_PRETHAW
:
1152 /* REVISIT both freeze and pre-thaw "should" use D0 */
1153 case PM_EVENT_SUSPEND
:
1154 case PM_EVENT_HIBERNATE
:
1157 pci_info(dev
, "unrecognized suspend event %d\n",
1163 EXPORT_SYMBOL(pci_choose_state
);
1165 #define PCI_EXP_SAVE_REGS 7
1167 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
1168 u16 cap
, bool extended
)
1170 struct pci_cap_saved_state
*tmp
;
1172 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
1173 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
1179 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
1181 return _pci_find_saved_cap(dev
, cap
, false);
1184 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
1186 return _pci_find_saved_cap(dev
, cap
, true);
1189 static int pci_save_pcie_state(struct pci_dev
*dev
)
1192 struct pci_cap_saved_state
*save_state
;
1195 if (!pci_is_pcie(dev
))
1198 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1200 pci_err(dev
, "buffer not found in %s\n", __func__
);
1204 cap
= (u16
*)&save_state
->cap
.data
[0];
1205 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
1206 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
1207 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
1208 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
1209 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
1210 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
1211 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
1216 static void pci_restore_pcie_state(struct pci_dev
*dev
)
1219 struct pci_cap_saved_state
*save_state
;
1222 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1226 cap
= (u16
*)&save_state
->cap
.data
[0];
1227 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
1228 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
1229 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
1230 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
1231 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
1232 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
1233 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
1236 static int pci_save_pcix_state(struct pci_dev
*dev
)
1239 struct pci_cap_saved_state
*save_state
;
1241 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1245 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1247 pci_err(dev
, "buffer not found in %s\n", __func__
);
1251 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
1252 (u16
*)save_state
->cap
.data
);
1257 static void pci_restore_pcix_state(struct pci_dev
*dev
)
1260 struct pci_cap_saved_state
*save_state
;
1263 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1264 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1265 if (!save_state
|| !pos
)
1267 cap
= (u16
*)&save_state
->cap
.data
[0];
1269 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1272 static void pci_save_ltr_state(struct pci_dev
*dev
)
1275 struct pci_cap_saved_state
*save_state
;
1278 if (!pci_is_pcie(dev
))
1281 ltr
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_LTR
);
1285 save_state
= pci_find_saved_ext_cap(dev
, PCI_EXT_CAP_ID_LTR
);
1287 pci_err(dev
, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1291 cap
= (u16
*)&save_state
->cap
.data
[0];
1292 pci_read_config_word(dev
, ltr
+ PCI_LTR_MAX_SNOOP_LAT
, cap
++);
1293 pci_read_config_word(dev
, ltr
+ PCI_LTR_MAX_NOSNOOP_LAT
, cap
++);
1296 static void pci_restore_ltr_state(struct pci_dev
*dev
)
1298 struct pci_cap_saved_state
*save_state
;
1302 save_state
= pci_find_saved_ext_cap(dev
, PCI_EXT_CAP_ID_LTR
);
1303 ltr
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_LTR
);
1304 if (!save_state
|| !ltr
)
1307 cap
= (u16
*)&save_state
->cap
.data
[0];
1308 pci_write_config_word(dev
, ltr
+ PCI_LTR_MAX_SNOOP_LAT
, *cap
++);
1309 pci_write_config_word(dev
, ltr
+ PCI_LTR_MAX_NOSNOOP_LAT
, *cap
++);
1313 * pci_save_state - save the PCI configuration space of a device before suspending
1314 * @dev: - PCI device that we're dealing with
1316 int pci_save_state(struct pci_dev
*dev
)
1319 /* XXX: 100% dword access ok here? */
1320 for (i
= 0; i
< 16; i
++)
1321 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1322 dev
->state_saved
= true;
1324 i
= pci_save_pcie_state(dev
);
1328 i
= pci_save_pcix_state(dev
);
1332 pci_save_ltr_state(dev
);
1333 pci_save_dpc_state(dev
);
1334 return pci_save_vc_state(dev
);
1336 EXPORT_SYMBOL(pci_save_state
);
1338 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1339 u32 saved_val
, int retry
, bool force
)
1343 pci_read_config_dword(pdev
, offset
, &val
);
1344 if (!force
&& val
== saved_val
)
1348 pci_dbg(pdev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1349 offset
, val
, saved_val
);
1350 pci_write_config_dword(pdev
, offset
, saved_val
);
1354 pci_read_config_dword(pdev
, offset
, &val
);
1355 if (val
== saved_val
)
1362 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1363 int start
, int end
, int retry
,
1368 for (index
= end
; index
>= start
; index
--)
1369 pci_restore_config_dword(pdev
, 4 * index
,
1370 pdev
->saved_config_space
[index
],
1374 static void pci_restore_config_space(struct pci_dev
*pdev
)
1376 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1377 pci_restore_config_space_range(pdev
, 10, 15, 0, false);
1378 /* Restore BARs before the command register. */
1379 pci_restore_config_space_range(pdev
, 4, 9, 10, false);
1380 pci_restore_config_space_range(pdev
, 0, 3, 0, false);
1381 } else if (pdev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1382 pci_restore_config_space_range(pdev
, 12, 15, 0, false);
1385 * Force rewriting of prefetch registers to avoid S3 resume
1386 * issues on Intel PCI bridges that occur when these
1387 * registers are not explicitly written.
1389 pci_restore_config_space_range(pdev
, 9, 11, 0, true);
1390 pci_restore_config_space_range(pdev
, 0, 8, 0, false);
1392 pci_restore_config_space_range(pdev
, 0, 15, 0, false);
1396 static void pci_restore_rebar_state(struct pci_dev
*pdev
)
1398 unsigned int pos
, nbars
, i
;
1401 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
1405 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1406 nbars
= (ctrl
& PCI_REBAR_CTRL_NBAR_MASK
) >>
1407 PCI_REBAR_CTRL_NBAR_SHIFT
;
1409 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
1410 struct resource
*res
;
1413 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1414 bar_idx
= ctrl
& PCI_REBAR_CTRL_BAR_IDX
;
1415 res
= pdev
->resource
+ bar_idx
;
1416 size
= order_base_2((resource_size(res
) >> 20) | 1) - 1;
1417 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
1418 ctrl
|= size
<< PCI_REBAR_CTRL_BAR_SHIFT
;
1419 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
1424 * pci_restore_state - Restore the saved state of a PCI device
1425 * @dev: - PCI device that we're dealing with
1427 void pci_restore_state(struct pci_dev
*dev
)
1429 if (!dev
->state_saved
)
1433 * Restore max latencies (in the LTR capability) before enabling
1434 * LTR itself (in the PCIe capability).
1436 pci_restore_ltr_state(dev
);
1438 pci_restore_pcie_state(dev
);
1439 pci_restore_pasid_state(dev
);
1440 pci_restore_pri_state(dev
);
1441 pci_restore_ats_state(dev
);
1442 pci_restore_vc_state(dev
);
1443 pci_restore_rebar_state(dev
);
1444 pci_restore_dpc_state(dev
);
1446 pci_cleanup_aer_error_status_regs(dev
);
1448 pci_restore_config_space(dev
);
1450 pci_restore_pcix_state(dev
);
1451 pci_restore_msi_state(dev
);
1453 /* Restore ACS and IOV configuration state */
1454 pci_enable_acs(dev
);
1455 pci_restore_iov_state(dev
);
1457 dev
->state_saved
= false;
1459 EXPORT_SYMBOL(pci_restore_state
);
1461 struct pci_saved_state
{
1462 u32 config_space
[16];
1463 struct pci_cap_saved_data cap
[0];
1467 * pci_store_saved_state - Allocate and return an opaque struct containing
1468 * the device saved state.
1469 * @dev: PCI device that we're dealing with
1471 * Return NULL if no state or error.
1473 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1475 struct pci_saved_state
*state
;
1476 struct pci_cap_saved_state
*tmp
;
1477 struct pci_cap_saved_data
*cap
;
1480 if (!dev
->state_saved
)
1483 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1485 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1486 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1488 state
= kzalloc(size
, GFP_KERNEL
);
1492 memcpy(state
->config_space
, dev
->saved_config_space
,
1493 sizeof(state
->config_space
));
1496 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1497 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1498 memcpy(cap
, &tmp
->cap
, len
);
1499 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1501 /* Empty cap_save terminates list */
1505 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1508 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1509 * @dev: PCI device that we're dealing with
1510 * @state: Saved state returned from pci_store_saved_state()
1512 int pci_load_saved_state(struct pci_dev
*dev
,
1513 struct pci_saved_state
*state
)
1515 struct pci_cap_saved_data
*cap
;
1517 dev
->state_saved
= false;
1522 memcpy(dev
->saved_config_space
, state
->config_space
,
1523 sizeof(state
->config_space
));
1527 struct pci_cap_saved_state
*tmp
;
1529 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1530 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1533 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1534 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1535 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1538 dev
->state_saved
= true;
1541 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1544 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1545 * and free the memory allocated for it.
1546 * @dev: PCI device that we're dealing with
1547 * @state: Pointer to saved state returned from pci_store_saved_state()
1549 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1550 struct pci_saved_state
**state
)
1552 int ret
= pci_load_saved_state(dev
, *state
);
1557 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1559 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1561 return pci_enable_resources(dev
, bars
);
1564 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1567 struct pci_dev
*bridge
;
1571 err
= pci_set_power_state(dev
, PCI_D0
);
1572 if (err
< 0 && err
!= -EIO
)
1575 bridge
= pci_upstream_bridge(dev
);
1577 pcie_aspm_powersave_config_link(bridge
);
1579 err
= pcibios_enable_device(dev
, bars
);
1582 pci_fixup_device(pci_fixup_enable
, dev
);
1584 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1587 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1589 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1590 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1591 pci_write_config_word(dev
, PCI_COMMAND
,
1592 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1599 * pci_reenable_device - Resume abandoned device
1600 * @dev: PCI device to be resumed
1602 * Note this function is a backend of pci_default_resume and is not supposed
1603 * to be called by normal code, write proper resume handler and use it instead.
1605 int pci_reenable_device(struct pci_dev
*dev
)
1607 if (pci_is_enabled(dev
))
1608 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1611 EXPORT_SYMBOL(pci_reenable_device
);
1613 static void pci_enable_bridge(struct pci_dev
*dev
)
1615 struct pci_dev
*bridge
;
1618 bridge
= pci_upstream_bridge(dev
);
1620 pci_enable_bridge(bridge
);
1622 if (pci_is_enabled(dev
)) {
1623 if (!dev
->is_busmaster
)
1624 pci_set_master(dev
);
1628 retval
= pci_enable_device(dev
);
1630 pci_err(dev
, "Error enabling bridge (%d), continuing\n",
1632 pci_set_master(dev
);
1635 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1637 struct pci_dev
*bridge
;
1642 * Power state could be unknown at this point, either due to a fresh
1643 * boot or a device removal call. So get the current power state
1644 * so that things like MSI message writing will behave as expected
1645 * (e.g. if the device really is in D0 at enable time).
1649 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1650 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1653 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1654 return 0; /* already enabled */
1656 bridge
= pci_upstream_bridge(dev
);
1658 pci_enable_bridge(bridge
);
1660 /* only skip sriov related */
1661 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1662 if (dev
->resource
[i
].flags
& flags
)
1664 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1665 if (dev
->resource
[i
].flags
& flags
)
1668 err
= do_pci_enable_device(dev
, bars
);
1670 atomic_dec(&dev
->enable_cnt
);
1675 * pci_enable_device_io - Initialize a device for use with IO space
1676 * @dev: PCI device to be initialized
1678 * Initialize device before it's used by a driver. Ask low-level code
1679 * to enable I/O resources. Wake up the device if it was suspended.
1680 * Beware, this function can fail.
1682 int pci_enable_device_io(struct pci_dev
*dev
)
1684 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1686 EXPORT_SYMBOL(pci_enable_device_io
);
1689 * pci_enable_device_mem - Initialize a device for use with Memory space
1690 * @dev: PCI device to be initialized
1692 * Initialize device before it's used by a driver. Ask low-level code
1693 * to enable Memory resources. Wake up the device if it was suspended.
1694 * Beware, this function can fail.
1696 int pci_enable_device_mem(struct pci_dev
*dev
)
1698 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1700 EXPORT_SYMBOL(pci_enable_device_mem
);
1703 * pci_enable_device - Initialize device before it's used by a driver.
1704 * @dev: PCI device to be initialized
1706 * Initialize device before it's used by a driver. Ask low-level code
1707 * to enable I/O and memory. Wake up the device if it was suspended.
1708 * Beware, this function can fail.
1710 * Note we don't actually enable the device many times if we call
1711 * this function repeatedly (we just increment the count).
1713 int pci_enable_device(struct pci_dev
*dev
)
1715 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1717 EXPORT_SYMBOL(pci_enable_device
);
1720 * Managed PCI resources. This manages device on/off, intx/msi/msix
1721 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1722 * there's no need to track it separately. pci_devres is initialized
1723 * when a device is enabled using managed PCI device enable interface.
1726 unsigned int enabled
:1;
1727 unsigned int pinned
:1;
1728 unsigned int orig_intx
:1;
1729 unsigned int restore_intx
:1;
1734 static void pcim_release(struct device
*gendev
, void *res
)
1736 struct pci_dev
*dev
= to_pci_dev(gendev
);
1737 struct pci_devres
*this = res
;
1740 if (dev
->msi_enabled
)
1741 pci_disable_msi(dev
);
1742 if (dev
->msix_enabled
)
1743 pci_disable_msix(dev
);
1745 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1746 if (this->region_mask
& (1 << i
))
1747 pci_release_region(dev
, i
);
1752 if (this->restore_intx
)
1753 pci_intx(dev
, this->orig_intx
);
1755 if (this->enabled
&& !this->pinned
)
1756 pci_disable_device(dev
);
1759 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1761 struct pci_devres
*dr
, *new_dr
;
1763 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1767 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1770 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1773 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1775 if (pci_is_managed(pdev
))
1776 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1781 * pcim_enable_device - Managed pci_enable_device()
1782 * @pdev: PCI device to be initialized
1784 * Managed pci_enable_device().
1786 int pcim_enable_device(struct pci_dev
*pdev
)
1788 struct pci_devres
*dr
;
1791 dr
= get_pci_dr(pdev
);
1797 rc
= pci_enable_device(pdev
);
1799 pdev
->is_managed
= 1;
1804 EXPORT_SYMBOL(pcim_enable_device
);
1807 * pcim_pin_device - Pin managed PCI device
1808 * @pdev: PCI device to pin
1810 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1811 * driver detach. @pdev must have been enabled with
1812 * pcim_enable_device().
1814 void pcim_pin_device(struct pci_dev
*pdev
)
1816 struct pci_devres
*dr
;
1818 dr
= find_pci_dr(pdev
);
1819 WARN_ON(!dr
|| !dr
->enabled
);
1823 EXPORT_SYMBOL(pcim_pin_device
);
1826 * pcibios_add_device - provide arch specific hooks when adding device dev
1827 * @dev: the PCI device being added
1829 * Permits the platform to provide architecture specific functionality when
1830 * devices are added. This is the default implementation. Architecture
1831 * implementations can override this.
1833 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1839 * pcibios_release_device - provide arch specific hooks when releasing device dev
1840 * @dev: the PCI device being released
1842 * Permits the platform to provide architecture specific functionality when
1843 * devices are released. This is the default implementation. Architecture
1844 * implementations can override this.
1846 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1849 * pcibios_disable_device - disable arch specific PCI resources for device dev
1850 * @dev: the PCI device to disable
1852 * Disables architecture specific PCI resources for the device. This
1853 * is the default implementation. Architecture implementations can
1856 void __weak
pcibios_disable_device(struct pci_dev
*dev
) {}
1859 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1860 * @irq: ISA IRQ to penalize
1861 * @active: IRQ active or not
1863 * Permits the platform to provide architecture-specific functionality when
1864 * penalizing ISA IRQs. This is the default implementation. Architecture
1865 * implementations can override this.
1867 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1869 static void do_pci_disable_device(struct pci_dev
*dev
)
1873 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1874 if (pci_command
& PCI_COMMAND_MASTER
) {
1875 pci_command
&= ~PCI_COMMAND_MASTER
;
1876 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1879 pcibios_disable_device(dev
);
1883 * pci_disable_enabled_device - Disable device without updating enable_cnt
1884 * @dev: PCI device to disable
1886 * NOTE: This function is a backend of PCI power management routines and is
1887 * not supposed to be called drivers.
1889 void pci_disable_enabled_device(struct pci_dev
*dev
)
1891 if (pci_is_enabled(dev
))
1892 do_pci_disable_device(dev
);
1896 * pci_disable_device - Disable PCI device after use
1897 * @dev: PCI device to be disabled
1899 * Signal to the system that the PCI device is not in use by the system
1900 * anymore. This only involves disabling PCI bus-mastering, if active.
1902 * Note we don't actually disable the device until all callers of
1903 * pci_enable_device() have called pci_disable_device().
1905 void pci_disable_device(struct pci_dev
*dev
)
1907 struct pci_devres
*dr
;
1909 dr
= find_pci_dr(dev
);
1913 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1914 "disabling already-disabled device");
1916 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1919 do_pci_disable_device(dev
);
1921 dev
->is_busmaster
= 0;
1923 EXPORT_SYMBOL(pci_disable_device
);
1926 * pcibios_set_pcie_reset_state - set reset state for device dev
1927 * @dev: the PCIe device reset
1928 * @state: Reset state to enter into
1931 * Sets the PCIe reset state for the device. This is the default
1932 * implementation. Architecture implementations can override this.
1934 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1935 enum pcie_reset_state state
)
1941 * pci_set_pcie_reset_state - set reset state for device dev
1942 * @dev: the PCIe device reset
1943 * @state: Reset state to enter into
1946 * Sets the PCI reset state for the device.
1948 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1950 return pcibios_set_pcie_reset_state(dev
, state
);
1952 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
1955 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1956 * @dev: PCIe root port or event collector.
1958 void pcie_clear_root_pme_status(struct pci_dev
*dev
)
1960 pcie_capability_set_dword(dev
, PCI_EXP_RTSTA
, PCI_EXP_RTSTA_PME
);
1964 * pci_check_pme_status - Check if given device has generated PME.
1965 * @dev: Device to check.
1967 * Check the PME status of the device and if set, clear it and clear PME enable
1968 * (if set). Return 'true' if PME status and PME enable were both set or
1969 * 'false' otherwise.
1971 bool pci_check_pme_status(struct pci_dev
*dev
)
1980 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
1981 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
1982 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
1985 /* Clear PME status. */
1986 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1987 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
1988 /* Disable PME to avoid interrupt flood. */
1989 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1993 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
1999 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2000 * @dev: Device to handle.
2001 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2003 * Check if @dev has generated PME and queue a resume request for it in that
2006 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
2008 if (pme_poll_reset
&& dev
->pme_poll
)
2009 dev
->pme_poll
= false;
2011 if (pci_check_pme_status(dev
)) {
2012 pci_wakeup_event(dev
);
2013 pm_request_resume(&dev
->dev
);
2019 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2020 * @bus: Top bus of the subtree to walk.
2022 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
2025 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
2030 * pci_pme_capable - check the capability of PCI device to generate PME#
2031 * @dev: PCI device to handle.
2032 * @state: PCI state from which device will issue PME#.
2034 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
2039 return !!(dev
->pme_support
& (1 << state
));
2041 EXPORT_SYMBOL(pci_pme_capable
);
2043 static void pci_pme_list_scan(struct work_struct
*work
)
2045 struct pci_pme_device
*pme_dev
, *n
;
2047 mutex_lock(&pci_pme_list_mutex
);
2048 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
2049 if (pme_dev
->dev
->pme_poll
) {
2050 struct pci_dev
*bridge
;
2052 bridge
= pme_dev
->dev
->bus
->self
;
2054 * If bridge is in low power state, the
2055 * configuration space of subordinate devices
2056 * may be not accessible
2058 if (bridge
&& bridge
->current_state
!= PCI_D0
)
2060 pci_pme_wakeup(pme_dev
->dev
, NULL
);
2062 list_del(&pme_dev
->list
);
2066 if (!list_empty(&pci_pme_list
))
2067 queue_delayed_work(system_freezable_wq
, &pci_pme_work
,
2068 msecs_to_jiffies(PME_TIMEOUT
));
2069 mutex_unlock(&pci_pme_list_mutex
);
2072 static void __pci_pme_active(struct pci_dev
*dev
, bool enable
)
2076 if (!dev
->pme_support
)
2079 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2080 /* Clear PME_Status by writing 1 to it and enable PME# */
2081 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
2083 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2085 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2089 * pci_pme_restore - Restore PME configuration after config space restore.
2090 * @dev: PCI device to update.
2092 void pci_pme_restore(struct pci_dev
*dev
)
2096 if (!dev
->pme_support
)
2099 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2100 if (dev
->wakeup_prepared
) {
2101 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
2102 pmcsr
&= ~PCI_PM_CTRL_PME_STATUS
;
2104 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2105 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
2107 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2111 * pci_pme_active - enable or disable PCI device's PME# function
2112 * @dev: PCI device to handle.
2113 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2115 * The caller must verify that the device is capable of generating PME# before
2116 * calling this function with @enable equal to 'true'.
2118 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
2120 __pci_pme_active(dev
, enable
);
2123 * PCI (as opposed to PCIe) PME requires that the device have
2124 * its PME# line hooked up correctly. Not all hardware vendors
2125 * do this, so the PME never gets delivered and the device
2126 * remains asleep. The easiest way around this is to
2127 * periodically walk the list of suspended devices and check
2128 * whether any have their PME flag set. The assumption is that
2129 * we'll wake up often enough anyway that this won't be a huge
2130 * hit, and the power savings from the devices will still be a
2133 * Although PCIe uses in-band PME message instead of PME# line
2134 * to report PME, PME does not work for some PCIe devices in
2135 * reality. For example, there are devices that set their PME
2136 * status bits, but don't really bother to send a PME message;
2137 * there are PCI Express Root Ports that don't bother to
2138 * trigger interrupts when they receive PME messages from the
2139 * devices below. So PME poll is used for PCIe devices too.
2142 if (dev
->pme_poll
) {
2143 struct pci_pme_device
*pme_dev
;
2145 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
2148 pci_warn(dev
, "can't enable PME#\n");
2152 mutex_lock(&pci_pme_list_mutex
);
2153 list_add(&pme_dev
->list
, &pci_pme_list
);
2154 if (list_is_singular(&pci_pme_list
))
2155 queue_delayed_work(system_freezable_wq
,
2157 msecs_to_jiffies(PME_TIMEOUT
));
2158 mutex_unlock(&pci_pme_list_mutex
);
2160 mutex_lock(&pci_pme_list_mutex
);
2161 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
2162 if (pme_dev
->dev
== dev
) {
2163 list_del(&pme_dev
->list
);
2168 mutex_unlock(&pci_pme_list_mutex
);
2172 pci_dbg(dev
, "PME# %s\n", enable
? "enabled" : "disabled");
2174 EXPORT_SYMBOL(pci_pme_active
);
2177 * __pci_enable_wake - enable PCI device as wakeup event source
2178 * @dev: PCI device affected
2179 * @state: PCI state from which device will issue wakeup events
2180 * @enable: True to enable event generation; false to disable
2182 * This enables the device as a wakeup event source, or disables it.
2183 * When such events involves platform-specific hooks, those hooks are
2184 * called automatically by this routine.
2186 * Devices with legacy power management (no standard PCI PM capabilities)
2187 * always require such platform hooks.
2190 * 0 is returned on success
2191 * -EINVAL is returned if device is not supposed to wake up the system
2192 * Error code depending on the platform is returned if both the platform and
2193 * the native mechanism fail to enable the generation of wake-up events
2195 static int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
, bool enable
)
2200 * Bridges that are not power-manageable directly only signal
2201 * wakeup on behalf of subordinate devices which is set up
2202 * elsewhere, so skip them. However, bridges that are
2203 * power-manageable may signal wakeup for themselves (for example,
2204 * on a hotplug event) and they need to be covered here.
2206 if (!pci_power_manageable(dev
))
2209 /* Don't do the same thing twice in a row for one device. */
2210 if (!!enable
== !!dev
->wakeup_prepared
)
2214 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2215 * Anderson we should be doing PME# wake enable followed by ACPI wake
2216 * enable. To disable wake-up we call the platform first, for symmetry.
2222 if (pci_pme_capable(dev
, state
))
2223 pci_pme_active(dev
, true);
2226 error
= platform_pci_set_wakeup(dev
, true);
2230 dev
->wakeup_prepared
= true;
2232 platform_pci_set_wakeup(dev
, false);
2233 pci_pme_active(dev
, false);
2234 dev
->wakeup_prepared
= false;
2241 * pci_enable_wake - change wakeup settings for a PCI device
2242 * @pci_dev: Target device
2243 * @state: PCI state from which device will issue wakeup events
2244 * @enable: Whether or not to enable event generation
2246 * If @enable is set, check device_may_wakeup() for the device before calling
2247 * __pci_enable_wake() for it.
2249 int pci_enable_wake(struct pci_dev
*pci_dev
, pci_power_t state
, bool enable
)
2251 if (enable
&& !device_may_wakeup(&pci_dev
->dev
))
2254 return __pci_enable_wake(pci_dev
, state
, enable
);
2256 EXPORT_SYMBOL(pci_enable_wake
);
2259 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2260 * @dev: PCI device to prepare
2261 * @enable: True to enable wake-up event generation; false to disable
2263 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2264 * and this function allows them to set that up cleanly - pci_enable_wake()
2265 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2266 * ordering constraints.
2268 * This function only returns error code if the device is not allowed to wake
2269 * up the system from sleep or it is not capable of generating PME# from both
2270 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2272 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
2274 return pci_pme_capable(dev
, PCI_D3cold
) ?
2275 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
2276 pci_enable_wake(dev
, PCI_D3hot
, enable
);
2278 EXPORT_SYMBOL(pci_wake_from_d3
);
2281 * pci_target_state - find an appropriate low power state for a given PCI dev
2283 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2285 * Use underlying platform code to find a supported low power state for @dev.
2286 * If the platform can't manage @dev, return the deepest state from which it
2287 * can generate wake events, based on any available PME info.
2289 static pci_power_t
pci_target_state(struct pci_dev
*dev
, bool wakeup
)
2291 pci_power_t target_state
= PCI_D3hot
;
2293 if (platform_pci_power_manageable(dev
)) {
2295 * Call the platform to find the target state for the device.
2297 pci_power_t state
= platform_pci_choose_state(dev
);
2300 case PCI_POWER_ERROR
:
2305 if (pci_no_d1d2(dev
))
2307 /* else, fall through */
2309 target_state
= state
;
2312 return target_state
;
2316 target_state
= PCI_D0
;
2319 * If the device is in D3cold even though it's not power-manageable by
2320 * the platform, it may have been powered down by non-standard means.
2321 * Best to let it slumber.
2323 if (dev
->current_state
== PCI_D3cold
)
2324 target_state
= PCI_D3cold
;
2328 * Find the deepest state from which the device can generate
2331 if (dev
->pme_support
) {
2333 && !(dev
->pme_support
& (1 << target_state
)))
2338 return target_state
;
2342 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2343 * @dev: Device to handle.
2345 * Choose the power state appropriate for the device depending on whether
2346 * it can wake up the system and/or is power manageable by the platform
2347 * (PCI_D3hot is the default) and put the device into that state.
2349 int pci_prepare_to_sleep(struct pci_dev
*dev
)
2351 bool wakeup
= device_may_wakeup(&dev
->dev
);
2352 pci_power_t target_state
= pci_target_state(dev
, wakeup
);
2355 if (target_state
== PCI_POWER_ERROR
)
2358 pci_enable_wake(dev
, target_state
, wakeup
);
2360 error
= pci_set_power_state(dev
, target_state
);
2363 pci_enable_wake(dev
, target_state
, false);
2367 EXPORT_SYMBOL(pci_prepare_to_sleep
);
2370 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2371 * @dev: Device to handle.
2373 * Disable device's system wake-up capability and put it into D0.
2375 int pci_back_from_sleep(struct pci_dev
*dev
)
2377 pci_enable_wake(dev
, PCI_D0
, false);
2378 return pci_set_power_state(dev
, PCI_D0
);
2380 EXPORT_SYMBOL(pci_back_from_sleep
);
2383 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2384 * @dev: PCI device being suspended.
2386 * Prepare @dev to generate wake-up events at run time and put it into a low
2389 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
2391 pci_power_t target_state
;
2394 target_state
= pci_target_state(dev
, device_can_wakeup(&dev
->dev
));
2395 if (target_state
== PCI_POWER_ERROR
)
2398 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
2400 __pci_enable_wake(dev
, target_state
, pci_dev_run_wake(dev
));
2402 error
= pci_set_power_state(dev
, target_state
);
2405 pci_enable_wake(dev
, target_state
, false);
2406 dev
->runtime_d3cold
= false;
2413 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2414 * @dev: Device to check.
2416 * Return true if the device itself is capable of generating wake-up events
2417 * (through the platform or using the native PCIe PME) or if the device supports
2418 * PME and one of its upstream bridges can generate wake-up events.
2420 bool pci_dev_run_wake(struct pci_dev
*dev
)
2422 struct pci_bus
*bus
= dev
->bus
;
2424 if (!dev
->pme_support
)
2427 /* PME-capable in principle, but not from the target power state */
2428 if (!pci_pme_capable(dev
, pci_target_state(dev
, true)))
2431 if (device_can_wakeup(&dev
->dev
))
2434 while (bus
->parent
) {
2435 struct pci_dev
*bridge
= bus
->self
;
2437 if (device_can_wakeup(&bridge
->dev
))
2443 /* We have reached the root bus. */
2445 return device_can_wakeup(bus
->bridge
);
2449 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2452 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2453 * @pci_dev: Device to check.
2455 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2456 * reconfigured due to wakeup settings difference between system and runtime
2457 * suspend and the current power state of it is suitable for the upcoming
2458 * (system) transition.
2460 * If the device is not configured for system wakeup, disable PME for it before
2461 * returning 'true' to prevent it from waking up the system unnecessarily.
2463 bool pci_dev_keep_suspended(struct pci_dev
*pci_dev
)
2465 struct device
*dev
= &pci_dev
->dev
;
2466 bool wakeup
= device_may_wakeup(dev
);
2468 if (!pm_runtime_suspended(dev
)
2469 || pci_target_state(pci_dev
, wakeup
) != pci_dev
->current_state
2470 || platform_pci_need_resume(pci_dev
))
2474 * At this point the device is good to go unless it's been configured
2475 * to generate PME at the runtime suspend time, but it is not supposed
2476 * to wake up the system. In that case, simply disable PME for it
2477 * (it will have to be re-enabled on exit from system resume).
2479 * If the device's power state is D3cold and the platform check above
2480 * hasn't triggered, the device's configuration is suitable and we don't
2481 * need to manipulate it at all.
2483 spin_lock_irq(&dev
->power
.lock
);
2485 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
&&
2487 __pci_pme_active(pci_dev
, false);
2489 spin_unlock_irq(&dev
->power
.lock
);
2494 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2495 * @pci_dev: Device to handle.
2497 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2498 * it might have been disabled during the prepare phase of system suspend if
2499 * the device was not configured for system wakeup.
2501 void pci_dev_complete_resume(struct pci_dev
*pci_dev
)
2503 struct device
*dev
= &pci_dev
->dev
;
2505 if (!pci_dev_run_wake(pci_dev
))
2508 spin_lock_irq(&dev
->power
.lock
);
2510 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
)
2511 __pci_pme_active(pci_dev
, true);
2513 spin_unlock_irq(&dev
->power
.lock
);
2516 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2518 struct device
*dev
= &pdev
->dev
;
2519 struct device
*parent
= dev
->parent
;
2522 pm_runtime_get_sync(parent
);
2523 pm_runtime_get_noresume(dev
);
2525 * pdev->current_state is set to PCI_D3cold during suspending,
2526 * so wait until suspending completes
2528 pm_runtime_barrier(dev
);
2530 * Only need to resume devices in D3cold, because config
2531 * registers are still accessible for devices suspended but
2534 if (pdev
->current_state
== PCI_D3cold
)
2535 pm_runtime_resume(dev
);
2538 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2540 struct device
*dev
= &pdev
->dev
;
2541 struct device
*parent
= dev
->parent
;
2543 pm_runtime_put(dev
);
2545 pm_runtime_put_sync(parent
);
2548 static const struct dmi_system_id bridge_d3_blacklist
[] = {
2552 * Gigabyte X299 root port is not marked as hotplug capable
2553 * which allows Linux to power manage it. However, this
2554 * confuses the BIOS SMI handler so don't power manage root
2555 * ports on that system.
2557 .ident
= "X299 DESIGNARE EX-CF",
2559 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co., Ltd."),
2560 DMI_MATCH(DMI_BOARD_NAME
, "X299 DESIGNARE EX-CF"),
2568 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2569 * @bridge: Bridge to check
2571 * This function checks if it is possible to move the bridge to D3.
2572 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2574 bool pci_bridge_d3_possible(struct pci_dev
*bridge
)
2576 if (!pci_is_pcie(bridge
))
2579 switch (pci_pcie_type(bridge
)) {
2580 case PCI_EXP_TYPE_ROOT_PORT
:
2581 case PCI_EXP_TYPE_UPSTREAM
:
2582 case PCI_EXP_TYPE_DOWNSTREAM
:
2583 if (pci_bridge_d3_disable
)
2587 * Hotplug ports handled by firmware in System Management Mode
2588 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2590 if (bridge
->is_hotplug_bridge
&& !pciehp_is_native(bridge
))
2593 if (pci_bridge_d3_force
)
2596 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2597 if (bridge
->is_thunderbolt
)
2600 /* Platform might know better if the bridge supports D3 */
2601 if (platform_pci_bridge_d3(bridge
))
2605 * Hotplug ports handled natively by the OS were not validated
2606 * by vendors for runtime D3 at least until 2018 because there
2607 * was no OS support.
2609 if (bridge
->is_hotplug_bridge
)
2612 if (dmi_check_system(bridge_d3_blacklist
))
2616 * It should be safe to put PCIe ports from 2015 or newer
2619 if (dmi_get_bios_year() >= 2015)
2627 static int pci_dev_check_d3cold(struct pci_dev
*dev
, void *data
)
2629 bool *d3cold_ok
= data
;
2631 if (/* The device needs to be allowed to go D3cold ... */
2632 dev
->no_d3cold
|| !dev
->d3cold_allowed
||
2634 /* ... and if it is wakeup capable to do so from D3cold. */
2635 (device_may_wakeup(&dev
->dev
) &&
2636 !pci_pme_capable(dev
, PCI_D3cold
)) ||
2638 /* If it is a bridge it must be allowed to go to D3. */
2639 !pci_power_manageable(dev
))
2647 * pci_bridge_d3_update - Update bridge D3 capabilities
2648 * @dev: PCI device which is changed
2650 * Update upstream bridge PM capabilities accordingly depending on if the
2651 * device PM configuration was changed or the device is being removed. The
2652 * change is also propagated upstream.
2654 void pci_bridge_d3_update(struct pci_dev
*dev
)
2656 bool remove
= !device_is_registered(&dev
->dev
);
2657 struct pci_dev
*bridge
;
2658 bool d3cold_ok
= true;
2660 bridge
= pci_upstream_bridge(dev
);
2661 if (!bridge
|| !pci_bridge_d3_possible(bridge
))
2665 * If D3 is currently allowed for the bridge, removing one of its
2666 * children won't change that.
2668 if (remove
&& bridge
->bridge_d3
)
2672 * If D3 is currently allowed for the bridge and a child is added or
2673 * changed, disallowance of D3 can only be caused by that child, so
2674 * we only need to check that single device, not any of its siblings.
2676 * If D3 is currently not allowed for the bridge, checking the device
2677 * first may allow us to skip checking its siblings.
2680 pci_dev_check_d3cold(dev
, &d3cold_ok
);
2683 * If D3 is currently not allowed for the bridge, this may be caused
2684 * either by the device being changed/removed or any of its siblings,
2685 * so we need to go through all children to find out if one of them
2686 * continues to block D3.
2688 if (d3cold_ok
&& !bridge
->bridge_d3
)
2689 pci_walk_bus(bridge
->subordinate
, pci_dev_check_d3cold
,
2692 if (bridge
->bridge_d3
!= d3cold_ok
) {
2693 bridge
->bridge_d3
= d3cold_ok
;
2694 /* Propagate change to upstream bridges */
2695 pci_bridge_d3_update(bridge
);
2700 * pci_d3cold_enable - Enable D3cold for device
2701 * @dev: PCI device to handle
2703 * This function can be used in drivers to enable D3cold from the device
2704 * they handle. It also updates upstream PCI bridge PM capabilities
2707 void pci_d3cold_enable(struct pci_dev
*dev
)
2709 if (dev
->no_d3cold
) {
2710 dev
->no_d3cold
= false;
2711 pci_bridge_d3_update(dev
);
2714 EXPORT_SYMBOL_GPL(pci_d3cold_enable
);
2717 * pci_d3cold_disable - Disable D3cold for device
2718 * @dev: PCI device to handle
2720 * This function can be used in drivers to disable D3cold from the device
2721 * they handle. It also updates upstream PCI bridge PM capabilities
2724 void pci_d3cold_disable(struct pci_dev
*dev
)
2726 if (!dev
->no_d3cold
) {
2727 dev
->no_d3cold
= true;
2728 pci_bridge_d3_update(dev
);
2731 EXPORT_SYMBOL_GPL(pci_d3cold_disable
);
2734 * pci_pm_init - Initialize PM functions of given PCI device
2735 * @dev: PCI device to handle.
2737 void pci_pm_init(struct pci_dev
*dev
)
2743 pm_runtime_forbid(&dev
->dev
);
2744 pm_runtime_set_active(&dev
->dev
);
2745 pm_runtime_enable(&dev
->dev
);
2746 device_enable_async_suspend(&dev
->dev
);
2747 dev
->wakeup_prepared
= false;
2750 dev
->pme_support
= 0;
2752 /* find PCI PM capability in list */
2753 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2756 /* Check device's ability to generate PME# */
2757 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2759 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2760 pci_err(dev
, "unsupported PM cap regs version (%u)\n",
2761 pmc
& PCI_PM_CAP_VER_MASK
);
2766 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2767 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2768 dev
->bridge_d3
= pci_bridge_d3_possible(dev
);
2769 dev
->d3cold_allowed
= true;
2771 dev
->d1_support
= false;
2772 dev
->d2_support
= false;
2773 if (!pci_no_d1d2(dev
)) {
2774 if (pmc
& PCI_PM_CAP_D1
)
2775 dev
->d1_support
= true;
2776 if (pmc
& PCI_PM_CAP_D2
)
2777 dev
->d2_support
= true;
2779 if (dev
->d1_support
|| dev
->d2_support
)
2780 pci_printk(KERN_DEBUG
, dev
, "supports%s%s\n",
2781 dev
->d1_support
? " D1" : "",
2782 dev
->d2_support
? " D2" : "");
2785 pmc
&= PCI_PM_CAP_PME_MASK
;
2787 pci_printk(KERN_DEBUG
, dev
, "PME# supported from%s%s%s%s%s\n",
2788 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2789 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2790 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2791 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2792 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2793 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2794 dev
->pme_poll
= true;
2796 * Make device's PM flags reflect the wake-up capability, but
2797 * let the user space enable it to wake up the system as needed.
2799 device_set_wakeup_capable(&dev
->dev
, true);
2800 /* Disable the PME# generation functionality */
2801 pci_pme_active(dev
, false);
2804 pci_read_config_word(dev
, PCI_STATUS
, &status
);
2805 if (status
& PCI_STATUS_IMM_READY
)
2809 static unsigned long pci_ea_flags(struct pci_dev
*dev
, u8 prop
)
2811 unsigned long flags
= IORESOURCE_PCI_FIXED
| IORESOURCE_PCI_EA_BEI
;
2815 case PCI_EA_P_VF_MEM
:
2816 flags
|= IORESOURCE_MEM
;
2818 case PCI_EA_P_MEM_PREFETCH
:
2819 case PCI_EA_P_VF_MEM_PREFETCH
:
2820 flags
|= IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
2823 flags
|= IORESOURCE_IO
;
2832 static struct resource
*pci_ea_get_resource(struct pci_dev
*dev
, u8 bei
,
2835 if (bei
<= PCI_EA_BEI_BAR5
&& prop
<= PCI_EA_P_IO
)
2836 return &dev
->resource
[bei
];
2837 #ifdef CONFIG_PCI_IOV
2838 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
&&
2839 (prop
== PCI_EA_P_VF_MEM
|| prop
== PCI_EA_P_VF_MEM_PREFETCH
))
2840 return &dev
->resource
[PCI_IOV_RESOURCES
+
2841 bei
- PCI_EA_BEI_VF_BAR0
];
2843 else if (bei
== PCI_EA_BEI_ROM
)
2844 return &dev
->resource
[PCI_ROM_RESOURCE
];
2849 /* Read an Enhanced Allocation (EA) entry */
2850 static int pci_ea_read(struct pci_dev
*dev
, int offset
)
2852 struct resource
*res
;
2853 int ent_size
, ent_offset
= offset
;
2854 resource_size_t start
, end
;
2855 unsigned long flags
;
2856 u32 dw0
, bei
, base
, max_offset
;
2858 bool support_64
= (sizeof(resource_size_t
) >= 8);
2860 pci_read_config_dword(dev
, ent_offset
, &dw0
);
2863 /* Entry size field indicates DWORDs after 1st */
2864 ent_size
= ((dw0
& PCI_EA_ES
) + 1) << 2;
2866 if (!(dw0
& PCI_EA_ENABLE
)) /* Entry not enabled */
2869 bei
= (dw0
& PCI_EA_BEI
) >> 4;
2870 prop
= (dw0
& PCI_EA_PP
) >> 8;
2873 * If the Property is in the reserved range, try the Secondary
2876 if (prop
> PCI_EA_P_BRIDGE_IO
&& prop
< PCI_EA_P_MEM_RESERVED
)
2877 prop
= (dw0
& PCI_EA_SP
) >> 16;
2878 if (prop
> PCI_EA_P_BRIDGE_IO
)
2881 res
= pci_ea_get_resource(dev
, bei
, prop
);
2883 pci_err(dev
, "Unsupported EA entry BEI: %u\n", bei
);
2887 flags
= pci_ea_flags(dev
, prop
);
2889 pci_err(dev
, "Unsupported EA properties: %#x\n", prop
);
2894 pci_read_config_dword(dev
, ent_offset
, &base
);
2895 start
= (base
& PCI_EA_FIELD_MASK
);
2898 /* Read MaxOffset */
2899 pci_read_config_dword(dev
, ent_offset
, &max_offset
);
2902 /* Read Base MSBs (if 64-bit entry) */
2903 if (base
& PCI_EA_IS_64
) {
2906 pci_read_config_dword(dev
, ent_offset
, &base_upper
);
2909 flags
|= IORESOURCE_MEM_64
;
2911 /* entry starts above 32-bit boundary, can't use */
2912 if (!support_64
&& base_upper
)
2916 start
|= ((u64
)base_upper
<< 32);
2919 end
= start
+ (max_offset
| 0x03);
2921 /* Read MaxOffset MSBs (if 64-bit entry) */
2922 if (max_offset
& PCI_EA_IS_64
) {
2923 u32 max_offset_upper
;
2925 pci_read_config_dword(dev
, ent_offset
, &max_offset_upper
);
2928 flags
|= IORESOURCE_MEM_64
;
2930 /* entry too big, can't use */
2931 if (!support_64
&& max_offset_upper
)
2935 end
+= ((u64
)max_offset_upper
<< 32);
2939 pci_err(dev
, "EA Entry crosses address boundary\n");
2943 if (ent_size
!= ent_offset
- offset
) {
2944 pci_err(dev
, "EA Entry Size (%d) does not match length read (%d)\n",
2945 ent_size
, ent_offset
- offset
);
2949 res
->name
= pci_name(dev
);
2954 if (bei
<= PCI_EA_BEI_BAR5
)
2955 pci_printk(KERN_DEBUG
, dev
, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2957 else if (bei
== PCI_EA_BEI_ROM
)
2958 pci_printk(KERN_DEBUG
, dev
, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2960 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
)
2961 pci_printk(KERN_DEBUG
, dev
, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2962 bei
- PCI_EA_BEI_VF_BAR0
, res
, prop
);
2964 pci_printk(KERN_DEBUG
, dev
, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2968 return offset
+ ent_size
;
2971 /* Enhanced Allocation Initialization */
2972 void pci_ea_init(struct pci_dev
*dev
)
2979 /* find PCI EA capability in list */
2980 ea
= pci_find_capability(dev
, PCI_CAP_ID_EA
);
2984 /* determine the number of entries */
2985 pci_bus_read_config_byte(dev
->bus
, dev
->devfn
, ea
+ PCI_EA_NUM_ENT
,
2987 num_ent
&= PCI_EA_NUM_ENT_MASK
;
2989 offset
= ea
+ PCI_EA_FIRST_ENT
;
2991 /* Skip DWORD 2 for type 1 functions */
2992 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
)
2995 /* parse each EA entry */
2996 for (i
= 0; i
< num_ent
; ++i
)
2997 offset
= pci_ea_read(dev
, offset
);
3000 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
3001 struct pci_cap_saved_state
*new_cap
)
3003 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
3007 * _pci_add_cap_save_buffer - allocate buffer for saving given
3008 * capability registers
3009 * @dev: the PCI device
3010 * @cap: the capability to allocate the buffer for
3011 * @extended: Standard or Extended capability ID
3012 * @size: requested size of the buffer
3014 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
3015 bool extended
, unsigned int size
)
3018 struct pci_cap_saved_state
*save_state
;
3021 pos
= pci_find_ext_capability(dev
, cap
);
3023 pos
= pci_find_capability(dev
, cap
);
3028 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
3032 save_state
->cap
.cap_nr
= cap
;
3033 save_state
->cap
.cap_extended
= extended
;
3034 save_state
->cap
.size
= size
;
3035 pci_add_saved_cap(dev
, save_state
);
3040 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
3042 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
3045 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
3047 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
3051 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3052 * @dev: the PCI device
3054 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
3058 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
3059 PCI_EXP_SAVE_REGS
* sizeof(u16
));
3061 pci_err(dev
, "unable to preallocate PCI Express save buffer\n");
3063 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
3065 pci_err(dev
, "unable to preallocate PCI-X save buffer\n");
3067 error
= pci_add_ext_cap_save_buffer(dev
, PCI_EXT_CAP_ID_LTR
,
3070 pci_err(dev
, "unable to allocate suspend buffer for LTR\n");
3072 pci_allocate_vc_save_buffers(dev
);
3075 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
3077 struct pci_cap_saved_state
*tmp
;
3078 struct hlist_node
*n
;
3080 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
3085 * pci_configure_ari - enable or disable ARI forwarding
3086 * @dev: the PCI device
3088 * If @dev and its upstream bridge both support ARI, enable ARI in the
3089 * bridge. Otherwise, disable ARI in the bridge.
3091 void pci_configure_ari(struct pci_dev
*dev
)
3094 struct pci_dev
*bridge
;
3096 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
3099 bridge
= dev
->bus
->self
;
3103 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3104 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
3107 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
3108 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
3109 PCI_EXP_DEVCTL2_ARI
);
3110 bridge
->ari_enabled
= 1;
3112 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
3113 PCI_EXP_DEVCTL2_ARI
);
3114 bridge
->ari_enabled
= 0;
3118 static int pci_acs_enable
;
3121 * pci_request_acs - ask for ACS to be enabled if supported
3123 void pci_request_acs(void)
3128 static const char *disable_acs_redir_param
;
3131 * pci_disable_acs_redir - disable ACS redirect capabilities
3132 * @dev: the PCI device
3134 * For only devices specified in the disable_acs_redir parameter.
3136 static void pci_disable_acs_redir(struct pci_dev
*dev
)
3143 if (!disable_acs_redir_param
)
3146 p
= disable_acs_redir_param
;
3148 ret
= pci_dev_str_match(dev
, p
, &p
);
3150 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3151 disable_acs_redir_param
);
3154 } else if (ret
== 1) {
3159 if (*p
!= ';' && *p
!= ',') {
3160 /* End of param or invalid format */
3169 if (!pci_dev_specific_disable_acs_redir(dev
))
3172 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
3174 pci_warn(dev
, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3178 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3180 /* P2P Request & Completion Redirect */
3181 ctrl
&= ~(PCI_ACS_RR
| PCI_ACS_CR
| PCI_ACS_EC
);
3183 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
3185 pci_info(dev
, "disabled ACS redirect\n");
3189 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
3190 * @dev: the PCI device
3192 static void pci_std_enable_acs(struct pci_dev
*dev
)
3198 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
3202 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
3203 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3205 /* Source Validation */
3206 ctrl
|= (cap
& PCI_ACS_SV
);
3208 /* P2P Request Redirect */
3209 ctrl
|= (cap
& PCI_ACS_RR
);
3211 /* P2P Completion Redirect */
3212 ctrl
|= (cap
& PCI_ACS_CR
);
3214 /* Upstream Forwarding */
3215 ctrl
|= (cap
& PCI_ACS_UF
);
3217 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
3221 * pci_enable_acs - enable ACS if hardware support it
3222 * @dev: the PCI device
3224 void pci_enable_acs(struct pci_dev
*dev
)
3226 if (!pci_acs_enable
)
3227 goto disable_acs_redir
;
3229 if (!pci_dev_specific_enable_acs(dev
))
3230 goto disable_acs_redir
;
3232 pci_std_enable_acs(dev
);
3236 * Note: pci_disable_acs_redir() must be called even if ACS was not
3237 * enabled by the kernel because it may have been enabled by
3238 * platform firmware. So if we are told to disable it, we should
3239 * always disable it after setting the kernel's default
3242 pci_disable_acs_redir(dev
);
3245 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3250 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
3255 * Except for egress control, capabilities are either required
3256 * or only required if controllable. Features missing from the
3257 * capability field can therefore be assumed as hard-wired enabled.
3259 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
3260 acs_flags
&= (cap
| PCI_ACS_EC
);
3262 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3263 return (ctrl
& acs_flags
) == acs_flags
;
3267 * pci_acs_enabled - test ACS against required flags for a given device
3268 * @pdev: device to test
3269 * @acs_flags: required PCI ACS flags
3271 * Return true if the device supports the provided flags. Automatically
3272 * filters out flags that are not implemented on multifunction devices.
3274 * Note that this interface checks the effective ACS capabilities of the
3275 * device rather than the actual capabilities. For instance, most single
3276 * function endpoints are not required to support ACS because they have no
3277 * opportunity for peer-to-peer access. We therefore return 'true'
3278 * regardless of whether the device exposes an ACS capability. This makes
3279 * it much easier for callers of this function to ignore the actual type
3280 * or topology of the device when testing ACS support.
3282 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3286 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
3291 * Conventional PCI and PCI-X devices never support ACS, either
3292 * effectively or actually. The shared bus topology implies that
3293 * any device on the bus can receive or snoop DMA.
3295 if (!pci_is_pcie(pdev
))
3298 switch (pci_pcie_type(pdev
)) {
3300 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3301 * but since their primary interface is PCI/X, we conservatively
3302 * handle them as we would a non-PCIe device.
3304 case PCI_EXP_TYPE_PCIE_BRIDGE
:
3306 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3307 * applicable... must never implement an ACS Extended Capability...".
3308 * This seems arbitrary, but we take a conservative interpretation
3309 * of this statement.
3311 case PCI_EXP_TYPE_PCI_BRIDGE
:
3312 case PCI_EXP_TYPE_RC_EC
:
3315 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3316 * implement ACS in order to indicate their peer-to-peer capabilities,
3317 * regardless of whether they are single- or multi-function devices.
3319 case PCI_EXP_TYPE_DOWNSTREAM
:
3320 case PCI_EXP_TYPE_ROOT_PORT
:
3321 return pci_acs_flags_enabled(pdev
, acs_flags
);
3323 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3324 * implemented by the remaining PCIe types to indicate peer-to-peer
3325 * capabilities, but only when they are part of a multifunction
3326 * device. The footnote for section 6.12 indicates the specific
3327 * PCIe types included here.
3329 case PCI_EXP_TYPE_ENDPOINT
:
3330 case PCI_EXP_TYPE_UPSTREAM
:
3331 case PCI_EXP_TYPE_LEG_END
:
3332 case PCI_EXP_TYPE_RC_END
:
3333 if (!pdev
->multifunction
)
3336 return pci_acs_flags_enabled(pdev
, acs_flags
);
3340 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3341 * to single function devices with the exception of downstream ports.
3347 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3348 * @start: starting downstream device
3349 * @end: ending upstream device or NULL to search to the root bus
3350 * @acs_flags: required flags
3352 * Walk up a device tree from start to end testing PCI ACS support. If
3353 * any step along the way does not support the required flags, return false.
3355 bool pci_acs_path_enabled(struct pci_dev
*start
,
3356 struct pci_dev
*end
, u16 acs_flags
)
3358 struct pci_dev
*pdev
, *parent
= start
;
3363 if (!pci_acs_enabled(pdev
, acs_flags
))
3366 if (pci_is_root_bus(pdev
->bus
))
3367 return (end
== NULL
);
3369 parent
= pdev
->bus
->self
;
3370 } while (pdev
!= end
);
3376 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3380 * Helper to find the position of the ctrl register for a BAR.
3381 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3382 * Returns -ENOENT if no ctrl register for the BAR could be found.
3384 static int pci_rebar_find_pos(struct pci_dev
*pdev
, int bar
)
3386 unsigned int pos
, nbars
, i
;
3389 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
3393 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3394 nbars
= (ctrl
& PCI_REBAR_CTRL_NBAR_MASK
) >>
3395 PCI_REBAR_CTRL_NBAR_SHIFT
;
3397 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
3400 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3401 bar_idx
= ctrl
& PCI_REBAR_CTRL_BAR_IDX
;
3410 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3412 * @bar: BAR to query
3414 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3415 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3417 u32
pci_rebar_get_possible_sizes(struct pci_dev
*pdev
, int bar
)
3422 pos
= pci_rebar_find_pos(pdev
, bar
);
3426 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CAP
, &cap
);
3427 return (cap
& PCI_REBAR_CAP_SIZES
) >> 4;
3431 * pci_rebar_get_current_size - get the current size of a BAR
3433 * @bar: BAR to set size to
3435 * Read the size of a BAR from the resizable BAR config.
3436 * Returns size if found or negative error code.
3438 int pci_rebar_get_current_size(struct pci_dev
*pdev
, int bar
)
3443 pos
= pci_rebar_find_pos(pdev
, bar
);
3447 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3448 return (ctrl
& PCI_REBAR_CTRL_BAR_SIZE
) >> PCI_REBAR_CTRL_BAR_SHIFT
;
3452 * pci_rebar_set_size - set a new size for a BAR
3454 * @bar: BAR to set size to
3455 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3457 * Set the new size of a BAR as defined in the spec.
3458 * Returns zero if resizing was successful, error code otherwise.
3460 int pci_rebar_set_size(struct pci_dev
*pdev
, int bar
, int size
)
3465 pos
= pci_rebar_find_pos(pdev
, bar
);
3469 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3470 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
3471 ctrl
|= size
<< PCI_REBAR_CTRL_BAR_SHIFT
;
3472 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
3477 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3478 * @dev: the PCI device
3479 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3480 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3481 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3482 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3484 * Return 0 if all upstream bridges support AtomicOp routing, egress
3485 * blocking is disabled on all upstream ports, and the root port supports
3486 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3487 * AtomicOp completion), or negative otherwise.
3489 int pci_enable_atomic_ops_to_root(struct pci_dev
*dev
, u32 cap_mask
)
3491 struct pci_bus
*bus
= dev
->bus
;
3492 struct pci_dev
*bridge
;
3495 if (!pci_is_pcie(dev
))
3499 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3500 * AtomicOp requesters. For now, we only support endpoints as
3501 * requesters and root ports as completers. No endpoints as
3502 * completers, and no peer-to-peer.
3505 switch (pci_pcie_type(dev
)) {
3506 case PCI_EXP_TYPE_ENDPOINT
:
3507 case PCI_EXP_TYPE_LEG_END
:
3508 case PCI_EXP_TYPE_RC_END
:
3514 while (bus
->parent
) {
3517 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3519 switch (pci_pcie_type(bridge
)) {
3520 /* Ensure switch ports support AtomicOp routing */
3521 case PCI_EXP_TYPE_UPSTREAM
:
3522 case PCI_EXP_TYPE_DOWNSTREAM
:
3523 if (!(cap
& PCI_EXP_DEVCAP2_ATOMIC_ROUTE
))
3527 /* Ensure root port supports all the sizes we care about */
3528 case PCI_EXP_TYPE_ROOT_PORT
:
3529 if ((cap
& cap_mask
) != cap_mask
)
3534 /* Ensure upstream ports don't block AtomicOps on egress */
3535 if (!bridge
->has_secondary_link
) {
3536 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCTL2
,
3538 if (ctl2
& PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK
)
3545 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL2
,
3546 PCI_EXP_DEVCTL2_ATOMIC_REQ
);
3549 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root
);
3552 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3553 * @dev: the PCI device
3554 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3556 * Perform INTx swizzling for a device behind one level of bridge. This is
3557 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3558 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3559 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3560 * the PCI Express Base Specification, Revision 2.1)
3562 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
3566 if (pci_ari_enabled(dev
->bus
))
3569 slot
= PCI_SLOT(dev
->devfn
);
3571 return (((pin
- 1) + slot
) % 4) + 1;
3574 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
3582 while (!pci_is_root_bus(dev
->bus
)) {
3583 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3584 dev
= dev
->bus
->self
;
3591 * pci_common_swizzle - swizzle INTx all the way to root bridge
3592 * @dev: the PCI device
3593 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3595 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3596 * bridges all the way up to a PCI root bus.
3598 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
3602 while (!pci_is_root_bus(dev
->bus
)) {
3603 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3604 dev
= dev
->bus
->self
;
3607 return PCI_SLOT(dev
->devfn
);
3609 EXPORT_SYMBOL_GPL(pci_common_swizzle
);
3612 * pci_release_region - Release a PCI bar
3613 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3614 * @bar: BAR to release
3616 * Releases the PCI I/O and memory resources previously reserved by a
3617 * successful call to pci_request_region. Call this function only
3618 * after all use of the PCI regions has ceased.
3620 void pci_release_region(struct pci_dev
*pdev
, int bar
)
3622 struct pci_devres
*dr
;
3624 if (pci_resource_len(pdev
, bar
) == 0)
3626 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
3627 release_region(pci_resource_start(pdev
, bar
),
3628 pci_resource_len(pdev
, bar
));
3629 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
3630 release_mem_region(pci_resource_start(pdev
, bar
),
3631 pci_resource_len(pdev
, bar
));
3633 dr
= find_pci_dr(pdev
);
3635 dr
->region_mask
&= ~(1 << bar
);
3637 EXPORT_SYMBOL(pci_release_region
);
3640 * __pci_request_region - Reserved PCI I/O and memory resource
3641 * @pdev: PCI device whose resources are to be reserved
3642 * @bar: BAR to be reserved
3643 * @res_name: Name to be associated with resource.
3644 * @exclusive: whether the region access is exclusive or not
3646 * Mark the PCI region associated with PCI device @pdev BR @bar as
3647 * being reserved by owner @res_name. Do not access any
3648 * address inside the PCI regions unless this call returns
3651 * If @exclusive is set, then the region is marked so that userspace
3652 * is explicitly not allowed to map the resource via /dev/mem or
3653 * sysfs MMIO access.
3655 * Returns 0 on success, or %EBUSY on error. A warning
3656 * message is also printed on failure.
3658 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
3659 const char *res_name
, int exclusive
)
3661 struct pci_devres
*dr
;
3663 if (pci_resource_len(pdev
, bar
) == 0)
3666 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
3667 if (!request_region(pci_resource_start(pdev
, bar
),
3668 pci_resource_len(pdev
, bar
), res_name
))
3670 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
3671 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
3672 pci_resource_len(pdev
, bar
), res_name
,
3677 dr
= find_pci_dr(pdev
);
3679 dr
->region_mask
|= 1 << bar
;
3684 pci_warn(pdev
, "BAR %d: can't reserve %pR\n", bar
,
3685 &pdev
->resource
[bar
]);
3690 * pci_request_region - Reserve PCI I/O and memory resource
3691 * @pdev: PCI device whose resources are to be reserved
3692 * @bar: BAR to be reserved
3693 * @res_name: Name to be associated with resource
3695 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3696 * being reserved by owner @res_name. Do not access any
3697 * address inside the PCI regions unless this call returns
3700 * Returns 0 on success, or %EBUSY on error. A warning
3701 * message is also printed on failure.
3703 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
3705 return __pci_request_region(pdev
, bar
, res_name
, 0);
3707 EXPORT_SYMBOL(pci_request_region
);
3710 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3711 * @pdev: PCI device whose resources are to be reserved
3712 * @bar: BAR to be reserved
3713 * @res_name: Name to be associated with resource.
3715 * Mark the PCI region associated with PCI device @pdev BR @bar as
3716 * being reserved by owner @res_name. Do not access any
3717 * address inside the PCI regions unless this call returns
3720 * Returns 0 on success, or %EBUSY on error. A warning
3721 * message is also printed on failure.
3723 * The key difference that _exclusive makes it that userspace is
3724 * explicitly not allowed to map the resource via /dev/mem or
3727 int pci_request_region_exclusive(struct pci_dev
*pdev
, int bar
,
3728 const char *res_name
)
3730 return __pci_request_region(pdev
, bar
, res_name
, IORESOURCE_EXCLUSIVE
);
3732 EXPORT_SYMBOL(pci_request_region_exclusive
);
3735 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3736 * @pdev: PCI device whose resources were previously reserved
3737 * @bars: Bitmask of BARs to be released
3739 * Release selected PCI I/O and memory resources previously reserved.
3740 * Call this function only after all use of the PCI regions has ceased.
3742 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
3746 for (i
= 0; i
< 6; i
++)
3747 if (bars
& (1 << i
))
3748 pci_release_region(pdev
, i
);
3750 EXPORT_SYMBOL(pci_release_selected_regions
);
3752 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3753 const char *res_name
, int excl
)
3757 for (i
= 0; i
< 6; i
++)
3758 if (bars
& (1 << i
))
3759 if (__pci_request_region(pdev
, i
, res_name
, excl
))
3765 if (bars
& (1 << i
))
3766 pci_release_region(pdev
, i
);
3773 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3774 * @pdev: PCI device whose resources are to be reserved
3775 * @bars: Bitmask of BARs to be requested
3776 * @res_name: Name to be associated with resource
3778 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3779 const char *res_name
)
3781 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
3783 EXPORT_SYMBOL(pci_request_selected_regions
);
3785 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
3786 const char *res_name
)
3788 return __pci_request_selected_regions(pdev
, bars
, res_name
,
3789 IORESOURCE_EXCLUSIVE
);
3791 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
3794 * pci_release_regions - Release reserved PCI I/O and memory resources
3795 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3797 * Releases all PCI I/O and memory resources previously reserved by a
3798 * successful call to pci_request_regions. Call this function only
3799 * after all use of the PCI regions has ceased.
3802 void pci_release_regions(struct pci_dev
*pdev
)
3804 pci_release_selected_regions(pdev
, (1 << 6) - 1);
3806 EXPORT_SYMBOL(pci_release_regions
);
3809 * pci_request_regions - Reserved PCI I/O and memory resources
3810 * @pdev: PCI device whose resources are to be reserved
3811 * @res_name: Name to be associated with resource.
3813 * Mark all PCI regions associated with PCI device @pdev as
3814 * being reserved by owner @res_name. Do not access any
3815 * address inside the PCI regions unless this call returns
3818 * Returns 0 on success, or %EBUSY on error. A warning
3819 * message is also printed on failure.
3821 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
3823 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
3825 EXPORT_SYMBOL(pci_request_regions
);
3828 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3829 * @pdev: PCI device whose resources are to be reserved
3830 * @res_name: Name to be associated with resource.
3832 * Mark all PCI regions associated with PCI device @pdev as
3833 * being reserved by owner @res_name. Do not access any
3834 * address inside the PCI regions unless this call returns
3837 * pci_request_regions_exclusive() will mark the region so that
3838 * /dev/mem and the sysfs MMIO access will not be allowed.
3840 * Returns 0 on success, or %EBUSY on error. A warning
3841 * message is also printed on failure.
3843 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
3845 return pci_request_selected_regions_exclusive(pdev
,
3846 ((1 << 6) - 1), res_name
);
3848 EXPORT_SYMBOL(pci_request_regions_exclusive
);
3851 * Record the PCI IO range (expressed as CPU physical address + size).
3852 * Return a negative value if an error has occured, zero otherwise
3854 int pci_register_io_range(struct fwnode_handle
*fwnode
, phys_addr_t addr
,
3855 resource_size_t size
)
3859 struct logic_pio_hwaddr
*range
;
3861 if (!size
|| addr
+ size
< addr
)
3864 range
= kzalloc(sizeof(*range
), GFP_ATOMIC
);
3868 range
->fwnode
= fwnode
;
3870 range
->hw_start
= addr
;
3871 range
->flags
= LOGIC_PIO_CPU_MMIO
;
3873 ret
= logic_pio_register_range(range
);
3881 phys_addr_t
pci_pio_to_address(unsigned long pio
)
3883 phys_addr_t address
= (phys_addr_t
)OF_BAD_ADDR
;
3886 if (pio
>= MMIO_UPPER_LIMIT
)
3889 address
= logic_pio_to_hwaddr(pio
);
3895 unsigned long __weak
pci_address_to_pio(phys_addr_t address
)
3898 return logic_pio_trans_cpuaddr(address
);
3900 if (address
> IO_SPACE_LIMIT
)
3901 return (unsigned long)-1;
3903 return (unsigned long) address
;
3908 * pci_remap_iospace - Remap the memory mapped I/O space
3909 * @res: Resource describing the I/O space
3910 * @phys_addr: physical address of range to be mapped
3912 * Remap the memory mapped I/O space described by the @res
3913 * and the CPU physical address @phys_addr into virtual address space.
3914 * Only architectures that have memory mapped IO functions defined
3915 * (and the PCI_IOBASE value defined) should call this function.
3917 int pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
3919 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3920 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3922 if (!(res
->flags
& IORESOURCE_IO
))
3925 if (res
->end
> IO_SPACE_LIMIT
)
3928 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
3929 pgprot_device(PAGE_KERNEL
));
3931 /* this architecture does not have memory mapped I/O space,
3932 so this function should never be called */
3933 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3937 EXPORT_SYMBOL(pci_remap_iospace
);
3940 * pci_unmap_iospace - Unmap the memory mapped I/O space
3941 * @res: resource to be unmapped
3943 * Unmap the CPU virtual address @res from virtual address space.
3944 * Only architectures that have memory mapped IO functions defined
3945 * (and the PCI_IOBASE value defined) should call this function.
3947 void pci_unmap_iospace(struct resource
*res
)
3949 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3950 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3952 unmap_kernel_range(vaddr
, resource_size(res
));
3955 EXPORT_SYMBOL(pci_unmap_iospace
);
3957 static void devm_pci_unmap_iospace(struct device
*dev
, void *ptr
)
3959 struct resource
**res
= ptr
;
3961 pci_unmap_iospace(*res
);
3965 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3966 * @dev: Generic device to remap IO address for
3967 * @res: Resource describing the I/O space
3968 * @phys_addr: physical address of range to be mapped
3970 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3973 int devm_pci_remap_iospace(struct device
*dev
, const struct resource
*res
,
3974 phys_addr_t phys_addr
)
3976 const struct resource
**ptr
;
3979 ptr
= devres_alloc(devm_pci_unmap_iospace
, sizeof(*ptr
), GFP_KERNEL
);
3983 error
= pci_remap_iospace(res
, phys_addr
);
3988 devres_add(dev
, ptr
);
3993 EXPORT_SYMBOL(devm_pci_remap_iospace
);
3996 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3997 * @dev: Generic device to remap IO address for
3998 * @offset: Resource address to map
3999 * @size: Size of map
4001 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4004 void __iomem
*devm_pci_remap_cfgspace(struct device
*dev
,
4005 resource_size_t offset
,
4006 resource_size_t size
)
4008 void __iomem
**ptr
, *addr
;
4010 ptr
= devres_alloc(devm_ioremap_release
, sizeof(*ptr
), GFP_KERNEL
);
4014 addr
= pci_remap_cfgspace(offset
, size
);
4017 devres_add(dev
, ptr
);
4023 EXPORT_SYMBOL(devm_pci_remap_cfgspace
);
4026 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4027 * @dev: generic device to handle the resource for
4028 * @res: configuration space resource to be handled
4030 * Checks that a resource is a valid memory region, requests the memory
4031 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4032 * proper PCI configuration space memory attributes are guaranteed.
4034 * All operations are managed and will be undone on driver detach.
4036 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4037 * on failure. Usage example::
4039 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4040 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4042 * return PTR_ERR(base);
4044 void __iomem
*devm_pci_remap_cfg_resource(struct device
*dev
,
4045 struct resource
*res
)
4047 resource_size_t size
;
4049 void __iomem
*dest_ptr
;
4053 if (!res
|| resource_type(res
) != IORESOURCE_MEM
) {
4054 dev_err(dev
, "invalid resource\n");
4055 return IOMEM_ERR_PTR(-EINVAL
);
4058 size
= resource_size(res
);
4059 name
= res
->name
?: dev_name(dev
);
4061 if (!devm_request_mem_region(dev
, res
->start
, size
, name
)) {
4062 dev_err(dev
, "can't request region for resource %pR\n", res
);
4063 return IOMEM_ERR_PTR(-EBUSY
);
4066 dest_ptr
= devm_pci_remap_cfgspace(dev
, res
->start
, size
);
4068 dev_err(dev
, "ioremap failed for resource %pR\n", res
);
4069 devm_release_mem_region(dev
, res
->start
, size
);
4070 dest_ptr
= IOMEM_ERR_PTR(-ENOMEM
);
4075 EXPORT_SYMBOL(devm_pci_remap_cfg_resource
);
4077 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
4081 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
4083 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
4085 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
4086 if (cmd
!= old_cmd
) {
4087 pci_dbg(dev
, "%s bus mastering\n",
4088 enable
? "enabling" : "disabling");
4089 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4091 dev
->is_busmaster
= enable
;
4095 * pcibios_setup - process "pci=" kernel boot arguments
4096 * @str: string used to pass in "pci=" kernel boot arguments
4098 * Process kernel boot arguments. This is the default implementation.
4099 * Architecture specific implementations can override this as necessary.
4101 char * __weak __init
pcibios_setup(char *str
)
4107 * pcibios_set_master - enable PCI bus-mastering for device dev
4108 * @dev: the PCI device to enable
4110 * Enables PCI bus-mastering for the device. This is the default
4111 * implementation. Architecture specific implementations can override
4112 * this if necessary.
4114 void __weak
pcibios_set_master(struct pci_dev
*dev
)
4118 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4119 if (pci_is_pcie(dev
))
4122 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
4124 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
4125 else if (lat
> pcibios_max_latency
)
4126 lat
= pcibios_max_latency
;
4130 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
4134 * pci_set_master - enables bus-mastering for device dev
4135 * @dev: the PCI device to enable
4137 * Enables bus-mastering on the device and calls pcibios_set_master()
4138 * to do the needed arch specific settings.
4140 void pci_set_master(struct pci_dev
*dev
)
4142 __pci_set_master(dev
, true);
4143 pcibios_set_master(dev
);
4145 EXPORT_SYMBOL(pci_set_master
);
4148 * pci_clear_master - disables bus-mastering for device dev
4149 * @dev: the PCI device to disable
4151 void pci_clear_master(struct pci_dev
*dev
)
4153 __pci_set_master(dev
, false);
4155 EXPORT_SYMBOL(pci_clear_master
);
4158 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4159 * @dev: the PCI device for which MWI is to be enabled
4161 * Helper function for pci_set_mwi.
4162 * Originally copied from drivers/net/acenic.c.
4163 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4165 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4167 int pci_set_cacheline_size(struct pci_dev
*dev
)
4171 if (!pci_cache_line_size
)
4174 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4175 equal to or multiple of the right value. */
4176 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4177 if (cacheline_size
>= pci_cache_line_size
&&
4178 (cacheline_size
% pci_cache_line_size
) == 0)
4181 /* Write the correct value. */
4182 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
4184 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4185 if (cacheline_size
== pci_cache_line_size
)
4188 pci_printk(KERN_DEBUG
, dev
, "cache line size of %d is not supported\n",
4189 pci_cache_line_size
<< 2);
4193 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
4196 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4197 * @dev: the PCI device for which MWI is enabled
4199 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4201 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4203 int pci_set_mwi(struct pci_dev
*dev
)
4205 #ifdef PCI_DISABLE_MWI
4211 rc
= pci_set_cacheline_size(dev
);
4215 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4216 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
4217 pci_dbg(dev
, "enabling Mem-Wr-Inval\n");
4218 cmd
|= PCI_COMMAND_INVALIDATE
;
4219 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4224 EXPORT_SYMBOL(pci_set_mwi
);
4227 * pcim_set_mwi - a device-managed pci_set_mwi()
4228 * @dev: the PCI device for which MWI is enabled
4230 * Managed pci_set_mwi().
4232 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4234 int pcim_set_mwi(struct pci_dev
*dev
)
4236 struct pci_devres
*dr
;
4238 dr
= find_pci_dr(dev
);
4243 return pci_set_mwi(dev
);
4245 EXPORT_SYMBOL(pcim_set_mwi
);
4248 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4249 * @dev: the PCI device for which MWI is enabled
4251 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4252 * Callers are not required to check the return value.
4254 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4256 int pci_try_set_mwi(struct pci_dev
*dev
)
4258 #ifdef PCI_DISABLE_MWI
4261 return pci_set_mwi(dev
);
4264 EXPORT_SYMBOL(pci_try_set_mwi
);
4267 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4268 * @dev: the PCI device to disable
4270 * Disables PCI Memory-Write-Invalidate transaction on the device
4272 void pci_clear_mwi(struct pci_dev
*dev
)
4274 #ifndef PCI_DISABLE_MWI
4277 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4278 if (cmd
& PCI_COMMAND_INVALIDATE
) {
4279 cmd
&= ~PCI_COMMAND_INVALIDATE
;
4280 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4284 EXPORT_SYMBOL(pci_clear_mwi
);
4287 * pci_intx - enables/disables PCI INTx for device dev
4288 * @pdev: the PCI device to operate on
4289 * @enable: boolean: whether to enable or disable PCI INTx
4291 * Enables/disables PCI INTx for device dev
4293 void pci_intx(struct pci_dev
*pdev
, int enable
)
4295 u16 pci_command
, new;
4297 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
4300 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
4302 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
4304 if (new != pci_command
) {
4305 struct pci_devres
*dr
;
4307 pci_write_config_word(pdev
, PCI_COMMAND
, new);
4309 dr
= find_pci_dr(pdev
);
4310 if (dr
&& !dr
->restore_intx
) {
4311 dr
->restore_intx
= 1;
4312 dr
->orig_intx
= !enable
;
4316 EXPORT_SYMBOL_GPL(pci_intx
);
4318 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
4320 struct pci_bus
*bus
= dev
->bus
;
4321 bool mask_updated
= true;
4322 u32 cmd_status_dword
;
4323 u16 origcmd
, newcmd
;
4324 unsigned long flags
;
4328 * We do a single dword read to retrieve both command and status.
4329 * Document assumptions that make this possible.
4331 BUILD_BUG_ON(PCI_COMMAND
% 4);
4332 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
4334 raw_spin_lock_irqsave(&pci_lock
, flags
);
4336 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
4338 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
4341 * Check interrupt status register to see whether our device
4342 * triggered the interrupt (when masking) or the next IRQ is
4343 * already pending (when unmasking).
4345 if (mask
!= irq_pending
) {
4346 mask_updated
= false;
4350 origcmd
= cmd_status_dword
;
4351 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
4353 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
4354 if (newcmd
!= origcmd
)
4355 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
4358 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
4360 return mask_updated
;
4364 * pci_check_and_mask_intx - mask INTx on pending interrupt
4365 * @dev: the PCI device to operate on
4367 * Check if the device dev has its INTx line asserted, mask it and
4368 * return true in that case. False is returned if no interrupt was
4371 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
4373 return pci_check_and_set_intx_mask(dev
, true);
4375 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
4378 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4379 * @dev: the PCI device to operate on
4381 * Check if the device dev has its INTx line asserted, unmask it if not
4382 * and return true. False is returned and the mask remains active if
4383 * there was still an interrupt pending.
4385 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
4387 return pci_check_and_set_intx_mask(dev
, false);
4389 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
4392 * pci_wait_for_pending_transaction - waits for pending transaction
4393 * @dev: the PCI device to operate on
4395 * Return 0 if transaction is pending 1 otherwise.
4397 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
4399 if (!pci_is_pcie(dev
))
4402 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
4403 PCI_EXP_DEVSTA_TRPND
);
4405 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
4407 static int pci_dev_wait(struct pci_dev
*dev
, char *reset_type
, int timeout
)
4413 * After reset, the device should not silently discard config
4414 * requests, but it may still indicate that it needs more time by
4415 * responding to them with CRS completions. The Root Port will
4416 * generally synthesize ~0 data to complete the read (except when
4417 * CRS SV is enabled and the read was for the Vendor ID; in that
4418 * case it synthesizes 0x0001 data).
4420 * Wait for the device to return a non-CRS completion. Read the
4421 * Command register instead of Vendor ID so we don't have to
4422 * contend with the CRS SV value.
4424 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
4426 if (delay
> timeout
) {
4427 pci_warn(dev
, "not ready %dms after %s; giving up\n",
4428 delay
- 1, reset_type
);
4433 pci_info(dev
, "not ready %dms after %s; waiting\n",
4434 delay
- 1, reset_type
);
4438 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
4442 pci_info(dev
, "ready %dms after %s\n", delay
- 1,
4449 * pcie_has_flr - check if a device supports function level resets
4450 * @dev: device to check
4452 * Returns true if the device advertises support for PCIe function level
4455 bool pcie_has_flr(struct pci_dev
*dev
)
4459 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4462 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
4463 return cap
& PCI_EXP_DEVCAP_FLR
;
4465 EXPORT_SYMBOL_GPL(pcie_has_flr
);
4468 * pcie_flr - initiate a PCIe function level reset
4469 * @dev: device to reset
4471 * Initiate a function level reset on @dev. The caller should ensure the
4472 * device supports FLR before calling this function, e.g. by using the
4473 * pcie_has_flr() helper.
4475 int pcie_flr(struct pci_dev
*dev
)
4477 if (!pci_wait_for_pending_transaction(dev
))
4478 pci_err(dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
4480 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
4486 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4487 * 100ms, but may silently discard requests while the FLR is in
4488 * progress. Wait 100ms before trying to access the device.
4492 return pci_dev_wait(dev
, "FLR", PCIE_RESET_READY_POLL_MS
);
4494 EXPORT_SYMBOL_GPL(pcie_flr
);
4496 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
4501 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
4505 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4508 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
4509 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
4516 * Wait for Transaction Pending bit to clear. A word-aligned test
4517 * is used, so we use the conrol offset rather than status and shift
4518 * the test bit to match.
4520 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
4521 PCI_AF_STATUS_TP
<< 8))
4522 pci_err(dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4524 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
4530 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4531 * updated 27 July 2006; a device must complete an FLR within
4532 * 100ms, but may silently discard requests while the FLR is in
4533 * progress. Wait 100ms before trying to access the device.
4537 return pci_dev_wait(dev
, "AF_FLR", PCIE_RESET_READY_POLL_MS
);
4541 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4542 * @dev: Device to reset.
4543 * @probe: If set, only check if the device can be reset this way.
4545 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4546 * unset, it will be reinitialized internally when going from PCI_D3hot to
4547 * PCI_D0. If that's the case and the device is not in a low-power state
4548 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4550 * NOTE: This causes the caller to sleep for twice the device power transition
4551 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4552 * by default (i.e. unless the @dev's d3_delay field has a different value).
4553 * Moreover, only devices in D0 can be reset by this function.
4555 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
4559 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
4562 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
4563 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
4569 if (dev
->current_state
!= PCI_D0
)
4572 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4574 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4575 pci_dev_d3_sleep(dev
);
4577 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4579 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4580 pci_dev_d3_sleep(dev
);
4582 return pci_dev_wait(dev
, "PM D3->D0", PCIE_RESET_READY_POLL_MS
);
4585 * pcie_wait_for_link - Wait until link is active or inactive
4586 * @pdev: Bridge device
4587 * @active: waiting for active or inactive?
4589 * Use this to wait till link becomes active or inactive.
4591 bool pcie_wait_for_link(struct pci_dev
*pdev
, bool active
)
4598 * Some controllers might not implement link active reporting. In this
4599 * case, we wait for 1000 + 100 ms.
4601 if (!pdev
->link_active_reporting
) {
4607 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4608 * after which we should expect an link active if the reset was
4609 * successful. If so, software must wait a minimum 100ms before sending
4610 * configuration requests to devices downstream this port.
4612 * If the link fails to activate, either the device was physically
4613 * removed or the link is permanently failed.
4618 pcie_capability_read_word(pdev
, PCI_EXP_LNKSTA
, &lnk_status
);
4619 ret
= !!(lnk_status
& PCI_EXP_LNKSTA_DLLLA
);
4629 else if (ret
!= active
)
4630 pci_info(pdev
, "Data Link Layer Link Active not %s in 1000 msec\n",
4631 active
? "set" : "cleared");
4632 return ret
== active
;
4635 void pci_reset_secondary_bus(struct pci_dev
*dev
)
4639 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
4640 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
4641 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4644 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4645 * this to 2ms to ensure that we meet the minimum requirement.
4649 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
4650 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4653 * Trhfa for conventional PCI is 2^25 clock cycles.
4654 * Assuming a minimum 33MHz clock this results in a 1s
4655 * delay before we can consider subordinate devices to
4656 * be re-initialized. PCIe has some ways to shorten this,
4657 * but we don't make use of them yet.
4662 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
4664 pci_reset_secondary_bus(dev
);
4668 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4669 * @dev: Bridge device
4671 * Use the bridge control register to assert reset on the secondary bus.
4672 * Devices on the secondary bus are left in power-on state.
4674 int pci_bridge_secondary_bus_reset(struct pci_dev
*dev
)
4676 pcibios_reset_secondary_bus(dev
);
4678 return pci_dev_wait(dev
, "bus reset", PCIE_RESET_READY_POLL_MS
);
4680 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset
);
4682 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
4684 struct pci_dev
*pdev
;
4686 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
4687 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4690 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4697 return pci_bridge_secondary_bus_reset(dev
->bus
->self
);
4700 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
4704 if (!hotplug
|| !try_module_get(hotplug
->owner
))
4707 if (hotplug
->ops
->reset_slot
)
4708 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
4710 module_put(hotplug
->owner
);
4715 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
4717 struct pci_dev
*pdev
;
4719 if (dev
->subordinate
|| !dev
->slot
||
4720 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4723 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4724 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
4727 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
4730 static void pci_dev_lock(struct pci_dev
*dev
)
4732 pci_cfg_access_lock(dev
);
4733 /* block PM suspend, driver probe, etc. */
4734 device_lock(&dev
->dev
);
4737 /* Return 1 on successful lock, 0 on contention */
4738 static int pci_dev_trylock(struct pci_dev
*dev
)
4740 if (pci_cfg_access_trylock(dev
)) {
4741 if (device_trylock(&dev
->dev
))
4743 pci_cfg_access_unlock(dev
);
4749 static void pci_dev_unlock(struct pci_dev
*dev
)
4751 device_unlock(&dev
->dev
);
4752 pci_cfg_access_unlock(dev
);
4755 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
4757 const struct pci_error_handlers
*err_handler
=
4758 dev
->driver
? dev
->driver
->err_handler
: NULL
;
4761 * dev->driver->err_handler->reset_prepare() is protected against
4762 * races with ->remove() by the device lock, which must be held by
4765 if (err_handler
&& err_handler
->reset_prepare
)
4766 err_handler
->reset_prepare(dev
);
4769 * Wake-up device prior to save. PM registers default to D0 after
4770 * reset and a simple register restore doesn't reliably return
4771 * to a non-D0 state anyway.
4773 pci_set_power_state(dev
, PCI_D0
);
4775 pci_save_state(dev
);
4777 * Disable the device by clearing the Command register, except for
4778 * INTx-disable which is set. This not only disables MMIO and I/O port
4779 * BARs, but also prevents the device from being Bus Master, preventing
4780 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4781 * compliant devices, INTx-disable prevents legacy interrupts.
4783 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
4786 static void pci_dev_restore(struct pci_dev
*dev
)
4788 const struct pci_error_handlers
*err_handler
=
4789 dev
->driver
? dev
->driver
->err_handler
: NULL
;
4791 pci_restore_state(dev
);
4794 * dev->driver->err_handler->reset_done() is protected against
4795 * races with ->remove() by the device lock, which must be held by
4798 if (err_handler
&& err_handler
->reset_done
)
4799 err_handler
->reset_done(dev
);
4803 * __pci_reset_function_locked - reset a PCI device function while holding
4804 * the @dev mutex lock.
4805 * @dev: PCI device to reset
4807 * Some devices allow an individual function to be reset without affecting
4808 * other functions in the same device. The PCI device must be responsive
4809 * to PCI config space in order to use this function.
4811 * The device function is presumed to be unused and the caller is holding
4812 * the device mutex lock when this function is called.
4813 * Resetting the device will make the contents of PCI configuration space
4814 * random, so any caller of this must be prepared to reinitialise the
4815 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4818 * Returns 0 if the device function was successfully reset or negative if the
4819 * device doesn't support resetting a single function.
4821 int __pci_reset_function_locked(struct pci_dev
*dev
)
4828 * A reset method returns -ENOTTY if it doesn't support this device
4829 * and we should try the next method.
4831 * If it returns 0 (success), we're finished. If it returns any
4832 * other error, we're also finished: this indicates that further
4833 * reset mechanisms might be broken on the device.
4835 rc
= pci_dev_specific_reset(dev
, 0);
4838 if (pcie_has_flr(dev
)) {
4843 rc
= pci_af_flr(dev
, 0);
4846 rc
= pci_pm_reset(dev
, 0);
4849 rc
= pci_dev_reset_slot_function(dev
, 0);
4852 return pci_parent_bus_reset(dev
, 0);
4854 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
4857 * pci_probe_reset_function - check whether the device can be safely reset
4858 * @dev: PCI device to reset
4860 * Some devices allow an individual function to be reset without affecting
4861 * other functions in the same device. The PCI device must be responsive
4862 * to PCI config space in order to use this function.
4864 * Returns 0 if the device function can be reset or negative if the
4865 * device doesn't support resetting a single function.
4867 int pci_probe_reset_function(struct pci_dev
*dev
)
4873 rc
= pci_dev_specific_reset(dev
, 1);
4876 if (pcie_has_flr(dev
))
4878 rc
= pci_af_flr(dev
, 1);
4881 rc
= pci_pm_reset(dev
, 1);
4884 rc
= pci_dev_reset_slot_function(dev
, 1);
4888 return pci_parent_bus_reset(dev
, 1);
4892 * pci_reset_function - quiesce and reset a PCI device function
4893 * @dev: PCI device to reset
4895 * Some devices allow an individual function to be reset without affecting
4896 * other functions in the same device. The PCI device must be responsive
4897 * to PCI config space in order to use this function.
4899 * This function does not just reset the PCI portion of a device, but
4900 * clears all the state associated with the device. This function differs
4901 * from __pci_reset_function_locked() in that it saves and restores device state
4902 * over the reset and takes the PCI device lock.
4904 * Returns 0 if the device function was successfully reset or negative if the
4905 * device doesn't support resetting a single function.
4907 int pci_reset_function(struct pci_dev
*dev
)
4915 pci_dev_save_and_disable(dev
);
4917 rc
= __pci_reset_function_locked(dev
);
4919 pci_dev_restore(dev
);
4920 pci_dev_unlock(dev
);
4924 EXPORT_SYMBOL_GPL(pci_reset_function
);
4927 * pci_reset_function_locked - quiesce and reset a PCI device function
4928 * @dev: PCI device to reset
4930 * Some devices allow an individual function to be reset without affecting
4931 * other functions in the same device. The PCI device must be responsive
4932 * to PCI config space in order to use this function.
4934 * This function does not just reset the PCI portion of a device, but
4935 * clears all the state associated with the device. This function differs
4936 * from __pci_reset_function_locked() in that it saves and restores device state
4937 * over the reset. It also differs from pci_reset_function() in that it
4938 * requires the PCI device lock to be held.
4940 * Returns 0 if the device function was successfully reset or negative if the
4941 * device doesn't support resetting a single function.
4943 int pci_reset_function_locked(struct pci_dev
*dev
)
4950 pci_dev_save_and_disable(dev
);
4952 rc
= __pci_reset_function_locked(dev
);
4954 pci_dev_restore(dev
);
4958 EXPORT_SYMBOL_GPL(pci_reset_function_locked
);
4961 * pci_try_reset_function - quiesce and reset a PCI device function
4962 * @dev: PCI device to reset
4964 * Same as above, except return -EAGAIN if unable to lock device.
4966 int pci_try_reset_function(struct pci_dev
*dev
)
4973 if (!pci_dev_trylock(dev
))
4976 pci_dev_save_and_disable(dev
);
4977 rc
= __pci_reset_function_locked(dev
);
4978 pci_dev_restore(dev
);
4979 pci_dev_unlock(dev
);
4983 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
4985 /* Do any devices on or below this bus prevent a bus reset? */
4986 static bool pci_bus_resetable(struct pci_bus
*bus
)
4988 struct pci_dev
*dev
;
4991 if (bus
->self
&& (bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
4994 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4995 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
4996 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
5003 /* Lock devices from the top of the tree down */
5004 static void pci_bus_lock(struct pci_bus
*bus
)
5006 struct pci_dev
*dev
;
5008 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5010 if (dev
->subordinate
)
5011 pci_bus_lock(dev
->subordinate
);
5015 /* Unlock devices from the bottom of the tree up */
5016 static void pci_bus_unlock(struct pci_bus
*bus
)
5018 struct pci_dev
*dev
;
5020 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5021 if (dev
->subordinate
)
5022 pci_bus_unlock(dev
->subordinate
);
5023 pci_dev_unlock(dev
);
5027 /* Return 1 on successful lock, 0 on contention */
5028 static int pci_bus_trylock(struct pci_bus
*bus
)
5030 struct pci_dev
*dev
;
5032 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5033 if (!pci_dev_trylock(dev
))
5035 if (dev
->subordinate
) {
5036 if (!pci_bus_trylock(dev
->subordinate
)) {
5037 pci_dev_unlock(dev
);
5045 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
5046 if (dev
->subordinate
)
5047 pci_bus_unlock(dev
->subordinate
);
5048 pci_dev_unlock(dev
);
5053 /* Do any devices on or below this slot prevent a bus reset? */
5054 static bool pci_slot_resetable(struct pci_slot
*slot
)
5056 struct pci_dev
*dev
;
5058 if (slot
->bus
->self
&&
5059 (slot
->bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
5062 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5063 if (!dev
->slot
|| dev
->slot
!= slot
)
5065 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
5066 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
5073 /* Lock devices from the top of the tree down */
5074 static void pci_slot_lock(struct pci_slot
*slot
)
5076 struct pci_dev
*dev
;
5078 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5079 if (!dev
->slot
|| dev
->slot
!= slot
)
5082 if (dev
->subordinate
)
5083 pci_bus_lock(dev
->subordinate
);
5087 /* Unlock devices from the bottom of the tree up */
5088 static void pci_slot_unlock(struct pci_slot
*slot
)
5090 struct pci_dev
*dev
;
5092 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5093 if (!dev
->slot
|| dev
->slot
!= slot
)
5095 if (dev
->subordinate
)
5096 pci_bus_unlock(dev
->subordinate
);
5097 pci_dev_unlock(dev
);
5101 /* Return 1 on successful lock, 0 on contention */
5102 static int pci_slot_trylock(struct pci_slot
*slot
)
5104 struct pci_dev
*dev
;
5106 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5107 if (!dev
->slot
|| dev
->slot
!= slot
)
5109 if (!pci_dev_trylock(dev
))
5111 if (dev
->subordinate
) {
5112 if (!pci_bus_trylock(dev
->subordinate
)) {
5113 pci_dev_unlock(dev
);
5121 list_for_each_entry_continue_reverse(dev
,
5122 &slot
->bus
->devices
, bus_list
) {
5123 if (!dev
->slot
|| dev
->slot
!= slot
)
5125 if (dev
->subordinate
)
5126 pci_bus_unlock(dev
->subordinate
);
5127 pci_dev_unlock(dev
);
5133 * Save and disable devices from the top of the tree down while holding
5134 * the @dev mutex lock for the entire tree.
5136 static void pci_bus_save_and_disable_locked(struct pci_bus
*bus
)
5138 struct pci_dev
*dev
;
5140 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5141 pci_dev_save_and_disable(dev
);
5142 if (dev
->subordinate
)
5143 pci_bus_save_and_disable_locked(dev
->subordinate
);
5148 * Restore devices from top of the tree down while holding @dev mutex lock
5149 * for the entire tree. Parent bridges need to be restored before we can
5150 * get to subordinate devices.
5152 static void pci_bus_restore_locked(struct pci_bus
*bus
)
5154 struct pci_dev
*dev
;
5156 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5157 pci_dev_restore(dev
);
5158 if (dev
->subordinate
)
5159 pci_bus_restore_locked(dev
->subordinate
);
5164 * Save and disable devices from the top of the tree down while holding
5165 * the @dev mutex lock for the entire tree.
5167 static void pci_slot_save_and_disable_locked(struct pci_slot
*slot
)
5169 struct pci_dev
*dev
;
5171 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5172 if (!dev
->slot
|| dev
->slot
!= slot
)
5174 pci_dev_save_and_disable(dev
);
5175 if (dev
->subordinate
)
5176 pci_bus_save_and_disable_locked(dev
->subordinate
);
5181 * Restore devices from top of the tree down while holding @dev mutex lock
5182 * for the entire tree. Parent bridges need to be restored before we can
5183 * get to subordinate devices.
5185 static void pci_slot_restore_locked(struct pci_slot
*slot
)
5187 struct pci_dev
*dev
;
5189 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5190 if (!dev
->slot
|| dev
->slot
!= slot
)
5192 pci_dev_restore(dev
);
5193 if (dev
->subordinate
)
5194 pci_bus_restore_locked(dev
->subordinate
);
5198 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
5202 if (!slot
|| !pci_slot_resetable(slot
))
5206 pci_slot_lock(slot
);
5210 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
5213 pci_slot_unlock(slot
);
5219 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5220 * @slot: PCI slot to probe
5222 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5224 int pci_probe_reset_slot(struct pci_slot
*slot
)
5226 return pci_slot_reset(slot
, 1);
5228 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
5231 * __pci_reset_slot - Try to reset a PCI slot
5232 * @slot: PCI slot to reset
5234 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5235 * independent of other slots. For instance, some slots may support slot power
5236 * control. In the case of a 1:1 bus to slot architecture, this function may
5237 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5238 * Generally a slot reset should be attempted before a bus reset. All of the
5239 * function of the slot and any subordinate buses behind the slot are reset
5240 * through this function. PCI config space of all devices in the slot and
5241 * behind the slot is saved before and restored after reset.
5243 * Same as above except return -EAGAIN if the slot cannot be locked
5245 static int __pci_reset_slot(struct pci_slot
*slot
)
5249 rc
= pci_slot_reset(slot
, 1);
5253 if (pci_slot_trylock(slot
)) {
5254 pci_slot_save_and_disable_locked(slot
);
5256 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
5257 pci_slot_restore_locked(slot
);
5258 pci_slot_unlock(slot
);
5265 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
5269 if (!bus
->self
|| !pci_bus_resetable(bus
))
5279 ret
= pci_bridge_secondary_bus_reset(bus
->self
);
5281 pci_bus_unlock(bus
);
5287 * pci_bus_error_reset - reset the bridge's subordinate bus
5288 * @bridge: The parent device that connects to the bus to reset
5290 * This function will first try to reset the slots on this bus if the method is
5291 * available. If slot reset fails or is not available, this will fall back to a
5292 * secondary bus reset.
5294 int pci_bus_error_reset(struct pci_dev
*bridge
)
5296 struct pci_bus
*bus
= bridge
->subordinate
;
5297 struct pci_slot
*slot
;
5302 mutex_lock(&pci_slot_mutex
);
5303 if (list_empty(&bus
->slots
))
5306 list_for_each_entry(slot
, &bus
->slots
, list
)
5307 if (pci_probe_reset_slot(slot
))
5310 list_for_each_entry(slot
, &bus
->slots
, list
)
5311 if (pci_slot_reset(slot
, 0))
5314 mutex_unlock(&pci_slot_mutex
);
5317 mutex_unlock(&pci_slot_mutex
);
5318 return pci_bus_reset(bridge
->subordinate
, 0);
5322 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5323 * @bus: PCI bus to probe
5325 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5327 int pci_probe_reset_bus(struct pci_bus
*bus
)
5329 return pci_bus_reset(bus
, 1);
5331 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
5334 * __pci_reset_bus - Try to reset a PCI bus
5335 * @bus: top level PCI bus to reset
5337 * Same as above except return -EAGAIN if the bus cannot be locked
5339 static int __pci_reset_bus(struct pci_bus
*bus
)
5343 rc
= pci_bus_reset(bus
, 1);
5347 if (pci_bus_trylock(bus
)) {
5348 pci_bus_save_and_disable_locked(bus
);
5350 rc
= pci_bridge_secondary_bus_reset(bus
->self
);
5351 pci_bus_restore_locked(bus
);
5352 pci_bus_unlock(bus
);
5360 * pci_reset_bus - Try to reset a PCI bus
5361 * @pdev: top level PCI device to reset via slot/bus
5363 * Same as above except return -EAGAIN if the bus cannot be locked
5365 int pci_reset_bus(struct pci_dev
*pdev
)
5367 return (!pci_probe_reset_slot(pdev
->slot
)) ?
5368 __pci_reset_slot(pdev
->slot
) : __pci_reset_bus(pdev
->bus
);
5370 EXPORT_SYMBOL_GPL(pci_reset_bus
);
5373 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5374 * @dev: PCI device to query
5376 * Returns mmrbc: maximum designed memory read count in bytes
5377 * or appropriate error value.
5379 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
5384 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5388 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
5391 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
5393 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
5396 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5397 * @dev: PCI device to query
5399 * Returns mmrbc: maximum memory read count in bytes
5400 * or appropriate error value.
5402 int pcix_get_mmrbc(struct pci_dev
*dev
)
5407 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5411 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
5414 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
5416 EXPORT_SYMBOL(pcix_get_mmrbc
);
5419 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5420 * @dev: PCI device to query
5421 * @mmrbc: maximum memory read count in bytes
5422 * valid values are 512, 1024, 2048, 4096
5424 * If possible sets maximum memory read byte count, some bridges have erratas
5425 * that prevent this.
5427 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
5433 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
5436 v
= ffs(mmrbc
) - 10;
5438 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5442 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
5445 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
5448 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
5451 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
5453 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
5456 cmd
&= ~PCI_X_CMD_MAX_READ
;
5458 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
5463 EXPORT_SYMBOL(pcix_set_mmrbc
);
5466 * pcie_get_readrq - get PCI Express read request size
5467 * @dev: PCI device to query
5469 * Returns maximum memory read request in bytes
5470 * or appropriate error value.
5472 int pcie_get_readrq(struct pci_dev
*dev
)
5476 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
5478 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
5480 EXPORT_SYMBOL(pcie_get_readrq
);
5483 * pcie_set_readrq - set PCI Express maximum memory read request
5484 * @dev: PCI device to query
5485 * @rq: maximum memory read count in bytes
5486 * valid values are 128, 256, 512, 1024, 2048, 4096
5488 * If possible sets maximum memory read request in bytes
5490 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
5494 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
5498 * If using the "performance" PCIe config, we clamp the
5499 * read rq size to the max packet size to prevent the
5500 * host bridge generating requests larger than we can
5503 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
5504 int mps
= pcie_get_mps(dev
);
5510 v
= (ffs(rq
) - 8) << 12;
5512 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
5513 PCI_EXP_DEVCTL_READRQ
, v
);
5515 EXPORT_SYMBOL(pcie_set_readrq
);
5518 * pcie_get_mps - get PCI Express maximum payload size
5519 * @dev: PCI device to query
5521 * Returns maximum payload size in bytes
5523 int pcie_get_mps(struct pci_dev
*dev
)
5527 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
5529 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
5531 EXPORT_SYMBOL(pcie_get_mps
);
5534 * pcie_set_mps - set PCI Express maximum payload size
5535 * @dev: PCI device to query
5536 * @mps: maximum payload size in bytes
5537 * valid values are 128, 256, 512, 1024, 2048, 4096
5539 * If possible sets maximum payload size
5541 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
5545 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
5549 if (v
> dev
->pcie_mpss
)
5553 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
5554 PCI_EXP_DEVCTL_PAYLOAD
, v
);
5556 EXPORT_SYMBOL(pcie_set_mps
);
5559 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5560 * device and its bandwidth limitation
5561 * @dev: PCI device to query
5562 * @limiting_dev: storage for device causing the bandwidth limitation
5563 * @speed: storage for speed of limiting device
5564 * @width: storage for width of limiting device
5566 * Walk up the PCI device chain and find the point where the minimum
5567 * bandwidth is available. Return the bandwidth available there and (if
5568 * limiting_dev, speed, and width pointers are supplied) information about
5569 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5572 u32
pcie_bandwidth_available(struct pci_dev
*dev
, struct pci_dev
**limiting_dev
,
5573 enum pci_bus_speed
*speed
,
5574 enum pcie_link_width
*width
)
5577 enum pci_bus_speed next_speed
;
5578 enum pcie_link_width next_width
;
5582 *speed
= PCI_SPEED_UNKNOWN
;
5584 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
5589 pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
5591 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
5592 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
5593 PCI_EXP_LNKSTA_NLW_SHIFT
;
5595 next_bw
= next_width
* PCIE_SPEED2MBS_ENC(next_speed
);
5597 /* Check if current device limits the total bandwidth */
5598 if (!bw
|| next_bw
<= bw
) {
5602 *limiting_dev
= dev
;
5604 *speed
= next_speed
;
5606 *width
= next_width
;
5609 dev
= pci_upstream_bridge(dev
);
5614 EXPORT_SYMBOL(pcie_bandwidth_available
);
5617 * pcie_get_speed_cap - query for the PCI device's link speed capability
5618 * @dev: PCI device to query
5620 * Query the PCI device speed capability. Return the maximum link speed
5621 * supported by the device.
5623 enum pci_bus_speed
pcie_get_speed_cap(struct pci_dev
*dev
)
5625 u32 lnkcap2
, lnkcap
;
5628 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5629 * implementation note there recommends using the Supported Link
5630 * Speeds Vector in Link Capabilities 2 when supported.
5632 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5633 * should use the Supported Link Speeds field in Link Capabilities,
5634 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5636 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP2
, &lnkcap2
);
5637 if (lnkcap2
) { /* PCIe r3.0-compliant */
5638 if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_16_0GB
)
5639 return PCIE_SPEED_16_0GT
;
5640 else if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_8_0GB
)
5641 return PCIE_SPEED_8_0GT
;
5642 else if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_5_0GB
)
5643 return PCIE_SPEED_5_0GT
;
5644 else if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_2_5GB
)
5645 return PCIE_SPEED_2_5GT
;
5646 return PCI_SPEED_UNKNOWN
;
5649 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
5650 if ((lnkcap
& PCI_EXP_LNKCAP_SLS
) == PCI_EXP_LNKCAP_SLS_5_0GB
)
5651 return PCIE_SPEED_5_0GT
;
5652 else if ((lnkcap
& PCI_EXP_LNKCAP_SLS
) == PCI_EXP_LNKCAP_SLS_2_5GB
)
5653 return PCIE_SPEED_2_5GT
;
5655 return PCI_SPEED_UNKNOWN
;
5657 EXPORT_SYMBOL(pcie_get_speed_cap
);
5660 * pcie_get_width_cap - query for the PCI device's link width capability
5661 * @dev: PCI device to query
5663 * Query the PCI device width capability. Return the maximum link width
5664 * supported by the device.
5666 enum pcie_link_width
pcie_get_width_cap(struct pci_dev
*dev
)
5670 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
5672 return (lnkcap
& PCI_EXP_LNKCAP_MLW
) >> 4;
5674 return PCIE_LNK_WIDTH_UNKNOWN
;
5676 EXPORT_SYMBOL(pcie_get_width_cap
);
5679 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5681 * @speed: storage for link speed
5682 * @width: storage for link width
5684 * Calculate a PCI device's link bandwidth by querying for its link speed
5685 * and width, multiplying them, and applying encoding overhead. The result
5686 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5688 u32
pcie_bandwidth_capable(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
5689 enum pcie_link_width
*width
)
5691 *speed
= pcie_get_speed_cap(dev
);
5692 *width
= pcie_get_width_cap(dev
);
5694 if (*speed
== PCI_SPEED_UNKNOWN
|| *width
== PCIE_LNK_WIDTH_UNKNOWN
)
5697 return *width
* PCIE_SPEED2MBS_ENC(*speed
);
5701 * __pcie_print_link_status - Report the PCI device's link speed and width
5702 * @dev: PCI device to query
5703 * @verbose: Print info even when enough bandwidth is available
5705 * If the available bandwidth at the device is less than the device is
5706 * capable of, report the device's maximum possible bandwidth and the
5707 * upstream link that limits its performance. If @verbose, always print
5708 * the available bandwidth, even if the device isn't constrained.
5710 void __pcie_print_link_status(struct pci_dev
*dev
, bool verbose
)
5712 enum pcie_link_width width
, width_cap
;
5713 enum pci_bus_speed speed
, speed_cap
;
5714 struct pci_dev
*limiting_dev
= NULL
;
5715 u32 bw_avail
, bw_cap
;
5717 bw_cap
= pcie_bandwidth_capable(dev
, &speed_cap
, &width_cap
);
5718 bw_avail
= pcie_bandwidth_available(dev
, &limiting_dev
, &speed
, &width
);
5720 if (bw_avail
>= bw_cap
&& verbose
)
5721 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5722 bw_cap
/ 1000, bw_cap
% 1000,
5723 PCIE_SPEED2STR(speed_cap
), width_cap
);
5724 else if (bw_avail
< bw_cap
)
5725 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5726 bw_avail
/ 1000, bw_avail
% 1000,
5727 PCIE_SPEED2STR(speed
), width
,
5728 limiting_dev
? pci_name(limiting_dev
) : "<unknown>",
5729 bw_cap
/ 1000, bw_cap
% 1000,
5730 PCIE_SPEED2STR(speed_cap
), width_cap
);
5734 * pcie_print_link_status - Report the PCI device's link speed and width
5735 * @dev: PCI device to query
5737 * Report the available bandwidth at the device.
5739 void pcie_print_link_status(struct pci_dev
*dev
)
5741 __pcie_print_link_status(dev
, true);
5743 EXPORT_SYMBOL(pcie_print_link_status
);
5746 * pci_select_bars - Make BAR mask from the type of resource
5747 * @dev: the PCI device for which BAR mask is made
5748 * @flags: resource type mask to be selected
5750 * This helper routine makes bar mask from the type of resource.
5752 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
5755 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
5756 if (pci_resource_flags(dev
, i
) & flags
)
5760 EXPORT_SYMBOL(pci_select_bars
);
5762 /* Some architectures require additional programming to enable VGA */
5763 static arch_set_vga_state_t arch_set_vga_state
;
5765 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
5767 arch_set_vga_state
= func
; /* NULL disables */
5770 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
5771 unsigned int command_bits
, u32 flags
)
5773 if (arch_set_vga_state
)
5774 return arch_set_vga_state(dev
, decode
, command_bits
,
5780 * pci_set_vga_state - set VGA decode state on device and parents if requested
5781 * @dev: the PCI device
5782 * @decode: true = enable decoding, false = disable decoding
5783 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5784 * @flags: traverse ancestors and change bridges
5785 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5787 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
5788 unsigned int command_bits
, u32 flags
)
5790 struct pci_bus
*bus
;
5791 struct pci_dev
*bridge
;
5795 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
5797 /* ARCH specific VGA enables */
5798 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
5802 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
5803 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
5805 cmd
|= command_bits
;
5807 cmd
&= ~command_bits
;
5808 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
5811 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
5818 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
5821 cmd
|= PCI_BRIDGE_CTL_VGA
;
5823 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
5824 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
5833 * pci_add_dma_alias - Add a DMA devfn alias for a device
5834 * @dev: the PCI device for which alias is added
5835 * @devfn: alias slot and function
5837 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5838 * which is used to program permissible bus-devfn source addresses for DMA
5839 * requests in an IOMMU. These aliases factor into IOMMU group creation
5840 * and are useful for devices generating DMA requests beyond or different
5841 * from their logical bus-devfn. Examples include device quirks where the
5842 * device simply uses the wrong devfn, as well as non-transparent bridges
5843 * where the alias may be a proxy for devices in another domain.
5845 * IOMMU group creation is performed during device discovery or addition,
5846 * prior to any potential DMA mapping and therefore prior to driver probing
5847 * (especially for userspace assigned devices where IOMMU group definition
5848 * cannot be left as a userspace activity). DMA aliases should therefore
5849 * be configured via quirks, such as the PCI fixup header quirk.
5851 void pci_add_dma_alias(struct pci_dev
*dev
, u8 devfn
)
5853 if (!dev
->dma_alias_mask
)
5854 dev
->dma_alias_mask
= bitmap_zalloc(U8_MAX
, GFP_KERNEL
);
5855 if (!dev
->dma_alias_mask
) {
5856 pci_warn(dev
, "Unable to allocate DMA alias mask\n");
5860 set_bit(devfn
, dev
->dma_alias_mask
);
5861 pci_info(dev
, "Enabling fixed DMA alias to %02x.%d\n",
5862 PCI_SLOT(devfn
), PCI_FUNC(devfn
));
5865 bool pci_devs_are_dma_aliases(struct pci_dev
*dev1
, struct pci_dev
*dev2
)
5867 return (dev1
->dma_alias_mask
&&
5868 test_bit(dev2
->devfn
, dev1
->dma_alias_mask
)) ||
5869 (dev2
->dma_alias_mask
&&
5870 test_bit(dev1
->devfn
, dev2
->dma_alias_mask
));
5873 bool pci_device_is_present(struct pci_dev
*pdev
)
5877 if (pci_dev_is_disconnected(pdev
))
5879 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
5881 EXPORT_SYMBOL_GPL(pci_device_is_present
);
5883 void pci_ignore_hotplug(struct pci_dev
*dev
)
5885 struct pci_dev
*bridge
= dev
->bus
->self
;
5887 dev
->ignore_hotplug
= 1;
5888 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5890 bridge
->ignore_hotplug
= 1;
5892 EXPORT_SYMBOL_GPL(pci_ignore_hotplug
);
5894 resource_size_t __weak
pcibios_default_alignment(void)
5899 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5900 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
5901 static DEFINE_SPINLOCK(resource_alignment_lock
);
5904 * pci_specified_resource_alignment - get resource alignment specified by user.
5905 * @dev: the PCI device to get
5906 * @resize: whether or not to change resources' size when reassigning alignment
5908 * RETURNS: Resource alignment if it is specified.
5909 * Zero if it is not specified.
5911 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
,
5914 int align_order
, count
;
5915 resource_size_t align
= pcibios_default_alignment();
5919 spin_lock(&resource_alignment_lock
);
5920 p
= resource_alignment_param
;
5923 if (pci_has_flag(PCI_PROBE_ONLY
)) {
5925 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5931 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
5938 ret
= pci_dev_str_match(dev
, p
, &p
);
5941 if (align_order
== -1)
5944 align
= 1 << align_order
;
5946 } else if (ret
< 0) {
5947 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5952 if (*p
!= ';' && *p
!= ',') {
5953 /* End of param or invalid format */
5959 spin_unlock(&resource_alignment_lock
);
5963 static void pci_request_resource_alignment(struct pci_dev
*dev
, int bar
,
5964 resource_size_t align
, bool resize
)
5966 struct resource
*r
= &dev
->resource
[bar
];
5967 resource_size_t size
;
5969 if (!(r
->flags
& IORESOURCE_MEM
))
5972 if (r
->flags
& IORESOURCE_PCI_FIXED
) {
5973 pci_info(dev
, "BAR%d %pR: ignoring requested alignment %#llx\n",
5974 bar
, r
, (unsigned long long)align
);
5978 size
= resource_size(r
);
5983 * Increase the alignment of the resource. There are two ways we
5986 * 1) Increase the size of the resource. BARs are aligned on their
5987 * size, so when we reallocate space for this resource, we'll
5988 * allocate it with the larger alignment. This also prevents
5989 * assignment of any other BARs inside the alignment region, so
5990 * if we're requesting page alignment, this means no other BARs
5991 * will share the page.
5993 * The disadvantage is that this makes the resource larger than
5994 * the hardware BAR, which may break drivers that compute things
5995 * based on the resource size, e.g., to find registers at a
5996 * fixed offset before the end of the BAR.
5998 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5999 * set r->start to the desired alignment. By itself this
6000 * doesn't prevent other BARs being put inside the alignment
6001 * region, but if we realign *every* resource of every device in
6002 * the system, none of them will share an alignment region.
6004 * When the user has requested alignment for only some devices via
6005 * the "pci=resource_alignment" argument, "resize" is true and we
6006 * use the first method. Otherwise we assume we're aligning all
6007 * devices and we use the second.
6010 pci_info(dev
, "BAR%d %pR: requesting alignment to %#llx\n",
6011 bar
, r
, (unsigned long long)align
);
6017 r
->flags
&= ~IORESOURCE_SIZEALIGN
;
6018 r
->flags
|= IORESOURCE_STARTALIGN
;
6020 r
->end
= r
->start
+ size
- 1;
6022 r
->flags
|= IORESOURCE_UNSET
;
6026 * This function disables memory decoding and releases memory resources
6027 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6028 * It also rounds up size to specified alignment.
6029 * Later on, the kernel will assign page-aligned memory resource back
6032 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
6036 resource_size_t align
;
6038 bool resize
= false;
6041 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6042 * 3.4.1.11. Their resources are allocated from the space
6043 * described by the VF BARx register in the PF's SR-IOV capability.
6044 * We can't influence their alignment here.
6049 /* check if specified PCI is target device to reassign */
6050 align
= pci_specified_resource_alignment(dev
, &resize
);
6054 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
6055 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
6056 pci_warn(dev
, "Can't reassign resources to host bridge\n");
6060 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
6061 command
&= ~PCI_COMMAND_MEMORY
;
6062 pci_write_config_word(dev
, PCI_COMMAND
, command
);
6064 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
6065 pci_request_resource_alignment(dev
, i
, align
, resize
);
6068 * Need to disable bridge's resource window,
6069 * to enable the kernel to reassign new resource
6072 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
6073 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
6074 r
= &dev
->resource
[i
];
6075 if (!(r
->flags
& IORESOURCE_MEM
))
6077 r
->flags
|= IORESOURCE_UNSET
;
6078 r
->end
= resource_size(r
) - 1;
6081 pci_disable_bridge_window(dev
);
6085 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
6087 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
6088 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
6089 spin_lock(&resource_alignment_lock
);
6090 strncpy(resource_alignment_param
, buf
, count
);
6091 resource_alignment_param
[count
] = '\0';
6092 spin_unlock(&resource_alignment_lock
);
6096 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
6099 spin_lock(&resource_alignment_lock
);
6100 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
6101 spin_unlock(&resource_alignment_lock
);
6105 static ssize_t
resource_alignment_show(struct bus_type
*bus
, char *buf
)
6107 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
6110 static ssize_t
resource_alignment_store(struct bus_type
*bus
,
6111 const char *buf
, size_t count
)
6113 return pci_set_resource_alignment_param(buf
, count
);
6116 static BUS_ATTR_RW(resource_alignment
);
6118 static int __init
pci_resource_alignment_sysfs_init(void)
6120 return bus_create_file(&pci_bus_type
,
6121 &bus_attr_resource_alignment
);
6123 late_initcall(pci_resource_alignment_sysfs_init
);
6125 static void pci_no_domains(void)
6127 #ifdef CONFIG_PCI_DOMAINS
6128 pci_domains_supported
= 0;
6132 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6133 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
6135 static int pci_get_new_domain_nr(void)
6137 return atomic_inc_return(&__domain_nr
);
6140 static int of_pci_bus_find_domain_nr(struct device
*parent
)
6142 static int use_dt_domains
= -1;
6146 domain
= of_get_pci_domain_nr(parent
->of_node
);
6148 * Check DT domain and use_dt_domains values.
6150 * If DT domain property is valid (domain >= 0) and
6151 * use_dt_domains != 0, the DT assignment is valid since this means
6152 * we have not previously allocated a domain number by using
6153 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6154 * 1, to indicate that we have just assigned a domain number from
6157 * If DT domain property value is not valid (ie domain < 0), and we
6158 * have not previously assigned a domain number from DT
6159 * (use_dt_domains != 1) we should assign a domain number by
6162 * pci_get_new_domain_nr()
6164 * API and update the use_dt_domains value to keep track of method we
6165 * are using to assign domain numbers (use_dt_domains = 0).
6167 * All other combinations imply we have a platform that is trying
6168 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6169 * which is a recipe for domain mishandling and it is prevented by
6170 * invalidating the domain value (domain = -1) and printing a
6171 * corresponding error.
6173 if (domain
>= 0 && use_dt_domains
) {
6175 } else if (domain
< 0 && use_dt_domains
!= 1) {
6177 domain
= pci_get_new_domain_nr();
6180 pr_err("Node %pOF has ", parent
->of_node
);
6181 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6188 int pci_bus_find_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
6190 return acpi_disabled
? of_pci_bus_find_domain_nr(parent
) :
6191 acpi_pci_bus_find_domain_nr(bus
);
6196 * pci_ext_cfg_avail - can we access extended PCI config space?
6198 * Returns 1 if we can access PCI extended config space (offsets
6199 * greater than 0xff). This is the default implementation. Architecture
6200 * implementations can override this.
6202 int __weak
pci_ext_cfg_avail(void)
6207 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
6210 EXPORT_SYMBOL(pci_fixup_cardbus
);
6212 static int __init
pci_setup(char *str
)
6215 char *k
= strchr(str
, ',');
6218 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
6219 if (!strcmp(str
, "nomsi")) {
6221 } else if (!strncmp(str
, "noats", 5)) {
6222 pr_info("PCIe: ATS is disabled\n");
6223 pcie_ats_disabled
= true;
6224 } else if (!strcmp(str
, "noaer")) {
6226 } else if (!strcmp(str
, "earlydump")) {
6227 pci_early_dump
= true;
6228 } else if (!strncmp(str
, "realloc=", 8)) {
6229 pci_realloc_get_opt(str
+ 8);
6230 } else if (!strncmp(str
, "realloc", 7)) {
6231 pci_realloc_get_opt("on");
6232 } else if (!strcmp(str
, "nodomains")) {
6234 } else if (!strncmp(str
, "noari", 5)) {
6235 pcie_ari_disabled
= true;
6236 } else if (!strncmp(str
, "cbiosize=", 9)) {
6237 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
6238 } else if (!strncmp(str
, "cbmemsize=", 10)) {
6239 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
6240 } else if (!strncmp(str
, "resource_alignment=", 19)) {
6241 pci_set_resource_alignment_param(str
+ 19,
6243 } else if (!strncmp(str
, "ecrc=", 5)) {
6244 pcie_ecrc_get_policy(str
+ 5);
6245 } else if (!strncmp(str
, "hpiosize=", 9)) {
6246 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
6247 } else if (!strncmp(str
, "hpmemsize=", 10)) {
6248 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
6249 } else if (!strncmp(str
, "hpbussize=", 10)) {
6250 pci_hotplug_bus_size
=
6251 simple_strtoul(str
+ 10, &str
, 0);
6252 if (pci_hotplug_bus_size
> 0xff)
6253 pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
6254 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
6255 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
6256 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
6257 pcie_bus_config
= PCIE_BUS_SAFE
;
6258 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
6259 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
6260 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
6261 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
6262 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
6263 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
6264 } else if (!strncmp(str
, "disable_acs_redir=", 18)) {
6265 disable_acs_redir_param
=
6266 kstrdup(str
+ 18, GFP_KERNEL
);
6268 printk(KERN_ERR
"PCI: Unknown option `%s'\n",
6276 early_param("pci", pci_setup
);