4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
12 #define pr_fmt(fmt) "hw perfevents: " fmt
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/slab.h>
21 #include <linux/sched/clock.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
26 #include <asm/irq_regs.h>
28 static DEFINE_PER_CPU(struct arm_pmu
*, cpu_armpmu
);
29 static DEFINE_PER_CPU(int, cpu_irq
);
31 static inline u64
arm_pmu_event_max_period(struct perf_event
*event
)
33 if (event
->hw
.flags
& ARMPMU_EVT_64BIT
)
34 return GENMASK_ULL(63, 0);
36 return GENMASK_ULL(31, 0);
40 armpmu_map_cache_event(const unsigned (*cache_map
)
41 [PERF_COUNT_HW_CACHE_MAX
]
42 [PERF_COUNT_HW_CACHE_OP_MAX
]
43 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
46 unsigned int cache_type
, cache_op
, cache_result
, ret
;
48 cache_type
= (config
>> 0) & 0xff;
49 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
52 cache_op
= (config
>> 8) & 0xff;
53 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
56 cache_result
= (config
>> 16) & 0xff;
57 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
63 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
65 if (ret
== CACHE_OP_UNSUPPORTED
)
72 armpmu_map_hw_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
76 if (config
>= PERF_COUNT_HW_MAX
)
82 mapping
= (*event_map
)[config
];
83 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
87 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
89 return (int)(config
& raw_event_mask
);
93 armpmu_map_event(struct perf_event
*event
,
94 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
95 const unsigned (*cache_map
)
96 [PERF_COUNT_HW_CACHE_MAX
]
97 [PERF_COUNT_HW_CACHE_OP_MAX
]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
101 u64 config
= event
->attr
.config
;
102 int type
= event
->attr
.type
;
104 if (type
== event
->pmu
->type
)
105 return armpmu_map_raw_event(raw_event_mask
, config
);
108 case PERF_TYPE_HARDWARE
:
109 return armpmu_map_hw_event(event_map
, config
);
110 case PERF_TYPE_HW_CACHE
:
111 return armpmu_map_cache_event(cache_map
, config
);
113 return armpmu_map_raw_event(raw_event_mask
, config
);
119 int armpmu_event_set_period(struct perf_event
*event
)
121 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
122 struct hw_perf_event
*hwc
= &event
->hw
;
123 s64 left
= local64_read(&hwc
->period_left
);
124 s64 period
= hwc
->sample_period
;
128 max_period
= arm_pmu_event_max_period(event
);
129 if (unlikely(left
<= -period
)) {
131 local64_set(&hwc
->period_left
, left
);
132 hwc
->last_period
= period
;
136 if (unlikely(left
<= 0)) {
138 local64_set(&hwc
->period_left
, left
);
139 hwc
->last_period
= period
;
144 * Limit the maximum period to prevent the counter value
145 * from overtaking the one we are about to program. In
146 * effect we are reducing max_period to account for
147 * interrupt latency (and we are being very conservative).
149 if (left
> (max_period
>> 1))
150 left
= (max_period
>> 1);
152 local64_set(&hwc
->prev_count
, (u64
)-left
);
154 armpmu
->write_counter(event
, (u64
)(-left
) & max_period
);
156 perf_event_update_userpage(event
);
161 u64
armpmu_event_update(struct perf_event
*event
)
163 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
164 struct hw_perf_event
*hwc
= &event
->hw
;
165 u64 delta
, prev_raw_count
, new_raw_count
;
166 u64 max_period
= arm_pmu_event_max_period(event
);
169 prev_raw_count
= local64_read(&hwc
->prev_count
);
170 new_raw_count
= armpmu
->read_counter(event
);
172 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
173 new_raw_count
) != prev_raw_count
)
176 delta
= (new_raw_count
- prev_raw_count
) & max_period
;
178 local64_add(delta
, &event
->count
);
179 local64_sub(delta
, &hwc
->period_left
);
181 return new_raw_count
;
185 armpmu_read(struct perf_event
*event
)
187 armpmu_event_update(event
);
191 armpmu_stop(struct perf_event
*event
, int flags
)
193 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
194 struct hw_perf_event
*hwc
= &event
->hw
;
197 * ARM pmu always has to update the counter, so ignore
198 * PERF_EF_UPDATE, see comments in armpmu_start().
200 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
201 armpmu
->disable(event
);
202 armpmu_event_update(event
);
203 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
207 static void armpmu_start(struct perf_event
*event
, int flags
)
209 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
210 struct hw_perf_event
*hwc
= &event
->hw
;
213 * ARM pmu always has to reprogram the period, so ignore
214 * PERF_EF_RELOAD, see the comment below.
216 if (flags
& PERF_EF_RELOAD
)
217 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
221 * Set the period again. Some counters can't be stopped, so when we
222 * were stopped we simply disabled the IRQ source and the counter
223 * may have been left counting. If we don't do this step then we may
224 * get an interrupt too soon or *way* too late if the overflow has
225 * happened since disabling.
227 armpmu_event_set_period(event
);
228 armpmu
->enable(event
);
232 armpmu_del(struct perf_event
*event
, int flags
)
234 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
235 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
236 struct hw_perf_event
*hwc
= &event
->hw
;
239 armpmu_stop(event
, PERF_EF_UPDATE
);
240 hw_events
->events
[idx
] = NULL
;
241 armpmu
->clear_event_idx(hw_events
, event
);
242 perf_event_update_userpage(event
);
243 /* Clear the allocated counter */
248 armpmu_add(struct perf_event
*event
, int flags
)
250 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
251 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
252 struct hw_perf_event
*hwc
= &event
->hw
;
255 /* An event following a process won't be stopped earlier */
256 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
259 /* If we don't have a space for the counter then finish early. */
260 idx
= armpmu
->get_event_idx(hw_events
, event
);
265 * If there is an event in the counter we are going to use then make
266 * sure it is disabled.
269 armpmu
->disable(event
);
270 hw_events
->events
[idx
] = event
;
272 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
273 if (flags
& PERF_EF_START
)
274 armpmu_start(event
, PERF_EF_RELOAD
);
276 /* Propagate our changes to the userspace mapping. */
277 perf_event_update_userpage(event
);
283 validate_event(struct pmu
*pmu
, struct pmu_hw_events
*hw_events
,
284 struct perf_event
*event
)
286 struct arm_pmu
*armpmu
;
288 if (is_software_event(event
))
292 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
293 * core perf code won't check that the pmu->ctx == leader->ctx
294 * until after pmu->event_init(event).
296 if (event
->pmu
!= pmu
)
299 if (event
->state
< PERF_EVENT_STATE_OFF
)
302 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
305 armpmu
= to_arm_pmu(event
->pmu
);
306 return armpmu
->get_event_idx(hw_events
, event
) >= 0;
310 validate_group(struct perf_event
*event
)
312 struct perf_event
*sibling
, *leader
= event
->group_leader
;
313 struct pmu_hw_events fake_pmu
;
316 * Initialise the fake PMU. We only need to populate the
317 * used_mask for the purposes of validation.
319 memset(&fake_pmu
.used_mask
, 0, sizeof(fake_pmu
.used_mask
));
321 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
324 for_each_sibling_event(sibling
, leader
) {
325 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
329 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
335 static irqreturn_t
armpmu_dispatch_irq(int irq
, void *dev
)
337 struct arm_pmu
*armpmu
;
339 u64 start_clock
, finish_clock
;
342 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
343 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
344 * do any necessary shifting, we just need to perform the first
347 armpmu
= *(void **)dev
;
348 if (WARN_ON_ONCE(!armpmu
))
351 start_clock
= sched_clock();
352 ret
= armpmu
->handle_irq(armpmu
);
353 finish_clock
= sched_clock();
355 perf_sample_event_took(finish_clock
- start_clock
);
360 __hw_perf_event_init(struct perf_event
*event
)
362 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
363 struct hw_perf_event
*hwc
= &event
->hw
;
367 mapping
= armpmu
->map_event(event
);
370 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
376 * We don't assign an index until we actually place the event onto
377 * hardware. Use -1 to signify that we haven't decided where to put it
378 * yet. For SMP systems, each core has it's own PMU so we can't do any
379 * clever allocation or constraints checking at this point.
382 hwc
->config_base
= 0;
387 * Check whether we need to exclude the counter from certain modes.
389 if (armpmu
->set_event_filter
&&
390 armpmu
->set_event_filter(hwc
, &event
->attr
)) {
391 pr_debug("ARM performance counters do not support "
397 * Store the event encoding into the config_base field.
399 hwc
->config_base
|= (unsigned long)mapping
;
401 if (!is_sampling_event(event
)) {
403 * For non-sampling runs, limit the sample_period to half
404 * of the counter width. That way, the new counter value
405 * is far less likely to overtake the previous one unless
406 * you have some serious IRQ latency issues.
408 hwc
->sample_period
= arm_pmu_event_max_period(event
) >> 1;
409 hwc
->last_period
= hwc
->sample_period
;
410 local64_set(&hwc
->period_left
, hwc
->sample_period
);
413 if (event
->group_leader
!= event
) {
414 if (validate_group(event
) != 0)
421 static int armpmu_event_init(struct perf_event
*event
)
423 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
426 * Reject CPU-affine events for CPUs that are of a different class to
427 * that which this PMU handles. Process-following events (where
428 * event->cpu == -1) can be migrated between CPUs, and thus we have to
429 * reject them later (in armpmu_add) if they're scheduled on a
430 * different class of CPU.
432 if (event
->cpu
!= -1 &&
433 !cpumask_test_cpu(event
->cpu
, &armpmu
->supported_cpus
))
436 /* does not support taken branch sampling */
437 if (has_branch_stack(event
))
440 if (armpmu
->map_event(event
) == -ENOENT
)
443 return __hw_perf_event_init(event
);
446 static void armpmu_enable(struct pmu
*pmu
)
448 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
449 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
450 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
452 /* For task-bound events we may be called on other CPUs */
453 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
457 armpmu
->start(armpmu
);
460 static void armpmu_disable(struct pmu
*pmu
)
462 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
464 /* For task-bound events we may be called on other CPUs */
465 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
468 armpmu
->stop(armpmu
);
472 * In heterogeneous systems, events are specific to a particular
473 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
474 * the same microarchitecture.
476 static int armpmu_filter_match(struct perf_event
*event
)
478 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
479 unsigned int cpu
= smp_processor_id();
482 ret
= cpumask_test_cpu(cpu
, &armpmu
->supported_cpus
);
483 if (ret
&& armpmu
->filter_match
)
484 return armpmu
->filter_match(event
);
489 static ssize_t
armpmu_cpumask_show(struct device
*dev
,
490 struct device_attribute
*attr
, char *buf
)
492 struct arm_pmu
*armpmu
= to_arm_pmu(dev_get_drvdata(dev
));
493 return cpumap_print_to_pagebuf(true, buf
, &armpmu
->supported_cpus
);
496 static DEVICE_ATTR(cpus
, S_IRUGO
, armpmu_cpumask_show
, NULL
);
498 static struct attribute
*armpmu_common_attrs
[] = {
503 static struct attribute_group armpmu_common_attr_group
= {
504 .attrs
= armpmu_common_attrs
,
507 /* Set at runtime when we know what CPU type we are. */
508 static struct arm_pmu
*__oprofile_cpu_pmu
;
511 * Despite the names, these two functions are CPU-specific and are used
512 * by the OProfile/perf code.
514 const char *perf_pmu_name(void)
516 if (!__oprofile_cpu_pmu
)
519 return __oprofile_cpu_pmu
->name
;
521 EXPORT_SYMBOL_GPL(perf_pmu_name
);
523 int perf_num_counters(void)
527 if (__oprofile_cpu_pmu
!= NULL
)
528 max_events
= __oprofile_cpu_pmu
->num_events
;
532 EXPORT_SYMBOL_GPL(perf_num_counters
);
534 static int armpmu_count_irq_users(const int irq
)
538 for_each_possible_cpu(cpu
) {
539 if (per_cpu(cpu_irq
, cpu
) == irq
)
546 void armpmu_free_irq(int irq
, int cpu
)
548 if (per_cpu(cpu_irq
, cpu
) == 0)
550 if (WARN_ON(irq
!= per_cpu(cpu_irq
, cpu
)))
553 if (!irq_is_percpu_devid(irq
))
554 free_irq(irq
, per_cpu_ptr(&cpu_armpmu
, cpu
));
555 else if (armpmu_count_irq_users(irq
) == 1)
556 free_percpu_irq(irq
, &cpu_armpmu
);
558 per_cpu(cpu_irq
, cpu
) = 0;
561 int armpmu_request_irq(int irq
, int cpu
)
564 const irq_handler_t handler
= armpmu_dispatch_irq
;
568 if (!irq_is_percpu_devid(irq
)) {
569 unsigned long irq_flags
;
571 err
= irq_force_affinity(irq
, cpumask_of(cpu
));
573 if (err
&& num_possible_cpus() > 1) {
574 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
579 irq_flags
= IRQF_PERCPU
|
583 irq_set_status_flags(irq
, IRQ_NOAUTOEN
);
584 err
= request_irq(irq
, handler
, irq_flags
, "arm-pmu",
585 per_cpu_ptr(&cpu_armpmu
, cpu
));
586 } else if (armpmu_count_irq_users(irq
) == 0) {
587 err
= request_percpu_irq(irq
, handler
, "arm-pmu",
594 per_cpu(cpu_irq
, cpu
) = irq
;
598 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq
);
602 static int armpmu_get_cpu_irq(struct arm_pmu
*pmu
, int cpu
)
604 struct pmu_hw_events __percpu
*hw_events
= pmu
->hw_events
;
605 return per_cpu(hw_events
->irq
, cpu
);
609 * PMU hardware loses all context when a CPU goes offline.
610 * When a CPU is hotplugged back in, since some hardware registers are
611 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
612 * junk values out of them.
614 static int arm_perf_starting_cpu(unsigned int cpu
, struct hlist_node
*node
)
616 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
619 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
624 per_cpu(cpu_armpmu
, cpu
) = pmu
;
626 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
628 if (irq_is_percpu_devid(irq
))
629 enable_percpu_irq(irq
, IRQ_TYPE_NONE
);
637 static int arm_perf_teardown_cpu(unsigned int cpu
, struct hlist_node
*node
)
639 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
642 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
645 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
647 if (irq_is_percpu_devid(irq
))
648 disable_percpu_irq(irq
);
650 disable_irq_nosync(irq
);
653 per_cpu(cpu_armpmu
, cpu
) = NULL
;
659 static void cpu_pm_pmu_setup(struct arm_pmu
*armpmu
, unsigned long cmd
)
661 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
662 struct perf_event
*event
;
665 for (idx
= 0; idx
< armpmu
->num_events
; idx
++) {
666 event
= hw_events
->events
[idx
];
673 * Stop and update the counter
675 armpmu_stop(event
, PERF_EF_UPDATE
);
678 case CPU_PM_ENTER_FAILED
:
680 * Restore and enable the counter.
681 * armpmu_start() indirectly calls
683 * perf_event_update_userpage()
685 * that requires RCU read locking to be functional,
686 * wrap the call within RCU_NONIDLE to make the
687 * RCU subsystem aware this cpu is not idle from
688 * an RCU perspective for the armpmu_start() call
691 RCU_NONIDLE(armpmu_start(event
, PERF_EF_RELOAD
));
699 static int cpu_pm_pmu_notify(struct notifier_block
*b
, unsigned long cmd
,
702 struct arm_pmu
*armpmu
= container_of(b
, struct arm_pmu
, cpu_pm_nb
);
703 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
704 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
706 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
710 * Always reset the PMU registers on power-up even if
711 * there are no events running.
713 if (cmd
== CPU_PM_EXIT
&& armpmu
->reset
)
714 armpmu
->reset(armpmu
);
721 armpmu
->stop(armpmu
);
722 cpu_pm_pmu_setup(armpmu
, cmd
);
725 cpu_pm_pmu_setup(armpmu
, cmd
);
726 case CPU_PM_ENTER_FAILED
:
727 armpmu
->start(armpmu
);
736 static int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
)
738 cpu_pmu
->cpu_pm_nb
.notifier_call
= cpu_pm_pmu_notify
;
739 return cpu_pm_register_notifier(&cpu_pmu
->cpu_pm_nb
);
742 static void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
)
744 cpu_pm_unregister_notifier(&cpu_pmu
->cpu_pm_nb
);
747 static inline int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
) { return 0; }
748 static inline void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
) { }
751 static int cpu_pmu_init(struct arm_pmu
*cpu_pmu
)
755 err
= cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING
,
760 err
= cpu_pm_pmu_register(cpu_pmu
);
767 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
773 static void cpu_pmu_destroy(struct arm_pmu
*cpu_pmu
)
775 cpu_pm_pmu_unregister(cpu_pmu
);
776 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
780 static struct arm_pmu
*__armpmu_alloc(gfp_t flags
)
785 pmu
= kzalloc(sizeof(*pmu
), flags
);
787 pr_info("failed to allocate PMU device!\n");
791 pmu
->hw_events
= alloc_percpu_gfp(struct pmu_hw_events
, flags
);
792 if (!pmu
->hw_events
) {
793 pr_info("failed to allocate per-cpu PMU data.\n");
797 pmu
->pmu
= (struct pmu
) {
798 .pmu_enable
= armpmu_enable
,
799 .pmu_disable
= armpmu_disable
,
800 .event_init
= armpmu_event_init
,
803 .start
= armpmu_start
,
806 .filter_match
= armpmu_filter_match
,
807 .attr_groups
= pmu
->attr_groups
,
809 * This is a CPU PMU potentially in a heterogeneous
810 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
811 * and we have taken ctx sharing into account (e.g. with our
812 * pmu::filter_match callback and pmu::event_init group
815 .capabilities
= PERF_PMU_CAP_HETEROGENEOUS_CPUS
,
818 pmu
->attr_groups
[ARMPMU_ATTR_GROUP_COMMON
] =
819 &armpmu_common_attr_group
;
821 for_each_possible_cpu(cpu
) {
822 struct pmu_hw_events
*events
;
824 events
= per_cpu_ptr(pmu
->hw_events
, cpu
);
825 raw_spin_lock_init(&events
->pmu_lock
);
826 events
->percpu_pmu
= pmu
;
837 struct arm_pmu
*armpmu_alloc(void)
839 return __armpmu_alloc(GFP_KERNEL
);
842 struct arm_pmu
*armpmu_alloc_atomic(void)
844 return __armpmu_alloc(GFP_ATOMIC
);
848 void armpmu_free(struct arm_pmu
*pmu
)
850 free_percpu(pmu
->hw_events
);
854 int armpmu_register(struct arm_pmu
*pmu
)
858 ret
= cpu_pmu_init(pmu
);
862 if (!pmu
->set_event_filter
)
863 pmu
->pmu
.capabilities
|= PERF_PMU_CAP_NO_EXCLUDE
;
865 ret
= perf_pmu_register(&pmu
->pmu
, pmu
->name
, -1);
869 if (!__oprofile_cpu_pmu
)
870 __oprofile_cpu_pmu
= pmu
;
872 pr_info("enabled with %s PMU driver, %d counters available\n",
873 pmu
->name
, pmu
->num_events
);
878 cpu_pmu_destroy(pmu
);
882 static int arm_pmu_hp_init(void)
886 ret
= cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING
,
887 "perf/arm/pmu:starting",
888 arm_perf_starting_cpu
,
889 arm_perf_teardown_cpu
);
891 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
895 subsys_initcall(arm_pmu_hp_init
);