dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / usb / dwc2 / gadget.c
blob6812a8a3a98babe1258508d8a4645af9fdd07e87
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
11 * S3C USB2.0 High-speed / OtG driver
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
31 #include "core.h"
32 #include "hw.h"
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
37 return container_of(req, struct dwc2_hsotg_req, req);
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
42 return container_of(ep, struct dwc2_hsotg_ep, ep);
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
47 return container_of(gadget, struct dwc2_hsotg, gadget);
50 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
52 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
57 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 u32 ep_index, u32 dir_in)
63 if (dir_in)
64 return hsotg->eps_in[ep_index];
65 else
66 return hsotg->eps_out[ep_index];
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
72 /**
73 * using_dma - return the DMA status of the driver.
74 * @hsotg: The driver state.
76 * Return true if we're using DMA.
78 * Currently, we have the DMA support code worked into everywhere
79 * that needs it, but the AMBA DMA implementation in the hardware can
80 * only DMA from 32bit aligned addresses. This means that gadgets such
81 * as the CDC Ethernet cannot work as they often pass packets which are
82 * not 32bit aligned.
84 * Unfortunately the choice to use DMA or not is global to the controller
85 * and seems to be only settable when the controller is being put through
86 * a core reset. This means we either need to fix the gadgets to take
87 * account of DMA alignment, or add bounce buffers (yuerk).
89 * g_using_dma is set depending on dts flag.
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
93 return hsotg->params.g_dma;
97 * using_desc_dma - return the descriptor DMA status of the driver.
98 * @hsotg: The driver state.
100 * Return true if we're using descriptor DMA.
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
104 return hsotg->params.g_dma_desc;
108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109 * @hs_ep: The endpoint
111 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
112 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116 hs_ep->target_frame += hs_ep->interval;
117 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
118 hs_ep->frame_overrun = true;
119 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
120 } else {
121 hs_ep->frame_overrun = false;
126 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
127 * by one.
128 * @hs_ep: The endpoint.
130 * This function used in service interval based scheduling flow to calculate
131 * descriptor frame number filed value. For service interval mode frame
132 * number in descriptor should point to last (u)frame in the interval.
135 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
137 if (hs_ep->target_frame)
138 hs_ep->target_frame -= 1;
139 else
140 hs_ep->target_frame = DSTS_SOFFN_LIMIT;
144 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
145 * @hsotg: The device state
146 * @ints: A bitmask of the interrupts to enable
148 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
150 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
151 u32 new_gsintmsk;
153 new_gsintmsk = gsintmsk | ints;
155 if (new_gsintmsk != gsintmsk) {
156 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
157 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
162 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
163 * @hsotg: The device state
164 * @ints: A bitmask of the interrupts to enable
166 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
168 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
169 u32 new_gsintmsk;
171 new_gsintmsk = gsintmsk & ~ints;
173 if (new_gsintmsk != gsintmsk)
174 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
178 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
179 * @hsotg: The device state
180 * @ep: The endpoint index
181 * @dir_in: True if direction is in.
182 * @en: The enable value, true to enable
184 * Set or clear the mask for an individual endpoint's interrupt
185 * request.
187 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
188 unsigned int ep, unsigned int dir_in,
189 unsigned int en)
191 unsigned long flags;
192 u32 bit = 1 << ep;
193 u32 daint;
195 if (!dir_in)
196 bit <<= 16;
198 local_irq_save(flags);
199 daint = dwc2_readl(hsotg, DAINTMSK);
200 if (en)
201 daint |= bit;
202 else
203 daint &= ~bit;
204 dwc2_writel(hsotg, daint, DAINTMSK);
205 local_irq_restore(flags);
209 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
211 * @hsotg: Programming view of the DWC_otg controller
213 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
215 if (hsotg->hw_params.en_multiple_tx_fifo)
216 /* In dedicated FIFO mode we need count of IN EPs */
217 return hsotg->hw_params.num_dev_in_eps;
218 else
219 /* In shared FIFO mode we need count of Periodic IN EPs */
220 return hsotg->hw_params.num_dev_perio_in_ep;
224 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
225 * device mode TX FIFOs
227 * @hsotg: Programming view of the DWC_otg controller
229 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
231 int addr;
232 int tx_addr_max;
233 u32 np_tx_fifo_size;
235 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
236 hsotg->params.g_np_tx_fifo_size);
238 /* Get Endpoint Info Control block size in DWORDs. */
239 tx_addr_max = hsotg->hw_params.total_fifo_size;
241 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
242 if (tx_addr_max <= addr)
243 return 0;
245 return tx_addr_max - addr;
249 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
251 * @hsotg: Programming view of the DWC_otg controller
254 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
256 u32 gintsts2;
257 u32 gintmsk2;
259 gintsts2 = dwc2_readl(hsotg, GINTSTS2);
260 gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
262 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
263 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
264 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
265 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
270 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
271 * TX FIFOs
273 * @hsotg: Programming view of the DWC_otg controller
275 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
277 int tx_fifo_count;
278 int tx_fifo_depth;
280 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
282 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
284 if (!tx_fifo_count)
285 return tx_fifo_depth;
286 else
287 return tx_fifo_depth / tx_fifo_count;
291 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
292 * @hsotg: The device instance.
294 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
296 unsigned int ep;
297 unsigned int addr;
298 int timeout;
300 u32 val;
301 u32 *txfsz = hsotg->params.g_tx_fifo_size;
303 /* Reset fifo map if not correctly cleared during previous session */
304 WARN_ON(hsotg->fifo_map);
305 hsotg->fifo_map = 0;
307 /* set RX/NPTX FIFO sizes */
308 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
309 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
310 FIFOSIZE_STARTADDR_SHIFT) |
311 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
312 GNPTXFSIZ);
315 * arange all the rest of the TX FIFOs, as some versions of this
316 * block have overlapping default addresses. This also ensures
317 * that if the settings have been changed, then they are set to
318 * known values.
321 /* start at the end of the GNPTXFSIZ, rounded up */
322 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
325 * Configure fifos sizes from provided configuration and assign
326 * them to endpoints dynamically according to maxpacket size value of
327 * given endpoint.
329 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
330 if (!txfsz[ep])
331 continue;
332 val = addr;
333 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
334 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
335 "insufficient fifo memory");
336 addr += txfsz[ep];
338 dwc2_writel(hsotg, val, DPTXFSIZN(ep));
339 val = dwc2_readl(hsotg, DPTXFSIZN(ep));
342 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
343 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
344 GDFIFOCFG);
346 * according to p428 of the design guide, we need to ensure that
347 * all fifos are flushed before continuing
350 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
351 GRSTCTL_RXFFLSH, GRSTCTL);
353 /* wait until the fifos are both flushed */
354 timeout = 100;
355 while (1) {
356 val = dwc2_readl(hsotg, GRSTCTL);
358 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
359 break;
361 if (--timeout == 0) {
362 dev_err(hsotg->dev,
363 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
364 __func__, val);
365 break;
368 udelay(1);
371 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
375 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
376 * @ep: USB endpoint to allocate request for.
377 * @flags: Allocation flags
379 * Allocate a new USB request structure appropriate for the specified endpoint
381 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
382 gfp_t flags)
384 struct dwc2_hsotg_req *req;
386 req = kzalloc(sizeof(*req), flags);
387 if (!req)
388 return NULL;
390 INIT_LIST_HEAD(&req->queue);
392 return &req->req;
396 * is_ep_periodic - return true if the endpoint is in periodic mode.
397 * @hs_ep: The endpoint to query.
399 * Returns true if the endpoint is in periodic mode, meaning it is being
400 * used for an Interrupt or ISO transfer.
402 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
404 return hs_ep->periodic;
408 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
409 * @hsotg: The device state.
410 * @hs_ep: The endpoint for the request
411 * @hs_req: The request being processed.
413 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
414 * of a request to ensure the buffer is ready for access by the caller.
416 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
417 struct dwc2_hsotg_ep *hs_ep,
418 struct dwc2_hsotg_req *hs_req)
420 struct usb_request *req = &hs_req->req;
422 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
426 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
427 * for Control endpoint
428 * @hsotg: The device state.
430 * This function will allocate 4 descriptor chains for EP 0: 2 for
431 * Setup stage, per one for IN and OUT data/status transactions.
433 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
435 hsotg->setup_desc[0] =
436 dmam_alloc_coherent(hsotg->dev,
437 sizeof(struct dwc2_dma_desc),
438 &hsotg->setup_desc_dma[0],
439 GFP_KERNEL);
440 if (!hsotg->setup_desc[0])
441 goto fail;
443 hsotg->setup_desc[1] =
444 dmam_alloc_coherent(hsotg->dev,
445 sizeof(struct dwc2_dma_desc),
446 &hsotg->setup_desc_dma[1],
447 GFP_KERNEL);
448 if (!hsotg->setup_desc[1])
449 goto fail;
451 hsotg->ctrl_in_desc =
452 dmam_alloc_coherent(hsotg->dev,
453 sizeof(struct dwc2_dma_desc),
454 &hsotg->ctrl_in_desc_dma,
455 GFP_KERNEL);
456 if (!hsotg->ctrl_in_desc)
457 goto fail;
459 hsotg->ctrl_out_desc =
460 dmam_alloc_coherent(hsotg->dev,
461 sizeof(struct dwc2_dma_desc),
462 &hsotg->ctrl_out_desc_dma,
463 GFP_KERNEL);
464 if (!hsotg->ctrl_out_desc)
465 goto fail;
467 return 0;
469 fail:
470 return -ENOMEM;
474 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
475 * @hsotg: The controller state.
476 * @hs_ep: The endpoint we're going to write for.
477 * @hs_req: The request to write data for.
479 * This is called when the TxFIFO has some space in it to hold a new
480 * transmission and we have something to give it. The actual setup of
481 * the data size is done elsewhere, so all we have to do is to actually
482 * write the data.
484 * The return value is zero if there is more space (or nothing was done)
485 * otherwise -ENOSPC is returned if the FIFO space was used up.
487 * This routine is only needed for PIO
489 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
490 struct dwc2_hsotg_ep *hs_ep,
491 struct dwc2_hsotg_req *hs_req)
493 bool periodic = is_ep_periodic(hs_ep);
494 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
495 int buf_pos = hs_req->req.actual;
496 int to_write = hs_ep->size_loaded;
497 void *data;
498 int can_write;
499 int pkt_round;
500 int max_transfer;
502 to_write -= (buf_pos - hs_ep->last_load);
504 /* if there's nothing to write, get out early */
505 if (to_write == 0)
506 return 0;
508 if (periodic && !hsotg->dedicated_fifos) {
509 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
510 int size_left;
511 int size_done;
514 * work out how much data was loaded so we can calculate
515 * how much data is left in the fifo.
518 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
521 * if shared fifo, we cannot write anything until the
522 * previous data has been completely sent.
524 if (hs_ep->fifo_load != 0) {
525 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
526 return -ENOSPC;
529 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
530 __func__, size_left,
531 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
533 /* how much of the data has moved */
534 size_done = hs_ep->size_loaded - size_left;
536 /* how much data is left in the fifo */
537 can_write = hs_ep->fifo_load - size_done;
538 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
539 __func__, can_write);
541 can_write = hs_ep->fifo_size - can_write;
542 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
543 __func__, can_write);
545 if (can_write <= 0) {
546 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
547 return -ENOSPC;
549 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
550 can_write = dwc2_readl(hsotg,
551 DTXFSTS(hs_ep->fifo_index));
553 can_write &= 0xffff;
554 can_write *= 4;
555 } else {
556 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
557 dev_dbg(hsotg->dev,
558 "%s: no queue slots available (0x%08x)\n",
559 __func__, gnptxsts);
561 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
562 return -ENOSPC;
565 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
566 can_write *= 4; /* fifo size is in 32bit quantities. */
569 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
571 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
572 __func__, gnptxsts, can_write, to_write, max_transfer);
575 * limit to 512 bytes of data, it seems at least on the non-periodic
576 * FIFO, requests of >512 cause the endpoint to get stuck with a
577 * fragment of the end of the transfer in it.
579 if (can_write > 512 && !periodic)
580 can_write = 512;
583 * limit the write to one max-packet size worth of data, but allow
584 * the transfer to return that it did not run out of fifo space
585 * doing it.
587 if (to_write > max_transfer) {
588 to_write = max_transfer;
590 /* it's needed only when we do not use dedicated fifos */
591 if (!hsotg->dedicated_fifos)
592 dwc2_hsotg_en_gsint(hsotg,
593 periodic ? GINTSTS_PTXFEMP :
594 GINTSTS_NPTXFEMP);
597 /* see if we can write data */
599 if (to_write > can_write) {
600 to_write = can_write;
601 pkt_round = to_write % max_transfer;
604 * Round the write down to an
605 * exact number of packets.
607 * Note, we do not currently check to see if we can ever
608 * write a full packet or not to the FIFO.
611 if (pkt_round)
612 to_write -= pkt_round;
615 * enable correct FIFO interrupt to alert us when there
616 * is more room left.
619 /* it's needed only when we do not use dedicated fifos */
620 if (!hsotg->dedicated_fifos)
621 dwc2_hsotg_en_gsint(hsotg,
622 periodic ? GINTSTS_PTXFEMP :
623 GINTSTS_NPTXFEMP);
626 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
627 to_write, hs_req->req.length, can_write, buf_pos);
629 if (to_write <= 0)
630 return -ENOSPC;
632 hs_req->req.actual = buf_pos + to_write;
633 hs_ep->total_data += to_write;
635 if (periodic)
636 hs_ep->fifo_load += to_write;
638 to_write = DIV_ROUND_UP(to_write, 4);
639 data = hs_req->req.buf + buf_pos;
641 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
643 return (to_write >= can_write) ? -ENOSPC : 0;
647 * get_ep_limit - get the maximum data legnth for this endpoint
648 * @hs_ep: The endpoint
650 * Return the maximum data that can be queued in one go on a given endpoint
651 * so that transfers that are too long can be split.
653 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
655 int index = hs_ep->index;
656 unsigned int maxsize;
657 unsigned int maxpkt;
659 if (index != 0) {
660 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
661 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
662 } else {
663 maxsize = 64 + 64;
664 if (hs_ep->dir_in)
665 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
666 else
667 maxpkt = 2;
670 /* we made the constant loading easier above by using +1 */
671 maxpkt--;
672 maxsize--;
675 * constrain by packet count if maxpkts*pktsize is greater
676 * than the length register size.
679 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
680 maxsize = maxpkt * hs_ep->ep.maxpacket;
682 return maxsize;
686 * dwc2_hsotg_read_frameno - read current frame number
687 * @hsotg: The device instance
689 * Return the current frame number
691 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
693 u32 dsts;
695 dsts = dwc2_readl(hsotg, DSTS);
696 dsts &= DSTS_SOFFN_MASK;
697 dsts >>= DSTS_SOFFN_SHIFT;
699 return dsts;
703 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
704 * DMA descriptor chain prepared for specific endpoint
705 * @hs_ep: The endpoint
707 * Return the maximum data that can be queued in one go on a given endpoint
708 * depending on its descriptor chain capacity so that transfers that
709 * are too long can be split.
711 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
713 int is_isoc = hs_ep->isochronous;
714 unsigned int maxsize;
716 if (is_isoc)
717 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
718 DEV_DMA_ISOC_RX_NBYTES_LIMIT;
719 else
720 maxsize = DEV_DMA_NBYTES_LIMIT;
722 /* Above size of one descriptor was chosen, multiple it */
723 maxsize *= MAX_DMA_DESC_NUM_GENERIC;
725 return maxsize;
729 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
730 * @hs_ep: The endpoint
731 * @mask: RX/TX bytes mask to be defined
733 * Returns maximum data payload for one descriptor after analyzing endpoint
734 * characteristics.
735 * DMA descriptor transfer bytes limit depends on EP type:
736 * Control out - MPS,
737 * Isochronous - descriptor rx/tx bytes bitfield limit,
738 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
739 * have concatenations from various descriptors within one packet.
741 * Selects corresponding mask for RX/TX bytes as well.
743 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
745 u32 mps = hs_ep->ep.maxpacket;
746 int dir_in = hs_ep->dir_in;
747 u32 desc_size = 0;
749 if (!hs_ep->index && !dir_in) {
750 desc_size = mps;
751 *mask = DEV_DMA_NBYTES_MASK;
752 } else if (hs_ep->isochronous) {
753 if (dir_in) {
754 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
755 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
756 } else {
757 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
758 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
760 } else {
761 desc_size = DEV_DMA_NBYTES_LIMIT;
762 *mask = DEV_DMA_NBYTES_MASK;
764 /* Round down desc_size to be mps multiple */
765 desc_size -= desc_size % mps;
768 return desc_size;
771 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
772 struct dwc2_dma_desc **desc,
773 dma_addr_t dma_buff,
774 unsigned int len,
775 bool true_last)
777 int dir_in = hs_ep->dir_in;
778 u32 mps = hs_ep->ep.maxpacket;
779 u32 maxsize = 0;
780 u32 offset = 0;
781 u32 mask = 0;
782 int i;
784 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
786 hs_ep->desc_count = (len / maxsize) +
787 ((len % maxsize) ? 1 : 0);
788 if (len == 0)
789 hs_ep->desc_count = 1;
791 for (i = 0; i < hs_ep->desc_count; ++i) {
792 (*desc)->status = 0;
793 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
794 << DEV_DMA_BUFF_STS_SHIFT);
796 if (len > maxsize) {
797 if (!hs_ep->index && !dir_in)
798 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
800 (*desc)->status |=
801 maxsize << DEV_DMA_NBYTES_SHIFT & mask;
802 (*desc)->buf = dma_buff + offset;
804 len -= maxsize;
805 offset += maxsize;
806 } else {
807 if (true_last)
808 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
810 if (dir_in)
811 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
812 ((hs_ep->send_zlp && true_last) ?
813 DEV_DMA_SHORT : 0);
815 (*desc)->status |=
816 len << DEV_DMA_NBYTES_SHIFT & mask;
817 (*desc)->buf = dma_buff + offset;
820 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
821 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
822 << DEV_DMA_BUFF_STS_SHIFT);
823 (*desc)++;
828 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
829 * @hs_ep: The endpoint
830 * @ureq: Request to transfer
831 * @offset: offset in bytes
832 * @len: Length of the transfer
834 * This function will iterate over descriptor chain and fill its entries
835 * with corresponding information based on transfer data.
837 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
838 struct usb_request *ureq,
839 unsigned int offset,
840 unsigned int len)
842 struct dwc2_dma_desc *desc = hs_ep->desc_list;
843 struct scatterlist *sg;
844 int i;
845 u8 desc_count = 0;
847 /* non-DMA sg buffer */
848 if (!ureq->num_sgs) {
849 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
850 ureq->dma + offset, len, true);
851 return;
854 /* DMA sg buffer */
855 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
856 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
857 sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
858 sg_is_last(sg));
859 desc_count += hs_ep->desc_count;
862 hs_ep->desc_count = desc_count;
866 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
867 * @hs_ep: The isochronous endpoint.
868 * @dma_buff: usb requests dma buffer.
869 * @len: usb request transfer length.
871 * Fills next free descriptor with the data of the arrived usb request,
872 * frame info, sets Last and IOC bits increments next_desc. If filled
873 * descriptor is not the first one, removes L bit from the previous descriptor
874 * status.
876 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
877 dma_addr_t dma_buff, unsigned int len)
879 struct dwc2_dma_desc *desc;
880 struct dwc2_hsotg *hsotg = hs_ep->parent;
881 u32 index;
882 u32 maxsize = 0;
883 u32 mask = 0;
884 u8 pid = 0;
886 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
888 index = hs_ep->next_desc;
889 desc = &hs_ep->desc_list[index];
891 /* Check if descriptor chain full */
892 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
893 DEV_DMA_BUFF_STS_HREADY) {
894 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
895 return 1;
898 /* Clear L bit of previous desc if more than one entries in the chain */
899 if (hs_ep->next_desc)
900 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
902 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
903 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
905 desc->status = 0;
906 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
908 desc->buf = dma_buff;
909 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
910 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
912 if (hs_ep->dir_in) {
913 if (len)
914 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
915 else
916 pid = 1;
917 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
918 DEV_DMA_ISOC_PID_MASK) |
919 ((len % hs_ep->ep.maxpacket) ?
920 DEV_DMA_SHORT : 0) |
921 ((hs_ep->target_frame <<
922 DEV_DMA_ISOC_FRNUM_SHIFT) &
923 DEV_DMA_ISOC_FRNUM_MASK);
926 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
927 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
929 /* Increment frame number by interval for IN */
930 if (hs_ep->dir_in)
931 dwc2_gadget_incr_frame_num(hs_ep);
933 /* Update index of last configured entry in the chain */
934 hs_ep->next_desc++;
935 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_GENERIC)
936 hs_ep->next_desc = 0;
938 return 0;
942 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
943 * @hs_ep: The isochronous endpoint.
945 * Prepare descriptor chain for isochronous endpoints. Afterwards
946 * write DMA address to HW and enable the endpoint.
948 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
950 struct dwc2_hsotg *hsotg = hs_ep->parent;
951 struct dwc2_hsotg_req *hs_req, *treq;
952 int index = hs_ep->index;
953 int ret;
954 int i;
955 u32 dma_reg;
956 u32 depctl;
957 u32 ctrl;
958 struct dwc2_dma_desc *desc;
960 if (list_empty(&hs_ep->queue)) {
961 hs_ep->target_frame = TARGET_FRAME_INITIAL;
962 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
963 return;
966 /* Initialize descriptor chain by Host Busy status */
967 for (i = 0; i < MAX_DMA_DESC_NUM_GENERIC; i++) {
968 desc = &hs_ep->desc_list[i];
969 desc->status = 0;
970 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
971 << DEV_DMA_BUFF_STS_SHIFT);
974 hs_ep->next_desc = 0;
975 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
976 dma_addr_t dma_addr = hs_req->req.dma;
978 if (hs_req->req.num_sgs) {
979 WARN_ON(hs_req->req.num_sgs > 1);
980 dma_addr = sg_dma_address(hs_req->req.sg);
982 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
983 hs_req->req.length);
984 if (ret)
985 break;
988 hs_ep->compl_desc = 0;
989 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
990 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
992 /* write descriptor chain address to control register */
993 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
995 ctrl = dwc2_readl(hsotg, depctl);
996 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
997 dwc2_writel(hsotg, ctrl, depctl);
1001 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1002 * @hsotg: The controller state.
1003 * @hs_ep: The endpoint to process a request for
1004 * @hs_req: The request to start.
1005 * @continuing: True if we are doing more for the current request.
1007 * Start the given request running by setting the endpoint registers
1008 * appropriately, and writing any data to the FIFOs.
1010 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1011 struct dwc2_hsotg_ep *hs_ep,
1012 struct dwc2_hsotg_req *hs_req,
1013 bool continuing)
1015 struct usb_request *ureq = &hs_req->req;
1016 int index = hs_ep->index;
1017 int dir_in = hs_ep->dir_in;
1018 u32 epctrl_reg;
1019 u32 epsize_reg;
1020 u32 epsize;
1021 u32 ctrl;
1022 unsigned int length;
1023 unsigned int packets;
1024 unsigned int maxreq;
1025 unsigned int dma_reg;
1027 if (index != 0) {
1028 if (hs_ep->req && !continuing) {
1029 dev_err(hsotg->dev, "%s: active request\n", __func__);
1030 WARN_ON(1);
1031 return;
1032 } else if (hs_ep->req != hs_req && continuing) {
1033 dev_err(hsotg->dev,
1034 "%s: continue different req\n", __func__);
1035 WARN_ON(1);
1036 return;
1040 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1041 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1042 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1044 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1045 __func__, dwc2_readl(hsotg, epctrl_reg), index,
1046 hs_ep->dir_in ? "in" : "out");
1048 /* If endpoint is stalled, we will restart request later */
1049 ctrl = dwc2_readl(hsotg, epctrl_reg);
1051 if (index && ctrl & DXEPCTL_STALL) {
1052 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1053 return;
1056 length = ureq->length - ureq->actual;
1057 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1058 ureq->length, ureq->actual);
1060 if (!using_desc_dma(hsotg))
1061 maxreq = get_ep_limit(hs_ep);
1062 else
1063 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1065 if (length > maxreq) {
1066 int round = maxreq % hs_ep->ep.maxpacket;
1068 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1069 __func__, length, maxreq, round);
1071 /* round down to multiple of packets */
1072 if (round)
1073 maxreq -= round;
1075 length = maxreq;
1078 if (length)
1079 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1080 else
1081 packets = 1; /* send one packet if length is zero. */
1083 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1084 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1085 return;
1088 if (dir_in && index != 0)
1089 if (hs_ep->isochronous)
1090 epsize = DXEPTSIZ_MC(packets);
1091 else
1092 epsize = DXEPTSIZ_MC(1);
1093 else
1094 epsize = 0;
1097 * zero length packet should be programmed on its own and should not
1098 * be counted in DIEPTSIZ.PktCnt with other packets.
1100 if (dir_in && ureq->zero && !continuing) {
1101 /* Test if zlp is actually required. */
1102 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1103 !(ureq->length % hs_ep->ep.maxpacket))
1104 hs_ep->send_zlp = 1;
1107 epsize |= DXEPTSIZ_PKTCNT(packets);
1108 epsize |= DXEPTSIZ_XFERSIZE(length);
1110 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1111 __func__, packets, length, ureq->length, epsize, epsize_reg);
1113 /* store the request as the current one we're doing */
1114 hs_ep->req = hs_req;
1116 if (using_desc_dma(hsotg)) {
1117 u32 offset = 0;
1118 u32 mps = hs_ep->ep.maxpacket;
1120 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1121 if (!dir_in) {
1122 if (!index)
1123 length = mps;
1124 else if (length % mps)
1125 length += (mps - (length % mps));
1129 * If more data to send, adjust DMA for EP0 out data stage.
1130 * ureq->dma stays unchanged, hence increment it by already
1131 * passed passed data count before starting new transaction.
1133 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1134 continuing)
1135 offset = ureq->actual;
1137 /* Fill DDMA chain entries */
1138 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq, offset,
1139 length);
1141 /* write descriptor chain address to control register */
1142 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1144 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1145 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1146 } else {
1147 /* write size / packets */
1148 dwc2_writel(hsotg, epsize, epsize_reg);
1150 if (using_dma(hsotg) && !continuing && (length != 0)) {
1152 * write DMA address to control register, buffer
1153 * already synced by dwc2_hsotg_ep_queue().
1156 dwc2_writel(hsotg, ureq->dma, dma_reg);
1158 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1159 __func__, &ureq->dma, dma_reg);
1163 if (hs_ep->isochronous && hs_ep->interval == 1) {
1164 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1165 dwc2_gadget_incr_frame_num(hs_ep);
1167 if (hs_ep->target_frame & 0x1)
1168 ctrl |= DXEPCTL_SETODDFR;
1169 else
1170 ctrl |= DXEPCTL_SETEVENFR;
1173 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1175 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1177 /* For Setup request do not clear NAK */
1178 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1179 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1181 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1182 dwc2_writel(hsotg, ctrl, epctrl_reg);
1185 * set these, it seems that DMA support increments past the end
1186 * of the packet buffer so we need to calculate the length from
1187 * this information.
1189 hs_ep->size_loaded = length;
1190 hs_ep->last_load = ureq->actual;
1192 if (dir_in && !using_dma(hsotg)) {
1193 /* set these anyway, we may need them for non-periodic in */
1194 hs_ep->fifo_load = 0;
1196 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1200 * Note, trying to clear the NAK here causes problems with transmit
1201 * on the S3C6400 ending up with the TXFIFO becoming full.
1204 /* check ep is enabled */
1205 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1206 dev_dbg(hsotg->dev,
1207 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1208 index, dwc2_readl(hsotg, epctrl_reg));
1210 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1211 __func__, dwc2_readl(hsotg, epctrl_reg));
1213 /* enable ep interrupts */
1214 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1218 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1219 * @hsotg: The device state.
1220 * @hs_ep: The endpoint the request is on.
1221 * @req: The request being processed.
1223 * We've been asked to queue a request, so ensure that the memory buffer
1224 * is correctly setup for DMA. If we've been passed an extant DMA address
1225 * then ensure the buffer has been synced to memory. If our buffer has no
1226 * DMA memory, then we map the memory and mark our request to allow us to
1227 * cleanup on completion.
1229 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1230 struct dwc2_hsotg_ep *hs_ep,
1231 struct usb_request *req)
1233 int ret;
1235 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1236 if (ret)
1237 goto dma_error;
1239 return 0;
1241 dma_error:
1242 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1243 __func__, req->buf, req->length);
1245 return -EIO;
1248 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1249 struct dwc2_hsotg_ep *hs_ep,
1250 struct dwc2_hsotg_req *hs_req)
1252 void *req_buf = hs_req->req.buf;
1254 /* If dma is not being used or buffer is aligned */
1255 if (!using_dma(hsotg) || !((long)req_buf & 3))
1256 return 0;
1258 WARN_ON(hs_req->saved_req_buf);
1260 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1261 hs_ep->ep.name, req_buf, hs_req->req.length);
1263 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1264 if (!hs_req->req.buf) {
1265 hs_req->req.buf = req_buf;
1266 dev_err(hsotg->dev,
1267 "%s: unable to allocate memory for bounce buffer\n",
1268 __func__);
1269 return -ENOMEM;
1272 /* Save actual buffer */
1273 hs_req->saved_req_buf = req_buf;
1275 if (hs_ep->dir_in)
1276 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1277 return 0;
1280 static void
1281 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1282 struct dwc2_hsotg_ep *hs_ep,
1283 struct dwc2_hsotg_req *hs_req)
1285 /* If dma is not being used or buffer was aligned */
1286 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1287 return;
1289 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1290 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1292 /* Copy data from bounce buffer on successful out transfer */
1293 if (!hs_ep->dir_in && !hs_req->req.status)
1294 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1295 hs_req->req.actual);
1297 /* Free bounce buffer */
1298 kfree(hs_req->req.buf);
1300 hs_req->req.buf = hs_req->saved_req_buf;
1301 hs_req->saved_req_buf = NULL;
1305 * dwc2_gadget_target_frame_elapsed - Checks target frame
1306 * @hs_ep: The driver endpoint to check
1308 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1309 * corresponding transfer.
1311 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1313 struct dwc2_hsotg *hsotg = hs_ep->parent;
1314 u32 target_frame = hs_ep->target_frame;
1315 u32 current_frame = hsotg->frame_number;
1316 bool frame_overrun = hs_ep->frame_overrun;
1318 if (!frame_overrun && current_frame >= target_frame)
1319 return true;
1321 if (frame_overrun && current_frame >= target_frame &&
1322 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1323 return true;
1325 return false;
1329 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1330 * @hsotg: The driver state
1331 * @hs_ep: the ep descriptor chain is for
1333 * Called to update EP0 structure's pointers depend on stage of
1334 * control transfer.
1336 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1337 struct dwc2_hsotg_ep *hs_ep)
1339 switch (hsotg->ep0_state) {
1340 case DWC2_EP0_SETUP:
1341 case DWC2_EP0_STATUS_OUT:
1342 hs_ep->desc_list = hsotg->setup_desc[0];
1343 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1344 break;
1345 case DWC2_EP0_DATA_IN:
1346 case DWC2_EP0_STATUS_IN:
1347 hs_ep->desc_list = hsotg->ctrl_in_desc;
1348 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1349 break;
1350 case DWC2_EP0_DATA_OUT:
1351 hs_ep->desc_list = hsotg->ctrl_out_desc;
1352 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1353 break;
1354 default:
1355 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1356 hsotg->ep0_state);
1357 return -EINVAL;
1360 return 0;
1363 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1364 gfp_t gfp_flags)
1366 struct dwc2_hsotg_req *hs_req = our_req(req);
1367 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1368 struct dwc2_hsotg *hs = hs_ep->parent;
1369 bool first;
1370 int ret;
1371 u32 maxsize = 0;
1372 u32 mask = 0;
1375 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1376 ep->name, req, req->length, req->buf, req->no_interrupt,
1377 req->zero, req->short_not_ok);
1379 /* Prevent new request submission when controller is suspended */
1380 if (hs->lx_state != DWC2_L0) {
1381 dev_dbg(hs->dev, "%s: submit request only in active state\n",
1382 __func__);
1383 return -EAGAIN;
1386 /* initialise status of the request */
1387 INIT_LIST_HEAD(&hs_req->queue);
1388 req->actual = 0;
1389 req->status = -EINPROGRESS;
1391 /* In DDMA mode for ISOC's don't queue request if length greater
1392 * than descriptor limits.
1394 if (using_desc_dma(hs) && hs_ep->isochronous) {
1395 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1396 if (hs_ep->dir_in && req->length > maxsize) {
1397 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1398 req->length, maxsize);
1399 return -EINVAL;
1402 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1403 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1404 req->length, hs_ep->ep.maxpacket);
1405 return -EINVAL;
1409 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1410 if (ret)
1411 return ret;
1413 /* if we're using DMA, sync the buffers as necessary */
1414 if (using_dma(hs)) {
1415 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1416 if (ret)
1417 return ret;
1419 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1420 if (using_desc_dma(hs) && !hs_ep->index) {
1421 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1422 if (ret)
1423 return ret;
1426 first = list_empty(&hs_ep->queue);
1427 list_add_tail(&hs_req->queue, &hs_ep->queue);
1430 * Handle DDMA isochronous transfers separately - just add new entry
1431 * to the descriptor chain.
1432 * Transfer will be started once SW gets either one of NAK or
1433 * OutTknEpDis interrupts.
1435 if (using_desc_dma(hs) && hs_ep->isochronous) {
1436 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1437 dma_addr_t dma_addr = hs_req->req.dma;
1439 if (hs_req->req.num_sgs) {
1440 WARN_ON(hs_req->req.num_sgs > 1);
1441 dma_addr = sg_dma_address(hs_req->req.sg);
1443 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1444 hs_req->req.length);
1446 return 0;
1449 if (first) {
1450 if (!hs_ep->isochronous) {
1451 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1452 return 0;
1455 /* Update current frame number value. */
1456 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1457 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1458 dwc2_gadget_incr_frame_num(hs_ep);
1459 /* Update current frame number value once more as it
1460 * changes here.
1462 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1465 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1466 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1468 return 0;
1471 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1472 gfp_t gfp_flags)
1474 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1475 struct dwc2_hsotg *hs = hs_ep->parent;
1476 unsigned long flags = 0;
1477 int ret = 0;
1479 spin_lock_irqsave(&hs->lock, flags);
1480 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1481 spin_unlock_irqrestore(&hs->lock, flags);
1483 return ret;
1486 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1487 struct usb_request *req)
1489 struct dwc2_hsotg_req *hs_req = our_req(req);
1491 kfree(hs_req);
1495 * dwc2_hsotg_complete_oursetup - setup completion callback
1496 * @ep: The endpoint the request was on.
1497 * @req: The request completed.
1499 * Called on completion of any requests the driver itself
1500 * submitted that need cleaning up.
1502 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1503 struct usb_request *req)
1505 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1506 struct dwc2_hsotg *hsotg = hs_ep->parent;
1508 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1510 dwc2_hsotg_ep_free_request(ep, req);
1514 * ep_from_windex - convert control wIndex value to endpoint
1515 * @hsotg: The driver state.
1516 * @windex: The control request wIndex field (in host order).
1518 * Convert the given wIndex into a pointer to an driver endpoint
1519 * structure, or return NULL if it is not a valid endpoint.
1521 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1522 u32 windex)
1524 struct dwc2_hsotg_ep *ep;
1525 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1526 int idx = windex & 0x7F;
1528 if (windex >= 0x100)
1529 return NULL;
1531 if (idx > hsotg->num_of_eps)
1532 return NULL;
1534 ep = index_to_ep(hsotg, idx, dir);
1536 if (idx && ep->dir_in != dir)
1537 return NULL;
1539 return ep;
1543 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1544 * @hsotg: The driver state.
1545 * @testmode: requested usb test mode
1546 * Enable usb Test Mode requested by the Host.
1548 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1550 int dctl = dwc2_readl(hsotg, DCTL);
1552 dctl &= ~DCTL_TSTCTL_MASK;
1553 switch (testmode) {
1554 case TEST_J:
1555 case TEST_K:
1556 case TEST_SE0_NAK:
1557 case TEST_PACKET:
1558 case TEST_FORCE_EN:
1559 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1560 break;
1561 default:
1562 return -EINVAL;
1564 dwc2_writel(hsotg, dctl, DCTL);
1565 return 0;
1569 * dwc2_hsotg_send_reply - send reply to control request
1570 * @hsotg: The device state
1571 * @ep: Endpoint 0
1572 * @buff: Buffer for request
1573 * @length: Length of reply.
1575 * Create a request and queue it on the given endpoint. This is useful as
1576 * an internal method of sending replies to certain control requests, etc.
1578 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1579 struct dwc2_hsotg_ep *ep,
1580 void *buff,
1581 int length)
1583 struct usb_request *req;
1584 int ret;
1586 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1588 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1589 hsotg->ep0_reply = req;
1590 if (!req) {
1591 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1592 return -ENOMEM;
1595 req->buf = hsotg->ep0_buff;
1596 req->length = length;
1598 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1599 * STATUS stage.
1601 req->zero = 0;
1602 req->complete = dwc2_hsotg_complete_oursetup;
1604 if (length)
1605 memcpy(req->buf, buff, length);
1607 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1608 if (ret) {
1609 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1610 return ret;
1613 return 0;
1617 * dwc2_hsotg_process_req_status - process request GET_STATUS
1618 * @hsotg: The device state
1619 * @ctrl: USB control request
1621 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1622 struct usb_ctrlrequest *ctrl)
1624 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1625 struct dwc2_hsotg_ep *ep;
1626 __le16 reply;
1627 int ret;
1629 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1631 if (!ep0->dir_in) {
1632 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1633 return -EINVAL;
1636 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1637 case USB_RECIP_DEVICE:
1639 * bit 0 => self powered
1640 * bit 1 => remote wakeup
1642 reply = cpu_to_le16(0);
1643 break;
1645 case USB_RECIP_INTERFACE:
1646 /* currently, the data result should be zero */
1647 reply = cpu_to_le16(0);
1648 break;
1650 case USB_RECIP_ENDPOINT:
1651 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1652 if (!ep)
1653 return -ENOENT;
1655 reply = cpu_to_le16(ep->halted ? 1 : 0);
1656 break;
1658 default:
1659 return 0;
1662 if (le16_to_cpu(ctrl->wLength) != 2)
1663 return -EINVAL;
1665 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1666 if (ret) {
1667 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1668 return ret;
1671 return 1;
1674 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1677 * get_ep_head - return the first request on the endpoint
1678 * @hs_ep: The controller endpoint to get
1680 * Get the first request on the endpoint.
1682 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1684 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1685 queue);
1689 * dwc2_gadget_start_next_request - Starts next request from ep queue
1690 * @hs_ep: Endpoint structure
1692 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1693 * in its handler. Hence we need to unmask it here to be able to do
1694 * resynchronization.
1696 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1698 u32 mask;
1699 struct dwc2_hsotg *hsotg = hs_ep->parent;
1700 int dir_in = hs_ep->dir_in;
1701 struct dwc2_hsotg_req *hs_req;
1702 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1704 if (!list_empty(&hs_ep->queue)) {
1705 hs_req = get_ep_head(hs_ep);
1706 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1707 return;
1709 if (!hs_ep->isochronous)
1710 return;
1712 if (dir_in) {
1713 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1714 __func__);
1715 } else {
1716 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1717 __func__);
1718 mask = dwc2_readl(hsotg, epmsk_reg);
1719 mask |= DOEPMSK_OUTTKNEPDISMSK;
1720 dwc2_writel(hsotg, mask, epmsk_reg);
1725 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1726 * @hsotg: The device state
1727 * @ctrl: USB control request
1729 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1730 struct usb_ctrlrequest *ctrl)
1732 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1733 struct dwc2_hsotg_req *hs_req;
1734 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1735 struct dwc2_hsotg_ep *ep;
1736 int ret;
1737 bool halted;
1738 u32 recip;
1739 u32 wValue;
1740 u32 wIndex;
1742 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1743 __func__, set ? "SET" : "CLEAR");
1745 wValue = le16_to_cpu(ctrl->wValue);
1746 wIndex = le16_to_cpu(ctrl->wIndex);
1747 recip = ctrl->bRequestType & USB_RECIP_MASK;
1749 switch (recip) {
1750 case USB_RECIP_DEVICE:
1751 switch (wValue) {
1752 case USB_DEVICE_REMOTE_WAKEUP:
1753 hsotg->remote_wakeup_allowed = 1;
1754 break;
1756 case USB_DEVICE_TEST_MODE:
1757 if ((wIndex & 0xff) != 0)
1758 return -EINVAL;
1759 if (!set)
1760 return -EINVAL;
1762 hsotg->test_mode = wIndex >> 8;
1763 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1764 if (ret) {
1765 dev_err(hsotg->dev,
1766 "%s: failed to send reply\n", __func__);
1767 return ret;
1769 break;
1770 default:
1771 return -ENOENT;
1773 break;
1775 case USB_RECIP_ENDPOINT:
1776 ep = ep_from_windex(hsotg, wIndex);
1777 if (!ep) {
1778 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1779 __func__, wIndex);
1780 return -ENOENT;
1783 switch (wValue) {
1784 case USB_ENDPOINT_HALT:
1785 halted = ep->halted;
1787 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1789 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1790 if (ret) {
1791 dev_err(hsotg->dev,
1792 "%s: failed to send reply\n", __func__);
1793 return ret;
1797 * we have to complete all requests for ep if it was
1798 * halted, and the halt was cleared by CLEAR_FEATURE
1801 if (!set && halted) {
1803 * If we have request in progress,
1804 * then complete it
1806 if (ep->req) {
1807 hs_req = ep->req;
1808 ep->req = NULL;
1809 list_del_init(&hs_req->queue);
1810 if (hs_req->req.complete) {
1811 spin_unlock(&hsotg->lock);
1812 usb_gadget_giveback_request(
1813 &ep->ep, &hs_req->req);
1814 spin_lock(&hsotg->lock);
1818 /* If we have pending request, then start it */
1819 if (!ep->req)
1820 dwc2_gadget_start_next_request(ep);
1823 break;
1825 default:
1826 return -ENOENT;
1828 break;
1829 default:
1830 return -ENOENT;
1832 return 1;
1835 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1838 * dwc2_hsotg_stall_ep0 - stall ep0
1839 * @hsotg: The device state
1841 * Set stall for ep0 as response for setup request.
1843 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1845 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1846 u32 reg;
1847 u32 ctrl;
1849 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1850 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1853 * DxEPCTL_Stall will be cleared by EP once it has
1854 * taken effect, so no need to clear later.
1857 ctrl = dwc2_readl(hsotg, reg);
1858 ctrl |= DXEPCTL_STALL;
1859 ctrl |= DXEPCTL_CNAK;
1860 dwc2_writel(hsotg, ctrl, reg);
1862 dev_dbg(hsotg->dev,
1863 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1864 ctrl, reg, dwc2_readl(hsotg, reg));
1867 * complete won't be called, so we enqueue
1868 * setup request here
1870 dwc2_hsotg_enqueue_setup(hsotg);
1874 * dwc2_hsotg_process_control - process a control request
1875 * @hsotg: The device state
1876 * @ctrl: The control request received
1878 * The controller has received the SETUP phase of a control request, and
1879 * needs to work out what to do next (and whether to pass it on to the
1880 * gadget driver).
1882 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1883 struct usb_ctrlrequest *ctrl)
1885 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1886 int ret = 0;
1887 u32 dcfg;
1889 dev_dbg(hsotg->dev,
1890 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1891 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1892 ctrl->wIndex, ctrl->wLength);
1894 if (ctrl->wLength == 0) {
1895 ep0->dir_in = 1;
1896 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1897 } else if (ctrl->bRequestType & USB_DIR_IN) {
1898 ep0->dir_in = 1;
1899 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1900 } else {
1901 ep0->dir_in = 0;
1902 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1905 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1906 switch (ctrl->bRequest) {
1907 case USB_REQ_SET_ADDRESS:
1908 hsotg->connected = 1;
1909 dcfg = dwc2_readl(hsotg, DCFG);
1910 dcfg &= ~DCFG_DEVADDR_MASK;
1911 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1912 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1913 dwc2_writel(hsotg, dcfg, DCFG);
1915 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1917 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1918 return;
1920 case USB_REQ_GET_STATUS:
1921 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1922 break;
1924 case USB_REQ_CLEAR_FEATURE:
1925 case USB_REQ_SET_FEATURE:
1926 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1927 break;
1931 /* as a fallback, try delivering it to the driver to deal with */
1933 if (ret == 0 && hsotg->driver) {
1934 spin_unlock(&hsotg->lock);
1935 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1936 spin_lock(&hsotg->lock);
1937 if (ret < 0)
1938 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1942 * the request is either unhandlable, or is not formatted correctly
1943 * so respond with a STALL for the status stage to indicate failure.
1946 if (ret < 0)
1947 dwc2_hsotg_stall_ep0(hsotg);
1951 * dwc2_hsotg_complete_setup - completion of a setup transfer
1952 * @ep: The endpoint the request was on.
1953 * @req: The request completed.
1955 * Called on completion of any requests the driver itself submitted for
1956 * EP0 setup packets
1958 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1959 struct usb_request *req)
1961 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1962 struct dwc2_hsotg *hsotg = hs_ep->parent;
1964 if (req->status < 0) {
1965 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1966 return;
1969 spin_lock(&hsotg->lock);
1970 if (req->actual == 0)
1971 dwc2_hsotg_enqueue_setup(hsotg);
1972 else
1973 dwc2_hsotg_process_control(hsotg, req->buf);
1974 spin_unlock(&hsotg->lock);
1978 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1979 * @hsotg: The device state.
1981 * Enqueue a request on EP0 if necessary to received any SETUP packets
1982 * received from the host.
1984 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1986 struct usb_request *req = hsotg->ctrl_req;
1987 struct dwc2_hsotg_req *hs_req = our_req(req);
1988 int ret;
1990 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1992 req->zero = 0;
1993 req->length = 8;
1994 req->buf = hsotg->ctrl_buff;
1995 req->complete = dwc2_hsotg_complete_setup;
1997 if (!list_empty(&hs_req->queue)) {
1998 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1999 return;
2002 hsotg->eps_out[0]->dir_in = 0;
2003 hsotg->eps_out[0]->send_zlp = 0;
2004 hsotg->ep0_state = DWC2_EP0_SETUP;
2006 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2007 if (ret < 0) {
2008 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2010 * Don't think there's much we can do other than watch the
2011 * driver fail.
2016 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2017 struct dwc2_hsotg_ep *hs_ep)
2019 u32 ctrl;
2020 u8 index = hs_ep->index;
2021 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2022 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2024 if (hs_ep->dir_in)
2025 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2026 index);
2027 else
2028 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2029 index);
2030 if (using_desc_dma(hsotg)) {
2031 if (!index)
2032 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2034 /* Not specific buffer needed for ep0 ZLP */
2035 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &hs_ep->desc_list,
2036 hs_ep->desc_list_dma, 0, true);
2037 } else {
2038 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2039 DXEPTSIZ_XFERSIZE(0),
2040 epsiz_reg);
2043 ctrl = dwc2_readl(hsotg, epctl_reg);
2044 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
2045 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2046 ctrl |= DXEPCTL_USBACTEP;
2047 dwc2_writel(hsotg, ctrl, epctl_reg);
2051 * dwc2_hsotg_complete_request - complete a request given to us
2052 * @hsotg: The device state.
2053 * @hs_ep: The endpoint the request was on.
2054 * @hs_req: The request to complete.
2055 * @result: The result code (0 => Ok, otherwise errno)
2057 * The given request has finished, so call the necessary completion
2058 * if it has one and then look to see if we can start a new request
2059 * on the endpoint.
2061 * Note, expects the ep to already be locked as appropriate.
2063 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2064 struct dwc2_hsotg_ep *hs_ep,
2065 struct dwc2_hsotg_req *hs_req,
2066 int result)
2068 if (!hs_req) {
2069 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2070 return;
2073 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2074 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2077 * only replace the status if we've not already set an error
2078 * from a previous transaction
2081 if (hs_req->req.status == -EINPROGRESS)
2082 hs_req->req.status = result;
2084 if (using_dma(hsotg))
2085 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2087 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2089 hs_ep->req = NULL;
2090 list_del_init(&hs_req->queue);
2093 * call the complete request with the locks off, just in case the
2094 * request tries to queue more work for this endpoint.
2097 if (hs_req->req.complete) {
2098 spin_unlock(&hsotg->lock);
2099 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2100 spin_lock(&hsotg->lock);
2103 /* In DDMA don't need to proceed to starting of next ISOC request */
2104 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2105 return;
2108 * Look to see if there is anything else to do. Note, the completion
2109 * of the previous request may have caused a new request to be started
2110 * so be careful when doing this.
2113 if (!hs_ep->req && result >= 0)
2114 dwc2_gadget_start_next_request(hs_ep);
2118 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2119 * @hs_ep: The endpoint the request was on.
2121 * Get first request from the ep queue, determine descriptor on which complete
2122 * happened. SW discovers which descriptor currently in use by HW, adjusts
2123 * dma_address and calculates index of completed descriptor based on the value
2124 * of DEPDMA register. Update actual length of request, giveback to gadget.
2126 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2128 struct dwc2_hsotg *hsotg = hs_ep->parent;
2129 struct dwc2_hsotg_req *hs_req;
2130 struct usb_request *ureq;
2131 u32 desc_sts;
2132 u32 mask;
2134 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2136 /* Process only descriptors with buffer status set to DMA done */
2137 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2138 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2140 hs_req = get_ep_head(hs_ep);
2141 if (!hs_req) {
2142 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2143 return;
2145 ureq = &hs_req->req;
2147 /* Check completion status */
2148 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2149 DEV_DMA_STS_SUCC) {
2150 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2151 DEV_DMA_ISOC_RX_NBYTES_MASK;
2152 ureq->actual = ureq->length - ((desc_sts & mask) >>
2153 DEV_DMA_ISOC_NBYTES_SHIFT);
2155 /* Adjust actual len for ISOC Out if len is
2156 * not align of 4
2158 if (!hs_ep->dir_in && ureq->length & 0x3)
2159 ureq->actual += 4 - (ureq->length & 0x3);
2162 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2164 hs_ep->compl_desc++;
2165 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_GENERIC - 1))
2166 hs_ep->compl_desc = 0;
2167 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2172 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2173 * @hs_ep: The isochronous endpoint.
2175 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2176 * interrupt. Reset target frame and next_desc to allow to start
2177 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2178 * interrupt for OUT direction.
2180 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2182 struct dwc2_hsotg *hsotg = hs_ep->parent;
2184 if (!hs_ep->dir_in)
2185 dwc2_flush_rx_fifo(hsotg);
2186 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2188 hs_ep->target_frame = TARGET_FRAME_INITIAL;
2189 hs_ep->next_desc = 0;
2190 hs_ep->compl_desc = 0;
2194 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2195 * @hsotg: The device state.
2196 * @ep_idx: The endpoint index for the data
2197 * @size: The size of data in the fifo, in bytes
2199 * The FIFO status shows there is data to read from the FIFO for a given
2200 * endpoint, so sort out whether we need to read the data into a request
2201 * that has been made for that endpoint.
2203 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2205 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2206 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2207 int to_read;
2208 int max_req;
2209 int read_ptr;
2211 if (!hs_req) {
2212 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2213 int ptr;
2215 dev_dbg(hsotg->dev,
2216 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2217 __func__, size, ep_idx, epctl);
2219 /* dump the data from the FIFO, we've nothing we can do */
2220 for (ptr = 0; ptr < size; ptr += 4)
2221 (void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2223 return;
2226 to_read = size;
2227 read_ptr = hs_req->req.actual;
2228 max_req = hs_req->req.length - read_ptr;
2230 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2231 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2233 if (to_read > max_req) {
2235 * more data appeared than we where willing
2236 * to deal with in this request.
2239 /* currently we don't deal this */
2240 WARN_ON_ONCE(1);
2243 hs_ep->total_data += to_read;
2244 hs_req->req.actual += to_read;
2245 to_read = DIV_ROUND_UP(to_read, 4);
2248 * note, we might over-write the buffer end by 3 bytes depending on
2249 * alignment of the data.
2251 dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2252 hs_req->req.buf + read_ptr, to_read);
2256 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2257 * @hsotg: The device instance
2258 * @dir_in: If IN zlp
2260 * Generate a zero-length IN packet request for terminating a SETUP
2261 * transaction.
2263 * Note, since we don't write any data to the TxFIFO, then it is
2264 * currently believed that we do not need to wait for any space in
2265 * the TxFIFO.
2267 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2269 /* eps_out[0] is used in both directions */
2270 hsotg->eps_out[0]->dir_in = dir_in;
2271 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2273 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2276 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2277 u32 epctl_reg)
2279 u32 ctrl;
2281 ctrl = dwc2_readl(hsotg, epctl_reg);
2282 if (ctrl & DXEPCTL_EOFRNUM)
2283 ctrl |= DXEPCTL_SETEVENFR;
2284 else
2285 ctrl |= DXEPCTL_SETODDFR;
2286 dwc2_writel(hsotg, ctrl, epctl_reg);
2290 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2291 * @hs_ep - The endpoint on which transfer went
2293 * Iterate over endpoints descriptor chain and get info on bytes remained
2294 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2296 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2298 struct dwc2_hsotg *hsotg = hs_ep->parent;
2299 unsigned int bytes_rem = 0;
2300 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2301 int i;
2302 u32 status;
2304 if (!desc)
2305 return -EINVAL;
2307 for (i = 0; i < hs_ep->desc_count; ++i) {
2308 status = desc->status;
2309 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2311 if (status & DEV_DMA_STS_MASK)
2312 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2313 i, status & DEV_DMA_STS_MASK);
2316 return bytes_rem;
2320 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2321 * @hsotg: The device instance
2322 * @epnum: The endpoint received from
2324 * The RXFIFO has delivered an OutDone event, which means that the data
2325 * transfer for an OUT endpoint has been completed, either by a short
2326 * packet or by the finish of a transfer.
2328 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2330 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2331 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2332 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2333 struct usb_request *req = &hs_req->req;
2334 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2335 int result = 0;
2337 if (!hs_req) {
2338 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2339 return;
2342 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2343 dev_dbg(hsotg->dev, "zlp packet received\n");
2344 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2345 dwc2_hsotg_enqueue_setup(hsotg);
2346 return;
2349 if (using_desc_dma(hsotg))
2350 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2352 if (using_dma(hsotg)) {
2353 unsigned int size_done;
2356 * Calculate the size of the transfer by checking how much
2357 * is left in the endpoint size register and then working it
2358 * out from the amount we loaded for the transfer.
2360 * We need to do this as DMA pointers are always 32bit aligned
2361 * so may overshoot/undershoot the transfer.
2364 size_done = hs_ep->size_loaded - size_left;
2365 size_done += hs_ep->last_load;
2367 req->actual = size_done;
2370 /* if there is more request to do, schedule new transfer */
2371 if (req->actual < req->length && size_left == 0) {
2372 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2373 return;
2376 if (req->actual < req->length && req->short_not_ok) {
2377 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2378 __func__, req->actual, req->length);
2381 * todo - what should we return here? there's no one else
2382 * even bothering to check the status.
2386 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2387 if (!using_desc_dma(hsotg) && epnum == 0 &&
2388 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2389 /* Move to STATUS IN */
2390 dwc2_hsotg_ep0_zlp(hsotg, true);
2391 return;
2395 * Slave mode OUT transfers do not go through XferComplete so
2396 * adjust the ISOC parity here.
2398 if (!using_dma(hsotg)) {
2399 if (hs_ep->isochronous && hs_ep->interval == 1)
2400 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2401 else if (hs_ep->isochronous && hs_ep->interval > 1)
2402 dwc2_gadget_incr_frame_num(hs_ep);
2405 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2409 * dwc2_hsotg_handle_rx - RX FIFO has data
2410 * @hsotg: The device instance
2412 * The IRQ handler has detected that the RX FIFO has some data in it
2413 * that requires processing, so find out what is in there and do the
2414 * appropriate read.
2416 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2417 * chunks, so if you have x packets received on an endpoint you'll get x
2418 * FIFO events delivered, each with a packet's worth of data in it.
2420 * When using DMA, we should not be processing events from the RXFIFO
2421 * as the actual data should be sent to the memory directly and we turn
2422 * on the completion interrupts to get notifications of transfer completion.
2424 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2426 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2427 u32 epnum, status, size;
2429 WARN_ON(using_dma(hsotg));
2431 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2432 status = grxstsr & GRXSTS_PKTSTS_MASK;
2434 size = grxstsr & GRXSTS_BYTECNT_MASK;
2435 size >>= GRXSTS_BYTECNT_SHIFT;
2437 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2438 __func__, grxstsr, size, epnum);
2440 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2441 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2442 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2443 break;
2445 case GRXSTS_PKTSTS_OUTDONE:
2446 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2447 dwc2_hsotg_read_frameno(hsotg));
2449 if (!using_dma(hsotg))
2450 dwc2_hsotg_handle_outdone(hsotg, epnum);
2451 break;
2453 case GRXSTS_PKTSTS_SETUPDONE:
2454 dev_dbg(hsotg->dev,
2455 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2456 dwc2_hsotg_read_frameno(hsotg),
2457 dwc2_readl(hsotg, DOEPCTL(0)));
2459 * Call dwc2_hsotg_handle_outdone here if it was not called from
2460 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2461 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2463 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2464 dwc2_hsotg_handle_outdone(hsotg, epnum);
2465 break;
2467 case GRXSTS_PKTSTS_OUTRX:
2468 dwc2_hsotg_rx_data(hsotg, epnum, size);
2469 break;
2471 case GRXSTS_PKTSTS_SETUPRX:
2472 dev_dbg(hsotg->dev,
2473 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2474 dwc2_hsotg_read_frameno(hsotg),
2475 dwc2_readl(hsotg, DOEPCTL(0)));
2477 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2479 dwc2_hsotg_rx_data(hsotg, epnum, size);
2480 break;
2482 default:
2483 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2484 __func__, grxstsr);
2486 dwc2_hsotg_dump(hsotg);
2487 break;
2492 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2493 * @mps: The maximum packet size in bytes.
2495 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2497 switch (mps) {
2498 case 64:
2499 return D0EPCTL_MPS_64;
2500 case 32:
2501 return D0EPCTL_MPS_32;
2502 case 16:
2503 return D0EPCTL_MPS_16;
2504 case 8:
2505 return D0EPCTL_MPS_8;
2508 /* bad max packet size, warn and return invalid result */
2509 WARN_ON(1);
2510 return (u32)-1;
2514 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2515 * @hsotg: The driver state.
2516 * @ep: The index number of the endpoint
2517 * @mps: The maximum packet size in bytes
2518 * @mc: The multicount value
2519 * @dir_in: True if direction is in.
2521 * Configure the maximum packet size for the given endpoint, updating
2522 * the hardware control registers to reflect this.
2524 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2525 unsigned int ep, unsigned int mps,
2526 unsigned int mc, unsigned int dir_in)
2528 struct dwc2_hsotg_ep *hs_ep;
2529 u32 reg;
2531 hs_ep = index_to_ep(hsotg, ep, dir_in);
2532 if (!hs_ep)
2533 return;
2535 if (ep == 0) {
2536 u32 mps_bytes = mps;
2538 /* EP0 is a special case */
2539 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2540 if (mps > 3)
2541 goto bad_mps;
2542 hs_ep->ep.maxpacket = mps_bytes;
2543 hs_ep->mc = 1;
2544 } else {
2545 if (mps > 1024)
2546 goto bad_mps;
2547 hs_ep->mc = mc;
2548 if (mc > 3)
2549 goto bad_mps;
2550 hs_ep->ep.maxpacket = mps;
2553 if (dir_in) {
2554 reg = dwc2_readl(hsotg, DIEPCTL(ep));
2555 reg &= ~DXEPCTL_MPS_MASK;
2556 reg |= mps;
2557 dwc2_writel(hsotg, reg, DIEPCTL(ep));
2558 } else {
2559 reg = dwc2_readl(hsotg, DOEPCTL(ep));
2560 reg &= ~DXEPCTL_MPS_MASK;
2561 reg |= mps;
2562 dwc2_writel(hsotg, reg, DOEPCTL(ep));
2565 return;
2567 bad_mps:
2568 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2572 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2573 * @hsotg: The driver state
2574 * @idx: The index for the endpoint (0..15)
2576 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2578 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2579 GRSTCTL);
2581 /* wait until the fifo is flushed */
2582 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2583 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2584 __func__);
2588 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2589 * @hsotg: The driver state
2590 * @hs_ep: The driver endpoint to check.
2592 * Check to see if there is a request that has data to send, and if so
2593 * make an attempt to write data into the FIFO.
2595 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2596 struct dwc2_hsotg_ep *hs_ep)
2598 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2600 if (!hs_ep->dir_in || !hs_req) {
2602 * if request is not enqueued, we disable interrupts
2603 * for endpoints, excepting ep0
2605 if (hs_ep->index != 0)
2606 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2607 hs_ep->dir_in, 0);
2608 return 0;
2611 if (hs_req->req.actual < hs_req->req.length) {
2612 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2613 hs_ep->index);
2614 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2617 return 0;
2621 * dwc2_hsotg_complete_in - complete IN transfer
2622 * @hsotg: The device state.
2623 * @hs_ep: The endpoint that has just completed.
2625 * An IN transfer has been completed, update the transfer's state and then
2626 * call the relevant completion routines.
2628 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2629 struct dwc2_hsotg_ep *hs_ep)
2631 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2632 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2633 int size_left, size_done;
2635 if (!hs_req) {
2636 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2637 return;
2640 /* Finish ZLP handling for IN EP0 transactions */
2641 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2642 dev_dbg(hsotg->dev, "zlp packet sent\n");
2645 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2646 * changed to IN. Change back to complete OUT transfer request
2648 hs_ep->dir_in = 0;
2650 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2651 if (hsotg->test_mode) {
2652 int ret;
2654 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2655 if (ret < 0) {
2656 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2657 hsotg->test_mode);
2658 dwc2_hsotg_stall_ep0(hsotg);
2659 return;
2662 dwc2_hsotg_enqueue_setup(hsotg);
2663 return;
2667 * Calculate the size of the transfer by checking how much is left
2668 * in the endpoint size register and then working it out from
2669 * the amount we loaded for the transfer.
2671 * We do this even for DMA, as the transfer may have incremented
2672 * past the end of the buffer (DMA transfers are always 32bit
2673 * aligned).
2675 if (using_desc_dma(hsotg)) {
2676 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2677 if (size_left < 0)
2678 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2679 size_left);
2680 } else {
2681 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2684 size_done = hs_ep->size_loaded - size_left;
2685 size_done += hs_ep->last_load;
2687 if (hs_req->req.actual != size_done)
2688 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2689 __func__, hs_req->req.actual, size_done);
2691 hs_req->req.actual = size_done;
2692 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2693 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2695 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2696 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2697 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2698 return;
2701 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2702 if (hs_ep->send_zlp) {
2703 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2704 hs_ep->send_zlp = 0;
2705 /* transfer will be completed on next complete interrupt */
2706 return;
2709 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2710 /* Move to STATUS OUT */
2711 dwc2_hsotg_ep0_zlp(hsotg, false);
2712 return;
2715 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2719 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2720 * @hsotg: The device state.
2721 * @idx: Index of ep.
2722 * @dir_in: Endpoint direction 1-in 0-out.
2724 * Reads for endpoint with given index and direction, by masking
2725 * epint_reg with coresponding mask.
2727 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2728 unsigned int idx, int dir_in)
2730 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2731 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2732 u32 ints;
2733 u32 mask;
2734 u32 diepempmsk;
2736 mask = dwc2_readl(hsotg, epmsk_reg);
2737 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2738 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2739 mask |= DXEPINT_SETUP_RCVD;
2741 ints = dwc2_readl(hsotg, epint_reg);
2742 ints &= mask;
2743 return ints;
2747 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2748 * @hs_ep: The endpoint on which interrupt is asserted.
2750 * This interrupt indicates that the endpoint has been disabled per the
2751 * application's request.
2753 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2754 * in case of ISOC completes current request.
2756 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2757 * request starts it.
2759 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2761 struct dwc2_hsotg *hsotg = hs_ep->parent;
2762 struct dwc2_hsotg_req *hs_req;
2763 unsigned char idx = hs_ep->index;
2764 int dir_in = hs_ep->dir_in;
2765 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2766 int dctl = dwc2_readl(hsotg, DCTL);
2768 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2770 if (dir_in) {
2771 int epctl = dwc2_readl(hsotg, epctl_reg);
2773 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2775 if (hs_ep->isochronous) {
2776 dwc2_hsotg_complete_in(hsotg, hs_ep);
2777 return;
2780 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2781 int dctl = dwc2_readl(hsotg, DCTL);
2783 dctl |= DCTL_CGNPINNAK;
2784 dwc2_writel(hsotg, dctl, DCTL);
2786 return;
2789 if (dctl & DCTL_GOUTNAKSTS) {
2790 dctl |= DCTL_CGOUTNAK;
2791 dwc2_writel(hsotg, dctl, DCTL);
2794 if (!hs_ep->isochronous)
2795 return;
2797 if (list_empty(&hs_ep->queue)) {
2798 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2799 __func__, hs_ep);
2800 return;
2803 do {
2804 hs_req = get_ep_head(hs_ep);
2805 if (hs_req)
2806 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2807 -ENODATA);
2808 dwc2_gadget_incr_frame_num(hs_ep);
2809 /* Update current frame number value. */
2810 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2811 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2813 dwc2_gadget_start_next_request(hs_ep);
2817 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2818 * @ep: The endpoint on which interrupt is asserted.
2820 * This is starting point for ISOC-OUT transfer, synchronization done with
2821 * first out token received from host while corresponding EP is disabled.
2823 * Device does not know initial frame in which out token will come. For this
2824 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2825 * getting this interrupt SW starts calculation for next transfer frame.
2827 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2829 struct dwc2_hsotg *hsotg = ep->parent;
2830 int dir_in = ep->dir_in;
2831 u32 doepmsk;
2833 if (dir_in || !ep->isochronous)
2834 return;
2836 if (using_desc_dma(hsotg)) {
2837 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2838 /* Start first ISO Out */
2839 ep->target_frame = hsotg->frame_number;
2840 dwc2_gadget_start_isoc_ddma(ep);
2842 return;
2845 if (ep->interval > 1 &&
2846 ep->target_frame == TARGET_FRAME_INITIAL) {
2847 u32 ctrl;
2849 ep->target_frame = hsotg->frame_number;
2850 dwc2_gadget_incr_frame_num(ep);
2852 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2853 if (ep->target_frame & 0x1)
2854 ctrl |= DXEPCTL_SETODDFR;
2855 else
2856 ctrl |= DXEPCTL_SETEVENFR;
2858 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2861 dwc2_gadget_start_next_request(ep);
2862 doepmsk = dwc2_readl(hsotg, DOEPMSK);
2863 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2864 dwc2_writel(hsotg, doepmsk, DOEPMSK);
2868 * dwc2_gadget_handle_nak - handle NAK interrupt
2869 * @hs_ep: The endpoint on which interrupt is asserted.
2871 * This is starting point for ISOC-IN transfer, synchronization done with
2872 * first IN token received from host while corresponding EP is disabled.
2874 * Device does not know when first one token will arrive from host. On first
2875 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2876 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2877 * sent in response to that as there was no data in FIFO. SW is basing on this
2878 * interrupt to obtain frame in which token has come and then based on the
2879 * interval calculates next frame for transfer.
2881 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2883 struct dwc2_hsotg *hsotg = hs_ep->parent;
2884 int dir_in = hs_ep->dir_in;
2886 if (!dir_in || !hs_ep->isochronous)
2887 return;
2889 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2891 if (using_desc_dma(hsotg)) {
2892 hs_ep->target_frame = hsotg->frame_number;
2893 dwc2_gadget_incr_frame_num(hs_ep);
2895 /* In service interval mode target_frame must
2896 * be set to last (u)frame of the service interval.
2898 if (hsotg->params.service_interval) {
2899 /* Set target_frame to the first (u)frame of
2900 * the service interval
2902 hs_ep->target_frame &= ~hs_ep->interval + 1;
2904 /* Set target_frame to the last (u)frame of
2905 * the service interval
2907 dwc2_gadget_incr_frame_num(hs_ep);
2908 dwc2_gadget_dec_frame_num_by_one(hs_ep);
2911 dwc2_gadget_start_isoc_ddma(hs_ep);
2912 return;
2915 hs_ep->target_frame = hsotg->frame_number;
2916 if (hs_ep->interval > 1) {
2917 u32 ctrl = dwc2_readl(hsotg,
2918 DIEPCTL(hs_ep->index));
2919 if (hs_ep->target_frame & 0x1)
2920 ctrl |= DXEPCTL_SETODDFR;
2921 else
2922 ctrl |= DXEPCTL_SETEVENFR;
2924 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2927 dwc2_hsotg_complete_request(hsotg, hs_ep,
2928 get_ep_head(hs_ep), 0);
2931 if (!using_desc_dma(hsotg))
2932 dwc2_gadget_incr_frame_num(hs_ep);
2936 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2937 * @hsotg: The driver state
2938 * @idx: The index for the endpoint (0..15)
2939 * @dir_in: Set if this is an IN endpoint
2941 * Process and clear any interrupt pending for an individual endpoint
2943 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2944 int dir_in)
2946 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2947 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2948 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2949 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2950 u32 ints;
2951 u32 ctrl;
2953 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2954 ctrl = dwc2_readl(hsotg, epctl_reg);
2956 /* Clear endpoint interrupts */
2957 dwc2_writel(hsotg, ints, epint_reg);
2959 if (!hs_ep) {
2960 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2961 __func__, idx, dir_in ? "in" : "out");
2962 return;
2965 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2966 __func__, idx, dir_in ? "in" : "out", ints);
2968 /* Don't process XferCompl interrupt if it is a setup packet */
2969 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2970 ints &= ~DXEPINT_XFERCOMPL;
2973 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2974 * stage and xfercomplete was generated without SETUP phase done
2975 * interrupt. SW should parse received setup packet only after host's
2976 * exit from setup phase of control transfer.
2978 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2979 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2980 ints &= ~DXEPINT_XFERCOMPL;
2982 if (ints & DXEPINT_XFERCOMPL) {
2983 dev_dbg(hsotg->dev,
2984 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2985 __func__, dwc2_readl(hsotg, epctl_reg),
2986 dwc2_readl(hsotg, epsiz_reg));
2988 /* In DDMA handle isochronous requests separately */
2989 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2990 /* XferCompl set along with BNA */
2991 if (!(ints & DXEPINT_BNAINTR))
2992 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2993 } else if (dir_in) {
2995 * We get OutDone from the FIFO, so we only
2996 * need to look at completing IN requests here
2997 * if operating slave mode
2999 if (hs_ep->isochronous && hs_ep->interval > 1)
3000 dwc2_gadget_incr_frame_num(hs_ep);
3002 dwc2_hsotg_complete_in(hsotg, hs_ep);
3003 if (ints & DXEPINT_NAKINTRPT)
3004 ints &= ~DXEPINT_NAKINTRPT;
3006 if (idx == 0 && !hs_ep->req)
3007 dwc2_hsotg_enqueue_setup(hsotg);
3008 } else if (using_dma(hsotg)) {
3010 * We're using DMA, we need to fire an OutDone here
3011 * as we ignore the RXFIFO.
3013 if (hs_ep->isochronous && hs_ep->interval > 1)
3014 dwc2_gadget_incr_frame_num(hs_ep);
3016 dwc2_hsotg_handle_outdone(hsotg, idx);
3020 if (ints & DXEPINT_EPDISBLD)
3021 dwc2_gadget_handle_ep_disabled(hs_ep);
3023 if (ints & DXEPINT_OUTTKNEPDIS)
3024 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3026 if (ints & DXEPINT_NAKINTRPT)
3027 dwc2_gadget_handle_nak(hs_ep);
3029 if (ints & DXEPINT_AHBERR)
3030 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3032 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
3033 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
3035 if (using_dma(hsotg) && idx == 0) {
3037 * this is the notification we've received a
3038 * setup packet. In non-DMA mode we'd get this
3039 * from the RXFIFO, instead we need to process
3040 * the setup here.
3043 if (dir_in)
3044 WARN_ON_ONCE(1);
3045 else
3046 dwc2_hsotg_handle_outdone(hsotg, 0);
3050 if (ints & DXEPINT_STSPHSERCVD) {
3051 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3053 /* Safety check EP0 state when STSPHSERCVD asserted */
3054 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3055 /* Move to STATUS IN for DDMA */
3056 if (using_desc_dma(hsotg))
3057 dwc2_hsotg_ep0_zlp(hsotg, true);
3062 if (ints & DXEPINT_BACK2BACKSETUP)
3063 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3065 if (ints & DXEPINT_BNAINTR) {
3066 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3067 if (hs_ep->isochronous)
3068 dwc2_gadget_handle_isoc_bna(hs_ep);
3071 if (dir_in && !hs_ep->isochronous) {
3072 /* not sure if this is important, but we'll clear it anyway */
3073 if (ints & DXEPINT_INTKNTXFEMP) {
3074 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3075 __func__, idx);
3078 /* this probably means something bad is happening */
3079 if (ints & DXEPINT_INTKNEPMIS) {
3080 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3081 __func__, idx);
3084 /* FIFO has space or is empty (see GAHBCFG) */
3085 if (hsotg->dedicated_fifos &&
3086 ints & DXEPINT_TXFEMP) {
3087 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3088 __func__, idx);
3089 if (!using_dma(hsotg))
3090 dwc2_hsotg_trytx(hsotg, hs_ep);
3096 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3097 * @hsotg: The device state.
3099 * Handle updating the device settings after the enumeration phase has
3100 * been completed.
3102 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3104 u32 dsts = dwc2_readl(hsotg, DSTS);
3105 int ep0_mps = 0, ep_mps = 8;
3108 * This should signal the finish of the enumeration phase
3109 * of the USB handshaking, so we should now know what rate
3110 * we connected at.
3113 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3116 * note, since we're limited by the size of transfer on EP0, and
3117 * it seems IN transfers must be a even number of packets we do
3118 * not advertise a 64byte MPS on EP0.
3121 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3122 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3123 case DSTS_ENUMSPD_FS:
3124 case DSTS_ENUMSPD_FS48:
3125 hsotg->gadget.speed = USB_SPEED_FULL;
3126 ep0_mps = EP0_MPS_LIMIT;
3127 ep_mps = 1023;
3128 break;
3130 case DSTS_ENUMSPD_HS:
3131 hsotg->gadget.speed = USB_SPEED_HIGH;
3132 ep0_mps = EP0_MPS_LIMIT;
3133 ep_mps = 1024;
3134 break;
3136 case DSTS_ENUMSPD_LS:
3137 hsotg->gadget.speed = USB_SPEED_LOW;
3138 ep0_mps = 8;
3139 ep_mps = 8;
3141 * note, we don't actually support LS in this driver at the
3142 * moment, and the documentation seems to imply that it isn't
3143 * supported by the PHYs on some of the devices.
3145 break;
3147 dev_info(hsotg->dev, "new device is %s\n",
3148 usb_speed_string(hsotg->gadget.speed));
3151 * we should now know the maximum packet size for an
3152 * endpoint, so set the endpoints to a default value.
3155 if (ep0_mps) {
3156 int i;
3157 /* Initialize ep0 for both in and out directions */
3158 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3159 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3160 for (i = 1; i < hsotg->num_of_eps; i++) {
3161 if (hsotg->eps_in[i])
3162 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3163 0, 1);
3164 if (hsotg->eps_out[i])
3165 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3166 0, 0);
3170 /* ensure after enumeration our EP0 is active */
3172 dwc2_hsotg_enqueue_setup(hsotg);
3174 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3175 dwc2_readl(hsotg, DIEPCTL0),
3176 dwc2_readl(hsotg, DOEPCTL0));
3180 * kill_all_requests - remove all requests from the endpoint's queue
3181 * @hsotg: The device state.
3182 * @ep: The endpoint the requests may be on.
3183 * @result: The result code to use.
3185 * Go through the requests on the given endpoint and mark them
3186 * completed with the given result code.
3188 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3189 struct dwc2_hsotg_ep *ep,
3190 int result)
3192 struct dwc2_hsotg_req *req, *treq;
3193 unsigned int size;
3195 ep->req = NULL;
3197 list_for_each_entry_safe(req, treq, &ep->queue, queue)
3198 dwc2_hsotg_complete_request(hsotg, ep, req,
3199 result);
3201 if (!hsotg->dedicated_fifos)
3202 return;
3203 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3204 if (size < ep->fifo_size)
3205 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3209 * dwc2_hsotg_disconnect - disconnect service
3210 * @hsotg: The device state.
3212 * The device has been disconnected. Remove all current
3213 * transactions and signal the gadget driver that this
3214 * has happened.
3216 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3218 unsigned int ep;
3220 if (!hsotg->connected)
3221 return;
3223 hsotg->connected = 0;
3224 hsotg->test_mode = 0;
3226 /* all endpoints should be shutdown */
3227 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3228 if (hsotg->eps_in[ep])
3229 kill_all_requests(hsotg, hsotg->eps_in[ep],
3230 -ESHUTDOWN);
3231 if (hsotg->eps_out[ep])
3232 kill_all_requests(hsotg, hsotg->eps_out[ep],
3233 -ESHUTDOWN);
3236 call_gadget(hsotg, disconnect);
3237 hsotg->lx_state = DWC2_L3;
3239 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3243 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3244 * @hsotg: The device state:
3245 * @periodic: True if this is a periodic FIFO interrupt
3247 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3249 struct dwc2_hsotg_ep *ep;
3250 int epno, ret;
3252 /* look through for any more data to transmit */
3253 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3254 ep = index_to_ep(hsotg, epno, 1);
3256 if (!ep)
3257 continue;
3259 if (!ep->dir_in)
3260 continue;
3262 if ((periodic && !ep->periodic) ||
3263 (!periodic && ep->periodic))
3264 continue;
3266 ret = dwc2_hsotg_trytx(hsotg, ep);
3267 if (ret < 0)
3268 break;
3272 /* IRQ flags which will trigger a retry around the IRQ loop */
3273 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3274 GINTSTS_PTXFEMP | \
3275 GINTSTS_RXFLVL)
3277 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3279 * dwc2_hsotg_core_init - issue softreset to the core
3280 * @hsotg: The device state
3281 * @is_usb_reset: Usb resetting flag
3283 * Issue a soft reset to the core, and await the core finishing it.
3285 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3286 bool is_usb_reset)
3288 u32 intmsk;
3289 u32 val;
3290 u32 usbcfg;
3291 u32 dcfg = 0;
3292 int ep;
3294 /* Kill any ep0 requests as controller will be reinitialized */
3295 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3297 if (!is_usb_reset) {
3298 if (dwc2_core_reset(hsotg, true))
3299 return;
3300 } else {
3301 /* all endpoints should be shutdown */
3302 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3303 if (hsotg->eps_in[ep])
3304 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3305 if (hsotg->eps_out[ep])
3306 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3311 * we must now enable ep0 ready for host detection and then
3312 * set configuration.
3315 /* keep other bits untouched (so e.g. forced modes are not lost) */
3316 usbcfg = dwc2_readl(hsotg, GUSBCFG);
3317 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3318 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3320 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3321 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3322 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3323 /* FS/LS Dedicated Transceiver Interface */
3324 usbcfg |= GUSBCFG_PHYSEL;
3325 } else {
3326 /* set the PLL on, remove the HNP/SRP and set the PHY */
3327 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3328 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3329 (val << GUSBCFG_USBTRDTIM_SHIFT);
3331 dwc2_writel(hsotg, usbcfg, GUSBCFG);
3333 dwc2_hsotg_init_fifo(hsotg);
3335 if (!is_usb_reset)
3336 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3338 dcfg |= DCFG_EPMISCNT(1);
3340 switch (hsotg->params.speed) {
3341 case DWC2_SPEED_PARAM_LOW:
3342 dcfg |= DCFG_DEVSPD_LS;
3343 break;
3344 case DWC2_SPEED_PARAM_FULL:
3345 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3346 dcfg |= DCFG_DEVSPD_FS48;
3347 else
3348 dcfg |= DCFG_DEVSPD_FS;
3349 break;
3350 default:
3351 dcfg |= DCFG_DEVSPD_HS;
3354 if (hsotg->params.ipg_isoc_en)
3355 dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3357 dwc2_writel(hsotg, dcfg, DCFG);
3359 /* Clear any pending OTG interrupts */
3360 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3362 /* Clear any pending interrupts */
3363 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3364 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3365 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3366 GINTSTS_USBRST | GINTSTS_RESETDET |
3367 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3368 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3369 GINTSTS_LPMTRANRCVD;
3371 if (!using_desc_dma(hsotg))
3372 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3374 if (!hsotg->params.external_id_pin_ctl)
3375 intmsk |= GINTSTS_CONIDSTSCHNG;
3377 dwc2_writel(hsotg, intmsk, GINTMSK);
3379 if (using_dma(hsotg)) {
3380 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3381 hsotg->params.ahbcfg,
3382 GAHBCFG);
3384 /* Set DDMA mode support in the core if needed */
3385 if (using_desc_dma(hsotg))
3386 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3388 } else {
3389 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3390 (GAHBCFG_NP_TXF_EMP_LVL |
3391 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3392 GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3396 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3397 * when we have no data to transfer. Otherwise we get being flooded by
3398 * interrupts.
3401 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3402 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3403 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3404 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3405 DIEPMSK);
3408 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3409 * DMA mode we may need this and StsPhseRcvd.
3411 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3412 DOEPMSK_STSPHSERCVDMSK) : 0) |
3413 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3414 DOEPMSK_SETUPMSK,
3415 DOEPMSK);
3417 /* Enable BNA interrupt for DDMA */
3418 if (using_desc_dma(hsotg)) {
3419 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3420 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3423 /* Enable Service Interval mode if supported */
3424 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3425 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3427 dwc2_writel(hsotg, 0, DAINTMSK);
3429 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3430 dwc2_readl(hsotg, DIEPCTL0),
3431 dwc2_readl(hsotg, DOEPCTL0));
3433 /* enable in and out endpoint interrupts */
3434 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3437 * Enable the RXFIFO when in slave mode, as this is how we collect
3438 * the data. In DMA mode, we get events from the FIFO but also
3439 * things we cannot process, so do not use it.
3441 if (!using_dma(hsotg))
3442 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3444 /* Enable interrupts for EP0 in and out */
3445 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3446 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3448 if (!is_usb_reset) {
3449 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3450 udelay(10); /* see openiboot */
3451 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3454 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3457 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3458 * writing to the EPCTL register..
3461 /* set to read 1 8byte packet */
3462 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3463 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3465 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3466 DXEPCTL_CNAK | DXEPCTL_EPENA |
3467 DXEPCTL_USBACTEP,
3468 DOEPCTL0);
3470 /* enable, but don't activate EP0in */
3471 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3472 DXEPCTL_USBACTEP, DIEPCTL0);
3474 /* clear global NAKs */
3475 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3476 if (!is_usb_reset)
3477 val |= DCTL_SFTDISCON;
3478 dwc2_set_bit(hsotg, DCTL, val);
3480 /* configure the core to support LPM */
3481 dwc2_gadget_init_lpm(hsotg);
3483 /* program GREFCLK register if needed */
3484 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3485 dwc2_gadget_program_ref_clk(hsotg);
3487 /* must be at-least 3ms to allow bus to see disconnect */
3488 mdelay(3);
3490 hsotg->lx_state = DWC2_L0;
3492 dwc2_hsotg_enqueue_setup(hsotg);
3494 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3495 dwc2_readl(hsotg, DIEPCTL0),
3496 dwc2_readl(hsotg, DOEPCTL0));
3499 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3501 /* set the soft-disconnect bit */
3502 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3505 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3507 /* remove the soft-disconnect and let's go */
3508 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3512 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3513 * @hsotg: The device state:
3515 * This interrupt indicates one of the following conditions occurred while
3516 * transmitting an ISOC transaction.
3517 * - Corrupted IN Token for ISOC EP.
3518 * - Packet not complete in FIFO.
3520 * The following actions will be taken:
3521 * - Determine the EP
3522 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3524 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3526 struct dwc2_hsotg_ep *hs_ep;
3527 u32 epctrl;
3528 u32 daintmsk;
3529 u32 idx;
3531 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3533 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3535 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3536 hs_ep = hsotg->eps_in[idx];
3537 /* Proceed only unmasked ISOC EPs */
3538 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3539 continue;
3541 epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3542 if ((epctrl & DXEPCTL_EPENA) &&
3543 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3544 epctrl |= DXEPCTL_SNAK;
3545 epctrl |= DXEPCTL_EPDIS;
3546 dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3550 /* Clear interrupt */
3551 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3555 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3556 * @hsotg: The device state:
3558 * This interrupt indicates one of the following conditions occurred while
3559 * transmitting an ISOC transaction.
3560 * - Corrupted OUT Token for ISOC EP.
3561 * - Packet not complete in FIFO.
3563 * The following actions will be taken:
3564 * - Determine the EP
3565 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3567 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3569 u32 gintsts;
3570 u32 gintmsk;
3571 u32 daintmsk;
3572 u32 epctrl;
3573 struct dwc2_hsotg_ep *hs_ep;
3574 int idx;
3576 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3578 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3579 daintmsk >>= DAINT_OUTEP_SHIFT;
3581 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3582 hs_ep = hsotg->eps_out[idx];
3583 /* Proceed only unmasked ISOC EPs */
3584 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3585 continue;
3587 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3588 if ((epctrl & DXEPCTL_EPENA) &&
3589 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3590 /* Unmask GOUTNAKEFF interrupt */
3591 gintmsk = dwc2_readl(hsotg, GINTMSK);
3592 gintmsk |= GINTSTS_GOUTNAKEFF;
3593 dwc2_writel(hsotg, gintmsk, GINTMSK);
3595 gintsts = dwc2_readl(hsotg, GINTSTS);
3596 if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3597 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3598 break;
3603 /* Clear interrupt */
3604 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3608 * dwc2_hsotg_irq - handle device interrupt
3609 * @irq: The IRQ number triggered
3610 * @pw: The pw value when registered the handler.
3612 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3614 struct dwc2_hsotg *hsotg = pw;
3615 int retry_count = 8;
3616 u32 gintsts;
3617 u32 gintmsk;
3619 if (!dwc2_is_device_mode(hsotg))
3620 return IRQ_NONE;
3622 spin_lock(&hsotg->lock);
3623 irq_retry:
3624 gintsts = dwc2_readl(hsotg, GINTSTS);
3625 gintmsk = dwc2_readl(hsotg, GINTMSK);
3627 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3628 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3630 gintsts &= gintmsk;
3632 if (gintsts & GINTSTS_RESETDET) {
3633 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3635 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3637 /* This event must be used only if controller is suspended */
3638 if (hsotg->lx_state == DWC2_L2) {
3639 dwc2_exit_partial_power_down(hsotg, true);
3640 hsotg->lx_state = DWC2_L0;
3644 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3645 u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3646 u32 connected = hsotg->connected;
3648 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3649 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3650 dwc2_readl(hsotg, GNPTXSTS));
3652 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3654 /* Report disconnection if it is not already done. */
3655 dwc2_hsotg_disconnect(hsotg);
3657 /* Reset device address to zero */
3658 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3660 if (usb_status & GOTGCTL_BSESVLD && connected)
3661 dwc2_hsotg_core_init_disconnected(hsotg, true);
3664 if (gintsts & GINTSTS_ENUMDONE) {
3665 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3667 dwc2_hsotg_irq_enumdone(hsotg);
3670 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3671 u32 daint = dwc2_readl(hsotg, DAINT);
3672 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3673 u32 daint_out, daint_in;
3674 int ep;
3676 daint &= daintmsk;
3677 daint_out = daint >> DAINT_OUTEP_SHIFT;
3678 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3680 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3682 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3683 ep++, daint_out >>= 1) {
3684 if (daint_out & 1)
3685 dwc2_hsotg_epint(hsotg, ep, 0);
3688 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3689 ep++, daint_in >>= 1) {
3690 if (daint_in & 1)
3691 dwc2_hsotg_epint(hsotg, ep, 1);
3695 /* check both FIFOs */
3697 if (gintsts & GINTSTS_NPTXFEMP) {
3698 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3701 * Disable the interrupt to stop it happening again
3702 * unless one of these endpoint routines decides that
3703 * it needs re-enabling
3706 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3707 dwc2_hsotg_irq_fifoempty(hsotg, false);
3710 if (gintsts & GINTSTS_PTXFEMP) {
3711 dev_dbg(hsotg->dev, "PTxFEmp\n");
3713 /* See note in GINTSTS_NPTxFEmp */
3715 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3716 dwc2_hsotg_irq_fifoempty(hsotg, true);
3719 if (gintsts & GINTSTS_RXFLVL) {
3721 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3722 * we need to retry dwc2_hsotg_handle_rx if this is still
3723 * set.
3726 dwc2_hsotg_handle_rx(hsotg);
3729 if (gintsts & GINTSTS_ERLYSUSP) {
3730 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3731 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3735 * these next two seem to crop-up occasionally causing the core
3736 * to shutdown the USB transfer, so try clearing them and logging
3737 * the occurrence.
3740 if (gintsts & GINTSTS_GOUTNAKEFF) {
3741 u8 idx;
3742 u32 epctrl;
3743 u32 gintmsk;
3744 u32 daintmsk;
3745 struct dwc2_hsotg_ep *hs_ep;
3747 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3748 daintmsk >>= DAINT_OUTEP_SHIFT;
3749 /* Mask this interrupt */
3750 gintmsk = dwc2_readl(hsotg, GINTMSK);
3751 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3752 dwc2_writel(hsotg, gintmsk, GINTMSK);
3754 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3755 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3756 hs_ep = hsotg->eps_out[idx];
3757 /* Proceed only unmasked ISOC EPs */
3758 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3759 continue;
3761 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3763 if (epctrl & DXEPCTL_EPENA) {
3764 epctrl |= DXEPCTL_SNAK;
3765 epctrl |= DXEPCTL_EPDIS;
3766 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3770 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3773 if (gintsts & GINTSTS_GINNAKEFF) {
3774 dev_info(hsotg->dev, "GINNakEff triggered\n");
3776 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3778 dwc2_hsotg_dump(hsotg);
3781 if (gintsts & GINTSTS_INCOMPL_SOIN)
3782 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3784 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3785 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3788 * if we've had fifo events, we should try and go around the
3789 * loop again to see if there's any point in returning yet.
3792 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3793 goto irq_retry;
3795 /* Check WKUP_ALERT interrupt*/
3796 if (hsotg->params.service_interval)
3797 dwc2_gadget_wkup_alert_handler(hsotg);
3799 spin_unlock(&hsotg->lock);
3801 return IRQ_HANDLED;
3804 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3805 struct dwc2_hsotg_ep *hs_ep)
3807 u32 epctrl_reg;
3808 u32 epint_reg;
3810 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3811 DOEPCTL(hs_ep->index);
3812 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3813 DOEPINT(hs_ep->index);
3815 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3816 hs_ep->name);
3818 if (hs_ep->dir_in) {
3819 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3820 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3821 /* Wait for Nak effect */
3822 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3823 DXEPINT_INEPNAKEFF, 100))
3824 dev_warn(hsotg->dev,
3825 "%s: timeout DIEPINT.NAKEFF\n",
3826 __func__);
3827 } else {
3828 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3829 /* Wait for Nak effect */
3830 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3831 GINTSTS_GINNAKEFF, 100))
3832 dev_warn(hsotg->dev,
3833 "%s: timeout GINTSTS.GINNAKEFF\n",
3834 __func__);
3836 } else {
3837 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3838 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3840 /* Wait for global nak to take effect */
3841 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3842 GINTSTS_GOUTNAKEFF, 100))
3843 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3844 __func__);
3847 /* Disable ep */
3848 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3850 /* Wait for ep to be disabled */
3851 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3852 dev_warn(hsotg->dev,
3853 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3855 /* Clear EPDISBLD interrupt */
3856 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3858 if (hs_ep->dir_in) {
3859 unsigned short fifo_index;
3861 if (hsotg->dedicated_fifos || hs_ep->periodic)
3862 fifo_index = hs_ep->fifo_index;
3863 else
3864 fifo_index = 0;
3866 /* Flush TX FIFO */
3867 dwc2_flush_tx_fifo(hsotg, fifo_index);
3869 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3870 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3871 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3873 } else {
3874 /* Remove global NAKs */
3875 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3880 * dwc2_hsotg_ep_enable - enable the given endpoint
3881 * @ep: The USB endpint to configure
3882 * @desc: The USB endpoint descriptor to configure with.
3884 * This is called from the USB gadget code's usb_ep_enable().
3886 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3887 const struct usb_endpoint_descriptor *desc)
3889 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3890 struct dwc2_hsotg *hsotg = hs_ep->parent;
3891 unsigned long flags;
3892 unsigned int index = hs_ep->index;
3893 u32 epctrl_reg;
3894 u32 epctrl;
3895 u32 mps;
3896 u32 mc;
3897 u32 mask;
3898 unsigned int dir_in;
3899 unsigned int i, val, size;
3900 int ret = 0;
3901 unsigned char ep_type;
3903 dev_dbg(hsotg->dev,
3904 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3905 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3906 desc->wMaxPacketSize, desc->bInterval);
3908 /* not to be called for EP0 */
3909 if (index == 0) {
3910 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3911 return -EINVAL;
3914 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3915 if (dir_in != hs_ep->dir_in) {
3916 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3917 return -EINVAL;
3920 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3921 mps = usb_endpoint_maxp(desc);
3922 mc = usb_endpoint_maxp_mult(desc);
3924 /* ISOC IN in DDMA supported bInterval up to 10 */
3925 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3926 dir_in && desc->bInterval > 10) {
3927 dev_err(hsotg->dev,
3928 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3929 return -EINVAL;
3932 /* High bandwidth ISOC OUT in DDMA not supported */
3933 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3934 !dir_in && mc > 1) {
3935 dev_err(hsotg->dev,
3936 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3937 return -EINVAL;
3940 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3942 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3943 epctrl = dwc2_readl(hsotg, epctrl_reg);
3945 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3946 __func__, epctrl, epctrl_reg);
3948 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3949 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3950 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3951 MAX_DMA_DESC_NUM_GENERIC *
3952 sizeof(struct dwc2_dma_desc),
3953 &hs_ep->desc_list_dma, GFP_ATOMIC);
3954 if (!hs_ep->desc_list) {
3955 ret = -ENOMEM;
3956 goto error2;
3960 spin_lock_irqsave(&hsotg->lock, flags);
3962 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3963 epctrl |= DXEPCTL_MPS(mps);
3966 * mark the endpoint as active, otherwise the core may ignore
3967 * transactions entirely for this endpoint
3969 epctrl |= DXEPCTL_USBACTEP;
3971 /* update the endpoint state */
3972 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3974 /* default, set to non-periodic */
3975 hs_ep->isochronous = 0;
3976 hs_ep->periodic = 0;
3977 hs_ep->halted = 0;
3978 hs_ep->interval = desc->bInterval;
3980 switch (ep_type) {
3981 case USB_ENDPOINT_XFER_ISOC:
3982 epctrl |= DXEPCTL_EPTYPE_ISO;
3983 epctrl |= DXEPCTL_SETEVENFR;
3984 hs_ep->isochronous = 1;
3985 hs_ep->interval = 1 << (desc->bInterval - 1);
3986 hs_ep->target_frame = TARGET_FRAME_INITIAL;
3987 hs_ep->next_desc = 0;
3988 hs_ep->compl_desc = 0;
3989 if (dir_in) {
3990 hs_ep->periodic = 1;
3991 mask = dwc2_readl(hsotg, DIEPMSK);
3992 mask |= DIEPMSK_NAKMSK;
3993 dwc2_writel(hsotg, mask, DIEPMSK);
3994 } else {
3995 mask = dwc2_readl(hsotg, DOEPMSK);
3996 mask |= DOEPMSK_OUTTKNEPDISMSK;
3997 dwc2_writel(hsotg, mask, DOEPMSK);
3999 break;
4001 case USB_ENDPOINT_XFER_BULK:
4002 epctrl |= DXEPCTL_EPTYPE_BULK;
4003 break;
4005 case USB_ENDPOINT_XFER_INT:
4006 if (dir_in)
4007 hs_ep->periodic = 1;
4009 if (hsotg->gadget.speed == USB_SPEED_HIGH)
4010 hs_ep->interval = 1 << (desc->bInterval - 1);
4012 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4013 break;
4015 case USB_ENDPOINT_XFER_CONTROL:
4016 epctrl |= DXEPCTL_EPTYPE_CONTROL;
4017 break;
4021 * if the hardware has dedicated fifos, we must give each IN EP
4022 * a unique tx-fifo even if it is non-periodic.
4024 if (dir_in && hsotg->dedicated_fifos) {
4025 u32 fifo_index = 0;
4026 u32 fifo_size = UINT_MAX;
4028 size = hs_ep->ep.maxpacket * hs_ep->mc;
4029 for (i = 1; i < hsotg->num_of_eps; ++i) {
4030 if (hsotg->fifo_map & (1 << i))
4031 continue;
4032 val = dwc2_readl(hsotg, DPTXFSIZN(i));
4033 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4034 if (val < size)
4035 continue;
4036 /* Search for smallest acceptable fifo */
4037 if (val < fifo_size) {
4038 fifo_size = val;
4039 fifo_index = i;
4042 if (!fifo_index) {
4043 dev_err(hsotg->dev,
4044 "%s: No suitable fifo found\n", __func__);
4045 ret = -ENOMEM;
4046 goto error1;
4048 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4049 hsotg->fifo_map |= 1 << fifo_index;
4050 epctrl |= DXEPCTL_TXFNUM(fifo_index);
4051 hs_ep->fifo_index = fifo_index;
4052 hs_ep->fifo_size = fifo_size;
4055 /* for non control endpoints, set PID to D0 */
4056 if (index && !hs_ep->isochronous)
4057 epctrl |= DXEPCTL_SETD0PID;
4059 /* WA for Full speed ISOC IN in DDMA mode.
4060 * By Clear NAK status of EP, core will send ZLP
4061 * to IN token and assert NAK interrupt relying
4062 * on TxFIFO status only
4065 if (hsotg->gadget.speed == USB_SPEED_FULL &&
4066 hs_ep->isochronous && dir_in) {
4067 /* The WA applies only to core versions from 2.72a
4068 * to 4.00a (including both). Also for FS_IOT_1.00a
4069 * and HS_IOT_1.00a.
4071 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4073 if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4074 gsnpsid <= DWC2_CORE_REV_4_00a) ||
4075 gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4076 gsnpsid == DWC2_HS_IOT_REV_1_00a)
4077 epctrl |= DXEPCTL_CNAK;
4080 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4081 __func__, epctrl);
4083 dwc2_writel(hsotg, epctrl, epctrl_reg);
4084 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4085 __func__, dwc2_readl(hsotg, epctrl_reg));
4087 /* enable the endpoint interrupt */
4088 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4090 error1:
4091 spin_unlock_irqrestore(&hsotg->lock, flags);
4093 error2:
4094 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4095 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
4096 sizeof(struct dwc2_dma_desc),
4097 hs_ep->desc_list, hs_ep->desc_list_dma);
4098 hs_ep->desc_list = NULL;
4101 return ret;
4105 * dwc2_hsotg_ep_disable - disable given endpoint
4106 * @ep: The endpoint to disable.
4108 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4110 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4111 struct dwc2_hsotg *hsotg = hs_ep->parent;
4112 int dir_in = hs_ep->dir_in;
4113 int index = hs_ep->index;
4114 u32 epctrl_reg;
4115 u32 ctrl;
4117 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4119 if (ep == &hsotg->eps_out[0]->ep) {
4120 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4121 return -EINVAL;
4124 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4125 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4126 return -EINVAL;
4129 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4131 ctrl = dwc2_readl(hsotg, epctrl_reg);
4133 if (ctrl & DXEPCTL_EPENA)
4134 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4136 ctrl &= ~DXEPCTL_EPENA;
4137 ctrl &= ~DXEPCTL_USBACTEP;
4138 ctrl |= DXEPCTL_SNAK;
4140 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4141 dwc2_writel(hsotg, ctrl, epctrl_reg);
4143 /* disable endpoint interrupts */
4144 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4146 /* terminate all requests with shutdown */
4147 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4149 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4150 hs_ep->fifo_index = 0;
4151 hs_ep->fifo_size = 0;
4153 return 0;
4156 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4158 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4159 struct dwc2_hsotg *hsotg = hs_ep->parent;
4160 unsigned long flags;
4161 int ret;
4163 spin_lock_irqsave(&hsotg->lock, flags);
4164 ret = dwc2_hsotg_ep_disable(ep);
4165 spin_unlock_irqrestore(&hsotg->lock, flags);
4166 return ret;
4170 * on_list - check request is on the given endpoint
4171 * @ep: The endpoint to check.
4172 * @test: The request to test if it is on the endpoint.
4174 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4176 struct dwc2_hsotg_req *req, *treq;
4178 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4179 if (req == test)
4180 return true;
4183 return false;
4187 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4188 * @ep: The endpoint to dequeue.
4189 * @req: The request to be removed from a queue.
4191 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4193 struct dwc2_hsotg_req *hs_req = our_req(req);
4194 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4195 struct dwc2_hsotg *hs = hs_ep->parent;
4196 unsigned long flags;
4198 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4200 spin_lock_irqsave(&hs->lock, flags);
4202 if (!on_list(hs_ep, hs_req)) {
4203 spin_unlock_irqrestore(&hs->lock, flags);
4204 return -EINVAL;
4207 /* Dequeue already started request */
4208 if (req == &hs_ep->req->req)
4209 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4211 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4212 spin_unlock_irqrestore(&hs->lock, flags);
4214 return 0;
4218 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4219 * @ep: The endpoint to set halt.
4220 * @value: Set or unset the halt.
4221 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4222 * the endpoint is busy processing requests.
4224 * We need to stall the endpoint immediately if request comes from set_feature
4225 * protocol command handler.
4227 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4229 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4230 struct dwc2_hsotg *hs = hs_ep->parent;
4231 int index = hs_ep->index;
4232 u32 epreg;
4233 u32 epctl;
4234 u32 xfertype;
4236 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4238 if (index == 0) {
4239 if (value)
4240 dwc2_hsotg_stall_ep0(hs);
4241 else
4242 dev_warn(hs->dev,
4243 "%s: can't clear halt on ep0\n", __func__);
4244 return 0;
4247 if (hs_ep->isochronous) {
4248 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4249 return -EINVAL;
4252 if (!now && value && !list_empty(&hs_ep->queue)) {
4253 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4254 ep->name);
4255 return -EAGAIN;
4258 if (hs_ep->dir_in) {
4259 epreg = DIEPCTL(index);
4260 epctl = dwc2_readl(hs, epreg);
4262 if (value) {
4263 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4264 if (epctl & DXEPCTL_EPENA)
4265 epctl |= DXEPCTL_EPDIS;
4266 } else {
4267 epctl &= ~DXEPCTL_STALL;
4268 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4269 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4270 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4271 epctl |= DXEPCTL_SETD0PID;
4273 dwc2_writel(hs, epctl, epreg);
4274 } else {
4275 epreg = DOEPCTL(index);
4276 epctl = dwc2_readl(hs, epreg);
4278 if (value) {
4279 epctl |= DXEPCTL_STALL;
4280 } else {
4281 epctl &= ~DXEPCTL_STALL;
4282 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4283 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4284 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4285 epctl |= DXEPCTL_SETD0PID;
4287 dwc2_writel(hs, epctl, epreg);
4290 hs_ep->halted = value;
4292 return 0;
4296 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4297 * @ep: The endpoint to set halt.
4298 * @value: Set or unset the halt.
4300 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4302 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4303 struct dwc2_hsotg *hs = hs_ep->parent;
4304 unsigned long flags = 0;
4305 int ret = 0;
4307 spin_lock_irqsave(&hs->lock, flags);
4308 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4309 spin_unlock_irqrestore(&hs->lock, flags);
4311 return ret;
4314 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4315 .enable = dwc2_hsotg_ep_enable,
4316 .disable = dwc2_hsotg_ep_disable_lock,
4317 .alloc_request = dwc2_hsotg_ep_alloc_request,
4318 .free_request = dwc2_hsotg_ep_free_request,
4319 .queue = dwc2_hsotg_ep_queue_lock,
4320 .dequeue = dwc2_hsotg_ep_dequeue,
4321 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4322 /* note, don't believe we have any call for the fifo routines */
4326 * dwc2_hsotg_init - initialize the usb core
4327 * @hsotg: The driver state
4329 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4331 u32 trdtim;
4332 u32 usbcfg;
4333 /* unmask subset of endpoint interrupts */
4335 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4336 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4337 DIEPMSK);
4339 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4340 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4341 DOEPMSK);
4343 dwc2_writel(hsotg, 0, DAINTMSK);
4345 /* Be in disconnected state until gadget is registered */
4346 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4348 /* setup fifos */
4350 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4351 dwc2_readl(hsotg, GRXFSIZ),
4352 dwc2_readl(hsotg, GNPTXFSIZ));
4354 dwc2_hsotg_init_fifo(hsotg);
4356 /* keep other bits untouched (so e.g. forced modes are not lost) */
4357 usbcfg = dwc2_readl(hsotg, GUSBCFG);
4358 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4359 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4361 /* set the PLL on, remove the HNP/SRP and set the PHY */
4362 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4363 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4364 (trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4365 dwc2_writel(hsotg, usbcfg, GUSBCFG);
4367 if (using_dma(hsotg))
4368 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4372 * dwc2_hsotg_udc_start - prepare the udc for work
4373 * @gadget: The usb gadget state
4374 * @driver: The usb gadget driver
4376 * Perform initialization to prepare udc device and driver
4377 * to work.
4379 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4380 struct usb_gadget_driver *driver)
4382 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4383 unsigned long flags;
4384 int ret;
4386 if (!hsotg) {
4387 pr_err("%s: called with no device\n", __func__);
4388 return -ENODEV;
4391 if (!driver) {
4392 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4393 return -EINVAL;
4396 if (driver->max_speed < USB_SPEED_FULL)
4397 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4399 if (!driver->setup) {
4400 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4401 return -EINVAL;
4404 WARN_ON(hsotg->driver);
4406 driver->driver.bus = NULL;
4407 hsotg->driver = driver;
4408 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4409 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4411 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4412 ret = dwc2_lowlevel_hw_enable(hsotg);
4413 if (ret)
4414 goto err;
4417 if (!IS_ERR_OR_NULL(hsotg->uphy))
4418 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4420 spin_lock_irqsave(&hsotg->lock, flags);
4421 if (dwc2_hw_is_device(hsotg)) {
4422 dwc2_hsotg_init(hsotg);
4423 dwc2_hsotg_core_init_disconnected(hsotg, false);
4426 hsotg->enabled = 0;
4427 spin_unlock_irqrestore(&hsotg->lock, flags);
4429 gadget->sg_supported = using_desc_dma(hsotg);
4430 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4432 return 0;
4434 err:
4435 hsotg->driver = NULL;
4436 return ret;
4440 * dwc2_hsotg_udc_stop - stop the udc
4441 * @gadget: The usb gadget state
4443 * Stop udc hw block and stay tunned for future transmissions
4445 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4447 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4448 unsigned long flags = 0;
4449 int ep;
4451 if (!hsotg)
4452 return -ENODEV;
4454 /* all endpoints should be shutdown */
4455 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4456 if (hsotg->eps_in[ep])
4457 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4458 if (hsotg->eps_out[ep])
4459 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4462 spin_lock_irqsave(&hsotg->lock, flags);
4464 hsotg->driver = NULL;
4465 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4466 hsotg->enabled = 0;
4468 spin_unlock_irqrestore(&hsotg->lock, flags);
4470 if (!IS_ERR_OR_NULL(hsotg->uphy))
4471 otg_set_peripheral(hsotg->uphy->otg, NULL);
4473 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4474 dwc2_lowlevel_hw_disable(hsotg);
4476 return 0;
4480 * dwc2_hsotg_gadget_getframe - read the frame number
4481 * @gadget: The usb gadget state
4483 * Read the {micro} frame number
4485 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4487 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4491 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4492 * @gadget: The usb gadget state
4493 * @is_on: Current state of the USB PHY
4495 * Connect/Disconnect the USB PHY pullup
4497 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4499 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4500 unsigned long flags = 0;
4502 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4503 hsotg->op_state);
4505 /* Don't modify pullup state while in host mode */
4506 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4507 hsotg->enabled = is_on;
4508 return 0;
4511 spin_lock_irqsave(&hsotg->lock, flags);
4512 if (is_on) {
4513 hsotg->enabled = 1;
4514 dwc2_hsotg_core_init_disconnected(hsotg, false);
4515 /* Enable ACG feature in device mode,if supported */
4516 dwc2_enable_acg(hsotg);
4517 dwc2_hsotg_core_connect(hsotg);
4518 } else {
4519 dwc2_hsotg_core_disconnect(hsotg);
4520 dwc2_hsotg_disconnect(hsotg);
4521 hsotg->enabled = 0;
4524 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4525 spin_unlock_irqrestore(&hsotg->lock, flags);
4527 return 0;
4530 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4532 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4533 unsigned long flags;
4535 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4536 spin_lock_irqsave(&hsotg->lock, flags);
4539 * If controller is hibernated, it must exit from power_down
4540 * before being initialized / de-initialized
4542 if (hsotg->lx_state == DWC2_L2)
4543 dwc2_exit_partial_power_down(hsotg, false);
4545 if (is_active) {
4546 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4548 dwc2_hsotg_core_init_disconnected(hsotg, false);
4549 if (hsotg->enabled) {
4550 /* Enable ACG feature in device mode,if supported */
4551 dwc2_enable_acg(hsotg);
4552 dwc2_hsotg_core_connect(hsotg);
4554 } else {
4555 dwc2_hsotg_core_disconnect(hsotg);
4556 dwc2_hsotg_disconnect(hsotg);
4559 spin_unlock_irqrestore(&hsotg->lock, flags);
4560 return 0;
4564 * dwc2_hsotg_vbus_draw - report bMaxPower field
4565 * @gadget: The usb gadget state
4566 * @mA: Amount of current
4568 * Report how much power the device may consume to the phy.
4570 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4572 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4574 if (IS_ERR_OR_NULL(hsotg->uphy))
4575 return -ENOTSUPP;
4576 return usb_phy_set_power(hsotg->uphy, mA);
4579 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4580 .get_frame = dwc2_hsotg_gadget_getframe,
4581 .udc_start = dwc2_hsotg_udc_start,
4582 .udc_stop = dwc2_hsotg_udc_stop,
4583 .pullup = dwc2_hsotg_pullup,
4584 .vbus_session = dwc2_hsotg_vbus_session,
4585 .vbus_draw = dwc2_hsotg_vbus_draw,
4589 * dwc2_hsotg_initep - initialise a single endpoint
4590 * @hsotg: The device state.
4591 * @hs_ep: The endpoint to be initialised.
4592 * @epnum: The endpoint number
4593 * @dir_in: True if direction is in.
4595 * Initialise the given endpoint (as part of the probe and device state
4596 * creation) to give to the gadget driver. Setup the endpoint name, any
4597 * direction information and other state that may be required.
4599 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4600 struct dwc2_hsotg_ep *hs_ep,
4601 int epnum,
4602 bool dir_in)
4604 char *dir;
4606 if (epnum == 0)
4607 dir = "";
4608 else if (dir_in)
4609 dir = "in";
4610 else
4611 dir = "out";
4613 hs_ep->dir_in = dir_in;
4614 hs_ep->index = epnum;
4616 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4618 INIT_LIST_HEAD(&hs_ep->queue);
4619 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4621 /* add to the list of endpoints known by the gadget driver */
4622 if (epnum)
4623 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4625 hs_ep->parent = hsotg;
4626 hs_ep->ep.name = hs_ep->name;
4628 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4629 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4630 else
4631 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4632 epnum ? 1024 : EP0_MPS_LIMIT);
4633 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4635 if (epnum == 0) {
4636 hs_ep->ep.caps.type_control = true;
4637 } else {
4638 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4639 hs_ep->ep.caps.type_iso = true;
4640 hs_ep->ep.caps.type_bulk = true;
4642 hs_ep->ep.caps.type_int = true;
4645 if (dir_in)
4646 hs_ep->ep.caps.dir_in = true;
4647 else
4648 hs_ep->ep.caps.dir_out = true;
4651 * if we're using dma, we need to set the next-endpoint pointer
4652 * to be something valid.
4655 if (using_dma(hsotg)) {
4656 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4658 if (dir_in)
4659 dwc2_writel(hsotg, next, DIEPCTL(epnum));
4660 else
4661 dwc2_writel(hsotg, next, DOEPCTL(epnum));
4666 * dwc2_hsotg_hw_cfg - read HW configuration registers
4667 * @hsotg: Programming view of the DWC_otg controller
4669 * Read the USB core HW configuration registers
4671 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4673 u32 cfg;
4674 u32 ep_type;
4675 u32 i;
4677 /* check hardware configuration */
4679 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4681 /* Add ep0 */
4682 hsotg->num_of_eps++;
4684 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4685 sizeof(struct dwc2_hsotg_ep),
4686 GFP_KERNEL);
4687 if (!hsotg->eps_in[0])
4688 return -ENOMEM;
4689 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4690 hsotg->eps_out[0] = hsotg->eps_in[0];
4692 cfg = hsotg->hw_params.dev_ep_dirs;
4693 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4694 ep_type = cfg & 3;
4695 /* Direction in or both */
4696 if (!(ep_type & 2)) {
4697 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4698 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4699 if (!hsotg->eps_in[i])
4700 return -ENOMEM;
4702 /* Direction out or both */
4703 if (!(ep_type & 1)) {
4704 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4705 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4706 if (!hsotg->eps_out[i])
4707 return -ENOMEM;
4711 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4712 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4714 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4715 hsotg->num_of_eps,
4716 hsotg->dedicated_fifos ? "dedicated" : "shared",
4717 hsotg->fifo_mem);
4718 return 0;
4722 * dwc2_hsotg_dump - dump state of the udc
4723 * @hsotg: Programming view of the DWC_otg controller
4726 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4728 #ifdef DEBUG
4729 struct device *dev = hsotg->dev;
4730 u32 val;
4731 int idx;
4733 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4734 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4735 dwc2_readl(hsotg, DIEPMSK));
4737 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4738 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4740 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4741 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4743 /* show periodic fifo settings */
4745 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4746 val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4747 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4748 val >> FIFOSIZE_DEPTH_SHIFT,
4749 val & FIFOSIZE_STARTADDR_MASK);
4752 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4753 dev_info(dev,
4754 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4755 dwc2_readl(hsotg, DIEPCTL(idx)),
4756 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4757 dwc2_readl(hsotg, DIEPDMA(idx)));
4759 val = dwc2_readl(hsotg, DOEPCTL(idx));
4760 dev_info(dev,
4761 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4762 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4763 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4764 dwc2_readl(hsotg, DOEPDMA(idx)));
4767 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4768 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4769 #endif
4773 * dwc2_gadget_init - init function for gadget
4774 * @hsotg: Programming view of the DWC_otg controller
4777 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4779 struct device *dev = hsotg->dev;
4780 int epnum;
4781 int ret;
4783 /* Dump fifo information */
4784 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4785 hsotg->params.g_np_tx_fifo_size);
4786 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4788 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4789 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4790 hsotg->gadget.name = dev_name(dev);
4791 hsotg->remote_wakeup_allowed = 0;
4793 if (hsotg->params.lpm)
4794 hsotg->gadget.lpm_capable = true;
4796 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4797 hsotg->gadget.is_otg = 1;
4798 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4799 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4801 ret = dwc2_hsotg_hw_cfg(hsotg);
4802 if (ret) {
4803 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4804 return ret;
4807 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4808 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4809 if (!hsotg->ctrl_buff)
4810 return -ENOMEM;
4812 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4813 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4814 if (!hsotg->ep0_buff)
4815 return -ENOMEM;
4817 if (using_desc_dma(hsotg)) {
4818 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4819 if (ret < 0)
4820 return ret;
4823 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4824 IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4825 if (ret < 0) {
4826 dev_err(dev, "cannot claim IRQ for gadget\n");
4827 return ret;
4830 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4832 if (hsotg->num_of_eps == 0) {
4833 dev_err(dev, "wrong number of EPs (zero)\n");
4834 return -EINVAL;
4837 /* setup endpoint information */
4839 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4840 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4842 /* allocate EP0 request */
4844 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4845 GFP_KERNEL);
4846 if (!hsotg->ctrl_req) {
4847 dev_err(dev, "failed to allocate ctrl req\n");
4848 return -ENOMEM;
4851 /* initialise the endpoints now the core has been initialised */
4852 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4853 if (hsotg->eps_in[epnum])
4854 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4855 epnum, 1);
4856 if (hsotg->eps_out[epnum])
4857 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4858 epnum, 0);
4861 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4862 if (ret) {
4863 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
4864 hsotg->ctrl_req);
4865 return ret;
4867 dwc2_hsotg_dump(hsotg);
4869 return 0;
4873 * dwc2_hsotg_remove - remove function for hsotg driver
4874 * @hsotg: Programming view of the DWC_otg controller
4877 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4879 usb_del_gadget_udc(&hsotg->gadget);
4880 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4882 return 0;
4885 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4887 unsigned long flags;
4889 if (hsotg->lx_state != DWC2_L0)
4890 return 0;
4892 if (hsotg->driver) {
4893 int ep;
4895 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4896 hsotg->driver->driver.name);
4898 spin_lock_irqsave(&hsotg->lock, flags);
4899 if (hsotg->enabled)
4900 dwc2_hsotg_core_disconnect(hsotg);
4901 dwc2_hsotg_disconnect(hsotg);
4902 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4903 spin_unlock_irqrestore(&hsotg->lock, flags);
4905 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4906 if (hsotg->eps_in[ep])
4907 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4908 if (hsotg->eps_out[ep])
4909 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4913 return 0;
4916 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4918 unsigned long flags;
4920 if (hsotg->lx_state == DWC2_L2)
4921 return 0;
4923 if (hsotg->driver) {
4924 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4925 hsotg->driver->driver.name);
4927 spin_lock_irqsave(&hsotg->lock, flags);
4928 dwc2_hsotg_core_init_disconnected(hsotg, false);
4929 if (hsotg->enabled) {
4930 /* Enable ACG feature in device mode,if supported */
4931 dwc2_enable_acg(hsotg);
4932 dwc2_hsotg_core_connect(hsotg);
4934 spin_unlock_irqrestore(&hsotg->lock, flags);
4937 return 0;
4941 * dwc2_backup_device_registers() - Backup controller device registers.
4942 * When suspending usb bus, registers needs to be backuped
4943 * if controller power is disabled once suspended.
4945 * @hsotg: Programming view of the DWC_otg controller
4947 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4949 struct dwc2_dregs_backup *dr;
4950 int i;
4952 dev_dbg(hsotg->dev, "%s\n", __func__);
4954 /* Backup dev regs */
4955 dr = &hsotg->dr_backup;
4957 dr->dcfg = dwc2_readl(hsotg, DCFG);
4958 dr->dctl = dwc2_readl(hsotg, DCTL);
4959 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
4960 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
4961 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
4963 for (i = 0; i < hsotg->num_of_eps; i++) {
4964 /* Backup IN EPs */
4965 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
4967 /* Ensure DATA PID is correctly configured */
4968 if (dr->diepctl[i] & DXEPCTL_DPID)
4969 dr->diepctl[i] |= DXEPCTL_SETD1PID;
4970 else
4971 dr->diepctl[i] |= DXEPCTL_SETD0PID;
4973 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
4974 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
4976 /* Backup OUT EPs */
4977 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
4979 /* Ensure DATA PID is correctly configured */
4980 if (dr->doepctl[i] & DXEPCTL_DPID)
4981 dr->doepctl[i] |= DXEPCTL_SETD1PID;
4982 else
4983 dr->doepctl[i] |= DXEPCTL_SETD0PID;
4985 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
4986 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
4987 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
4989 dr->valid = true;
4990 return 0;
4994 * dwc2_restore_device_registers() - Restore controller device registers.
4995 * When resuming usb bus, device registers needs to be restored
4996 * if controller power were disabled.
4998 * @hsotg: Programming view of the DWC_otg controller
4999 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5001 * Return: 0 if successful, negative error code otherwise
5003 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5005 struct dwc2_dregs_backup *dr;
5006 int i;
5008 dev_dbg(hsotg->dev, "%s\n", __func__);
5010 /* Restore dev regs */
5011 dr = &hsotg->dr_backup;
5012 if (!dr->valid) {
5013 dev_err(hsotg->dev, "%s: no device registers to restore\n",
5014 __func__);
5015 return -EINVAL;
5017 dr->valid = false;
5019 if (!remote_wakeup)
5020 dwc2_writel(hsotg, dr->dctl, DCTL);
5022 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5023 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5024 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5026 for (i = 0; i < hsotg->num_of_eps; i++) {
5027 /* Restore IN EPs */
5028 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5029 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5030 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5031 /** WA for enabled EPx's IN in DDMA mode. On entering to
5032 * hibernation wrong value read and saved from DIEPDMAx,
5033 * as result BNA interrupt asserted on hibernation exit
5034 * by restoring from saved area.
5036 if (hsotg->params.g_dma_desc &&
5037 (dr->diepctl[i] & DXEPCTL_EPENA))
5038 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5039 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5040 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5041 /* Restore OUT EPs */
5042 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5043 /* WA for enabled EPx's OUT in DDMA mode. On entering to
5044 * hibernation wrong value read and saved from DOEPDMAx,
5045 * as result BNA interrupt asserted on hibernation exit
5046 * by restoring from saved area.
5048 if (hsotg->params.g_dma_desc &&
5049 (dr->doepctl[i] & DXEPCTL_EPENA))
5050 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5051 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5052 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5055 return 0;
5059 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5061 * @hsotg: Programming view of DWC_otg controller
5064 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5066 u32 val;
5068 if (!hsotg->params.lpm)
5069 return;
5071 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5072 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5073 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5074 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5075 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5076 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5077 dwc2_writel(hsotg, val, GLPMCFG);
5078 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5080 /* Unmask WKUP_ALERT Interrupt */
5081 if (hsotg->params.service_interval)
5082 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5086 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5088 * @hsotg: Programming view of DWC_otg controller
5091 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5093 u32 val = 0;
5095 val |= GREFCLK_REF_CLK_MODE;
5096 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5097 val |= hsotg->params.sof_cnt_wkup_alert <<
5098 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5100 dwc2_writel(hsotg, val, GREFCLK);
5101 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5105 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5107 * @hsotg: Programming view of the DWC_otg controller
5109 * Return non-zero if failed to enter to hibernation.
5111 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5113 u32 gpwrdn;
5114 int ret = 0;
5116 /* Change to L2(suspend) state */
5117 hsotg->lx_state = DWC2_L2;
5118 dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5119 ret = dwc2_backup_global_registers(hsotg);
5120 if (ret) {
5121 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5122 __func__);
5123 return ret;
5125 ret = dwc2_backup_device_registers(hsotg);
5126 if (ret) {
5127 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5128 __func__);
5129 return ret;
5132 gpwrdn = GPWRDN_PWRDNRSTN;
5133 gpwrdn |= GPWRDN_PMUACTV;
5134 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5135 udelay(10);
5137 /* Set flag to indicate that we are in hibernation */
5138 hsotg->hibernated = 1;
5140 /* Enable interrupts from wake up logic */
5141 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5142 gpwrdn |= GPWRDN_PMUINTSEL;
5143 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5144 udelay(10);
5146 /* Unmask device mode interrupts in GPWRDN */
5147 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5148 gpwrdn |= GPWRDN_RST_DET_MSK;
5149 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5150 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5151 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5152 udelay(10);
5154 /* Enable Power Down Clamp */
5155 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5156 gpwrdn |= GPWRDN_PWRDNCLMP;
5157 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5158 udelay(10);
5160 /* Switch off VDD */
5161 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5162 gpwrdn |= GPWRDN_PWRDNSWTCH;
5163 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5164 udelay(10);
5166 /* Save gpwrdn register for further usage if stschng interrupt */
5167 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5168 dev_dbg(hsotg->dev, "Hibernation completed\n");
5170 return ret;
5174 * dwc2_gadget_exit_hibernation()
5175 * This function is for exiting from Device mode hibernation by host initiated
5176 * resume/reset and device initiated remote-wakeup.
5178 * @hsotg: Programming view of the DWC_otg controller
5179 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5180 * @reset: indicates whether resume is initiated by Reset.
5182 * Return non-zero if failed to exit from hibernation.
5184 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5185 int rem_wakeup, int reset)
5187 u32 pcgcctl;
5188 u32 gpwrdn;
5189 u32 dctl;
5190 int ret = 0;
5191 struct dwc2_gregs_backup *gr;
5192 struct dwc2_dregs_backup *dr;
5194 gr = &hsotg->gr_backup;
5195 dr = &hsotg->dr_backup;
5197 if (!hsotg->hibernated) {
5198 dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5199 return 1;
5201 dev_dbg(hsotg->dev,
5202 "%s: called with rem_wakeup = %d reset = %d\n",
5203 __func__, rem_wakeup, reset);
5205 dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5207 if (!reset) {
5208 /* Clear all pending interupts */
5209 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5212 /* De-assert Restore */
5213 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5214 gpwrdn &= ~GPWRDN_RESTORE;
5215 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5216 udelay(10);
5218 if (!rem_wakeup) {
5219 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5220 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5221 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5224 /* Restore GUSBCFG, DCFG and DCTL */
5225 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5226 dwc2_writel(hsotg, dr->dcfg, DCFG);
5227 dwc2_writel(hsotg, dr->dctl, DCTL);
5229 /* De-assert Wakeup Logic */
5230 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5231 gpwrdn &= ~GPWRDN_PMUACTV;
5232 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5234 if (rem_wakeup) {
5235 udelay(10);
5236 /* Start Remote Wakeup Signaling */
5237 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5238 } else {
5239 udelay(50);
5240 /* Set Device programming done bit */
5241 dctl = dwc2_readl(hsotg, DCTL);
5242 dctl |= DCTL_PWRONPRGDONE;
5243 dwc2_writel(hsotg, dctl, DCTL);
5245 /* Wait for interrupts which must be cleared */
5246 mdelay(2);
5247 /* Clear all pending interupts */
5248 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5250 /* Restore global registers */
5251 ret = dwc2_restore_global_registers(hsotg);
5252 if (ret) {
5253 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5254 __func__);
5255 return ret;
5258 /* Restore device registers */
5259 ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5260 if (ret) {
5261 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5262 __func__);
5263 return ret;
5266 if (rem_wakeup) {
5267 mdelay(10);
5268 dctl = dwc2_readl(hsotg, DCTL);
5269 dctl &= ~DCTL_RMTWKUPSIG;
5270 dwc2_writel(hsotg, dctl, DCTL);
5273 hsotg->hibernated = 0;
5274 hsotg->lx_state = DWC2_L0;
5275 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5277 return ret;