1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
4 * Copyright (c) 2013 Faraday Technology Corporation
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
10 * Most of code borrowed from the Linux-3.7 EHCI driver
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/dmapool.h>
15 #include <linux/kernel.h>
16 #include <linux/delay.h>
17 #include <linux/ioport.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/hrtimer.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb.h>
26 #include <linux/usb/hcd.h>
27 #include <linux/moduleparam.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/platform_device.h>
34 #include <linux/clk.h>
36 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
40 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
41 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
42 static const char hcd_name
[] = "fotg210_hcd";
44 #undef FOTG210_URB_TRACE
47 /* magic numbers that can affect system performance */
48 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
49 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
50 #define FOTG210_TUNE_RL_TT 0
51 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
52 #define FOTG210_TUNE_MULT_TT 1
54 /* Some drivers think it's safe to schedule isochronous transfers more than 256
55 * ms into the future (partly as a result of an old bug in the scheduling
56 * code). In an attempt to avoid trouble, we will use a minimum scheduling
57 * length of 512 frames instead of 256.
59 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
61 /* Initial IRQ latency: faster than hw default */
62 static int log2_irq_thresh
; /* 0 to 6 */
63 module_param(log2_irq_thresh
, int, S_IRUGO
);
64 MODULE_PARM_DESC(log2_irq_thresh
, "log2 IRQ latency, 1-64 microframes");
66 /* initial park setting: slower than hw default */
68 module_param(park
, uint
, S_IRUGO
);
69 MODULE_PARM_DESC(park
, "park setting; 1-3 back-to-back async packets");
71 /* for link power management(LPM) feature */
72 static unsigned int hird
;
73 module_param(hird
, int, S_IRUGO
);
74 MODULE_PARM_DESC(hird
, "host initiated resume duration, +1 for each 75us");
76 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
80 #define fotg210_dbg(fotg210, fmt, args...) \
81 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
82 #define fotg210_err(fotg210, fmt, args...) \
83 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
84 #define fotg210_info(fotg210, fmt, args...) \
85 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
86 #define fotg210_warn(fotg210, fmt, args...) \
87 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
89 /* check the values in the HCSPARAMS register (host controller _Structural_
90 * parameters) see EHCI spec, Table 2-4 for each value
92 static void dbg_hcs_params(struct fotg210_hcd
*fotg210
, char *label
)
94 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
96 fotg210_dbg(fotg210
, "%s hcs_params 0x%x ports=%d\n", label
, params
,
100 /* check the values in the HCCPARAMS register (host controller _Capability_
101 * parameters) see EHCI Spec, Table 2-5 for each value
103 static void dbg_hcc_params(struct fotg210_hcd
*fotg210
, char *label
)
105 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
107 fotg210_dbg(fotg210
, "%s hcc_params %04x uframes %s%s\n", label
,
109 HCC_PGM_FRAMELISTLEN(params
) ? "256/512/1024" : "1024",
110 HCC_CANPARK(params
) ? " park" : "");
113 static void __maybe_unused
114 dbg_qtd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
)
116 fotg210_dbg(fotg210
, "%s td %p n%08x %08x t%08x p0=%08x\n", label
, qtd
,
117 hc32_to_cpup(fotg210
, &qtd
->hw_next
),
118 hc32_to_cpup(fotg210
, &qtd
->hw_alt_next
),
119 hc32_to_cpup(fotg210
, &qtd
->hw_token
),
120 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[0]));
122 fotg210_dbg(fotg210
, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
123 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[1]),
124 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[2]),
125 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[3]),
126 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[4]));
129 static void __maybe_unused
130 dbg_qh(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
132 struct fotg210_qh_hw
*hw
= qh
->hw
;
134 fotg210_dbg(fotg210
, "%s qh %p n%08x info %x %x qtd %x\n", label
, qh
,
135 hw
->hw_next
, hw
->hw_info1
, hw
->hw_info2
,
138 dbg_qtd("overlay", fotg210
, (struct fotg210_qtd
*) &hw
->hw_qtd_next
);
141 static void __maybe_unused
142 dbg_itd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
144 fotg210_dbg(fotg210
, "%s[%d] itd %p, next %08x, urb %p\n", label
,
145 itd
->frame
, itd
, hc32_to_cpu(fotg210
, itd
->hw_next
),
149 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
150 hc32_to_cpu(fotg210
, itd
->hw_transaction
[0]),
151 hc32_to_cpu(fotg210
, itd
->hw_transaction
[1]),
152 hc32_to_cpu(fotg210
, itd
->hw_transaction
[2]),
153 hc32_to_cpu(fotg210
, itd
->hw_transaction
[3]),
154 hc32_to_cpu(fotg210
, itd
->hw_transaction
[4]),
155 hc32_to_cpu(fotg210
, itd
->hw_transaction
[5]),
156 hc32_to_cpu(fotg210
, itd
->hw_transaction
[6]),
157 hc32_to_cpu(fotg210
, itd
->hw_transaction
[7]));
160 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
161 hc32_to_cpu(fotg210
, itd
->hw_bufp
[0]),
162 hc32_to_cpu(fotg210
, itd
->hw_bufp
[1]),
163 hc32_to_cpu(fotg210
, itd
->hw_bufp
[2]),
164 hc32_to_cpu(fotg210
, itd
->hw_bufp
[3]),
165 hc32_to_cpu(fotg210
, itd
->hw_bufp
[4]),
166 hc32_to_cpu(fotg210
, itd
->hw_bufp
[5]),
167 hc32_to_cpu(fotg210
, itd
->hw_bufp
[6]));
169 fotg210_dbg(fotg210
, " index: %d %d %d %d %d %d %d %d\n",
170 itd
->index
[0], itd
->index
[1], itd
->index
[2],
171 itd
->index
[3], itd
->index
[4], itd
->index
[5],
172 itd
->index
[6], itd
->index
[7]);
175 static int __maybe_unused
176 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
178 return scnprintf(buf
, len
, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
179 label
, label
[0] ? " " : "", status
,
180 (status
& STS_ASS
) ? " Async" : "",
181 (status
& STS_PSS
) ? " Periodic" : "",
182 (status
& STS_RECL
) ? " Recl" : "",
183 (status
& STS_HALT
) ? " Halt" : "",
184 (status
& STS_IAA
) ? " IAA" : "",
185 (status
& STS_FATAL
) ? " FATAL" : "",
186 (status
& STS_FLR
) ? " FLR" : "",
187 (status
& STS_PCD
) ? " PCD" : "",
188 (status
& STS_ERR
) ? " ERR" : "",
189 (status
& STS_INT
) ? " INT" : "");
192 static int __maybe_unused
193 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
195 return scnprintf(buf
, len
, "%s%sintrenable %02x%s%s%s%s%s%s",
196 label
, label
[0] ? " " : "", enable
,
197 (enable
& STS_IAA
) ? " IAA" : "",
198 (enable
& STS_FATAL
) ? " FATAL" : "",
199 (enable
& STS_FLR
) ? " FLR" : "",
200 (enable
& STS_PCD
) ? " PCD" : "",
201 (enable
& STS_ERR
) ? " ERR" : "",
202 (enable
& STS_INT
) ? " INT" : "");
205 static const char *const fls_strings
[] = { "1024", "512", "256", "??" };
207 static int dbg_command_buf(char *buf
, unsigned len
, const char *label
,
210 return scnprintf(buf
, len
,
211 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
212 label
, label
[0] ? " " : "", command
,
213 (command
& CMD_PARK
) ? " park" : "(park)",
214 CMD_PARK_CNT(command
),
215 (command
>> 16) & 0x3f,
216 (command
& CMD_IAAD
) ? " IAAD" : "",
217 (command
& CMD_ASE
) ? " Async" : "",
218 (command
& CMD_PSE
) ? " Periodic" : "",
219 fls_strings
[(command
>> 2) & 0x3],
220 (command
& CMD_RESET
) ? " Reset" : "",
221 (command
& CMD_RUN
) ? "RUN" : "HALT");
224 static char *dbg_port_buf(char *buf
, unsigned len
, const char *label
, int port
,
229 /* signaling state */
230 switch (status
& (3 << 10)) {
236 break; /* low speed */
245 scnprintf(buf
, len
, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
246 label
, label
[0] ? " " : "", port
, status
,
247 status
>> 25, /*device address */
249 (status
& PORT_RESET
) ? " RESET" : "",
250 (status
& PORT_SUSPEND
) ? " SUSPEND" : "",
251 (status
& PORT_RESUME
) ? " RESUME" : "",
252 (status
& PORT_PEC
) ? " PEC" : "",
253 (status
& PORT_PE
) ? " PE" : "",
254 (status
& PORT_CSC
) ? " CSC" : "",
255 (status
& PORT_CONNECT
) ? " CONNECT" : "");
260 /* functions have the "wrong" filename when they're output... */
261 #define dbg_status(fotg210, label, status) { \
263 dbg_status_buf(_buf, sizeof(_buf), label, status); \
264 fotg210_dbg(fotg210, "%s\n", _buf); \
267 #define dbg_cmd(fotg210, label, command) { \
269 dbg_command_buf(_buf, sizeof(_buf), label, command); \
270 fotg210_dbg(fotg210, "%s\n", _buf); \
273 #define dbg_port(fotg210, label, port, status) { \
275 fotg210_dbg(fotg210, "%s\n", \
276 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
279 /* troubleshooting help: expose state in debugfs */
280 static int debug_async_open(struct inode
*, struct file
*);
281 static int debug_periodic_open(struct inode
*, struct file
*);
282 static int debug_registers_open(struct inode
*, struct file
*);
283 static int debug_async_open(struct inode
*, struct file
*);
285 static ssize_t
debug_output(struct file
*, char __user
*, size_t, loff_t
*);
286 static int debug_close(struct inode
*, struct file
*);
288 static const struct file_operations debug_async_fops
= {
289 .owner
= THIS_MODULE
,
290 .open
= debug_async_open
,
291 .read
= debug_output
,
292 .release
= debug_close
,
293 .llseek
= default_llseek
,
295 static const struct file_operations debug_periodic_fops
= {
296 .owner
= THIS_MODULE
,
297 .open
= debug_periodic_open
,
298 .read
= debug_output
,
299 .release
= debug_close
,
300 .llseek
= default_llseek
,
302 static const struct file_operations debug_registers_fops
= {
303 .owner
= THIS_MODULE
,
304 .open
= debug_registers_open
,
305 .read
= debug_output
,
306 .release
= debug_close
,
307 .llseek
= default_llseek
,
310 static struct dentry
*fotg210_debug_root
;
312 struct debug_buffer
{
313 ssize_t (*fill_func
)(struct debug_buffer
*); /* fill method */
315 struct mutex mutex
; /* protect filling of buffer */
316 size_t count
; /* number of characters filled into buffer */
321 static inline char speed_char(u32 scratch
)
323 switch (scratch
& (3 << 12)) {
338 static inline char token_mark(struct fotg210_hcd
*fotg210
, __hc32 token
)
340 __u32 v
= hc32_to_cpu(fotg210
, token
);
342 if (v
& QTD_STS_ACTIVE
)
344 if (v
& QTD_STS_HALT
)
346 if (!IS_SHORT_READ(v
))
348 /* tries to advance through hw_alt_next */
352 static void qh_lines(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
,
353 char **nextp
, unsigned *sizep
)
357 struct fotg210_qtd
*td
;
359 unsigned size
= *sizep
;
362 __le32 list_end
= FOTG210_LIST_END(fotg210
);
363 struct fotg210_qh_hw
*hw
= qh
->hw
;
365 if (hw
->hw_qtd_next
== list_end
) /* NEC does this */
368 mark
= token_mark(fotg210
, hw
->hw_token
);
369 if (mark
== '/') { /* qh_alt_next controls qh advance? */
370 if ((hw
->hw_alt_next
& QTD_MASK(fotg210
)) ==
371 fotg210
->async
->hw
->hw_alt_next
)
372 mark
= '#'; /* blocked */
373 else if (hw
->hw_alt_next
== list_end
)
374 mark
= '.'; /* use hw_qtd_next */
375 /* else alt_next points to some other qtd */
377 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
378 hw_curr
= (mark
== '*') ? hc32_to_cpup(fotg210
, &hw
->hw_current
) : 0;
379 temp
= scnprintf(next
, size
,
380 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
381 qh
, scratch
& 0x007f,
383 (scratch
>> 8) & 0x000f,
384 scratch
, hc32_to_cpup(fotg210
, &hw
->hw_info2
),
385 hc32_to_cpup(fotg210
, &hw
->hw_token
), mark
,
386 (cpu_to_hc32(fotg210
, QTD_TOGGLE
) & hw
->hw_token
)
388 (hc32_to_cpup(fotg210
, &hw
->hw_alt_next
) >> 1) & 0x0f);
392 /* hc may be modifying the list as we read it ... */
393 list_for_each_entry(td
, &qh
->qtd_list
, qtd_list
) {
394 scratch
= hc32_to_cpup(fotg210
, &td
->hw_token
);
396 if (hw_curr
== td
->qtd_dma
)
398 else if (hw
->hw_qtd_next
== cpu_to_hc32(fotg210
, td
->qtd_dma
))
400 else if (QTD_LENGTH(scratch
)) {
401 if (td
->hw_alt_next
== fotg210
->async
->hw
->hw_alt_next
)
403 else if (td
->hw_alt_next
!= list_end
)
406 temp
= snprintf(next
, size
,
407 "\n\t%p%c%s len=%d %08x urb %p",
408 td
, mark
, ({ char *tmp
;
409 switch ((scratch
>>8)&0x03) {
423 (scratch
>> 16) & 0x7fff,
434 temp
= snprintf(next
, size
, "\n");
446 static ssize_t
fill_async_buffer(struct debug_buffer
*buf
)
449 struct fotg210_hcd
*fotg210
;
453 struct fotg210_qh
*qh
;
455 hcd
= bus_to_hcd(buf
->bus
);
456 fotg210
= hcd_to_fotg210(hcd
);
457 next
= buf
->output_buf
;
458 size
= buf
->alloc_size
;
462 /* dumps a snapshot of the async schedule.
463 * usually empty except for long-term bulk reads, or head.
464 * one QH per line, and TDs we know about
466 spin_lock_irqsave(&fotg210
->lock
, flags
);
467 for (qh
= fotg210
->async
->qh_next
.qh
; size
> 0 && qh
;
469 qh_lines(fotg210
, qh
, &next
, &size
);
470 if (fotg210
->async_unlink
&& size
> 0) {
471 temp
= scnprintf(next
, size
, "\nunlink =\n");
475 for (qh
= fotg210
->async_unlink
; size
> 0 && qh
;
476 qh
= qh
->unlink_next
)
477 qh_lines(fotg210
, qh
, &next
, &size
);
479 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
481 return strlen(buf
->output_buf
);
484 /* count tds, get ep direction */
485 static unsigned output_buf_tds_dir(char *buf
, struct fotg210_hcd
*fotg210
,
486 struct fotg210_qh_hw
*hw
, struct fotg210_qh
*qh
, unsigned size
)
488 u32 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
489 struct fotg210_qtd
*qtd
;
493 /* count tds, get ep direction */
494 list_for_each_entry(qtd
, &qh
->qtd_list
, qtd_list
) {
496 switch ((hc32_to_cpu(fotg210
, qtd
->hw_token
) >> 8) & 0x03) {
506 return scnprintf(buf
, size
, "(%c%d ep%d%s [%d/%d] q%d p%d)",
507 speed_char(scratch
), scratch
& 0x007f,
508 (scratch
>> 8) & 0x000f, type
, qh
->usecs
,
509 qh
->c_usecs
, temp
, (scratch
>> 16) & 0x7ff);
512 #define DBG_SCHED_LIMIT 64
513 static ssize_t
fill_periodic_buffer(struct debug_buffer
*buf
)
516 struct fotg210_hcd
*fotg210
;
518 union fotg210_shadow p
, *seen
;
519 unsigned temp
, size
, seen_count
;
524 seen
= kmalloc_array(DBG_SCHED_LIMIT
, sizeof(*seen
), GFP_ATOMIC
);
530 hcd
= bus_to_hcd(buf
->bus
);
531 fotg210
= hcd_to_fotg210(hcd
);
532 next
= buf
->output_buf
;
533 size
= buf
->alloc_size
;
535 temp
= scnprintf(next
, size
, "size = %d\n", fotg210
->periodic_size
);
539 /* dump a snapshot of the periodic schedule.
540 * iso changes, interrupt usually doesn't.
542 spin_lock_irqsave(&fotg210
->lock
, flags
);
543 for (i
= 0; i
< fotg210
->periodic_size
; i
++) {
544 p
= fotg210
->pshadow
[i
];
548 tag
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[i
]);
550 temp
= scnprintf(next
, size
, "%4d: ", i
);
555 struct fotg210_qh_hw
*hw
;
557 switch (hc32_to_cpu(fotg210
, tag
)) {
560 temp
= scnprintf(next
, size
, " qh%d-%04x/%p",
562 hc32_to_cpup(fotg210
,
565 & (QH_CMASK
| QH_SMASK
),
569 /* don't repeat what follows this qh */
570 for (temp
= 0; temp
< seen_count
; temp
++) {
571 if (seen
[temp
].ptr
!= p
.ptr
)
573 if (p
.qh
->qh_next
.ptr
) {
574 temp
= scnprintf(next
, size
,
581 /* show more info the first time around */
582 if (temp
== seen_count
) {
583 temp
= output_buf_tds_dir(next
,
587 if (seen_count
< DBG_SCHED_LIMIT
)
588 seen
[seen_count
++].qh
= p
.qh
;
591 tag
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
595 temp
= scnprintf(next
, size
,
597 p
.fstn
->hw_prev
, p
.fstn
);
598 tag
= Q_NEXT_TYPE(fotg210
, p
.fstn
->hw_next
);
599 p
= p
.fstn
->fstn_next
;
602 temp
= scnprintf(next
, size
,
604 tag
= Q_NEXT_TYPE(fotg210
, p
.itd
->hw_next
);
612 temp
= scnprintf(next
, size
, "\n");
616 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
619 return buf
->alloc_size
- size
;
621 #undef DBG_SCHED_LIMIT
623 static const char *rh_state_string(struct fotg210_hcd
*fotg210
)
625 switch (fotg210
->rh_state
) {
626 case FOTG210_RH_HALTED
:
628 case FOTG210_RH_SUSPENDED
:
630 case FOTG210_RH_RUNNING
:
632 case FOTG210_RH_STOPPING
:
638 static ssize_t
fill_registers_buffer(struct debug_buffer
*buf
)
641 struct fotg210_hcd
*fotg210
;
643 unsigned temp
, size
, i
;
644 char *next
, scratch
[80];
645 static const char fmt
[] = "%*s\n";
646 static const char label
[] = "";
648 hcd
= bus_to_hcd(buf
->bus
);
649 fotg210
= hcd_to_fotg210(hcd
);
650 next
= buf
->output_buf
;
651 size
= buf
->alloc_size
;
653 spin_lock_irqsave(&fotg210
->lock
, flags
);
655 if (!HCD_HW_ACCESSIBLE(hcd
)) {
656 size
= scnprintf(next
, size
,
657 "bus %s, device %s\n"
659 "SUSPENDED(no register access)\n",
660 hcd
->self
.controller
->bus
->name
,
661 dev_name(hcd
->self
.controller
),
666 /* Capability Registers */
667 i
= HC_VERSION(fotg210
, fotg210_readl(fotg210
,
668 &fotg210
->caps
->hc_capbase
));
669 temp
= scnprintf(next
, size
,
670 "bus %s, device %s\n"
672 "EHCI %x.%02x, rh state %s\n",
673 hcd
->self
.controller
->bus
->name
,
674 dev_name(hcd
->self
.controller
),
676 i
>> 8, i
& 0x0ff, rh_state_string(fotg210
));
680 /* FIXME interpret both types of params */
681 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
682 temp
= scnprintf(next
, size
, "structural params 0x%08x\n", i
);
686 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
687 temp
= scnprintf(next
, size
, "capability params 0x%08x\n", i
);
691 /* Operational Registers */
692 temp
= dbg_status_buf(scratch
, sizeof(scratch
), label
,
693 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
694 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
698 temp
= dbg_command_buf(scratch
, sizeof(scratch
), label
,
699 fotg210_readl(fotg210
, &fotg210
->regs
->command
));
700 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
704 temp
= dbg_intr_buf(scratch
, sizeof(scratch
), label
,
705 fotg210_readl(fotg210
, &fotg210
->regs
->intr_enable
));
706 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
710 temp
= scnprintf(next
, size
, "uframe %04x\n",
711 fotg210_read_frame_index(fotg210
));
715 if (fotg210
->async_unlink
) {
716 temp
= scnprintf(next
, size
, "async unlink qh %p\n",
717 fotg210
->async_unlink
);
723 temp
= scnprintf(next
, size
,
724 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
725 fotg210
->stats
.normal
, fotg210
->stats
.error
,
726 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
730 temp
= scnprintf(next
, size
, "complete %ld unlink %ld\n",
731 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
737 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
739 return buf
->alloc_size
- size
;
742 static struct debug_buffer
743 *alloc_buffer(struct usb_bus
*bus
, ssize_t (*fill_func
)(struct debug_buffer
*))
745 struct debug_buffer
*buf
;
747 buf
= kzalloc(sizeof(struct debug_buffer
), GFP_KERNEL
);
751 buf
->fill_func
= fill_func
;
752 mutex_init(&buf
->mutex
);
753 buf
->alloc_size
= PAGE_SIZE
;
759 static int fill_buffer(struct debug_buffer
*buf
)
763 if (!buf
->output_buf
)
764 buf
->output_buf
= vmalloc(buf
->alloc_size
);
766 if (!buf
->output_buf
) {
771 ret
= buf
->fill_func(buf
);
782 static ssize_t
debug_output(struct file
*file
, char __user
*user_buf
,
783 size_t len
, loff_t
*offset
)
785 struct debug_buffer
*buf
= file
->private_data
;
788 mutex_lock(&buf
->mutex
);
789 if (buf
->count
== 0) {
790 ret
= fill_buffer(buf
);
792 mutex_unlock(&buf
->mutex
);
796 mutex_unlock(&buf
->mutex
);
798 ret
= simple_read_from_buffer(user_buf
, len
, offset
,
799 buf
->output_buf
, buf
->count
);
806 static int debug_close(struct inode
*inode
, struct file
*file
)
808 struct debug_buffer
*buf
= file
->private_data
;
811 vfree(buf
->output_buf
);
817 static int debug_async_open(struct inode
*inode
, struct file
*file
)
819 file
->private_data
= alloc_buffer(inode
->i_private
, fill_async_buffer
);
821 return file
->private_data
? 0 : -ENOMEM
;
824 static int debug_periodic_open(struct inode
*inode
, struct file
*file
)
826 struct debug_buffer
*buf
;
828 buf
= alloc_buffer(inode
->i_private
, fill_periodic_buffer
);
832 buf
->alloc_size
= (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE
;
833 file
->private_data
= buf
;
837 static int debug_registers_open(struct inode
*inode
, struct file
*file
)
839 file
->private_data
= alloc_buffer(inode
->i_private
,
840 fill_registers_buffer
);
842 return file
->private_data
? 0 : -ENOMEM
;
845 static inline void create_debug_files(struct fotg210_hcd
*fotg210
)
847 struct usb_bus
*bus
= &fotg210_to_hcd(fotg210
)->self
;
850 root
= debugfs_create_dir(bus
->bus_name
, fotg210_debug_root
);
851 fotg210
->debug_dir
= root
;
853 debugfs_create_file("async", S_IRUGO
, root
, bus
, &debug_async_fops
);
854 debugfs_create_file("periodic", S_IRUGO
, root
, bus
,
855 &debug_periodic_fops
);
856 debugfs_create_file("registers", S_IRUGO
, root
, bus
,
857 &debug_registers_fops
);
860 static inline void remove_debug_files(struct fotg210_hcd
*fotg210
)
862 debugfs_remove_recursive(fotg210
->debug_dir
);
865 /* handshake - spin reading hc until handshake completes or fails
866 * @ptr: address of hc register to be read
867 * @mask: bits to look at in result of read
868 * @done: value of those bits when handshake succeeds
869 * @usec: timeout in microseconds
871 * Returns negative errno, or zero on success
873 * Success happens when the "mask" bits have the specified value (hardware
874 * handshake done). There are two failure modes: "usec" have passed (major
875 * hardware flakeout), or the register reads as all-ones (hardware removed).
877 * That last failure should_only happen in cases like physical cardbus eject
878 * before driver shutdown. But it also seems to be caused by bugs in cardbus
879 * bridge shutdown: shutting down the bridge before the devices using it.
881 static int handshake(struct fotg210_hcd
*fotg210
, void __iomem
*ptr
,
882 u32 mask
, u32 done
, int usec
)
887 result
= fotg210_readl(fotg210
, ptr
);
888 if (result
== ~(u32
)0) /* card removed */
899 /* Force HC to halt state from unknown (EHCI spec section 2.3).
900 * Must be called with interrupts enabled and the lock not held.
902 static int fotg210_halt(struct fotg210_hcd
*fotg210
)
906 spin_lock_irq(&fotg210
->lock
);
908 /* disable any irqs left enabled by previous code */
909 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
912 * This routine gets called during probe before fotg210->command
913 * has been initialized, so we can't rely on its value.
915 fotg210
->command
&= ~CMD_RUN
;
916 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
917 temp
&= ~(CMD_RUN
| CMD_IAAD
);
918 fotg210_writel(fotg210
, temp
, &fotg210
->regs
->command
);
920 spin_unlock_irq(&fotg210
->lock
);
921 synchronize_irq(fotg210_to_hcd(fotg210
)->irq
);
923 return handshake(fotg210
, &fotg210
->regs
->status
,
924 STS_HALT
, STS_HALT
, 16 * 125);
927 /* Reset a non-running (STS_HALT == 1) controller.
928 * Must be called with interrupts enabled and the lock not held.
930 static int fotg210_reset(struct fotg210_hcd
*fotg210
)
933 u32 command
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
935 /* If the EHCI debug controller is active, special care must be
936 * taken before and after a host controller reset
938 if (fotg210
->debug
&& !dbgp_reset_prep(fotg210_to_hcd(fotg210
)))
939 fotg210
->debug
= NULL
;
941 command
|= CMD_RESET
;
942 dbg_cmd(fotg210
, "reset", command
);
943 fotg210_writel(fotg210
, command
, &fotg210
->regs
->command
);
944 fotg210
->rh_state
= FOTG210_RH_HALTED
;
945 fotg210
->next_statechange
= jiffies
;
946 retval
= handshake(fotg210
, &fotg210
->regs
->command
,
947 CMD_RESET
, 0, 250 * 1000);
953 dbgp_external_startup(fotg210_to_hcd(fotg210
));
955 fotg210
->port_c_suspend
= fotg210
->suspended_ports
=
956 fotg210
->resuming_ports
= 0;
960 /* Idle the controller (turn off the schedules).
961 * Must be called with interrupts enabled and the lock not held.
963 static void fotg210_quiesce(struct fotg210_hcd
*fotg210
)
967 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
970 /* wait for any schedule enables/disables to take effect */
971 temp
= (fotg210
->command
<< 10) & (STS_ASS
| STS_PSS
);
972 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, temp
,
975 /* then disable anything that's still active */
976 spin_lock_irq(&fotg210
->lock
);
977 fotg210
->command
&= ~(CMD_ASE
| CMD_PSE
);
978 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
979 spin_unlock_irq(&fotg210
->lock
);
981 /* hardware can take 16 microframes to turn off ... */
982 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, 0,
986 static void end_unlink_async(struct fotg210_hcd
*fotg210
);
987 static void unlink_empty_async(struct fotg210_hcd
*fotg210
);
988 static void fotg210_work(struct fotg210_hcd
*fotg210
);
989 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
990 struct fotg210_qh
*qh
);
991 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
993 /* Set a bit in the USBCMD register */
994 static void fotg210_set_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
996 fotg210
->command
|= bit
;
997 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
999 /* unblock posted write */
1000 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1003 /* Clear a bit in the USBCMD register */
1004 static void fotg210_clear_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
1006 fotg210
->command
&= ~bit
;
1007 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1009 /* unblock posted write */
1010 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1013 /* EHCI timer support... Now using hrtimers.
1015 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1016 * the timer routine runs, it checks each possible event; events that are
1017 * currently enabled and whose expiration time has passed get handled.
1018 * The set of enabled events is stored as a collection of bitflags in
1019 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1020 * increasing delay values (ranging between 1 ms and 100 ms).
1022 * Rather than implementing a sorted list or tree of all pending events,
1023 * we keep track only of the lowest-numbered pending event, in
1024 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1025 * expiration time is set to the timeout value for this event.
1027 * As a result, events might not get handled right away; the actual delay
1028 * could be anywhere up to twice the requested delay. This doesn't
1029 * matter, because none of the events are especially time-critical. The
1030 * ones that matter most all have a delay of 1 ms, so they will be
1031 * handled after 2 ms at most, which is okay. In addition to this, we
1032 * allow for an expiration range of 1 ms.
1035 /* Delay lengths for the hrtimer event types.
1036 * Keep this list sorted by delay length, in the same order as
1037 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1039 static unsigned event_delays_ns
[] = {
1040 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_ASS */
1041 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_PSS */
1042 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_DEAD */
1043 1125 * NSEC_PER_USEC
, /* FOTG210_HRTIMER_UNLINK_INTR */
1044 2 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_FREE_ITDS */
1045 6 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1046 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1047 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1048 15 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1049 100 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1052 /* Enable a pending hrtimer event */
1053 static void fotg210_enable_event(struct fotg210_hcd
*fotg210
, unsigned event
,
1056 ktime_t
*timeout
= &fotg210
->hr_timeouts
[event
];
1059 *timeout
= ktime_add(ktime_get(), event_delays_ns
[event
]);
1060 fotg210
->enabled_hrtimer_events
|= (1 << event
);
1062 /* Track only the lowest-numbered pending event */
1063 if (event
< fotg210
->next_hrtimer_event
) {
1064 fotg210
->next_hrtimer_event
= event
;
1065 hrtimer_start_range_ns(&fotg210
->hrtimer
, *timeout
,
1066 NSEC_PER_MSEC
, HRTIMER_MODE_ABS
);
1071 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1072 static void fotg210_poll_ASS(struct fotg210_hcd
*fotg210
)
1074 unsigned actual
, want
;
1076 /* Don't enable anything if the controller isn't running (e.g., died) */
1077 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1080 want
= (fotg210
->command
& CMD_ASE
) ? STS_ASS
: 0;
1081 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_ASS
;
1083 if (want
!= actual
) {
1085 /* Poll again later, but give up after about 20 ms */
1086 if (fotg210
->ASS_poll_count
++ < 20) {
1087 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_ASS
,
1091 fotg210_dbg(fotg210
, "Waited too long for the async schedule status (%x/%x), giving up\n",
1094 fotg210
->ASS_poll_count
= 0;
1096 /* The status is up-to-date; restart or stop the schedule as needed */
1097 if (want
== 0) { /* Stopped */
1098 if (fotg210
->async_count
> 0)
1099 fotg210_set_command_bit(fotg210
, CMD_ASE
);
1101 } else { /* Running */
1102 if (fotg210
->async_count
== 0) {
1104 /* Turn off the schedule after a while */
1105 fotg210_enable_event(fotg210
,
1106 FOTG210_HRTIMER_DISABLE_ASYNC
,
1112 /* Turn off the async schedule after a brief delay */
1113 static void fotg210_disable_ASE(struct fotg210_hcd
*fotg210
)
1115 fotg210_clear_command_bit(fotg210
, CMD_ASE
);
1119 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1120 static void fotg210_poll_PSS(struct fotg210_hcd
*fotg210
)
1122 unsigned actual
, want
;
1124 /* Don't do anything if the controller isn't running (e.g., died) */
1125 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1128 want
= (fotg210
->command
& CMD_PSE
) ? STS_PSS
: 0;
1129 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_PSS
;
1131 if (want
!= actual
) {
1133 /* Poll again later, but give up after about 20 ms */
1134 if (fotg210
->PSS_poll_count
++ < 20) {
1135 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_PSS
,
1139 fotg210_dbg(fotg210
, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1142 fotg210
->PSS_poll_count
= 0;
1144 /* The status is up-to-date; restart or stop the schedule as needed */
1145 if (want
== 0) { /* Stopped */
1146 if (fotg210
->periodic_count
> 0)
1147 fotg210_set_command_bit(fotg210
, CMD_PSE
);
1149 } else { /* Running */
1150 if (fotg210
->periodic_count
== 0) {
1152 /* Turn off the schedule after a while */
1153 fotg210_enable_event(fotg210
,
1154 FOTG210_HRTIMER_DISABLE_PERIODIC
,
1160 /* Turn off the periodic schedule after a brief delay */
1161 static void fotg210_disable_PSE(struct fotg210_hcd
*fotg210
)
1163 fotg210_clear_command_bit(fotg210
, CMD_PSE
);
1167 /* Poll the STS_HALT status bit; see when a dead controller stops */
1168 static void fotg210_handle_controller_death(struct fotg210_hcd
*fotg210
)
1170 if (!(fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_HALT
)) {
1172 /* Give up after a few milliseconds */
1173 if (fotg210
->died_poll_count
++ < 5) {
1174 /* Try again later */
1175 fotg210_enable_event(fotg210
,
1176 FOTG210_HRTIMER_POLL_DEAD
, true);
1179 fotg210_warn(fotg210
, "Waited too long for the controller to stop, giving up\n");
1182 /* Clean up the mess */
1183 fotg210
->rh_state
= FOTG210_RH_HALTED
;
1184 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
1185 fotg210_work(fotg210
);
1186 end_unlink_async(fotg210
);
1188 /* Not in process context, so don't try to reset the controller */
1192 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1193 static void fotg210_handle_intr_unlinks(struct fotg210_hcd
*fotg210
)
1195 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
1198 * Process all the QHs on the intr_unlink list that were added
1199 * before the current unlink cycle began. The list is in
1200 * temporal order, so stop when we reach the first entry in the
1201 * current cycle. But if the root hub isn't running then
1202 * process all the QHs on the list.
1204 fotg210
->intr_unlinking
= true;
1205 while (fotg210
->intr_unlink
) {
1206 struct fotg210_qh
*qh
= fotg210
->intr_unlink
;
1208 if (!stopped
&& qh
->unlink_cycle
== fotg210
->intr_unlink_cycle
)
1210 fotg210
->intr_unlink
= qh
->unlink_next
;
1211 qh
->unlink_next
= NULL
;
1212 end_unlink_intr(fotg210
, qh
);
1215 /* Handle remaining entries later */
1216 if (fotg210
->intr_unlink
) {
1217 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
1219 ++fotg210
->intr_unlink_cycle
;
1221 fotg210
->intr_unlinking
= false;
1225 /* Start another free-iTDs/siTDs cycle */
1226 static void start_free_itds(struct fotg210_hcd
*fotg210
)
1228 if (!(fotg210
->enabled_hrtimer_events
&
1229 BIT(FOTG210_HRTIMER_FREE_ITDS
))) {
1230 fotg210
->last_itd_to_free
= list_entry(
1231 fotg210
->cached_itd_list
.prev
,
1232 struct fotg210_itd
, itd_list
);
1233 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_FREE_ITDS
, true);
1237 /* Wait for controller to stop using old iTDs and siTDs */
1238 static void end_free_itds(struct fotg210_hcd
*fotg210
)
1240 struct fotg210_itd
*itd
, *n
;
1242 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
1243 fotg210
->last_itd_to_free
= NULL
;
1245 list_for_each_entry_safe(itd
, n
, &fotg210
->cached_itd_list
, itd_list
) {
1246 list_del(&itd
->itd_list
);
1247 dma_pool_free(fotg210
->itd_pool
, itd
, itd
->itd_dma
);
1248 if (itd
== fotg210
->last_itd_to_free
)
1252 if (!list_empty(&fotg210
->cached_itd_list
))
1253 start_free_itds(fotg210
);
1257 /* Handle lost (or very late) IAA interrupts */
1258 static void fotg210_iaa_watchdog(struct fotg210_hcd
*fotg210
)
1260 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1264 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1265 * So we need this watchdog, but must protect it against both
1266 * (a) SMP races against real IAA firing and retriggering, and
1267 * (b) clean HC shutdown, when IAA watchdog was pending.
1269 if (fotg210
->async_iaa
) {
1272 /* If we get here, IAA is *REALLY* late. It's barely
1273 * conceivable that the system is so busy that CMD_IAAD
1274 * is still legitimately set, so let's be sure it's
1275 * clear before we read STS_IAA. (The HC should clear
1276 * CMD_IAAD when it sets STS_IAA.)
1278 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1281 * If IAA is set here it either legitimately triggered
1282 * after the watchdog timer expired (_way_ late, so we'll
1283 * still count it as lost) ... or a silicon erratum:
1284 * - VIA seems to set IAA without triggering the IRQ;
1285 * - IAAD potentially cleared without setting IAA.
1287 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
1288 if ((status
& STS_IAA
) || !(cmd
& CMD_IAAD
)) {
1289 INCR(fotg210
->stats
.lost_iaa
);
1290 fotg210_writel(fotg210
, STS_IAA
,
1291 &fotg210
->regs
->status
);
1294 fotg210_dbg(fotg210
, "IAA watchdog: status %x cmd %x\n",
1296 end_unlink_async(fotg210
);
1301 /* Enable the I/O watchdog, if appropriate */
1302 static void turn_on_io_watchdog(struct fotg210_hcd
*fotg210
)
1304 /* Not needed if the controller isn't running or it's already enabled */
1305 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
||
1306 (fotg210
->enabled_hrtimer_events
&
1307 BIT(FOTG210_HRTIMER_IO_WATCHDOG
)))
1311 * Isochronous transfers always need the watchdog.
1312 * For other sorts we use it only if the flag is set.
1314 if (fotg210
->isoc_count
> 0 || (fotg210
->need_io_watchdog
&&
1315 fotg210
->async_count
+ fotg210
->intr_count
> 0))
1316 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IO_WATCHDOG
,
1321 /* Handler functions for the hrtimer event types.
1322 * Keep this array in the same order as the event types indexed by
1323 * enum fotg210_hrtimer_event in fotg210.h.
1325 static void (*event_handlers
[])(struct fotg210_hcd
*) = {
1326 fotg210_poll_ASS
, /* FOTG210_HRTIMER_POLL_ASS */
1327 fotg210_poll_PSS
, /* FOTG210_HRTIMER_POLL_PSS */
1328 fotg210_handle_controller_death
, /* FOTG210_HRTIMER_POLL_DEAD */
1329 fotg210_handle_intr_unlinks
, /* FOTG210_HRTIMER_UNLINK_INTR */
1330 end_free_itds
, /* FOTG210_HRTIMER_FREE_ITDS */
1331 unlink_empty_async
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1332 fotg210_iaa_watchdog
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1333 fotg210_disable_PSE
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1334 fotg210_disable_ASE
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1335 fotg210_work
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1338 static enum hrtimer_restart
fotg210_hrtimer_func(struct hrtimer
*t
)
1340 struct fotg210_hcd
*fotg210
=
1341 container_of(t
, struct fotg210_hcd
, hrtimer
);
1343 unsigned long events
;
1344 unsigned long flags
;
1347 spin_lock_irqsave(&fotg210
->lock
, flags
);
1349 events
= fotg210
->enabled_hrtimer_events
;
1350 fotg210
->enabled_hrtimer_events
= 0;
1351 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
1354 * Check each pending event. If its time has expired, handle
1355 * the event; otherwise re-enable it.
1358 for_each_set_bit(e
, &events
, FOTG210_HRTIMER_NUM_EVENTS
) {
1359 if (ktime_compare(now
, fotg210
->hr_timeouts
[e
]) >= 0)
1360 event_handlers
[e
](fotg210
);
1362 fotg210_enable_event(fotg210
, e
, false);
1365 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1366 return HRTIMER_NORESTART
;
1369 #define fotg210_bus_suspend NULL
1370 #define fotg210_bus_resume NULL
1372 static int check_reset_complete(struct fotg210_hcd
*fotg210
, int index
,
1373 u32 __iomem
*status_reg
, int port_status
)
1375 if (!(port_status
& PORT_CONNECT
))
1378 /* if reset finished and it's still not enabled -- handoff */
1379 if (!(port_status
& PORT_PE
))
1380 /* with integrated TT, there's nobody to hand it to! */
1381 fotg210_dbg(fotg210
, "Failed to enable port %d on root hub TT\n",
1384 fotg210_dbg(fotg210
, "port %d reset complete, port enabled\n",
1391 /* build "status change" packet (one or two bytes) from HC registers */
1393 static int fotg210_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
1395 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1399 unsigned long flags
;
1401 /* init status to no-changes */
1404 /* Inform the core about resumes-in-progress by returning
1405 * a non-zero value even if there are no status changes.
1407 status
= fotg210
->resuming_ports
;
1409 mask
= PORT_CSC
| PORT_PEC
;
1410 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1412 /* no hub change reports (bit 0) for now (power, ...) */
1414 /* port N changes (bit N)? */
1415 spin_lock_irqsave(&fotg210
->lock
, flags
);
1417 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->port_status
);
1420 * Return status information even for ports with OWNER set.
1421 * Otherwise hub_wq wouldn't see the disconnect event when a
1422 * high-speed device is switched over to the companion
1423 * controller by the user.
1426 if ((temp
& mask
) != 0 || test_bit(0, &fotg210
->port_c_suspend
) ||
1427 (fotg210
->reset_done
[0] &&
1428 time_after_eq(jiffies
, fotg210
->reset_done
[0]))) {
1432 /* FIXME autosuspend idle root hubs */
1433 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1434 return status
? retval
: 0;
1437 static void fotg210_hub_descriptor(struct fotg210_hcd
*fotg210
,
1438 struct usb_hub_descriptor
*desc
)
1440 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1443 desc
->bDescriptorType
= USB_DT_HUB
;
1444 desc
->bPwrOn2PwrGood
= 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1445 desc
->bHubContrCurrent
= 0;
1447 desc
->bNbrPorts
= ports
;
1448 temp
= 1 + (ports
/ 8);
1449 desc
->bDescLength
= 7 + 2 * temp
;
1451 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1452 memset(&desc
->u
.hs
.DeviceRemovable
[0], 0, temp
);
1453 memset(&desc
->u
.hs
.DeviceRemovable
[temp
], 0xff, temp
);
1455 temp
= HUB_CHAR_INDV_PORT_OCPM
; /* per-port overcurrent reporting */
1456 temp
|= HUB_CHAR_NO_LPSM
; /* no power switching */
1457 desc
->wHubCharacteristics
= cpu_to_le16(temp
);
1460 static int fotg210_hub_control(struct usb_hcd
*hcd
, u16 typeReq
, u16 wValue
,
1461 u16 wIndex
, char *buf
, u16 wLength
)
1463 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1464 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1465 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
1466 u32 temp
, temp1
, status
;
1467 unsigned long flags
;
1472 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1473 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1474 * (track current state ourselves) ... blink for diagnostics,
1475 * power, "this is the one", etc. EHCI spec supports this.
1478 spin_lock_irqsave(&fotg210
->lock
, flags
);
1480 case ClearHubFeature
:
1482 case C_HUB_LOCAL_POWER
:
1483 case C_HUB_OVER_CURRENT
:
1484 /* no hub-wide feature/status flags */
1490 case ClearPortFeature
:
1491 if (!wIndex
|| wIndex
> ports
)
1494 temp
= fotg210_readl(fotg210
, status_reg
);
1495 temp
&= ~PORT_RWC_BITS
;
1498 * Even if OWNER is set, so the port is owned by the
1499 * companion controller, hub_wq needs to be able to clear
1500 * the port-change status bits (especially
1501 * USB_PORT_STAT_C_CONNECTION).
1505 case USB_PORT_FEAT_ENABLE
:
1506 fotg210_writel(fotg210
, temp
& ~PORT_PE
, status_reg
);
1508 case USB_PORT_FEAT_C_ENABLE
:
1509 fotg210_writel(fotg210
, temp
| PORT_PEC
, status_reg
);
1511 case USB_PORT_FEAT_SUSPEND
:
1512 if (temp
& PORT_RESET
)
1514 if (!(temp
& PORT_SUSPEND
))
1516 if ((temp
& PORT_PE
) == 0)
1519 /* resume signaling for 20 msec */
1520 fotg210_writel(fotg210
, temp
| PORT_RESUME
, status_reg
);
1521 fotg210
->reset_done
[wIndex
] = jiffies
1522 + msecs_to_jiffies(USB_RESUME_TIMEOUT
);
1524 case USB_PORT_FEAT_C_SUSPEND
:
1525 clear_bit(wIndex
, &fotg210
->port_c_suspend
);
1527 case USB_PORT_FEAT_C_CONNECTION
:
1528 fotg210_writel(fotg210
, temp
| PORT_CSC
, status_reg
);
1530 case USB_PORT_FEAT_C_OVER_CURRENT
:
1531 fotg210_writel(fotg210
, temp
| OTGISR_OVC
,
1532 &fotg210
->regs
->otgisr
);
1534 case USB_PORT_FEAT_C_RESET
:
1535 /* GetPortStatus clears reset */
1540 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1542 case GetHubDescriptor
:
1543 fotg210_hub_descriptor(fotg210
, (struct usb_hub_descriptor
*)
1547 /* no hub-wide feature/status flags */
1549 /*cpu_to_le32s ((u32 *) buf); */
1552 if (!wIndex
|| wIndex
> ports
)
1556 temp
= fotg210_readl(fotg210
, status_reg
);
1558 /* wPortChange bits */
1559 if (temp
& PORT_CSC
)
1560 status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
1561 if (temp
& PORT_PEC
)
1562 status
|= USB_PORT_STAT_C_ENABLE
<< 16;
1564 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1565 if (temp1
& OTGISR_OVC
)
1566 status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
1568 /* whoever resumes must GetPortStatus to complete it!! */
1569 if (temp
& PORT_RESUME
) {
1571 /* Remote Wakeup received? */
1572 if (!fotg210
->reset_done
[wIndex
]) {
1573 /* resume signaling for 20 msec */
1574 fotg210
->reset_done
[wIndex
] = jiffies
1575 + msecs_to_jiffies(20);
1576 /* check the port again */
1577 mod_timer(&fotg210_to_hcd(fotg210
)->rh_timer
,
1578 fotg210
->reset_done
[wIndex
]);
1581 /* resume completed? */
1582 else if (time_after_eq(jiffies
,
1583 fotg210
->reset_done
[wIndex
])) {
1584 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1585 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1586 fotg210
->reset_done
[wIndex
] = 0;
1588 /* stop resume signaling */
1589 temp
= fotg210_readl(fotg210
, status_reg
);
1590 fotg210_writel(fotg210
, temp
&
1591 ~(PORT_RWC_BITS
| PORT_RESUME
),
1593 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1594 retval
= handshake(fotg210
, status_reg
,
1595 PORT_RESUME
, 0, 2000);/* 2ms */
1597 fotg210_err(fotg210
,
1598 "port %d resume error %d\n",
1599 wIndex
+ 1, retval
);
1602 temp
&= ~(PORT_SUSPEND
|PORT_RESUME
|(3<<10));
1606 /* whoever resets must GetPortStatus to complete it!! */
1607 if ((temp
& PORT_RESET
) && time_after_eq(jiffies
,
1608 fotg210
->reset_done
[wIndex
])) {
1609 status
|= USB_PORT_STAT_C_RESET
<< 16;
1610 fotg210
->reset_done
[wIndex
] = 0;
1611 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1613 /* force reset to complete */
1614 fotg210_writel(fotg210
,
1615 temp
& ~(PORT_RWC_BITS
| PORT_RESET
),
1617 /* REVISIT: some hardware needs 550+ usec to clear
1618 * this bit; seems too long to spin routinely...
1620 retval
= handshake(fotg210
, status_reg
,
1621 PORT_RESET
, 0, 1000);
1623 fotg210_err(fotg210
, "port %d reset error %d\n",
1624 wIndex
+ 1, retval
);
1628 /* see what we found out */
1629 temp
= check_reset_complete(fotg210
, wIndex
, status_reg
,
1630 fotg210_readl(fotg210
, status_reg
));
1633 if (!(temp
& (PORT_RESUME
|PORT_RESET
))) {
1634 fotg210
->reset_done
[wIndex
] = 0;
1635 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1638 /* transfer dedicated ports to the companion hc */
1639 if ((temp
& PORT_CONNECT
) &&
1640 test_bit(wIndex
, &fotg210
->companion_ports
)) {
1641 temp
&= ~PORT_RWC_BITS
;
1642 fotg210_writel(fotg210
, temp
, status_reg
);
1643 fotg210_dbg(fotg210
, "port %d --> companion\n",
1645 temp
= fotg210_readl(fotg210
, status_reg
);
1649 * Even if OWNER is set, there's no harm letting hub_wq
1650 * see the wPortStatus values (they should all be 0 except
1651 * for PORT_POWER anyway).
1654 if (temp
& PORT_CONNECT
) {
1655 status
|= USB_PORT_STAT_CONNECTION
;
1656 status
|= fotg210_port_speed(fotg210
, temp
);
1659 status
|= USB_PORT_STAT_ENABLE
;
1661 /* maybe the port was unsuspended without our knowledge */
1662 if (temp
& (PORT_SUSPEND
|PORT_RESUME
)) {
1663 status
|= USB_PORT_STAT_SUSPEND
;
1664 } else if (test_bit(wIndex
, &fotg210
->suspended_ports
)) {
1665 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1666 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1667 fotg210
->reset_done
[wIndex
] = 0;
1669 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1672 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1673 if (temp1
& OTGISR_OVC
)
1674 status
|= USB_PORT_STAT_OVERCURRENT
;
1675 if (temp
& PORT_RESET
)
1676 status
|= USB_PORT_STAT_RESET
;
1677 if (test_bit(wIndex
, &fotg210
->port_c_suspend
))
1678 status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
1680 if (status
& ~0xffff) /* only if wPortChange is interesting */
1681 dbg_port(fotg210
, "GetStatus", wIndex
+ 1, temp
);
1682 put_unaligned_le32(status
, buf
);
1686 case C_HUB_LOCAL_POWER
:
1687 case C_HUB_OVER_CURRENT
:
1688 /* no hub-wide feature/status flags */
1694 case SetPortFeature
:
1695 selector
= wIndex
>> 8;
1698 if (!wIndex
|| wIndex
> ports
)
1701 temp
= fotg210_readl(fotg210
, status_reg
);
1702 temp
&= ~PORT_RWC_BITS
;
1704 case USB_PORT_FEAT_SUSPEND
:
1705 if ((temp
& PORT_PE
) == 0
1706 || (temp
& PORT_RESET
) != 0)
1709 /* After above check the port must be connected.
1710 * Set appropriate bit thus could put phy into low power
1711 * mode if we have hostpc feature
1713 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1715 set_bit(wIndex
, &fotg210
->suspended_ports
);
1717 case USB_PORT_FEAT_RESET
:
1718 if (temp
& PORT_RESUME
)
1720 /* line status bits may report this as low speed,
1721 * which can be fine if this root hub has a
1722 * transaction translator built in.
1724 fotg210_dbg(fotg210
, "port %d reset\n", wIndex
+ 1);
1729 * caller must wait, then call GetPortStatus
1730 * usb 2.0 spec says 50 ms resets on root
1732 fotg210
->reset_done
[wIndex
] = jiffies
1733 + msecs_to_jiffies(50);
1734 fotg210_writel(fotg210
, temp
, status_reg
);
1737 /* For downstream facing ports (these): one hub port is put
1738 * into test mode according to USB2 11.24.2.13, then the hub
1739 * must be reset (which for root hub now means rmmod+modprobe,
1740 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1741 * about the EHCI-specific stuff.
1743 case USB_PORT_FEAT_TEST
:
1744 if (!selector
|| selector
> 5)
1746 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1747 fotg210_quiesce(fotg210
);
1748 spin_lock_irqsave(&fotg210
->lock
, flags
);
1750 /* Put all enabled ports into suspend */
1751 temp
= fotg210_readl(fotg210
, status_reg
) &
1754 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1757 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1758 fotg210_halt(fotg210
);
1759 spin_lock_irqsave(&fotg210
->lock
, flags
);
1761 temp
= fotg210_readl(fotg210
, status_reg
);
1762 temp
|= selector
<< 16;
1763 fotg210_writel(fotg210
, temp
, status_reg
);
1769 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1774 /* "stall" on error */
1777 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1781 static void __maybe_unused
fotg210_relinquish_port(struct usb_hcd
*hcd
,
1787 static int __maybe_unused
fotg210_port_handed_over(struct usb_hcd
*hcd
,
1793 /* There's basically three types of memory:
1794 * - data used only by the HCD ... kmalloc is fine
1795 * - async and periodic schedules, shared by HC and HCD ... these
1796 * need to use dma_pool or dma_alloc_coherent
1797 * - driver buffers, read/written by HC ... single shot DMA mapped
1799 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1800 * No memory seen by this driver is pageable.
1803 /* Allocate the key transfer structures from the previously allocated pool */
1804 static inline void fotg210_qtd_init(struct fotg210_hcd
*fotg210
,
1805 struct fotg210_qtd
*qtd
, dma_addr_t dma
)
1807 memset(qtd
, 0, sizeof(*qtd
));
1809 qtd
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
1810 qtd
->hw_next
= FOTG210_LIST_END(fotg210
);
1811 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
1812 INIT_LIST_HEAD(&qtd
->qtd_list
);
1815 static struct fotg210_qtd
*fotg210_qtd_alloc(struct fotg210_hcd
*fotg210
,
1818 struct fotg210_qtd
*qtd
;
1821 qtd
= dma_pool_alloc(fotg210
->qtd_pool
, flags
, &dma
);
1823 fotg210_qtd_init(fotg210
, qtd
, dma
);
1828 static inline void fotg210_qtd_free(struct fotg210_hcd
*fotg210
,
1829 struct fotg210_qtd
*qtd
)
1831 dma_pool_free(fotg210
->qtd_pool
, qtd
, qtd
->qtd_dma
);
1835 static void qh_destroy(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
1837 /* clean qtds first, and know this is not linked */
1838 if (!list_empty(&qh
->qtd_list
) || qh
->qh_next
.ptr
) {
1839 fotg210_dbg(fotg210
, "unused qh not empty!\n");
1843 fotg210_qtd_free(fotg210
, qh
->dummy
);
1844 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1848 static struct fotg210_qh
*fotg210_qh_alloc(struct fotg210_hcd
*fotg210
,
1851 struct fotg210_qh
*qh
;
1854 qh
= kzalloc(sizeof(*qh
), GFP_ATOMIC
);
1857 qh
->hw
= dma_pool_zalloc(fotg210
->qh_pool
, flags
, &dma
);
1861 INIT_LIST_HEAD(&qh
->qtd_list
);
1863 /* dummy td enables safe urb queuing */
1864 qh
->dummy
= fotg210_qtd_alloc(fotg210
, flags
);
1865 if (qh
->dummy
== NULL
) {
1866 fotg210_dbg(fotg210
, "no dummy td\n");
1872 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1878 /* The queue heads and transfer descriptors are managed from pools tied
1879 * to each of the "per device" structures.
1880 * This is the initialisation and cleanup code.
1883 static void fotg210_mem_cleanup(struct fotg210_hcd
*fotg210
)
1886 qh_destroy(fotg210
, fotg210
->async
);
1887 fotg210
->async
= NULL
;
1890 qh_destroy(fotg210
, fotg210
->dummy
);
1891 fotg210
->dummy
= NULL
;
1893 /* DMA consistent memory and pools */
1894 dma_pool_destroy(fotg210
->qtd_pool
);
1895 fotg210
->qtd_pool
= NULL
;
1897 dma_pool_destroy(fotg210
->qh_pool
);
1898 fotg210
->qh_pool
= NULL
;
1900 dma_pool_destroy(fotg210
->itd_pool
);
1901 fotg210
->itd_pool
= NULL
;
1903 if (fotg210
->periodic
)
1904 dma_free_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1905 fotg210
->periodic_size
* sizeof(u32
),
1906 fotg210
->periodic
, fotg210
->periodic_dma
);
1907 fotg210
->periodic
= NULL
;
1909 /* shadow periodic table */
1910 kfree(fotg210
->pshadow
);
1911 fotg210
->pshadow
= NULL
;
1914 /* remember to add cleanup code (above) if you add anything here */
1915 static int fotg210_mem_init(struct fotg210_hcd
*fotg210
, gfp_t flags
)
1919 /* QTDs for control/bulk/intr transfers */
1920 fotg210
->qtd_pool
= dma_pool_create("fotg210_qtd",
1921 fotg210_to_hcd(fotg210
)->self
.controller
,
1922 sizeof(struct fotg210_qtd
),
1923 32 /* byte alignment (for hw parts) */,
1924 4096 /* can't cross 4K */);
1925 if (!fotg210
->qtd_pool
)
1928 /* QHs for control/bulk/intr transfers */
1929 fotg210
->qh_pool
= dma_pool_create("fotg210_qh",
1930 fotg210_to_hcd(fotg210
)->self
.controller
,
1931 sizeof(struct fotg210_qh_hw
),
1932 32 /* byte alignment (for hw parts) */,
1933 4096 /* can't cross 4K */);
1934 if (!fotg210
->qh_pool
)
1937 fotg210
->async
= fotg210_qh_alloc(fotg210
, flags
);
1938 if (!fotg210
->async
)
1941 /* ITD for high speed ISO transfers */
1942 fotg210
->itd_pool
= dma_pool_create("fotg210_itd",
1943 fotg210_to_hcd(fotg210
)->self
.controller
,
1944 sizeof(struct fotg210_itd
),
1945 64 /* byte alignment (for hw parts) */,
1946 4096 /* can't cross 4K */);
1947 if (!fotg210
->itd_pool
)
1950 /* Hardware periodic table */
1951 fotg210
->periodic
= (__le32
*)
1952 dma_alloc_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1953 fotg210
->periodic_size
* sizeof(__le32
),
1954 &fotg210
->periodic_dma
, 0);
1955 if (fotg210
->periodic
== NULL
)
1958 for (i
= 0; i
< fotg210
->periodic_size
; i
++)
1959 fotg210
->periodic
[i
] = FOTG210_LIST_END(fotg210
);
1961 /* software shadow of hardware table */
1962 fotg210
->pshadow
= kcalloc(fotg210
->periodic_size
, sizeof(void *),
1964 if (fotg210
->pshadow
!= NULL
)
1968 fotg210_dbg(fotg210
, "couldn't init memory\n");
1969 fotg210_mem_cleanup(fotg210
);
1972 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1974 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1975 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1976 * buffers needed for the larger number). We use one QH per endpoint, queue
1977 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1979 * ISO traffic uses "ISO TD" (itd) records, and (along with
1980 * interrupts) needs careful scheduling. Performance improvements can be
1981 * an ongoing challenge. That's in "ehci-sched.c".
1983 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1984 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1985 * (b) special fields in qh entries or (c) split iso entries. TTs will
1986 * buffer low/full speed data so the host collects it at high speed.
1989 /* fill a qtd, returning how much of the buffer we were able to queue up */
1990 static int qtd_fill(struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
,
1991 dma_addr_t buf
, size_t len
, int token
, int maxpacket
)
1996 /* one buffer entry per 4K ... first might be short or unaligned */
1997 qtd
->hw_buf
[0] = cpu_to_hc32(fotg210
, (u32
)addr
);
1998 qtd
->hw_buf_hi
[0] = cpu_to_hc32(fotg210
, (u32
)(addr
>> 32));
1999 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
2000 if (likely(len
< count
)) /* ... iff needed */
2006 /* per-qtd limit: from 16K to 20K (best alignment) */
2007 for (i
= 1; count
< len
&& i
< 5; i
++) {
2009 qtd
->hw_buf
[i
] = cpu_to_hc32(fotg210
, (u32
)addr
);
2010 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(fotg210
,
2013 if ((count
+ 0x1000) < len
)
2019 /* short packets may only terminate transfers */
2021 count
-= (count
% maxpacket
);
2023 qtd
->hw_token
= cpu_to_hc32(fotg210
, (count
<< 16) | token
);
2024 qtd
->length
= count
;
2029 static inline void qh_update(struct fotg210_hcd
*fotg210
,
2030 struct fotg210_qh
*qh
, struct fotg210_qtd
*qtd
)
2032 struct fotg210_qh_hw
*hw
= qh
->hw
;
2034 /* writes to an active overlay are unsafe */
2035 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2037 hw
->hw_qtd_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2038 hw
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2040 /* Except for control endpoints, we make hardware maintain data
2041 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2042 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2045 if (!(hw
->hw_info1
& cpu_to_hc32(fotg210
, QH_TOGGLE_CTL
))) {
2046 unsigned is_out
, epnum
;
2048 is_out
= qh
->is_out
;
2049 epnum
= (hc32_to_cpup(fotg210
, &hw
->hw_info1
) >> 8) & 0x0f;
2050 if (unlikely(!usb_gettoggle(qh
->dev
, epnum
, is_out
))) {
2051 hw
->hw_token
&= ~cpu_to_hc32(fotg210
, QTD_TOGGLE
);
2052 usb_settoggle(qh
->dev
, epnum
, is_out
, 1);
2056 hw
->hw_token
&= cpu_to_hc32(fotg210
, QTD_TOGGLE
| QTD_STS_PING
);
2059 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2060 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2061 * recovery (including urb dequeue) would need software changes to a QH...
2063 static void qh_refresh(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2065 struct fotg210_qtd
*qtd
;
2067 if (list_empty(&qh
->qtd_list
))
2070 qtd
= list_entry(qh
->qtd_list
.next
,
2071 struct fotg210_qtd
, qtd_list
);
2073 * first qtd may already be partially processed.
2074 * If we come here during unlink, the QH overlay region
2075 * might have reference to the just unlinked qtd. The
2076 * qtd is updated in qh_completions(). Update the QH
2079 if (cpu_to_hc32(fotg210
, qtd
->qtd_dma
) == qh
->hw
->hw_current
) {
2080 qh
->hw
->hw_qtd_next
= qtd
->hw_next
;
2086 qh_update(fotg210
, qh
, qtd
);
2089 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2091 static void fotg210_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
2092 struct usb_host_endpoint
*ep
)
2094 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
2095 struct fotg210_qh
*qh
= ep
->hcpriv
;
2096 unsigned long flags
;
2098 spin_lock_irqsave(&fotg210
->lock
, flags
);
2099 qh
->clearing_tt
= 0;
2100 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
2101 && fotg210
->rh_state
== FOTG210_RH_RUNNING
)
2102 qh_link_async(fotg210
, qh
);
2103 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
2106 static void fotg210_clear_tt_buffer(struct fotg210_hcd
*fotg210
,
2107 struct fotg210_qh
*qh
, struct urb
*urb
, u32 token
)
2110 /* If an async split transaction gets an error or is unlinked,
2111 * the TT buffer may be left in an indeterminate state. We
2112 * have to clear the TT buffer.
2114 * Note: this routine is never called for Isochronous transfers.
2116 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
2117 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
2120 "clear tt buffer port %d, a%d ep%d t%08x\n",
2121 urb
->dev
->ttport
, urb
->dev
->devnum
,
2122 usb_pipeendpoint(urb
->pipe
), token
);
2124 if (urb
->dev
->tt
->hub
!=
2125 fotg210_to_hcd(fotg210
)->self
.root_hub
) {
2126 if (usb_hub_clear_tt_buffer(urb
) == 0)
2127 qh
->clearing_tt
= 1;
2132 static int qtd_copy_status(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2133 size_t length
, u32 token
)
2135 int status
= -EINPROGRESS
;
2137 /* count IN/OUT bytes, not SETUP (even short packets) */
2138 if (likely(QTD_PID(token
) != 2))
2139 urb
->actual_length
+= length
- QTD_LENGTH(token
);
2141 /* don't modify error codes */
2142 if (unlikely(urb
->unlinked
))
2145 /* force cleanup after short read; not always an error */
2146 if (unlikely(IS_SHORT_READ(token
)))
2147 status
= -EREMOTEIO
;
2149 /* serious "can't proceed" faults reported by the hardware */
2150 if (token
& QTD_STS_HALT
) {
2151 if (token
& QTD_STS_BABBLE
) {
2152 /* FIXME "must" disable babbling device's port too */
2153 status
= -EOVERFLOW
;
2154 /* CERR nonzero + halt --> stall */
2155 } else if (QTD_CERR(token
)) {
2158 /* In theory, more than one of the following bits can be set
2159 * since they are sticky and the transaction is retried.
2160 * Which to test first is rather arbitrary.
2162 } else if (token
& QTD_STS_MMF
) {
2163 /* fs/ls interrupt xfer missed the complete-split */
2165 } else if (token
& QTD_STS_DBE
) {
2166 status
= (QTD_PID(token
) == 1) /* IN ? */
2167 ? -ENOSR
/* hc couldn't read data */
2168 : -ECOMM
; /* hc couldn't write data */
2169 } else if (token
& QTD_STS_XACT
) {
2170 /* timeout, bad CRC, wrong PID, etc */
2171 fotg210_dbg(fotg210
, "devpath %s ep%d%s 3strikes\n",
2173 usb_pipeendpoint(urb
->pipe
),
2174 usb_pipein(urb
->pipe
) ? "in" : "out");
2176 } else { /* unknown */
2180 fotg210_dbg(fotg210
,
2181 "dev%d ep%d%s qtd token %08x --> status %d\n",
2182 usb_pipedevice(urb
->pipe
),
2183 usb_pipeendpoint(urb
->pipe
),
2184 usb_pipein(urb
->pipe
) ? "in" : "out",
2191 static void fotg210_urb_done(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2193 __releases(fotg210
->lock
)
2194 __acquires(fotg210
->lock
)
2196 if (likely(urb
->hcpriv
!= NULL
)) {
2197 struct fotg210_qh
*qh
= (struct fotg210_qh
*) urb
->hcpriv
;
2199 /* S-mask in a QH means it's an interrupt urb */
2200 if ((qh
->hw
->hw_info2
& cpu_to_hc32(fotg210
, QH_SMASK
)) != 0) {
2202 /* ... update hc-wide periodic stats (for usbfs) */
2203 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
--;
2207 if (unlikely(urb
->unlinked
)) {
2208 INCR(fotg210
->stats
.unlink
);
2210 /* report non-error and short read status as zero */
2211 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
2213 INCR(fotg210
->stats
.complete
);
2216 #ifdef FOTG210_URB_TRACE
2217 fotg210_dbg(fotg210
,
2218 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2219 __func__
, urb
->dev
->devpath
, urb
,
2220 usb_pipeendpoint(urb
->pipe
),
2221 usb_pipein(urb
->pipe
) ? "in" : "out",
2223 urb
->actual_length
, urb
->transfer_buffer_length
);
2226 /* complete() can reenter this HCD */
2227 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
2228 spin_unlock(&fotg210
->lock
);
2229 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210
), urb
, status
);
2230 spin_lock(&fotg210
->lock
);
2233 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2235 /* Process and free completed qtds for a qh, returning URBs to drivers.
2236 * Chases up to qh->hw_current. Returns number of completions called,
2237 * indicating how much "real" work we did.
2239 static unsigned qh_completions(struct fotg210_hcd
*fotg210
,
2240 struct fotg210_qh
*qh
)
2242 struct fotg210_qtd
*last
, *end
= qh
->dummy
;
2243 struct fotg210_qtd
*qtd
, *tmp
;
2248 struct fotg210_qh_hw
*hw
= qh
->hw
;
2250 if (unlikely(list_empty(&qh
->qtd_list
)))
2253 /* completions (or tasks on other cpus) must never clobber HALT
2254 * till we've gone through and cleaned everything up, even when
2255 * they add urbs to this qh's queue or mark them for unlinking.
2257 * NOTE: unlinking expects to be done in queue order.
2259 * It's a bug for qh->qh_state to be anything other than
2260 * QH_STATE_IDLE, unless our caller is scan_async() or
2263 state
= qh
->qh_state
;
2264 qh
->qh_state
= QH_STATE_COMPLETING
;
2265 stopped
= (state
== QH_STATE_IDLE
);
2269 last_status
= -EINPROGRESS
;
2270 qh
->needs_rescan
= 0;
2272 /* remove de-activated QTDs from front of queue.
2273 * after faults (including short reads), cleanup this urb
2274 * then let the queue advance.
2275 * if queue is stopped, handles unlinks.
2277 list_for_each_entry_safe(qtd
, tmp
, &qh
->qtd_list
, qtd_list
) {
2283 /* clean up any state from previous QTD ...*/
2285 if (likely(last
->urb
!= urb
)) {
2286 fotg210_urb_done(fotg210
, last
->urb
,
2289 last_status
= -EINPROGRESS
;
2291 fotg210_qtd_free(fotg210
, last
);
2295 /* ignore urbs submitted during completions we reported */
2299 /* hardware copies qtd out of qh overlay */
2301 token
= hc32_to_cpu(fotg210
, qtd
->hw_token
);
2303 /* always clean up qtds the hc de-activated */
2305 if ((token
& QTD_STS_ACTIVE
) == 0) {
2307 /* Report Data Buffer Error: non-fatal but useful */
2308 if (token
& QTD_STS_DBE
)
2309 fotg210_dbg(fotg210
,
2310 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2311 urb
, usb_endpoint_num(&urb
->ep
->desc
),
2312 usb_endpoint_dir_in(&urb
->ep
->desc
)
2314 urb
->transfer_buffer_length
, qtd
, qh
);
2316 /* on STALL, error, and short reads this urb must
2317 * complete and all its qtds must be recycled.
2319 if ((token
& QTD_STS_HALT
) != 0) {
2321 /* retry transaction errors until we
2322 * reach the software xacterr limit
2324 if ((token
& QTD_STS_XACT
) &&
2325 QTD_CERR(token
) == 0 &&
2326 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
2328 fotg210_dbg(fotg210
,
2329 "detected XactErr len %zu/%zu retry %d\n",
2330 qtd
->length
- QTD_LENGTH(token
),
2334 /* reset the token in the qtd and the
2335 * qh overlay (which still contains
2336 * the qtd) so that we pick up from
2339 token
&= ~QTD_STS_HALT
;
2340 token
|= QTD_STS_ACTIVE
|
2341 (FOTG210_TUNE_CERR
<< 10);
2342 qtd
->hw_token
= cpu_to_hc32(fotg210
,
2345 hw
->hw_token
= cpu_to_hc32(fotg210
,
2351 /* magic dummy for some short reads; qh won't advance.
2352 * that silicon quirk can kick in with this dummy too.
2354 * other short reads won't stop the queue, including
2355 * control transfers (status stage handles that) or
2356 * most other single-qtd reads ... the queue stops if
2357 * URB_SHORT_NOT_OK was set so the driver submitting
2358 * the urbs could clean it up.
2360 } else if (IS_SHORT_READ(token
) &&
2361 !(qtd
->hw_alt_next
&
2362 FOTG210_LIST_END(fotg210
))) {
2366 /* stop scanning when we reach qtds the hc is using */
2367 } else if (likely(!stopped
2368 && fotg210
->rh_state
>= FOTG210_RH_RUNNING
)) {
2371 /* scan the whole queue for unlinks whenever it stops */
2375 /* cancel everything if we halt, suspend, etc */
2376 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
2377 last_status
= -ESHUTDOWN
;
2379 /* this qtd is active; skip it unless a previous qtd
2380 * for its urb faulted, or its urb was canceled.
2382 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
2385 /* qh unlinked; token in overlay may be most current */
2386 if (state
== QH_STATE_IDLE
&&
2387 cpu_to_hc32(fotg210
, qtd
->qtd_dma
)
2388 == hw
->hw_current
) {
2389 token
= hc32_to_cpu(fotg210
, hw
->hw_token
);
2391 /* An unlink may leave an incomplete
2392 * async transaction in the TT buffer.
2393 * We have to clear it.
2395 fotg210_clear_tt_buffer(fotg210
, qh
, urb
,
2400 /* unless we already know the urb's status, collect qtd status
2401 * and update count of bytes transferred. in common short read
2402 * cases with only one data qtd (including control transfers),
2403 * queue processing won't halt. but with two or more qtds (for
2404 * example, with a 32 KB transfer), when the first qtd gets a
2405 * short read the second must be removed by hand.
2407 if (last_status
== -EINPROGRESS
) {
2408 last_status
= qtd_copy_status(fotg210
, urb
,
2409 qtd
->length
, token
);
2410 if (last_status
== -EREMOTEIO
&&
2412 FOTG210_LIST_END(fotg210
)))
2413 last_status
= -EINPROGRESS
;
2415 /* As part of low/full-speed endpoint-halt processing
2416 * we must clear the TT buffer (11.17.5).
2418 if (unlikely(last_status
!= -EINPROGRESS
&&
2419 last_status
!= -EREMOTEIO
)) {
2420 /* The TT's in some hubs malfunction when they
2421 * receive this request following a STALL (they
2422 * stop sending isochronous packets). Since a
2423 * STALL can't leave the TT buffer in a busy
2424 * state (if you believe Figures 11-48 - 11-51
2425 * in the USB 2.0 spec), we won't clear the TT
2426 * buffer in this case. Strictly speaking this
2427 * is a violation of the spec.
2429 if (last_status
!= -EPIPE
)
2430 fotg210_clear_tt_buffer(fotg210
, qh
,
2435 /* if we're removing something not at the queue head,
2436 * patch the hardware queue pointer.
2438 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
2439 last
= list_entry(qtd
->qtd_list
.prev
,
2440 struct fotg210_qtd
, qtd_list
);
2441 last
->hw_next
= qtd
->hw_next
;
2444 /* remove qtd; it's recycled after possible urb completion */
2445 list_del(&qtd
->qtd_list
);
2448 /* reinit the xacterr counter for the next qtd */
2452 /* last urb's completion might still need calling */
2453 if (likely(last
!= NULL
)) {
2454 fotg210_urb_done(fotg210
, last
->urb
, last_status
);
2456 fotg210_qtd_free(fotg210
, last
);
2459 /* Do we need to rescan for URBs dequeued during a giveback? */
2460 if (unlikely(qh
->needs_rescan
)) {
2461 /* If the QH is already unlinked, do the rescan now. */
2462 if (state
== QH_STATE_IDLE
)
2465 /* Otherwise we have to wait until the QH is fully unlinked.
2466 * Our caller will start an unlink if qh->needs_rescan is
2467 * set. But if an unlink has already started, nothing needs
2470 if (state
!= QH_STATE_LINKED
)
2471 qh
->needs_rescan
= 0;
2474 /* restore original state; caller must unlink or relink */
2475 qh
->qh_state
= state
;
2477 /* be sure the hardware's done with the qh before refreshing
2478 * it after fault cleanup, or recovering from silicon wrongly
2479 * overlaying the dummy qtd (which reduces DMA chatter).
2481 if (stopped
!= 0 || hw
->hw_qtd_next
== FOTG210_LIST_END(fotg210
)) {
2484 qh_refresh(fotg210
, qh
);
2486 case QH_STATE_LINKED
:
2487 /* We won't refresh a QH that's linked (after the HC
2488 * stopped the queue). That avoids a race:
2489 * - HC reads first part of QH;
2490 * - CPU updates that first part and the token;
2491 * - HC reads rest of that QH, including token
2492 * Result: HC gets an inconsistent image, and then
2493 * DMAs to/from the wrong memory (corrupting it).
2495 * That should be rare for interrupt transfers,
2496 * except maybe high bandwidth ...
2499 /* Tell the caller to start an unlink */
2500 qh
->needs_rescan
= 1;
2502 /* otherwise, unlink already started */
2509 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2510 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2511 /* ... and packet size, for any kind of endpoint descriptor */
2512 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2514 /* reverse of qh_urb_transaction: free a list of TDs.
2515 * used for cleanup after errors, before HC sees an URB's TDs.
2517 static void qtd_list_free(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2518 struct list_head
*head
)
2520 struct fotg210_qtd
*qtd
, *temp
;
2522 list_for_each_entry_safe(qtd
, temp
, head
, qtd_list
) {
2523 list_del(&qtd
->qtd_list
);
2524 fotg210_qtd_free(fotg210
, qtd
);
2528 /* create a list of filled qtds for this URB; won't link into qh.
2530 static struct list_head
*qh_urb_transaction(struct fotg210_hcd
*fotg210
,
2531 struct urb
*urb
, struct list_head
*head
, gfp_t flags
)
2533 struct fotg210_qtd
*qtd
, *qtd_prev
;
2535 int len
, this_sg_len
, maxpacket
;
2539 struct scatterlist
*sg
;
2542 * URBs map to sequences of QTDs: one logical transaction
2544 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2547 list_add_tail(&qtd
->qtd_list
, head
);
2550 token
= QTD_STS_ACTIVE
;
2551 token
|= (FOTG210_TUNE_CERR
<< 10);
2552 /* for split transactions, SplitXState initialized to zero */
2554 len
= urb
->transfer_buffer_length
;
2555 is_input
= usb_pipein(urb
->pipe
);
2556 if (usb_pipecontrol(urb
->pipe
)) {
2558 qtd_fill(fotg210
, qtd
, urb
->setup_dma
,
2559 sizeof(struct usb_ctrlrequest
),
2560 token
| (2 /* "setup" */ << 8), 8);
2562 /* ... and always at least one more pid */
2563 token
^= QTD_TOGGLE
;
2565 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2569 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2570 list_add_tail(&qtd
->qtd_list
, head
);
2572 /* for zero length DATA stages, STATUS is always IN */
2574 token
|= (1 /* "in" */ << 8);
2578 * data transfer stage: buffer setup
2580 i
= urb
->num_mapped_sgs
;
2581 if (len
> 0 && i
> 0) {
2583 buf
= sg_dma_address(sg
);
2585 /* urb->transfer_buffer_length may be smaller than the
2586 * size of the scatterlist (or vice versa)
2588 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2591 buf
= urb
->transfer_dma
;
2596 token
|= (1 /* "in" */ << 8);
2597 /* else it's already initted to "out" pid (0 << 8) */
2599 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
2602 * buffer gets wrapped in one or more qtds;
2603 * last one may be "short" (including zero len)
2604 * and may serve as a control status ack
2609 this_qtd_len
= qtd_fill(fotg210
, qtd
, buf
, this_sg_len
, token
,
2611 this_sg_len
-= this_qtd_len
;
2612 len
-= this_qtd_len
;
2613 buf
+= this_qtd_len
;
2616 * short reads advance to a "magic" dummy instead of the next
2617 * qtd ... that forces the queue to stop, for manual cleanup.
2618 * (this will usually be overridden later.)
2621 qtd
->hw_alt_next
= fotg210
->async
->hw
->hw_alt_next
;
2623 /* qh makes control packets use qtd toggle; maybe switch it */
2624 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
2625 token
^= QTD_TOGGLE
;
2627 if (likely(this_sg_len
<= 0)) {
2628 if (--i
<= 0 || len
<= 0)
2631 buf
= sg_dma_address(sg
);
2632 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2636 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2640 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2641 list_add_tail(&qtd
->qtd_list
, head
);
2645 * unless the caller requires manual cleanup after short reads,
2646 * have the alt_next mechanism keep the queue running after the
2647 * last data qtd (the only one, for control and most other cases).
2649 if (likely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0 ||
2650 usb_pipecontrol(urb
->pipe
)))
2651 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2654 * control requests may need a terminating data "status" ack;
2655 * other OUT ones may need a terminating short packet
2658 if (likely(urb
->transfer_buffer_length
!= 0)) {
2661 if (usb_pipecontrol(urb
->pipe
)) {
2663 token
^= 0x0100; /* "in" <--> "out" */
2664 token
|= QTD_TOGGLE
; /* force DATA1 */
2665 } else if (usb_pipeout(urb
->pipe
)
2666 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
2667 && !(urb
->transfer_buffer_length
% maxpacket
)) {
2672 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2676 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2677 list_add_tail(&qtd
->qtd_list
, head
);
2679 /* never any data in such packets */
2680 qtd_fill(fotg210
, qtd
, 0, 0, token
, 0);
2684 /* by default, enable interrupt on urb completion */
2685 if (likely(!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
2686 qtd
->hw_token
|= cpu_to_hc32(fotg210
, QTD_IOC
);
2690 qtd_list_free(fotg210
, urb
, head
);
2694 /* Would be best to create all qh's from config descriptors,
2695 * when each interface/altsetting is established. Unlink
2696 * any previous qh and cancel its urbs first; endpoints are
2697 * implicitly reset then (data toggle too).
2698 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2702 /* Each QH holds a qtd list; a QH is used for everything except iso.
2704 * For interrupt urbs, the scheduler must set the microframe scheduling
2705 * mask(s) each time the QH gets scheduled. For highspeed, that's
2706 * just one microframe in the s-mask. For split interrupt transactions
2707 * there are additional complications: c-mask, maybe FSTNs.
2709 static struct fotg210_qh
*qh_make(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2712 struct fotg210_qh
*qh
= fotg210_qh_alloc(fotg210
, flags
);
2713 u32 info1
= 0, info2
= 0;
2716 struct usb_tt
*tt
= urb
->dev
->tt
;
2717 struct fotg210_qh_hw
*hw
;
2723 * init endpoint/device data for this QH
2725 info1
|= usb_pipeendpoint(urb
->pipe
) << 8;
2726 info1
|= usb_pipedevice(urb
->pipe
) << 0;
2728 is_input
= usb_pipein(urb
->pipe
);
2729 type
= usb_pipetype(urb
->pipe
);
2730 maxp
= usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
);
2732 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2733 * acts like up to 3KB, but is built from smaller packets.
2735 if (max_packet(maxp
) > 1024) {
2736 fotg210_dbg(fotg210
, "bogus qh maxpacket %d\n",
2741 /* Compute interrupt scheduling parameters just once, and save.
2742 * - allowing for high bandwidth, how many nsec/uframe are used?
2743 * - split transactions need a second CSPLIT uframe; same question
2744 * - splits also need a schedule gap (for full/low speed I/O)
2745 * - qh has a polling interval
2747 * For control/bulk requests, the HC or TT handles these.
2749 if (type
== PIPE_INTERRUPT
) {
2750 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
2752 hb_mult(maxp
) * max_packet(maxp
)));
2753 qh
->start
= NO_FRAME
;
2755 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
2759 qh
->period
= urb
->interval
>> 3;
2760 if (qh
->period
== 0 && urb
->interval
!= 1) {
2761 /* NOTE interval 2 or 4 uframes could work.
2762 * But interval 1 scheduling is simpler, and
2763 * includes high bandwidth.
2766 } else if (qh
->period
> fotg210
->periodic_size
) {
2767 qh
->period
= fotg210
->periodic_size
;
2768 urb
->interval
= qh
->period
<< 3;
2773 /* gap is f(FS/LS transfer times) */
2774 qh
->gap_uf
= 1 + usb_calc_bus_time(urb
->dev
->speed
,
2775 is_input
, 0, maxp
) / (125 * 1000);
2777 /* FIXME this just approximates SPLIT/CSPLIT times */
2778 if (is_input
) { /* SPLIT, gap, CSPLIT+DATA */
2779 qh
->c_usecs
= qh
->usecs
+ HS_USECS(0);
2780 qh
->usecs
= HS_USECS(1);
2781 } else { /* SPLIT+DATA, gap, CSPLIT */
2782 qh
->usecs
+= HS_USECS(1);
2783 qh
->c_usecs
= HS_USECS(0);
2786 think_time
= tt
? tt
->think_time
: 0;
2787 qh
->tt_usecs
= NS_TO_US(think_time
+
2788 usb_calc_bus_time(urb
->dev
->speed
,
2789 is_input
, 0, max_packet(maxp
)));
2790 qh
->period
= urb
->interval
;
2791 if (qh
->period
> fotg210
->periodic_size
) {
2792 qh
->period
= fotg210
->periodic_size
;
2793 urb
->interval
= qh
->period
;
2798 /* support for tt scheduling, and access to toggles */
2802 switch (urb
->dev
->speed
) {
2804 info1
|= QH_LOW_SPEED
;
2807 case USB_SPEED_FULL
:
2808 /* EPS 0 means "full" */
2809 if (type
!= PIPE_INTERRUPT
)
2810 info1
|= (FOTG210_TUNE_RL_TT
<< 28);
2811 if (type
== PIPE_CONTROL
) {
2812 info1
|= QH_CONTROL_EP
; /* for TT */
2813 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2815 info1
|= maxp
<< 16;
2817 info2
|= (FOTG210_TUNE_MULT_TT
<< 30);
2819 /* Some Freescale processors have an erratum in which the
2820 * port number in the queue head was 0..N-1 instead of 1..N.
2822 if (fotg210_has_fsl_portno_bug(fotg210
))
2823 info2
|= (urb
->dev
->ttport
-1) << 23;
2825 info2
|= urb
->dev
->ttport
<< 23;
2827 /* set the address of the TT; for TDI's integrated
2828 * root hub tt, leave it zeroed.
2830 if (tt
&& tt
->hub
!= fotg210_to_hcd(fotg210
)->self
.root_hub
)
2831 info2
|= tt
->hub
->devnum
<< 16;
2833 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2837 case USB_SPEED_HIGH
: /* no TT involved */
2838 info1
|= QH_HIGH_SPEED
;
2839 if (type
== PIPE_CONTROL
) {
2840 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2841 info1
|= 64 << 16; /* usb2 fixed maxpacket */
2842 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2843 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2844 } else if (type
== PIPE_BULK
) {
2845 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2846 /* The USB spec says that high speed bulk endpoints
2847 * always use 512 byte maxpacket. But some device
2848 * vendors decided to ignore that, and MSFT is happy
2849 * to help them do so. So now people expect to use
2850 * such nonconformant devices with Linux too; sigh.
2852 info1
|= max_packet(maxp
) << 16;
2853 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2854 } else { /* PIPE_INTERRUPT */
2855 info1
|= max_packet(maxp
) << 16;
2856 info2
|= hb_mult(maxp
) << 30;
2860 fotg210_dbg(fotg210
, "bogus dev %p speed %d\n", urb
->dev
,
2863 qh_destroy(fotg210
, qh
);
2867 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2869 /* init as live, toggle clear, advance to dummy */
2870 qh
->qh_state
= QH_STATE_IDLE
;
2872 hw
->hw_info1
= cpu_to_hc32(fotg210
, info1
);
2873 hw
->hw_info2
= cpu_to_hc32(fotg210
, info2
);
2874 qh
->is_out
= !is_input
;
2875 usb_settoggle(urb
->dev
, usb_pipeendpoint(urb
->pipe
), !is_input
, 1);
2876 qh_refresh(fotg210
, qh
);
2880 static void enable_async(struct fotg210_hcd
*fotg210
)
2882 if (fotg210
->async_count
++)
2885 /* Stop waiting to turn off the async schedule */
2886 fotg210
->enabled_hrtimer_events
&= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC
);
2888 /* Don't start the schedule until ASS is 0 */
2889 fotg210_poll_ASS(fotg210
);
2890 turn_on_io_watchdog(fotg210
);
2893 static void disable_async(struct fotg210_hcd
*fotg210
)
2895 if (--fotg210
->async_count
)
2898 /* The async schedule and async_unlink list are supposed to be empty */
2899 WARN_ON(fotg210
->async
->qh_next
.qh
|| fotg210
->async_unlink
);
2901 /* Don't turn off the schedule until ASS is 1 */
2902 fotg210_poll_ASS(fotg210
);
2905 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2907 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2909 __hc32 dma
= QH_NEXT(fotg210
, qh
->qh_dma
);
2910 struct fotg210_qh
*head
;
2912 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2913 if (unlikely(qh
->clearing_tt
))
2916 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2918 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2919 qh_refresh(fotg210
, qh
);
2921 /* splice right after start */
2922 head
= fotg210
->async
;
2923 qh
->qh_next
= head
->qh_next
;
2924 qh
->hw
->hw_next
= head
->hw
->hw_next
;
2927 head
->qh_next
.qh
= qh
;
2928 head
->hw
->hw_next
= dma
;
2931 qh
->qh_state
= QH_STATE_LINKED
;
2932 /* qtd completions reported later by interrupt */
2934 enable_async(fotg210
);
2937 /* For control/bulk/interrupt, return QH with these TDs appended.
2938 * Allocates and initializes the QH if necessary.
2939 * Returns null if it can't allocate a QH it needs to.
2940 * If the QH has TDs (urbs) already, that's great.
2942 static struct fotg210_qh
*qh_append_tds(struct fotg210_hcd
*fotg210
,
2943 struct urb
*urb
, struct list_head
*qtd_list
,
2944 int epnum
, void **ptr
)
2946 struct fotg210_qh
*qh
= NULL
;
2947 __hc32 qh_addr_mask
= cpu_to_hc32(fotg210
, 0x7f);
2949 qh
= (struct fotg210_qh
*) *ptr
;
2950 if (unlikely(qh
== NULL
)) {
2951 /* can't sleep here, we have fotg210->lock... */
2952 qh
= qh_make(fotg210
, urb
, GFP_ATOMIC
);
2955 if (likely(qh
!= NULL
)) {
2956 struct fotg210_qtd
*qtd
;
2958 if (unlikely(list_empty(qtd_list
)))
2961 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
,
2964 /* control qh may need patching ... */
2965 if (unlikely(epnum
== 0)) {
2966 /* usb_reset_device() briefly reverts to address 0 */
2967 if (usb_pipedevice(urb
->pipe
) == 0)
2968 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
2971 /* just one way to queue requests: swap with the dummy qtd.
2972 * only hc or qh_refresh() ever modify the overlay.
2974 if (likely(qtd
!= NULL
)) {
2975 struct fotg210_qtd
*dummy
;
2979 /* to avoid racing the HC, use the dummy td instead of
2980 * the first td of our list (becomes new dummy). both
2981 * tds stay deactivated until we're done, when the
2982 * HC is allowed to fetch the old dummy (4.10.2).
2984 token
= qtd
->hw_token
;
2985 qtd
->hw_token
= HALT_BIT(fotg210
);
2989 dma
= dummy
->qtd_dma
;
2991 dummy
->qtd_dma
= dma
;
2993 list_del(&qtd
->qtd_list
);
2994 list_add(&dummy
->qtd_list
, qtd_list
);
2995 list_splice_tail(qtd_list
, &qh
->qtd_list
);
2997 fotg210_qtd_init(fotg210
, qtd
, qtd
->qtd_dma
);
3000 /* hc must see the new dummy at list end */
3002 qtd
= list_entry(qh
->qtd_list
.prev
,
3003 struct fotg210_qtd
, qtd_list
);
3004 qtd
->hw_next
= QTD_NEXT(fotg210
, dma
);
3006 /* let the hc process these next qtds */
3008 dummy
->hw_token
= token
;
3016 static int submit_async(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3017 struct list_head
*qtd_list
, gfp_t mem_flags
)
3020 unsigned long flags
;
3021 struct fotg210_qh
*qh
= NULL
;
3024 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3026 #ifdef FOTG210_URB_TRACE
3028 struct fotg210_qtd
*qtd
;
3030 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
, qtd_list
);
3031 fotg210_dbg(fotg210
,
3032 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3033 __func__
, urb
->dev
->devpath
, urb
,
3034 epnum
& 0x0f, (epnum
& USB_DIR_IN
)
3036 urb
->transfer_buffer_length
,
3037 qtd
, urb
->ep
->hcpriv
);
3041 spin_lock_irqsave(&fotg210
->lock
, flags
);
3042 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3046 rc
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3050 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3051 if (unlikely(qh
== NULL
)) {
3052 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3057 /* Control/bulk operations through TTs don't need scheduling,
3058 * the HC and TT handle it when the TT has a buffer ready.
3060 if (likely(qh
->qh_state
== QH_STATE_IDLE
))
3061 qh_link_async(fotg210
, qh
);
3063 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3064 if (unlikely(qh
== NULL
))
3065 qtd_list_free(fotg210
, urb
, qtd_list
);
3069 static void single_unlink_async(struct fotg210_hcd
*fotg210
,
3070 struct fotg210_qh
*qh
)
3072 struct fotg210_qh
*prev
;
3074 /* Add to the end of the list of QHs waiting for the next IAAD */
3075 qh
->qh_state
= QH_STATE_UNLINK
;
3076 if (fotg210
->async_unlink
)
3077 fotg210
->async_unlink_last
->unlink_next
= qh
;
3079 fotg210
->async_unlink
= qh
;
3080 fotg210
->async_unlink_last
= qh
;
3082 /* Unlink it from the schedule */
3083 prev
= fotg210
->async
;
3084 while (prev
->qh_next
.qh
!= qh
)
3085 prev
= prev
->qh_next
.qh
;
3087 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
3088 prev
->qh_next
= qh
->qh_next
;
3089 if (fotg210
->qh_scan_next
== qh
)
3090 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3093 static void start_iaa_cycle(struct fotg210_hcd
*fotg210
, bool nested
)
3096 * Do nothing if an IAA cycle is already running or
3097 * if one will be started shortly.
3099 if (fotg210
->async_iaa
|| fotg210
->async_unlinking
)
3102 /* Do all the waiting QHs at once */
3103 fotg210
->async_iaa
= fotg210
->async_unlink
;
3104 fotg210
->async_unlink
= NULL
;
3106 /* If the controller isn't running, we don't have to wait for it */
3107 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
)) {
3108 if (!nested
) /* Avoid recursion */
3109 end_unlink_async(fotg210
);
3111 /* Otherwise start a new IAA cycle */
3112 } else if (likely(fotg210
->rh_state
== FOTG210_RH_RUNNING
)) {
3113 /* Make sure the unlinks are all visible to the hardware */
3116 fotg210_writel(fotg210
, fotg210
->command
| CMD_IAAD
,
3117 &fotg210
->regs
->command
);
3118 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
3119 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IAA_WATCHDOG
,
3124 /* the async qh for the qtds being unlinked are now gone from the HC */
3126 static void end_unlink_async(struct fotg210_hcd
*fotg210
)
3128 struct fotg210_qh
*qh
;
3130 /* Process the idle QHs */
3132 fotg210
->async_unlinking
= true;
3133 while (fotg210
->async_iaa
) {
3134 qh
= fotg210
->async_iaa
;
3135 fotg210
->async_iaa
= qh
->unlink_next
;
3136 qh
->unlink_next
= NULL
;
3138 qh
->qh_state
= QH_STATE_IDLE
;
3139 qh
->qh_next
.qh
= NULL
;
3141 qh_completions(fotg210
, qh
);
3142 if (!list_empty(&qh
->qtd_list
) &&
3143 fotg210
->rh_state
== FOTG210_RH_RUNNING
)
3144 qh_link_async(fotg210
, qh
);
3145 disable_async(fotg210
);
3147 fotg210
->async_unlinking
= false;
3149 /* Start a new IAA cycle if any QHs are waiting for it */
3150 if (fotg210
->async_unlink
) {
3151 start_iaa_cycle(fotg210
, true);
3152 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
))
3157 static void unlink_empty_async(struct fotg210_hcd
*fotg210
)
3159 struct fotg210_qh
*qh
, *next
;
3160 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
3161 bool check_unlinks_later
= false;
3163 /* Unlink all the async QHs that have been empty for a timer cycle */
3164 next
= fotg210
->async
->qh_next
.qh
;
3167 next
= qh
->qh_next
.qh
;
3169 if (list_empty(&qh
->qtd_list
) &&
3170 qh
->qh_state
== QH_STATE_LINKED
) {
3171 if (!stopped
&& qh
->unlink_cycle
==
3172 fotg210
->async_unlink_cycle
)
3173 check_unlinks_later
= true;
3175 single_unlink_async(fotg210
, qh
);
3179 /* Start a new IAA cycle if any QHs are waiting for it */
3180 if (fotg210
->async_unlink
)
3181 start_iaa_cycle(fotg210
, false);
3183 /* QHs that haven't been empty for long enough will be handled later */
3184 if (check_unlinks_later
) {
3185 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_ASYNC_UNLINKS
,
3187 ++fotg210
->async_unlink_cycle
;
3191 /* makes sure the async qh will become idle */
3192 /* caller must own fotg210->lock */
3194 static void start_unlink_async(struct fotg210_hcd
*fotg210
,
3195 struct fotg210_qh
*qh
)
3198 * If the QH isn't linked then there's nothing we can do
3199 * unless we were called during a giveback, in which case
3200 * qh_completions() has to deal with it.
3202 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3203 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3204 qh
->needs_rescan
= 1;
3208 single_unlink_async(fotg210
, qh
);
3209 start_iaa_cycle(fotg210
, false);
3212 static void scan_async(struct fotg210_hcd
*fotg210
)
3214 struct fotg210_qh
*qh
;
3215 bool check_unlinks_later
= false;
3217 fotg210
->qh_scan_next
= fotg210
->async
->qh_next
.qh
;
3218 while (fotg210
->qh_scan_next
) {
3219 qh
= fotg210
->qh_scan_next
;
3220 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3222 /* clean any finished work for this qh */
3223 if (!list_empty(&qh
->qtd_list
)) {
3227 * Unlinks could happen here; completion reporting
3228 * drops the lock. That's why fotg210->qh_scan_next
3229 * always holds the next qh to scan; if the next qh
3230 * gets unlinked then fotg210->qh_scan_next is adjusted
3231 * in single_unlink_async().
3233 temp
= qh_completions(fotg210
, qh
);
3234 if (qh
->needs_rescan
) {
3235 start_unlink_async(fotg210
, qh
);
3236 } else if (list_empty(&qh
->qtd_list
)
3237 && qh
->qh_state
== QH_STATE_LINKED
) {
3238 qh
->unlink_cycle
= fotg210
->async_unlink_cycle
;
3239 check_unlinks_later
= true;
3240 } else if (temp
!= 0)
3246 * Unlink empty entries, reducing DMA usage as well
3247 * as HCD schedule-scanning costs. Delay for any qh
3248 * we just scanned, there's a not-unusual case that it
3249 * doesn't stay idle for long.
3251 if (check_unlinks_later
&& fotg210
->rh_state
== FOTG210_RH_RUNNING
&&
3252 !(fotg210
->enabled_hrtimer_events
&
3253 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS
))) {
3254 fotg210_enable_event(fotg210
,
3255 FOTG210_HRTIMER_ASYNC_UNLINKS
, true);
3256 ++fotg210
->async_unlink_cycle
;
3259 /* EHCI scheduled transaction support: interrupt, iso, split iso
3260 * These are called "periodic" transactions in the EHCI spec.
3262 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3263 * with the "asynchronous" transaction support (control/bulk transfers).
3264 * The only real difference is in how interrupt transfers are scheduled.
3266 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3267 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3268 * pre-calculated schedule data to make appending to the queue be quick.
3270 static int fotg210_get_frame(struct usb_hcd
*hcd
);
3272 /* periodic_next_shadow - return "next" pointer on shadow list
3273 * @periodic: host pointer to qh/itd
3274 * @tag: hardware tag for type of this record
3276 static union fotg210_shadow
*periodic_next_shadow(struct fotg210_hcd
*fotg210
,
3277 union fotg210_shadow
*periodic
, __hc32 tag
)
3279 switch (hc32_to_cpu(fotg210
, tag
)) {
3281 return &periodic
->qh
->qh_next
;
3283 return &periodic
->fstn
->fstn_next
;
3285 return &periodic
->itd
->itd_next
;
3289 static __hc32
*shadow_next_periodic(struct fotg210_hcd
*fotg210
,
3290 union fotg210_shadow
*periodic
, __hc32 tag
)
3292 switch (hc32_to_cpu(fotg210
, tag
)) {
3293 /* our fotg210_shadow.qh is actually software part */
3295 return &periodic
->qh
->hw
->hw_next
;
3296 /* others are hw parts */
3298 return periodic
->hw_next
;
3302 /* caller must hold fotg210->lock */
3303 static void periodic_unlink(struct fotg210_hcd
*fotg210
, unsigned frame
,
3306 union fotg210_shadow
*prev_p
= &fotg210
->pshadow
[frame
];
3307 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3308 union fotg210_shadow here
= *prev_p
;
3310 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3311 while (here
.ptr
&& here
.ptr
!= ptr
) {
3312 prev_p
= periodic_next_shadow(fotg210
, prev_p
,
3313 Q_NEXT_TYPE(fotg210
, *hw_p
));
3314 hw_p
= shadow_next_periodic(fotg210
, &here
,
3315 Q_NEXT_TYPE(fotg210
, *hw_p
));
3318 /* an interrupt entry (at list end) could have been shared */
3322 /* update shadow and hardware lists ... the old "next" pointers
3323 * from ptr may still be in use, the caller updates them.
3325 *prev_p
= *periodic_next_shadow(fotg210
, &here
,
3326 Q_NEXT_TYPE(fotg210
, *hw_p
));
3328 *hw_p
= *shadow_next_periodic(fotg210
, &here
,
3329 Q_NEXT_TYPE(fotg210
, *hw_p
));
3332 /* how many of the uframe's 125 usecs are allocated? */
3333 static unsigned short periodic_usecs(struct fotg210_hcd
*fotg210
,
3334 unsigned frame
, unsigned uframe
)
3336 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3337 union fotg210_shadow
*q
= &fotg210
->pshadow
[frame
];
3339 struct fotg210_qh_hw
*hw
;
3342 switch (hc32_to_cpu(fotg210
, Q_NEXT_TYPE(fotg210
, *hw_p
))) {
3345 /* is it in the S-mask? */
3346 if (hw
->hw_info2
& cpu_to_hc32(fotg210
, 1 << uframe
))
3347 usecs
+= q
->qh
->usecs
;
3348 /* ... or C-mask? */
3349 if (hw
->hw_info2
& cpu_to_hc32(fotg210
,
3351 usecs
+= q
->qh
->c_usecs
;
3352 hw_p
= &hw
->hw_next
;
3353 q
= &q
->qh
->qh_next
;
3355 /* case Q_TYPE_FSTN: */
3357 /* for "save place" FSTNs, count the relevant INTR
3358 * bandwidth from the previous frame
3360 if (q
->fstn
->hw_prev
!= FOTG210_LIST_END(fotg210
))
3361 fotg210_dbg(fotg210
, "ignoring FSTN cost ...\n");
3363 hw_p
= &q
->fstn
->hw_next
;
3364 q
= &q
->fstn
->fstn_next
;
3367 if (q
->itd
->hw_transaction
[uframe
])
3368 usecs
+= q
->itd
->stream
->usecs
;
3369 hw_p
= &q
->itd
->hw_next
;
3370 q
= &q
->itd
->itd_next
;
3374 if (usecs
> fotg210
->uframe_periodic_max
)
3375 fotg210_err(fotg210
, "uframe %d sched overrun: %d usecs\n",
3376 frame
* 8 + uframe
, usecs
);
3380 static int same_tt(struct usb_device
*dev1
, struct usb_device
*dev2
)
3382 if (!dev1
->tt
|| !dev2
->tt
)
3384 if (dev1
->tt
!= dev2
->tt
)
3386 if (dev1
->tt
->multi
)
3387 return dev1
->ttport
== dev2
->ttport
;
3392 /* return true iff the device's transaction translator is available
3393 * for a periodic transfer starting at the specified frame, using
3394 * all the uframes in the mask.
3396 static int tt_no_collision(struct fotg210_hcd
*fotg210
, unsigned period
,
3397 struct usb_device
*dev
, unsigned frame
, u32 uf_mask
)
3399 if (period
== 0) /* error */
3402 /* note bandwidth wastage: split never follows csplit
3403 * (different dev or endpoint) until the next uframe.
3404 * calling convention doesn't make that distinction.
3406 for (; frame
< fotg210
->periodic_size
; frame
+= period
) {
3407 union fotg210_shadow here
;
3409 struct fotg210_qh_hw
*hw
;
3411 here
= fotg210
->pshadow
[frame
];
3412 type
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[frame
]);
3414 switch (hc32_to_cpu(fotg210
, type
)) {
3416 type
= Q_NEXT_TYPE(fotg210
, here
.itd
->hw_next
);
3417 here
= here
.itd
->itd_next
;
3421 if (same_tt(dev
, here
.qh
->dev
)) {
3424 mask
= hc32_to_cpu(fotg210
,
3426 /* "knows" no gap is needed */
3431 type
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
3432 here
= here
.qh
->qh_next
;
3434 /* case Q_TYPE_FSTN: */
3436 fotg210_dbg(fotg210
,
3437 "periodic frame %d bogus type %d\n",
3441 /* collision or error */
3450 static void enable_periodic(struct fotg210_hcd
*fotg210
)
3452 if (fotg210
->periodic_count
++)
3455 /* Stop waiting to turn off the periodic schedule */
3456 fotg210
->enabled_hrtimer_events
&=
3457 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC
);
3459 /* Don't start the schedule until PSS is 0 */
3460 fotg210_poll_PSS(fotg210
);
3461 turn_on_io_watchdog(fotg210
);
3464 static void disable_periodic(struct fotg210_hcd
*fotg210
)
3466 if (--fotg210
->periodic_count
)
3469 /* Don't turn off the schedule until PSS is 1 */
3470 fotg210_poll_PSS(fotg210
);
3473 /* periodic schedule slots have iso tds (normal or split) first, then a
3474 * sparse tree for active interrupt transfers.
3476 * this just links in a qh; caller guarantees uframe masks are set right.
3477 * no FSTN support (yet; fotg210 0.96+)
3479 static void qh_link_periodic(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3482 unsigned period
= qh
->period
;
3484 dev_dbg(&qh
->dev
->dev
,
3485 "link qh%d-%04x/%p start %d [%d/%d us]\n", period
,
3486 hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3487 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3490 /* high bandwidth, or otherwise every microframe */
3494 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
) {
3495 union fotg210_shadow
*prev
= &fotg210
->pshadow
[i
];
3496 __hc32
*hw_p
= &fotg210
->periodic
[i
];
3497 union fotg210_shadow here
= *prev
;
3500 /* skip the iso nodes at list head */
3502 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
3503 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
3505 prev
= periodic_next_shadow(fotg210
, prev
, type
);
3506 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
3510 /* sorting each branch by period (slow-->fast)
3511 * enables sharing interior tree nodes
3513 while (here
.ptr
&& qh
!= here
.qh
) {
3514 if (qh
->period
> here
.qh
->period
)
3516 prev
= &here
.qh
->qh_next
;
3517 hw_p
= &here
.qh
->hw
->hw_next
;
3520 /* link in this qh, unless some earlier pass did that */
3521 if (qh
!= here
.qh
) {
3524 qh
->hw
->hw_next
= *hw_p
;
3527 *hw_p
= QH_NEXT(fotg210
, qh
->qh_dma
);
3530 qh
->qh_state
= QH_STATE_LINKED
;
3533 /* update per-qh bandwidth for usbfs */
3534 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
+= qh
->period
3535 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3538 list_add(&qh
->intr_node
, &fotg210
->intr_qh_list
);
3540 /* maybe enable periodic schedule processing */
3541 ++fotg210
->intr_count
;
3542 enable_periodic(fotg210
);
3545 static void qh_unlink_periodic(struct fotg210_hcd
*fotg210
,
3546 struct fotg210_qh
*qh
)
3552 * If qh is for a low/full-speed device, simply unlinking it
3553 * could interfere with an ongoing split transaction. To unlink
3554 * it safely would require setting the QH_INACTIVATE bit and
3555 * waiting at least one frame, as described in EHCI 4.12.2.5.
3557 * We won't bother with any of this. Instead, we assume that the
3558 * only reason for unlinking an interrupt QH while the current URB
3559 * is still active is to dequeue all the URBs (flush the whole
3562 * If rebalancing the periodic schedule is ever implemented, this
3563 * approach will no longer be valid.
3566 /* high bandwidth, or otherwise part of every microframe */
3567 period
= qh
->period
;
3571 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
)
3572 periodic_unlink(fotg210
, i
, qh
);
3574 /* update per-qh bandwidth for usbfs */
3575 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
-= qh
->period
3576 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3579 dev_dbg(&qh
->dev
->dev
,
3580 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3581 qh
->period
, hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3582 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3585 /* qh->qh_next still "live" to HC */
3586 qh
->qh_state
= QH_STATE_UNLINK
;
3587 qh
->qh_next
.ptr
= NULL
;
3589 if (fotg210
->qh_scan_next
== qh
)
3590 fotg210
->qh_scan_next
= list_entry(qh
->intr_node
.next
,
3591 struct fotg210_qh
, intr_node
);
3592 list_del(&qh
->intr_node
);
3595 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
3596 struct fotg210_qh
*qh
)
3598 /* If the QH isn't linked then there's nothing we can do
3599 * unless we were called during a giveback, in which case
3600 * qh_completions() has to deal with it.
3602 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3603 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3604 qh
->needs_rescan
= 1;
3608 qh_unlink_periodic(fotg210
, qh
);
3610 /* Make sure the unlinks are visible before starting the timer */
3614 * The EHCI spec doesn't say how long it takes the controller to
3615 * stop accessing an unlinked interrupt QH. The timer delay is
3616 * 9 uframes; presumably that will be long enough.
3618 qh
->unlink_cycle
= fotg210
->intr_unlink_cycle
;
3620 /* New entries go at the end of the intr_unlink list */
3621 if (fotg210
->intr_unlink
)
3622 fotg210
->intr_unlink_last
->unlink_next
= qh
;
3624 fotg210
->intr_unlink
= qh
;
3625 fotg210
->intr_unlink_last
= qh
;
3627 if (fotg210
->intr_unlinking
)
3628 ; /* Avoid recursive calls */
3629 else if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
3630 fotg210_handle_intr_unlinks(fotg210
);
3631 else if (fotg210
->intr_unlink
== qh
) {
3632 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
3634 ++fotg210
->intr_unlink_cycle
;
3638 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3640 struct fotg210_qh_hw
*hw
= qh
->hw
;
3643 qh
->qh_state
= QH_STATE_IDLE
;
3644 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3646 qh_completions(fotg210
, qh
);
3648 /* reschedule QH iff another request is queued */
3649 if (!list_empty(&qh
->qtd_list
) &&
3650 fotg210
->rh_state
== FOTG210_RH_RUNNING
) {
3651 rc
= qh_schedule(fotg210
, qh
);
3653 /* An error here likely indicates handshake failure
3654 * or no space left in the schedule. Neither fault
3655 * should happen often ...
3657 * FIXME kill the now-dysfunctional queued urbs
3660 fotg210_err(fotg210
, "can't reschedule qh %p, err %d\n",
3664 /* maybe turn off periodic schedule */
3665 --fotg210
->intr_count
;
3666 disable_periodic(fotg210
);
3669 static int check_period(struct fotg210_hcd
*fotg210
, unsigned frame
,
3670 unsigned uframe
, unsigned period
, unsigned usecs
)
3674 /* complete split running into next frame?
3675 * given FSTN support, we could sometimes check...
3680 /* convert "usecs we need" to "max already claimed" */
3681 usecs
= fotg210
->uframe_periodic_max
- usecs
;
3683 /* we "know" 2 and 4 uframe intervals were rejected; so
3684 * for period 0, check _every_ microframe in the schedule.
3686 if (unlikely(period
== 0)) {
3688 for (uframe
= 0; uframe
< 7; uframe
++) {
3689 claimed
= periodic_usecs(fotg210
, frame
,
3691 if (claimed
> usecs
)
3694 } while ((frame
+= 1) < fotg210
->periodic_size
);
3696 /* just check the specified uframe, at that period */
3699 claimed
= periodic_usecs(fotg210
, frame
, uframe
);
3700 if (claimed
> usecs
)
3702 } while ((frame
+= period
) < fotg210
->periodic_size
);
3709 static int check_intr_schedule(struct fotg210_hcd
*fotg210
, unsigned frame
,
3710 unsigned uframe
, const struct fotg210_qh
*qh
, __hc32
*c_maskp
)
3712 int retval
= -ENOSPC
;
3715 if (qh
->c_usecs
&& uframe
>= 6) /* FSTN territory? */
3718 if (!check_period(fotg210
, frame
, uframe
, qh
->period
, qh
->usecs
))
3726 /* Make sure this tt's buffer is also available for CSPLITs.
3727 * We pessimize a bit; probably the typical full speed case
3728 * doesn't need the second CSPLIT.
3730 * NOTE: both SPLIT and CSPLIT could be checked in just
3733 mask
= 0x03 << (uframe
+ qh
->gap_uf
);
3734 *c_maskp
= cpu_to_hc32(fotg210
, mask
<< 8);
3736 mask
|= 1 << uframe
;
3737 if (tt_no_collision(fotg210
, qh
->period
, qh
->dev
, frame
, mask
)) {
3738 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
+ 1,
3739 qh
->period
, qh
->c_usecs
))
3741 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
,
3742 qh
->period
, qh
->c_usecs
))
3750 /* "first fit" scheduling policy used the first time through,
3751 * or when the previous schedule slot can't be re-used.
3753 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3758 unsigned frame
; /* 0..(qh->period - 1), or NO_FRAME */
3759 struct fotg210_qh_hw
*hw
= qh
->hw
;
3761 qh_refresh(fotg210
, qh
);
3762 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3765 /* reuse the previous schedule slots, if we can */
3766 if (frame
< qh
->period
) {
3767 uframe
= ffs(hc32_to_cpup(fotg210
, &hw
->hw_info2
) & QH_SMASK
);
3768 status
= check_intr_schedule(fotg210
, frame
, --uframe
,
3776 /* else scan the schedule to find a group of slots such that all
3777 * uframes have enough periodic bandwidth available.
3780 /* "normal" case, uframing flexible except with splits */
3784 for (i
= qh
->period
; status
&& i
> 0; --i
) {
3785 frame
= ++fotg210
->random_frame
% qh
->period
;
3786 for (uframe
= 0; uframe
< 8; uframe
++) {
3787 status
= check_intr_schedule(fotg210
,
3795 /* qh->period == 0 means every uframe */
3798 status
= check_intr_schedule(fotg210
, 0, 0, qh
,
3805 /* reset S-frame and (maybe) C-frame masks */
3806 hw
->hw_info2
&= cpu_to_hc32(fotg210
, ~(QH_CMASK
| QH_SMASK
));
3807 hw
->hw_info2
|= qh
->period
3808 ? cpu_to_hc32(fotg210
, 1 << uframe
)
3809 : cpu_to_hc32(fotg210
, QH_SMASK
);
3810 hw
->hw_info2
|= c_mask
;
3812 fotg210_dbg(fotg210
, "reused qh %p schedule\n", qh
);
3814 /* stuff into the periodic schedule */
3815 qh_link_periodic(fotg210
, qh
);
3820 static int intr_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3821 struct list_head
*qtd_list
, gfp_t mem_flags
)
3824 unsigned long flags
;
3825 struct fotg210_qh
*qh
;
3827 struct list_head empty
;
3829 /* get endpoint and transfer/schedule data */
3830 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3832 spin_lock_irqsave(&fotg210
->lock
, flags
);
3834 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3835 status
= -ESHUTDOWN
;
3836 goto done_not_linked
;
3838 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3839 if (unlikely(status
))
3840 goto done_not_linked
;
3842 /* get qh and force any scheduling errors */
3843 INIT_LIST_HEAD(&empty
);
3844 qh
= qh_append_tds(fotg210
, urb
, &empty
, epnum
, &urb
->ep
->hcpriv
);
3849 if (qh
->qh_state
== QH_STATE_IDLE
) {
3850 status
= qh_schedule(fotg210
, qh
);
3855 /* then queue the urb's tds to the qh */
3856 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3859 /* ... update usbfs periodic stats */
3860 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
++;
3863 if (unlikely(status
))
3864 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3866 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3868 qtd_list_free(fotg210
, urb
, qtd_list
);
3873 static void scan_intr(struct fotg210_hcd
*fotg210
)
3875 struct fotg210_qh
*qh
;
3877 list_for_each_entry_safe(qh
, fotg210
->qh_scan_next
,
3878 &fotg210
->intr_qh_list
, intr_node
) {
3880 /* clean any finished work for this qh */
3881 if (!list_empty(&qh
->qtd_list
)) {
3885 * Unlinks could happen here; completion reporting
3886 * drops the lock. That's why fotg210->qh_scan_next
3887 * always holds the next qh to scan; if the next qh
3888 * gets unlinked then fotg210->qh_scan_next is adjusted
3889 * in qh_unlink_periodic().
3891 temp
= qh_completions(fotg210
, qh
);
3892 if (unlikely(qh
->needs_rescan
||
3893 (list_empty(&qh
->qtd_list
) &&
3894 qh
->qh_state
== QH_STATE_LINKED
)))
3895 start_unlink_intr(fotg210
, qh
);
3902 /* fotg210_iso_stream ops work with both ITD and SITD */
3904 static struct fotg210_iso_stream
*iso_stream_alloc(gfp_t mem_flags
)
3906 struct fotg210_iso_stream
*stream
;
3908 stream
= kzalloc(sizeof(*stream
), mem_flags
);
3909 if (likely(stream
!= NULL
)) {
3910 INIT_LIST_HEAD(&stream
->td_list
);
3911 INIT_LIST_HEAD(&stream
->free_list
);
3912 stream
->next_uframe
= -1;
3917 static void iso_stream_init(struct fotg210_hcd
*fotg210
,
3918 struct fotg210_iso_stream
*stream
, struct usb_device
*dev
,
3919 int pipe
, unsigned interval
)
3922 unsigned epnum
, maxp
;
3928 * this might be a "high bandwidth" highspeed endpoint,
3929 * as encoded in the ep descriptor's wMaxPacket field
3931 epnum
= usb_pipeendpoint(pipe
);
3932 is_input
= usb_pipein(pipe
) ? USB_DIR_IN
: 0;
3933 maxp
= usb_maxpacket(dev
, pipe
, !is_input
);
3939 maxp
= max_packet(maxp
);
3940 multi
= hb_mult(maxp
);
3944 stream
->buf0
= cpu_to_hc32(fotg210
, (epnum
<< 8) | dev
->devnum
);
3945 stream
->buf1
= cpu_to_hc32(fotg210
, buf1
);
3946 stream
->buf2
= cpu_to_hc32(fotg210
, multi
);
3948 /* usbfs wants to report the average usecs per frame tied up
3949 * when transfers on this endpoint are scheduled ...
3951 if (dev
->speed
== USB_SPEED_FULL
) {
3953 stream
->usecs
= NS_TO_US(usb_calc_bus_time(dev
->speed
,
3954 is_input
, 1, maxp
));
3957 stream
->highspeed
= 1;
3958 stream
->usecs
= HS_USECS_ISO(maxp
);
3960 bandwidth
= stream
->usecs
* 8;
3961 bandwidth
/= interval
;
3963 stream
->bandwidth
= bandwidth
;
3965 stream
->bEndpointAddress
= is_input
| epnum
;
3966 stream
->interval
= interval
;
3967 stream
->maxp
= maxp
;
3970 static struct fotg210_iso_stream
*iso_stream_find(struct fotg210_hcd
*fotg210
,
3974 struct fotg210_iso_stream
*stream
;
3975 struct usb_host_endpoint
*ep
;
3976 unsigned long flags
;
3978 epnum
= usb_pipeendpoint(urb
->pipe
);
3979 if (usb_pipein(urb
->pipe
))
3980 ep
= urb
->dev
->ep_in
[epnum
];
3982 ep
= urb
->dev
->ep_out
[epnum
];
3984 spin_lock_irqsave(&fotg210
->lock
, flags
);
3985 stream
= ep
->hcpriv
;
3987 if (unlikely(stream
== NULL
)) {
3988 stream
= iso_stream_alloc(GFP_ATOMIC
);
3989 if (likely(stream
!= NULL
)) {
3990 ep
->hcpriv
= stream
;
3992 iso_stream_init(fotg210
, stream
, urb
->dev
, urb
->pipe
,
3996 /* if dev->ep[epnum] is a QH, hw is set */
3997 } else if (unlikely(stream
->hw
!= NULL
)) {
3998 fotg210_dbg(fotg210
, "dev %s ep%d%s, not iso??\n",
3999 urb
->dev
->devpath
, epnum
,
4000 usb_pipein(urb
->pipe
) ? "in" : "out");
4004 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4008 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4010 static struct fotg210_iso_sched
*iso_sched_alloc(unsigned packets
,
4013 struct fotg210_iso_sched
*iso_sched
;
4014 int size
= sizeof(*iso_sched
);
4016 size
+= packets
* sizeof(struct fotg210_iso_packet
);
4017 iso_sched
= kzalloc(size
, mem_flags
);
4018 if (likely(iso_sched
!= NULL
))
4019 INIT_LIST_HEAD(&iso_sched
->td_list
);
4024 static inline void itd_sched_init(struct fotg210_hcd
*fotg210
,
4025 struct fotg210_iso_sched
*iso_sched
,
4026 struct fotg210_iso_stream
*stream
, struct urb
*urb
)
4029 dma_addr_t dma
= urb
->transfer_dma
;
4031 /* how many uframes are needed for these transfers */
4032 iso_sched
->span
= urb
->number_of_packets
* stream
->interval
;
4034 /* figure out per-uframe itd fields that we'll need later
4035 * when we fit new itds into the schedule.
4037 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
4038 struct fotg210_iso_packet
*uframe
= &iso_sched
->packet
[i
];
4043 length
= urb
->iso_frame_desc
[i
].length
;
4044 buf
= dma
+ urb
->iso_frame_desc
[i
].offset
;
4046 trans
= FOTG210_ISOC_ACTIVE
;
4047 trans
|= buf
& 0x0fff;
4048 if (unlikely(((i
+ 1) == urb
->number_of_packets
))
4049 && !(urb
->transfer_flags
& URB_NO_INTERRUPT
))
4050 trans
|= FOTG210_ITD_IOC
;
4051 trans
|= length
<< 16;
4052 uframe
->transaction
= cpu_to_hc32(fotg210
, trans
);
4054 /* might need to cross a buffer page within a uframe */
4055 uframe
->bufp
= (buf
& ~(u64
)0x0fff);
4057 if (unlikely((uframe
->bufp
!= (buf
& ~(u64
)0x0fff))))
4062 static void iso_sched_free(struct fotg210_iso_stream
*stream
,
4063 struct fotg210_iso_sched
*iso_sched
)
4067 /* caller must hold fotg210->lock!*/
4068 list_splice(&iso_sched
->td_list
, &stream
->free_list
);
4072 static int itd_urb_transaction(struct fotg210_iso_stream
*stream
,
4073 struct fotg210_hcd
*fotg210
, struct urb
*urb
, gfp_t mem_flags
)
4075 struct fotg210_itd
*itd
;
4079 struct fotg210_iso_sched
*sched
;
4080 unsigned long flags
;
4082 sched
= iso_sched_alloc(urb
->number_of_packets
, mem_flags
);
4083 if (unlikely(sched
== NULL
))
4086 itd_sched_init(fotg210
, sched
, stream
, urb
);
4088 if (urb
->interval
< 8)
4089 num_itds
= 1 + (sched
->span
+ 7) / 8;
4091 num_itds
= urb
->number_of_packets
;
4093 /* allocate/init ITDs */
4094 spin_lock_irqsave(&fotg210
->lock
, flags
);
4095 for (i
= 0; i
< num_itds
; i
++) {
4098 * Use iTDs from the free list, but not iTDs that may
4099 * still be in use by the hardware.
4101 if (likely(!list_empty(&stream
->free_list
))) {
4102 itd
= list_first_entry(&stream
->free_list
,
4103 struct fotg210_itd
, itd_list
);
4104 if (itd
->frame
== fotg210
->now_frame
)
4106 list_del(&itd
->itd_list
);
4107 itd_dma
= itd
->itd_dma
;
4110 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4111 itd
= dma_pool_zalloc(fotg210
->itd_pool
, mem_flags
,
4113 spin_lock_irqsave(&fotg210
->lock
, flags
);
4115 iso_sched_free(stream
, sched
);
4116 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4121 itd
->itd_dma
= itd_dma
;
4122 list_add(&itd
->itd_list
, &sched
->td_list
);
4124 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4126 /* temporarily store schedule info in hcpriv */
4127 urb
->hcpriv
= sched
;
4128 urb
->error_count
= 0;
4132 static inline int itd_slot_ok(struct fotg210_hcd
*fotg210
, u32 mod
, u32 uframe
,
4133 u8 usecs
, u32 period
)
4137 /* can't commit more than uframe_periodic_max usec */
4138 if (periodic_usecs(fotg210
, uframe
>> 3, uframe
& 0x7)
4139 > (fotg210
->uframe_periodic_max
- usecs
))
4142 /* we know urb->interval is 2^N uframes */
4144 } while (uframe
< mod
);
4148 /* This scheduler plans almost as far into the future as it has actual
4149 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4150 * "as small as possible" to be cache-friendlier.) That limits the size
4151 * transfers you can stream reliably; avoid more than 64 msec per urb.
4152 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4153 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4154 * and other factors); or more than about 230 msec total (for portability,
4155 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4158 #define SCHEDULE_SLOP 80 /* microframes */
4160 static int iso_stream_schedule(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4161 struct fotg210_iso_stream
*stream
)
4163 u32 now
, next
, start
, period
, span
;
4165 unsigned mod
= fotg210
->periodic_size
<< 3;
4166 struct fotg210_iso_sched
*sched
= urb
->hcpriv
;
4168 period
= urb
->interval
;
4171 if (span
> mod
- SCHEDULE_SLOP
) {
4172 fotg210_dbg(fotg210
, "iso request %p too long\n", urb
);
4177 now
= fotg210_read_frame_index(fotg210
) & (mod
- 1);
4179 /* Typical case: reuse current schedule, stream is still active.
4180 * Hopefully there are no gaps from the host falling behind
4181 * (irq delays etc), but if there are we'll take the next
4182 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4184 if (likely(!list_empty(&stream
->td_list
))) {
4187 /* For high speed devices, allow scheduling within the
4188 * isochronous scheduling threshold. For full speed devices
4189 * and Intel PCI-based controllers, don't (work around for
4192 if (!stream
->highspeed
&& fotg210
->fs_i_thresh
)
4193 next
= now
+ fotg210
->i_thresh
;
4197 /* Fell behind (by up to twice the slop amount)?
4198 * We decide based on the time of the last currently-scheduled
4199 * slot, not the time of the next available slot.
4201 excess
= (stream
->next_uframe
- period
- next
) & (mod
- 1);
4202 if (excess
>= mod
- 2 * SCHEDULE_SLOP
)
4203 start
= next
+ excess
- mod
+ period
*
4204 DIV_ROUND_UP(mod
- excess
, period
);
4206 start
= next
+ excess
+ period
;
4207 if (start
- now
>= mod
) {
4208 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4209 urb
, start
- now
- period
, period
,
4216 /* need to schedule; when's the next (u)frame we could start?
4217 * this is bigger than fotg210->i_thresh allows; scheduling itself
4218 * isn't free, the slop should handle reasonably slow cpus. it
4219 * can also help high bandwidth if the dma and irq loads don't
4220 * jump until after the queue is primed.
4225 start
= SCHEDULE_SLOP
+ (now
& ~0x07);
4227 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4229 /* find a uframe slot with enough bandwidth.
4230 * Early uframes are more precious because full-speed
4231 * iso IN transfers can't use late uframes,
4232 * and therefore they should be allocated last.
4238 /* check schedule: enough space? */
4239 if (itd_slot_ok(fotg210
, mod
, start
,
4240 stream
->usecs
, period
))
4242 } while (start
> next
&& !done
);
4244 /* no room in the schedule */
4246 fotg210_dbg(fotg210
, "iso resched full %p (now %d max %d)\n",
4247 urb
, now
, now
+ mod
);
4253 /* Tried to schedule too far into the future? */
4254 if (unlikely(start
- now
+ span
- period
>=
4255 mod
- 2 * SCHEDULE_SLOP
)) {
4256 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4257 urb
, start
- now
, span
- period
,
4258 mod
- 2 * SCHEDULE_SLOP
);
4263 stream
->next_uframe
= start
& (mod
- 1);
4265 /* report high speed start in uframes; full speed, in frames */
4266 urb
->start_frame
= stream
->next_uframe
;
4267 if (!stream
->highspeed
)
4268 urb
->start_frame
>>= 3;
4270 /* Make sure scan_isoc() sees these */
4271 if (fotg210
->isoc_count
== 0)
4272 fotg210
->next_frame
= now
>> 3;
4276 iso_sched_free(stream
, sched
);
4281 static inline void itd_init(struct fotg210_hcd
*fotg210
,
4282 struct fotg210_iso_stream
*stream
, struct fotg210_itd
*itd
)
4286 /* it's been recently zeroed */
4287 itd
->hw_next
= FOTG210_LIST_END(fotg210
);
4288 itd
->hw_bufp
[0] = stream
->buf0
;
4289 itd
->hw_bufp
[1] = stream
->buf1
;
4290 itd
->hw_bufp
[2] = stream
->buf2
;
4292 for (i
= 0; i
< 8; i
++)
4295 /* All other fields are filled when scheduling */
4298 static inline void itd_patch(struct fotg210_hcd
*fotg210
,
4299 struct fotg210_itd
*itd
, struct fotg210_iso_sched
*iso_sched
,
4300 unsigned index
, u16 uframe
)
4302 struct fotg210_iso_packet
*uf
= &iso_sched
->packet
[index
];
4303 unsigned pg
= itd
->pg
;
4306 itd
->index
[uframe
] = index
;
4308 itd
->hw_transaction
[uframe
] = uf
->transaction
;
4309 itd
->hw_transaction
[uframe
] |= cpu_to_hc32(fotg210
, pg
<< 12);
4310 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, uf
->bufp
& ~(u32
)0);
4311 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(uf
->bufp
>> 32));
4313 /* iso_frame_desc[].offset must be strictly increasing */
4314 if (unlikely(uf
->cross
)) {
4315 u64 bufp
= uf
->bufp
+ 4096;
4318 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, bufp
& ~(u32
)0);
4319 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(bufp
>> 32));
4323 static inline void itd_link(struct fotg210_hcd
*fotg210
, unsigned frame
,
4324 struct fotg210_itd
*itd
)
4326 union fotg210_shadow
*prev
= &fotg210
->pshadow
[frame
];
4327 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
4328 union fotg210_shadow here
= *prev
;
4331 /* skip any iso nodes which might belong to previous microframes */
4333 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4334 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
4336 prev
= periodic_next_shadow(fotg210
, prev
, type
);
4337 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
4341 itd
->itd_next
= here
;
4342 itd
->hw_next
= *hw_p
;
4346 *hw_p
= cpu_to_hc32(fotg210
, itd
->itd_dma
| Q_TYPE_ITD
);
4349 /* fit urb's itds into the selected schedule slot; activate as needed */
4350 static void itd_link_urb(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4351 unsigned mod
, struct fotg210_iso_stream
*stream
)
4354 unsigned next_uframe
, uframe
, frame
;
4355 struct fotg210_iso_sched
*iso_sched
= urb
->hcpriv
;
4356 struct fotg210_itd
*itd
;
4358 next_uframe
= stream
->next_uframe
& (mod
- 1);
4360 if (unlikely(list_empty(&stream
->td_list
))) {
4361 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4362 += stream
->bandwidth
;
4363 fotg210_dbg(fotg210
,
4364 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4365 urb
->dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4366 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out",
4368 next_uframe
>> 3, next_uframe
& 0x7);
4371 /* fill iTDs uframe by uframe */
4372 for (packet
= 0, itd
= NULL
; packet
< urb
->number_of_packets
;) {
4374 /* ASSERT: we have all necessary itds */
4376 /* ASSERT: no itds for this endpoint in this uframe */
4378 itd
= list_entry(iso_sched
->td_list
.next
,
4379 struct fotg210_itd
, itd_list
);
4380 list_move_tail(&itd
->itd_list
, &stream
->td_list
);
4381 itd
->stream
= stream
;
4383 itd_init(fotg210
, stream
, itd
);
4386 uframe
= next_uframe
& 0x07;
4387 frame
= next_uframe
>> 3;
4389 itd_patch(fotg210
, itd
, iso_sched
, packet
, uframe
);
4391 next_uframe
+= stream
->interval
;
4392 next_uframe
&= mod
- 1;
4395 /* link completed itds into the schedule */
4396 if (((next_uframe
>> 3) != frame
)
4397 || packet
== urb
->number_of_packets
) {
4398 itd_link(fotg210
, frame
& (fotg210
->periodic_size
- 1),
4403 stream
->next_uframe
= next_uframe
;
4405 /* don't need that schedule data any more */
4406 iso_sched_free(stream
, iso_sched
);
4409 ++fotg210
->isoc_count
;
4410 enable_periodic(fotg210
);
4413 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4414 FOTG210_ISOC_XACTERR)
4416 /* Process and recycle a completed ITD. Return true iff its urb completed,
4417 * and hence its completion callback probably added things to the hardware
4420 * Note that we carefully avoid recycling this descriptor until after any
4421 * completion callback runs, so that it won't be reused quickly. That is,
4422 * assuming (a) no more than two urbs per frame on this endpoint, and also
4423 * (b) only this endpoint's completions submit URBs. It seems some silicon
4424 * corrupts things if you reuse completed descriptors very quickly...
4426 static bool itd_complete(struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
4428 struct urb
*urb
= itd
->urb
;
4429 struct usb_iso_packet_descriptor
*desc
;
4433 struct fotg210_iso_stream
*stream
= itd
->stream
;
4434 struct usb_device
*dev
;
4435 bool retval
= false;
4437 /* for each uframe with a packet */
4438 for (uframe
= 0; uframe
< 8; uframe
++) {
4439 if (likely(itd
->index
[uframe
] == -1))
4441 urb_index
= itd
->index
[uframe
];
4442 desc
= &urb
->iso_frame_desc
[urb_index
];
4444 t
= hc32_to_cpup(fotg210
, &itd
->hw_transaction
[uframe
]);
4445 itd
->hw_transaction
[uframe
] = 0;
4447 /* report transfer status */
4448 if (unlikely(t
& ISO_ERRS
)) {
4450 if (t
& FOTG210_ISOC_BUF_ERR
)
4451 desc
->status
= usb_pipein(urb
->pipe
)
4452 ? -ENOSR
/* hc couldn't read */
4453 : -ECOMM
; /* hc couldn't write */
4454 else if (t
& FOTG210_ISOC_BABBLE
)
4455 desc
->status
= -EOVERFLOW
;
4456 else /* (t & FOTG210_ISOC_XACTERR) */
4457 desc
->status
= -EPROTO
;
4459 /* HC need not update length with this error */
4460 if (!(t
& FOTG210_ISOC_BABBLE
)) {
4461 desc
->actual_length
=
4462 fotg210_itdlen(urb
, desc
, t
);
4463 urb
->actual_length
+= desc
->actual_length
;
4465 } else if (likely((t
& FOTG210_ISOC_ACTIVE
) == 0)) {
4467 desc
->actual_length
= fotg210_itdlen(urb
, desc
, t
);
4468 urb
->actual_length
+= desc
->actual_length
;
4470 /* URB was too late */
4471 desc
->status
= -EXDEV
;
4475 /* handle completion now? */
4476 if (likely((urb_index
+ 1) != urb
->number_of_packets
))
4479 /* ASSERT: it's really the last itd for this urb
4480 * list_for_each_entry (itd, &stream->td_list, itd_list)
4481 * BUG_ON (itd->urb == urb);
4484 /* give urb back to the driver; completion often (re)submits */
4486 fotg210_urb_done(fotg210
, urb
, 0);
4490 --fotg210
->isoc_count
;
4491 disable_periodic(fotg210
);
4493 if (unlikely(list_is_singular(&stream
->td_list
))) {
4494 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4495 -= stream
->bandwidth
;
4496 fotg210_dbg(fotg210
,
4497 "deschedule devp %s ep%d%s-iso\n",
4498 dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4499 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out");
4505 /* Add to the end of the free list for later reuse */
4506 list_move_tail(&itd
->itd_list
, &stream
->free_list
);
4508 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4509 if (list_empty(&stream
->td_list
)) {
4510 list_splice_tail_init(&stream
->free_list
,
4511 &fotg210
->cached_itd_list
);
4512 start_free_itds(fotg210
);
4518 static int itd_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4521 int status
= -EINVAL
;
4522 unsigned long flags
;
4523 struct fotg210_iso_stream
*stream
;
4525 /* Get iso_stream head */
4526 stream
= iso_stream_find(fotg210
, urb
);
4527 if (unlikely(stream
== NULL
)) {
4528 fotg210_dbg(fotg210
, "can't get iso stream\n");
4531 if (unlikely(urb
->interval
!= stream
->interval
&&
4532 fotg210_port_speed(fotg210
, 0) ==
4533 USB_PORT_STAT_HIGH_SPEED
)) {
4534 fotg210_dbg(fotg210
, "can't change iso interval %d --> %d\n",
4535 stream
->interval
, urb
->interval
);
4539 #ifdef FOTG210_URB_TRACE
4540 fotg210_dbg(fotg210
,
4541 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4542 __func__
, urb
->dev
->devpath
, urb
,
4543 usb_pipeendpoint(urb
->pipe
),
4544 usb_pipein(urb
->pipe
) ? "in" : "out",
4545 urb
->transfer_buffer_length
,
4546 urb
->number_of_packets
, urb
->interval
,
4550 /* allocate ITDs w/o locking anything */
4551 status
= itd_urb_transaction(stream
, fotg210
, urb
, mem_flags
);
4552 if (unlikely(status
< 0)) {
4553 fotg210_dbg(fotg210
, "can't init itds\n");
4557 /* schedule ... need to lock */
4558 spin_lock_irqsave(&fotg210
->lock
, flags
);
4559 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
4560 status
= -ESHUTDOWN
;
4561 goto done_not_linked
;
4563 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
4564 if (unlikely(status
))
4565 goto done_not_linked
;
4566 status
= iso_stream_schedule(fotg210
, urb
, stream
);
4567 if (likely(status
== 0))
4568 itd_link_urb(fotg210
, urb
, fotg210
->periodic_size
<< 3, stream
);
4570 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
4572 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4577 static inline int scan_frame_queue(struct fotg210_hcd
*fotg210
, unsigned frame
,
4578 unsigned now_frame
, bool live
)
4582 union fotg210_shadow q
, *q_p
;
4585 /* scan each element in frame's queue for completions */
4586 q_p
= &fotg210
->pshadow
[frame
];
4587 hw_p
= &fotg210
->periodic
[frame
];
4589 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4593 switch (hc32_to_cpu(fotg210
, type
)) {
4595 /* If this ITD is still active, leave it for
4596 * later processing ... check the next entry.
4597 * No need to check for activity unless the
4600 if (frame
== now_frame
&& live
) {
4602 for (uf
= 0; uf
< 8; uf
++) {
4603 if (q
.itd
->hw_transaction
[uf
] &
4604 ITD_ACTIVE(fotg210
))
4608 q_p
= &q
.itd
->itd_next
;
4609 hw_p
= &q
.itd
->hw_next
;
4610 type
= Q_NEXT_TYPE(fotg210
,
4617 /* Take finished ITDs out of the schedule
4618 * and process them: recycle, maybe report
4619 * URB completion. HC won't cache the
4620 * pointer for much longer, if at all.
4622 *q_p
= q
.itd
->itd_next
;
4623 *hw_p
= q
.itd
->hw_next
;
4624 type
= Q_NEXT_TYPE(fotg210
, q
.itd
->hw_next
);
4626 modified
= itd_complete(fotg210
, q
.itd
);
4630 fotg210_dbg(fotg210
, "corrupt type %d frame %d shadow %p\n",
4631 type
, frame
, q
.ptr
);
4635 /* End of the iTDs and siTDs */
4640 /* assume completion callbacks modify the queue */
4641 if (unlikely(modified
&& fotg210
->isoc_count
> 0))
4647 static void scan_isoc(struct fotg210_hcd
*fotg210
)
4649 unsigned uf
, now_frame
, frame
, ret
;
4650 unsigned fmask
= fotg210
->periodic_size
- 1;
4654 * When running, scan from last scan point up to "now"
4655 * else clean up by scanning everything that's left.
4656 * Touches as few pages as possible: cache-friendly.
4658 if (fotg210
->rh_state
>= FOTG210_RH_RUNNING
) {
4659 uf
= fotg210_read_frame_index(fotg210
);
4660 now_frame
= (uf
>> 3) & fmask
;
4663 now_frame
= (fotg210
->next_frame
- 1) & fmask
;
4666 fotg210
->now_frame
= now_frame
;
4668 frame
= fotg210
->next_frame
;
4672 ret
= scan_frame_queue(fotg210
, frame
,
4675 /* Stop when we have reached the current frame */
4676 if (frame
== now_frame
)
4678 frame
= (frame
+ 1) & fmask
;
4680 fotg210
->next_frame
= now_frame
;
4683 /* Display / Set uframe_periodic_max
4685 static ssize_t
uframe_periodic_max_show(struct device
*dev
,
4686 struct device_attribute
*attr
, char *buf
)
4688 struct fotg210_hcd
*fotg210
;
4691 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4692 n
= scnprintf(buf
, PAGE_SIZE
, "%d\n", fotg210
->uframe_periodic_max
);
4697 static ssize_t
uframe_periodic_max_store(struct device
*dev
,
4698 struct device_attribute
*attr
, const char *buf
, size_t count
)
4700 struct fotg210_hcd
*fotg210
;
4701 unsigned uframe_periodic_max
;
4702 unsigned frame
, uframe
;
4703 unsigned short allocated_max
;
4704 unsigned long flags
;
4707 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4708 if (kstrtouint(buf
, 0, &uframe_periodic_max
) < 0)
4711 if (uframe_periodic_max
< 100 || uframe_periodic_max
>= 125) {
4712 fotg210_info(fotg210
, "rejecting invalid request for uframe_periodic_max=%u\n",
4713 uframe_periodic_max
);
4720 * lock, so that our checking does not race with possible periodic
4721 * bandwidth allocation through submitting new urbs.
4723 spin_lock_irqsave(&fotg210
->lock
, flags
);
4726 * for request to decrease max periodic bandwidth, we have to check
4727 * every microframe in the schedule to see whether the decrease is
4730 if (uframe_periodic_max
< fotg210
->uframe_periodic_max
) {
4733 for (frame
= 0; frame
< fotg210
->periodic_size
; ++frame
)
4734 for (uframe
= 0; uframe
< 7; ++uframe
)
4735 allocated_max
= max(allocated_max
,
4736 periodic_usecs(fotg210
, frame
,
4739 if (allocated_max
> uframe_periodic_max
) {
4740 fotg210_info(fotg210
,
4741 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4742 allocated_max
, uframe_periodic_max
);
4747 /* increasing is always ok */
4749 fotg210_info(fotg210
,
4750 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4751 100 * uframe_periodic_max
/125, uframe_periodic_max
);
4753 if (uframe_periodic_max
!= 100)
4754 fotg210_warn(fotg210
, "max periodic bandwidth set is non-standard\n");
4756 fotg210
->uframe_periodic_max
= uframe_periodic_max
;
4760 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4764 static DEVICE_ATTR_RW(uframe_periodic_max
);
4766 static inline int create_sysfs_files(struct fotg210_hcd
*fotg210
)
4768 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4770 return device_create_file(controller
, &dev_attr_uframe_periodic_max
);
4773 static inline void remove_sysfs_files(struct fotg210_hcd
*fotg210
)
4775 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4777 device_remove_file(controller
, &dev_attr_uframe_periodic_max
);
4779 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4780 * The firmware seems to think that powering off is a wakeup event!
4781 * This routine turns off remote wakeup and everything else, on all ports.
4783 static void fotg210_turn_off_all_ports(struct fotg210_hcd
*fotg210
)
4785 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
4787 fotg210_writel(fotg210
, PORT_RWC_BITS
, status_reg
);
4790 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4791 * Must be called with interrupts enabled and the lock not held.
4793 static void fotg210_silence_controller(struct fotg210_hcd
*fotg210
)
4795 fotg210_halt(fotg210
);
4797 spin_lock_irq(&fotg210
->lock
);
4798 fotg210
->rh_state
= FOTG210_RH_HALTED
;
4799 fotg210_turn_off_all_ports(fotg210
);
4800 spin_unlock_irq(&fotg210
->lock
);
4803 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4804 * This forcibly disables dma and IRQs, helping kexec and other cases
4805 * where the next system software may expect clean state.
4807 static void fotg210_shutdown(struct usb_hcd
*hcd
)
4809 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4811 spin_lock_irq(&fotg210
->lock
);
4812 fotg210
->shutdown
= true;
4813 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
4814 fotg210
->enabled_hrtimer_events
= 0;
4815 spin_unlock_irq(&fotg210
->lock
);
4817 fotg210_silence_controller(fotg210
);
4819 hrtimer_cancel(&fotg210
->hrtimer
);
4822 /* fotg210_work is called from some interrupts, timers, and so on.
4823 * it calls driver completion functions, after dropping fotg210->lock.
4825 static void fotg210_work(struct fotg210_hcd
*fotg210
)
4827 /* another CPU may drop fotg210->lock during a schedule scan while
4828 * it reports urb completions. this flag guards against bogus
4829 * attempts at re-entrant schedule scanning.
4831 if (fotg210
->scanning
) {
4832 fotg210
->need_rescan
= true;
4835 fotg210
->scanning
= true;
4838 fotg210
->need_rescan
= false;
4839 if (fotg210
->async_count
)
4840 scan_async(fotg210
);
4841 if (fotg210
->intr_count
> 0)
4843 if (fotg210
->isoc_count
> 0)
4845 if (fotg210
->need_rescan
)
4847 fotg210
->scanning
= false;
4849 /* the IO watchdog guards against hardware or driver bugs that
4850 * misplace IRQs, and should let us run completely without IRQs.
4851 * such lossage has been observed on both VT6202 and VT8235.
4853 turn_on_io_watchdog(fotg210
);
4856 /* Called when the fotg210_hcd module is removed.
4858 static void fotg210_stop(struct usb_hcd
*hcd
)
4860 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4862 fotg210_dbg(fotg210
, "stop\n");
4864 /* no more interrupts ... */
4866 spin_lock_irq(&fotg210
->lock
);
4867 fotg210
->enabled_hrtimer_events
= 0;
4868 spin_unlock_irq(&fotg210
->lock
);
4870 fotg210_quiesce(fotg210
);
4871 fotg210_silence_controller(fotg210
);
4872 fotg210_reset(fotg210
);
4874 hrtimer_cancel(&fotg210
->hrtimer
);
4875 remove_sysfs_files(fotg210
);
4876 remove_debug_files(fotg210
);
4878 /* root hub is shut down separately (first, when possible) */
4879 spin_lock_irq(&fotg210
->lock
);
4880 end_free_itds(fotg210
);
4881 spin_unlock_irq(&fotg210
->lock
);
4882 fotg210_mem_cleanup(fotg210
);
4884 #ifdef FOTG210_STATS
4885 fotg210_dbg(fotg210
, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4886 fotg210
->stats
.normal
, fotg210
->stats
.error
,
4887 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
4888 fotg210_dbg(fotg210
, "complete %ld unlink %ld\n",
4889 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
4892 dbg_status(fotg210
, "fotg210_stop completed",
4893 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
4896 /* one-time init, only for memory state */
4897 static int hcd_fotg210_init(struct usb_hcd
*hcd
)
4899 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4903 struct fotg210_qh_hw
*hw
;
4905 spin_lock_init(&fotg210
->lock
);
4908 * keep io watchdog by default, those good HCDs could turn off it later
4910 fotg210
->need_io_watchdog
= 1;
4912 hrtimer_init(&fotg210
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
4913 fotg210
->hrtimer
.function
= fotg210_hrtimer_func
;
4914 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
4916 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
4919 * by default set standard 80% (== 100 usec/uframe) max periodic
4920 * bandwidth as required by USB 2.0
4922 fotg210
->uframe_periodic_max
= 100;
4925 * hw default: 1K periodic list heads, one per frame.
4926 * periodic_size can shrink by USBCMD update if hcc_params allows.
4928 fotg210
->periodic_size
= DEFAULT_I_TDPS
;
4929 INIT_LIST_HEAD(&fotg210
->intr_qh_list
);
4930 INIT_LIST_HEAD(&fotg210
->cached_itd_list
);
4932 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
4933 /* periodic schedule size can be smaller than default */
4934 switch (FOTG210_TUNE_FLS
) {
4936 fotg210
->periodic_size
= 1024;
4939 fotg210
->periodic_size
= 512;
4942 fotg210
->periodic_size
= 256;
4948 retval
= fotg210_mem_init(fotg210
, GFP_KERNEL
);
4952 /* controllers may cache some of the periodic schedule ... */
4953 fotg210
->i_thresh
= 2;
4956 * dedicate a qh for the async ring head, since we couldn't unlink
4957 * a 'real' qh without stopping the async schedule [4.8]. use it
4958 * as the 'reclamation list head' too.
4959 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4960 * from automatically advancing to the next td after short reads.
4962 fotg210
->async
->qh_next
.qh
= NULL
;
4963 hw
= fotg210
->async
->hw
;
4964 hw
->hw_next
= QH_NEXT(fotg210
, fotg210
->async
->qh_dma
);
4965 hw
->hw_info1
= cpu_to_hc32(fotg210
, QH_HEAD
);
4966 hw
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
4967 hw
->hw_qtd_next
= FOTG210_LIST_END(fotg210
);
4968 fotg210
->async
->qh_state
= QH_STATE_LINKED
;
4969 hw
->hw_alt_next
= QTD_NEXT(fotg210
, fotg210
->async
->dummy
->qtd_dma
);
4971 /* clear interrupt enables, set irq latency */
4972 if (log2_irq_thresh
< 0 || log2_irq_thresh
> 6)
4973 log2_irq_thresh
= 0;
4974 temp
= 1 << (16 + log2_irq_thresh
);
4975 if (HCC_CANPARK(hcc_params
)) {
4976 /* HW default park == 3, on hardware that supports it (like
4977 * NVidia and ALI silicon), maximizes throughput on the async
4978 * schedule by avoiding QH fetches between transfers.
4980 * With fast usb storage devices and NForce2, "park" seems to
4981 * make problems: throughput reduction (!), data errors...
4984 park
= min_t(unsigned, park
, 3);
4988 fotg210_dbg(fotg210
, "park %d\n", park
);
4990 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
4991 /* periodic schedule size can be smaller than default */
4993 temp
|= (FOTG210_TUNE_FLS
<< 2);
4995 fotg210
->command
= temp
;
4997 /* Accept arbitrarily long scatter-gather lists */
4998 if (!(hcd
->driver
->flags
& HCD_LOCAL_MEM
))
4999 hcd
->self
.sg_tablesize
= ~0;
5003 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5004 static int fotg210_run(struct usb_hcd
*hcd
)
5006 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5010 hcd
->uses_new_polling
= 1;
5012 /* EHCI spec section 4.1 */
5014 fotg210_writel(fotg210
, fotg210
->periodic_dma
,
5015 &fotg210
->regs
->frame_list
);
5016 fotg210_writel(fotg210
, (u32
)fotg210
->async
->qh_dma
,
5017 &fotg210
->regs
->async_next
);
5020 * hcc_params controls whether fotg210->regs->segment must (!!!)
5021 * be used; it constrains QH/ITD/SITD and QTD locations.
5022 * dma_pool consistent memory always uses segment zero.
5023 * streaming mappings for I/O buffers, like pci_map_single(),
5024 * can return segments above 4GB, if the device allows.
5026 * NOTE: the dma mask is visible through dev->dma_mask, so
5027 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5028 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5029 * host side drivers though.
5031 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
5034 * Philips, Intel, and maybe others need CMD_RUN before the
5035 * root hub will detect new devices (why?); NEC doesn't
5037 fotg210
->command
&= ~(CMD_IAAD
|CMD_PSE
|CMD_ASE
|CMD_RESET
);
5038 fotg210
->command
|= CMD_RUN
;
5039 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
5040 dbg_cmd(fotg210
, "init", fotg210
->command
);
5043 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5044 * are explicitly handed to companion controller(s), so no TT is
5045 * involved with the root hub. (Except where one is integrated,
5046 * and there's no companion controller unless maybe for USB OTG.)
5048 * Turning on the CF flag will transfer ownership of all ports
5049 * from the companions to the EHCI controller. If any of the
5050 * companions are in the middle of a port reset at the time, it
5051 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5052 * guarantees that no resets are in progress. After we set CF,
5053 * a short delay lets the hardware catch up; new resets shouldn't
5054 * be started before the port switching actions could complete.
5056 down_write(&ehci_cf_port_reset_rwsem
);
5057 fotg210
->rh_state
= FOTG210_RH_RUNNING
;
5058 /* unblock posted writes */
5059 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5060 usleep_range(5000, 10000);
5061 up_write(&ehci_cf_port_reset_rwsem
);
5062 fotg210
->last_periodic_enable
= ktime_get_real();
5064 temp
= HC_VERSION(fotg210
,
5065 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5066 fotg210_info(fotg210
,
5067 "USB %x.%x started, EHCI %x.%02x\n",
5068 ((fotg210
->sbrn
& 0xf0) >> 4), (fotg210
->sbrn
& 0x0f),
5069 temp
>> 8, temp
& 0xff);
5071 fotg210_writel(fotg210
, INTR_MASK
,
5072 &fotg210
->regs
->intr_enable
); /* Turn On Interrupts */
5074 /* GRR this is run-once init(), being done every time the HC starts.
5075 * So long as they're part of class devices, we can't do it init()
5076 * since the class device isn't created that early.
5078 create_debug_files(fotg210
);
5079 create_sysfs_files(fotg210
);
5084 static int fotg210_setup(struct usb_hcd
*hcd
)
5086 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5089 fotg210
->regs
= (void __iomem
*)fotg210
->caps
+
5091 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5092 dbg_hcs_params(fotg210
, "reset");
5093 dbg_hcc_params(fotg210
, "reset");
5095 /* cache this readonly data; minimize chip reads */
5096 fotg210
->hcs_params
= fotg210_readl(fotg210
,
5097 &fotg210
->caps
->hcs_params
);
5099 fotg210
->sbrn
= HCD_USB2
;
5101 /* data structure init */
5102 retval
= hcd_fotg210_init(hcd
);
5106 retval
= fotg210_halt(fotg210
);
5110 fotg210_reset(fotg210
);
5115 static irqreturn_t
fotg210_irq(struct usb_hcd
*hcd
)
5117 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5118 u32 status
, masked_status
, pcd_status
= 0, cmd
;
5121 spin_lock(&fotg210
->lock
);
5123 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
5125 /* e.g. cardbus physical eject */
5126 if (status
== ~(u32
) 0) {
5127 fotg210_dbg(fotg210
, "device removed\n");
5132 * We don't use STS_FLR, but some controllers don't like it to
5133 * remain on, so mask it out along with the other status bits.
5135 masked_status
= status
& (INTR_MASK
| STS_FLR
);
5138 if (!masked_status
||
5139 unlikely(fotg210
->rh_state
== FOTG210_RH_HALTED
)) {
5140 spin_unlock(&fotg210
->lock
);
5144 /* clear (just) interrupts */
5145 fotg210_writel(fotg210
, masked_status
, &fotg210
->regs
->status
);
5146 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5149 /* unrequested/ignored: Frame List Rollover */
5150 dbg_status(fotg210
, "irq", status
);
5152 /* INT, ERR, and IAA interrupt rates can be throttled */
5154 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5155 if (likely((status
& (STS_INT
|STS_ERR
)) != 0)) {
5156 if (likely((status
& STS_ERR
) == 0))
5157 INCR(fotg210
->stats
.normal
);
5159 INCR(fotg210
->stats
.error
);
5163 /* complete the unlinking of some qh [4.15.2.3] */
5164 if (status
& STS_IAA
) {
5166 /* Turn off the IAA watchdog */
5167 fotg210
->enabled_hrtimer_events
&=
5168 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG
);
5171 * Mild optimization: Allow another IAAD to reset the
5172 * hrtimer, if one occurs before the next expiration.
5173 * In theory we could always cancel the hrtimer, but
5174 * tests show that about half the time it will be reset
5175 * for some other event anyway.
5177 if (fotg210
->next_hrtimer_event
== FOTG210_HRTIMER_IAA_WATCHDOG
)
5178 ++fotg210
->next_hrtimer_event
;
5180 /* guard against (alleged) silicon errata */
5182 fotg210_dbg(fotg210
, "IAA with IAAD still set?\n");
5183 if (fotg210
->async_iaa
) {
5184 INCR(fotg210
->stats
.iaa
);
5185 end_unlink_async(fotg210
);
5187 fotg210_dbg(fotg210
, "IAA with nothing unlinked?\n");
5190 /* remote wakeup [4.3.1] */
5191 if (status
& STS_PCD
) {
5193 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
5195 /* kick root hub later */
5196 pcd_status
= status
;
5198 /* resume root hub? */
5199 if (fotg210
->rh_state
== FOTG210_RH_SUSPENDED
)
5200 usb_hcd_resume_root_hub(hcd
);
5202 pstatus
= fotg210_readl(fotg210
, status_reg
);
5204 if (test_bit(0, &fotg210
->suspended_ports
) &&
5205 ((pstatus
& PORT_RESUME
) ||
5206 !(pstatus
& PORT_SUSPEND
)) &&
5207 (pstatus
& PORT_PE
) &&
5208 fotg210
->reset_done
[0] == 0) {
5210 /* start 20 msec resume signaling from this port,
5211 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5212 * stop that signaling. Use 5 ms extra for safety,
5213 * like usb_port_resume() does.
5215 fotg210
->reset_done
[0] = jiffies
+ msecs_to_jiffies(25);
5216 set_bit(0, &fotg210
->resuming_ports
);
5217 fotg210_dbg(fotg210
, "port 1 remote wakeup\n");
5218 mod_timer(&hcd
->rh_timer
, fotg210
->reset_done
[0]);
5222 /* PCI errors [4.15.2.4] */
5223 if (unlikely((status
& STS_FATAL
) != 0)) {
5224 fotg210_err(fotg210
, "fatal error\n");
5225 dbg_cmd(fotg210
, "fatal", cmd
);
5226 dbg_status(fotg210
, "fatal", status
);
5230 /* Don't let the controller do anything more */
5231 fotg210
->shutdown
= true;
5232 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
5233 fotg210
->command
&= ~(CMD_RUN
| CMD_ASE
| CMD_PSE
);
5234 fotg210_writel(fotg210
, fotg210
->command
,
5235 &fotg210
->regs
->command
);
5236 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
5237 fotg210_handle_controller_death(fotg210
);
5239 /* Handle completions when the controller stops */
5244 fotg210_work(fotg210
);
5245 spin_unlock(&fotg210
->lock
);
5247 usb_hcd_poll_rh_status(hcd
);
5251 /* non-error returns are a promise to giveback() the urb later
5252 * we drop ownership so next owner (or urb unlink) can get it
5254 * urb + dev is in hcd.self.controller.urb_list
5255 * we're queueing TDs onto software and hardware lists
5257 * hcd-specific init for hcpriv hasn't been done yet
5259 * NOTE: control, bulk, and interrupt share the same code to append TDs
5260 * to a (possibly active) QH, and the same QH scanning code.
5262 static int fotg210_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
5265 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5266 struct list_head qtd_list
;
5268 INIT_LIST_HEAD(&qtd_list
);
5270 switch (usb_pipetype(urb
->pipe
)) {
5272 /* qh_completions() code doesn't handle all the fault cases
5273 * in multi-TD control transfers. Even 1KB is rare anyway.
5275 if (urb
->transfer_buffer_length
> (16 * 1024))
5278 /* case PIPE_BULK: */
5280 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5282 return submit_async(fotg210
, urb
, &qtd_list
, mem_flags
);
5284 case PIPE_INTERRUPT
:
5285 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5287 return intr_submit(fotg210
, urb
, &qtd_list
, mem_flags
);
5289 case PIPE_ISOCHRONOUS
:
5290 return itd_submit(fotg210
, urb
, mem_flags
);
5294 /* remove from hardware lists
5295 * completions normally happen asynchronously
5298 static int fotg210_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
5300 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5301 struct fotg210_qh
*qh
;
5302 unsigned long flags
;
5305 spin_lock_irqsave(&fotg210
->lock
, flags
);
5306 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
5310 switch (usb_pipetype(urb
->pipe
)) {
5311 /* case PIPE_CONTROL: */
5312 /* case PIPE_BULK:*/
5314 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5317 switch (qh
->qh_state
) {
5318 case QH_STATE_LINKED
:
5319 case QH_STATE_COMPLETING
:
5320 start_unlink_async(fotg210
, qh
);
5322 case QH_STATE_UNLINK
:
5323 case QH_STATE_UNLINK_WAIT
:
5324 /* already started */
5327 /* QH might be waiting for a Clear-TT-Buffer */
5328 qh_completions(fotg210
, qh
);
5333 case PIPE_INTERRUPT
:
5334 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5337 switch (qh
->qh_state
) {
5338 case QH_STATE_LINKED
:
5339 case QH_STATE_COMPLETING
:
5340 start_unlink_intr(fotg210
, qh
);
5343 qh_completions(fotg210
, qh
);
5346 fotg210_dbg(fotg210
, "bogus qh %p state %d\n",
5352 case PIPE_ISOCHRONOUS
:
5355 /* wait till next completion, do it then. */
5356 /* completion irqs can wait up to 1024 msec, */
5360 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5364 /* bulk qh holds the data toggle */
5366 static void fotg210_endpoint_disable(struct usb_hcd
*hcd
,
5367 struct usb_host_endpoint
*ep
)
5369 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5370 unsigned long flags
;
5371 struct fotg210_qh
*qh
, *tmp
;
5373 /* ASSERT: any requests/urbs are being unlinked */
5374 /* ASSERT: nobody can be submitting urbs for this any more */
5377 spin_lock_irqsave(&fotg210
->lock
, flags
);
5382 /* endpoints can be iso streams. for now, we don't
5383 * accelerate iso completions ... so spin a while.
5385 if (qh
->hw
== NULL
) {
5386 struct fotg210_iso_stream
*stream
= ep
->hcpriv
;
5388 if (!list_empty(&stream
->td_list
))
5391 /* BUG_ON(!list_empty(&stream->free_list)); */
5396 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
5397 qh
->qh_state
= QH_STATE_IDLE
;
5398 switch (qh
->qh_state
) {
5399 case QH_STATE_LINKED
:
5400 case QH_STATE_COMPLETING
:
5401 for (tmp
= fotg210
->async
->qh_next
.qh
;
5403 tmp
= tmp
->qh_next
.qh
)
5405 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5406 * may already be unlinked.
5409 start_unlink_async(fotg210
, qh
);
5411 case QH_STATE_UNLINK
: /* wait for hw to finish? */
5412 case QH_STATE_UNLINK_WAIT
:
5414 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5415 schedule_timeout_uninterruptible(1);
5417 case QH_STATE_IDLE
: /* fully unlinked */
5418 if (qh
->clearing_tt
)
5420 if (list_empty(&qh
->qtd_list
)) {
5421 qh_destroy(fotg210
, qh
);
5426 /* caller was supposed to have unlinked any requests;
5427 * that's not our job. just leak this memory.
5429 fotg210_err(fotg210
, "qh %p (#%02x) state %d%s\n",
5430 qh
, ep
->desc
.bEndpointAddress
, qh
->qh_state
,
5431 list_empty(&qh
->qtd_list
) ? "" : "(has tds)");
5436 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5439 static void fotg210_endpoint_reset(struct usb_hcd
*hcd
,
5440 struct usb_host_endpoint
*ep
)
5442 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5443 struct fotg210_qh
*qh
;
5444 int eptype
= usb_endpoint_type(&ep
->desc
);
5445 int epnum
= usb_endpoint_num(&ep
->desc
);
5446 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
5447 unsigned long flags
;
5449 if (eptype
!= USB_ENDPOINT_XFER_BULK
&& eptype
!= USB_ENDPOINT_XFER_INT
)
5452 spin_lock_irqsave(&fotg210
->lock
, flags
);
5455 /* For Bulk and Interrupt endpoints we maintain the toggle state
5456 * in the hardware; the toggle bits in udev aren't used at all.
5457 * When an endpoint is reset by usb_clear_halt() we must reset
5458 * the toggle bit in the QH.
5461 usb_settoggle(qh
->dev
, epnum
, is_out
, 0);
5462 if (!list_empty(&qh
->qtd_list
)) {
5463 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5464 } else if (qh
->qh_state
== QH_STATE_LINKED
||
5465 qh
->qh_state
== QH_STATE_COMPLETING
) {
5467 /* The toggle value in the QH can't be updated
5468 * while the QH is active. Unlink it now;
5469 * re-linking will call qh_refresh().
5471 if (eptype
== USB_ENDPOINT_XFER_BULK
)
5472 start_unlink_async(fotg210
, qh
);
5474 start_unlink_intr(fotg210
, qh
);
5477 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5480 static int fotg210_get_frame(struct usb_hcd
*hcd
)
5482 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5484 return (fotg210_read_frame_index(fotg210
) >> 3) %
5485 fotg210
->periodic_size
;
5488 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5489 * because its registers (and irq) are shared between host/gadget/otg
5490 * functions and in order to facilitate role switching we cannot
5491 * give the fotg210 driver exclusive access to those.
5493 MODULE_DESCRIPTION(DRIVER_DESC
);
5494 MODULE_AUTHOR(DRIVER_AUTHOR
);
5495 MODULE_LICENSE("GPL");
5497 static const struct hc_driver fotg210_fotg210_hc_driver
= {
5498 .description
= hcd_name
,
5499 .product_desc
= "Faraday USB2.0 Host Controller",
5500 .hcd_priv_size
= sizeof(struct fotg210_hcd
),
5503 * generic hardware linkage
5506 .flags
= HCD_MEMORY
| HCD_USB2
,
5509 * basic lifecycle operations
5511 .reset
= hcd_fotg210_init
,
5512 .start
= fotg210_run
,
5513 .stop
= fotg210_stop
,
5514 .shutdown
= fotg210_shutdown
,
5517 * managing i/o requests and associated device resources
5519 .urb_enqueue
= fotg210_urb_enqueue
,
5520 .urb_dequeue
= fotg210_urb_dequeue
,
5521 .endpoint_disable
= fotg210_endpoint_disable
,
5522 .endpoint_reset
= fotg210_endpoint_reset
,
5525 * scheduling support
5527 .get_frame_number
= fotg210_get_frame
,
5532 .hub_status_data
= fotg210_hub_status_data
,
5533 .hub_control
= fotg210_hub_control
,
5534 .bus_suspend
= fotg210_bus_suspend
,
5535 .bus_resume
= fotg210_bus_resume
,
5537 .relinquish_port
= fotg210_relinquish_port
,
5538 .port_handed_over
= fotg210_port_handed_over
,
5540 .clear_tt_buffer_complete
= fotg210_clear_tt_buffer_complete
,
5543 static void fotg210_init(struct fotg210_hcd
*fotg210
)
5547 iowrite32(GMIR_MDEV_INT
| GMIR_MOTG_INT
| GMIR_INT_POLARITY
,
5548 &fotg210
->regs
->gmir
);
5550 value
= ioread32(&fotg210
->regs
->otgcsr
);
5551 value
&= ~OTGCSR_A_BUS_DROP
;
5552 value
|= OTGCSR_A_BUS_REQ
;
5553 iowrite32(value
, &fotg210
->regs
->otgcsr
);
5557 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5559 * Allocates basic resources for this USB host controller, and
5560 * then invokes the start() method for the HCD associated with it
5561 * through the hotplug entry's driver_data.
5563 static int fotg210_hcd_probe(struct platform_device
*pdev
)
5565 struct device
*dev
= &pdev
->dev
;
5566 struct usb_hcd
*hcd
;
5567 struct resource
*res
;
5569 int retval
= -ENODEV
;
5570 struct fotg210_hcd
*fotg210
;
5575 pdev
->dev
.power
.power_state
= PMSG_ON
;
5577 res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
5579 dev_err(dev
, "Found HC with no IRQ. Check %s setup!\n",
5586 hcd
= usb_create_hcd(&fotg210_fotg210_hc_driver
, dev
,
5589 dev_err(dev
, "failed to create hcd with err %d\n", retval
);
5591 goto fail_create_hcd
;
5596 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
5597 hcd
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
5598 if (IS_ERR(hcd
->regs
)) {
5599 retval
= PTR_ERR(hcd
->regs
);
5600 goto failed_put_hcd
;
5603 hcd
->rsrc_start
= res
->start
;
5604 hcd
->rsrc_len
= resource_size(res
);
5606 fotg210
= hcd_to_fotg210(hcd
);
5608 fotg210
->caps
= hcd
->regs
;
5610 /* It's OK not to supply this clock */
5611 fotg210
->pclk
= clk_get(dev
, "PCLK");
5612 if (!IS_ERR(fotg210
->pclk
)) {
5613 retval
= clk_prepare_enable(fotg210
->pclk
);
5615 dev_err(dev
, "failed to enable PCLK\n");
5616 goto failed_put_hcd
;
5618 } else if (PTR_ERR(fotg210
->pclk
) == -EPROBE_DEFER
) {
5620 * Percolate deferrals, for anything else,
5621 * just live without the clocking.
5623 retval
= PTR_ERR(fotg210
->pclk
);
5624 goto failed_dis_clk
;
5627 retval
= fotg210_setup(hcd
);
5629 goto failed_dis_clk
;
5631 fotg210_init(fotg210
);
5633 retval
= usb_add_hcd(hcd
, irq
, IRQF_SHARED
);
5635 dev_err(dev
, "failed to add hcd with err %d\n", retval
);
5636 goto failed_dis_clk
;
5638 device_wakeup_enable(hcd
->self
.controller
);
5639 platform_set_drvdata(pdev
, hcd
);
5644 if (!IS_ERR(fotg210
->pclk
))
5645 clk_disable_unprepare(fotg210
->pclk
);
5649 dev_err(dev
, "init %s fail, %d\n", dev_name(dev
), retval
);
5654 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5655 * @dev: USB Host Controller being removed
5658 static int fotg210_hcd_remove(struct platform_device
*pdev
)
5660 struct usb_hcd
*hcd
= platform_get_drvdata(pdev
);
5661 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5663 if (!IS_ERR(fotg210
->pclk
))
5664 clk_disable_unprepare(fotg210
->pclk
);
5666 usb_remove_hcd(hcd
);
5672 static struct platform_driver fotg210_hcd_driver
= {
5674 .name
= "fotg210-hcd",
5676 .probe
= fotg210_hcd_probe
,
5677 .remove
= fotg210_hcd_remove
,
5680 static int __init
fotg210_hcd_init(void)
5687 pr_info("%s: " DRIVER_DESC
"\n", hcd_name
);
5688 set_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5689 if (test_bit(USB_UHCI_LOADED
, &usb_hcds_loaded
) ||
5690 test_bit(USB_OHCI_LOADED
, &usb_hcds_loaded
))
5691 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5693 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5694 hcd_name
, sizeof(struct fotg210_qh
),
5695 sizeof(struct fotg210_qtd
),
5696 sizeof(struct fotg210_itd
));
5698 fotg210_debug_root
= debugfs_create_dir("fotg210", usb_debug_root
);
5700 retval
= platform_driver_register(&fotg210_hcd_driver
);
5706 debugfs_remove(fotg210_debug_root
);
5707 fotg210_debug_root
= NULL
;
5709 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5712 module_init(fotg210_hcd_init
);
5714 static void __exit
fotg210_hcd_cleanup(void)
5716 platform_driver_unregister(&fotg210_hcd_driver
);
5717 debugfs_remove(fotg210_debug_root
);
5718 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5720 module_exit(fotg210_hcd_cleanup
);