dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / usb / host / fotg210-hcd.c
blob0da68df259c8600644db989f247904822002e9b7
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
4 * Copyright (c) 2013 Faraday Technology Corporation
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
10 * Most of code borrowed from the Linux-3.7 EHCI driver
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/dmapool.h>
15 #include <linux/kernel.h>
16 #include <linux/delay.h>
17 #include <linux/ioport.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/hrtimer.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb.h>
26 #include <linux/usb/hcd.h>
27 #include <linux/moduleparam.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/platform_device.h>
33 #include <linux/io.h>
34 #include <linux/clk.h>
36 #include <asm/byteorder.h>
37 #include <asm/irq.h>
38 #include <asm/unaligned.h>
40 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
41 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
42 static const char hcd_name[] = "fotg210_hcd";
44 #undef FOTG210_URB_TRACE
45 #define FOTG210_STATS
47 /* magic numbers that can affect system performance */
48 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
49 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
50 #define FOTG210_TUNE_RL_TT 0
51 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
52 #define FOTG210_TUNE_MULT_TT 1
54 /* Some drivers think it's safe to schedule isochronous transfers more than 256
55 * ms into the future (partly as a result of an old bug in the scheduling
56 * code). In an attempt to avoid trouble, we will use a minimum scheduling
57 * length of 512 frames instead of 256.
59 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
61 /* Initial IRQ latency: faster than hw default */
62 static int log2_irq_thresh; /* 0 to 6 */
63 module_param(log2_irq_thresh, int, S_IRUGO);
64 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
66 /* initial park setting: slower than hw default */
67 static unsigned park;
68 module_param(park, uint, S_IRUGO);
69 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
71 /* for link power management(LPM) feature */
72 static unsigned int hird;
73 module_param(hird, int, S_IRUGO);
74 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
76 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
78 #include "fotg210.h"
80 #define fotg210_dbg(fotg210, fmt, args...) \
81 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
82 #define fotg210_err(fotg210, fmt, args...) \
83 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
84 #define fotg210_info(fotg210, fmt, args...) \
85 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
86 #define fotg210_warn(fotg210, fmt, args...) \
87 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
89 /* check the values in the HCSPARAMS register (host controller _Structural_
90 * parameters) see EHCI spec, Table 2-4 for each value
92 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
94 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
96 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
97 HCS_N_PORTS(params));
100 /* check the values in the HCCPARAMS register (host controller _Capability_
101 * parameters) see EHCI Spec, Table 2-5 for each value
103 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
105 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
107 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
108 params,
109 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
110 HCC_CANPARK(params) ? " park" : "");
113 static void __maybe_unused
114 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
116 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
117 hc32_to_cpup(fotg210, &qtd->hw_next),
118 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
119 hc32_to_cpup(fotg210, &qtd->hw_token),
120 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
121 if (qtd->hw_buf[1])
122 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
123 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
124 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
125 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
126 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
129 static void __maybe_unused
130 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
132 struct fotg210_qh_hw *hw = qh->hw;
134 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
135 hw->hw_next, hw->hw_info1, hw->hw_info2,
136 hw->hw_current);
138 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
141 static void __maybe_unused
142 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
144 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
145 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
146 itd->urb);
148 fotg210_dbg(fotg210,
149 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
150 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
151 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
152 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
153 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
154 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
155 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
156 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
157 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
159 fotg210_dbg(fotg210,
160 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
161 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
162 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
163 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
164 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
165 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
166 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
167 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
169 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
170 itd->index[0], itd->index[1], itd->index[2],
171 itd->index[3], itd->index[4], itd->index[5],
172 itd->index[6], itd->index[7]);
175 static int __maybe_unused
176 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
178 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
179 label, label[0] ? " " : "", status,
180 (status & STS_ASS) ? " Async" : "",
181 (status & STS_PSS) ? " Periodic" : "",
182 (status & STS_RECL) ? " Recl" : "",
183 (status & STS_HALT) ? " Halt" : "",
184 (status & STS_IAA) ? " IAA" : "",
185 (status & STS_FATAL) ? " FATAL" : "",
186 (status & STS_FLR) ? " FLR" : "",
187 (status & STS_PCD) ? " PCD" : "",
188 (status & STS_ERR) ? " ERR" : "",
189 (status & STS_INT) ? " INT" : "");
192 static int __maybe_unused
193 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
195 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
196 label, label[0] ? " " : "", enable,
197 (enable & STS_IAA) ? " IAA" : "",
198 (enable & STS_FATAL) ? " FATAL" : "",
199 (enable & STS_FLR) ? " FLR" : "",
200 (enable & STS_PCD) ? " PCD" : "",
201 (enable & STS_ERR) ? " ERR" : "",
202 (enable & STS_INT) ? " INT" : "");
205 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
207 static int dbg_command_buf(char *buf, unsigned len, const char *label,
208 u32 command)
210 return scnprintf(buf, len,
211 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
212 label, label[0] ? " " : "", command,
213 (command & CMD_PARK) ? " park" : "(park)",
214 CMD_PARK_CNT(command),
215 (command >> 16) & 0x3f,
216 (command & CMD_IAAD) ? " IAAD" : "",
217 (command & CMD_ASE) ? " Async" : "",
218 (command & CMD_PSE) ? " Periodic" : "",
219 fls_strings[(command >> 2) & 0x3],
220 (command & CMD_RESET) ? " Reset" : "",
221 (command & CMD_RUN) ? "RUN" : "HALT");
224 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
225 u32 status)
227 char *sig;
229 /* signaling state */
230 switch (status & (3 << 10)) {
231 case 0 << 10:
232 sig = "se0";
233 break;
234 case 1 << 10:
235 sig = "k";
236 break; /* low speed */
237 case 2 << 10:
238 sig = "j";
239 break;
240 default:
241 sig = "?";
242 break;
245 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
246 label, label[0] ? " " : "", port, status,
247 status >> 25, /*device address */
248 sig,
249 (status & PORT_RESET) ? " RESET" : "",
250 (status & PORT_SUSPEND) ? " SUSPEND" : "",
251 (status & PORT_RESUME) ? " RESUME" : "",
252 (status & PORT_PEC) ? " PEC" : "",
253 (status & PORT_PE) ? " PE" : "",
254 (status & PORT_CSC) ? " CSC" : "",
255 (status & PORT_CONNECT) ? " CONNECT" : "");
257 return buf;
260 /* functions have the "wrong" filename when they're output... */
261 #define dbg_status(fotg210, label, status) { \
262 char _buf[80]; \
263 dbg_status_buf(_buf, sizeof(_buf), label, status); \
264 fotg210_dbg(fotg210, "%s\n", _buf); \
267 #define dbg_cmd(fotg210, label, command) { \
268 char _buf[80]; \
269 dbg_command_buf(_buf, sizeof(_buf), label, command); \
270 fotg210_dbg(fotg210, "%s\n", _buf); \
273 #define dbg_port(fotg210, label, port, status) { \
274 char _buf[80]; \
275 fotg210_dbg(fotg210, "%s\n", \
276 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
279 /* troubleshooting help: expose state in debugfs */
280 static int debug_async_open(struct inode *, struct file *);
281 static int debug_periodic_open(struct inode *, struct file *);
282 static int debug_registers_open(struct inode *, struct file *);
283 static int debug_async_open(struct inode *, struct file *);
285 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
286 static int debug_close(struct inode *, struct file *);
288 static const struct file_operations debug_async_fops = {
289 .owner = THIS_MODULE,
290 .open = debug_async_open,
291 .read = debug_output,
292 .release = debug_close,
293 .llseek = default_llseek,
295 static const struct file_operations debug_periodic_fops = {
296 .owner = THIS_MODULE,
297 .open = debug_periodic_open,
298 .read = debug_output,
299 .release = debug_close,
300 .llseek = default_llseek,
302 static const struct file_operations debug_registers_fops = {
303 .owner = THIS_MODULE,
304 .open = debug_registers_open,
305 .read = debug_output,
306 .release = debug_close,
307 .llseek = default_llseek,
310 static struct dentry *fotg210_debug_root;
312 struct debug_buffer {
313 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
314 struct usb_bus *bus;
315 struct mutex mutex; /* protect filling of buffer */
316 size_t count; /* number of characters filled into buffer */
317 char *output_buf;
318 size_t alloc_size;
321 static inline char speed_char(u32 scratch)
323 switch (scratch & (3 << 12)) {
324 case QH_FULL_SPEED:
325 return 'f';
327 case QH_LOW_SPEED:
328 return 'l';
330 case QH_HIGH_SPEED:
331 return 'h';
333 default:
334 return '?';
338 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
340 __u32 v = hc32_to_cpu(fotg210, token);
342 if (v & QTD_STS_ACTIVE)
343 return '*';
344 if (v & QTD_STS_HALT)
345 return '-';
346 if (!IS_SHORT_READ(v))
347 return ' ';
348 /* tries to advance through hw_alt_next */
349 return '/';
352 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
353 char **nextp, unsigned *sizep)
355 u32 scratch;
356 u32 hw_curr;
357 struct fotg210_qtd *td;
358 unsigned temp;
359 unsigned size = *sizep;
360 char *next = *nextp;
361 char mark;
362 __le32 list_end = FOTG210_LIST_END(fotg210);
363 struct fotg210_qh_hw *hw = qh->hw;
365 if (hw->hw_qtd_next == list_end) /* NEC does this */
366 mark = '@';
367 else
368 mark = token_mark(fotg210, hw->hw_token);
369 if (mark == '/') { /* qh_alt_next controls qh advance? */
370 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
371 fotg210->async->hw->hw_alt_next)
372 mark = '#'; /* blocked */
373 else if (hw->hw_alt_next == list_end)
374 mark = '.'; /* use hw_qtd_next */
375 /* else alt_next points to some other qtd */
377 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
378 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
379 temp = scnprintf(next, size,
380 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
381 qh, scratch & 0x007f,
382 speed_char(scratch),
383 (scratch >> 8) & 0x000f,
384 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
385 hc32_to_cpup(fotg210, &hw->hw_token), mark,
386 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
387 ? "data1" : "data0",
388 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
389 size -= temp;
390 next += temp;
392 /* hc may be modifying the list as we read it ... */
393 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
394 scratch = hc32_to_cpup(fotg210, &td->hw_token);
395 mark = ' ';
396 if (hw_curr == td->qtd_dma)
397 mark = '*';
398 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
399 mark = '+';
400 else if (QTD_LENGTH(scratch)) {
401 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
402 mark = '#';
403 else if (td->hw_alt_next != list_end)
404 mark = '/';
406 temp = snprintf(next, size,
407 "\n\t%p%c%s len=%d %08x urb %p",
408 td, mark, ({ char *tmp;
409 switch ((scratch>>8)&0x03) {
410 case 0:
411 tmp = "out";
412 break;
413 case 1:
414 tmp = "in";
415 break;
416 case 2:
417 tmp = "setup";
418 break;
419 default:
420 tmp = "?";
421 break;
422 } tmp; }),
423 (scratch >> 16) & 0x7fff,
424 scratch,
425 td->urb);
426 if (size < temp)
427 temp = size;
428 size -= temp;
429 next += temp;
430 if (temp == size)
431 goto done;
434 temp = snprintf(next, size, "\n");
435 if (size < temp)
436 temp = size;
438 size -= temp;
439 next += temp;
441 done:
442 *sizep = size;
443 *nextp = next;
446 static ssize_t fill_async_buffer(struct debug_buffer *buf)
448 struct usb_hcd *hcd;
449 struct fotg210_hcd *fotg210;
450 unsigned long flags;
451 unsigned temp, size;
452 char *next;
453 struct fotg210_qh *qh;
455 hcd = bus_to_hcd(buf->bus);
456 fotg210 = hcd_to_fotg210(hcd);
457 next = buf->output_buf;
458 size = buf->alloc_size;
460 *next = 0;
462 /* dumps a snapshot of the async schedule.
463 * usually empty except for long-term bulk reads, or head.
464 * one QH per line, and TDs we know about
466 spin_lock_irqsave(&fotg210->lock, flags);
467 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
468 qh = qh->qh_next.qh)
469 qh_lines(fotg210, qh, &next, &size);
470 if (fotg210->async_unlink && size > 0) {
471 temp = scnprintf(next, size, "\nunlink =\n");
472 size -= temp;
473 next += temp;
475 for (qh = fotg210->async_unlink; size > 0 && qh;
476 qh = qh->unlink_next)
477 qh_lines(fotg210, qh, &next, &size);
479 spin_unlock_irqrestore(&fotg210->lock, flags);
481 return strlen(buf->output_buf);
484 /* count tds, get ep direction */
485 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
486 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
488 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
489 struct fotg210_qtd *qtd;
490 char *type = "";
491 unsigned temp = 0;
493 /* count tds, get ep direction */
494 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
495 temp++;
496 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
497 case 0:
498 type = "out";
499 continue;
500 case 1:
501 type = "in";
502 continue;
506 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
507 speed_char(scratch), scratch & 0x007f,
508 (scratch >> 8) & 0x000f, type, qh->usecs,
509 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
512 #define DBG_SCHED_LIMIT 64
513 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
515 struct usb_hcd *hcd;
516 struct fotg210_hcd *fotg210;
517 unsigned long flags;
518 union fotg210_shadow p, *seen;
519 unsigned temp, size, seen_count;
520 char *next;
521 unsigned i;
522 __hc32 tag;
524 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
525 if (!seen)
526 return 0;
528 seen_count = 0;
530 hcd = bus_to_hcd(buf->bus);
531 fotg210 = hcd_to_fotg210(hcd);
532 next = buf->output_buf;
533 size = buf->alloc_size;
535 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
536 size -= temp;
537 next += temp;
539 /* dump a snapshot of the periodic schedule.
540 * iso changes, interrupt usually doesn't.
542 spin_lock_irqsave(&fotg210->lock, flags);
543 for (i = 0; i < fotg210->periodic_size; i++) {
544 p = fotg210->pshadow[i];
545 if (likely(!p.ptr))
546 continue;
548 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
550 temp = scnprintf(next, size, "%4d: ", i);
551 size -= temp;
552 next += temp;
554 do {
555 struct fotg210_qh_hw *hw;
557 switch (hc32_to_cpu(fotg210, tag)) {
558 case Q_TYPE_QH:
559 hw = p.qh->hw;
560 temp = scnprintf(next, size, " qh%d-%04x/%p",
561 p.qh->period,
562 hc32_to_cpup(fotg210,
563 &hw->hw_info2)
564 /* uframe masks */
565 & (QH_CMASK | QH_SMASK),
566 p.qh);
567 size -= temp;
568 next += temp;
569 /* don't repeat what follows this qh */
570 for (temp = 0; temp < seen_count; temp++) {
571 if (seen[temp].ptr != p.ptr)
572 continue;
573 if (p.qh->qh_next.ptr) {
574 temp = scnprintf(next, size,
575 " ...");
576 size -= temp;
577 next += temp;
579 break;
581 /* show more info the first time around */
582 if (temp == seen_count) {
583 temp = output_buf_tds_dir(next,
584 fotg210, hw,
585 p.qh, size);
587 if (seen_count < DBG_SCHED_LIMIT)
588 seen[seen_count++].qh = p.qh;
589 } else
590 temp = 0;
591 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
592 p = p.qh->qh_next;
593 break;
594 case Q_TYPE_FSTN:
595 temp = scnprintf(next, size,
596 " fstn-%8x/%p",
597 p.fstn->hw_prev, p.fstn);
598 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
599 p = p.fstn->fstn_next;
600 break;
601 case Q_TYPE_ITD:
602 temp = scnprintf(next, size,
603 " itd/%p", p.itd);
604 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
605 p = p.itd->itd_next;
606 break;
608 size -= temp;
609 next += temp;
610 } while (p.ptr);
612 temp = scnprintf(next, size, "\n");
613 size -= temp;
614 next += temp;
616 spin_unlock_irqrestore(&fotg210->lock, flags);
617 kfree(seen);
619 return buf->alloc_size - size;
621 #undef DBG_SCHED_LIMIT
623 static const char *rh_state_string(struct fotg210_hcd *fotg210)
625 switch (fotg210->rh_state) {
626 case FOTG210_RH_HALTED:
627 return "halted";
628 case FOTG210_RH_SUSPENDED:
629 return "suspended";
630 case FOTG210_RH_RUNNING:
631 return "running";
632 case FOTG210_RH_STOPPING:
633 return "stopping";
635 return "?";
638 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
640 struct usb_hcd *hcd;
641 struct fotg210_hcd *fotg210;
642 unsigned long flags;
643 unsigned temp, size, i;
644 char *next, scratch[80];
645 static const char fmt[] = "%*s\n";
646 static const char label[] = "";
648 hcd = bus_to_hcd(buf->bus);
649 fotg210 = hcd_to_fotg210(hcd);
650 next = buf->output_buf;
651 size = buf->alloc_size;
653 spin_lock_irqsave(&fotg210->lock, flags);
655 if (!HCD_HW_ACCESSIBLE(hcd)) {
656 size = scnprintf(next, size,
657 "bus %s, device %s\n"
658 "%s\n"
659 "SUSPENDED(no register access)\n",
660 hcd->self.controller->bus->name,
661 dev_name(hcd->self.controller),
662 hcd->product_desc);
663 goto done;
666 /* Capability Registers */
667 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
668 &fotg210->caps->hc_capbase));
669 temp = scnprintf(next, size,
670 "bus %s, device %s\n"
671 "%s\n"
672 "EHCI %x.%02x, rh state %s\n",
673 hcd->self.controller->bus->name,
674 dev_name(hcd->self.controller),
675 hcd->product_desc,
676 i >> 8, i & 0x0ff, rh_state_string(fotg210));
677 size -= temp;
678 next += temp;
680 /* FIXME interpret both types of params */
681 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
682 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
683 size -= temp;
684 next += temp;
686 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
687 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
688 size -= temp;
689 next += temp;
691 /* Operational Registers */
692 temp = dbg_status_buf(scratch, sizeof(scratch), label,
693 fotg210_readl(fotg210, &fotg210->regs->status));
694 temp = scnprintf(next, size, fmt, temp, scratch);
695 size -= temp;
696 next += temp;
698 temp = dbg_command_buf(scratch, sizeof(scratch), label,
699 fotg210_readl(fotg210, &fotg210->regs->command));
700 temp = scnprintf(next, size, fmt, temp, scratch);
701 size -= temp;
702 next += temp;
704 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
705 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
706 temp = scnprintf(next, size, fmt, temp, scratch);
707 size -= temp;
708 next += temp;
710 temp = scnprintf(next, size, "uframe %04x\n",
711 fotg210_read_frame_index(fotg210));
712 size -= temp;
713 next += temp;
715 if (fotg210->async_unlink) {
716 temp = scnprintf(next, size, "async unlink qh %p\n",
717 fotg210->async_unlink);
718 size -= temp;
719 next += temp;
722 #ifdef FOTG210_STATS
723 temp = scnprintf(next, size,
724 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
725 fotg210->stats.normal, fotg210->stats.error,
726 fotg210->stats.iaa, fotg210->stats.lost_iaa);
727 size -= temp;
728 next += temp;
730 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
731 fotg210->stats.complete, fotg210->stats.unlink);
732 size -= temp;
733 next += temp;
734 #endif
736 done:
737 spin_unlock_irqrestore(&fotg210->lock, flags);
739 return buf->alloc_size - size;
742 static struct debug_buffer
743 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
745 struct debug_buffer *buf;
747 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
749 if (buf) {
750 buf->bus = bus;
751 buf->fill_func = fill_func;
752 mutex_init(&buf->mutex);
753 buf->alloc_size = PAGE_SIZE;
756 return buf;
759 static int fill_buffer(struct debug_buffer *buf)
761 int ret = 0;
763 if (!buf->output_buf)
764 buf->output_buf = vmalloc(buf->alloc_size);
766 if (!buf->output_buf) {
767 ret = -ENOMEM;
768 goto out;
771 ret = buf->fill_func(buf);
773 if (ret >= 0) {
774 buf->count = ret;
775 ret = 0;
778 out:
779 return ret;
782 static ssize_t debug_output(struct file *file, char __user *user_buf,
783 size_t len, loff_t *offset)
785 struct debug_buffer *buf = file->private_data;
786 int ret = 0;
788 mutex_lock(&buf->mutex);
789 if (buf->count == 0) {
790 ret = fill_buffer(buf);
791 if (ret != 0) {
792 mutex_unlock(&buf->mutex);
793 goto out;
796 mutex_unlock(&buf->mutex);
798 ret = simple_read_from_buffer(user_buf, len, offset,
799 buf->output_buf, buf->count);
801 out:
802 return ret;
806 static int debug_close(struct inode *inode, struct file *file)
808 struct debug_buffer *buf = file->private_data;
810 if (buf) {
811 vfree(buf->output_buf);
812 kfree(buf);
815 return 0;
817 static int debug_async_open(struct inode *inode, struct file *file)
819 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
821 return file->private_data ? 0 : -ENOMEM;
824 static int debug_periodic_open(struct inode *inode, struct file *file)
826 struct debug_buffer *buf;
828 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
829 if (!buf)
830 return -ENOMEM;
832 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
833 file->private_data = buf;
834 return 0;
837 static int debug_registers_open(struct inode *inode, struct file *file)
839 file->private_data = alloc_buffer(inode->i_private,
840 fill_registers_buffer);
842 return file->private_data ? 0 : -ENOMEM;
845 static inline void create_debug_files(struct fotg210_hcd *fotg210)
847 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
848 struct dentry *root;
850 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
851 fotg210->debug_dir = root;
853 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
854 debugfs_create_file("periodic", S_IRUGO, root, bus,
855 &debug_periodic_fops);
856 debugfs_create_file("registers", S_IRUGO, root, bus,
857 &debug_registers_fops);
860 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
862 debugfs_remove_recursive(fotg210->debug_dir);
865 /* handshake - spin reading hc until handshake completes or fails
866 * @ptr: address of hc register to be read
867 * @mask: bits to look at in result of read
868 * @done: value of those bits when handshake succeeds
869 * @usec: timeout in microseconds
871 * Returns negative errno, or zero on success
873 * Success happens when the "mask" bits have the specified value (hardware
874 * handshake done). There are two failure modes: "usec" have passed (major
875 * hardware flakeout), or the register reads as all-ones (hardware removed).
877 * That last failure should_only happen in cases like physical cardbus eject
878 * before driver shutdown. But it also seems to be caused by bugs in cardbus
879 * bridge shutdown: shutting down the bridge before the devices using it.
881 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
882 u32 mask, u32 done, int usec)
884 u32 result;
886 do {
887 result = fotg210_readl(fotg210, ptr);
888 if (result == ~(u32)0) /* card removed */
889 return -ENODEV;
890 result &= mask;
891 if (result == done)
892 return 0;
893 udelay(1);
894 usec--;
895 } while (usec > 0);
896 return -ETIMEDOUT;
899 /* Force HC to halt state from unknown (EHCI spec section 2.3).
900 * Must be called with interrupts enabled and the lock not held.
902 static int fotg210_halt(struct fotg210_hcd *fotg210)
904 u32 temp;
906 spin_lock_irq(&fotg210->lock);
908 /* disable any irqs left enabled by previous code */
909 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
912 * This routine gets called during probe before fotg210->command
913 * has been initialized, so we can't rely on its value.
915 fotg210->command &= ~CMD_RUN;
916 temp = fotg210_readl(fotg210, &fotg210->regs->command);
917 temp &= ~(CMD_RUN | CMD_IAAD);
918 fotg210_writel(fotg210, temp, &fotg210->regs->command);
920 spin_unlock_irq(&fotg210->lock);
921 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
923 return handshake(fotg210, &fotg210->regs->status,
924 STS_HALT, STS_HALT, 16 * 125);
927 /* Reset a non-running (STS_HALT == 1) controller.
928 * Must be called with interrupts enabled and the lock not held.
930 static int fotg210_reset(struct fotg210_hcd *fotg210)
932 int retval;
933 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
935 /* If the EHCI debug controller is active, special care must be
936 * taken before and after a host controller reset
938 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
939 fotg210->debug = NULL;
941 command |= CMD_RESET;
942 dbg_cmd(fotg210, "reset", command);
943 fotg210_writel(fotg210, command, &fotg210->regs->command);
944 fotg210->rh_state = FOTG210_RH_HALTED;
945 fotg210->next_statechange = jiffies;
946 retval = handshake(fotg210, &fotg210->regs->command,
947 CMD_RESET, 0, 250 * 1000);
949 if (retval)
950 return retval;
952 if (fotg210->debug)
953 dbgp_external_startup(fotg210_to_hcd(fotg210));
955 fotg210->port_c_suspend = fotg210->suspended_ports =
956 fotg210->resuming_ports = 0;
957 return retval;
960 /* Idle the controller (turn off the schedules).
961 * Must be called with interrupts enabled and the lock not held.
963 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
965 u32 temp;
967 if (fotg210->rh_state != FOTG210_RH_RUNNING)
968 return;
970 /* wait for any schedule enables/disables to take effect */
971 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
972 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
973 16 * 125);
975 /* then disable anything that's still active */
976 spin_lock_irq(&fotg210->lock);
977 fotg210->command &= ~(CMD_ASE | CMD_PSE);
978 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
979 spin_unlock_irq(&fotg210->lock);
981 /* hardware can take 16 microframes to turn off ... */
982 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
983 16 * 125);
986 static void end_unlink_async(struct fotg210_hcd *fotg210);
987 static void unlink_empty_async(struct fotg210_hcd *fotg210);
988 static void fotg210_work(struct fotg210_hcd *fotg210);
989 static void start_unlink_intr(struct fotg210_hcd *fotg210,
990 struct fotg210_qh *qh);
991 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
993 /* Set a bit in the USBCMD register */
994 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
996 fotg210->command |= bit;
997 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
999 /* unblock posted write */
1000 fotg210_readl(fotg210, &fotg210->regs->command);
1003 /* Clear a bit in the USBCMD register */
1004 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1006 fotg210->command &= ~bit;
1007 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1009 /* unblock posted write */
1010 fotg210_readl(fotg210, &fotg210->regs->command);
1013 /* EHCI timer support... Now using hrtimers.
1015 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1016 * the timer routine runs, it checks each possible event; events that are
1017 * currently enabled and whose expiration time has passed get handled.
1018 * The set of enabled events is stored as a collection of bitflags in
1019 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1020 * increasing delay values (ranging between 1 ms and 100 ms).
1022 * Rather than implementing a sorted list or tree of all pending events,
1023 * we keep track only of the lowest-numbered pending event, in
1024 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1025 * expiration time is set to the timeout value for this event.
1027 * As a result, events might not get handled right away; the actual delay
1028 * could be anywhere up to twice the requested delay. This doesn't
1029 * matter, because none of the events are especially time-critical. The
1030 * ones that matter most all have a delay of 1 ms, so they will be
1031 * handled after 2 ms at most, which is okay. In addition to this, we
1032 * allow for an expiration range of 1 ms.
1035 /* Delay lengths for the hrtimer event types.
1036 * Keep this list sorted by delay length, in the same order as
1037 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1039 static unsigned event_delays_ns[] = {
1040 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1041 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1042 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1043 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1044 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1045 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1046 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1047 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1048 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1049 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1052 /* Enable a pending hrtimer event */
1053 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1054 bool resched)
1056 ktime_t *timeout = &fotg210->hr_timeouts[event];
1058 if (resched)
1059 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1060 fotg210->enabled_hrtimer_events |= (1 << event);
1062 /* Track only the lowest-numbered pending event */
1063 if (event < fotg210->next_hrtimer_event) {
1064 fotg210->next_hrtimer_event = event;
1065 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1066 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1071 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1072 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1074 unsigned actual, want;
1076 /* Don't enable anything if the controller isn't running (e.g., died) */
1077 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1078 return;
1080 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1081 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1083 if (want != actual) {
1085 /* Poll again later, but give up after about 20 ms */
1086 if (fotg210->ASS_poll_count++ < 20) {
1087 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1088 true);
1089 return;
1091 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1092 want, actual);
1094 fotg210->ASS_poll_count = 0;
1096 /* The status is up-to-date; restart or stop the schedule as needed */
1097 if (want == 0) { /* Stopped */
1098 if (fotg210->async_count > 0)
1099 fotg210_set_command_bit(fotg210, CMD_ASE);
1101 } else { /* Running */
1102 if (fotg210->async_count == 0) {
1104 /* Turn off the schedule after a while */
1105 fotg210_enable_event(fotg210,
1106 FOTG210_HRTIMER_DISABLE_ASYNC,
1107 true);
1112 /* Turn off the async schedule after a brief delay */
1113 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1115 fotg210_clear_command_bit(fotg210, CMD_ASE);
1119 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1120 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1122 unsigned actual, want;
1124 /* Don't do anything if the controller isn't running (e.g., died) */
1125 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1126 return;
1128 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1129 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1131 if (want != actual) {
1133 /* Poll again later, but give up after about 20 ms */
1134 if (fotg210->PSS_poll_count++ < 20) {
1135 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1136 true);
1137 return;
1139 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1140 want, actual);
1142 fotg210->PSS_poll_count = 0;
1144 /* The status is up-to-date; restart or stop the schedule as needed */
1145 if (want == 0) { /* Stopped */
1146 if (fotg210->periodic_count > 0)
1147 fotg210_set_command_bit(fotg210, CMD_PSE);
1149 } else { /* Running */
1150 if (fotg210->periodic_count == 0) {
1152 /* Turn off the schedule after a while */
1153 fotg210_enable_event(fotg210,
1154 FOTG210_HRTIMER_DISABLE_PERIODIC,
1155 true);
1160 /* Turn off the periodic schedule after a brief delay */
1161 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1163 fotg210_clear_command_bit(fotg210, CMD_PSE);
1167 /* Poll the STS_HALT status bit; see when a dead controller stops */
1168 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1170 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1172 /* Give up after a few milliseconds */
1173 if (fotg210->died_poll_count++ < 5) {
1174 /* Try again later */
1175 fotg210_enable_event(fotg210,
1176 FOTG210_HRTIMER_POLL_DEAD, true);
1177 return;
1179 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1182 /* Clean up the mess */
1183 fotg210->rh_state = FOTG210_RH_HALTED;
1184 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1185 fotg210_work(fotg210);
1186 end_unlink_async(fotg210);
1188 /* Not in process context, so don't try to reset the controller */
1192 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1193 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1195 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1198 * Process all the QHs on the intr_unlink list that were added
1199 * before the current unlink cycle began. The list is in
1200 * temporal order, so stop when we reach the first entry in the
1201 * current cycle. But if the root hub isn't running then
1202 * process all the QHs on the list.
1204 fotg210->intr_unlinking = true;
1205 while (fotg210->intr_unlink) {
1206 struct fotg210_qh *qh = fotg210->intr_unlink;
1208 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1209 break;
1210 fotg210->intr_unlink = qh->unlink_next;
1211 qh->unlink_next = NULL;
1212 end_unlink_intr(fotg210, qh);
1215 /* Handle remaining entries later */
1216 if (fotg210->intr_unlink) {
1217 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1218 true);
1219 ++fotg210->intr_unlink_cycle;
1221 fotg210->intr_unlinking = false;
1225 /* Start another free-iTDs/siTDs cycle */
1226 static void start_free_itds(struct fotg210_hcd *fotg210)
1228 if (!(fotg210->enabled_hrtimer_events &
1229 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1230 fotg210->last_itd_to_free = list_entry(
1231 fotg210->cached_itd_list.prev,
1232 struct fotg210_itd, itd_list);
1233 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1237 /* Wait for controller to stop using old iTDs and siTDs */
1238 static void end_free_itds(struct fotg210_hcd *fotg210)
1240 struct fotg210_itd *itd, *n;
1242 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1243 fotg210->last_itd_to_free = NULL;
1245 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1246 list_del(&itd->itd_list);
1247 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1248 if (itd == fotg210->last_itd_to_free)
1249 break;
1252 if (!list_empty(&fotg210->cached_itd_list))
1253 start_free_itds(fotg210);
1257 /* Handle lost (or very late) IAA interrupts */
1258 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1260 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1261 return;
1264 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1265 * So we need this watchdog, but must protect it against both
1266 * (a) SMP races against real IAA firing and retriggering, and
1267 * (b) clean HC shutdown, when IAA watchdog was pending.
1269 if (fotg210->async_iaa) {
1270 u32 cmd, status;
1272 /* If we get here, IAA is *REALLY* late. It's barely
1273 * conceivable that the system is so busy that CMD_IAAD
1274 * is still legitimately set, so let's be sure it's
1275 * clear before we read STS_IAA. (The HC should clear
1276 * CMD_IAAD when it sets STS_IAA.)
1278 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1281 * If IAA is set here it either legitimately triggered
1282 * after the watchdog timer expired (_way_ late, so we'll
1283 * still count it as lost) ... or a silicon erratum:
1284 * - VIA seems to set IAA without triggering the IRQ;
1285 * - IAAD potentially cleared without setting IAA.
1287 status = fotg210_readl(fotg210, &fotg210->regs->status);
1288 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1289 INCR(fotg210->stats.lost_iaa);
1290 fotg210_writel(fotg210, STS_IAA,
1291 &fotg210->regs->status);
1294 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1295 status, cmd);
1296 end_unlink_async(fotg210);
1301 /* Enable the I/O watchdog, if appropriate */
1302 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1304 /* Not needed if the controller isn't running or it's already enabled */
1305 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1306 (fotg210->enabled_hrtimer_events &
1307 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1308 return;
1311 * Isochronous transfers always need the watchdog.
1312 * For other sorts we use it only if the flag is set.
1314 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1315 fotg210->async_count + fotg210->intr_count > 0))
1316 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1317 true);
1321 /* Handler functions for the hrtimer event types.
1322 * Keep this array in the same order as the event types indexed by
1323 * enum fotg210_hrtimer_event in fotg210.h.
1325 static void (*event_handlers[])(struct fotg210_hcd *) = {
1326 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1327 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1328 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1329 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1330 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1331 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1332 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1333 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1334 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1335 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1338 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1340 struct fotg210_hcd *fotg210 =
1341 container_of(t, struct fotg210_hcd, hrtimer);
1342 ktime_t now;
1343 unsigned long events;
1344 unsigned long flags;
1345 unsigned e;
1347 spin_lock_irqsave(&fotg210->lock, flags);
1349 events = fotg210->enabled_hrtimer_events;
1350 fotg210->enabled_hrtimer_events = 0;
1351 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1354 * Check each pending event. If its time has expired, handle
1355 * the event; otherwise re-enable it.
1357 now = ktime_get();
1358 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1359 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1360 event_handlers[e](fotg210);
1361 else
1362 fotg210_enable_event(fotg210, e, false);
1365 spin_unlock_irqrestore(&fotg210->lock, flags);
1366 return HRTIMER_NORESTART;
1369 #define fotg210_bus_suspend NULL
1370 #define fotg210_bus_resume NULL
1372 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1373 u32 __iomem *status_reg, int port_status)
1375 if (!(port_status & PORT_CONNECT))
1376 return port_status;
1378 /* if reset finished and it's still not enabled -- handoff */
1379 if (!(port_status & PORT_PE))
1380 /* with integrated TT, there's nobody to hand it to! */
1381 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1382 index + 1);
1383 else
1384 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1385 index + 1);
1387 return port_status;
1391 /* build "status change" packet (one or two bytes) from HC registers */
1393 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1395 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1396 u32 temp, status;
1397 u32 mask;
1398 int retval = 1;
1399 unsigned long flags;
1401 /* init status to no-changes */
1402 buf[0] = 0;
1404 /* Inform the core about resumes-in-progress by returning
1405 * a non-zero value even if there are no status changes.
1407 status = fotg210->resuming_ports;
1409 mask = PORT_CSC | PORT_PEC;
1410 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1412 /* no hub change reports (bit 0) for now (power, ...) */
1414 /* port N changes (bit N)? */
1415 spin_lock_irqsave(&fotg210->lock, flags);
1417 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1420 * Return status information even for ports with OWNER set.
1421 * Otherwise hub_wq wouldn't see the disconnect event when a
1422 * high-speed device is switched over to the companion
1423 * controller by the user.
1426 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1427 (fotg210->reset_done[0] &&
1428 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1429 buf[0] |= 1 << 1;
1430 status = STS_PCD;
1432 /* FIXME autosuspend idle root hubs */
1433 spin_unlock_irqrestore(&fotg210->lock, flags);
1434 return status ? retval : 0;
1437 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1438 struct usb_hub_descriptor *desc)
1440 int ports = HCS_N_PORTS(fotg210->hcs_params);
1441 u16 temp;
1443 desc->bDescriptorType = USB_DT_HUB;
1444 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1445 desc->bHubContrCurrent = 0;
1447 desc->bNbrPorts = ports;
1448 temp = 1 + (ports / 8);
1449 desc->bDescLength = 7 + 2 * temp;
1451 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1452 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1453 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1455 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1456 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1457 desc->wHubCharacteristics = cpu_to_le16(temp);
1460 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1461 u16 wIndex, char *buf, u16 wLength)
1463 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1464 int ports = HCS_N_PORTS(fotg210->hcs_params);
1465 u32 __iomem *status_reg = &fotg210->regs->port_status;
1466 u32 temp, temp1, status;
1467 unsigned long flags;
1468 int retval = 0;
1469 unsigned selector;
1472 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1473 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1474 * (track current state ourselves) ... blink for diagnostics,
1475 * power, "this is the one", etc. EHCI spec supports this.
1478 spin_lock_irqsave(&fotg210->lock, flags);
1479 switch (typeReq) {
1480 case ClearHubFeature:
1481 switch (wValue) {
1482 case C_HUB_LOCAL_POWER:
1483 case C_HUB_OVER_CURRENT:
1484 /* no hub-wide feature/status flags */
1485 break;
1486 default:
1487 goto error;
1489 break;
1490 case ClearPortFeature:
1491 if (!wIndex || wIndex > ports)
1492 goto error;
1493 wIndex--;
1494 temp = fotg210_readl(fotg210, status_reg);
1495 temp &= ~PORT_RWC_BITS;
1498 * Even if OWNER is set, so the port is owned by the
1499 * companion controller, hub_wq needs to be able to clear
1500 * the port-change status bits (especially
1501 * USB_PORT_STAT_C_CONNECTION).
1504 switch (wValue) {
1505 case USB_PORT_FEAT_ENABLE:
1506 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1507 break;
1508 case USB_PORT_FEAT_C_ENABLE:
1509 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1510 break;
1511 case USB_PORT_FEAT_SUSPEND:
1512 if (temp & PORT_RESET)
1513 goto error;
1514 if (!(temp & PORT_SUSPEND))
1515 break;
1516 if ((temp & PORT_PE) == 0)
1517 goto error;
1519 /* resume signaling for 20 msec */
1520 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1521 fotg210->reset_done[wIndex] = jiffies
1522 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1523 break;
1524 case USB_PORT_FEAT_C_SUSPEND:
1525 clear_bit(wIndex, &fotg210->port_c_suspend);
1526 break;
1527 case USB_PORT_FEAT_C_CONNECTION:
1528 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1529 break;
1530 case USB_PORT_FEAT_C_OVER_CURRENT:
1531 fotg210_writel(fotg210, temp | OTGISR_OVC,
1532 &fotg210->regs->otgisr);
1533 break;
1534 case USB_PORT_FEAT_C_RESET:
1535 /* GetPortStatus clears reset */
1536 break;
1537 default:
1538 goto error;
1540 fotg210_readl(fotg210, &fotg210->regs->command);
1541 break;
1542 case GetHubDescriptor:
1543 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1544 buf);
1545 break;
1546 case GetHubStatus:
1547 /* no hub-wide feature/status flags */
1548 memset(buf, 0, 4);
1549 /*cpu_to_le32s ((u32 *) buf); */
1550 break;
1551 case GetPortStatus:
1552 if (!wIndex || wIndex > ports)
1553 goto error;
1554 wIndex--;
1555 status = 0;
1556 temp = fotg210_readl(fotg210, status_reg);
1558 /* wPortChange bits */
1559 if (temp & PORT_CSC)
1560 status |= USB_PORT_STAT_C_CONNECTION << 16;
1561 if (temp & PORT_PEC)
1562 status |= USB_PORT_STAT_C_ENABLE << 16;
1564 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1565 if (temp1 & OTGISR_OVC)
1566 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1568 /* whoever resumes must GetPortStatus to complete it!! */
1569 if (temp & PORT_RESUME) {
1571 /* Remote Wakeup received? */
1572 if (!fotg210->reset_done[wIndex]) {
1573 /* resume signaling for 20 msec */
1574 fotg210->reset_done[wIndex] = jiffies
1575 + msecs_to_jiffies(20);
1576 /* check the port again */
1577 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1578 fotg210->reset_done[wIndex]);
1581 /* resume completed? */
1582 else if (time_after_eq(jiffies,
1583 fotg210->reset_done[wIndex])) {
1584 clear_bit(wIndex, &fotg210->suspended_ports);
1585 set_bit(wIndex, &fotg210->port_c_suspend);
1586 fotg210->reset_done[wIndex] = 0;
1588 /* stop resume signaling */
1589 temp = fotg210_readl(fotg210, status_reg);
1590 fotg210_writel(fotg210, temp &
1591 ~(PORT_RWC_BITS | PORT_RESUME),
1592 status_reg);
1593 clear_bit(wIndex, &fotg210->resuming_ports);
1594 retval = handshake(fotg210, status_reg,
1595 PORT_RESUME, 0, 2000);/* 2ms */
1596 if (retval != 0) {
1597 fotg210_err(fotg210,
1598 "port %d resume error %d\n",
1599 wIndex + 1, retval);
1600 goto error;
1602 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1606 /* whoever resets must GetPortStatus to complete it!! */
1607 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1608 fotg210->reset_done[wIndex])) {
1609 status |= USB_PORT_STAT_C_RESET << 16;
1610 fotg210->reset_done[wIndex] = 0;
1611 clear_bit(wIndex, &fotg210->resuming_ports);
1613 /* force reset to complete */
1614 fotg210_writel(fotg210,
1615 temp & ~(PORT_RWC_BITS | PORT_RESET),
1616 status_reg);
1617 /* REVISIT: some hardware needs 550+ usec to clear
1618 * this bit; seems too long to spin routinely...
1620 retval = handshake(fotg210, status_reg,
1621 PORT_RESET, 0, 1000);
1622 if (retval != 0) {
1623 fotg210_err(fotg210, "port %d reset error %d\n",
1624 wIndex + 1, retval);
1625 goto error;
1628 /* see what we found out */
1629 temp = check_reset_complete(fotg210, wIndex, status_reg,
1630 fotg210_readl(fotg210, status_reg));
1633 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1634 fotg210->reset_done[wIndex] = 0;
1635 clear_bit(wIndex, &fotg210->resuming_ports);
1638 /* transfer dedicated ports to the companion hc */
1639 if ((temp & PORT_CONNECT) &&
1640 test_bit(wIndex, &fotg210->companion_ports)) {
1641 temp &= ~PORT_RWC_BITS;
1642 fotg210_writel(fotg210, temp, status_reg);
1643 fotg210_dbg(fotg210, "port %d --> companion\n",
1644 wIndex + 1);
1645 temp = fotg210_readl(fotg210, status_reg);
1649 * Even if OWNER is set, there's no harm letting hub_wq
1650 * see the wPortStatus values (they should all be 0 except
1651 * for PORT_POWER anyway).
1654 if (temp & PORT_CONNECT) {
1655 status |= USB_PORT_STAT_CONNECTION;
1656 status |= fotg210_port_speed(fotg210, temp);
1658 if (temp & PORT_PE)
1659 status |= USB_PORT_STAT_ENABLE;
1661 /* maybe the port was unsuspended without our knowledge */
1662 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1663 status |= USB_PORT_STAT_SUSPEND;
1664 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1665 clear_bit(wIndex, &fotg210->suspended_ports);
1666 clear_bit(wIndex, &fotg210->resuming_ports);
1667 fotg210->reset_done[wIndex] = 0;
1668 if (temp & PORT_PE)
1669 set_bit(wIndex, &fotg210->port_c_suspend);
1672 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1673 if (temp1 & OTGISR_OVC)
1674 status |= USB_PORT_STAT_OVERCURRENT;
1675 if (temp & PORT_RESET)
1676 status |= USB_PORT_STAT_RESET;
1677 if (test_bit(wIndex, &fotg210->port_c_suspend))
1678 status |= USB_PORT_STAT_C_SUSPEND << 16;
1680 if (status & ~0xffff) /* only if wPortChange is interesting */
1681 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1682 put_unaligned_le32(status, buf);
1683 break;
1684 case SetHubFeature:
1685 switch (wValue) {
1686 case C_HUB_LOCAL_POWER:
1687 case C_HUB_OVER_CURRENT:
1688 /* no hub-wide feature/status flags */
1689 break;
1690 default:
1691 goto error;
1693 break;
1694 case SetPortFeature:
1695 selector = wIndex >> 8;
1696 wIndex &= 0xff;
1698 if (!wIndex || wIndex > ports)
1699 goto error;
1700 wIndex--;
1701 temp = fotg210_readl(fotg210, status_reg);
1702 temp &= ~PORT_RWC_BITS;
1703 switch (wValue) {
1704 case USB_PORT_FEAT_SUSPEND:
1705 if ((temp & PORT_PE) == 0
1706 || (temp & PORT_RESET) != 0)
1707 goto error;
1709 /* After above check the port must be connected.
1710 * Set appropriate bit thus could put phy into low power
1711 * mode if we have hostpc feature
1713 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1714 status_reg);
1715 set_bit(wIndex, &fotg210->suspended_ports);
1716 break;
1717 case USB_PORT_FEAT_RESET:
1718 if (temp & PORT_RESUME)
1719 goto error;
1720 /* line status bits may report this as low speed,
1721 * which can be fine if this root hub has a
1722 * transaction translator built in.
1724 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1725 temp |= PORT_RESET;
1726 temp &= ~PORT_PE;
1729 * caller must wait, then call GetPortStatus
1730 * usb 2.0 spec says 50 ms resets on root
1732 fotg210->reset_done[wIndex] = jiffies
1733 + msecs_to_jiffies(50);
1734 fotg210_writel(fotg210, temp, status_reg);
1735 break;
1737 /* For downstream facing ports (these): one hub port is put
1738 * into test mode according to USB2 11.24.2.13, then the hub
1739 * must be reset (which for root hub now means rmmod+modprobe,
1740 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1741 * about the EHCI-specific stuff.
1743 case USB_PORT_FEAT_TEST:
1744 if (!selector || selector > 5)
1745 goto error;
1746 spin_unlock_irqrestore(&fotg210->lock, flags);
1747 fotg210_quiesce(fotg210);
1748 spin_lock_irqsave(&fotg210->lock, flags);
1750 /* Put all enabled ports into suspend */
1751 temp = fotg210_readl(fotg210, status_reg) &
1752 ~PORT_RWC_BITS;
1753 if (temp & PORT_PE)
1754 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1755 status_reg);
1757 spin_unlock_irqrestore(&fotg210->lock, flags);
1758 fotg210_halt(fotg210);
1759 spin_lock_irqsave(&fotg210->lock, flags);
1761 temp = fotg210_readl(fotg210, status_reg);
1762 temp |= selector << 16;
1763 fotg210_writel(fotg210, temp, status_reg);
1764 break;
1766 default:
1767 goto error;
1769 fotg210_readl(fotg210, &fotg210->regs->command);
1770 break;
1772 default:
1773 error:
1774 /* "stall" on error */
1775 retval = -EPIPE;
1777 spin_unlock_irqrestore(&fotg210->lock, flags);
1778 return retval;
1781 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1782 int portnum)
1784 return;
1787 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1788 int portnum)
1790 return 0;
1793 /* There's basically three types of memory:
1794 * - data used only by the HCD ... kmalloc is fine
1795 * - async and periodic schedules, shared by HC and HCD ... these
1796 * need to use dma_pool or dma_alloc_coherent
1797 * - driver buffers, read/written by HC ... single shot DMA mapped
1799 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1800 * No memory seen by this driver is pageable.
1803 /* Allocate the key transfer structures from the previously allocated pool */
1804 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1805 struct fotg210_qtd *qtd, dma_addr_t dma)
1807 memset(qtd, 0, sizeof(*qtd));
1808 qtd->qtd_dma = dma;
1809 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1810 qtd->hw_next = FOTG210_LIST_END(fotg210);
1811 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1812 INIT_LIST_HEAD(&qtd->qtd_list);
1815 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1816 gfp_t flags)
1818 struct fotg210_qtd *qtd;
1819 dma_addr_t dma;
1821 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1822 if (qtd != NULL)
1823 fotg210_qtd_init(fotg210, qtd, dma);
1825 return qtd;
1828 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1829 struct fotg210_qtd *qtd)
1831 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1835 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1837 /* clean qtds first, and know this is not linked */
1838 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1839 fotg210_dbg(fotg210, "unused qh not empty!\n");
1840 BUG();
1842 if (qh->dummy)
1843 fotg210_qtd_free(fotg210, qh->dummy);
1844 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1845 kfree(qh);
1848 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1849 gfp_t flags)
1851 struct fotg210_qh *qh;
1852 dma_addr_t dma;
1854 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1855 if (!qh)
1856 goto done;
1857 qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1858 if (!qh->hw)
1859 goto fail;
1860 qh->qh_dma = dma;
1861 INIT_LIST_HEAD(&qh->qtd_list);
1863 /* dummy td enables safe urb queuing */
1864 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1865 if (qh->dummy == NULL) {
1866 fotg210_dbg(fotg210, "no dummy td\n");
1867 goto fail1;
1869 done:
1870 return qh;
1871 fail1:
1872 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1873 fail:
1874 kfree(qh);
1875 return NULL;
1878 /* The queue heads and transfer descriptors are managed from pools tied
1879 * to each of the "per device" structures.
1880 * This is the initialisation and cleanup code.
1883 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1885 if (fotg210->async)
1886 qh_destroy(fotg210, fotg210->async);
1887 fotg210->async = NULL;
1889 if (fotg210->dummy)
1890 qh_destroy(fotg210, fotg210->dummy);
1891 fotg210->dummy = NULL;
1893 /* DMA consistent memory and pools */
1894 dma_pool_destroy(fotg210->qtd_pool);
1895 fotg210->qtd_pool = NULL;
1897 dma_pool_destroy(fotg210->qh_pool);
1898 fotg210->qh_pool = NULL;
1900 dma_pool_destroy(fotg210->itd_pool);
1901 fotg210->itd_pool = NULL;
1903 if (fotg210->periodic)
1904 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1905 fotg210->periodic_size * sizeof(u32),
1906 fotg210->periodic, fotg210->periodic_dma);
1907 fotg210->periodic = NULL;
1909 /* shadow periodic table */
1910 kfree(fotg210->pshadow);
1911 fotg210->pshadow = NULL;
1914 /* remember to add cleanup code (above) if you add anything here */
1915 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1917 int i;
1919 /* QTDs for control/bulk/intr transfers */
1920 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1921 fotg210_to_hcd(fotg210)->self.controller,
1922 sizeof(struct fotg210_qtd),
1923 32 /* byte alignment (for hw parts) */,
1924 4096 /* can't cross 4K */);
1925 if (!fotg210->qtd_pool)
1926 goto fail;
1928 /* QHs for control/bulk/intr transfers */
1929 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1930 fotg210_to_hcd(fotg210)->self.controller,
1931 sizeof(struct fotg210_qh_hw),
1932 32 /* byte alignment (for hw parts) */,
1933 4096 /* can't cross 4K */);
1934 if (!fotg210->qh_pool)
1935 goto fail;
1937 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1938 if (!fotg210->async)
1939 goto fail;
1941 /* ITD for high speed ISO transfers */
1942 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1943 fotg210_to_hcd(fotg210)->self.controller,
1944 sizeof(struct fotg210_itd),
1945 64 /* byte alignment (for hw parts) */,
1946 4096 /* can't cross 4K */);
1947 if (!fotg210->itd_pool)
1948 goto fail;
1950 /* Hardware periodic table */
1951 fotg210->periodic = (__le32 *)
1952 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1953 fotg210->periodic_size * sizeof(__le32),
1954 &fotg210->periodic_dma, 0);
1955 if (fotg210->periodic == NULL)
1956 goto fail;
1958 for (i = 0; i < fotg210->periodic_size; i++)
1959 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1961 /* software shadow of hardware table */
1962 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1963 flags);
1964 if (fotg210->pshadow != NULL)
1965 return 0;
1967 fail:
1968 fotg210_dbg(fotg210, "couldn't init memory\n");
1969 fotg210_mem_cleanup(fotg210);
1970 return -ENOMEM;
1972 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1974 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1975 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1976 * buffers needed for the larger number). We use one QH per endpoint, queue
1977 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1979 * ISO traffic uses "ISO TD" (itd) records, and (along with
1980 * interrupts) needs careful scheduling. Performance improvements can be
1981 * an ongoing challenge. That's in "ehci-sched.c".
1983 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1984 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1985 * (b) special fields in qh entries or (c) split iso entries. TTs will
1986 * buffer low/full speed data so the host collects it at high speed.
1989 /* fill a qtd, returning how much of the buffer we were able to queue up */
1990 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1991 dma_addr_t buf, size_t len, int token, int maxpacket)
1993 int i, count;
1994 u64 addr = buf;
1996 /* one buffer entry per 4K ... first might be short or unaligned */
1997 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1998 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
1999 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2000 if (likely(len < count)) /* ... iff needed */
2001 count = len;
2002 else {
2003 buf += 0x1000;
2004 buf &= ~0x0fff;
2006 /* per-qtd limit: from 16K to 20K (best alignment) */
2007 for (i = 1; count < len && i < 5; i++) {
2008 addr = buf;
2009 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2010 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2011 (u32)(addr >> 32));
2012 buf += 0x1000;
2013 if ((count + 0x1000) < len)
2014 count += 0x1000;
2015 else
2016 count = len;
2019 /* short packets may only terminate transfers */
2020 if (count != len)
2021 count -= (count % maxpacket);
2023 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2024 qtd->length = count;
2026 return count;
2029 static inline void qh_update(struct fotg210_hcd *fotg210,
2030 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2032 struct fotg210_qh_hw *hw = qh->hw;
2034 /* writes to an active overlay are unsafe */
2035 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2037 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2038 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2040 /* Except for control endpoints, we make hardware maintain data
2041 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2042 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2043 * ever clear it.
2045 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2046 unsigned is_out, epnum;
2048 is_out = qh->is_out;
2049 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2050 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2051 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2052 usb_settoggle(qh->dev, epnum, is_out, 1);
2056 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2059 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2060 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2061 * recovery (including urb dequeue) would need software changes to a QH...
2063 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2065 struct fotg210_qtd *qtd;
2067 if (list_empty(&qh->qtd_list))
2068 qtd = qh->dummy;
2069 else {
2070 qtd = list_entry(qh->qtd_list.next,
2071 struct fotg210_qtd, qtd_list);
2073 * first qtd may already be partially processed.
2074 * If we come here during unlink, the QH overlay region
2075 * might have reference to the just unlinked qtd. The
2076 * qtd is updated in qh_completions(). Update the QH
2077 * overlay here.
2079 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2080 qh->hw->hw_qtd_next = qtd->hw_next;
2081 qtd = NULL;
2085 if (qtd)
2086 qh_update(fotg210, qh, qtd);
2089 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2091 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2092 struct usb_host_endpoint *ep)
2094 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2095 struct fotg210_qh *qh = ep->hcpriv;
2096 unsigned long flags;
2098 spin_lock_irqsave(&fotg210->lock, flags);
2099 qh->clearing_tt = 0;
2100 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2101 && fotg210->rh_state == FOTG210_RH_RUNNING)
2102 qh_link_async(fotg210, qh);
2103 spin_unlock_irqrestore(&fotg210->lock, flags);
2106 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2107 struct fotg210_qh *qh, struct urb *urb, u32 token)
2110 /* If an async split transaction gets an error or is unlinked,
2111 * the TT buffer may be left in an indeterminate state. We
2112 * have to clear the TT buffer.
2114 * Note: this routine is never called for Isochronous transfers.
2116 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2117 struct usb_device *tt = urb->dev->tt->hub;
2119 dev_dbg(&tt->dev,
2120 "clear tt buffer port %d, a%d ep%d t%08x\n",
2121 urb->dev->ttport, urb->dev->devnum,
2122 usb_pipeendpoint(urb->pipe), token);
2124 if (urb->dev->tt->hub !=
2125 fotg210_to_hcd(fotg210)->self.root_hub) {
2126 if (usb_hub_clear_tt_buffer(urb) == 0)
2127 qh->clearing_tt = 1;
2132 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2133 size_t length, u32 token)
2135 int status = -EINPROGRESS;
2137 /* count IN/OUT bytes, not SETUP (even short packets) */
2138 if (likely(QTD_PID(token) != 2))
2139 urb->actual_length += length - QTD_LENGTH(token);
2141 /* don't modify error codes */
2142 if (unlikely(urb->unlinked))
2143 return status;
2145 /* force cleanup after short read; not always an error */
2146 if (unlikely(IS_SHORT_READ(token)))
2147 status = -EREMOTEIO;
2149 /* serious "can't proceed" faults reported by the hardware */
2150 if (token & QTD_STS_HALT) {
2151 if (token & QTD_STS_BABBLE) {
2152 /* FIXME "must" disable babbling device's port too */
2153 status = -EOVERFLOW;
2154 /* CERR nonzero + halt --> stall */
2155 } else if (QTD_CERR(token)) {
2156 status = -EPIPE;
2158 /* In theory, more than one of the following bits can be set
2159 * since they are sticky and the transaction is retried.
2160 * Which to test first is rather arbitrary.
2162 } else if (token & QTD_STS_MMF) {
2163 /* fs/ls interrupt xfer missed the complete-split */
2164 status = -EPROTO;
2165 } else if (token & QTD_STS_DBE) {
2166 status = (QTD_PID(token) == 1) /* IN ? */
2167 ? -ENOSR /* hc couldn't read data */
2168 : -ECOMM; /* hc couldn't write data */
2169 } else if (token & QTD_STS_XACT) {
2170 /* timeout, bad CRC, wrong PID, etc */
2171 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2172 urb->dev->devpath,
2173 usb_pipeendpoint(urb->pipe),
2174 usb_pipein(urb->pipe) ? "in" : "out");
2175 status = -EPROTO;
2176 } else { /* unknown */
2177 status = -EPROTO;
2180 fotg210_dbg(fotg210,
2181 "dev%d ep%d%s qtd token %08x --> status %d\n",
2182 usb_pipedevice(urb->pipe),
2183 usb_pipeendpoint(urb->pipe),
2184 usb_pipein(urb->pipe) ? "in" : "out",
2185 token, status);
2188 return status;
2191 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2192 int status)
2193 __releases(fotg210->lock)
2194 __acquires(fotg210->lock)
2196 if (likely(urb->hcpriv != NULL)) {
2197 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2199 /* S-mask in a QH means it's an interrupt urb */
2200 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2202 /* ... update hc-wide periodic stats (for usbfs) */
2203 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2207 if (unlikely(urb->unlinked)) {
2208 INCR(fotg210->stats.unlink);
2209 } else {
2210 /* report non-error and short read status as zero */
2211 if (status == -EINPROGRESS || status == -EREMOTEIO)
2212 status = 0;
2213 INCR(fotg210->stats.complete);
2216 #ifdef FOTG210_URB_TRACE
2217 fotg210_dbg(fotg210,
2218 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2219 __func__, urb->dev->devpath, urb,
2220 usb_pipeendpoint(urb->pipe),
2221 usb_pipein(urb->pipe) ? "in" : "out",
2222 status,
2223 urb->actual_length, urb->transfer_buffer_length);
2224 #endif
2226 /* complete() can reenter this HCD */
2227 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2228 spin_unlock(&fotg210->lock);
2229 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2230 spin_lock(&fotg210->lock);
2233 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2235 /* Process and free completed qtds for a qh, returning URBs to drivers.
2236 * Chases up to qh->hw_current. Returns number of completions called,
2237 * indicating how much "real" work we did.
2239 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2240 struct fotg210_qh *qh)
2242 struct fotg210_qtd *last, *end = qh->dummy;
2243 struct fotg210_qtd *qtd, *tmp;
2244 int last_status;
2245 int stopped;
2246 unsigned count = 0;
2247 u8 state;
2248 struct fotg210_qh_hw *hw = qh->hw;
2250 if (unlikely(list_empty(&qh->qtd_list)))
2251 return count;
2253 /* completions (or tasks on other cpus) must never clobber HALT
2254 * till we've gone through and cleaned everything up, even when
2255 * they add urbs to this qh's queue or mark them for unlinking.
2257 * NOTE: unlinking expects to be done in queue order.
2259 * It's a bug for qh->qh_state to be anything other than
2260 * QH_STATE_IDLE, unless our caller is scan_async() or
2261 * scan_intr().
2263 state = qh->qh_state;
2264 qh->qh_state = QH_STATE_COMPLETING;
2265 stopped = (state == QH_STATE_IDLE);
2267 rescan:
2268 last = NULL;
2269 last_status = -EINPROGRESS;
2270 qh->needs_rescan = 0;
2272 /* remove de-activated QTDs from front of queue.
2273 * after faults (including short reads), cleanup this urb
2274 * then let the queue advance.
2275 * if queue is stopped, handles unlinks.
2277 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2278 struct urb *urb;
2279 u32 token = 0;
2281 urb = qtd->urb;
2283 /* clean up any state from previous QTD ...*/
2284 if (last) {
2285 if (likely(last->urb != urb)) {
2286 fotg210_urb_done(fotg210, last->urb,
2287 last_status);
2288 count++;
2289 last_status = -EINPROGRESS;
2291 fotg210_qtd_free(fotg210, last);
2292 last = NULL;
2295 /* ignore urbs submitted during completions we reported */
2296 if (qtd == end)
2297 break;
2299 /* hardware copies qtd out of qh overlay */
2300 rmb();
2301 token = hc32_to_cpu(fotg210, qtd->hw_token);
2303 /* always clean up qtds the hc de-activated */
2304 retry_xacterr:
2305 if ((token & QTD_STS_ACTIVE) == 0) {
2307 /* Report Data Buffer Error: non-fatal but useful */
2308 if (token & QTD_STS_DBE)
2309 fotg210_dbg(fotg210,
2310 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2311 urb, usb_endpoint_num(&urb->ep->desc),
2312 usb_endpoint_dir_in(&urb->ep->desc)
2313 ? "in" : "out",
2314 urb->transfer_buffer_length, qtd, qh);
2316 /* on STALL, error, and short reads this urb must
2317 * complete and all its qtds must be recycled.
2319 if ((token & QTD_STS_HALT) != 0) {
2321 /* retry transaction errors until we
2322 * reach the software xacterr limit
2324 if ((token & QTD_STS_XACT) &&
2325 QTD_CERR(token) == 0 &&
2326 ++qh->xacterrs < QH_XACTERR_MAX &&
2327 !urb->unlinked) {
2328 fotg210_dbg(fotg210,
2329 "detected XactErr len %zu/%zu retry %d\n",
2330 qtd->length - QTD_LENGTH(token),
2331 qtd->length,
2332 qh->xacterrs);
2334 /* reset the token in the qtd and the
2335 * qh overlay (which still contains
2336 * the qtd) so that we pick up from
2337 * where we left off
2339 token &= ~QTD_STS_HALT;
2340 token |= QTD_STS_ACTIVE |
2341 (FOTG210_TUNE_CERR << 10);
2342 qtd->hw_token = cpu_to_hc32(fotg210,
2343 token);
2344 wmb();
2345 hw->hw_token = cpu_to_hc32(fotg210,
2346 token);
2347 goto retry_xacterr;
2349 stopped = 1;
2351 /* magic dummy for some short reads; qh won't advance.
2352 * that silicon quirk can kick in with this dummy too.
2354 * other short reads won't stop the queue, including
2355 * control transfers (status stage handles that) or
2356 * most other single-qtd reads ... the queue stops if
2357 * URB_SHORT_NOT_OK was set so the driver submitting
2358 * the urbs could clean it up.
2360 } else if (IS_SHORT_READ(token) &&
2361 !(qtd->hw_alt_next &
2362 FOTG210_LIST_END(fotg210))) {
2363 stopped = 1;
2366 /* stop scanning when we reach qtds the hc is using */
2367 } else if (likely(!stopped
2368 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2369 break;
2371 /* scan the whole queue for unlinks whenever it stops */
2372 } else {
2373 stopped = 1;
2375 /* cancel everything if we halt, suspend, etc */
2376 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2377 last_status = -ESHUTDOWN;
2379 /* this qtd is active; skip it unless a previous qtd
2380 * for its urb faulted, or its urb was canceled.
2382 else if (last_status == -EINPROGRESS && !urb->unlinked)
2383 continue;
2385 /* qh unlinked; token in overlay may be most current */
2386 if (state == QH_STATE_IDLE &&
2387 cpu_to_hc32(fotg210, qtd->qtd_dma)
2388 == hw->hw_current) {
2389 token = hc32_to_cpu(fotg210, hw->hw_token);
2391 /* An unlink may leave an incomplete
2392 * async transaction in the TT buffer.
2393 * We have to clear it.
2395 fotg210_clear_tt_buffer(fotg210, qh, urb,
2396 token);
2400 /* unless we already know the urb's status, collect qtd status
2401 * and update count of bytes transferred. in common short read
2402 * cases with only one data qtd (including control transfers),
2403 * queue processing won't halt. but with two or more qtds (for
2404 * example, with a 32 KB transfer), when the first qtd gets a
2405 * short read the second must be removed by hand.
2407 if (last_status == -EINPROGRESS) {
2408 last_status = qtd_copy_status(fotg210, urb,
2409 qtd->length, token);
2410 if (last_status == -EREMOTEIO &&
2411 (qtd->hw_alt_next &
2412 FOTG210_LIST_END(fotg210)))
2413 last_status = -EINPROGRESS;
2415 /* As part of low/full-speed endpoint-halt processing
2416 * we must clear the TT buffer (11.17.5).
2418 if (unlikely(last_status != -EINPROGRESS &&
2419 last_status != -EREMOTEIO)) {
2420 /* The TT's in some hubs malfunction when they
2421 * receive this request following a STALL (they
2422 * stop sending isochronous packets). Since a
2423 * STALL can't leave the TT buffer in a busy
2424 * state (if you believe Figures 11-48 - 11-51
2425 * in the USB 2.0 spec), we won't clear the TT
2426 * buffer in this case. Strictly speaking this
2427 * is a violation of the spec.
2429 if (last_status != -EPIPE)
2430 fotg210_clear_tt_buffer(fotg210, qh,
2431 urb, token);
2435 /* if we're removing something not at the queue head,
2436 * patch the hardware queue pointer.
2438 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2439 last = list_entry(qtd->qtd_list.prev,
2440 struct fotg210_qtd, qtd_list);
2441 last->hw_next = qtd->hw_next;
2444 /* remove qtd; it's recycled after possible urb completion */
2445 list_del(&qtd->qtd_list);
2446 last = qtd;
2448 /* reinit the xacterr counter for the next qtd */
2449 qh->xacterrs = 0;
2452 /* last urb's completion might still need calling */
2453 if (likely(last != NULL)) {
2454 fotg210_urb_done(fotg210, last->urb, last_status);
2455 count++;
2456 fotg210_qtd_free(fotg210, last);
2459 /* Do we need to rescan for URBs dequeued during a giveback? */
2460 if (unlikely(qh->needs_rescan)) {
2461 /* If the QH is already unlinked, do the rescan now. */
2462 if (state == QH_STATE_IDLE)
2463 goto rescan;
2465 /* Otherwise we have to wait until the QH is fully unlinked.
2466 * Our caller will start an unlink if qh->needs_rescan is
2467 * set. But if an unlink has already started, nothing needs
2468 * to be done.
2470 if (state != QH_STATE_LINKED)
2471 qh->needs_rescan = 0;
2474 /* restore original state; caller must unlink or relink */
2475 qh->qh_state = state;
2477 /* be sure the hardware's done with the qh before refreshing
2478 * it after fault cleanup, or recovering from silicon wrongly
2479 * overlaying the dummy qtd (which reduces DMA chatter).
2481 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2482 switch (state) {
2483 case QH_STATE_IDLE:
2484 qh_refresh(fotg210, qh);
2485 break;
2486 case QH_STATE_LINKED:
2487 /* We won't refresh a QH that's linked (after the HC
2488 * stopped the queue). That avoids a race:
2489 * - HC reads first part of QH;
2490 * - CPU updates that first part and the token;
2491 * - HC reads rest of that QH, including token
2492 * Result: HC gets an inconsistent image, and then
2493 * DMAs to/from the wrong memory (corrupting it).
2495 * That should be rare for interrupt transfers,
2496 * except maybe high bandwidth ...
2499 /* Tell the caller to start an unlink */
2500 qh->needs_rescan = 1;
2501 break;
2502 /* otherwise, unlink already started */
2506 return count;
2509 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2510 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2511 /* ... and packet size, for any kind of endpoint descriptor */
2512 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2514 /* reverse of qh_urb_transaction: free a list of TDs.
2515 * used for cleanup after errors, before HC sees an URB's TDs.
2517 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2518 struct list_head *head)
2520 struct fotg210_qtd *qtd, *temp;
2522 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2523 list_del(&qtd->qtd_list);
2524 fotg210_qtd_free(fotg210, qtd);
2528 /* create a list of filled qtds for this URB; won't link into qh.
2530 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2531 struct urb *urb, struct list_head *head, gfp_t flags)
2533 struct fotg210_qtd *qtd, *qtd_prev;
2534 dma_addr_t buf;
2535 int len, this_sg_len, maxpacket;
2536 int is_input;
2537 u32 token;
2538 int i;
2539 struct scatterlist *sg;
2542 * URBs map to sequences of QTDs: one logical transaction
2544 qtd = fotg210_qtd_alloc(fotg210, flags);
2545 if (unlikely(!qtd))
2546 return NULL;
2547 list_add_tail(&qtd->qtd_list, head);
2548 qtd->urb = urb;
2550 token = QTD_STS_ACTIVE;
2551 token |= (FOTG210_TUNE_CERR << 10);
2552 /* for split transactions, SplitXState initialized to zero */
2554 len = urb->transfer_buffer_length;
2555 is_input = usb_pipein(urb->pipe);
2556 if (usb_pipecontrol(urb->pipe)) {
2557 /* SETUP pid */
2558 qtd_fill(fotg210, qtd, urb->setup_dma,
2559 sizeof(struct usb_ctrlrequest),
2560 token | (2 /* "setup" */ << 8), 8);
2562 /* ... and always at least one more pid */
2563 token ^= QTD_TOGGLE;
2564 qtd_prev = qtd;
2565 qtd = fotg210_qtd_alloc(fotg210, flags);
2566 if (unlikely(!qtd))
2567 goto cleanup;
2568 qtd->urb = urb;
2569 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2570 list_add_tail(&qtd->qtd_list, head);
2572 /* for zero length DATA stages, STATUS is always IN */
2573 if (len == 0)
2574 token |= (1 /* "in" */ << 8);
2578 * data transfer stage: buffer setup
2580 i = urb->num_mapped_sgs;
2581 if (len > 0 && i > 0) {
2582 sg = urb->sg;
2583 buf = sg_dma_address(sg);
2585 /* urb->transfer_buffer_length may be smaller than the
2586 * size of the scatterlist (or vice versa)
2588 this_sg_len = min_t(int, sg_dma_len(sg), len);
2589 } else {
2590 sg = NULL;
2591 buf = urb->transfer_dma;
2592 this_sg_len = len;
2595 if (is_input)
2596 token |= (1 /* "in" */ << 8);
2597 /* else it's already initted to "out" pid (0 << 8) */
2599 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2602 * buffer gets wrapped in one or more qtds;
2603 * last one may be "short" (including zero len)
2604 * and may serve as a control status ack
2606 for (;;) {
2607 int this_qtd_len;
2609 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2610 maxpacket);
2611 this_sg_len -= this_qtd_len;
2612 len -= this_qtd_len;
2613 buf += this_qtd_len;
2616 * short reads advance to a "magic" dummy instead of the next
2617 * qtd ... that forces the queue to stop, for manual cleanup.
2618 * (this will usually be overridden later.)
2620 if (is_input)
2621 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2623 /* qh makes control packets use qtd toggle; maybe switch it */
2624 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2625 token ^= QTD_TOGGLE;
2627 if (likely(this_sg_len <= 0)) {
2628 if (--i <= 0 || len <= 0)
2629 break;
2630 sg = sg_next(sg);
2631 buf = sg_dma_address(sg);
2632 this_sg_len = min_t(int, sg_dma_len(sg), len);
2635 qtd_prev = qtd;
2636 qtd = fotg210_qtd_alloc(fotg210, flags);
2637 if (unlikely(!qtd))
2638 goto cleanup;
2639 qtd->urb = urb;
2640 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2641 list_add_tail(&qtd->qtd_list, head);
2645 * unless the caller requires manual cleanup after short reads,
2646 * have the alt_next mechanism keep the queue running after the
2647 * last data qtd (the only one, for control and most other cases).
2649 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2650 usb_pipecontrol(urb->pipe)))
2651 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2654 * control requests may need a terminating data "status" ack;
2655 * other OUT ones may need a terminating short packet
2656 * (zero length).
2658 if (likely(urb->transfer_buffer_length != 0)) {
2659 int one_more = 0;
2661 if (usb_pipecontrol(urb->pipe)) {
2662 one_more = 1;
2663 token ^= 0x0100; /* "in" <--> "out" */
2664 token |= QTD_TOGGLE; /* force DATA1 */
2665 } else if (usb_pipeout(urb->pipe)
2666 && (urb->transfer_flags & URB_ZERO_PACKET)
2667 && !(urb->transfer_buffer_length % maxpacket)) {
2668 one_more = 1;
2670 if (one_more) {
2671 qtd_prev = qtd;
2672 qtd = fotg210_qtd_alloc(fotg210, flags);
2673 if (unlikely(!qtd))
2674 goto cleanup;
2675 qtd->urb = urb;
2676 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2677 list_add_tail(&qtd->qtd_list, head);
2679 /* never any data in such packets */
2680 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2684 /* by default, enable interrupt on urb completion */
2685 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2686 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2687 return head;
2689 cleanup:
2690 qtd_list_free(fotg210, urb, head);
2691 return NULL;
2694 /* Would be best to create all qh's from config descriptors,
2695 * when each interface/altsetting is established. Unlink
2696 * any previous qh and cancel its urbs first; endpoints are
2697 * implicitly reset then (data toggle too).
2698 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2702 /* Each QH holds a qtd list; a QH is used for everything except iso.
2704 * For interrupt urbs, the scheduler must set the microframe scheduling
2705 * mask(s) each time the QH gets scheduled. For highspeed, that's
2706 * just one microframe in the s-mask. For split interrupt transactions
2707 * there are additional complications: c-mask, maybe FSTNs.
2709 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2710 gfp_t flags)
2712 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2713 u32 info1 = 0, info2 = 0;
2714 int is_input, type;
2715 int maxp = 0;
2716 struct usb_tt *tt = urb->dev->tt;
2717 struct fotg210_qh_hw *hw;
2719 if (!qh)
2720 return qh;
2723 * init endpoint/device data for this QH
2725 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2726 info1 |= usb_pipedevice(urb->pipe) << 0;
2728 is_input = usb_pipein(urb->pipe);
2729 type = usb_pipetype(urb->pipe);
2730 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2732 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2733 * acts like up to 3KB, but is built from smaller packets.
2735 if (max_packet(maxp) > 1024) {
2736 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2737 max_packet(maxp));
2738 goto done;
2741 /* Compute interrupt scheduling parameters just once, and save.
2742 * - allowing for high bandwidth, how many nsec/uframe are used?
2743 * - split transactions need a second CSPLIT uframe; same question
2744 * - splits also need a schedule gap (for full/low speed I/O)
2745 * - qh has a polling interval
2747 * For control/bulk requests, the HC or TT handles these.
2749 if (type == PIPE_INTERRUPT) {
2750 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2751 is_input, 0,
2752 hb_mult(maxp) * max_packet(maxp)));
2753 qh->start = NO_FRAME;
2755 if (urb->dev->speed == USB_SPEED_HIGH) {
2756 qh->c_usecs = 0;
2757 qh->gap_uf = 0;
2759 qh->period = urb->interval >> 3;
2760 if (qh->period == 0 && urb->interval != 1) {
2761 /* NOTE interval 2 or 4 uframes could work.
2762 * But interval 1 scheduling is simpler, and
2763 * includes high bandwidth.
2765 urb->interval = 1;
2766 } else if (qh->period > fotg210->periodic_size) {
2767 qh->period = fotg210->periodic_size;
2768 urb->interval = qh->period << 3;
2770 } else {
2771 int think_time;
2773 /* gap is f(FS/LS transfer times) */
2774 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2775 is_input, 0, maxp) / (125 * 1000);
2777 /* FIXME this just approximates SPLIT/CSPLIT times */
2778 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2779 qh->c_usecs = qh->usecs + HS_USECS(0);
2780 qh->usecs = HS_USECS(1);
2781 } else { /* SPLIT+DATA, gap, CSPLIT */
2782 qh->usecs += HS_USECS(1);
2783 qh->c_usecs = HS_USECS(0);
2786 think_time = tt ? tt->think_time : 0;
2787 qh->tt_usecs = NS_TO_US(think_time +
2788 usb_calc_bus_time(urb->dev->speed,
2789 is_input, 0, max_packet(maxp)));
2790 qh->period = urb->interval;
2791 if (qh->period > fotg210->periodic_size) {
2792 qh->period = fotg210->periodic_size;
2793 urb->interval = qh->period;
2798 /* support for tt scheduling, and access to toggles */
2799 qh->dev = urb->dev;
2801 /* using TT? */
2802 switch (urb->dev->speed) {
2803 case USB_SPEED_LOW:
2804 info1 |= QH_LOW_SPEED;
2805 /* FALL THROUGH */
2807 case USB_SPEED_FULL:
2808 /* EPS 0 means "full" */
2809 if (type != PIPE_INTERRUPT)
2810 info1 |= (FOTG210_TUNE_RL_TT << 28);
2811 if (type == PIPE_CONTROL) {
2812 info1 |= QH_CONTROL_EP; /* for TT */
2813 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2815 info1 |= maxp << 16;
2817 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2819 /* Some Freescale processors have an erratum in which the
2820 * port number in the queue head was 0..N-1 instead of 1..N.
2822 if (fotg210_has_fsl_portno_bug(fotg210))
2823 info2 |= (urb->dev->ttport-1) << 23;
2824 else
2825 info2 |= urb->dev->ttport << 23;
2827 /* set the address of the TT; for TDI's integrated
2828 * root hub tt, leave it zeroed.
2830 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2831 info2 |= tt->hub->devnum << 16;
2833 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2835 break;
2837 case USB_SPEED_HIGH: /* no TT involved */
2838 info1 |= QH_HIGH_SPEED;
2839 if (type == PIPE_CONTROL) {
2840 info1 |= (FOTG210_TUNE_RL_HS << 28);
2841 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2842 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2843 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2844 } else if (type == PIPE_BULK) {
2845 info1 |= (FOTG210_TUNE_RL_HS << 28);
2846 /* The USB spec says that high speed bulk endpoints
2847 * always use 512 byte maxpacket. But some device
2848 * vendors decided to ignore that, and MSFT is happy
2849 * to help them do so. So now people expect to use
2850 * such nonconformant devices with Linux too; sigh.
2852 info1 |= max_packet(maxp) << 16;
2853 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2854 } else { /* PIPE_INTERRUPT */
2855 info1 |= max_packet(maxp) << 16;
2856 info2 |= hb_mult(maxp) << 30;
2858 break;
2859 default:
2860 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2861 urb->dev->speed);
2862 done:
2863 qh_destroy(fotg210, qh);
2864 return NULL;
2867 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2869 /* init as live, toggle clear, advance to dummy */
2870 qh->qh_state = QH_STATE_IDLE;
2871 hw = qh->hw;
2872 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2873 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2874 qh->is_out = !is_input;
2875 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2876 qh_refresh(fotg210, qh);
2877 return qh;
2880 static void enable_async(struct fotg210_hcd *fotg210)
2882 if (fotg210->async_count++)
2883 return;
2885 /* Stop waiting to turn off the async schedule */
2886 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2888 /* Don't start the schedule until ASS is 0 */
2889 fotg210_poll_ASS(fotg210);
2890 turn_on_io_watchdog(fotg210);
2893 static void disable_async(struct fotg210_hcd *fotg210)
2895 if (--fotg210->async_count)
2896 return;
2898 /* The async schedule and async_unlink list are supposed to be empty */
2899 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2901 /* Don't turn off the schedule until ASS is 1 */
2902 fotg210_poll_ASS(fotg210);
2905 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2907 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2909 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2910 struct fotg210_qh *head;
2912 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2913 if (unlikely(qh->clearing_tt))
2914 return;
2916 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2918 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2919 qh_refresh(fotg210, qh);
2921 /* splice right after start */
2922 head = fotg210->async;
2923 qh->qh_next = head->qh_next;
2924 qh->hw->hw_next = head->hw->hw_next;
2925 wmb();
2927 head->qh_next.qh = qh;
2928 head->hw->hw_next = dma;
2930 qh->xacterrs = 0;
2931 qh->qh_state = QH_STATE_LINKED;
2932 /* qtd completions reported later by interrupt */
2934 enable_async(fotg210);
2937 /* For control/bulk/interrupt, return QH with these TDs appended.
2938 * Allocates and initializes the QH if necessary.
2939 * Returns null if it can't allocate a QH it needs to.
2940 * If the QH has TDs (urbs) already, that's great.
2942 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2943 struct urb *urb, struct list_head *qtd_list,
2944 int epnum, void **ptr)
2946 struct fotg210_qh *qh = NULL;
2947 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2949 qh = (struct fotg210_qh *) *ptr;
2950 if (unlikely(qh == NULL)) {
2951 /* can't sleep here, we have fotg210->lock... */
2952 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2953 *ptr = qh;
2955 if (likely(qh != NULL)) {
2956 struct fotg210_qtd *qtd;
2958 if (unlikely(list_empty(qtd_list)))
2959 qtd = NULL;
2960 else
2961 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2962 qtd_list);
2964 /* control qh may need patching ... */
2965 if (unlikely(epnum == 0)) {
2966 /* usb_reset_device() briefly reverts to address 0 */
2967 if (usb_pipedevice(urb->pipe) == 0)
2968 qh->hw->hw_info1 &= ~qh_addr_mask;
2971 /* just one way to queue requests: swap with the dummy qtd.
2972 * only hc or qh_refresh() ever modify the overlay.
2974 if (likely(qtd != NULL)) {
2975 struct fotg210_qtd *dummy;
2976 dma_addr_t dma;
2977 __hc32 token;
2979 /* to avoid racing the HC, use the dummy td instead of
2980 * the first td of our list (becomes new dummy). both
2981 * tds stay deactivated until we're done, when the
2982 * HC is allowed to fetch the old dummy (4.10.2).
2984 token = qtd->hw_token;
2985 qtd->hw_token = HALT_BIT(fotg210);
2987 dummy = qh->dummy;
2989 dma = dummy->qtd_dma;
2990 *dummy = *qtd;
2991 dummy->qtd_dma = dma;
2993 list_del(&qtd->qtd_list);
2994 list_add(&dummy->qtd_list, qtd_list);
2995 list_splice_tail(qtd_list, &qh->qtd_list);
2997 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2998 qh->dummy = qtd;
3000 /* hc must see the new dummy at list end */
3001 dma = qtd->qtd_dma;
3002 qtd = list_entry(qh->qtd_list.prev,
3003 struct fotg210_qtd, qtd_list);
3004 qtd->hw_next = QTD_NEXT(fotg210, dma);
3006 /* let the hc process these next qtds */
3007 wmb();
3008 dummy->hw_token = token;
3010 urb->hcpriv = qh;
3013 return qh;
3016 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3017 struct list_head *qtd_list, gfp_t mem_flags)
3019 int epnum;
3020 unsigned long flags;
3021 struct fotg210_qh *qh = NULL;
3022 int rc;
3024 epnum = urb->ep->desc.bEndpointAddress;
3026 #ifdef FOTG210_URB_TRACE
3028 struct fotg210_qtd *qtd;
3030 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3031 fotg210_dbg(fotg210,
3032 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3033 __func__, urb->dev->devpath, urb,
3034 epnum & 0x0f, (epnum & USB_DIR_IN)
3035 ? "in" : "out",
3036 urb->transfer_buffer_length,
3037 qtd, urb->ep->hcpriv);
3039 #endif
3041 spin_lock_irqsave(&fotg210->lock, flags);
3042 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3043 rc = -ESHUTDOWN;
3044 goto done;
3046 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3047 if (unlikely(rc))
3048 goto done;
3050 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3051 if (unlikely(qh == NULL)) {
3052 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3053 rc = -ENOMEM;
3054 goto done;
3057 /* Control/bulk operations through TTs don't need scheduling,
3058 * the HC and TT handle it when the TT has a buffer ready.
3060 if (likely(qh->qh_state == QH_STATE_IDLE))
3061 qh_link_async(fotg210, qh);
3062 done:
3063 spin_unlock_irqrestore(&fotg210->lock, flags);
3064 if (unlikely(qh == NULL))
3065 qtd_list_free(fotg210, urb, qtd_list);
3066 return rc;
3069 static void single_unlink_async(struct fotg210_hcd *fotg210,
3070 struct fotg210_qh *qh)
3072 struct fotg210_qh *prev;
3074 /* Add to the end of the list of QHs waiting for the next IAAD */
3075 qh->qh_state = QH_STATE_UNLINK;
3076 if (fotg210->async_unlink)
3077 fotg210->async_unlink_last->unlink_next = qh;
3078 else
3079 fotg210->async_unlink = qh;
3080 fotg210->async_unlink_last = qh;
3082 /* Unlink it from the schedule */
3083 prev = fotg210->async;
3084 while (prev->qh_next.qh != qh)
3085 prev = prev->qh_next.qh;
3087 prev->hw->hw_next = qh->hw->hw_next;
3088 prev->qh_next = qh->qh_next;
3089 if (fotg210->qh_scan_next == qh)
3090 fotg210->qh_scan_next = qh->qh_next.qh;
3093 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3096 * Do nothing if an IAA cycle is already running or
3097 * if one will be started shortly.
3099 if (fotg210->async_iaa || fotg210->async_unlinking)
3100 return;
3102 /* Do all the waiting QHs at once */
3103 fotg210->async_iaa = fotg210->async_unlink;
3104 fotg210->async_unlink = NULL;
3106 /* If the controller isn't running, we don't have to wait for it */
3107 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3108 if (!nested) /* Avoid recursion */
3109 end_unlink_async(fotg210);
3111 /* Otherwise start a new IAA cycle */
3112 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3113 /* Make sure the unlinks are all visible to the hardware */
3114 wmb();
3116 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3117 &fotg210->regs->command);
3118 fotg210_readl(fotg210, &fotg210->regs->command);
3119 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3120 true);
3124 /* the async qh for the qtds being unlinked are now gone from the HC */
3126 static void end_unlink_async(struct fotg210_hcd *fotg210)
3128 struct fotg210_qh *qh;
3130 /* Process the idle QHs */
3131 restart:
3132 fotg210->async_unlinking = true;
3133 while (fotg210->async_iaa) {
3134 qh = fotg210->async_iaa;
3135 fotg210->async_iaa = qh->unlink_next;
3136 qh->unlink_next = NULL;
3138 qh->qh_state = QH_STATE_IDLE;
3139 qh->qh_next.qh = NULL;
3141 qh_completions(fotg210, qh);
3142 if (!list_empty(&qh->qtd_list) &&
3143 fotg210->rh_state == FOTG210_RH_RUNNING)
3144 qh_link_async(fotg210, qh);
3145 disable_async(fotg210);
3147 fotg210->async_unlinking = false;
3149 /* Start a new IAA cycle if any QHs are waiting for it */
3150 if (fotg210->async_unlink) {
3151 start_iaa_cycle(fotg210, true);
3152 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3153 goto restart;
3157 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3159 struct fotg210_qh *qh, *next;
3160 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3161 bool check_unlinks_later = false;
3163 /* Unlink all the async QHs that have been empty for a timer cycle */
3164 next = fotg210->async->qh_next.qh;
3165 while (next) {
3166 qh = next;
3167 next = qh->qh_next.qh;
3169 if (list_empty(&qh->qtd_list) &&
3170 qh->qh_state == QH_STATE_LINKED) {
3171 if (!stopped && qh->unlink_cycle ==
3172 fotg210->async_unlink_cycle)
3173 check_unlinks_later = true;
3174 else
3175 single_unlink_async(fotg210, qh);
3179 /* Start a new IAA cycle if any QHs are waiting for it */
3180 if (fotg210->async_unlink)
3181 start_iaa_cycle(fotg210, false);
3183 /* QHs that haven't been empty for long enough will be handled later */
3184 if (check_unlinks_later) {
3185 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3186 true);
3187 ++fotg210->async_unlink_cycle;
3191 /* makes sure the async qh will become idle */
3192 /* caller must own fotg210->lock */
3194 static void start_unlink_async(struct fotg210_hcd *fotg210,
3195 struct fotg210_qh *qh)
3198 * If the QH isn't linked then there's nothing we can do
3199 * unless we were called during a giveback, in which case
3200 * qh_completions() has to deal with it.
3202 if (qh->qh_state != QH_STATE_LINKED) {
3203 if (qh->qh_state == QH_STATE_COMPLETING)
3204 qh->needs_rescan = 1;
3205 return;
3208 single_unlink_async(fotg210, qh);
3209 start_iaa_cycle(fotg210, false);
3212 static void scan_async(struct fotg210_hcd *fotg210)
3214 struct fotg210_qh *qh;
3215 bool check_unlinks_later = false;
3217 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3218 while (fotg210->qh_scan_next) {
3219 qh = fotg210->qh_scan_next;
3220 fotg210->qh_scan_next = qh->qh_next.qh;
3221 rescan:
3222 /* clean any finished work for this qh */
3223 if (!list_empty(&qh->qtd_list)) {
3224 int temp;
3227 * Unlinks could happen here; completion reporting
3228 * drops the lock. That's why fotg210->qh_scan_next
3229 * always holds the next qh to scan; if the next qh
3230 * gets unlinked then fotg210->qh_scan_next is adjusted
3231 * in single_unlink_async().
3233 temp = qh_completions(fotg210, qh);
3234 if (qh->needs_rescan) {
3235 start_unlink_async(fotg210, qh);
3236 } else if (list_empty(&qh->qtd_list)
3237 && qh->qh_state == QH_STATE_LINKED) {
3238 qh->unlink_cycle = fotg210->async_unlink_cycle;
3239 check_unlinks_later = true;
3240 } else if (temp != 0)
3241 goto rescan;
3246 * Unlink empty entries, reducing DMA usage as well
3247 * as HCD schedule-scanning costs. Delay for any qh
3248 * we just scanned, there's a not-unusual case that it
3249 * doesn't stay idle for long.
3251 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3252 !(fotg210->enabled_hrtimer_events &
3253 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3254 fotg210_enable_event(fotg210,
3255 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3256 ++fotg210->async_unlink_cycle;
3259 /* EHCI scheduled transaction support: interrupt, iso, split iso
3260 * These are called "periodic" transactions in the EHCI spec.
3262 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3263 * with the "asynchronous" transaction support (control/bulk transfers).
3264 * The only real difference is in how interrupt transfers are scheduled.
3266 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3267 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3268 * pre-calculated schedule data to make appending to the queue be quick.
3270 static int fotg210_get_frame(struct usb_hcd *hcd);
3272 /* periodic_next_shadow - return "next" pointer on shadow list
3273 * @periodic: host pointer to qh/itd
3274 * @tag: hardware tag for type of this record
3276 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3277 union fotg210_shadow *periodic, __hc32 tag)
3279 switch (hc32_to_cpu(fotg210, tag)) {
3280 case Q_TYPE_QH:
3281 return &periodic->qh->qh_next;
3282 case Q_TYPE_FSTN:
3283 return &periodic->fstn->fstn_next;
3284 default:
3285 return &periodic->itd->itd_next;
3289 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3290 union fotg210_shadow *periodic, __hc32 tag)
3292 switch (hc32_to_cpu(fotg210, tag)) {
3293 /* our fotg210_shadow.qh is actually software part */
3294 case Q_TYPE_QH:
3295 return &periodic->qh->hw->hw_next;
3296 /* others are hw parts */
3297 default:
3298 return periodic->hw_next;
3302 /* caller must hold fotg210->lock */
3303 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3304 void *ptr)
3306 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3307 __hc32 *hw_p = &fotg210->periodic[frame];
3308 union fotg210_shadow here = *prev_p;
3310 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3311 while (here.ptr && here.ptr != ptr) {
3312 prev_p = periodic_next_shadow(fotg210, prev_p,
3313 Q_NEXT_TYPE(fotg210, *hw_p));
3314 hw_p = shadow_next_periodic(fotg210, &here,
3315 Q_NEXT_TYPE(fotg210, *hw_p));
3316 here = *prev_p;
3318 /* an interrupt entry (at list end) could have been shared */
3319 if (!here.ptr)
3320 return;
3322 /* update shadow and hardware lists ... the old "next" pointers
3323 * from ptr may still be in use, the caller updates them.
3325 *prev_p = *periodic_next_shadow(fotg210, &here,
3326 Q_NEXT_TYPE(fotg210, *hw_p));
3328 *hw_p = *shadow_next_periodic(fotg210, &here,
3329 Q_NEXT_TYPE(fotg210, *hw_p));
3332 /* how many of the uframe's 125 usecs are allocated? */
3333 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3334 unsigned frame, unsigned uframe)
3336 __hc32 *hw_p = &fotg210->periodic[frame];
3337 union fotg210_shadow *q = &fotg210->pshadow[frame];
3338 unsigned usecs = 0;
3339 struct fotg210_qh_hw *hw;
3341 while (q->ptr) {
3342 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3343 case Q_TYPE_QH:
3344 hw = q->qh->hw;
3345 /* is it in the S-mask? */
3346 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3347 usecs += q->qh->usecs;
3348 /* ... or C-mask? */
3349 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3350 1 << (8 + uframe)))
3351 usecs += q->qh->c_usecs;
3352 hw_p = &hw->hw_next;
3353 q = &q->qh->qh_next;
3354 break;
3355 /* case Q_TYPE_FSTN: */
3356 default:
3357 /* for "save place" FSTNs, count the relevant INTR
3358 * bandwidth from the previous frame
3360 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3361 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3363 hw_p = &q->fstn->hw_next;
3364 q = &q->fstn->fstn_next;
3365 break;
3366 case Q_TYPE_ITD:
3367 if (q->itd->hw_transaction[uframe])
3368 usecs += q->itd->stream->usecs;
3369 hw_p = &q->itd->hw_next;
3370 q = &q->itd->itd_next;
3371 break;
3374 if (usecs > fotg210->uframe_periodic_max)
3375 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3376 frame * 8 + uframe, usecs);
3377 return usecs;
3380 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3382 if (!dev1->tt || !dev2->tt)
3383 return 0;
3384 if (dev1->tt != dev2->tt)
3385 return 0;
3386 if (dev1->tt->multi)
3387 return dev1->ttport == dev2->ttport;
3388 else
3389 return 1;
3392 /* return true iff the device's transaction translator is available
3393 * for a periodic transfer starting at the specified frame, using
3394 * all the uframes in the mask.
3396 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3397 struct usb_device *dev, unsigned frame, u32 uf_mask)
3399 if (period == 0) /* error */
3400 return 0;
3402 /* note bandwidth wastage: split never follows csplit
3403 * (different dev or endpoint) until the next uframe.
3404 * calling convention doesn't make that distinction.
3406 for (; frame < fotg210->periodic_size; frame += period) {
3407 union fotg210_shadow here;
3408 __hc32 type;
3409 struct fotg210_qh_hw *hw;
3411 here = fotg210->pshadow[frame];
3412 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3413 while (here.ptr) {
3414 switch (hc32_to_cpu(fotg210, type)) {
3415 case Q_TYPE_ITD:
3416 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3417 here = here.itd->itd_next;
3418 continue;
3419 case Q_TYPE_QH:
3420 hw = here.qh->hw;
3421 if (same_tt(dev, here.qh->dev)) {
3422 u32 mask;
3424 mask = hc32_to_cpu(fotg210,
3425 hw->hw_info2);
3426 /* "knows" no gap is needed */
3427 mask |= mask >> 8;
3428 if (mask & uf_mask)
3429 break;
3431 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3432 here = here.qh->qh_next;
3433 continue;
3434 /* case Q_TYPE_FSTN: */
3435 default:
3436 fotg210_dbg(fotg210,
3437 "periodic frame %d bogus type %d\n",
3438 frame, type);
3441 /* collision or error */
3442 return 0;
3446 /* no collision */
3447 return 1;
3450 static void enable_periodic(struct fotg210_hcd *fotg210)
3452 if (fotg210->periodic_count++)
3453 return;
3455 /* Stop waiting to turn off the periodic schedule */
3456 fotg210->enabled_hrtimer_events &=
3457 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3459 /* Don't start the schedule until PSS is 0 */
3460 fotg210_poll_PSS(fotg210);
3461 turn_on_io_watchdog(fotg210);
3464 static void disable_periodic(struct fotg210_hcd *fotg210)
3466 if (--fotg210->periodic_count)
3467 return;
3469 /* Don't turn off the schedule until PSS is 1 */
3470 fotg210_poll_PSS(fotg210);
3473 /* periodic schedule slots have iso tds (normal or split) first, then a
3474 * sparse tree for active interrupt transfers.
3476 * this just links in a qh; caller guarantees uframe masks are set right.
3477 * no FSTN support (yet; fotg210 0.96+)
3479 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3481 unsigned i;
3482 unsigned period = qh->period;
3484 dev_dbg(&qh->dev->dev,
3485 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3486 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3487 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3488 qh->c_usecs);
3490 /* high bandwidth, or otherwise every microframe */
3491 if (period == 0)
3492 period = 1;
3494 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3495 union fotg210_shadow *prev = &fotg210->pshadow[i];
3496 __hc32 *hw_p = &fotg210->periodic[i];
3497 union fotg210_shadow here = *prev;
3498 __hc32 type = 0;
3500 /* skip the iso nodes at list head */
3501 while (here.ptr) {
3502 type = Q_NEXT_TYPE(fotg210, *hw_p);
3503 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3504 break;
3505 prev = periodic_next_shadow(fotg210, prev, type);
3506 hw_p = shadow_next_periodic(fotg210, &here, type);
3507 here = *prev;
3510 /* sorting each branch by period (slow-->fast)
3511 * enables sharing interior tree nodes
3513 while (here.ptr && qh != here.qh) {
3514 if (qh->period > here.qh->period)
3515 break;
3516 prev = &here.qh->qh_next;
3517 hw_p = &here.qh->hw->hw_next;
3518 here = *prev;
3520 /* link in this qh, unless some earlier pass did that */
3521 if (qh != here.qh) {
3522 qh->qh_next = here;
3523 if (here.qh)
3524 qh->hw->hw_next = *hw_p;
3525 wmb();
3526 prev->qh = qh;
3527 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3530 qh->qh_state = QH_STATE_LINKED;
3531 qh->xacterrs = 0;
3533 /* update per-qh bandwidth for usbfs */
3534 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3535 ? ((qh->usecs + qh->c_usecs) / qh->period)
3536 : (qh->usecs * 8);
3538 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3540 /* maybe enable periodic schedule processing */
3541 ++fotg210->intr_count;
3542 enable_periodic(fotg210);
3545 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3546 struct fotg210_qh *qh)
3548 unsigned i;
3549 unsigned period;
3552 * If qh is for a low/full-speed device, simply unlinking it
3553 * could interfere with an ongoing split transaction. To unlink
3554 * it safely would require setting the QH_INACTIVATE bit and
3555 * waiting at least one frame, as described in EHCI 4.12.2.5.
3557 * We won't bother with any of this. Instead, we assume that the
3558 * only reason for unlinking an interrupt QH while the current URB
3559 * is still active is to dequeue all the URBs (flush the whole
3560 * endpoint queue).
3562 * If rebalancing the periodic schedule is ever implemented, this
3563 * approach will no longer be valid.
3566 /* high bandwidth, or otherwise part of every microframe */
3567 period = qh->period;
3568 if (!period)
3569 period = 1;
3571 for (i = qh->start; i < fotg210->periodic_size; i += period)
3572 periodic_unlink(fotg210, i, qh);
3574 /* update per-qh bandwidth for usbfs */
3575 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3576 ? ((qh->usecs + qh->c_usecs) / qh->period)
3577 : (qh->usecs * 8);
3579 dev_dbg(&qh->dev->dev,
3580 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3581 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3582 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3583 qh->c_usecs);
3585 /* qh->qh_next still "live" to HC */
3586 qh->qh_state = QH_STATE_UNLINK;
3587 qh->qh_next.ptr = NULL;
3589 if (fotg210->qh_scan_next == qh)
3590 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3591 struct fotg210_qh, intr_node);
3592 list_del(&qh->intr_node);
3595 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3596 struct fotg210_qh *qh)
3598 /* If the QH isn't linked then there's nothing we can do
3599 * unless we were called during a giveback, in which case
3600 * qh_completions() has to deal with it.
3602 if (qh->qh_state != QH_STATE_LINKED) {
3603 if (qh->qh_state == QH_STATE_COMPLETING)
3604 qh->needs_rescan = 1;
3605 return;
3608 qh_unlink_periodic(fotg210, qh);
3610 /* Make sure the unlinks are visible before starting the timer */
3611 wmb();
3614 * The EHCI spec doesn't say how long it takes the controller to
3615 * stop accessing an unlinked interrupt QH. The timer delay is
3616 * 9 uframes; presumably that will be long enough.
3618 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3620 /* New entries go at the end of the intr_unlink list */
3621 if (fotg210->intr_unlink)
3622 fotg210->intr_unlink_last->unlink_next = qh;
3623 else
3624 fotg210->intr_unlink = qh;
3625 fotg210->intr_unlink_last = qh;
3627 if (fotg210->intr_unlinking)
3628 ; /* Avoid recursive calls */
3629 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3630 fotg210_handle_intr_unlinks(fotg210);
3631 else if (fotg210->intr_unlink == qh) {
3632 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3633 true);
3634 ++fotg210->intr_unlink_cycle;
3638 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3640 struct fotg210_qh_hw *hw = qh->hw;
3641 int rc;
3643 qh->qh_state = QH_STATE_IDLE;
3644 hw->hw_next = FOTG210_LIST_END(fotg210);
3646 qh_completions(fotg210, qh);
3648 /* reschedule QH iff another request is queued */
3649 if (!list_empty(&qh->qtd_list) &&
3650 fotg210->rh_state == FOTG210_RH_RUNNING) {
3651 rc = qh_schedule(fotg210, qh);
3653 /* An error here likely indicates handshake failure
3654 * or no space left in the schedule. Neither fault
3655 * should happen often ...
3657 * FIXME kill the now-dysfunctional queued urbs
3659 if (rc != 0)
3660 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3661 qh, rc);
3664 /* maybe turn off periodic schedule */
3665 --fotg210->intr_count;
3666 disable_periodic(fotg210);
3669 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3670 unsigned uframe, unsigned period, unsigned usecs)
3672 int claimed;
3674 /* complete split running into next frame?
3675 * given FSTN support, we could sometimes check...
3677 if (uframe >= 8)
3678 return 0;
3680 /* convert "usecs we need" to "max already claimed" */
3681 usecs = fotg210->uframe_periodic_max - usecs;
3683 /* we "know" 2 and 4 uframe intervals were rejected; so
3684 * for period 0, check _every_ microframe in the schedule.
3686 if (unlikely(period == 0)) {
3687 do {
3688 for (uframe = 0; uframe < 7; uframe++) {
3689 claimed = periodic_usecs(fotg210, frame,
3690 uframe);
3691 if (claimed > usecs)
3692 return 0;
3694 } while ((frame += 1) < fotg210->periodic_size);
3696 /* just check the specified uframe, at that period */
3697 } else {
3698 do {
3699 claimed = periodic_usecs(fotg210, frame, uframe);
3700 if (claimed > usecs)
3701 return 0;
3702 } while ((frame += period) < fotg210->periodic_size);
3705 /* success! */
3706 return 1;
3709 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3710 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3712 int retval = -ENOSPC;
3713 u8 mask = 0;
3715 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3716 goto done;
3718 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3719 goto done;
3720 if (!qh->c_usecs) {
3721 retval = 0;
3722 *c_maskp = 0;
3723 goto done;
3726 /* Make sure this tt's buffer is also available for CSPLITs.
3727 * We pessimize a bit; probably the typical full speed case
3728 * doesn't need the second CSPLIT.
3730 * NOTE: both SPLIT and CSPLIT could be checked in just
3731 * one smart pass...
3733 mask = 0x03 << (uframe + qh->gap_uf);
3734 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3736 mask |= 1 << uframe;
3737 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3738 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3739 qh->period, qh->c_usecs))
3740 goto done;
3741 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3742 qh->period, qh->c_usecs))
3743 goto done;
3744 retval = 0;
3746 done:
3747 return retval;
3750 /* "first fit" scheduling policy used the first time through,
3751 * or when the previous schedule slot can't be re-used.
3753 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3755 int status;
3756 unsigned uframe;
3757 __hc32 c_mask;
3758 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3759 struct fotg210_qh_hw *hw = qh->hw;
3761 qh_refresh(fotg210, qh);
3762 hw->hw_next = FOTG210_LIST_END(fotg210);
3763 frame = qh->start;
3765 /* reuse the previous schedule slots, if we can */
3766 if (frame < qh->period) {
3767 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3768 status = check_intr_schedule(fotg210, frame, --uframe,
3769 qh, &c_mask);
3770 } else {
3771 uframe = 0;
3772 c_mask = 0;
3773 status = -ENOSPC;
3776 /* else scan the schedule to find a group of slots such that all
3777 * uframes have enough periodic bandwidth available.
3779 if (status) {
3780 /* "normal" case, uframing flexible except with splits */
3781 if (qh->period) {
3782 int i;
3784 for (i = qh->period; status && i > 0; --i) {
3785 frame = ++fotg210->random_frame % qh->period;
3786 for (uframe = 0; uframe < 8; uframe++) {
3787 status = check_intr_schedule(fotg210,
3788 frame, uframe, qh,
3789 &c_mask);
3790 if (status == 0)
3791 break;
3795 /* qh->period == 0 means every uframe */
3796 } else {
3797 frame = 0;
3798 status = check_intr_schedule(fotg210, 0, 0, qh,
3799 &c_mask);
3801 if (status)
3802 goto done;
3803 qh->start = frame;
3805 /* reset S-frame and (maybe) C-frame masks */
3806 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3807 hw->hw_info2 |= qh->period
3808 ? cpu_to_hc32(fotg210, 1 << uframe)
3809 : cpu_to_hc32(fotg210, QH_SMASK);
3810 hw->hw_info2 |= c_mask;
3811 } else
3812 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3814 /* stuff into the periodic schedule */
3815 qh_link_periodic(fotg210, qh);
3816 done:
3817 return status;
3820 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3821 struct list_head *qtd_list, gfp_t mem_flags)
3823 unsigned epnum;
3824 unsigned long flags;
3825 struct fotg210_qh *qh;
3826 int status;
3827 struct list_head empty;
3829 /* get endpoint and transfer/schedule data */
3830 epnum = urb->ep->desc.bEndpointAddress;
3832 spin_lock_irqsave(&fotg210->lock, flags);
3834 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3835 status = -ESHUTDOWN;
3836 goto done_not_linked;
3838 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3839 if (unlikely(status))
3840 goto done_not_linked;
3842 /* get qh and force any scheduling errors */
3843 INIT_LIST_HEAD(&empty);
3844 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3845 if (qh == NULL) {
3846 status = -ENOMEM;
3847 goto done;
3849 if (qh->qh_state == QH_STATE_IDLE) {
3850 status = qh_schedule(fotg210, qh);
3851 if (status)
3852 goto done;
3855 /* then queue the urb's tds to the qh */
3856 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3857 BUG_ON(qh == NULL);
3859 /* ... update usbfs periodic stats */
3860 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3862 done:
3863 if (unlikely(status))
3864 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3865 done_not_linked:
3866 spin_unlock_irqrestore(&fotg210->lock, flags);
3867 if (status)
3868 qtd_list_free(fotg210, urb, qtd_list);
3870 return status;
3873 static void scan_intr(struct fotg210_hcd *fotg210)
3875 struct fotg210_qh *qh;
3877 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3878 &fotg210->intr_qh_list, intr_node) {
3879 rescan:
3880 /* clean any finished work for this qh */
3881 if (!list_empty(&qh->qtd_list)) {
3882 int temp;
3885 * Unlinks could happen here; completion reporting
3886 * drops the lock. That's why fotg210->qh_scan_next
3887 * always holds the next qh to scan; if the next qh
3888 * gets unlinked then fotg210->qh_scan_next is adjusted
3889 * in qh_unlink_periodic().
3891 temp = qh_completions(fotg210, qh);
3892 if (unlikely(qh->needs_rescan ||
3893 (list_empty(&qh->qtd_list) &&
3894 qh->qh_state == QH_STATE_LINKED)))
3895 start_unlink_intr(fotg210, qh);
3896 else if (temp != 0)
3897 goto rescan;
3902 /* fotg210_iso_stream ops work with both ITD and SITD */
3904 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3906 struct fotg210_iso_stream *stream;
3908 stream = kzalloc(sizeof(*stream), mem_flags);
3909 if (likely(stream != NULL)) {
3910 INIT_LIST_HEAD(&stream->td_list);
3911 INIT_LIST_HEAD(&stream->free_list);
3912 stream->next_uframe = -1;
3914 return stream;
3917 static void iso_stream_init(struct fotg210_hcd *fotg210,
3918 struct fotg210_iso_stream *stream, struct usb_device *dev,
3919 int pipe, unsigned interval)
3921 u32 buf1;
3922 unsigned epnum, maxp;
3923 int is_input;
3924 long bandwidth;
3925 unsigned multi;
3928 * this might be a "high bandwidth" highspeed endpoint,
3929 * as encoded in the ep descriptor's wMaxPacket field
3931 epnum = usb_pipeendpoint(pipe);
3932 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3933 maxp = usb_maxpacket(dev, pipe, !is_input);
3934 if (is_input)
3935 buf1 = (1 << 11);
3936 else
3937 buf1 = 0;
3939 maxp = max_packet(maxp);
3940 multi = hb_mult(maxp);
3941 buf1 |= maxp;
3942 maxp *= multi;
3944 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3945 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3946 stream->buf2 = cpu_to_hc32(fotg210, multi);
3948 /* usbfs wants to report the average usecs per frame tied up
3949 * when transfers on this endpoint are scheduled ...
3951 if (dev->speed == USB_SPEED_FULL) {
3952 interval <<= 3;
3953 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3954 is_input, 1, maxp));
3955 stream->usecs /= 8;
3956 } else {
3957 stream->highspeed = 1;
3958 stream->usecs = HS_USECS_ISO(maxp);
3960 bandwidth = stream->usecs * 8;
3961 bandwidth /= interval;
3963 stream->bandwidth = bandwidth;
3964 stream->udev = dev;
3965 stream->bEndpointAddress = is_input | epnum;
3966 stream->interval = interval;
3967 stream->maxp = maxp;
3970 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3971 struct urb *urb)
3973 unsigned epnum;
3974 struct fotg210_iso_stream *stream;
3975 struct usb_host_endpoint *ep;
3976 unsigned long flags;
3978 epnum = usb_pipeendpoint(urb->pipe);
3979 if (usb_pipein(urb->pipe))
3980 ep = urb->dev->ep_in[epnum];
3981 else
3982 ep = urb->dev->ep_out[epnum];
3984 spin_lock_irqsave(&fotg210->lock, flags);
3985 stream = ep->hcpriv;
3987 if (unlikely(stream == NULL)) {
3988 stream = iso_stream_alloc(GFP_ATOMIC);
3989 if (likely(stream != NULL)) {
3990 ep->hcpriv = stream;
3991 stream->ep = ep;
3992 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3993 urb->interval);
3996 /* if dev->ep[epnum] is a QH, hw is set */
3997 } else if (unlikely(stream->hw != NULL)) {
3998 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3999 urb->dev->devpath, epnum,
4000 usb_pipein(urb->pipe) ? "in" : "out");
4001 stream = NULL;
4004 spin_unlock_irqrestore(&fotg210->lock, flags);
4005 return stream;
4008 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4010 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4011 gfp_t mem_flags)
4013 struct fotg210_iso_sched *iso_sched;
4014 int size = sizeof(*iso_sched);
4016 size += packets * sizeof(struct fotg210_iso_packet);
4017 iso_sched = kzalloc(size, mem_flags);
4018 if (likely(iso_sched != NULL))
4019 INIT_LIST_HEAD(&iso_sched->td_list);
4021 return iso_sched;
4024 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4025 struct fotg210_iso_sched *iso_sched,
4026 struct fotg210_iso_stream *stream, struct urb *urb)
4028 unsigned i;
4029 dma_addr_t dma = urb->transfer_dma;
4031 /* how many uframes are needed for these transfers */
4032 iso_sched->span = urb->number_of_packets * stream->interval;
4034 /* figure out per-uframe itd fields that we'll need later
4035 * when we fit new itds into the schedule.
4037 for (i = 0; i < urb->number_of_packets; i++) {
4038 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4039 unsigned length;
4040 dma_addr_t buf;
4041 u32 trans;
4043 length = urb->iso_frame_desc[i].length;
4044 buf = dma + urb->iso_frame_desc[i].offset;
4046 trans = FOTG210_ISOC_ACTIVE;
4047 trans |= buf & 0x0fff;
4048 if (unlikely(((i + 1) == urb->number_of_packets))
4049 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4050 trans |= FOTG210_ITD_IOC;
4051 trans |= length << 16;
4052 uframe->transaction = cpu_to_hc32(fotg210, trans);
4054 /* might need to cross a buffer page within a uframe */
4055 uframe->bufp = (buf & ~(u64)0x0fff);
4056 buf += length;
4057 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4058 uframe->cross = 1;
4062 static void iso_sched_free(struct fotg210_iso_stream *stream,
4063 struct fotg210_iso_sched *iso_sched)
4065 if (!iso_sched)
4066 return;
4067 /* caller must hold fotg210->lock!*/
4068 list_splice(&iso_sched->td_list, &stream->free_list);
4069 kfree(iso_sched);
4072 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4073 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4075 struct fotg210_itd *itd;
4076 dma_addr_t itd_dma;
4077 int i;
4078 unsigned num_itds;
4079 struct fotg210_iso_sched *sched;
4080 unsigned long flags;
4082 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4083 if (unlikely(sched == NULL))
4084 return -ENOMEM;
4086 itd_sched_init(fotg210, sched, stream, urb);
4088 if (urb->interval < 8)
4089 num_itds = 1 + (sched->span + 7) / 8;
4090 else
4091 num_itds = urb->number_of_packets;
4093 /* allocate/init ITDs */
4094 spin_lock_irqsave(&fotg210->lock, flags);
4095 for (i = 0; i < num_itds; i++) {
4098 * Use iTDs from the free list, but not iTDs that may
4099 * still be in use by the hardware.
4101 if (likely(!list_empty(&stream->free_list))) {
4102 itd = list_first_entry(&stream->free_list,
4103 struct fotg210_itd, itd_list);
4104 if (itd->frame == fotg210->now_frame)
4105 goto alloc_itd;
4106 list_del(&itd->itd_list);
4107 itd_dma = itd->itd_dma;
4108 } else {
4109 alloc_itd:
4110 spin_unlock_irqrestore(&fotg210->lock, flags);
4111 itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4112 &itd_dma);
4113 spin_lock_irqsave(&fotg210->lock, flags);
4114 if (!itd) {
4115 iso_sched_free(stream, sched);
4116 spin_unlock_irqrestore(&fotg210->lock, flags);
4117 return -ENOMEM;
4121 itd->itd_dma = itd_dma;
4122 list_add(&itd->itd_list, &sched->td_list);
4124 spin_unlock_irqrestore(&fotg210->lock, flags);
4126 /* temporarily store schedule info in hcpriv */
4127 urb->hcpriv = sched;
4128 urb->error_count = 0;
4129 return 0;
4132 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4133 u8 usecs, u32 period)
4135 uframe %= period;
4136 do {
4137 /* can't commit more than uframe_periodic_max usec */
4138 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4139 > (fotg210->uframe_periodic_max - usecs))
4140 return 0;
4142 /* we know urb->interval is 2^N uframes */
4143 uframe += period;
4144 } while (uframe < mod);
4145 return 1;
4148 /* This scheduler plans almost as far into the future as it has actual
4149 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4150 * "as small as possible" to be cache-friendlier.) That limits the size
4151 * transfers you can stream reliably; avoid more than 64 msec per urb.
4152 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4153 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4154 * and other factors); or more than about 230 msec total (for portability,
4155 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4158 #define SCHEDULE_SLOP 80 /* microframes */
4160 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4161 struct fotg210_iso_stream *stream)
4163 u32 now, next, start, period, span;
4164 int status;
4165 unsigned mod = fotg210->periodic_size << 3;
4166 struct fotg210_iso_sched *sched = urb->hcpriv;
4168 period = urb->interval;
4169 span = sched->span;
4171 if (span > mod - SCHEDULE_SLOP) {
4172 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4173 status = -EFBIG;
4174 goto fail;
4177 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4179 /* Typical case: reuse current schedule, stream is still active.
4180 * Hopefully there are no gaps from the host falling behind
4181 * (irq delays etc), but if there are we'll take the next
4182 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4184 if (likely(!list_empty(&stream->td_list))) {
4185 u32 excess;
4187 /* For high speed devices, allow scheduling within the
4188 * isochronous scheduling threshold. For full speed devices
4189 * and Intel PCI-based controllers, don't (work around for
4190 * Intel ICH9 bug).
4192 if (!stream->highspeed && fotg210->fs_i_thresh)
4193 next = now + fotg210->i_thresh;
4194 else
4195 next = now;
4197 /* Fell behind (by up to twice the slop amount)?
4198 * We decide based on the time of the last currently-scheduled
4199 * slot, not the time of the next available slot.
4201 excess = (stream->next_uframe - period - next) & (mod - 1);
4202 if (excess >= mod - 2 * SCHEDULE_SLOP)
4203 start = next + excess - mod + period *
4204 DIV_ROUND_UP(mod - excess, period);
4205 else
4206 start = next + excess + period;
4207 if (start - now >= mod) {
4208 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4209 urb, start - now - period, period,
4210 mod);
4211 status = -EFBIG;
4212 goto fail;
4216 /* need to schedule; when's the next (u)frame we could start?
4217 * this is bigger than fotg210->i_thresh allows; scheduling itself
4218 * isn't free, the slop should handle reasonably slow cpus. it
4219 * can also help high bandwidth if the dma and irq loads don't
4220 * jump until after the queue is primed.
4222 else {
4223 int done = 0;
4225 start = SCHEDULE_SLOP + (now & ~0x07);
4227 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4229 /* find a uframe slot with enough bandwidth.
4230 * Early uframes are more precious because full-speed
4231 * iso IN transfers can't use late uframes,
4232 * and therefore they should be allocated last.
4234 next = start;
4235 start += period;
4236 do {
4237 start--;
4238 /* check schedule: enough space? */
4239 if (itd_slot_ok(fotg210, mod, start,
4240 stream->usecs, period))
4241 done = 1;
4242 } while (start > next && !done);
4244 /* no room in the schedule */
4245 if (!done) {
4246 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4247 urb, now, now + mod);
4248 status = -ENOSPC;
4249 goto fail;
4253 /* Tried to schedule too far into the future? */
4254 if (unlikely(start - now + span - period >=
4255 mod - 2 * SCHEDULE_SLOP)) {
4256 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4257 urb, start - now, span - period,
4258 mod - 2 * SCHEDULE_SLOP);
4259 status = -EFBIG;
4260 goto fail;
4263 stream->next_uframe = start & (mod - 1);
4265 /* report high speed start in uframes; full speed, in frames */
4266 urb->start_frame = stream->next_uframe;
4267 if (!stream->highspeed)
4268 urb->start_frame >>= 3;
4270 /* Make sure scan_isoc() sees these */
4271 if (fotg210->isoc_count == 0)
4272 fotg210->next_frame = now >> 3;
4273 return 0;
4275 fail:
4276 iso_sched_free(stream, sched);
4277 urb->hcpriv = NULL;
4278 return status;
4281 static inline void itd_init(struct fotg210_hcd *fotg210,
4282 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4284 int i;
4286 /* it's been recently zeroed */
4287 itd->hw_next = FOTG210_LIST_END(fotg210);
4288 itd->hw_bufp[0] = stream->buf0;
4289 itd->hw_bufp[1] = stream->buf1;
4290 itd->hw_bufp[2] = stream->buf2;
4292 for (i = 0; i < 8; i++)
4293 itd->index[i] = -1;
4295 /* All other fields are filled when scheduling */
4298 static inline void itd_patch(struct fotg210_hcd *fotg210,
4299 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4300 unsigned index, u16 uframe)
4302 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4303 unsigned pg = itd->pg;
4305 uframe &= 0x07;
4306 itd->index[uframe] = index;
4308 itd->hw_transaction[uframe] = uf->transaction;
4309 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4310 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4311 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4313 /* iso_frame_desc[].offset must be strictly increasing */
4314 if (unlikely(uf->cross)) {
4315 u64 bufp = uf->bufp + 4096;
4317 itd->pg = ++pg;
4318 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4319 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4323 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4324 struct fotg210_itd *itd)
4326 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4327 __hc32 *hw_p = &fotg210->periodic[frame];
4328 union fotg210_shadow here = *prev;
4329 __hc32 type = 0;
4331 /* skip any iso nodes which might belong to previous microframes */
4332 while (here.ptr) {
4333 type = Q_NEXT_TYPE(fotg210, *hw_p);
4334 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4335 break;
4336 prev = periodic_next_shadow(fotg210, prev, type);
4337 hw_p = shadow_next_periodic(fotg210, &here, type);
4338 here = *prev;
4341 itd->itd_next = here;
4342 itd->hw_next = *hw_p;
4343 prev->itd = itd;
4344 itd->frame = frame;
4345 wmb();
4346 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4349 /* fit urb's itds into the selected schedule slot; activate as needed */
4350 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4351 unsigned mod, struct fotg210_iso_stream *stream)
4353 int packet;
4354 unsigned next_uframe, uframe, frame;
4355 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4356 struct fotg210_itd *itd;
4358 next_uframe = stream->next_uframe & (mod - 1);
4360 if (unlikely(list_empty(&stream->td_list))) {
4361 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4362 += stream->bandwidth;
4363 fotg210_dbg(fotg210,
4364 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4365 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4366 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4367 urb->interval,
4368 next_uframe >> 3, next_uframe & 0x7);
4371 /* fill iTDs uframe by uframe */
4372 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4373 if (itd == NULL) {
4374 /* ASSERT: we have all necessary itds */
4376 /* ASSERT: no itds for this endpoint in this uframe */
4378 itd = list_entry(iso_sched->td_list.next,
4379 struct fotg210_itd, itd_list);
4380 list_move_tail(&itd->itd_list, &stream->td_list);
4381 itd->stream = stream;
4382 itd->urb = urb;
4383 itd_init(fotg210, stream, itd);
4386 uframe = next_uframe & 0x07;
4387 frame = next_uframe >> 3;
4389 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4391 next_uframe += stream->interval;
4392 next_uframe &= mod - 1;
4393 packet++;
4395 /* link completed itds into the schedule */
4396 if (((next_uframe >> 3) != frame)
4397 || packet == urb->number_of_packets) {
4398 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4399 itd);
4400 itd = NULL;
4403 stream->next_uframe = next_uframe;
4405 /* don't need that schedule data any more */
4406 iso_sched_free(stream, iso_sched);
4407 urb->hcpriv = NULL;
4409 ++fotg210->isoc_count;
4410 enable_periodic(fotg210);
4413 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4414 FOTG210_ISOC_XACTERR)
4416 /* Process and recycle a completed ITD. Return true iff its urb completed,
4417 * and hence its completion callback probably added things to the hardware
4418 * schedule.
4420 * Note that we carefully avoid recycling this descriptor until after any
4421 * completion callback runs, so that it won't be reused quickly. That is,
4422 * assuming (a) no more than two urbs per frame on this endpoint, and also
4423 * (b) only this endpoint's completions submit URBs. It seems some silicon
4424 * corrupts things if you reuse completed descriptors very quickly...
4426 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4428 struct urb *urb = itd->urb;
4429 struct usb_iso_packet_descriptor *desc;
4430 u32 t;
4431 unsigned uframe;
4432 int urb_index = -1;
4433 struct fotg210_iso_stream *stream = itd->stream;
4434 struct usb_device *dev;
4435 bool retval = false;
4437 /* for each uframe with a packet */
4438 for (uframe = 0; uframe < 8; uframe++) {
4439 if (likely(itd->index[uframe] == -1))
4440 continue;
4441 urb_index = itd->index[uframe];
4442 desc = &urb->iso_frame_desc[urb_index];
4444 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4445 itd->hw_transaction[uframe] = 0;
4447 /* report transfer status */
4448 if (unlikely(t & ISO_ERRS)) {
4449 urb->error_count++;
4450 if (t & FOTG210_ISOC_BUF_ERR)
4451 desc->status = usb_pipein(urb->pipe)
4452 ? -ENOSR /* hc couldn't read */
4453 : -ECOMM; /* hc couldn't write */
4454 else if (t & FOTG210_ISOC_BABBLE)
4455 desc->status = -EOVERFLOW;
4456 else /* (t & FOTG210_ISOC_XACTERR) */
4457 desc->status = -EPROTO;
4459 /* HC need not update length with this error */
4460 if (!(t & FOTG210_ISOC_BABBLE)) {
4461 desc->actual_length =
4462 fotg210_itdlen(urb, desc, t);
4463 urb->actual_length += desc->actual_length;
4465 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4466 desc->status = 0;
4467 desc->actual_length = fotg210_itdlen(urb, desc, t);
4468 urb->actual_length += desc->actual_length;
4469 } else {
4470 /* URB was too late */
4471 desc->status = -EXDEV;
4475 /* handle completion now? */
4476 if (likely((urb_index + 1) != urb->number_of_packets))
4477 goto done;
4479 /* ASSERT: it's really the last itd for this urb
4480 * list_for_each_entry (itd, &stream->td_list, itd_list)
4481 * BUG_ON (itd->urb == urb);
4484 /* give urb back to the driver; completion often (re)submits */
4485 dev = urb->dev;
4486 fotg210_urb_done(fotg210, urb, 0);
4487 retval = true;
4488 urb = NULL;
4490 --fotg210->isoc_count;
4491 disable_periodic(fotg210);
4493 if (unlikely(list_is_singular(&stream->td_list))) {
4494 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4495 -= stream->bandwidth;
4496 fotg210_dbg(fotg210,
4497 "deschedule devp %s ep%d%s-iso\n",
4498 dev->devpath, stream->bEndpointAddress & 0x0f,
4499 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4502 done:
4503 itd->urb = NULL;
4505 /* Add to the end of the free list for later reuse */
4506 list_move_tail(&itd->itd_list, &stream->free_list);
4508 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4509 if (list_empty(&stream->td_list)) {
4510 list_splice_tail_init(&stream->free_list,
4511 &fotg210->cached_itd_list);
4512 start_free_itds(fotg210);
4515 return retval;
4518 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4519 gfp_t mem_flags)
4521 int status = -EINVAL;
4522 unsigned long flags;
4523 struct fotg210_iso_stream *stream;
4525 /* Get iso_stream head */
4526 stream = iso_stream_find(fotg210, urb);
4527 if (unlikely(stream == NULL)) {
4528 fotg210_dbg(fotg210, "can't get iso stream\n");
4529 return -ENOMEM;
4531 if (unlikely(urb->interval != stream->interval &&
4532 fotg210_port_speed(fotg210, 0) ==
4533 USB_PORT_STAT_HIGH_SPEED)) {
4534 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4535 stream->interval, urb->interval);
4536 goto done;
4539 #ifdef FOTG210_URB_TRACE
4540 fotg210_dbg(fotg210,
4541 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4542 __func__, urb->dev->devpath, urb,
4543 usb_pipeendpoint(urb->pipe),
4544 usb_pipein(urb->pipe) ? "in" : "out",
4545 urb->transfer_buffer_length,
4546 urb->number_of_packets, urb->interval,
4547 stream);
4548 #endif
4550 /* allocate ITDs w/o locking anything */
4551 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4552 if (unlikely(status < 0)) {
4553 fotg210_dbg(fotg210, "can't init itds\n");
4554 goto done;
4557 /* schedule ... need to lock */
4558 spin_lock_irqsave(&fotg210->lock, flags);
4559 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4560 status = -ESHUTDOWN;
4561 goto done_not_linked;
4563 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4564 if (unlikely(status))
4565 goto done_not_linked;
4566 status = iso_stream_schedule(fotg210, urb, stream);
4567 if (likely(status == 0))
4568 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4569 else
4570 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4571 done_not_linked:
4572 spin_unlock_irqrestore(&fotg210->lock, flags);
4573 done:
4574 return status;
4577 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4578 unsigned now_frame, bool live)
4580 unsigned uf;
4581 bool modified;
4582 union fotg210_shadow q, *q_p;
4583 __hc32 type, *hw_p;
4585 /* scan each element in frame's queue for completions */
4586 q_p = &fotg210->pshadow[frame];
4587 hw_p = &fotg210->periodic[frame];
4588 q.ptr = q_p->ptr;
4589 type = Q_NEXT_TYPE(fotg210, *hw_p);
4590 modified = false;
4592 while (q.ptr) {
4593 switch (hc32_to_cpu(fotg210, type)) {
4594 case Q_TYPE_ITD:
4595 /* If this ITD is still active, leave it for
4596 * later processing ... check the next entry.
4597 * No need to check for activity unless the
4598 * frame is current.
4600 if (frame == now_frame && live) {
4601 rmb();
4602 for (uf = 0; uf < 8; uf++) {
4603 if (q.itd->hw_transaction[uf] &
4604 ITD_ACTIVE(fotg210))
4605 break;
4607 if (uf < 8) {
4608 q_p = &q.itd->itd_next;
4609 hw_p = &q.itd->hw_next;
4610 type = Q_NEXT_TYPE(fotg210,
4611 q.itd->hw_next);
4612 q = *q_p;
4613 break;
4617 /* Take finished ITDs out of the schedule
4618 * and process them: recycle, maybe report
4619 * URB completion. HC won't cache the
4620 * pointer for much longer, if at all.
4622 *q_p = q.itd->itd_next;
4623 *hw_p = q.itd->hw_next;
4624 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4625 wmb();
4626 modified = itd_complete(fotg210, q.itd);
4627 q = *q_p;
4628 break;
4629 default:
4630 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4631 type, frame, q.ptr);
4632 /* FALL THROUGH */
4633 case Q_TYPE_QH:
4634 case Q_TYPE_FSTN:
4635 /* End of the iTDs and siTDs */
4636 q.ptr = NULL;
4637 break;
4640 /* assume completion callbacks modify the queue */
4641 if (unlikely(modified && fotg210->isoc_count > 0))
4642 return -EINVAL;
4644 return 0;
4647 static void scan_isoc(struct fotg210_hcd *fotg210)
4649 unsigned uf, now_frame, frame, ret;
4650 unsigned fmask = fotg210->periodic_size - 1;
4651 bool live;
4654 * When running, scan from last scan point up to "now"
4655 * else clean up by scanning everything that's left.
4656 * Touches as few pages as possible: cache-friendly.
4658 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4659 uf = fotg210_read_frame_index(fotg210);
4660 now_frame = (uf >> 3) & fmask;
4661 live = true;
4662 } else {
4663 now_frame = (fotg210->next_frame - 1) & fmask;
4664 live = false;
4666 fotg210->now_frame = now_frame;
4668 frame = fotg210->next_frame;
4669 for (;;) {
4670 ret = 1;
4671 while (ret != 0)
4672 ret = scan_frame_queue(fotg210, frame,
4673 now_frame, live);
4675 /* Stop when we have reached the current frame */
4676 if (frame == now_frame)
4677 break;
4678 frame = (frame + 1) & fmask;
4680 fotg210->next_frame = now_frame;
4683 /* Display / Set uframe_periodic_max
4685 static ssize_t uframe_periodic_max_show(struct device *dev,
4686 struct device_attribute *attr, char *buf)
4688 struct fotg210_hcd *fotg210;
4689 int n;
4691 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4692 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4693 return n;
4697 static ssize_t uframe_periodic_max_store(struct device *dev,
4698 struct device_attribute *attr, const char *buf, size_t count)
4700 struct fotg210_hcd *fotg210;
4701 unsigned uframe_periodic_max;
4702 unsigned frame, uframe;
4703 unsigned short allocated_max;
4704 unsigned long flags;
4705 ssize_t ret;
4707 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4708 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4709 return -EINVAL;
4711 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4712 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4713 uframe_periodic_max);
4714 return -EINVAL;
4717 ret = -EINVAL;
4720 * lock, so that our checking does not race with possible periodic
4721 * bandwidth allocation through submitting new urbs.
4723 spin_lock_irqsave(&fotg210->lock, flags);
4726 * for request to decrease max periodic bandwidth, we have to check
4727 * every microframe in the schedule to see whether the decrease is
4728 * possible.
4730 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4731 allocated_max = 0;
4733 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4734 for (uframe = 0; uframe < 7; ++uframe)
4735 allocated_max = max(allocated_max,
4736 periodic_usecs(fotg210, frame,
4737 uframe));
4739 if (allocated_max > uframe_periodic_max) {
4740 fotg210_info(fotg210,
4741 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4742 allocated_max, uframe_periodic_max);
4743 goto out_unlock;
4747 /* increasing is always ok */
4749 fotg210_info(fotg210,
4750 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4751 100 * uframe_periodic_max/125, uframe_periodic_max);
4753 if (uframe_periodic_max != 100)
4754 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4756 fotg210->uframe_periodic_max = uframe_periodic_max;
4757 ret = count;
4759 out_unlock:
4760 spin_unlock_irqrestore(&fotg210->lock, flags);
4761 return ret;
4764 static DEVICE_ATTR_RW(uframe_periodic_max);
4766 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4768 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4770 return device_create_file(controller, &dev_attr_uframe_periodic_max);
4773 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4775 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4777 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4779 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4780 * The firmware seems to think that powering off is a wakeup event!
4781 * This routine turns off remote wakeup and everything else, on all ports.
4783 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4785 u32 __iomem *status_reg = &fotg210->regs->port_status;
4787 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4790 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4791 * Must be called with interrupts enabled and the lock not held.
4793 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4795 fotg210_halt(fotg210);
4797 spin_lock_irq(&fotg210->lock);
4798 fotg210->rh_state = FOTG210_RH_HALTED;
4799 fotg210_turn_off_all_ports(fotg210);
4800 spin_unlock_irq(&fotg210->lock);
4803 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4804 * This forcibly disables dma and IRQs, helping kexec and other cases
4805 * where the next system software may expect clean state.
4807 static void fotg210_shutdown(struct usb_hcd *hcd)
4809 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4811 spin_lock_irq(&fotg210->lock);
4812 fotg210->shutdown = true;
4813 fotg210->rh_state = FOTG210_RH_STOPPING;
4814 fotg210->enabled_hrtimer_events = 0;
4815 spin_unlock_irq(&fotg210->lock);
4817 fotg210_silence_controller(fotg210);
4819 hrtimer_cancel(&fotg210->hrtimer);
4822 /* fotg210_work is called from some interrupts, timers, and so on.
4823 * it calls driver completion functions, after dropping fotg210->lock.
4825 static void fotg210_work(struct fotg210_hcd *fotg210)
4827 /* another CPU may drop fotg210->lock during a schedule scan while
4828 * it reports urb completions. this flag guards against bogus
4829 * attempts at re-entrant schedule scanning.
4831 if (fotg210->scanning) {
4832 fotg210->need_rescan = true;
4833 return;
4835 fotg210->scanning = true;
4837 rescan:
4838 fotg210->need_rescan = false;
4839 if (fotg210->async_count)
4840 scan_async(fotg210);
4841 if (fotg210->intr_count > 0)
4842 scan_intr(fotg210);
4843 if (fotg210->isoc_count > 0)
4844 scan_isoc(fotg210);
4845 if (fotg210->need_rescan)
4846 goto rescan;
4847 fotg210->scanning = false;
4849 /* the IO watchdog guards against hardware or driver bugs that
4850 * misplace IRQs, and should let us run completely without IRQs.
4851 * such lossage has been observed on both VT6202 and VT8235.
4853 turn_on_io_watchdog(fotg210);
4856 /* Called when the fotg210_hcd module is removed.
4858 static void fotg210_stop(struct usb_hcd *hcd)
4860 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4862 fotg210_dbg(fotg210, "stop\n");
4864 /* no more interrupts ... */
4866 spin_lock_irq(&fotg210->lock);
4867 fotg210->enabled_hrtimer_events = 0;
4868 spin_unlock_irq(&fotg210->lock);
4870 fotg210_quiesce(fotg210);
4871 fotg210_silence_controller(fotg210);
4872 fotg210_reset(fotg210);
4874 hrtimer_cancel(&fotg210->hrtimer);
4875 remove_sysfs_files(fotg210);
4876 remove_debug_files(fotg210);
4878 /* root hub is shut down separately (first, when possible) */
4879 spin_lock_irq(&fotg210->lock);
4880 end_free_itds(fotg210);
4881 spin_unlock_irq(&fotg210->lock);
4882 fotg210_mem_cleanup(fotg210);
4884 #ifdef FOTG210_STATS
4885 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4886 fotg210->stats.normal, fotg210->stats.error,
4887 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4888 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4889 fotg210->stats.complete, fotg210->stats.unlink);
4890 #endif
4892 dbg_status(fotg210, "fotg210_stop completed",
4893 fotg210_readl(fotg210, &fotg210->regs->status));
4896 /* one-time init, only for memory state */
4897 static int hcd_fotg210_init(struct usb_hcd *hcd)
4899 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4900 u32 temp;
4901 int retval;
4902 u32 hcc_params;
4903 struct fotg210_qh_hw *hw;
4905 spin_lock_init(&fotg210->lock);
4908 * keep io watchdog by default, those good HCDs could turn off it later
4910 fotg210->need_io_watchdog = 1;
4912 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4913 fotg210->hrtimer.function = fotg210_hrtimer_func;
4914 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4916 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4919 * by default set standard 80% (== 100 usec/uframe) max periodic
4920 * bandwidth as required by USB 2.0
4922 fotg210->uframe_periodic_max = 100;
4925 * hw default: 1K periodic list heads, one per frame.
4926 * periodic_size can shrink by USBCMD update if hcc_params allows.
4928 fotg210->periodic_size = DEFAULT_I_TDPS;
4929 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4930 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4932 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4933 /* periodic schedule size can be smaller than default */
4934 switch (FOTG210_TUNE_FLS) {
4935 case 0:
4936 fotg210->periodic_size = 1024;
4937 break;
4938 case 1:
4939 fotg210->periodic_size = 512;
4940 break;
4941 case 2:
4942 fotg210->periodic_size = 256;
4943 break;
4944 default:
4945 BUG();
4948 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4949 if (retval < 0)
4950 return retval;
4952 /* controllers may cache some of the periodic schedule ... */
4953 fotg210->i_thresh = 2;
4956 * dedicate a qh for the async ring head, since we couldn't unlink
4957 * a 'real' qh without stopping the async schedule [4.8]. use it
4958 * as the 'reclamation list head' too.
4959 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4960 * from automatically advancing to the next td after short reads.
4962 fotg210->async->qh_next.qh = NULL;
4963 hw = fotg210->async->hw;
4964 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4965 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4966 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4967 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4968 fotg210->async->qh_state = QH_STATE_LINKED;
4969 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4971 /* clear interrupt enables, set irq latency */
4972 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4973 log2_irq_thresh = 0;
4974 temp = 1 << (16 + log2_irq_thresh);
4975 if (HCC_CANPARK(hcc_params)) {
4976 /* HW default park == 3, on hardware that supports it (like
4977 * NVidia and ALI silicon), maximizes throughput on the async
4978 * schedule by avoiding QH fetches between transfers.
4980 * With fast usb storage devices and NForce2, "park" seems to
4981 * make problems: throughput reduction (!), data errors...
4983 if (park) {
4984 park = min_t(unsigned, park, 3);
4985 temp |= CMD_PARK;
4986 temp |= park << 8;
4988 fotg210_dbg(fotg210, "park %d\n", park);
4990 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4991 /* periodic schedule size can be smaller than default */
4992 temp &= ~(3 << 2);
4993 temp |= (FOTG210_TUNE_FLS << 2);
4995 fotg210->command = temp;
4997 /* Accept arbitrarily long scatter-gather lists */
4998 if (!(hcd->driver->flags & HCD_LOCAL_MEM))
4999 hcd->self.sg_tablesize = ~0;
5000 return 0;
5003 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5004 static int fotg210_run(struct usb_hcd *hcd)
5006 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5007 u32 temp;
5008 u32 hcc_params;
5010 hcd->uses_new_polling = 1;
5012 /* EHCI spec section 4.1 */
5014 fotg210_writel(fotg210, fotg210->periodic_dma,
5015 &fotg210->regs->frame_list);
5016 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5017 &fotg210->regs->async_next);
5020 * hcc_params controls whether fotg210->regs->segment must (!!!)
5021 * be used; it constrains QH/ITD/SITD and QTD locations.
5022 * dma_pool consistent memory always uses segment zero.
5023 * streaming mappings for I/O buffers, like pci_map_single(),
5024 * can return segments above 4GB, if the device allows.
5026 * NOTE: the dma mask is visible through dev->dma_mask, so
5027 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5028 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5029 * host side drivers though.
5031 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5034 * Philips, Intel, and maybe others need CMD_RUN before the
5035 * root hub will detect new devices (why?); NEC doesn't
5037 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5038 fotg210->command |= CMD_RUN;
5039 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5040 dbg_cmd(fotg210, "init", fotg210->command);
5043 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5044 * are explicitly handed to companion controller(s), so no TT is
5045 * involved with the root hub. (Except where one is integrated,
5046 * and there's no companion controller unless maybe for USB OTG.)
5048 * Turning on the CF flag will transfer ownership of all ports
5049 * from the companions to the EHCI controller. If any of the
5050 * companions are in the middle of a port reset at the time, it
5051 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5052 * guarantees that no resets are in progress. After we set CF,
5053 * a short delay lets the hardware catch up; new resets shouldn't
5054 * be started before the port switching actions could complete.
5056 down_write(&ehci_cf_port_reset_rwsem);
5057 fotg210->rh_state = FOTG210_RH_RUNNING;
5058 /* unblock posted writes */
5059 fotg210_readl(fotg210, &fotg210->regs->command);
5060 usleep_range(5000, 10000);
5061 up_write(&ehci_cf_port_reset_rwsem);
5062 fotg210->last_periodic_enable = ktime_get_real();
5064 temp = HC_VERSION(fotg210,
5065 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5066 fotg210_info(fotg210,
5067 "USB %x.%x started, EHCI %x.%02x\n",
5068 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5069 temp >> 8, temp & 0xff);
5071 fotg210_writel(fotg210, INTR_MASK,
5072 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5074 /* GRR this is run-once init(), being done every time the HC starts.
5075 * So long as they're part of class devices, we can't do it init()
5076 * since the class device isn't created that early.
5078 create_debug_files(fotg210);
5079 create_sysfs_files(fotg210);
5081 return 0;
5084 static int fotg210_setup(struct usb_hcd *hcd)
5086 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5087 int retval;
5089 fotg210->regs = (void __iomem *)fotg210->caps +
5090 HC_LENGTH(fotg210,
5091 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5092 dbg_hcs_params(fotg210, "reset");
5093 dbg_hcc_params(fotg210, "reset");
5095 /* cache this readonly data; minimize chip reads */
5096 fotg210->hcs_params = fotg210_readl(fotg210,
5097 &fotg210->caps->hcs_params);
5099 fotg210->sbrn = HCD_USB2;
5101 /* data structure init */
5102 retval = hcd_fotg210_init(hcd);
5103 if (retval)
5104 return retval;
5106 retval = fotg210_halt(fotg210);
5107 if (retval)
5108 return retval;
5110 fotg210_reset(fotg210);
5112 return 0;
5115 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5117 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5118 u32 status, masked_status, pcd_status = 0, cmd;
5119 int bh;
5121 spin_lock(&fotg210->lock);
5123 status = fotg210_readl(fotg210, &fotg210->regs->status);
5125 /* e.g. cardbus physical eject */
5126 if (status == ~(u32) 0) {
5127 fotg210_dbg(fotg210, "device removed\n");
5128 goto dead;
5132 * We don't use STS_FLR, but some controllers don't like it to
5133 * remain on, so mask it out along with the other status bits.
5135 masked_status = status & (INTR_MASK | STS_FLR);
5137 /* Shared IRQ? */
5138 if (!masked_status ||
5139 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5140 spin_unlock(&fotg210->lock);
5141 return IRQ_NONE;
5144 /* clear (just) interrupts */
5145 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5146 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5147 bh = 0;
5149 /* unrequested/ignored: Frame List Rollover */
5150 dbg_status(fotg210, "irq", status);
5152 /* INT, ERR, and IAA interrupt rates can be throttled */
5154 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5155 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5156 if (likely((status & STS_ERR) == 0))
5157 INCR(fotg210->stats.normal);
5158 else
5159 INCR(fotg210->stats.error);
5160 bh = 1;
5163 /* complete the unlinking of some qh [4.15.2.3] */
5164 if (status & STS_IAA) {
5166 /* Turn off the IAA watchdog */
5167 fotg210->enabled_hrtimer_events &=
5168 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5171 * Mild optimization: Allow another IAAD to reset the
5172 * hrtimer, if one occurs before the next expiration.
5173 * In theory we could always cancel the hrtimer, but
5174 * tests show that about half the time it will be reset
5175 * for some other event anyway.
5177 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5178 ++fotg210->next_hrtimer_event;
5180 /* guard against (alleged) silicon errata */
5181 if (cmd & CMD_IAAD)
5182 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5183 if (fotg210->async_iaa) {
5184 INCR(fotg210->stats.iaa);
5185 end_unlink_async(fotg210);
5186 } else
5187 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5190 /* remote wakeup [4.3.1] */
5191 if (status & STS_PCD) {
5192 int pstatus;
5193 u32 __iomem *status_reg = &fotg210->regs->port_status;
5195 /* kick root hub later */
5196 pcd_status = status;
5198 /* resume root hub? */
5199 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5200 usb_hcd_resume_root_hub(hcd);
5202 pstatus = fotg210_readl(fotg210, status_reg);
5204 if (test_bit(0, &fotg210->suspended_ports) &&
5205 ((pstatus & PORT_RESUME) ||
5206 !(pstatus & PORT_SUSPEND)) &&
5207 (pstatus & PORT_PE) &&
5208 fotg210->reset_done[0] == 0) {
5210 /* start 20 msec resume signaling from this port,
5211 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5212 * stop that signaling. Use 5 ms extra for safety,
5213 * like usb_port_resume() does.
5215 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5216 set_bit(0, &fotg210->resuming_ports);
5217 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5218 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5222 /* PCI errors [4.15.2.4] */
5223 if (unlikely((status & STS_FATAL) != 0)) {
5224 fotg210_err(fotg210, "fatal error\n");
5225 dbg_cmd(fotg210, "fatal", cmd);
5226 dbg_status(fotg210, "fatal", status);
5227 dead:
5228 usb_hc_died(hcd);
5230 /* Don't let the controller do anything more */
5231 fotg210->shutdown = true;
5232 fotg210->rh_state = FOTG210_RH_STOPPING;
5233 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5234 fotg210_writel(fotg210, fotg210->command,
5235 &fotg210->regs->command);
5236 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5237 fotg210_handle_controller_death(fotg210);
5239 /* Handle completions when the controller stops */
5240 bh = 0;
5243 if (bh)
5244 fotg210_work(fotg210);
5245 spin_unlock(&fotg210->lock);
5246 if (pcd_status)
5247 usb_hcd_poll_rh_status(hcd);
5248 return IRQ_HANDLED;
5251 /* non-error returns are a promise to giveback() the urb later
5252 * we drop ownership so next owner (or urb unlink) can get it
5254 * urb + dev is in hcd.self.controller.urb_list
5255 * we're queueing TDs onto software and hardware lists
5257 * hcd-specific init for hcpriv hasn't been done yet
5259 * NOTE: control, bulk, and interrupt share the same code to append TDs
5260 * to a (possibly active) QH, and the same QH scanning code.
5262 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5263 gfp_t mem_flags)
5265 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5266 struct list_head qtd_list;
5268 INIT_LIST_HEAD(&qtd_list);
5270 switch (usb_pipetype(urb->pipe)) {
5271 case PIPE_CONTROL:
5272 /* qh_completions() code doesn't handle all the fault cases
5273 * in multi-TD control transfers. Even 1KB is rare anyway.
5275 if (urb->transfer_buffer_length > (16 * 1024))
5276 return -EMSGSIZE;
5277 /* FALLTHROUGH */
5278 /* case PIPE_BULK: */
5279 default:
5280 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5281 return -ENOMEM;
5282 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5284 case PIPE_INTERRUPT:
5285 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5286 return -ENOMEM;
5287 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5289 case PIPE_ISOCHRONOUS:
5290 return itd_submit(fotg210, urb, mem_flags);
5294 /* remove from hardware lists
5295 * completions normally happen asynchronously
5298 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5300 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5301 struct fotg210_qh *qh;
5302 unsigned long flags;
5303 int rc;
5305 spin_lock_irqsave(&fotg210->lock, flags);
5306 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5307 if (rc)
5308 goto done;
5310 switch (usb_pipetype(urb->pipe)) {
5311 /* case PIPE_CONTROL: */
5312 /* case PIPE_BULK:*/
5313 default:
5314 qh = (struct fotg210_qh *) urb->hcpriv;
5315 if (!qh)
5316 break;
5317 switch (qh->qh_state) {
5318 case QH_STATE_LINKED:
5319 case QH_STATE_COMPLETING:
5320 start_unlink_async(fotg210, qh);
5321 break;
5322 case QH_STATE_UNLINK:
5323 case QH_STATE_UNLINK_WAIT:
5324 /* already started */
5325 break;
5326 case QH_STATE_IDLE:
5327 /* QH might be waiting for a Clear-TT-Buffer */
5328 qh_completions(fotg210, qh);
5329 break;
5331 break;
5333 case PIPE_INTERRUPT:
5334 qh = (struct fotg210_qh *) urb->hcpriv;
5335 if (!qh)
5336 break;
5337 switch (qh->qh_state) {
5338 case QH_STATE_LINKED:
5339 case QH_STATE_COMPLETING:
5340 start_unlink_intr(fotg210, qh);
5341 break;
5342 case QH_STATE_IDLE:
5343 qh_completions(fotg210, qh);
5344 break;
5345 default:
5346 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5347 qh, qh->qh_state);
5348 goto done;
5350 break;
5352 case PIPE_ISOCHRONOUS:
5353 /* itd... */
5355 /* wait till next completion, do it then. */
5356 /* completion irqs can wait up to 1024 msec, */
5357 break;
5359 done:
5360 spin_unlock_irqrestore(&fotg210->lock, flags);
5361 return rc;
5364 /* bulk qh holds the data toggle */
5366 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5367 struct usb_host_endpoint *ep)
5369 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5370 unsigned long flags;
5371 struct fotg210_qh *qh, *tmp;
5373 /* ASSERT: any requests/urbs are being unlinked */
5374 /* ASSERT: nobody can be submitting urbs for this any more */
5376 rescan:
5377 spin_lock_irqsave(&fotg210->lock, flags);
5378 qh = ep->hcpriv;
5379 if (!qh)
5380 goto done;
5382 /* endpoints can be iso streams. for now, we don't
5383 * accelerate iso completions ... so spin a while.
5385 if (qh->hw == NULL) {
5386 struct fotg210_iso_stream *stream = ep->hcpriv;
5388 if (!list_empty(&stream->td_list))
5389 goto idle_timeout;
5391 /* BUG_ON(!list_empty(&stream->free_list)); */
5392 kfree(stream);
5393 goto done;
5396 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5397 qh->qh_state = QH_STATE_IDLE;
5398 switch (qh->qh_state) {
5399 case QH_STATE_LINKED:
5400 case QH_STATE_COMPLETING:
5401 for (tmp = fotg210->async->qh_next.qh;
5402 tmp && tmp != qh;
5403 tmp = tmp->qh_next.qh)
5404 continue;
5405 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5406 * may already be unlinked.
5408 if (tmp)
5409 start_unlink_async(fotg210, qh);
5410 /* FALL THROUGH */
5411 case QH_STATE_UNLINK: /* wait for hw to finish? */
5412 case QH_STATE_UNLINK_WAIT:
5413 idle_timeout:
5414 spin_unlock_irqrestore(&fotg210->lock, flags);
5415 schedule_timeout_uninterruptible(1);
5416 goto rescan;
5417 case QH_STATE_IDLE: /* fully unlinked */
5418 if (qh->clearing_tt)
5419 goto idle_timeout;
5420 if (list_empty(&qh->qtd_list)) {
5421 qh_destroy(fotg210, qh);
5422 break;
5424 /* fall through */
5425 default:
5426 /* caller was supposed to have unlinked any requests;
5427 * that's not our job. just leak this memory.
5429 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5430 qh, ep->desc.bEndpointAddress, qh->qh_state,
5431 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5432 break;
5434 done:
5435 ep->hcpriv = NULL;
5436 spin_unlock_irqrestore(&fotg210->lock, flags);
5439 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5440 struct usb_host_endpoint *ep)
5442 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5443 struct fotg210_qh *qh;
5444 int eptype = usb_endpoint_type(&ep->desc);
5445 int epnum = usb_endpoint_num(&ep->desc);
5446 int is_out = usb_endpoint_dir_out(&ep->desc);
5447 unsigned long flags;
5449 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5450 return;
5452 spin_lock_irqsave(&fotg210->lock, flags);
5453 qh = ep->hcpriv;
5455 /* For Bulk and Interrupt endpoints we maintain the toggle state
5456 * in the hardware; the toggle bits in udev aren't used at all.
5457 * When an endpoint is reset by usb_clear_halt() we must reset
5458 * the toggle bit in the QH.
5460 if (qh) {
5461 usb_settoggle(qh->dev, epnum, is_out, 0);
5462 if (!list_empty(&qh->qtd_list)) {
5463 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5464 } else if (qh->qh_state == QH_STATE_LINKED ||
5465 qh->qh_state == QH_STATE_COMPLETING) {
5467 /* The toggle value in the QH can't be updated
5468 * while the QH is active. Unlink it now;
5469 * re-linking will call qh_refresh().
5471 if (eptype == USB_ENDPOINT_XFER_BULK)
5472 start_unlink_async(fotg210, qh);
5473 else
5474 start_unlink_intr(fotg210, qh);
5477 spin_unlock_irqrestore(&fotg210->lock, flags);
5480 static int fotg210_get_frame(struct usb_hcd *hcd)
5482 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5484 return (fotg210_read_frame_index(fotg210) >> 3) %
5485 fotg210->periodic_size;
5488 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5489 * because its registers (and irq) are shared between host/gadget/otg
5490 * functions and in order to facilitate role switching we cannot
5491 * give the fotg210 driver exclusive access to those.
5493 MODULE_DESCRIPTION(DRIVER_DESC);
5494 MODULE_AUTHOR(DRIVER_AUTHOR);
5495 MODULE_LICENSE("GPL");
5497 static const struct hc_driver fotg210_fotg210_hc_driver = {
5498 .description = hcd_name,
5499 .product_desc = "Faraday USB2.0 Host Controller",
5500 .hcd_priv_size = sizeof(struct fotg210_hcd),
5503 * generic hardware linkage
5505 .irq = fotg210_irq,
5506 .flags = HCD_MEMORY | HCD_USB2,
5509 * basic lifecycle operations
5511 .reset = hcd_fotg210_init,
5512 .start = fotg210_run,
5513 .stop = fotg210_stop,
5514 .shutdown = fotg210_shutdown,
5517 * managing i/o requests and associated device resources
5519 .urb_enqueue = fotg210_urb_enqueue,
5520 .urb_dequeue = fotg210_urb_dequeue,
5521 .endpoint_disable = fotg210_endpoint_disable,
5522 .endpoint_reset = fotg210_endpoint_reset,
5525 * scheduling support
5527 .get_frame_number = fotg210_get_frame,
5530 * root hub support
5532 .hub_status_data = fotg210_hub_status_data,
5533 .hub_control = fotg210_hub_control,
5534 .bus_suspend = fotg210_bus_suspend,
5535 .bus_resume = fotg210_bus_resume,
5537 .relinquish_port = fotg210_relinquish_port,
5538 .port_handed_over = fotg210_port_handed_over,
5540 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5543 static void fotg210_init(struct fotg210_hcd *fotg210)
5545 u32 value;
5547 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5548 &fotg210->regs->gmir);
5550 value = ioread32(&fotg210->regs->otgcsr);
5551 value &= ~OTGCSR_A_BUS_DROP;
5552 value |= OTGCSR_A_BUS_REQ;
5553 iowrite32(value, &fotg210->regs->otgcsr);
5557 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5559 * Allocates basic resources for this USB host controller, and
5560 * then invokes the start() method for the HCD associated with it
5561 * through the hotplug entry's driver_data.
5563 static int fotg210_hcd_probe(struct platform_device *pdev)
5565 struct device *dev = &pdev->dev;
5566 struct usb_hcd *hcd;
5567 struct resource *res;
5568 int irq;
5569 int retval = -ENODEV;
5570 struct fotg210_hcd *fotg210;
5572 if (usb_disabled())
5573 return -ENODEV;
5575 pdev->dev.power.power_state = PMSG_ON;
5577 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5578 if (!res) {
5579 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5580 dev_name(dev));
5581 return -ENODEV;
5584 irq = res->start;
5586 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5587 dev_name(dev));
5588 if (!hcd) {
5589 dev_err(dev, "failed to create hcd with err %d\n", retval);
5590 retval = -ENOMEM;
5591 goto fail_create_hcd;
5594 hcd->has_tt = 1;
5596 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5597 hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5598 if (IS_ERR(hcd->regs)) {
5599 retval = PTR_ERR(hcd->regs);
5600 goto failed_put_hcd;
5603 hcd->rsrc_start = res->start;
5604 hcd->rsrc_len = resource_size(res);
5606 fotg210 = hcd_to_fotg210(hcd);
5608 fotg210->caps = hcd->regs;
5610 /* It's OK not to supply this clock */
5611 fotg210->pclk = clk_get(dev, "PCLK");
5612 if (!IS_ERR(fotg210->pclk)) {
5613 retval = clk_prepare_enable(fotg210->pclk);
5614 if (retval) {
5615 dev_err(dev, "failed to enable PCLK\n");
5616 goto failed_put_hcd;
5618 } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5620 * Percolate deferrals, for anything else,
5621 * just live without the clocking.
5623 retval = PTR_ERR(fotg210->pclk);
5624 goto failed_dis_clk;
5627 retval = fotg210_setup(hcd);
5628 if (retval)
5629 goto failed_dis_clk;
5631 fotg210_init(fotg210);
5633 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5634 if (retval) {
5635 dev_err(dev, "failed to add hcd with err %d\n", retval);
5636 goto failed_dis_clk;
5638 device_wakeup_enable(hcd->self.controller);
5639 platform_set_drvdata(pdev, hcd);
5641 return retval;
5643 failed_dis_clk:
5644 if (!IS_ERR(fotg210->pclk))
5645 clk_disable_unprepare(fotg210->pclk);
5646 failed_put_hcd:
5647 usb_put_hcd(hcd);
5648 fail_create_hcd:
5649 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5650 return retval;
5654 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5655 * @dev: USB Host Controller being removed
5658 static int fotg210_hcd_remove(struct platform_device *pdev)
5660 struct usb_hcd *hcd = platform_get_drvdata(pdev);
5661 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5663 if (!IS_ERR(fotg210->pclk))
5664 clk_disable_unprepare(fotg210->pclk);
5666 usb_remove_hcd(hcd);
5667 usb_put_hcd(hcd);
5669 return 0;
5672 static struct platform_driver fotg210_hcd_driver = {
5673 .driver = {
5674 .name = "fotg210-hcd",
5676 .probe = fotg210_hcd_probe,
5677 .remove = fotg210_hcd_remove,
5680 static int __init fotg210_hcd_init(void)
5682 int retval = 0;
5684 if (usb_disabled())
5685 return -ENODEV;
5687 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5688 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5689 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5690 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5691 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5693 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5694 hcd_name, sizeof(struct fotg210_qh),
5695 sizeof(struct fotg210_qtd),
5696 sizeof(struct fotg210_itd));
5698 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5700 retval = platform_driver_register(&fotg210_hcd_driver);
5701 if (retval < 0)
5702 goto clean;
5703 return retval;
5705 clean:
5706 debugfs_remove(fotg210_debug_root);
5707 fotg210_debug_root = NULL;
5709 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5710 return retval;
5712 module_init(fotg210_hcd_init);
5714 static void __exit fotg210_hcd_cleanup(void)
5716 platform_driver_unregister(&fotg210_hcd_driver);
5717 debugfs_remove(fotg210_debug_root);
5718 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5720 module_exit(fotg210_hcd_cleanup);