dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / usb / host / xhci.c
blob7fa58c99f12614962a1f852711b699929799f1e5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 struct xhci_segment *seg = ring->first_seg;
44 if (!td || !td->start_seg)
45 return false;
46 do {
47 if (seg == td->start_seg)
48 return true;
49 seg = seg->next;
50 } while (seg && seg != ring->first_seg);
52 return false;
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
63 * Returns negative errno, or zero on success
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
71 u32 result;
73 do {
74 result = readl(ptr);
75 if (result == ~(u32)0) /* card removed */
76 return -ENODEV;
77 result &= mask;
78 if (result == done)
79 return 0;
80 udelay(1);
81 usec--;
82 } while (usec > 0);
83 return -ETIMEDOUT;
87 * Disable interrupts and begin the xHCI halting process.
89 void xhci_quiesce(struct xhci_hcd *xhci)
91 u32 halted;
92 u32 cmd;
93 u32 mask;
95 mask = ~(XHCI_IRQS);
96 halted = readl(&xhci->op_regs->status) & STS_HALT;
97 if (!halted)
98 mask &= ~CMD_RUN;
100 cmd = readl(&xhci->op_regs->command);
101 cmd &= mask;
102 writel(cmd, &xhci->op_regs->command);
106 * Force HC into halt state.
108 * Disable any IRQs and clear the run/stop bit.
109 * HC will complete any current and actively pipelined transactions, and
110 * should halt within 16 ms of the run/stop bit being cleared.
111 * Read HC Halted bit in the status register to see when the HC is finished.
113 int xhci_halt(struct xhci_hcd *xhci)
115 int ret;
116 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117 xhci_quiesce(xhci);
119 ret = xhci_handshake(&xhci->op_regs->status,
120 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121 if (ret) {
122 xhci_warn(xhci, "Host halt failed, %d\n", ret);
123 return ret;
125 xhci->xhc_state |= XHCI_STATE_HALTED;
126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 return ret;
131 * Set the run bit and wait for the host to be running.
133 int xhci_start(struct xhci_hcd *xhci)
135 u32 temp;
136 int ret;
138 temp = readl(&xhci->op_regs->command);
139 temp |= (CMD_RUN);
140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 temp);
142 writel(temp, &xhci->op_regs->command);
145 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 * running.
148 ret = xhci_handshake(&xhci->op_regs->status,
149 STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 if (ret == -ETIMEDOUT)
151 xhci_err(xhci, "Host took too long to start, "
152 "waited %u microseconds.\n",
153 XHCI_MAX_HALT_USEC);
154 if (!ret)
155 /* clear state flags. Including dying, halted or removing */
156 xhci->xhc_state = 0;
158 return ret;
162 * Reset a halted HC.
164 * This resets pipelines, timers, counters, state machines, etc.
165 * Transactions will be terminated immediately, and operational registers
166 * will be set to their defaults.
168 int xhci_reset(struct xhci_hcd *xhci)
170 u32 command;
171 u32 state;
172 int ret;
174 state = readl(&xhci->op_regs->status);
176 if (state == ~(u32)0) {
177 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 return -ENODEV;
181 if ((state & STS_HALT) == 0) {
182 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 return 0;
186 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 command = readl(&xhci->op_regs->command);
188 command |= CMD_RESET;
189 writel(command, &xhci->op_regs->command);
191 /* Existing Intel xHCI controllers require a delay of 1 mS,
192 * after setting the CMD_RESET bit, and before accessing any
193 * HC registers. This allows the HC to complete the
194 * reset operation and be ready for HC register access.
195 * Without this delay, the subsequent HC register access,
196 * may result in a system hang very rarely.
198 if (xhci->quirks & XHCI_INTEL_HOST)
199 udelay(1000);
201 ret = xhci_handshake(&xhci->op_regs->command,
202 CMD_RESET, 0, 10 * 1000 * 1000);
203 if (ret)
204 return ret;
206 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
209 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210 "Wait for controller to be ready for doorbell rings");
212 * xHCI cannot write to any doorbells or operational registers other
213 * than status until the "Controller Not Ready" flag is cleared.
215 ret = xhci_handshake(&xhci->op_regs->status,
216 STS_CNR, 0, 10 * 1000 * 1000);
218 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219 xhci->usb2_rhub.bus_state.suspended_ports = 0;
220 xhci->usb2_rhub.bus_state.resuming_ports = 0;
221 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222 xhci->usb3_rhub.bus_state.suspended_ports = 0;
223 xhci->usb3_rhub.bus_state.resuming_ports = 0;
225 return ret;
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231 int err, i;
232 u64 val;
235 * Some Renesas controllers get into a weird state if they are
236 * reset while programmed with 64bit addresses (they will preserve
237 * the top half of the address in internal, non visible
238 * registers). You end up with half the address coming from the
239 * kernel, and the other half coming from the firmware. Also,
240 * changing the programming leads to extra accesses even if the
241 * controller is supposed to be halted. The controller ends up with
242 * a fatal fault, and is then ripe for being properly reset.
244 * Special care is taken to only apply this if the device is behind
245 * an iommu. Doing anything when there is no iommu is definitely
246 * unsafe...
248 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
249 return;
251 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
253 /* Clear HSEIE so that faults do not get signaled */
254 val = readl(&xhci->op_regs->command);
255 val &= ~CMD_HSEIE;
256 writel(val, &xhci->op_regs->command);
258 /* Clear HSE (aka FATAL) */
259 val = readl(&xhci->op_regs->status);
260 val |= STS_FATAL;
261 writel(val, &xhci->op_regs->status);
263 /* Now zero the registers, and brace for impact */
264 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
265 if (upper_32_bits(val))
266 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
267 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
268 if (upper_32_bits(val))
269 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
271 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
272 struct xhci_intr_reg __iomem *ir;
274 ir = &xhci->run_regs->ir_set[i];
275 val = xhci_read_64(xhci, &ir->erst_base);
276 if (upper_32_bits(val))
277 xhci_write_64(xhci, 0, &ir->erst_base);
278 val= xhci_read_64(xhci, &ir->erst_dequeue);
279 if (upper_32_bits(val))
280 xhci_write_64(xhci, 0, &ir->erst_dequeue);
283 /* Wait for the fault to appear. It will be cleared on reset */
284 err = xhci_handshake(&xhci->op_regs->status,
285 STS_FATAL, STS_FATAL,
286 XHCI_MAX_HALT_USEC);
287 if (!err)
288 xhci_info(xhci, "Fault detected\n");
291 #ifdef CONFIG_USB_PCI
293 * Set up MSI
295 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 int ret;
299 * TODO:Check with MSI Soc for sysdev
301 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
304 if (ret < 0) {
305 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
306 "failed to allocate MSI entry");
307 return ret;
310 ret = request_irq(pdev->irq, xhci_msi_irq,
311 0, "xhci_hcd", xhci_to_hcd(xhci));
312 if (ret) {
313 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
314 "disable MSI interrupt");
315 pci_free_irq_vectors(pdev);
318 return ret;
322 * Set up MSI-X
324 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 int i, ret = 0;
327 struct usb_hcd *hcd = xhci_to_hcd(xhci);
328 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331 * calculate number of msi-x vectors supported.
332 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
333 * with max number of interrupters based on the xhci HCSPARAMS1.
334 * - num_online_cpus: maximum msi-x vectors per CPUs core.
335 * Add additional 1 vector to ensure always available interrupt.
337 xhci->msix_count = min(num_online_cpus() + 1,
338 HCS_MAX_INTRS(xhci->hcs_params1));
340 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
341 PCI_IRQ_MSIX);
342 if (ret < 0) {
343 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
344 "Failed to enable MSI-X");
345 return ret;
348 for (i = 0; i < xhci->msix_count; i++) {
349 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
350 "xhci_hcd", xhci_to_hcd(xhci));
351 if (ret)
352 goto disable_msix;
355 hcd->msix_enabled = 1;
356 return ret;
358 disable_msix:
359 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
360 while (--i >= 0)
361 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
362 pci_free_irq_vectors(pdev);
363 return ret;
366 /* Free any IRQs and disable MSI-X */
367 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 struct usb_hcd *hcd = xhci_to_hcd(xhci);
370 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372 if (xhci->quirks & XHCI_PLAT)
373 return;
375 /* return if using legacy interrupt */
376 if (hcd->irq > 0)
377 return;
379 if (hcd->msix_enabled) {
380 int i;
382 for (i = 0; i < xhci->msix_count; i++)
383 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
384 } else {
385 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
388 pci_free_irq_vectors(pdev);
389 hcd->msix_enabled = 0;
392 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 struct usb_hcd *hcd = xhci_to_hcd(xhci);
396 if (hcd->msix_enabled) {
397 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
398 int i;
400 for (i = 0; i < xhci->msix_count; i++)
401 synchronize_irq(pci_irq_vector(pdev, i));
405 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
408 struct pci_dev *pdev;
409 int ret;
411 /* The xhci platform device has set up IRQs through usb_add_hcd. */
412 if (xhci->quirks & XHCI_PLAT)
413 return 0;
415 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417 * Some Fresco Logic host controllers advertise MSI, but fail to
418 * generate interrupts. Don't even try to enable MSI.
420 if (xhci->quirks & XHCI_BROKEN_MSI)
421 goto legacy_irq;
423 /* unregister the legacy interrupt */
424 if (hcd->irq)
425 free_irq(hcd->irq, hcd);
426 hcd->irq = 0;
428 ret = xhci_setup_msix(xhci);
429 if (ret)
430 /* fall back to msi*/
431 ret = xhci_setup_msi(xhci);
433 if (!ret) {
434 hcd->msi_enabled = 1;
435 return 0;
438 if (!pdev->irq) {
439 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
440 return -EINVAL;
443 legacy_irq:
444 if (!strlen(hcd->irq_descr))
445 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
446 hcd->driver->description, hcd->self.busnum);
448 /* fall back to legacy interrupt*/
449 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
450 hcd->irq_descr, hcd);
451 if (ret) {
452 xhci_err(xhci, "request interrupt %d failed\n",
453 pdev->irq);
454 return ret;
456 hcd->irq = pdev->irq;
457 return 0;
460 #else
462 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 return 0;
467 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
471 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
475 #endif
477 static void compliance_mode_recovery(struct timer_list *t)
479 struct xhci_hcd *xhci;
480 struct usb_hcd *hcd;
481 struct xhci_hub *rhub;
482 u32 temp;
483 int i;
485 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
486 rhub = &xhci->usb3_rhub;
488 for (i = 0; i < rhub->num_ports; i++) {
489 temp = readl(rhub->ports[i]->addr);
490 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492 * Compliance Mode Detected. Letting USB Core
493 * handle the Warm Reset
495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 "Compliance mode detected->port %d",
497 i + 1);
498 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499 "Attempting compliance mode recovery");
500 hcd = xhci->shared_hcd;
502 if (hcd->state == HC_STATE_SUSPENDED)
503 usb_hcd_resume_root_hub(hcd);
505 usb_hcd_poll_rh_status(hcd);
509 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
510 mod_timer(&xhci->comp_mode_recovery_timer,
511 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
515 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
516 * that causes ports behind that hardware to enter compliance mode sometimes.
517 * The quirk creates a timer that polls every 2 seconds the link state of
518 * each host controller's port and recovers it by issuing a Warm reset
519 * if Compliance mode is detected, otherwise the port will become "dead" (no
520 * device connections or disconnections will be detected anymore). Becasue no
521 * status event is generated when entering compliance mode (per xhci spec),
522 * this quirk is needed on systems that have the failing hardware installed.
524 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 xhci->port_status_u0 = 0;
527 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529 xhci->comp_mode_recovery_timer.expires = jiffies +
530 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532 add_timer(&xhci->comp_mode_recovery_timer);
533 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
534 "Compliance mode recovery timer initialized");
538 * This function identifies the systems that have installed the SN65LVPE502CP
539 * USB3.0 re-driver and that need the Compliance Mode Quirk.
540 * Systems:
541 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 const char *dmi_product_name, *dmi_sys_vendor;
547 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
548 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
549 if (!dmi_product_name || !dmi_sys_vendor)
550 return false;
552 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
553 return false;
555 if (strstr(dmi_product_name, "Z420") ||
556 strstr(dmi_product_name, "Z620") ||
557 strstr(dmi_product_name, "Z820") ||
558 strstr(dmi_product_name, "Z1 Workstation"))
559 return true;
561 return false;
564 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
571 * Initialize memory for HCD and xHC (one-time init).
573 * Program the PAGESIZE register, initialize the device context array, create
574 * device contexts (?), set up a command ring segment (or two?), create event
575 * ring (one for now).
577 static int xhci_init(struct usb_hcd *hcd)
579 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
580 int retval = 0;
582 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
583 spin_lock_init(&xhci->lock);
584 if (xhci->hci_version == 0x95 && link_quirk) {
585 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
586 "QUIRK: Not clearing Link TRB chain bits.");
587 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
588 } else {
589 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
590 "xHCI doesn't need link TRB QUIRK");
592 retval = xhci_mem_init(xhci, GFP_KERNEL);
593 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595 /* Initializing Compliance Mode Recovery Data If Needed */
596 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
597 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
598 compliance_mode_recovery_timer_init(xhci);
601 return retval;
604 /*-------------------------------------------------------------------------*/
607 static int xhci_run_finished(struct xhci_hcd *xhci)
609 if (xhci_start(xhci)) {
610 xhci_halt(xhci);
611 return -ENODEV;
613 xhci->shared_hcd->state = HC_STATE_RUNNING;
614 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616 if (xhci->quirks & XHCI_NEC_HOST)
617 xhci_ring_cmd_db(xhci);
619 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620 "Finished xhci_run for USB3 roothub");
621 return 0;
625 * Start the HC after it was halted.
627 * This function is called by the USB core when the HC driver is added.
628 * Its opposite is xhci_stop().
630 * xhci_init() must be called once before this function can be called.
631 * Reset the HC, enable device slot contexts, program DCBAAP, and
632 * set command ring pointer and event ring pointer.
634 * Setup MSI-X vectors and enable interrupts.
636 int xhci_run(struct usb_hcd *hcd)
638 u32 temp;
639 u64 temp_64;
640 int ret;
641 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643 /* Start the xHCI host controller running only after the USB 2.0 roothub
644 * is setup.
647 hcd->uses_new_polling = 1;
648 if (!usb_hcd_is_primary_hcd(hcd))
649 return xhci_run_finished(xhci);
651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653 ret = xhci_try_enable_msi(hcd);
654 if (ret)
655 return ret;
657 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
658 temp_64 &= ~ERST_PTR_MASK;
659 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
660 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 "// Set the interrupt modulation register");
664 temp = readl(&xhci->ir_set->irq_control);
665 temp &= ~ER_IRQ_INTERVAL_MASK;
666 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
667 writel(temp, &xhci->ir_set->irq_control);
669 /* Set the HCD state before we enable the irqs */
670 temp = readl(&xhci->op_regs->command);
671 temp |= (CMD_EIE);
672 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673 "// Enable interrupts, cmd = 0x%x.", temp);
674 writel(temp, &xhci->op_regs->command);
676 temp = readl(&xhci->ir_set->irq_pending);
677 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
678 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
679 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
680 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682 if (xhci->quirks & XHCI_NEC_HOST) {
683 struct xhci_command *command;
685 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
686 if (!command)
687 return -ENOMEM;
689 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
690 TRB_TYPE(TRB_NEC_GET_FW));
691 if (ret)
692 xhci_free_command(xhci, command);
694 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695 "Finished xhci_run for USB2 roothub");
697 xhci_dbc_init(xhci);
699 xhci_debugfs_init(xhci);
701 return 0;
703 EXPORT_SYMBOL_GPL(xhci_run);
706 * Stop xHCI driver.
708 * This function is called by the USB core when the HC driver is removed.
709 * Its opposite is xhci_run().
711 * Disable device contexts, disable IRQs, and quiesce the HC.
712 * Reset the HC, finish any completed transactions, and cleanup memory.
714 static void xhci_stop(struct usb_hcd *hcd)
716 u32 temp;
717 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719 mutex_lock(&xhci->mutex);
721 /* Only halt host and free memory after both hcds are removed */
722 if (!usb_hcd_is_primary_hcd(hcd)) {
723 mutex_unlock(&xhci->mutex);
724 return;
727 xhci_dbc_exit(xhci);
729 spin_lock_irq(&xhci->lock);
730 xhci->xhc_state |= XHCI_STATE_HALTED;
731 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
732 xhci_halt(xhci);
733 xhci_reset(xhci);
734 spin_unlock_irq(&xhci->lock);
736 xhci_cleanup_msix(xhci);
738 /* Deleting Compliance Mode Recovery Timer */
739 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
740 (!(xhci_all_ports_seen_u0(xhci)))) {
741 del_timer_sync(&xhci->comp_mode_recovery_timer);
742 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
743 "%s: compliance mode recovery timer deleted",
744 __func__);
747 if (xhci->quirks & XHCI_AMD_PLL_FIX)
748 usb_amd_dev_put();
750 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
751 "// Disabling event ring interrupts");
752 temp = readl(&xhci->op_regs->status);
753 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
754 temp = readl(&xhci->ir_set->irq_pending);
755 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
757 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
758 xhci_mem_cleanup(xhci);
759 xhci_debugfs_exit(xhci);
760 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761 "xhci_stop completed - status = %x",
762 readl(&xhci->op_regs->status));
763 mutex_unlock(&xhci->mutex);
767 * Shutdown HC (not bus-specific)
769 * This is called when the machine is rebooting or halting. We assume that the
770 * machine will be powered off, and the HC's internal state will be reset.
771 * Don't bother to free memory.
773 * This will only ever be called with the main usb_hcd (the USB3 roothub).
775 static void xhci_shutdown(struct usb_hcd *hcd)
777 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
780 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782 spin_lock_irq(&xhci->lock);
783 xhci_halt(xhci);
784 /* Workaround for spurious wakeups at shutdown with HSW */
785 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
786 xhci_reset(xhci);
787 spin_unlock_irq(&xhci->lock);
789 xhci_cleanup_msix(xhci);
791 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
792 "xhci_shutdown completed - status = %x",
793 readl(&xhci->op_regs->status));
795 /* Yet another workaround for spurious wakeups at shutdown with HSW */
796 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
797 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
800 #ifdef CONFIG_PM
801 static void xhci_save_registers(struct xhci_hcd *xhci)
803 xhci->s3.command = readl(&xhci->op_regs->command);
804 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
805 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
806 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
807 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
808 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
809 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
810 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
811 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
814 static void xhci_restore_registers(struct xhci_hcd *xhci)
816 writel(xhci->s3.command, &xhci->op_regs->command);
817 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
818 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
819 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
820 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
821 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
822 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
823 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
824 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
827 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
829 u64 val_64;
831 /* step 2: initialize command ring buffer */
832 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
833 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
834 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
835 xhci->cmd_ring->dequeue) &
836 (u64) ~CMD_RING_RSVD_BITS) |
837 xhci->cmd_ring->cycle_state;
838 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
839 "// Setting command ring address to 0x%llx",
840 (long unsigned long) val_64);
841 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
845 * The whole command ring must be cleared to zero when we suspend the host.
847 * The host doesn't save the command ring pointer in the suspend well, so we
848 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
849 * aligned, because of the reserved bits in the command ring dequeue pointer
850 * register. Therefore, we can't just set the dequeue pointer back in the
851 * middle of the ring (TRBs are 16-byte aligned).
853 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
855 struct xhci_ring *ring;
856 struct xhci_segment *seg;
858 ring = xhci->cmd_ring;
859 seg = ring->deq_seg;
860 do {
861 memset(seg->trbs, 0,
862 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
863 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
864 cpu_to_le32(~TRB_CYCLE);
865 seg = seg->next;
866 } while (seg != ring->deq_seg);
868 /* Reset the software enqueue and dequeue pointers */
869 ring->deq_seg = ring->first_seg;
870 ring->dequeue = ring->first_seg->trbs;
871 ring->enq_seg = ring->deq_seg;
872 ring->enqueue = ring->dequeue;
874 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
876 * Ring is now zeroed, so the HW should look for change of ownership
877 * when the cycle bit is set to 1.
879 ring->cycle_state = 1;
882 * Reset the hardware dequeue pointer.
883 * Yes, this will need to be re-written after resume, but we're paranoid
884 * and want to make sure the hardware doesn't access bogus memory
885 * because, say, the BIOS or an SMI started the host without changing
886 * the command ring pointers.
888 xhci_set_cmd_ring_deq(xhci);
891 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
893 struct xhci_port **ports;
894 int port_index;
895 unsigned long flags;
896 u32 t1, t2;
898 spin_lock_irqsave(&xhci->lock, flags);
900 /* disable usb3 ports Wake bits */
901 port_index = xhci->usb3_rhub.num_ports;
902 ports = xhci->usb3_rhub.ports;
903 while (port_index--) {
904 t1 = readl(ports[port_index]->addr);
905 t1 = xhci_port_state_to_neutral(t1);
906 t2 = t1 & ~PORT_WAKE_BITS;
907 if (t1 != t2)
908 writel(t2, ports[port_index]->addr);
911 /* disable usb2 ports Wake bits */
912 port_index = xhci->usb2_rhub.num_ports;
913 ports = xhci->usb2_rhub.ports;
914 while (port_index--) {
915 t1 = readl(ports[port_index]->addr);
916 t1 = xhci_port_state_to_neutral(t1);
917 t2 = t1 & ~PORT_WAKE_BITS;
918 if (t1 != t2)
919 writel(t2, ports[port_index]->addr);
922 spin_unlock_irqrestore(&xhci->lock, flags);
925 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
927 struct xhci_port **ports;
928 int port_index;
929 u32 status;
930 u32 portsc;
932 status = readl(&xhci->op_regs->status);
933 if (status & STS_EINT)
934 return true;
936 * Checking STS_EINT is not enough as there is a lag between a change
937 * bit being set and the Port Status Change Event that it generated
938 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
941 port_index = xhci->usb2_rhub.num_ports;
942 ports = xhci->usb2_rhub.ports;
943 while (port_index--) {
944 portsc = readl(ports[port_index]->addr);
945 if (portsc & PORT_CHANGE_MASK ||
946 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
947 return true;
949 port_index = xhci->usb3_rhub.num_ports;
950 ports = xhci->usb3_rhub.ports;
951 while (port_index--) {
952 portsc = readl(ports[port_index]->addr);
953 if (portsc & PORT_CHANGE_MASK ||
954 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
955 return true;
957 return false;
961 * Stop HC (not bus-specific)
963 * This is called when the machine transition into S3/S4 mode.
966 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
968 int rc = 0;
969 unsigned int delay = XHCI_MAX_HALT_USEC;
970 struct usb_hcd *hcd = xhci_to_hcd(xhci);
971 u32 command;
972 u32 res;
974 if (!hcd->state)
975 return 0;
977 if (hcd->state != HC_STATE_SUSPENDED ||
978 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
979 return -EINVAL;
981 xhci_dbc_suspend(xhci);
983 /* Clear root port wake on bits if wakeup not allowed. */
984 if (!do_wakeup)
985 xhci_disable_port_wake_on_bits(xhci);
987 /* Don't poll the roothubs on bus suspend. */
988 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
989 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
990 del_timer_sync(&hcd->rh_timer);
991 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
992 del_timer_sync(&xhci->shared_hcd->rh_timer);
994 if (xhci->quirks & XHCI_SUSPEND_DELAY)
995 usleep_range(1000, 1500);
997 spin_lock_irq(&xhci->lock);
998 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
999 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1000 /* step 1: stop endpoint */
1001 /* skipped assuming that port suspend has done */
1003 /* step 2: clear Run/Stop bit */
1004 command = readl(&xhci->op_regs->command);
1005 command &= ~CMD_RUN;
1006 writel(command, &xhci->op_regs->command);
1008 /* Some chips from Fresco Logic need an extraordinary delay */
1009 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1011 if (xhci_handshake(&xhci->op_regs->status,
1012 STS_HALT, STS_HALT, delay)) {
1013 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1014 spin_unlock_irq(&xhci->lock);
1015 return -ETIMEDOUT;
1017 xhci_clear_command_ring(xhci);
1019 /* step 3: save registers */
1020 xhci_save_registers(xhci);
1022 /* step 4: set CSS flag */
1023 command = readl(&xhci->op_regs->command);
1024 command |= CMD_CSS;
1025 writel(command, &xhci->op_regs->command);
1026 xhci->broken_suspend = 0;
1027 if (xhci_handshake(&xhci->op_regs->status,
1028 STS_SAVE, 0, 10 * 1000)) {
1030 * AMD SNPS xHC 3.0 occasionally does not clear the
1031 * SSS bit of USBSTS and when driver tries to poll
1032 * to see if the xHC clears BIT(8) which never happens
1033 * and driver assumes that controller is not responding
1034 * and times out. To workaround this, its good to check
1035 * if SRE and HCE bits are not set (as per xhci
1036 * Section 5.4.2) and bypass the timeout.
1038 res = readl(&xhci->op_regs->status);
1039 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1040 (((res & STS_SRE) == 0) &&
1041 ((res & STS_HCE) == 0))) {
1042 xhci->broken_suspend = 1;
1043 } else {
1044 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1045 spin_unlock_irq(&xhci->lock);
1046 return -ETIMEDOUT;
1049 spin_unlock_irq(&xhci->lock);
1052 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1053 * is about to be suspended.
1055 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1056 (!(xhci_all_ports_seen_u0(xhci)))) {
1057 del_timer_sync(&xhci->comp_mode_recovery_timer);
1058 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1059 "%s: compliance mode recovery timer deleted",
1060 __func__);
1063 /* step 5: remove core well power */
1064 /* synchronize irq when using MSI-X */
1065 xhci_msix_sync_irqs(xhci);
1067 return rc;
1069 EXPORT_SYMBOL_GPL(xhci_suspend);
1072 * start xHC (not bus-specific)
1074 * This is called when the machine transition from S3/S4 mode.
1077 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1079 u32 command, temp = 0;
1080 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1081 struct usb_hcd *secondary_hcd;
1082 int retval = 0;
1083 bool comp_timer_running = false;
1085 if (!hcd->state)
1086 return 0;
1088 /* Wait a bit if either of the roothubs need to settle from the
1089 * transition into bus suspend.
1092 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1093 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1094 msleep(100);
1096 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1097 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1099 spin_lock_irq(&xhci->lock);
1100 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1101 hibernated = true;
1103 if (!hibernated) {
1104 /* step 1: restore register */
1105 xhci_restore_registers(xhci);
1106 /* step 2: initialize command ring buffer */
1107 xhci_set_cmd_ring_deq(xhci);
1108 /* step 3: restore state and start state*/
1109 /* step 3: set CRS flag */
1110 command = readl(&xhci->op_regs->command);
1111 command |= CMD_CRS;
1112 writel(command, &xhci->op_regs->command);
1114 * Some controllers take up to 55+ ms to complete the controller
1115 * restore so setting the timeout to 100ms. Xhci specification
1116 * doesn't mention any timeout value.
1118 if (xhci_handshake(&xhci->op_regs->status,
1119 STS_RESTORE, 0, 100 * 1000)) {
1120 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1121 spin_unlock_irq(&xhci->lock);
1122 return -ETIMEDOUT;
1124 temp = readl(&xhci->op_regs->status);
1127 /* If restore operation fails, re-initialize the HC during resume */
1128 if ((temp & STS_SRE) || hibernated) {
1130 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1131 !(xhci_all_ports_seen_u0(xhci))) {
1132 del_timer_sync(&xhci->comp_mode_recovery_timer);
1133 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1134 "Compliance Mode Recovery Timer deleted!");
1137 /* Let the USB core know _both_ roothubs lost power. */
1138 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1139 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1141 xhci_dbg(xhci, "Stop HCD\n");
1142 xhci_halt(xhci);
1143 xhci_zero_64b_regs(xhci);
1144 xhci_reset(xhci);
1145 spin_unlock_irq(&xhci->lock);
1146 xhci_cleanup_msix(xhci);
1148 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1149 temp = readl(&xhci->op_regs->status);
1150 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1151 temp = readl(&xhci->ir_set->irq_pending);
1152 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1154 xhci_dbg(xhci, "cleaning up memory\n");
1155 xhci_mem_cleanup(xhci);
1156 xhci_debugfs_exit(xhci);
1157 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1158 readl(&xhci->op_regs->status));
1160 /* USB core calls the PCI reinit and start functions twice:
1161 * first with the primary HCD, and then with the secondary HCD.
1162 * If we don't do the same, the host will never be started.
1164 if (!usb_hcd_is_primary_hcd(hcd))
1165 secondary_hcd = hcd;
1166 else
1167 secondary_hcd = xhci->shared_hcd;
1169 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1170 retval = xhci_init(hcd->primary_hcd);
1171 if (retval)
1172 return retval;
1173 comp_timer_running = true;
1175 xhci_dbg(xhci, "Start the primary HCD\n");
1176 retval = xhci_run(hcd->primary_hcd);
1177 if (!retval) {
1178 xhci_dbg(xhci, "Start the secondary HCD\n");
1179 retval = xhci_run(secondary_hcd);
1181 hcd->state = HC_STATE_SUSPENDED;
1182 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1183 goto done;
1186 /* step 4: set Run/Stop bit */
1187 command = readl(&xhci->op_regs->command);
1188 command |= CMD_RUN;
1189 writel(command, &xhci->op_regs->command);
1190 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1191 0, 250 * 1000);
1193 /* step 5: walk topology and initialize portsc,
1194 * portpmsc and portli
1196 /* this is done in bus_resume */
1198 /* step 6: restart each of the previously
1199 * Running endpoints by ringing their doorbells
1202 spin_unlock_irq(&xhci->lock);
1204 xhci_dbc_resume(xhci);
1206 done:
1207 if (retval == 0) {
1208 /* Resume root hubs only when have pending events. */
1209 if (xhci_pending_portevent(xhci)) {
1210 usb_hcd_resume_root_hub(xhci->shared_hcd);
1211 usb_hcd_resume_root_hub(hcd);
1216 * If system is subject to the Quirk, Compliance Mode Timer needs to
1217 * be re-initialized Always after a system resume. Ports are subject
1218 * to suffer the Compliance Mode issue again. It doesn't matter if
1219 * ports have entered previously to U0 before system's suspension.
1221 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1222 compliance_mode_recovery_timer_init(xhci);
1224 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1225 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1227 /* Re-enable port polling. */
1228 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1229 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1230 usb_hcd_poll_rh_status(xhci->shared_hcd);
1231 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1232 usb_hcd_poll_rh_status(hcd);
1234 return retval;
1236 EXPORT_SYMBOL_GPL(xhci_resume);
1237 #endif /* CONFIG_PM */
1239 /*-------------------------------------------------------------------------*/
1242 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1243 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1244 * value to right shift 1 for the bitmask.
1246 * Index = (epnum * 2) + direction - 1,
1247 * where direction = 0 for OUT, 1 for IN.
1248 * For control endpoints, the IN index is used (OUT index is unused), so
1249 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1251 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1253 unsigned int index;
1254 if (usb_endpoint_xfer_control(desc))
1255 index = (unsigned int) (usb_endpoint_num(desc)*2);
1256 else
1257 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1258 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1259 return index;
1262 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1263 * address from the XHCI endpoint index.
1265 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1267 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1268 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1269 return direction | number;
1272 /* Find the flag for this endpoint (for use in the control context). Use the
1273 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1274 * bit 1, etc.
1276 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1278 return 1 << (xhci_get_endpoint_index(desc) + 1);
1281 /* Find the flag for this endpoint (for use in the control context). Use the
1282 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1283 * bit 1, etc.
1285 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1287 return 1 << (ep_index + 1);
1290 /* Compute the last valid endpoint context index. Basically, this is the
1291 * endpoint index plus one. For slot contexts with more than valid endpoint,
1292 * we find the most significant bit set in the added contexts flags.
1293 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1294 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1296 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1298 return fls(added_ctxs) - 1;
1301 /* Returns 1 if the arguments are OK;
1302 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1304 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1305 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1306 const char *func) {
1307 struct xhci_hcd *xhci;
1308 struct xhci_virt_device *virt_dev;
1310 if (!hcd || (check_ep && !ep) || !udev) {
1311 pr_debug("xHCI %s called with invalid args\n", func);
1312 return -EINVAL;
1314 if (!udev->parent) {
1315 pr_debug("xHCI %s called for root hub\n", func);
1316 return 0;
1319 xhci = hcd_to_xhci(hcd);
1320 if (check_virt_dev) {
1321 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1322 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1323 func);
1324 return -EINVAL;
1327 virt_dev = xhci->devs[udev->slot_id];
1328 if (virt_dev->udev != udev) {
1329 xhci_dbg(xhci, "xHCI %s called with udev and "
1330 "virt_dev does not match\n", func);
1331 return -EINVAL;
1335 if (xhci->xhc_state & XHCI_STATE_HALTED)
1336 return -ENODEV;
1338 return 1;
1341 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1342 struct usb_device *udev, struct xhci_command *command,
1343 bool ctx_change, bool must_succeed);
1346 * Full speed devices may have a max packet size greater than 8 bytes, but the
1347 * USB core doesn't know that until it reads the first 8 bytes of the
1348 * descriptor. If the usb_device's max packet size changes after that point,
1349 * we need to issue an evaluate context command and wait on it.
1351 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1352 unsigned int ep_index, struct urb *urb)
1354 struct xhci_container_ctx *out_ctx;
1355 struct xhci_input_control_ctx *ctrl_ctx;
1356 struct xhci_ep_ctx *ep_ctx;
1357 struct xhci_command *command;
1358 int max_packet_size;
1359 int hw_max_packet_size;
1360 int ret = 0;
1362 out_ctx = xhci->devs[slot_id]->out_ctx;
1363 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1364 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1365 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1366 if (hw_max_packet_size != max_packet_size) {
1367 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1368 "Max Packet Size for ep 0 changed.");
1369 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1370 "Max packet size in usb_device = %d",
1371 max_packet_size);
1372 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1373 "Max packet size in xHCI HW = %d",
1374 hw_max_packet_size);
1375 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1376 "Issuing evaluate context command.");
1378 /* Set up the input context flags for the command */
1379 /* FIXME: This won't work if a non-default control endpoint
1380 * changes max packet sizes.
1383 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1384 if (!command)
1385 return -ENOMEM;
1387 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1388 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1389 if (!ctrl_ctx) {
1390 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1391 __func__);
1392 ret = -ENOMEM;
1393 goto command_cleanup;
1395 /* Set up the modified control endpoint 0 */
1396 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1397 xhci->devs[slot_id]->out_ctx, ep_index);
1399 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1400 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1401 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1403 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1404 ctrl_ctx->drop_flags = 0;
1406 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1407 true, false);
1409 /* Clean up the input context for later use by bandwidth
1410 * functions.
1412 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1413 command_cleanup:
1414 kfree(command->completion);
1415 kfree(command);
1417 return ret;
1421 * non-error returns are a promise to giveback() the urb later
1422 * we drop ownership so next owner (or urb unlink) can get it
1424 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1426 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1427 unsigned long flags;
1428 int ret = 0;
1429 unsigned int slot_id, ep_index;
1430 unsigned int *ep_state;
1431 struct urb_priv *urb_priv;
1432 int num_tds;
1434 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1435 true, true, __func__) <= 0)
1436 return -EINVAL;
1438 slot_id = urb->dev->slot_id;
1439 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1440 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1442 if (!HCD_HW_ACCESSIBLE(hcd)) {
1443 if (!in_interrupt())
1444 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1445 return -ESHUTDOWN;
1448 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1449 num_tds = urb->number_of_packets;
1450 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1451 urb->transfer_buffer_length > 0 &&
1452 urb->transfer_flags & URB_ZERO_PACKET &&
1453 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1454 num_tds = 2;
1455 else
1456 num_tds = 1;
1458 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1459 if (!urb_priv)
1460 return -ENOMEM;
1462 urb_priv->num_tds = num_tds;
1463 urb_priv->num_tds_done = 0;
1464 urb->hcpriv = urb_priv;
1466 trace_xhci_urb_enqueue(urb);
1468 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1469 /* Check to see if the max packet size for the default control
1470 * endpoint changed during FS device enumeration
1472 if (urb->dev->speed == USB_SPEED_FULL) {
1473 ret = xhci_check_maxpacket(xhci, slot_id,
1474 ep_index, urb);
1475 if (ret < 0) {
1476 xhci_urb_free_priv(urb_priv);
1477 urb->hcpriv = NULL;
1478 return ret;
1483 spin_lock_irqsave(&xhci->lock, flags);
1485 if (xhci->xhc_state & XHCI_STATE_DYING) {
1486 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1487 urb->ep->desc.bEndpointAddress, urb);
1488 ret = -ESHUTDOWN;
1489 goto free_priv;
1491 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1492 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1493 *ep_state);
1494 ret = -EINVAL;
1495 goto free_priv;
1497 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1498 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1499 ret = -EINVAL;
1500 goto free_priv;
1503 switch (usb_endpoint_type(&urb->ep->desc)) {
1505 case USB_ENDPOINT_XFER_CONTROL:
1506 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1507 slot_id, ep_index);
1508 break;
1509 case USB_ENDPOINT_XFER_BULK:
1510 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1511 slot_id, ep_index);
1512 break;
1513 case USB_ENDPOINT_XFER_INT:
1514 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1515 slot_id, ep_index);
1516 break;
1517 case USB_ENDPOINT_XFER_ISOC:
1518 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1519 slot_id, ep_index);
1522 if (ret) {
1523 free_priv:
1524 xhci_urb_free_priv(urb_priv);
1525 urb->hcpriv = NULL;
1527 spin_unlock_irqrestore(&xhci->lock, flags);
1528 return ret;
1532 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1533 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1534 * should pick up where it left off in the TD, unless a Set Transfer Ring
1535 * Dequeue Pointer is issued.
1537 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1538 * the ring. Since the ring is a contiguous structure, they can't be physically
1539 * removed. Instead, there are two options:
1541 * 1) If the HC is in the middle of processing the URB to be canceled, we
1542 * simply move the ring's dequeue pointer past those TRBs using the Set
1543 * Transfer Ring Dequeue Pointer command. This will be the common case,
1544 * when drivers timeout on the last submitted URB and attempt to cancel.
1546 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1547 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1548 * HC will need to invalidate the any TRBs it has cached after the stop
1549 * endpoint command, as noted in the xHCI 0.95 errata.
1551 * 3) The TD may have completed by the time the Stop Endpoint Command
1552 * completes, so software needs to handle that case too.
1554 * This function should protect against the TD enqueueing code ringing the
1555 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1556 * It also needs to account for multiple cancellations on happening at the same
1557 * time for the same endpoint.
1559 * Note that this function can be called in any context, or so says
1560 * usb_hcd_unlink_urb()
1562 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1564 unsigned long flags;
1565 int ret, i;
1566 u32 temp;
1567 struct xhci_hcd *xhci;
1568 struct urb_priv *urb_priv;
1569 struct xhci_td *td;
1570 unsigned int ep_index;
1571 struct xhci_ring *ep_ring;
1572 struct xhci_virt_ep *ep;
1573 struct xhci_command *command;
1574 struct xhci_virt_device *vdev;
1576 xhci = hcd_to_xhci(hcd);
1577 spin_lock_irqsave(&xhci->lock, flags);
1579 trace_xhci_urb_dequeue(urb);
1581 /* Make sure the URB hasn't completed or been unlinked already */
1582 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1583 if (ret)
1584 goto done;
1586 /* give back URB now if we can't queue it for cancel */
1587 vdev = xhci->devs[urb->dev->slot_id];
1588 urb_priv = urb->hcpriv;
1589 if (!vdev || !urb_priv)
1590 goto err_giveback;
1592 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1593 ep = &vdev->eps[ep_index];
1594 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1595 if (!ep || !ep_ring)
1596 goto err_giveback;
1598 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1599 temp = readl(&xhci->op_regs->status);
1600 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1601 xhci_hc_died(xhci);
1602 goto done;
1606 * check ring is not re-allocated since URB was enqueued. If it is, then
1607 * make sure none of the ring related pointers in this URB private data
1608 * are touched, such as td_list, otherwise we overwrite freed data
1610 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1611 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1612 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1613 td = &urb_priv->td[i];
1614 if (!list_empty(&td->cancelled_td_list))
1615 list_del_init(&td->cancelled_td_list);
1617 goto err_giveback;
1620 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1621 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1622 "HC halted, freeing TD manually.");
1623 for (i = urb_priv->num_tds_done;
1624 i < urb_priv->num_tds;
1625 i++) {
1626 td = &urb_priv->td[i];
1627 if (!list_empty(&td->td_list))
1628 list_del_init(&td->td_list);
1629 if (!list_empty(&td->cancelled_td_list))
1630 list_del_init(&td->cancelled_td_list);
1632 goto err_giveback;
1635 i = urb_priv->num_tds_done;
1636 if (i < urb_priv->num_tds)
1637 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1638 "Cancel URB %p, dev %s, ep 0x%x, "
1639 "starting at offset 0x%llx",
1640 urb, urb->dev->devpath,
1641 urb->ep->desc.bEndpointAddress,
1642 (unsigned long long) xhci_trb_virt_to_dma(
1643 urb_priv->td[i].start_seg,
1644 urb_priv->td[i].first_trb));
1646 for (; i < urb_priv->num_tds; i++) {
1647 td = &urb_priv->td[i];
1648 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1651 /* Queue a stop endpoint command, but only if this is
1652 * the first cancellation to be handled.
1654 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1655 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1656 if (!command) {
1657 ret = -ENOMEM;
1658 goto done;
1660 ep->ep_state |= EP_STOP_CMD_PENDING;
1661 ep->stop_cmd_timer.expires = jiffies +
1662 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1663 add_timer(&ep->stop_cmd_timer);
1664 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1665 ep_index, 0);
1666 xhci_ring_cmd_db(xhci);
1668 done:
1669 spin_unlock_irqrestore(&xhci->lock, flags);
1670 return ret;
1672 err_giveback:
1673 if (urb_priv)
1674 xhci_urb_free_priv(urb_priv);
1675 usb_hcd_unlink_urb_from_ep(hcd, urb);
1676 spin_unlock_irqrestore(&xhci->lock, flags);
1677 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1678 return ret;
1681 /* Drop an endpoint from a new bandwidth configuration for this device.
1682 * Only one call to this function is allowed per endpoint before
1683 * check_bandwidth() or reset_bandwidth() must be called.
1684 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1685 * add the endpoint to the schedule with possibly new parameters denoted by a
1686 * different endpoint descriptor in usb_host_endpoint.
1687 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1688 * not allowed.
1690 * The USB core will not allow URBs to be queued to an endpoint that is being
1691 * disabled, so there's no need for mutual exclusion to protect
1692 * the xhci->devs[slot_id] structure.
1694 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1695 struct usb_host_endpoint *ep)
1697 struct xhci_hcd *xhci;
1698 struct xhci_container_ctx *in_ctx, *out_ctx;
1699 struct xhci_input_control_ctx *ctrl_ctx;
1700 unsigned int ep_index;
1701 struct xhci_ep_ctx *ep_ctx;
1702 u32 drop_flag;
1703 u32 new_add_flags, new_drop_flags;
1704 int ret;
1706 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1707 if (ret <= 0)
1708 return ret;
1709 xhci = hcd_to_xhci(hcd);
1710 if (xhci->xhc_state & XHCI_STATE_DYING)
1711 return -ENODEV;
1713 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1714 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1715 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1716 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1717 __func__, drop_flag);
1718 return 0;
1721 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1722 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1723 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1724 if (!ctrl_ctx) {
1725 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1726 __func__);
1727 return 0;
1730 ep_index = xhci_get_endpoint_index(&ep->desc);
1731 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1732 /* If the HC already knows the endpoint is disabled,
1733 * or the HCD has noted it is disabled, ignore this request
1735 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1736 le32_to_cpu(ctrl_ctx->drop_flags) &
1737 xhci_get_endpoint_flag(&ep->desc)) {
1738 /* Do not warn when called after a usb_device_reset */
1739 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1740 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1741 __func__, ep);
1742 return 0;
1745 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1746 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1748 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1749 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1751 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1753 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1755 if (xhci->quirks & XHCI_MTK_HOST)
1756 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1758 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1759 (unsigned int) ep->desc.bEndpointAddress,
1760 udev->slot_id,
1761 (unsigned int) new_drop_flags,
1762 (unsigned int) new_add_flags);
1763 return 0;
1766 /* Add an endpoint to a new possible bandwidth configuration for this device.
1767 * Only one call to this function is allowed per endpoint before
1768 * check_bandwidth() or reset_bandwidth() must be called.
1769 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1770 * add the endpoint to the schedule with possibly new parameters denoted by a
1771 * different endpoint descriptor in usb_host_endpoint.
1772 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1773 * not allowed.
1775 * The USB core will not allow URBs to be queued to an endpoint until the
1776 * configuration or alt setting is installed in the device, so there's no need
1777 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1779 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1780 struct usb_host_endpoint *ep)
1782 struct xhci_hcd *xhci;
1783 struct xhci_container_ctx *in_ctx;
1784 unsigned int ep_index;
1785 struct xhci_input_control_ctx *ctrl_ctx;
1786 u32 added_ctxs;
1787 u32 new_add_flags, new_drop_flags;
1788 struct xhci_virt_device *virt_dev;
1789 int ret = 0;
1791 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1792 if (ret <= 0) {
1793 /* So we won't queue a reset ep command for a root hub */
1794 ep->hcpriv = NULL;
1795 return ret;
1797 xhci = hcd_to_xhci(hcd);
1798 if (xhci->xhc_state & XHCI_STATE_DYING)
1799 return -ENODEV;
1801 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1802 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1803 /* FIXME when we have to issue an evaluate endpoint command to
1804 * deal with ep0 max packet size changing once we get the
1805 * descriptors
1807 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1808 __func__, added_ctxs);
1809 return 0;
1812 virt_dev = xhci->devs[udev->slot_id];
1813 in_ctx = virt_dev->in_ctx;
1814 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1815 if (!ctrl_ctx) {
1816 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1817 __func__);
1818 return 0;
1821 ep_index = xhci_get_endpoint_index(&ep->desc);
1822 /* If this endpoint is already in use, and the upper layers are trying
1823 * to add it again without dropping it, reject the addition.
1825 if (virt_dev->eps[ep_index].ring &&
1826 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1827 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1828 "without dropping it.\n",
1829 (unsigned int) ep->desc.bEndpointAddress);
1830 return -EINVAL;
1833 /* If the HCD has already noted the endpoint is enabled,
1834 * ignore this request.
1836 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1837 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1838 __func__, ep);
1839 return 0;
1843 * Configuration and alternate setting changes must be done in
1844 * process context, not interrupt context (or so documenation
1845 * for usb_set_interface() and usb_set_configuration() claim).
1847 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1848 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1849 __func__, ep->desc.bEndpointAddress);
1850 return -ENOMEM;
1853 if (xhci->quirks & XHCI_MTK_HOST) {
1854 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1855 if (ret < 0) {
1856 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1857 virt_dev->eps[ep_index].new_ring = NULL;
1858 return ret;
1862 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1863 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1865 /* If xhci_endpoint_disable() was called for this endpoint, but the
1866 * xHC hasn't been notified yet through the check_bandwidth() call,
1867 * this re-adds a new state for the endpoint from the new endpoint
1868 * descriptors. We must drop and re-add this endpoint, so we leave the
1869 * drop flags alone.
1871 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1873 /* Store the usb_device pointer for later use */
1874 ep->hcpriv = udev;
1876 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1878 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1879 (unsigned int) ep->desc.bEndpointAddress,
1880 udev->slot_id,
1881 (unsigned int) new_drop_flags,
1882 (unsigned int) new_add_flags);
1883 return 0;
1886 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1888 struct xhci_input_control_ctx *ctrl_ctx;
1889 struct xhci_ep_ctx *ep_ctx;
1890 struct xhci_slot_ctx *slot_ctx;
1891 int i;
1893 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1894 if (!ctrl_ctx) {
1895 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1896 __func__);
1897 return;
1900 /* When a device's add flag and drop flag are zero, any subsequent
1901 * configure endpoint command will leave that endpoint's state
1902 * untouched. Make sure we don't leave any old state in the input
1903 * endpoint contexts.
1905 ctrl_ctx->drop_flags = 0;
1906 ctrl_ctx->add_flags = 0;
1907 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1908 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1909 /* Endpoint 0 is always valid */
1910 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1911 for (i = 1; i < 31; i++) {
1912 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1913 ep_ctx->ep_info = 0;
1914 ep_ctx->ep_info2 = 0;
1915 ep_ctx->deq = 0;
1916 ep_ctx->tx_info = 0;
1920 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1921 struct usb_device *udev, u32 *cmd_status)
1923 int ret;
1925 switch (*cmd_status) {
1926 case COMP_COMMAND_ABORTED:
1927 case COMP_COMMAND_RING_STOPPED:
1928 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1929 ret = -ETIME;
1930 break;
1931 case COMP_RESOURCE_ERROR:
1932 dev_warn(&udev->dev,
1933 "Not enough host controller resources for new device state.\n");
1934 ret = -ENOMEM;
1935 /* FIXME: can we allocate more resources for the HC? */
1936 break;
1937 case COMP_BANDWIDTH_ERROR:
1938 case COMP_SECONDARY_BANDWIDTH_ERROR:
1939 dev_warn(&udev->dev,
1940 "Not enough bandwidth for new device state.\n");
1941 ret = -ENOSPC;
1942 /* FIXME: can we go back to the old state? */
1943 break;
1944 case COMP_TRB_ERROR:
1945 /* the HCD set up something wrong */
1946 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1947 "add flag = 1, "
1948 "and endpoint is not disabled.\n");
1949 ret = -EINVAL;
1950 break;
1951 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1952 dev_warn(&udev->dev,
1953 "ERROR: Incompatible device for endpoint configure command.\n");
1954 ret = -ENODEV;
1955 break;
1956 case COMP_SUCCESS:
1957 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1958 "Successful Endpoint Configure command");
1959 ret = 0;
1960 break;
1961 default:
1962 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1963 *cmd_status);
1964 ret = -EINVAL;
1965 break;
1967 return ret;
1970 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1971 struct usb_device *udev, u32 *cmd_status)
1973 int ret;
1975 switch (*cmd_status) {
1976 case COMP_COMMAND_ABORTED:
1977 case COMP_COMMAND_RING_STOPPED:
1978 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1979 ret = -ETIME;
1980 break;
1981 case COMP_PARAMETER_ERROR:
1982 dev_warn(&udev->dev,
1983 "WARN: xHCI driver setup invalid evaluate context command.\n");
1984 ret = -EINVAL;
1985 break;
1986 case COMP_SLOT_NOT_ENABLED_ERROR:
1987 dev_warn(&udev->dev,
1988 "WARN: slot not enabled for evaluate context command.\n");
1989 ret = -EINVAL;
1990 break;
1991 case COMP_CONTEXT_STATE_ERROR:
1992 dev_warn(&udev->dev,
1993 "WARN: invalid context state for evaluate context command.\n");
1994 ret = -EINVAL;
1995 break;
1996 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1997 dev_warn(&udev->dev,
1998 "ERROR: Incompatible device for evaluate context command.\n");
1999 ret = -ENODEV;
2000 break;
2001 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2002 /* Max Exit Latency too large error */
2003 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2004 ret = -EINVAL;
2005 break;
2006 case COMP_SUCCESS:
2007 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2008 "Successful evaluate context command");
2009 ret = 0;
2010 break;
2011 default:
2012 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2013 *cmd_status);
2014 ret = -EINVAL;
2015 break;
2017 return ret;
2020 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2021 struct xhci_input_control_ctx *ctrl_ctx)
2023 u32 valid_add_flags;
2024 u32 valid_drop_flags;
2026 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2027 * (bit 1). The default control endpoint is added during the Address
2028 * Device command and is never removed until the slot is disabled.
2030 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2031 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2033 /* Use hweight32 to count the number of ones in the add flags, or
2034 * number of endpoints added. Don't count endpoints that are changed
2035 * (both added and dropped).
2037 return hweight32(valid_add_flags) -
2038 hweight32(valid_add_flags & valid_drop_flags);
2041 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2042 struct xhci_input_control_ctx *ctrl_ctx)
2044 u32 valid_add_flags;
2045 u32 valid_drop_flags;
2047 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2048 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2050 return hweight32(valid_drop_flags) -
2051 hweight32(valid_add_flags & valid_drop_flags);
2055 * We need to reserve the new number of endpoints before the configure endpoint
2056 * command completes. We can't subtract the dropped endpoints from the number
2057 * of active endpoints until the command completes because we can oversubscribe
2058 * the host in this case:
2060 * - the first configure endpoint command drops more endpoints than it adds
2061 * - a second configure endpoint command that adds more endpoints is queued
2062 * - the first configure endpoint command fails, so the config is unchanged
2063 * - the second command may succeed, even though there isn't enough resources
2065 * Must be called with xhci->lock held.
2067 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2068 struct xhci_input_control_ctx *ctrl_ctx)
2070 u32 added_eps;
2072 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2073 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2074 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2075 "Not enough ep ctxs: "
2076 "%u active, need to add %u, limit is %u.",
2077 xhci->num_active_eps, added_eps,
2078 xhci->limit_active_eps);
2079 return -ENOMEM;
2081 xhci->num_active_eps += added_eps;
2082 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2083 "Adding %u ep ctxs, %u now active.", added_eps,
2084 xhci->num_active_eps);
2085 return 0;
2089 * The configure endpoint was failed by the xHC for some other reason, so we
2090 * need to revert the resources that failed configuration would have used.
2092 * Must be called with xhci->lock held.
2094 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2095 struct xhci_input_control_ctx *ctrl_ctx)
2097 u32 num_failed_eps;
2099 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2100 xhci->num_active_eps -= num_failed_eps;
2101 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2102 "Removing %u failed ep ctxs, %u now active.",
2103 num_failed_eps,
2104 xhci->num_active_eps);
2108 * Now that the command has completed, clean up the active endpoint count by
2109 * subtracting out the endpoints that were dropped (but not changed).
2111 * Must be called with xhci->lock held.
2113 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2114 struct xhci_input_control_ctx *ctrl_ctx)
2116 u32 num_dropped_eps;
2118 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2119 xhci->num_active_eps -= num_dropped_eps;
2120 if (num_dropped_eps)
2121 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2122 "Removing %u dropped ep ctxs, %u now active.",
2123 num_dropped_eps,
2124 xhci->num_active_eps);
2127 static unsigned int xhci_get_block_size(struct usb_device *udev)
2129 switch (udev->speed) {
2130 case USB_SPEED_LOW:
2131 case USB_SPEED_FULL:
2132 return FS_BLOCK;
2133 case USB_SPEED_HIGH:
2134 return HS_BLOCK;
2135 case USB_SPEED_SUPER:
2136 case USB_SPEED_SUPER_PLUS:
2137 return SS_BLOCK;
2138 case USB_SPEED_UNKNOWN:
2139 case USB_SPEED_WIRELESS:
2140 default:
2141 /* Should never happen */
2142 return 1;
2146 static unsigned int
2147 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2149 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2150 return LS_OVERHEAD;
2151 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2152 return FS_OVERHEAD;
2153 return HS_OVERHEAD;
2156 /* If we are changing a LS/FS device under a HS hub,
2157 * make sure (if we are activating a new TT) that the HS bus has enough
2158 * bandwidth for this new TT.
2160 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2161 struct xhci_virt_device *virt_dev,
2162 int old_active_eps)
2164 struct xhci_interval_bw_table *bw_table;
2165 struct xhci_tt_bw_info *tt_info;
2167 /* Find the bandwidth table for the root port this TT is attached to. */
2168 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2169 tt_info = virt_dev->tt_info;
2170 /* If this TT already had active endpoints, the bandwidth for this TT
2171 * has already been added. Removing all periodic endpoints (and thus
2172 * making the TT enactive) will only decrease the bandwidth used.
2174 if (old_active_eps)
2175 return 0;
2176 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2177 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2178 return -ENOMEM;
2179 return 0;
2181 /* Not sure why we would have no new active endpoints...
2183 * Maybe because of an Evaluate Context change for a hub update or a
2184 * control endpoint 0 max packet size change?
2185 * FIXME: skip the bandwidth calculation in that case.
2187 return 0;
2190 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2191 struct xhci_virt_device *virt_dev)
2193 unsigned int bw_reserved;
2195 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2196 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2197 return -ENOMEM;
2199 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2200 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2201 return -ENOMEM;
2203 return 0;
2207 * This algorithm is a very conservative estimate of the worst-case scheduling
2208 * scenario for any one interval. The hardware dynamically schedules the
2209 * packets, so we can't tell which microframe could be the limiting factor in
2210 * the bandwidth scheduling. This only takes into account periodic endpoints.
2212 * Obviously, we can't solve an NP complete problem to find the minimum worst
2213 * case scenario. Instead, we come up with an estimate that is no less than
2214 * the worst case bandwidth used for any one microframe, but may be an
2215 * over-estimate.
2217 * We walk the requirements for each endpoint by interval, starting with the
2218 * smallest interval, and place packets in the schedule where there is only one
2219 * possible way to schedule packets for that interval. In order to simplify
2220 * this algorithm, we record the largest max packet size for each interval, and
2221 * assume all packets will be that size.
2223 * For interval 0, we obviously must schedule all packets for each interval.
2224 * The bandwidth for interval 0 is just the amount of data to be transmitted
2225 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2226 * the number of packets).
2228 * For interval 1, we have two possible microframes to schedule those packets
2229 * in. For this algorithm, if we can schedule the same number of packets for
2230 * each possible scheduling opportunity (each microframe), we will do so. The
2231 * remaining number of packets will be saved to be transmitted in the gaps in
2232 * the next interval's scheduling sequence.
2234 * As we move those remaining packets to be scheduled with interval 2 packets,
2235 * we have to double the number of remaining packets to transmit. This is
2236 * because the intervals are actually powers of 2, and we would be transmitting
2237 * the previous interval's packets twice in this interval. We also have to be
2238 * sure that when we look at the largest max packet size for this interval, we
2239 * also look at the largest max packet size for the remaining packets and take
2240 * the greater of the two.
2242 * The algorithm continues to evenly distribute packets in each scheduling
2243 * opportunity, and push the remaining packets out, until we get to the last
2244 * interval. Then those packets and their associated overhead are just added
2245 * to the bandwidth used.
2247 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2248 struct xhci_virt_device *virt_dev,
2249 int old_active_eps)
2251 unsigned int bw_reserved;
2252 unsigned int max_bandwidth;
2253 unsigned int bw_used;
2254 unsigned int block_size;
2255 struct xhci_interval_bw_table *bw_table;
2256 unsigned int packet_size = 0;
2257 unsigned int overhead = 0;
2258 unsigned int packets_transmitted = 0;
2259 unsigned int packets_remaining = 0;
2260 unsigned int i;
2262 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2263 return xhci_check_ss_bw(xhci, virt_dev);
2265 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2266 max_bandwidth = HS_BW_LIMIT;
2267 /* Convert percent of bus BW reserved to blocks reserved */
2268 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2269 } else {
2270 max_bandwidth = FS_BW_LIMIT;
2271 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2274 bw_table = virt_dev->bw_table;
2275 /* We need to translate the max packet size and max ESIT payloads into
2276 * the units the hardware uses.
2278 block_size = xhci_get_block_size(virt_dev->udev);
2280 /* If we are manipulating a LS/FS device under a HS hub, double check
2281 * that the HS bus has enough bandwidth if we are activing a new TT.
2283 if (virt_dev->tt_info) {
2284 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2285 "Recalculating BW for rootport %u",
2286 virt_dev->real_port);
2287 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2288 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2289 "newly activated TT.\n");
2290 return -ENOMEM;
2292 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293 "Recalculating BW for TT slot %u port %u",
2294 virt_dev->tt_info->slot_id,
2295 virt_dev->tt_info->ttport);
2296 } else {
2297 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2298 "Recalculating BW for rootport %u",
2299 virt_dev->real_port);
2302 /* Add in how much bandwidth will be used for interval zero, or the
2303 * rounded max ESIT payload + number of packets * largest overhead.
2305 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2306 bw_table->interval_bw[0].num_packets *
2307 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2309 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2310 unsigned int bw_added;
2311 unsigned int largest_mps;
2312 unsigned int interval_overhead;
2315 * How many packets could we transmit in this interval?
2316 * If packets didn't fit in the previous interval, we will need
2317 * to transmit that many packets twice within this interval.
2319 packets_remaining = 2 * packets_remaining +
2320 bw_table->interval_bw[i].num_packets;
2322 /* Find the largest max packet size of this or the previous
2323 * interval.
2325 if (list_empty(&bw_table->interval_bw[i].endpoints))
2326 largest_mps = 0;
2327 else {
2328 struct xhci_virt_ep *virt_ep;
2329 struct list_head *ep_entry;
2331 ep_entry = bw_table->interval_bw[i].endpoints.next;
2332 virt_ep = list_entry(ep_entry,
2333 struct xhci_virt_ep, bw_endpoint_list);
2334 /* Convert to blocks, rounding up */
2335 largest_mps = DIV_ROUND_UP(
2336 virt_ep->bw_info.max_packet_size,
2337 block_size);
2339 if (largest_mps > packet_size)
2340 packet_size = largest_mps;
2342 /* Use the larger overhead of this or the previous interval. */
2343 interval_overhead = xhci_get_largest_overhead(
2344 &bw_table->interval_bw[i]);
2345 if (interval_overhead > overhead)
2346 overhead = interval_overhead;
2348 /* How many packets can we evenly distribute across
2349 * (1 << (i + 1)) possible scheduling opportunities?
2351 packets_transmitted = packets_remaining >> (i + 1);
2353 /* Add in the bandwidth used for those scheduled packets */
2354 bw_added = packets_transmitted * (overhead + packet_size);
2356 /* How many packets do we have remaining to transmit? */
2357 packets_remaining = packets_remaining % (1 << (i + 1));
2359 /* What largest max packet size should those packets have? */
2360 /* If we've transmitted all packets, don't carry over the
2361 * largest packet size.
2363 if (packets_remaining == 0) {
2364 packet_size = 0;
2365 overhead = 0;
2366 } else if (packets_transmitted > 0) {
2367 /* Otherwise if we do have remaining packets, and we've
2368 * scheduled some packets in this interval, take the
2369 * largest max packet size from endpoints with this
2370 * interval.
2372 packet_size = largest_mps;
2373 overhead = interval_overhead;
2375 /* Otherwise carry over packet_size and overhead from the last
2376 * time we had a remainder.
2378 bw_used += bw_added;
2379 if (bw_used > max_bandwidth) {
2380 xhci_warn(xhci, "Not enough bandwidth. "
2381 "Proposed: %u, Max: %u\n",
2382 bw_used, max_bandwidth);
2383 return -ENOMEM;
2387 * Ok, we know we have some packets left over after even-handedly
2388 * scheduling interval 15. We don't know which microframes they will
2389 * fit into, so we over-schedule and say they will be scheduled every
2390 * microframe.
2392 if (packets_remaining > 0)
2393 bw_used += overhead + packet_size;
2395 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2396 unsigned int port_index = virt_dev->real_port - 1;
2398 /* OK, we're manipulating a HS device attached to a
2399 * root port bandwidth domain. Include the number of active TTs
2400 * in the bandwidth used.
2402 bw_used += TT_HS_OVERHEAD *
2403 xhci->rh_bw[port_index].num_active_tts;
2406 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2407 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2408 "Available: %u " "percent",
2409 bw_used, max_bandwidth, bw_reserved,
2410 (max_bandwidth - bw_used - bw_reserved) * 100 /
2411 max_bandwidth);
2413 bw_used += bw_reserved;
2414 if (bw_used > max_bandwidth) {
2415 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2416 bw_used, max_bandwidth);
2417 return -ENOMEM;
2420 bw_table->bw_used = bw_used;
2421 return 0;
2424 static bool xhci_is_async_ep(unsigned int ep_type)
2426 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2427 ep_type != ISOC_IN_EP &&
2428 ep_type != INT_IN_EP);
2431 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2433 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2436 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2438 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2440 if (ep_bw->ep_interval == 0)
2441 return SS_OVERHEAD_BURST +
2442 (ep_bw->mult * ep_bw->num_packets *
2443 (SS_OVERHEAD + mps));
2444 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2445 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2446 1 << ep_bw->ep_interval);
2450 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2451 struct xhci_bw_info *ep_bw,
2452 struct xhci_interval_bw_table *bw_table,
2453 struct usb_device *udev,
2454 struct xhci_virt_ep *virt_ep,
2455 struct xhci_tt_bw_info *tt_info)
2457 struct xhci_interval_bw *interval_bw;
2458 int normalized_interval;
2460 if (xhci_is_async_ep(ep_bw->type))
2461 return;
2463 if (udev->speed >= USB_SPEED_SUPER) {
2464 if (xhci_is_sync_in_ep(ep_bw->type))
2465 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2466 xhci_get_ss_bw_consumed(ep_bw);
2467 else
2468 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2469 xhci_get_ss_bw_consumed(ep_bw);
2470 return;
2473 /* SuperSpeed endpoints never get added to intervals in the table, so
2474 * this check is only valid for HS/FS/LS devices.
2476 if (list_empty(&virt_ep->bw_endpoint_list))
2477 return;
2478 /* For LS/FS devices, we need to translate the interval expressed in
2479 * microframes to frames.
2481 if (udev->speed == USB_SPEED_HIGH)
2482 normalized_interval = ep_bw->ep_interval;
2483 else
2484 normalized_interval = ep_bw->ep_interval - 3;
2486 if (normalized_interval == 0)
2487 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2488 interval_bw = &bw_table->interval_bw[normalized_interval];
2489 interval_bw->num_packets -= ep_bw->num_packets;
2490 switch (udev->speed) {
2491 case USB_SPEED_LOW:
2492 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2493 break;
2494 case USB_SPEED_FULL:
2495 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2496 break;
2497 case USB_SPEED_HIGH:
2498 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2499 break;
2500 case USB_SPEED_SUPER:
2501 case USB_SPEED_SUPER_PLUS:
2502 case USB_SPEED_UNKNOWN:
2503 case USB_SPEED_WIRELESS:
2504 /* Should never happen because only LS/FS/HS endpoints will get
2505 * added to the endpoint list.
2507 return;
2509 if (tt_info)
2510 tt_info->active_eps -= 1;
2511 list_del_init(&virt_ep->bw_endpoint_list);
2514 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2515 struct xhci_bw_info *ep_bw,
2516 struct xhci_interval_bw_table *bw_table,
2517 struct usb_device *udev,
2518 struct xhci_virt_ep *virt_ep,
2519 struct xhci_tt_bw_info *tt_info)
2521 struct xhci_interval_bw *interval_bw;
2522 struct xhci_virt_ep *smaller_ep;
2523 int normalized_interval;
2525 if (xhci_is_async_ep(ep_bw->type))
2526 return;
2528 if (udev->speed == USB_SPEED_SUPER) {
2529 if (xhci_is_sync_in_ep(ep_bw->type))
2530 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2531 xhci_get_ss_bw_consumed(ep_bw);
2532 else
2533 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2534 xhci_get_ss_bw_consumed(ep_bw);
2535 return;
2538 /* For LS/FS devices, we need to translate the interval expressed in
2539 * microframes to frames.
2541 if (udev->speed == USB_SPEED_HIGH)
2542 normalized_interval = ep_bw->ep_interval;
2543 else
2544 normalized_interval = ep_bw->ep_interval - 3;
2546 if (normalized_interval == 0)
2547 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2548 interval_bw = &bw_table->interval_bw[normalized_interval];
2549 interval_bw->num_packets += ep_bw->num_packets;
2550 switch (udev->speed) {
2551 case USB_SPEED_LOW:
2552 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2553 break;
2554 case USB_SPEED_FULL:
2555 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2556 break;
2557 case USB_SPEED_HIGH:
2558 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2559 break;
2560 case USB_SPEED_SUPER:
2561 case USB_SPEED_SUPER_PLUS:
2562 case USB_SPEED_UNKNOWN:
2563 case USB_SPEED_WIRELESS:
2564 /* Should never happen because only LS/FS/HS endpoints will get
2565 * added to the endpoint list.
2567 return;
2570 if (tt_info)
2571 tt_info->active_eps += 1;
2572 /* Insert the endpoint into the list, largest max packet size first. */
2573 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2574 bw_endpoint_list) {
2575 if (ep_bw->max_packet_size >=
2576 smaller_ep->bw_info.max_packet_size) {
2577 /* Add the new ep before the smaller endpoint */
2578 list_add_tail(&virt_ep->bw_endpoint_list,
2579 &smaller_ep->bw_endpoint_list);
2580 return;
2583 /* Add the new endpoint at the end of the list. */
2584 list_add_tail(&virt_ep->bw_endpoint_list,
2585 &interval_bw->endpoints);
2588 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2589 struct xhci_virt_device *virt_dev,
2590 int old_active_eps)
2592 struct xhci_root_port_bw_info *rh_bw_info;
2593 if (!virt_dev->tt_info)
2594 return;
2596 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2597 if (old_active_eps == 0 &&
2598 virt_dev->tt_info->active_eps != 0) {
2599 rh_bw_info->num_active_tts += 1;
2600 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2601 } else if (old_active_eps != 0 &&
2602 virt_dev->tt_info->active_eps == 0) {
2603 rh_bw_info->num_active_tts -= 1;
2604 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2608 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2609 struct xhci_virt_device *virt_dev,
2610 struct xhci_container_ctx *in_ctx)
2612 struct xhci_bw_info ep_bw_info[31];
2613 int i;
2614 struct xhci_input_control_ctx *ctrl_ctx;
2615 int old_active_eps = 0;
2617 if (virt_dev->tt_info)
2618 old_active_eps = virt_dev->tt_info->active_eps;
2620 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2621 if (!ctrl_ctx) {
2622 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2623 __func__);
2624 return -ENOMEM;
2627 for (i = 0; i < 31; i++) {
2628 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2629 continue;
2631 /* Make a copy of the BW info in case we need to revert this */
2632 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2633 sizeof(ep_bw_info[i]));
2634 /* Drop the endpoint from the interval table if the endpoint is
2635 * being dropped or changed.
2637 if (EP_IS_DROPPED(ctrl_ctx, i))
2638 xhci_drop_ep_from_interval_table(xhci,
2639 &virt_dev->eps[i].bw_info,
2640 virt_dev->bw_table,
2641 virt_dev->udev,
2642 &virt_dev->eps[i],
2643 virt_dev->tt_info);
2645 /* Overwrite the information stored in the endpoints' bw_info */
2646 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2647 for (i = 0; i < 31; i++) {
2648 /* Add any changed or added endpoints to the interval table */
2649 if (EP_IS_ADDED(ctrl_ctx, i))
2650 xhci_add_ep_to_interval_table(xhci,
2651 &virt_dev->eps[i].bw_info,
2652 virt_dev->bw_table,
2653 virt_dev->udev,
2654 &virt_dev->eps[i],
2655 virt_dev->tt_info);
2658 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2659 /* Ok, this fits in the bandwidth we have.
2660 * Update the number of active TTs.
2662 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2663 return 0;
2666 /* We don't have enough bandwidth for this, revert the stored info. */
2667 for (i = 0; i < 31; i++) {
2668 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2669 continue;
2671 /* Drop the new copies of any added or changed endpoints from
2672 * the interval table.
2674 if (EP_IS_ADDED(ctrl_ctx, i)) {
2675 xhci_drop_ep_from_interval_table(xhci,
2676 &virt_dev->eps[i].bw_info,
2677 virt_dev->bw_table,
2678 virt_dev->udev,
2679 &virt_dev->eps[i],
2680 virt_dev->tt_info);
2682 /* Revert the endpoint back to its old information */
2683 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2684 sizeof(ep_bw_info[i]));
2685 /* Add any changed or dropped endpoints back into the table */
2686 if (EP_IS_DROPPED(ctrl_ctx, i))
2687 xhci_add_ep_to_interval_table(xhci,
2688 &virt_dev->eps[i].bw_info,
2689 virt_dev->bw_table,
2690 virt_dev->udev,
2691 &virt_dev->eps[i],
2692 virt_dev->tt_info);
2694 return -ENOMEM;
2698 /* Issue a configure endpoint command or evaluate context command
2699 * and wait for it to finish.
2701 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2702 struct usb_device *udev,
2703 struct xhci_command *command,
2704 bool ctx_change, bool must_succeed)
2706 int ret;
2707 unsigned long flags;
2708 struct xhci_input_control_ctx *ctrl_ctx;
2709 struct xhci_virt_device *virt_dev;
2710 struct xhci_slot_ctx *slot_ctx;
2712 if (!command)
2713 return -EINVAL;
2715 spin_lock_irqsave(&xhci->lock, flags);
2717 if (xhci->xhc_state & XHCI_STATE_DYING) {
2718 spin_unlock_irqrestore(&xhci->lock, flags);
2719 return -ESHUTDOWN;
2722 virt_dev = xhci->devs[udev->slot_id];
2724 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2725 if (!ctrl_ctx) {
2726 spin_unlock_irqrestore(&xhci->lock, flags);
2727 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2728 __func__);
2729 return -ENOMEM;
2732 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2733 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2734 spin_unlock_irqrestore(&xhci->lock, flags);
2735 xhci_warn(xhci, "Not enough host resources, "
2736 "active endpoint contexts = %u\n",
2737 xhci->num_active_eps);
2738 return -ENOMEM;
2740 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2741 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2742 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2743 xhci_free_host_resources(xhci, ctrl_ctx);
2744 spin_unlock_irqrestore(&xhci->lock, flags);
2745 xhci_warn(xhci, "Not enough bandwidth\n");
2746 return -ENOMEM;
2749 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2750 trace_xhci_configure_endpoint(slot_ctx);
2752 if (!ctx_change)
2753 ret = xhci_queue_configure_endpoint(xhci, command,
2754 command->in_ctx->dma,
2755 udev->slot_id, must_succeed);
2756 else
2757 ret = xhci_queue_evaluate_context(xhci, command,
2758 command->in_ctx->dma,
2759 udev->slot_id, must_succeed);
2760 if (ret < 0) {
2761 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2762 xhci_free_host_resources(xhci, ctrl_ctx);
2763 spin_unlock_irqrestore(&xhci->lock, flags);
2764 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2765 "FIXME allocate a new ring segment");
2766 return -ENOMEM;
2768 xhci_ring_cmd_db(xhci);
2769 spin_unlock_irqrestore(&xhci->lock, flags);
2771 /* Wait for the configure endpoint command to complete */
2772 wait_for_completion(command->completion);
2774 if (!ctx_change)
2775 ret = xhci_configure_endpoint_result(xhci, udev,
2776 &command->status);
2777 else
2778 ret = xhci_evaluate_context_result(xhci, udev,
2779 &command->status);
2781 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2782 spin_lock_irqsave(&xhci->lock, flags);
2783 /* If the command failed, remove the reserved resources.
2784 * Otherwise, clean up the estimate to include dropped eps.
2786 if (ret)
2787 xhci_free_host_resources(xhci, ctrl_ctx);
2788 else
2789 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2790 spin_unlock_irqrestore(&xhci->lock, flags);
2792 return ret;
2795 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2796 struct xhci_virt_device *vdev, int i)
2798 struct xhci_virt_ep *ep = &vdev->eps[i];
2800 if (ep->ep_state & EP_HAS_STREAMS) {
2801 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2802 xhci_get_endpoint_address(i));
2803 xhci_free_stream_info(xhci, ep->stream_info);
2804 ep->stream_info = NULL;
2805 ep->ep_state &= ~EP_HAS_STREAMS;
2809 /* Called after one or more calls to xhci_add_endpoint() or
2810 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2811 * to call xhci_reset_bandwidth().
2813 * Since we are in the middle of changing either configuration or
2814 * installing a new alt setting, the USB core won't allow URBs to be
2815 * enqueued for any endpoint on the old config or interface. Nothing
2816 * else should be touching the xhci->devs[slot_id] structure, so we
2817 * don't need to take the xhci->lock for manipulating that.
2819 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2821 int i;
2822 int ret = 0;
2823 struct xhci_hcd *xhci;
2824 struct xhci_virt_device *virt_dev;
2825 struct xhci_input_control_ctx *ctrl_ctx;
2826 struct xhci_slot_ctx *slot_ctx;
2827 struct xhci_command *command;
2829 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2830 if (ret <= 0)
2831 return ret;
2832 xhci = hcd_to_xhci(hcd);
2833 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2834 (xhci->xhc_state & XHCI_STATE_REMOVING))
2835 return -ENODEV;
2837 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2838 virt_dev = xhci->devs[udev->slot_id];
2840 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2841 if (!command)
2842 return -ENOMEM;
2844 command->in_ctx = virt_dev->in_ctx;
2846 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2847 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2848 if (!ctrl_ctx) {
2849 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2850 __func__);
2851 ret = -ENOMEM;
2852 goto command_cleanup;
2854 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2855 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2856 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2858 /* Don't issue the command if there's no endpoints to update. */
2859 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2860 ctrl_ctx->drop_flags == 0) {
2861 ret = 0;
2862 goto command_cleanup;
2864 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2865 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2866 for (i = 31; i >= 1; i--) {
2867 __le32 le32 = cpu_to_le32(BIT(i));
2869 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2870 || (ctrl_ctx->add_flags & le32) || i == 1) {
2871 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2872 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2873 break;
2877 ret = xhci_configure_endpoint(xhci, udev, command,
2878 false, false);
2879 if (ret)
2880 /* Callee should call reset_bandwidth() */
2881 goto command_cleanup;
2883 /* Free any rings that were dropped, but not changed. */
2884 for (i = 1; i < 31; i++) {
2885 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2886 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2887 xhci_free_endpoint_ring(xhci, virt_dev, i);
2888 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2891 xhci_zero_in_ctx(xhci, virt_dev);
2893 * Install any rings for completely new endpoints or changed endpoints,
2894 * and free any old rings from changed endpoints.
2896 for (i = 1; i < 31; i++) {
2897 if (!virt_dev->eps[i].new_ring)
2898 continue;
2899 /* Only free the old ring if it exists.
2900 * It may not if this is the first add of an endpoint.
2902 if (virt_dev->eps[i].ring) {
2903 xhci_free_endpoint_ring(xhci, virt_dev, i);
2905 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2906 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2907 virt_dev->eps[i].new_ring = NULL;
2909 command_cleanup:
2910 kfree(command->completion);
2911 kfree(command);
2913 return ret;
2916 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2918 struct xhci_hcd *xhci;
2919 struct xhci_virt_device *virt_dev;
2920 int i, ret;
2922 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2923 if (ret <= 0)
2924 return;
2925 xhci = hcd_to_xhci(hcd);
2927 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2928 virt_dev = xhci->devs[udev->slot_id];
2929 /* Free any rings allocated for added endpoints */
2930 for (i = 0; i < 31; i++) {
2931 if (virt_dev->eps[i].new_ring) {
2932 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2933 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2934 virt_dev->eps[i].new_ring = NULL;
2937 xhci_zero_in_ctx(xhci, virt_dev);
2940 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2941 struct xhci_container_ctx *in_ctx,
2942 struct xhci_container_ctx *out_ctx,
2943 struct xhci_input_control_ctx *ctrl_ctx,
2944 u32 add_flags, u32 drop_flags)
2946 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2947 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2948 xhci_slot_copy(xhci, in_ctx, out_ctx);
2949 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2952 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2953 unsigned int slot_id, unsigned int ep_index,
2954 struct xhci_dequeue_state *deq_state)
2956 struct xhci_input_control_ctx *ctrl_ctx;
2957 struct xhci_container_ctx *in_ctx;
2958 struct xhci_ep_ctx *ep_ctx;
2959 u32 added_ctxs;
2960 dma_addr_t addr;
2962 in_ctx = xhci->devs[slot_id]->in_ctx;
2963 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2964 if (!ctrl_ctx) {
2965 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2966 __func__);
2967 return;
2970 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2971 xhci->devs[slot_id]->out_ctx, ep_index);
2972 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2973 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2974 deq_state->new_deq_ptr);
2975 if (addr == 0) {
2976 xhci_warn(xhci, "WARN Cannot submit config ep after "
2977 "reset ep command\n");
2978 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2979 deq_state->new_deq_seg,
2980 deq_state->new_deq_ptr);
2981 return;
2983 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2985 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2986 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2987 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2988 added_ctxs, added_ctxs);
2991 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2992 unsigned int stream_id, struct xhci_td *td)
2994 struct xhci_dequeue_state deq_state;
2995 struct usb_device *udev = td->urb->dev;
2997 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2998 "Cleaning up stalled endpoint ring");
2999 /* We need to move the HW's dequeue pointer past this TD,
3000 * or it will attempt to resend it on the next doorbell ring.
3002 xhci_find_new_dequeue_state(xhci, udev->slot_id,
3003 ep_index, stream_id, td, &deq_state);
3005 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3006 return;
3008 /* HW with the reset endpoint quirk will use the saved dequeue state to
3009 * issue a configure endpoint command later.
3011 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3012 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3013 "Queueing new dequeue state");
3014 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3015 ep_index, &deq_state);
3016 } else {
3017 /* Better hope no one uses the input context between now and the
3018 * reset endpoint completion!
3019 * XXX: No idea how this hardware will react when stream rings
3020 * are enabled.
3022 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3023 "Setting up input context for "
3024 "configure endpoint command");
3025 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3026 ep_index, &deq_state);
3031 * Called after usb core issues a clear halt control message.
3032 * The host side of the halt should already be cleared by a reset endpoint
3033 * command issued when the STALL event was received.
3035 * The reset endpoint command may only be issued to endpoints in the halted
3036 * state. For software that wishes to reset the data toggle or sequence number
3037 * of an endpoint that isn't in the halted state this function will issue a
3038 * configure endpoint command with the Drop and Add bits set for the target
3039 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3042 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3043 struct usb_host_endpoint *host_ep)
3045 struct xhci_hcd *xhci;
3046 struct usb_device *udev;
3047 struct xhci_virt_device *vdev;
3048 struct xhci_virt_ep *ep;
3049 struct xhci_input_control_ctx *ctrl_ctx;
3050 struct xhci_command *stop_cmd, *cfg_cmd;
3051 unsigned int ep_index;
3052 unsigned long flags;
3053 u32 ep_flag;
3055 xhci = hcd_to_xhci(hcd);
3056 if (!host_ep->hcpriv)
3057 return;
3058 udev = (struct usb_device *) host_ep->hcpriv;
3059 vdev = xhci->devs[udev->slot_id];
3060 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3061 ep = &vdev->eps[ep_index];
3063 /* Bail out if toggle is already being cleared by a endpoint reset */
3064 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3065 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3066 return;
3068 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3069 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3070 usb_endpoint_xfer_isoc(&host_ep->desc))
3071 return;
3073 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3075 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3076 return;
3078 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3079 if (!stop_cmd)
3080 return;
3082 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3083 if (!cfg_cmd)
3084 goto cleanup;
3086 spin_lock_irqsave(&xhci->lock, flags);
3088 /* block queuing new trbs and ringing ep doorbell */
3089 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3092 * Make sure endpoint ring is empty before resetting the toggle/seq.
3093 * Driver is required to synchronously cancel all transfer request.
3094 * Stop the endpoint to force xHC to update the output context
3097 if (!list_empty(&ep->ring->td_list)) {
3098 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3099 spin_unlock_irqrestore(&xhci->lock, flags);
3100 xhci_free_command(xhci, cfg_cmd);
3101 goto cleanup;
3103 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3104 xhci_ring_cmd_db(xhci);
3105 spin_unlock_irqrestore(&xhci->lock, flags);
3107 wait_for_completion(stop_cmd->completion);
3109 spin_lock_irqsave(&xhci->lock, flags);
3111 /* config ep command clears toggle if add and drop ep flags are set */
3112 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3113 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3114 ctrl_ctx, ep_flag, ep_flag);
3115 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3117 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3118 udev->slot_id, false);
3119 xhci_ring_cmd_db(xhci);
3120 spin_unlock_irqrestore(&xhci->lock, flags);
3122 wait_for_completion(cfg_cmd->completion);
3124 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3125 xhci_free_command(xhci, cfg_cmd);
3126 cleanup:
3127 xhci_free_command(xhci, stop_cmd);
3130 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3131 struct usb_device *udev, struct usb_host_endpoint *ep,
3132 unsigned int slot_id)
3134 int ret;
3135 unsigned int ep_index;
3136 unsigned int ep_state;
3138 if (!ep)
3139 return -EINVAL;
3140 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3141 if (ret <= 0)
3142 return -EINVAL;
3143 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3144 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3145 " descriptor for ep 0x%x does not support streams\n",
3146 ep->desc.bEndpointAddress);
3147 return -EINVAL;
3150 ep_index = xhci_get_endpoint_index(&ep->desc);
3151 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3152 if (ep_state & EP_HAS_STREAMS ||
3153 ep_state & EP_GETTING_STREAMS) {
3154 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3155 "already has streams set up.\n",
3156 ep->desc.bEndpointAddress);
3157 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3158 "dynamic stream context array reallocation.\n");
3159 return -EINVAL;
3161 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3162 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3163 "endpoint 0x%x; URBs are pending.\n",
3164 ep->desc.bEndpointAddress);
3165 return -EINVAL;
3167 return 0;
3170 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3171 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3173 unsigned int max_streams;
3175 /* The stream context array size must be a power of two */
3176 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3178 * Find out how many primary stream array entries the host controller
3179 * supports. Later we may use secondary stream arrays (similar to 2nd
3180 * level page entries), but that's an optional feature for xHCI host
3181 * controllers. xHCs must support at least 4 stream IDs.
3183 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3184 if (*num_stream_ctxs > max_streams) {
3185 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3186 max_streams);
3187 *num_stream_ctxs = max_streams;
3188 *num_streams = max_streams;
3192 /* Returns an error code if one of the endpoint already has streams.
3193 * This does not change any data structures, it only checks and gathers
3194 * information.
3196 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3197 struct usb_device *udev,
3198 struct usb_host_endpoint **eps, unsigned int num_eps,
3199 unsigned int *num_streams, u32 *changed_ep_bitmask)
3201 unsigned int max_streams;
3202 unsigned int endpoint_flag;
3203 int i;
3204 int ret;
3206 for (i = 0; i < num_eps; i++) {
3207 ret = xhci_check_streams_endpoint(xhci, udev,
3208 eps[i], udev->slot_id);
3209 if (ret < 0)
3210 return ret;
3212 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3213 if (max_streams < (*num_streams - 1)) {
3214 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3215 eps[i]->desc.bEndpointAddress,
3216 max_streams);
3217 *num_streams = max_streams+1;
3220 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3221 if (*changed_ep_bitmask & endpoint_flag)
3222 return -EINVAL;
3223 *changed_ep_bitmask |= endpoint_flag;
3225 return 0;
3228 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3229 struct usb_device *udev,
3230 struct usb_host_endpoint **eps, unsigned int num_eps)
3232 u32 changed_ep_bitmask = 0;
3233 unsigned int slot_id;
3234 unsigned int ep_index;
3235 unsigned int ep_state;
3236 int i;
3238 slot_id = udev->slot_id;
3239 if (!xhci->devs[slot_id])
3240 return 0;
3242 for (i = 0; i < num_eps; i++) {
3243 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3244 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3245 /* Are streams already being freed for the endpoint? */
3246 if (ep_state & EP_GETTING_NO_STREAMS) {
3247 xhci_warn(xhci, "WARN Can't disable streams for "
3248 "endpoint 0x%x, "
3249 "streams are being disabled already\n",
3250 eps[i]->desc.bEndpointAddress);
3251 return 0;
3253 /* Are there actually any streams to free? */
3254 if (!(ep_state & EP_HAS_STREAMS) &&
3255 !(ep_state & EP_GETTING_STREAMS)) {
3256 xhci_warn(xhci, "WARN Can't disable streams for "
3257 "endpoint 0x%x, "
3258 "streams are already disabled!\n",
3259 eps[i]->desc.bEndpointAddress);
3260 xhci_warn(xhci, "WARN xhci_free_streams() called "
3261 "with non-streams endpoint\n");
3262 return 0;
3264 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3266 return changed_ep_bitmask;
3270 * The USB device drivers use this function (through the HCD interface in USB
3271 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3272 * coordinate mass storage command queueing across multiple endpoints (basically
3273 * a stream ID == a task ID).
3275 * Setting up streams involves allocating the same size stream context array
3276 * for each endpoint and issuing a configure endpoint command for all endpoints.
3278 * Don't allow the call to succeed if one endpoint only supports one stream
3279 * (which means it doesn't support streams at all).
3281 * Drivers may get less stream IDs than they asked for, if the host controller
3282 * hardware or endpoints claim they can't support the number of requested
3283 * stream IDs.
3285 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3286 struct usb_host_endpoint **eps, unsigned int num_eps,
3287 unsigned int num_streams, gfp_t mem_flags)
3289 int i, ret;
3290 struct xhci_hcd *xhci;
3291 struct xhci_virt_device *vdev;
3292 struct xhci_command *config_cmd;
3293 struct xhci_input_control_ctx *ctrl_ctx;
3294 unsigned int ep_index;
3295 unsigned int num_stream_ctxs;
3296 unsigned int max_packet;
3297 unsigned long flags;
3298 u32 changed_ep_bitmask = 0;
3300 if (!eps)
3301 return -EINVAL;
3303 /* Add one to the number of streams requested to account for
3304 * stream 0 that is reserved for xHCI usage.
3306 num_streams += 1;
3307 xhci = hcd_to_xhci(hcd);
3308 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3309 num_streams);
3311 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3312 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3313 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3314 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3315 return -ENOSYS;
3318 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3319 if (!config_cmd)
3320 return -ENOMEM;
3322 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3323 if (!ctrl_ctx) {
3324 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3325 __func__);
3326 xhci_free_command(xhci, config_cmd);
3327 return -ENOMEM;
3330 /* Check to make sure all endpoints are not already configured for
3331 * streams. While we're at it, find the maximum number of streams that
3332 * all the endpoints will support and check for duplicate endpoints.
3334 spin_lock_irqsave(&xhci->lock, flags);
3335 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3336 num_eps, &num_streams, &changed_ep_bitmask);
3337 if (ret < 0) {
3338 xhci_free_command(xhci, config_cmd);
3339 spin_unlock_irqrestore(&xhci->lock, flags);
3340 return ret;
3342 if (num_streams <= 1) {
3343 xhci_warn(xhci, "WARN: endpoints can't handle "
3344 "more than one stream.\n");
3345 xhci_free_command(xhci, config_cmd);
3346 spin_unlock_irqrestore(&xhci->lock, flags);
3347 return -EINVAL;
3349 vdev = xhci->devs[udev->slot_id];
3350 /* Mark each endpoint as being in transition, so
3351 * xhci_urb_enqueue() will reject all URBs.
3353 for (i = 0; i < num_eps; i++) {
3354 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3355 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3357 spin_unlock_irqrestore(&xhci->lock, flags);
3359 /* Setup internal data structures and allocate HW data structures for
3360 * streams (but don't install the HW structures in the input context
3361 * until we're sure all memory allocation succeeded).
3363 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3364 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3365 num_stream_ctxs, num_streams);
3367 for (i = 0; i < num_eps; i++) {
3368 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3369 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3370 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3371 num_stream_ctxs,
3372 num_streams,
3373 max_packet, mem_flags);
3374 if (!vdev->eps[ep_index].stream_info)
3375 goto cleanup;
3376 /* Set maxPstreams in endpoint context and update deq ptr to
3377 * point to stream context array. FIXME
3381 /* Set up the input context for a configure endpoint command. */
3382 for (i = 0; i < num_eps; i++) {
3383 struct xhci_ep_ctx *ep_ctx;
3385 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3386 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3388 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3389 vdev->out_ctx, ep_index);
3390 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3391 vdev->eps[ep_index].stream_info);
3393 /* Tell the HW to drop its old copy of the endpoint context info
3394 * and add the updated copy from the input context.
3396 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3397 vdev->out_ctx, ctrl_ctx,
3398 changed_ep_bitmask, changed_ep_bitmask);
3400 /* Issue and wait for the configure endpoint command */
3401 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3402 false, false);
3404 /* xHC rejected the configure endpoint command for some reason, so we
3405 * leave the old ring intact and free our internal streams data
3406 * structure.
3408 if (ret < 0)
3409 goto cleanup;
3411 spin_lock_irqsave(&xhci->lock, flags);
3412 for (i = 0; i < num_eps; i++) {
3413 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3414 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3415 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3416 udev->slot_id, ep_index);
3417 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3419 xhci_free_command(xhci, config_cmd);
3420 spin_unlock_irqrestore(&xhci->lock, flags);
3422 /* Subtract 1 for stream 0, which drivers can't use */
3423 return num_streams - 1;
3425 cleanup:
3426 /* If it didn't work, free the streams! */
3427 for (i = 0; i < num_eps; i++) {
3428 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3429 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3430 vdev->eps[ep_index].stream_info = NULL;
3431 /* FIXME Unset maxPstreams in endpoint context and
3432 * update deq ptr to point to normal string ring.
3434 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3435 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3436 xhci_endpoint_zero(xhci, vdev, eps[i]);
3438 xhci_free_command(xhci, config_cmd);
3439 return -ENOMEM;
3442 /* Transition the endpoint from using streams to being a "normal" endpoint
3443 * without streams.
3445 * Modify the endpoint context state, submit a configure endpoint command,
3446 * and free all endpoint rings for streams if that completes successfully.
3448 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3449 struct usb_host_endpoint **eps, unsigned int num_eps,
3450 gfp_t mem_flags)
3452 int i, ret;
3453 struct xhci_hcd *xhci;
3454 struct xhci_virt_device *vdev;
3455 struct xhci_command *command;
3456 struct xhci_input_control_ctx *ctrl_ctx;
3457 unsigned int ep_index;
3458 unsigned long flags;
3459 u32 changed_ep_bitmask;
3461 xhci = hcd_to_xhci(hcd);
3462 vdev = xhci->devs[udev->slot_id];
3464 /* Set up a configure endpoint command to remove the streams rings */
3465 spin_lock_irqsave(&xhci->lock, flags);
3466 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3467 udev, eps, num_eps);
3468 if (changed_ep_bitmask == 0) {
3469 spin_unlock_irqrestore(&xhci->lock, flags);
3470 return -EINVAL;
3473 /* Use the xhci_command structure from the first endpoint. We may have
3474 * allocated too many, but the driver may call xhci_free_streams() for
3475 * each endpoint it grouped into one call to xhci_alloc_streams().
3477 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3478 command = vdev->eps[ep_index].stream_info->free_streams_command;
3479 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3480 if (!ctrl_ctx) {
3481 spin_unlock_irqrestore(&xhci->lock, flags);
3482 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3483 __func__);
3484 return -EINVAL;
3487 for (i = 0; i < num_eps; i++) {
3488 struct xhci_ep_ctx *ep_ctx;
3490 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3491 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3492 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3493 EP_GETTING_NO_STREAMS;
3495 xhci_endpoint_copy(xhci, command->in_ctx,
3496 vdev->out_ctx, ep_index);
3497 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3498 &vdev->eps[ep_index]);
3500 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3501 vdev->out_ctx, ctrl_ctx,
3502 changed_ep_bitmask, changed_ep_bitmask);
3503 spin_unlock_irqrestore(&xhci->lock, flags);
3505 /* Issue and wait for the configure endpoint command,
3506 * which must succeed.
3508 ret = xhci_configure_endpoint(xhci, udev, command,
3509 false, true);
3511 /* xHC rejected the configure endpoint command for some reason, so we
3512 * leave the streams rings intact.
3514 if (ret < 0)
3515 return ret;
3517 spin_lock_irqsave(&xhci->lock, flags);
3518 for (i = 0; i < num_eps; i++) {
3519 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3520 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3521 vdev->eps[ep_index].stream_info = NULL;
3522 /* FIXME Unset maxPstreams in endpoint context and
3523 * update deq ptr to point to normal string ring.
3525 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3526 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3528 spin_unlock_irqrestore(&xhci->lock, flags);
3530 return 0;
3534 * Deletes endpoint resources for endpoints that were active before a Reset
3535 * Device command, or a Disable Slot command. The Reset Device command leaves
3536 * the control endpoint intact, whereas the Disable Slot command deletes it.
3538 * Must be called with xhci->lock held.
3540 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3541 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3543 int i;
3544 unsigned int num_dropped_eps = 0;
3545 unsigned int drop_flags = 0;
3547 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3548 if (virt_dev->eps[i].ring) {
3549 drop_flags |= 1 << i;
3550 num_dropped_eps++;
3553 xhci->num_active_eps -= num_dropped_eps;
3554 if (num_dropped_eps)
3555 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3556 "Dropped %u ep ctxs, flags = 0x%x, "
3557 "%u now active.",
3558 num_dropped_eps, drop_flags,
3559 xhci->num_active_eps);
3563 * This submits a Reset Device Command, which will set the device state to 0,
3564 * set the device address to 0, and disable all the endpoints except the default
3565 * control endpoint. The USB core should come back and call
3566 * xhci_address_device(), and then re-set up the configuration. If this is
3567 * called because of a usb_reset_and_verify_device(), then the old alternate
3568 * settings will be re-installed through the normal bandwidth allocation
3569 * functions.
3571 * Wait for the Reset Device command to finish. Remove all structures
3572 * associated with the endpoints that were disabled. Clear the input device
3573 * structure? Reset the control endpoint 0 max packet size?
3575 * If the virt_dev to be reset does not exist or does not match the udev,
3576 * it means the device is lost, possibly due to the xHC restore error and
3577 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3578 * re-allocate the device.
3580 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3581 struct usb_device *udev)
3583 int ret, i;
3584 unsigned long flags;
3585 struct xhci_hcd *xhci;
3586 unsigned int slot_id;
3587 struct xhci_virt_device *virt_dev;
3588 struct xhci_command *reset_device_cmd;
3589 struct xhci_slot_ctx *slot_ctx;
3590 int old_active_eps = 0;
3592 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3593 if (ret <= 0)
3594 return ret;
3595 xhci = hcd_to_xhci(hcd);
3596 slot_id = udev->slot_id;
3597 virt_dev = xhci->devs[slot_id];
3598 if (!virt_dev) {
3599 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3600 "not exist. Re-allocate the device\n", slot_id);
3601 ret = xhci_alloc_dev(hcd, udev);
3602 if (ret == 1)
3603 return 0;
3604 else
3605 return -EINVAL;
3608 if (virt_dev->tt_info)
3609 old_active_eps = virt_dev->tt_info->active_eps;
3611 if (virt_dev->udev != udev) {
3612 /* If the virt_dev and the udev does not match, this virt_dev
3613 * may belong to another udev.
3614 * Re-allocate the device.
3616 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3617 "not match the udev. Re-allocate the device\n",
3618 slot_id);
3619 ret = xhci_alloc_dev(hcd, udev);
3620 if (ret == 1)
3621 return 0;
3622 else
3623 return -EINVAL;
3626 /* If device is not setup, there is no point in resetting it */
3627 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3628 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3629 SLOT_STATE_DISABLED)
3630 return 0;
3632 trace_xhci_discover_or_reset_device(slot_ctx);
3634 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3635 /* Allocate the command structure that holds the struct completion.
3636 * Assume we're in process context, since the normal device reset
3637 * process has to wait for the device anyway. Storage devices are
3638 * reset as part of error handling, so use GFP_NOIO instead of
3639 * GFP_KERNEL.
3641 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3642 if (!reset_device_cmd) {
3643 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3644 return -ENOMEM;
3647 /* Attempt to submit the Reset Device command to the command ring */
3648 spin_lock_irqsave(&xhci->lock, flags);
3650 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3651 if (ret) {
3652 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3653 spin_unlock_irqrestore(&xhci->lock, flags);
3654 goto command_cleanup;
3656 xhci_ring_cmd_db(xhci);
3657 spin_unlock_irqrestore(&xhci->lock, flags);
3659 /* Wait for the Reset Device command to finish */
3660 wait_for_completion(reset_device_cmd->completion);
3662 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3663 * unless we tried to reset a slot ID that wasn't enabled,
3664 * or the device wasn't in the addressed or configured state.
3666 ret = reset_device_cmd->status;
3667 switch (ret) {
3668 case COMP_COMMAND_ABORTED:
3669 case COMP_COMMAND_RING_STOPPED:
3670 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3671 ret = -ETIME;
3672 goto command_cleanup;
3673 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3674 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3675 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3676 slot_id,
3677 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3678 xhci_dbg(xhci, "Not freeing device rings.\n");
3679 /* Don't treat this as an error. May change my mind later. */
3680 ret = 0;
3681 goto command_cleanup;
3682 case COMP_SUCCESS:
3683 xhci_dbg(xhci, "Successful reset device command.\n");
3684 break;
3685 default:
3686 if (xhci_is_vendor_info_code(xhci, ret))
3687 break;
3688 xhci_warn(xhci, "Unknown completion code %u for "
3689 "reset device command.\n", ret);
3690 ret = -EINVAL;
3691 goto command_cleanup;
3694 /* Free up host controller endpoint resources */
3695 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3696 spin_lock_irqsave(&xhci->lock, flags);
3697 /* Don't delete the default control endpoint resources */
3698 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3699 spin_unlock_irqrestore(&xhci->lock, flags);
3702 /* Everything but endpoint 0 is disabled, so free the rings. */
3703 for (i = 1; i < 31; i++) {
3704 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3706 if (ep->ep_state & EP_HAS_STREAMS) {
3707 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3708 xhci_get_endpoint_address(i));
3709 xhci_free_stream_info(xhci, ep->stream_info);
3710 ep->stream_info = NULL;
3711 ep->ep_state &= ~EP_HAS_STREAMS;
3714 if (ep->ring) {
3715 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3716 xhci_free_endpoint_ring(xhci, virt_dev, i);
3718 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3719 xhci_drop_ep_from_interval_table(xhci,
3720 &virt_dev->eps[i].bw_info,
3721 virt_dev->bw_table,
3722 udev,
3723 &virt_dev->eps[i],
3724 virt_dev->tt_info);
3725 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3727 /* If necessary, update the number of active TTs on this root port */
3728 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3729 ret = 0;
3731 command_cleanup:
3732 xhci_free_command(xhci, reset_device_cmd);
3733 return ret;
3737 * At this point, the struct usb_device is about to go away, the device has
3738 * disconnected, and all traffic has been stopped and the endpoints have been
3739 * disabled. Free any HC data structures associated with that device.
3741 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3743 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3744 struct xhci_virt_device *virt_dev;
3745 struct xhci_slot_ctx *slot_ctx;
3746 int i, ret;
3748 #ifndef CONFIG_USB_DEFAULT_PERSIST
3750 * We called pm_runtime_get_noresume when the device was attached.
3751 * Decrement the counter here to allow controller to runtime suspend
3752 * if no devices remain.
3754 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3755 pm_runtime_put_noidle(hcd->self.controller);
3756 #endif
3758 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3759 /* If the host is halted due to driver unload, we still need to free the
3760 * device.
3762 if (ret <= 0 && ret != -ENODEV)
3763 return;
3765 virt_dev = xhci->devs[udev->slot_id];
3766 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3767 trace_xhci_free_dev(slot_ctx);
3769 /* Stop any wayward timer functions (which may grab the lock) */
3770 for (i = 0; i < 31; i++) {
3771 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3772 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3774 xhci_debugfs_remove_slot(xhci, udev->slot_id);
3775 virt_dev->udev = NULL;
3776 ret = xhci_disable_slot(xhci, udev->slot_id);
3777 if (ret)
3778 xhci_free_virt_device(xhci, udev->slot_id);
3781 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3783 struct xhci_command *command;
3784 unsigned long flags;
3785 u32 state;
3786 int ret = 0;
3788 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3789 if (!command)
3790 return -ENOMEM;
3792 spin_lock_irqsave(&xhci->lock, flags);
3793 /* Don't disable the slot if the host controller is dead. */
3794 state = readl(&xhci->op_regs->status);
3795 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3796 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3797 spin_unlock_irqrestore(&xhci->lock, flags);
3798 kfree(command);
3799 return -ENODEV;
3802 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3803 slot_id);
3804 if (ret) {
3805 spin_unlock_irqrestore(&xhci->lock, flags);
3806 kfree(command);
3807 return ret;
3809 xhci_ring_cmd_db(xhci);
3810 spin_unlock_irqrestore(&xhci->lock, flags);
3811 return ret;
3815 * Checks if we have enough host controller resources for the default control
3816 * endpoint.
3818 * Must be called with xhci->lock held.
3820 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3822 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3823 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3824 "Not enough ep ctxs: "
3825 "%u active, need to add 1, limit is %u.",
3826 xhci->num_active_eps, xhci->limit_active_eps);
3827 return -ENOMEM;
3829 xhci->num_active_eps += 1;
3830 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3831 "Adding 1 ep ctx, %u now active.",
3832 xhci->num_active_eps);
3833 return 0;
3838 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3839 * timed out, or allocating memory failed. Returns 1 on success.
3841 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3843 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3844 struct xhci_virt_device *vdev;
3845 struct xhci_slot_ctx *slot_ctx;
3846 unsigned long flags;
3847 int ret, slot_id;
3848 struct xhci_command *command;
3850 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3851 if (!command)
3852 return 0;
3854 spin_lock_irqsave(&xhci->lock, flags);
3855 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3856 if (ret) {
3857 spin_unlock_irqrestore(&xhci->lock, flags);
3858 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3859 xhci_free_command(xhci, command);
3860 return 0;
3862 xhci_ring_cmd_db(xhci);
3863 spin_unlock_irqrestore(&xhci->lock, flags);
3865 wait_for_completion(command->completion);
3866 slot_id = command->slot_id;
3868 if (!slot_id || command->status != COMP_SUCCESS) {
3869 xhci_err(xhci, "Error while assigning device slot ID\n");
3870 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3871 HCS_MAX_SLOTS(
3872 readl(&xhci->cap_regs->hcs_params1)));
3873 xhci_free_command(xhci, command);
3874 return 0;
3877 xhci_free_command(xhci, command);
3879 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3880 spin_lock_irqsave(&xhci->lock, flags);
3881 ret = xhci_reserve_host_control_ep_resources(xhci);
3882 if (ret) {
3883 spin_unlock_irqrestore(&xhci->lock, flags);
3884 xhci_warn(xhci, "Not enough host resources, "
3885 "active endpoint contexts = %u\n",
3886 xhci->num_active_eps);
3887 goto disable_slot;
3889 spin_unlock_irqrestore(&xhci->lock, flags);
3891 /* Use GFP_NOIO, since this function can be called from
3892 * xhci_discover_or_reset_device(), which may be called as part of
3893 * mass storage driver error handling.
3895 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3896 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3897 goto disable_slot;
3899 vdev = xhci->devs[slot_id];
3900 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3901 trace_xhci_alloc_dev(slot_ctx);
3903 udev->slot_id = slot_id;
3905 xhci_debugfs_create_slot(xhci, slot_id);
3907 #ifndef CONFIG_USB_DEFAULT_PERSIST
3909 * If resetting upon resume, we can't put the controller into runtime
3910 * suspend if there is a device attached.
3912 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3913 pm_runtime_get_noresume(hcd->self.controller);
3914 #endif
3916 /* Is this a LS or FS device under a HS hub? */
3917 /* Hub or peripherial? */
3918 return 1;
3920 disable_slot:
3921 ret = xhci_disable_slot(xhci, udev->slot_id);
3922 if (ret)
3923 xhci_free_virt_device(xhci, udev->slot_id);
3925 return 0;
3929 * Issue an Address Device command and optionally send a corresponding
3930 * SetAddress request to the device.
3932 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3933 enum xhci_setup_dev setup)
3935 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3936 unsigned long flags;
3937 struct xhci_virt_device *virt_dev;
3938 int ret = 0;
3939 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3940 struct xhci_slot_ctx *slot_ctx;
3941 struct xhci_input_control_ctx *ctrl_ctx;
3942 u64 temp_64;
3943 struct xhci_command *command = NULL;
3945 mutex_lock(&xhci->mutex);
3947 if (xhci->xhc_state) { /* dying, removing or halted */
3948 ret = -ESHUTDOWN;
3949 goto out;
3952 if (!udev->slot_id) {
3953 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3954 "Bad Slot ID %d", udev->slot_id);
3955 ret = -EINVAL;
3956 goto out;
3959 virt_dev = xhci->devs[udev->slot_id];
3961 if (WARN_ON(!virt_dev)) {
3963 * In plug/unplug torture test with an NEC controller,
3964 * a zero-dereference was observed once due to virt_dev = 0.
3965 * Print useful debug rather than crash if it is observed again!
3967 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3968 udev->slot_id);
3969 ret = -EINVAL;
3970 goto out;
3972 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3973 trace_xhci_setup_device_slot(slot_ctx);
3975 if (setup == SETUP_CONTEXT_ONLY) {
3976 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3977 SLOT_STATE_DEFAULT) {
3978 xhci_dbg(xhci, "Slot already in default state\n");
3979 goto out;
3983 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3984 if (!command) {
3985 ret = -ENOMEM;
3986 goto out;
3989 command->in_ctx = virt_dev->in_ctx;
3991 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3992 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3993 if (!ctrl_ctx) {
3994 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3995 __func__);
3996 ret = -EINVAL;
3997 goto out;
4000 * If this is the first Set Address since device plug-in or
4001 * virt_device realloaction after a resume with an xHCI power loss,
4002 * then set up the slot context.
4004 if (!slot_ctx->dev_info)
4005 xhci_setup_addressable_virt_dev(xhci, udev);
4006 /* Otherwise, update the control endpoint ring enqueue pointer. */
4007 else
4008 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4009 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4010 ctrl_ctx->drop_flags = 0;
4012 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4013 le32_to_cpu(slot_ctx->dev_info) >> 27);
4015 spin_lock_irqsave(&xhci->lock, flags);
4016 trace_xhci_setup_device(virt_dev);
4017 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4018 udev->slot_id, setup);
4019 if (ret) {
4020 spin_unlock_irqrestore(&xhci->lock, flags);
4021 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4022 "FIXME: allocate a command ring segment");
4023 goto out;
4025 xhci_ring_cmd_db(xhci);
4026 spin_unlock_irqrestore(&xhci->lock, flags);
4028 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4029 wait_for_completion(command->completion);
4031 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4032 * the SetAddress() "recovery interval" required by USB and aborting the
4033 * command on a timeout.
4035 switch (command->status) {
4036 case COMP_COMMAND_ABORTED:
4037 case COMP_COMMAND_RING_STOPPED:
4038 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4039 ret = -ETIME;
4040 break;
4041 case COMP_CONTEXT_STATE_ERROR:
4042 case COMP_SLOT_NOT_ENABLED_ERROR:
4043 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4044 act, udev->slot_id);
4045 ret = -EINVAL;
4046 break;
4047 case COMP_USB_TRANSACTION_ERROR:
4048 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4050 mutex_unlock(&xhci->mutex);
4051 ret = xhci_disable_slot(xhci, udev->slot_id);
4052 if (!ret)
4053 xhci_alloc_dev(hcd, udev);
4054 kfree(command->completion);
4055 kfree(command);
4056 return -EPROTO;
4057 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4058 dev_warn(&udev->dev,
4059 "ERROR: Incompatible device for setup %s command\n", act);
4060 ret = -ENODEV;
4061 break;
4062 case COMP_SUCCESS:
4063 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4064 "Successful setup %s command", act);
4065 break;
4066 default:
4067 xhci_err(xhci,
4068 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4069 act, command->status);
4070 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4071 ret = -EINVAL;
4072 break;
4074 if (ret)
4075 goto out;
4076 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4077 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4078 "Op regs DCBAA ptr = %#016llx", temp_64);
4079 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4080 "Slot ID %d dcbaa entry @%p = %#016llx",
4081 udev->slot_id,
4082 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4083 (unsigned long long)
4084 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4085 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4086 "Output Context DMA address = %#08llx",
4087 (unsigned long long)virt_dev->out_ctx->dma);
4088 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4089 le32_to_cpu(slot_ctx->dev_info) >> 27);
4091 * USB core uses address 1 for the roothubs, so we add one to the
4092 * address given back to us by the HC.
4094 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4095 le32_to_cpu(slot_ctx->dev_info) >> 27);
4096 /* Zero the input context control for later use */
4097 ctrl_ctx->add_flags = 0;
4098 ctrl_ctx->drop_flags = 0;
4100 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4101 "Internal device address = %d",
4102 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4103 out:
4104 mutex_unlock(&xhci->mutex);
4105 if (command) {
4106 kfree(command->completion);
4107 kfree(command);
4109 return ret;
4112 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4114 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4117 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4119 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4123 * Transfer the port index into real index in the HW port status
4124 * registers. Caculate offset between the port's PORTSC register
4125 * and port status base. Divide the number of per port register
4126 * to get the real index. The raw port number bases 1.
4128 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4130 struct xhci_hub *rhub;
4132 rhub = xhci_get_rhub(hcd);
4133 return rhub->ports[port1 - 1]->hw_portnum + 1;
4137 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4138 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4140 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4141 struct usb_device *udev, u16 max_exit_latency)
4143 struct xhci_virt_device *virt_dev;
4144 struct xhci_command *command;
4145 struct xhci_input_control_ctx *ctrl_ctx;
4146 struct xhci_slot_ctx *slot_ctx;
4147 unsigned long flags;
4148 int ret;
4150 spin_lock_irqsave(&xhci->lock, flags);
4152 virt_dev = xhci->devs[udev->slot_id];
4155 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4156 * xHC was re-initialized. Exit latency will be set later after
4157 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4160 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4161 spin_unlock_irqrestore(&xhci->lock, flags);
4162 return 0;
4165 /* Attempt to issue an Evaluate Context command to change the MEL. */
4166 command = xhci->lpm_command;
4167 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4168 if (!ctrl_ctx) {
4169 spin_unlock_irqrestore(&xhci->lock, flags);
4170 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4171 __func__);
4172 return -ENOMEM;
4175 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4176 spin_unlock_irqrestore(&xhci->lock, flags);
4178 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4179 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4180 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4181 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4182 slot_ctx->dev_state = 0;
4184 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4185 "Set up evaluate context for LPM MEL change.");
4187 /* Issue and wait for the evaluate context command. */
4188 ret = xhci_configure_endpoint(xhci, udev, command,
4189 true, true);
4191 if (!ret) {
4192 spin_lock_irqsave(&xhci->lock, flags);
4193 virt_dev->current_mel = max_exit_latency;
4194 spin_unlock_irqrestore(&xhci->lock, flags);
4196 return ret;
4199 #ifdef CONFIG_PM
4201 /* BESL to HIRD Encoding array for USB2 LPM */
4202 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4203 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4205 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4206 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4207 struct usb_device *udev)
4209 int u2del, besl, besl_host;
4210 int besl_device = 0;
4211 u32 field;
4213 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4214 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4216 if (field & USB_BESL_SUPPORT) {
4217 for (besl_host = 0; besl_host < 16; besl_host++) {
4218 if (xhci_besl_encoding[besl_host] >= u2del)
4219 break;
4221 /* Use baseline BESL value as default */
4222 if (field & USB_BESL_BASELINE_VALID)
4223 besl_device = USB_GET_BESL_BASELINE(field);
4224 else if (field & USB_BESL_DEEP_VALID)
4225 besl_device = USB_GET_BESL_DEEP(field);
4226 } else {
4227 if (u2del <= 50)
4228 besl_host = 0;
4229 else
4230 besl_host = (u2del - 51) / 75 + 1;
4233 besl = besl_host + besl_device;
4234 if (besl > 15)
4235 besl = 15;
4237 return besl;
4240 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4241 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4243 u32 field;
4244 int l1;
4245 int besld = 0;
4246 int hirdm = 0;
4248 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4250 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4251 l1 = udev->l1_params.timeout / 256;
4253 /* device has preferred BESLD */
4254 if (field & USB_BESL_DEEP_VALID) {
4255 besld = USB_GET_BESL_DEEP(field);
4256 hirdm = 1;
4259 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4262 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4263 struct usb_device *udev, int enable)
4265 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4266 struct xhci_port **ports;
4267 __le32 __iomem *pm_addr, *hlpm_addr;
4268 u32 pm_val, hlpm_val, field;
4269 unsigned int port_num;
4270 unsigned long flags;
4271 int hird, exit_latency;
4272 int ret;
4274 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4275 !udev->lpm_capable)
4276 return -EPERM;
4278 if (!udev->parent || udev->parent->parent ||
4279 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4280 return -EPERM;
4282 if (udev->usb2_hw_lpm_capable != 1)
4283 return -EPERM;
4285 spin_lock_irqsave(&xhci->lock, flags);
4287 ports = xhci->usb2_rhub.ports;
4288 port_num = udev->portnum - 1;
4289 pm_addr = ports[port_num]->addr + PORTPMSC;
4290 pm_val = readl(pm_addr);
4291 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4292 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4294 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4295 enable ? "enable" : "disable", port_num + 1);
4297 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4298 /* Host supports BESL timeout instead of HIRD */
4299 if (udev->usb2_hw_lpm_besl_capable) {
4300 /* if device doesn't have a preferred BESL value use a
4301 * default one which works with mixed HIRD and BESL
4302 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4304 if ((field & USB_BESL_SUPPORT) &&
4305 (field & USB_BESL_BASELINE_VALID))
4306 hird = USB_GET_BESL_BASELINE(field);
4307 else
4308 hird = udev->l1_params.besl;
4310 exit_latency = xhci_besl_encoding[hird];
4311 spin_unlock_irqrestore(&xhci->lock, flags);
4313 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4314 * input context for link powermanagement evaluate
4315 * context commands. It is protected by hcd->bandwidth
4316 * mutex and is shared by all devices. We need to set
4317 * the max ext latency in USB 2 BESL LPM as well, so
4318 * use the same mutex and xhci_change_max_exit_latency()
4320 mutex_lock(hcd->bandwidth_mutex);
4321 ret = xhci_change_max_exit_latency(xhci, udev,
4322 exit_latency);
4323 mutex_unlock(hcd->bandwidth_mutex);
4325 if (ret < 0)
4326 return ret;
4327 spin_lock_irqsave(&xhci->lock, flags);
4329 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4330 writel(hlpm_val, hlpm_addr);
4331 /* flush write */
4332 readl(hlpm_addr);
4333 } else {
4334 hird = xhci_calculate_hird_besl(xhci, udev);
4337 pm_val &= ~PORT_HIRD_MASK;
4338 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4339 writel(pm_val, pm_addr);
4340 pm_val = readl(pm_addr);
4341 pm_val |= PORT_HLE;
4342 writel(pm_val, pm_addr);
4343 /* flush write */
4344 readl(pm_addr);
4345 } else {
4346 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4347 writel(pm_val, pm_addr);
4348 /* flush write */
4349 readl(pm_addr);
4350 if (udev->usb2_hw_lpm_besl_capable) {
4351 spin_unlock_irqrestore(&xhci->lock, flags);
4352 mutex_lock(hcd->bandwidth_mutex);
4353 xhci_change_max_exit_latency(xhci, udev, 0);
4354 mutex_unlock(hcd->bandwidth_mutex);
4355 return 0;
4359 spin_unlock_irqrestore(&xhci->lock, flags);
4360 return 0;
4363 /* check if a usb2 port supports a given extened capability protocol
4364 * only USB2 ports extended protocol capability values are cached.
4365 * Return 1 if capability is supported
4367 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4368 unsigned capability)
4370 u32 port_offset, port_count;
4371 int i;
4373 for (i = 0; i < xhci->num_ext_caps; i++) {
4374 if (xhci->ext_caps[i] & capability) {
4375 /* port offsets starts at 1 */
4376 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4377 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4378 if (port >= port_offset &&
4379 port < port_offset + port_count)
4380 return 1;
4383 return 0;
4386 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4388 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4389 int portnum = udev->portnum - 1;
4391 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4392 return 0;
4394 /* we only support lpm for non-hub device connected to root hub yet */
4395 if (!udev->parent || udev->parent->parent ||
4396 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4397 return 0;
4399 if (xhci->hw_lpm_support == 1 &&
4400 xhci_check_usb2_port_capability(
4401 xhci, portnum, XHCI_HLC)) {
4402 udev->usb2_hw_lpm_capable = 1;
4403 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4404 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4405 if (xhci_check_usb2_port_capability(xhci, portnum,
4406 XHCI_BLC))
4407 udev->usb2_hw_lpm_besl_capable = 1;
4410 return 0;
4413 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4415 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4416 static unsigned long long xhci_service_interval_to_ns(
4417 struct usb_endpoint_descriptor *desc)
4419 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4422 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4423 enum usb3_link_state state)
4425 unsigned long long sel;
4426 unsigned long long pel;
4427 unsigned int max_sel_pel;
4428 char *state_name;
4430 switch (state) {
4431 case USB3_LPM_U1:
4432 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4433 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4434 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4435 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4436 state_name = "U1";
4437 break;
4438 case USB3_LPM_U2:
4439 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4440 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4441 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4442 state_name = "U2";
4443 break;
4444 default:
4445 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4446 __func__);
4447 return USB3_LPM_DISABLED;
4450 if (sel <= max_sel_pel && pel <= max_sel_pel)
4451 return USB3_LPM_DEVICE_INITIATED;
4453 if (sel > max_sel_pel)
4454 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4455 "due to long SEL %llu ms\n",
4456 state_name, sel);
4457 else
4458 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4459 "due to long PEL %llu ms\n",
4460 state_name, pel);
4461 return USB3_LPM_DISABLED;
4464 /* The U1 timeout should be the maximum of the following values:
4465 * - For control endpoints, U1 system exit latency (SEL) * 3
4466 * - For bulk endpoints, U1 SEL * 5
4467 * - For interrupt endpoints:
4468 * - Notification EPs, U1 SEL * 3
4469 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4470 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4472 static unsigned long long xhci_calculate_intel_u1_timeout(
4473 struct usb_device *udev,
4474 struct usb_endpoint_descriptor *desc)
4476 unsigned long long timeout_ns;
4477 int ep_type;
4478 int intr_type;
4480 ep_type = usb_endpoint_type(desc);
4481 switch (ep_type) {
4482 case USB_ENDPOINT_XFER_CONTROL:
4483 timeout_ns = udev->u1_params.sel * 3;
4484 break;
4485 case USB_ENDPOINT_XFER_BULK:
4486 timeout_ns = udev->u1_params.sel * 5;
4487 break;
4488 case USB_ENDPOINT_XFER_INT:
4489 intr_type = usb_endpoint_interrupt_type(desc);
4490 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4491 timeout_ns = udev->u1_params.sel * 3;
4492 break;
4494 /* Otherwise the calculation is the same as isoc eps */
4495 /* fall through */
4496 case USB_ENDPOINT_XFER_ISOC:
4497 timeout_ns = xhci_service_interval_to_ns(desc);
4498 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4499 if (timeout_ns < udev->u1_params.sel * 2)
4500 timeout_ns = udev->u1_params.sel * 2;
4501 break;
4502 default:
4503 return 0;
4506 return timeout_ns;
4509 /* Returns the hub-encoded U1 timeout value. */
4510 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4511 struct usb_device *udev,
4512 struct usb_endpoint_descriptor *desc)
4514 unsigned long long timeout_ns;
4516 /* Prevent U1 if service interval is shorter than U1 exit latency */
4517 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4518 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4519 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4520 return USB3_LPM_DISABLED;
4524 if (xhci->quirks & XHCI_INTEL_HOST)
4525 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4526 else
4527 timeout_ns = udev->u1_params.sel;
4529 /* The U1 timeout is encoded in 1us intervals.
4530 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4532 if (timeout_ns == USB3_LPM_DISABLED)
4533 timeout_ns = 1;
4534 else
4535 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4537 /* If the necessary timeout value is bigger than what we can set in the
4538 * USB 3.0 hub, we have to disable hub-initiated U1.
4540 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4541 return timeout_ns;
4542 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4543 "due to long timeout %llu ms\n", timeout_ns);
4544 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4547 /* The U2 timeout should be the maximum of:
4548 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4549 * - largest bInterval of any active periodic endpoint (to avoid going
4550 * into lower power link states between intervals).
4551 * - the U2 Exit Latency of the device
4553 static unsigned long long xhci_calculate_intel_u2_timeout(
4554 struct usb_device *udev,
4555 struct usb_endpoint_descriptor *desc)
4557 unsigned long long timeout_ns;
4558 unsigned long long u2_del_ns;
4560 timeout_ns = 10 * 1000 * 1000;
4562 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4563 (xhci_service_interval_to_ns(desc) > timeout_ns))
4564 timeout_ns = xhci_service_interval_to_ns(desc);
4566 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4567 if (u2_del_ns > timeout_ns)
4568 timeout_ns = u2_del_ns;
4570 return timeout_ns;
4573 /* Returns the hub-encoded U2 timeout value. */
4574 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4575 struct usb_device *udev,
4576 struct usb_endpoint_descriptor *desc)
4578 unsigned long long timeout_ns;
4580 /* Prevent U2 if service interval is shorter than U2 exit latency */
4581 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4582 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4583 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4584 return USB3_LPM_DISABLED;
4588 if (xhci->quirks & XHCI_INTEL_HOST)
4589 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4590 else
4591 timeout_ns = udev->u2_params.sel;
4593 /* The U2 timeout is encoded in 256us intervals */
4594 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4595 /* If the necessary timeout value is bigger than what we can set in the
4596 * USB 3.0 hub, we have to disable hub-initiated U2.
4598 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4599 return timeout_ns;
4600 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4601 "due to long timeout %llu ms\n", timeout_ns);
4602 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4605 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4606 struct usb_device *udev,
4607 struct usb_endpoint_descriptor *desc,
4608 enum usb3_link_state state,
4609 u16 *timeout)
4611 if (state == USB3_LPM_U1)
4612 return xhci_calculate_u1_timeout(xhci, udev, desc);
4613 else if (state == USB3_LPM_U2)
4614 return xhci_calculate_u2_timeout(xhci, udev, desc);
4616 return USB3_LPM_DISABLED;
4619 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4620 struct usb_device *udev,
4621 struct usb_endpoint_descriptor *desc,
4622 enum usb3_link_state state,
4623 u16 *timeout)
4625 u16 alt_timeout;
4627 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4628 desc, state, timeout);
4630 /* If we found we can't enable hub-initiated LPM, or
4631 * the U1 or U2 exit latency was too high to allow
4632 * device-initiated LPM as well, just stop searching.
4634 if (alt_timeout == USB3_LPM_DISABLED ||
4635 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4636 *timeout = alt_timeout;
4637 return -E2BIG;
4639 if (alt_timeout > *timeout)
4640 *timeout = alt_timeout;
4641 return 0;
4644 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4645 struct usb_device *udev,
4646 struct usb_host_interface *alt,
4647 enum usb3_link_state state,
4648 u16 *timeout)
4650 int j;
4652 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4653 if (xhci_update_timeout_for_endpoint(xhci, udev,
4654 &alt->endpoint[j].desc, state, timeout))
4655 return -E2BIG;
4656 continue;
4658 return 0;
4661 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4662 enum usb3_link_state state)
4664 struct usb_device *parent;
4665 unsigned int num_hubs;
4667 if (state == USB3_LPM_U2)
4668 return 0;
4670 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4671 for (parent = udev->parent, num_hubs = 0; parent->parent;
4672 parent = parent->parent)
4673 num_hubs++;
4675 if (num_hubs < 2)
4676 return 0;
4678 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4679 " below second-tier hub.\n");
4680 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4681 "to decrease power consumption.\n");
4682 return -E2BIG;
4685 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4686 struct usb_device *udev,
4687 enum usb3_link_state state)
4689 if (xhci->quirks & XHCI_INTEL_HOST)
4690 return xhci_check_intel_tier_policy(udev, state);
4691 else
4692 return 0;
4695 /* Returns the U1 or U2 timeout that should be enabled.
4696 * If the tier check or timeout setting functions return with a non-zero exit
4697 * code, that means the timeout value has been finalized and we shouldn't look
4698 * at any more endpoints.
4700 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4701 struct usb_device *udev, enum usb3_link_state state)
4703 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4704 struct usb_host_config *config;
4705 char *state_name;
4706 int i;
4707 u16 timeout = USB3_LPM_DISABLED;
4709 if (state == USB3_LPM_U1)
4710 state_name = "U1";
4711 else if (state == USB3_LPM_U2)
4712 state_name = "U2";
4713 else {
4714 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4715 state);
4716 return timeout;
4719 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4720 return timeout;
4722 /* Gather some information about the currently installed configuration
4723 * and alternate interface settings.
4725 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4726 state, &timeout))
4727 return timeout;
4729 config = udev->actconfig;
4730 if (!config)
4731 return timeout;
4733 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4734 struct usb_driver *driver;
4735 struct usb_interface *intf = config->interface[i];
4737 if (!intf)
4738 continue;
4740 /* Check if any currently bound drivers want hub-initiated LPM
4741 * disabled.
4743 if (intf->dev.driver) {
4744 driver = to_usb_driver(intf->dev.driver);
4745 if (driver && driver->disable_hub_initiated_lpm) {
4746 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4747 "at request of driver %s\n",
4748 state_name, driver->name);
4749 return xhci_get_timeout_no_hub_lpm(udev, state);
4753 /* Not sure how this could happen... */
4754 if (!intf->cur_altsetting)
4755 continue;
4757 if (xhci_update_timeout_for_interface(xhci, udev,
4758 intf->cur_altsetting,
4759 state, &timeout))
4760 return timeout;
4762 return timeout;
4765 static int calculate_max_exit_latency(struct usb_device *udev,
4766 enum usb3_link_state state_changed,
4767 u16 hub_encoded_timeout)
4769 unsigned long long u1_mel_us = 0;
4770 unsigned long long u2_mel_us = 0;
4771 unsigned long long mel_us = 0;
4772 bool disabling_u1;
4773 bool disabling_u2;
4774 bool enabling_u1;
4775 bool enabling_u2;
4777 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4778 hub_encoded_timeout == USB3_LPM_DISABLED);
4779 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4780 hub_encoded_timeout == USB3_LPM_DISABLED);
4782 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4783 hub_encoded_timeout != USB3_LPM_DISABLED);
4784 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4785 hub_encoded_timeout != USB3_LPM_DISABLED);
4787 /* If U1 was already enabled and we're not disabling it,
4788 * or we're going to enable U1, account for the U1 max exit latency.
4790 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4791 enabling_u1)
4792 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4793 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4794 enabling_u2)
4795 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4797 if (u1_mel_us > u2_mel_us)
4798 mel_us = u1_mel_us;
4799 else
4800 mel_us = u2_mel_us;
4801 /* xHCI host controller max exit latency field is only 16 bits wide. */
4802 if (mel_us > MAX_EXIT) {
4803 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4804 "is too big.\n", mel_us);
4805 return -E2BIG;
4807 return mel_us;
4810 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4811 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4812 struct usb_device *udev, enum usb3_link_state state)
4814 struct xhci_hcd *xhci;
4815 u16 hub_encoded_timeout;
4816 int mel;
4817 int ret;
4819 xhci = hcd_to_xhci(hcd);
4820 /* The LPM timeout values are pretty host-controller specific, so don't
4821 * enable hub-initiated timeouts unless the vendor has provided
4822 * information about their timeout algorithm.
4824 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4825 !xhci->devs[udev->slot_id])
4826 return USB3_LPM_DISABLED;
4828 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4829 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4830 if (mel < 0) {
4831 /* Max Exit Latency is too big, disable LPM. */
4832 hub_encoded_timeout = USB3_LPM_DISABLED;
4833 mel = 0;
4836 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4837 if (ret)
4838 return ret;
4839 return hub_encoded_timeout;
4842 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4843 struct usb_device *udev, enum usb3_link_state state)
4845 struct xhci_hcd *xhci;
4846 u16 mel;
4848 xhci = hcd_to_xhci(hcd);
4849 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4850 !xhci->devs[udev->slot_id])
4851 return 0;
4853 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4854 return xhci_change_max_exit_latency(xhci, udev, mel);
4856 #else /* CONFIG_PM */
4858 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4859 struct usb_device *udev, int enable)
4861 return 0;
4864 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4866 return 0;
4869 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4870 struct usb_device *udev, enum usb3_link_state state)
4872 return USB3_LPM_DISABLED;
4875 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4876 struct usb_device *udev, enum usb3_link_state state)
4878 return 0;
4880 #endif /* CONFIG_PM */
4882 /*-------------------------------------------------------------------------*/
4884 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4885 * internal data structures for the device.
4887 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4888 struct usb_tt *tt, gfp_t mem_flags)
4890 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4891 struct xhci_virt_device *vdev;
4892 struct xhci_command *config_cmd;
4893 struct xhci_input_control_ctx *ctrl_ctx;
4894 struct xhci_slot_ctx *slot_ctx;
4895 unsigned long flags;
4896 unsigned think_time;
4897 int ret;
4899 /* Ignore root hubs */
4900 if (!hdev->parent)
4901 return 0;
4903 vdev = xhci->devs[hdev->slot_id];
4904 if (!vdev) {
4905 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4906 return -EINVAL;
4909 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4910 if (!config_cmd)
4911 return -ENOMEM;
4913 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4914 if (!ctrl_ctx) {
4915 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4916 __func__);
4917 xhci_free_command(xhci, config_cmd);
4918 return -ENOMEM;
4921 spin_lock_irqsave(&xhci->lock, flags);
4922 if (hdev->speed == USB_SPEED_HIGH &&
4923 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4924 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4925 xhci_free_command(xhci, config_cmd);
4926 spin_unlock_irqrestore(&xhci->lock, flags);
4927 return -ENOMEM;
4930 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4931 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4932 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4933 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4935 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4936 * but it may be already set to 1 when setup an xHCI virtual
4937 * device, so clear it anyway.
4939 if (tt->multi)
4940 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4941 else if (hdev->speed == USB_SPEED_FULL)
4942 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4944 if (xhci->hci_version > 0x95) {
4945 xhci_dbg(xhci, "xHCI version %x needs hub "
4946 "TT think time and number of ports\n",
4947 (unsigned int) xhci->hci_version);
4948 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4949 /* Set TT think time - convert from ns to FS bit times.
4950 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4951 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4953 * xHCI 1.0: this field shall be 0 if the device is not a
4954 * High-spped hub.
4956 think_time = tt->think_time;
4957 if (think_time != 0)
4958 think_time = (think_time / 666) - 1;
4959 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4960 slot_ctx->tt_info |=
4961 cpu_to_le32(TT_THINK_TIME(think_time));
4962 } else {
4963 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4964 "TT think time or number of ports\n",
4965 (unsigned int) xhci->hci_version);
4967 slot_ctx->dev_state = 0;
4968 spin_unlock_irqrestore(&xhci->lock, flags);
4970 xhci_dbg(xhci, "Set up %s for hub device.\n",
4971 (xhci->hci_version > 0x95) ?
4972 "configure endpoint" : "evaluate context");
4974 /* Issue and wait for the configure endpoint or
4975 * evaluate context command.
4977 if (xhci->hci_version > 0x95)
4978 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4979 false, false);
4980 else
4981 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4982 true, false);
4984 xhci_free_command(xhci, config_cmd);
4985 return ret;
4988 static int xhci_get_frame(struct usb_hcd *hcd)
4990 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4991 /* EHCI mods by the periodic size. Why? */
4992 return readl(&xhci->run_regs->microframe_index) >> 3;
4995 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4997 struct xhci_hcd *xhci;
4999 * TODO: Check with DWC3 clients for sysdev according to
5000 * quirks
5002 struct device *dev = hcd->self.sysdev;
5003 unsigned int minor_rev;
5004 int retval;
5006 /* Accept arbitrarily long scatter-gather lists */
5007 hcd->self.sg_tablesize = ~0;
5009 /* support to build packet from discontinuous buffers */
5010 hcd->self.no_sg_constraint = 1;
5012 /* XHCI controllers don't stop the ep queue on short packets :| */
5013 hcd->self.no_stop_on_short = 1;
5015 xhci = hcd_to_xhci(hcd);
5017 if (usb_hcd_is_primary_hcd(hcd)) {
5018 xhci->main_hcd = hcd;
5019 xhci->usb2_rhub.hcd = hcd;
5020 /* Mark the first roothub as being USB 2.0.
5021 * The xHCI driver will register the USB 3.0 roothub.
5023 hcd->speed = HCD_USB2;
5024 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5026 * USB 2.0 roothub under xHCI has an integrated TT,
5027 * (rate matching hub) as opposed to having an OHCI/UHCI
5028 * companion controller.
5030 hcd->has_tt = 1;
5031 } else {
5033 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5034 * minor revision instead of sbrn
5036 minor_rev = xhci->usb3_rhub.min_rev;
5037 if (minor_rev) {
5038 hcd->speed = HCD_USB31;
5039 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5041 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5042 minor_rev,
5043 minor_rev ? "Enhanced" : "");
5045 xhci->usb3_rhub.hcd = hcd;
5046 /* xHCI private pointer was set in xhci_pci_probe for the second
5047 * registered roothub.
5049 return 0;
5052 mutex_init(&xhci->mutex);
5053 xhci->cap_regs = hcd->regs;
5054 xhci->op_regs = hcd->regs +
5055 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5056 xhci->run_regs = hcd->regs +
5057 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5058 /* Cache read-only capability registers */
5059 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5060 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5061 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5062 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5063 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5064 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5065 if (xhci->hci_version > 0x100)
5066 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5068 xhci->quirks |= quirks;
5070 get_quirks(dev, xhci);
5072 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5073 * success event after a short transfer. This quirk will ignore such
5074 * spurious event.
5076 if (xhci->hci_version > 0x96)
5077 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5079 /* Make sure the HC is halted. */
5080 retval = xhci_halt(xhci);
5081 if (retval)
5082 return retval;
5084 xhci_zero_64b_regs(xhci);
5086 xhci_dbg(xhci, "Resetting HCD\n");
5087 /* Reset the internal HC memory state and registers. */
5088 retval = xhci_reset(xhci);
5089 if (retval)
5090 return retval;
5091 xhci_dbg(xhci, "Reset complete\n");
5094 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5095 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5096 * address memory pointers actually. So, this driver clears the AC64
5097 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5098 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5100 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5101 xhci->hcc_params &= ~BIT(0);
5103 /* Set dma_mask and coherent_dma_mask to 64-bits,
5104 * if xHC supports 64-bit addressing */
5105 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5106 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5107 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5108 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5109 } else {
5111 * This is to avoid error in cases where a 32-bit USB
5112 * controller is used on a 64-bit capable system.
5114 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5115 if (retval)
5116 return retval;
5117 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5118 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5121 xhci_dbg(xhci, "Calling HCD init\n");
5122 /* Initialize HCD and host controller data structures. */
5123 retval = xhci_init(hcd);
5124 if (retval)
5125 return retval;
5126 xhci_dbg(xhci, "Called HCD init\n");
5128 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5129 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5131 return 0;
5133 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5135 static const struct hc_driver xhci_hc_driver = {
5136 .description = "xhci-hcd",
5137 .product_desc = "xHCI Host Controller",
5138 .hcd_priv_size = sizeof(struct xhci_hcd),
5141 * generic hardware linkage
5143 .irq = xhci_irq,
5144 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5147 * basic lifecycle operations
5149 .reset = NULL, /* set in xhci_init_driver() */
5150 .start = xhci_run,
5151 .stop = xhci_stop,
5152 .shutdown = xhci_shutdown,
5155 * managing i/o requests and associated device resources
5157 .urb_enqueue = xhci_urb_enqueue,
5158 .urb_dequeue = xhci_urb_dequeue,
5159 .alloc_dev = xhci_alloc_dev,
5160 .free_dev = xhci_free_dev,
5161 .alloc_streams = xhci_alloc_streams,
5162 .free_streams = xhci_free_streams,
5163 .add_endpoint = xhci_add_endpoint,
5164 .drop_endpoint = xhci_drop_endpoint,
5165 .endpoint_reset = xhci_endpoint_reset,
5166 .check_bandwidth = xhci_check_bandwidth,
5167 .reset_bandwidth = xhci_reset_bandwidth,
5168 .address_device = xhci_address_device,
5169 .enable_device = xhci_enable_device,
5170 .update_hub_device = xhci_update_hub_device,
5171 .reset_device = xhci_discover_or_reset_device,
5174 * scheduling support
5176 .get_frame_number = xhci_get_frame,
5179 * root hub support
5181 .hub_control = xhci_hub_control,
5182 .hub_status_data = xhci_hub_status_data,
5183 .bus_suspend = xhci_bus_suspend,
5184 .bus_resume = xhci_bus_resume,
5185 .get_resuming_ports = xhci_get_resuming_ports,
5188 * call back when device connected and addressed
5190 .update_device = xhci_update_device,
5191 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5192 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5193 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5194 .find_raw_port_number = xhci_find_raw_port_number,
5197 void xhci_init_driver(struct hc_driver *drv,
5198 const struct xhci_driver_overrides *over)
5200 BUG_ON(!over);
5202 /* Copy the generic table to drv then apply the overrides */
5203 *drv = xhci_hc_driver;
5205 if (over) {
5206 drv->hcd_priv_size += over->extra_priv_size;
5207 if (over->reset)
5208 drv->reset = over->reset;
5209 if (over->start)
5210 drv->start = over->start;
5213 EXPORT_SYMBOL_GPL(xhci_init_driver);
5215 MODULE_DESCRIPTION(DRIVER_DESC);
5216 MODULE_AUTHOR(DRIVER_AUTHOR);
5217 MODULE_LICENSE("GPL");
5219 static int __init xhci_hcd_init(void)
5222 * Check the compiler generated sizes of structures that must be laid
5223 * out in specific ways for hardware access.
5225 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5226 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5227 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5228 /* xhci_device_control has eight fields, and also
5229 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5231 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5232 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5233 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5234 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5235 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5236 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5237 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5239 if (usb_disabled())
5240 return -ENODEV;
5242 xhci_debugfs_create_root();
5244 return 0;
5248 * If an init function is provided, an exit function must also be provided
5249 * to allow module unload.
5251 static void __exit xhci_hcd_fini(void)
5253 xhci_debugfs_remove_root();
5256 module_init(xhci_hcd_init);
5257 module_exit(xhci_hcd_fini);