dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / drivers / usb / wusbcore / crypto.c
blobedb7263bff403c05e02582837c45e4c30a32a803
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Ultra Wide Band
4 * AES-128 CCM Encryption
6 * Copyright (C) 2007 Intel Corporation
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
9 * We don't do any encryption here; we use the Linux Kernel's AES-128
10 * crypto modules to construct keys and payload blocks in a way
11 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
12 * there.
14 * Thanks a zillion to John Keys for his help and clarifications over
15 * the designed-by-a-committee text.
17 * So the idea is that there is this basic Pseudo-Random-Function
18 * defined in WUSB1.0[6.5] which is the core of everything. It works
19 * by tweaking some blocks, AES crypting them and then xoring
20 * something else with them (this seems to be called CBC(AES) -- can
21 * you tell I know jack about crypto?). So we just funnel it into the
22 * Linux Crypto API.
24 * We leave a crypto test module so we can verify that vectors match,
25 * every now and then.
27 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
28 * am learning a lot...
30 * Conveniently, some data structures that need to be
31 * funneled through AES are...16 bytes in size!
34 #include <crypto/skcipher.h>
35 #include <linux/crypto.h>
36 #include <linux/module.h>
37 #include <linux/err.h>
38 #include <linux/uwb.h>
39 #include <linux/slab.h>
40 #include <linux/usb/wusb.h>
41 #include <linux/scatterlist.h>
43 static int debug_crypto_verify;
45 module_param(debug_crypto_verify, int, 0);
46 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
48 static void wusb_key_dump(const void *buf, size_t len)
50 print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1,
51 buf, len, 0);
55 * Block of data, as understood by AES-CCM
57 * The code assumes this structure is nothing but a 16 byte array
58 * (packed in a struct to avoid common mess ups that I usually do with
59 * arrays and enforcing type checking).
61 struct aes_ccm_block {
62 u8 data[16];
63 } __attribute__((packed));
66 * Counter-mode Blocks (WUSB1.0[6.4])
68 * According to CCM (or so it seems), for the purpose of calculating
69 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
70 * ... BN.
72 * B0 contains flags, the CCM nonce and l(m).
74 * B1 contains l(a), the MAC header, the encryption offset and padding.
76 * If EO is nonzero, additional blocks are built from payload bytes
77 * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
78 * padding is not xmitted.
81 /* WUSB1.0[T6.4] */
82 struct aes_ccm_b0 {
83 u8 flags; /* 0x59, per CCM spec */
84 struct aes_ccm_nonce ccm_nonce;
85 __be16 lm;
86 } __attribute__((packed));
88 /* WUSB1.0[T6.5] */
89 struct aes_ccm_b1 {
90 __be16 la;
91 u8 mac_header[10];
92 __le16 eo;
93 u8 security_reserved; /* This is always zero */
94 u8 padding; /* 0 */
95 } __attribute__((packed));
98 * Encryption Blocks (WUSB1.0[6.4.4])
100 * CCM uses Ax blocks to generate a keystream with which the MIC and
101 * the message's payload are encoded. A0 always encrypts/decrypts the
102 * MIC. Ax (x>0) are used for the successive payload blocks.
104 * The x is the counter, and is increased for each block.
106 struct aes_ccm_a {
107 u8 flags; /* 0x01, per CCM spec */
108 struct aes_ccm_nonce ccm_nonce;
109 __be16 counter; /* Value of x */
110 } __attribute__((packed));
112 static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
113 size_t size)
115 u8 *bo = _bo;
116 const u8 *bi1 = _bi1, *bi2 = _bi2;
117 size_t itr;
118 for (itr = 0; itr < size; itr++)
119 bo[itr] = bi1[itr] ^ bi2[itr];
122 /* Scratch space for MAC calculations. */
123 struct wusb_mac_scratch {
124 struct aes_ccm_b0 b0;
125 struct aes_ccm_b1 b1;
126 struct aes_ccm_a ax;
130 * CC-MAC function WUSB1.0[6.5]
132 * Take a data string and produce the encrypted CBC Counter-mode MIC
134 * Note the names for most function arguments are made to (more or
135 * less) match those used in the pseudo-function definition given in
136 * WUSB1.0[6.5].
138 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
140 * @tfm_aes: AES cipher handle (initialized)
142 * @mic: buffer for placing the computed MIC (Message Integrity
143 * Code). This is exactly 8 bytes, and we expect the buffer to
144 * be at least eight bytes in length.
146 * @key: 128 bit symmetric key
148 * @n: CCM nonce
150 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
151 * we use exactly 14 bytes).
153 * @b: data stream to be processed; cannot be a global or const local
154 * (will confuse the scatterlists)
156 * @blen: size of b...
158 * Still not very clear how this is done, but looks like this: we
159 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
160 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
161 * take the payload and divide it in blocks (16 bytes), xor them with
162 * the previous crypto result (16 bytes) and crypt it, repeat the next
163 * block with the output of the previous one, rinse wash (I guess this
164 * is what AES CBC mode means...but I truly have no idea). So we use
165 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
166 * Vector) is 16 bytes and is set to zero, so
168 * See rfc3610. Linux crypto has a CBC implementation, but the
169 * documentation is scarce, to say the least, and the example code is
170 * so intricated that is difficult to understand how things work. Most
171 * of this is guess work -- bite me.
173 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
174 * using the 14 bytes of @a to fill up
175 * b1.{mac_header,e0,security_reserved,padding}.
177 * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
178 * l(m) is orthogonal, they bear no relationship, so it is not
179 * in conflict with the parameter's relation that
180 * WUSB1.0[6.4.2]) defines.
182 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
183 * first errata released on 2005/07.
185 * NOTE: we need to clean IV to zero at each invocation to make sure
186 * we start with a fresh empty Initial Vector, so that the CBC
187 * works ok.
189 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
190 * what sg[4] is for. Maybe there is a smarter way to do this.
192 static int wusb_ccm_mac(struct crypto_sync_skcipher *tfm_cbc,
193 struct crypto_cipher *tfm_aes,
194 struct wusb_mac_scratch *scratch,
195 void *mic,
196 const struct aes_ccm_nonce *n,
197 const struct aes_ccm_label *a, const void *b,
198 size_t blen)
200 int result = 0;
201 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm_cbc);
202 struct scatterlist sg[4], sg_dst;
203 void *dst_buf;
204 size_t dst_size;
205 u8 *iv;
206 size_t zero_padding;
209 * These checks should be compile time optimized out
210 * ensure @a fills b1's mac_header and following fields
212 WARN_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
213 WARN_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
214 WARN_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
215 WARN_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
217 result = -ENOMEM;
218 zero_padding = blen % sizeof(struct aes_ccm_block);
219 if (zero_padding)
220 zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
221 dst_size = blen + sizeof(scratch->b0) + sizeof(scratch->b1) +
222 zero_padding;
223 dst_buf = kzalloc(dst_size, GFP_KERNEL);
224 if (!dst_buf)
225 goto error_dst_buf;
227 iv = kzalloc(crypto_sync_skcipher_ivsize(tfm_cbc), GFP_KERNEL);
228 if (!iv)
229 goto error_iv;
231 /* Setup B0 */
232 scratch->b0.flags = 0x59; /* Format B0 */
233 scratch->b0.ccm_nonce = *n;
234 scratch->b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
236 /* Setup B1
238 * The WUSB spec is anything but clear! WUSB1.0[6.5]
239 * says that to initialize B1 from A with 'l(a) = blen +
240 * 14'--after clarification, it means to use A's contents
241 * for MAC Header, EO, sec reserved and padding.
243 scratch->b1.la = cpu_to_be16(blen + 14);
244 memcpy(&scratch->b1.mac_header, a, sizeof(*a));
246 sg_init_table(sg, ARRAY_SIZE(sg));
247 sg_set_buf(&sg[0], &scratch->b0, sizeof(scratch->b0));
248 sg_set_buf(&sg[1], &scratch->b1, sizeof(scratch->b1));
249 sg_set_buf(&sg[2], b, blen);
250 /* 0 if well behaved :) */
251 sg_set_page(&sg[3], ZERO_PAGE(0), zero_padding, 0);
252 sg_init_one(&sg_dst, dst_buf, dst_size);
254 skcipher_request_set_sync_tfm(req, tfm_cbc);
255 skcipher_request_set_callback(req, 0, NULL, NULL);
256 skcipher_request_set_crypt(req, sg, &sg_dst, dst_size, iv);
257 result = crypto_skcipher_encrypt(req);
258 skcipher_request_zero(req);
259 if (result < 0) {
260 printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
261 result);
262 goto error_cbc_crypt;
265 /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
266 * The procedure is to AES crypt the A0 block and XOR the MIC
267 * Tag against it; we only do the first 8 bytes and place it
268 * directly in the destination buffer.
270 * POS Crypto API: size is assumed to be AES's block size.
271 * Thanks for documenting it -- tip taken from airo.c
273 scratch->ax.flags = 0x01; /* as per WUSB 1.0 spec */
274 scratch->ax.ccm_nonce = *n;
275 scratch->ax.counter = 0;
276 crypto_cipher_encrypt_one(tfm_aes, (void *)&scratch->ax,
277 (void *)&scratch->ax);
278 bytewise_xor(mic, &scratch->ax, iv, 8);
279 result = 8;
280 error_cbc_crypt:
281 kfree(iv);
282 error_iv:
283 kfree(dst_buf);
284 error_dst_buf:
285 return result;
289 * WUSB Pseudo Random Function (WUSB1.0[6.5])
291 * @b: buffer to the source data; cannot be a global or const local
292 * (will confuse the scatterlists)
294 ssize_t wusb_prf(void *out, size_t out_size,
295 const u8 key[16], const struct aes_ccm_nonce *_n,
296 const struct aes_ccm_label *a,
297 const void *b, size_t blen, size_t len)
299 ssize_t result, bytes = 0, bitr;
300 struct aes_ccm_nonce n = *_n;
301 struct crypto_sync_skcipher *tfm_cbc;
302 struct crypto_cipher *tfm_aes;
303 struct wusb_mac_scratch *scratch;
304 u64 sfn = 0;
305 __le64 sfn_le;
307 tfm_cbc = crypto_alloc_sync_skcipher("cbc(aes)", 0, 0);
308 if (IS_ERR(tfm_cbc)) {
309 result = PTR_ERR(tfm_cbc);
310 printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
311 goto error_alloc_cbc;
313 result = crypto_sync_skcipher_setkey(tfm_cbc, key, 16);
314 if (result < 0) {
315 printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
316 goto error_setkey_cbc;
319 tfm_aes = crypto_alloc_cipher("aes", 0, 0);
320 if (IS_ERR(tfm_aes)) {
321 result = PTR_ERR(tfm_aes);
322 printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
323 goto error_alloc_aes;
325 result = crypto_cipher_setkey(tfm_aes, key, 16);
326 if (result < 0) {
327 printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
328 goto error_setkey_aes;
330 scratch = kmalloc(sizeof(*scratch), GFP_KERNEL);
331 if (!scratch) {
332 result = -ENOMEM;
333 goto error_alloc_scratch;
336 for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
337 sfn_le = cpu_to_le64(sfn++);
338 memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
339 result = wusb_ccm_mac(tfm_cbc, tfm_aes, scratch, out + bytes,
340 &n, a, b, blen);
341 if (result < 0)
342 goto error_ccm_mac;
343 bytes += result;
345 result = bytes;
347 kfree(scratch);
348 error_alloc_scratch:
349 error_ccm_mac:
350 error_setkey_aes:
351 crypto_free_cipher(tfm_aes);
352 error_alloc_aes:
353 error_setkey_cbc:
354 crypto_free_sync_skcipher(tfm_cbc);
355 error_alloc_cbc:
356 return result;
359 /* WUSB1.0[A.2] test vectors */
360 static const u8 stv_hsmic_key[16] = {
361 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
362 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
365 static const struct aes_ccm_nonce stv_hsmic_n = {
366 .sfn = { 0 },
367 .tkid = { 0x76, 0x98, 0x01, },
368 .dest_addr = { .data = { 0xbe, 0x00 } },
369 .src_addr = { .data = { 0x76, 0x98 } },
373 * Out-of-band MIC Generation verification code
376 static int wusb_oob_mic_verify(void)
378 int result;
379 u8 mic[8];
380 /* WUSB1.0[A.2] test vectors
382 * Need to keep it in the local stack as GCC 4.1.3something
383 * messes up and generates noise.
385 struct usb_handshake stv_hsmic_hs = {
386 .bMessageNumber = 2,
387 .bStatus = 00,
388 .tTKID = { 0x76, 0x98, 0x01 },
389 .bReserved = 00,
390 .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
391 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
392 0x3c, 0x3d, 0x3e, 0x3f },
393 .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
394 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
395 0x2c, 0x2d, 0x2e, 0x2f },
396 .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
397 0x14, 0x7b },
399 size_t hs_size;
401 result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
402 if (result < 0)
403 printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
404 else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
405 printk(KERN_ERR "E: OOB MIC test: "
406 "mismatch between MIC result and WUSB1.0[A2]\n");
407 hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
408 printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
409 wusb_key_dump(&stv_hsmic_hs, hs_size);
410 printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
411 sizeof(stv_hsmic_n));
412 wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
413 printk(KERN_ERR "E: MIC out:\n");
414 wusb_key_dump(mic, sizeof(mic));
415 printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
416 wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
417 result = -EINVAL;
418 } else
419 result = 0;
420 return result;
424 * Test vectors for Key derivation
426 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
427 * (errata corrected in 2005/07).
429 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
430 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
431 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
434 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
435 .sfn = { 0 },
436 .tkid = { 0x76, 0x98, 0x01, },
437 .dest_addr = { .data = { 0xbe, 0x00 } },
438 .src_addr = { .data = { 0x76, 0x98 } },
441 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
442 .kck = {
443 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
444 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
446 .ptk = {
447 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
448 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
453 * Performa a test to make sure we match the vectors defined in
454 * WUSB1.0[A.1](Errata2006/12)
456 static int wusb_key_derive_verify(void)
458 int result = 0;
459 struct wusb_keydvt_out keydvt_out;
460 /* These come from WUSB1.0[A.1] + 2006/12 errata
461 * NOTE: can't make this const or global -- somehow it seems
462 * the scatterlists for crypto get confused and we get
463 * bad data. There is no doc on this... */
464 struct wusb_keydvt_in stv_keydvt_in_a1 = {
465 .hnonce = {
466 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
467 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
469 .dnonce = {
470 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
471 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
475 result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
476 &stv_keydvt_in_a1);
477 if (result < 0)
478 printk(KERN_ERR "E: WUSB key derivation test: "
479 "derivation failed: %d\n", result);
480 if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
481 printk(KERN_ERR "E: WUSB key derivation test: "
482 "mismatch between key derivation result "
483 "and WUSB1.0[A1] Errata 2006/12\n");
484 printk(KERN_ERR "E: keydvt in: key\n");
485 wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
486 printk(KERN_ERR "E: keydvt in: nonce\n");
487 wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
488 printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
489 wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
490 printk(KERN_ERR "E: keydvt out: KCK\n");
491 wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
492 printk(KERN_ERR "E: keydvt out: PTK\n");
493 wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
494 result = -EINVAL;
495 } else
496 result = 0;
497 return result;
501 * Initialize crypto system
503 * FIXME: we do nothing now, other than verifying. Later on we'll
504 * cache the encryption stuff, so that's why we have a separate init.
506 int wusb_crypto_init(void)
508 int result;
510 if (debug_crypto_verify) {
511 result = wusb_key_derive_verify();
512 if (result < 0)
513 return result;
514 return wusb_oob_mic_verify();
516 return 0;
519 void wusb_crypto_exit(void)
521 /* FIXME: free cached crypto transforms */