dt-bindings: mtd: ingenic: Use standard ecc-engine property
[linux/fpc-iii.git] / net / sctp / auth.c
blob39d72e58b8e55d9fe70d535e8bb397e75d8df0da
1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel implementation
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, see
20 * <http://www.gnu.org/licenses/>.
22 * Please send any bug reports or fixes you make to the
23 * email address(es):
24 * lksctp developers <linux-sctp@vger.kernel.org>
26 * Written or modified by:
27 * Vlad Yasevich <vladislav.yasevich@hp.com>
30 #include <crypto/hash.h>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
39 /* id 0 is reserved. as all 0 */
40 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
43 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44 .hmac_name = "hmac(sha1)",
45 .hmac_len = SCTP_SHA1_SIG_SIZE,
48 /* id 2 is reserved as well */
49 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
53 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54 .hmac_name = "hmac(sha256)",
55 .hmac_len = SCTP_SHA256_SIG_SIZE,
57 #endif
61 void sctp_auth_key_put(struct sctp_auth_bytes *key)
63 if (!key)
64 return;
66 if (refcount_dec_and_test(&key->refcnt)) {
67 kzfree(key);
68 SCTP_DBG_OBJCNT_DEC(keys);
72 /* Create a new key structure of a given length */
73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
75 struct sctp_auth_bytes *key;
77 /* Verify that we are not going to overflow INT_MAX */
78 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 return NULL;
81 /* Allocate the shared key */
82 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 if (!key)
84 return NULL;
86 key->len = key_len;
87 refcount_set(&key->refcnt, 1);
88 SCTP_DBG_OBJCNT_INC(keys);
90 return key;
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
96 struct sctp_shared_key *new;
98 /* Allocate the shared key container */
99 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 if (!new)
101 return NULL;
103 INIT_LIST_HEAD(&new->key_list);
104 refcount_set(&new->refcnt, 1);
105 new->key_id = key_id;
107 return new;
110 /* Free the shared key structure */
111 static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
113 BUG_ON(!list_empty(&sh_key->key_list));
114 sctp_auth_key_put(sh_key->key);
115 sh_key->key = NULL;
116 kfree(sh_key);
119 void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
121 if (refcount_dec_and_test(&sh_key->refcnt))
122 sctp_auth_shkey_destroy(sh_key);
125 void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
127 refcount_inc(&sh_key->refcnt);
130 /* Destroy the entire key list. This is done during the
131 * associon and endpoint free process.
133 void sctp_auth_destroy_keys(struct list_head *keys)
135 struct sctp_shared_key *ep_key;
136 struct sctp_shared_key *tmp;
138 if (list_empty(keys))
139 return;
141 key_for_each_safe(ep_key, tmp, keys) {
142 list_del_init(&ep_key->key_list);
143 sctp_auth_shkey_release(ep_key);
147 /* Compare two byte vectors as numbers. Return values
148 * are:
149 * 0 - vectors are equal
150 * < 0 - vector 1 is smaller than vector2
151 * > 0 - vector 1 is greater than vector2
153 * Algorithm is:
154 * This is performed by selecting the numerically smaller key vector...
155 * If the key vectors are equal as numbers but differ in length ...
156 * the shorter vector is considered smaller
158 * Examples (with small values):
159 * 000123456789 > 123456789 (first number is longer)
160 * 000123456789 < 234567891 (second number is larger numerically)
161 * 123456789 > 2345678 (first number is both larger & longer)
163 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
164 struct sctp_auth_bytes *vector2)
166 int diff;
167 int i;
168 const __u8 *longer;
170 diff = vector1->len - vector2->len;
171 if (diff) {
172 longer = (diff > 0) ? vector1->data : vector2->data;
174 /* Check to see if the longer number is
175 * lead-zero padded. If it is not, it
176 * is automatically larger numerically.
178 for (i = 0; i < abs(diff); i++) {
179 if (longer[i] != 0)
180 return diff;
184 /* lengths are the same, compare numbers */
185 return memcmp(vector1->data, vector2->data, vector1->len);
189 * Create a key vector as described in SCTP-AUTH, Section 6.1
190 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
191 * parameter sent by each endpoint are concatenated as byte vectors.
192 * These parameters include the parameter type, parameter length, and
193 * the parameter value, but padding is omitted; all padding MUST be
194 * removed from this concatenation before proceeding with further
195 * computation of keys. Parameters which were not sent are simply
196 * omitted from the concatenation process. The resulting two vectors
197 * are called the two key vectors.
199 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
200 struct sctp_random_param *random,
201 struct sctp_chunks_param *chunks,
202 struct sctp_hmac_algo_param *hmacs,
203 gfp_t gfp)
205 struct sctp_auth_bytes *new;
206 __u32 len;
207 __u32 offset = 0;
208 __u16 random_len, hmacs_len, chunks_len = 0;
210 random_len = ntohs(random->param_hdr.length);
211 hmacs_len = ntohs(hmacs->param_hdr.length);
212 if (chunks)
213 chunks_len = ntohs(chunks->param_hdr.length);
215 len = random_len + hmacs_len + chunks_len;
217 new = sctp_auth_create_key(len, gfp);
218 if (!new)
219 return NULL;
221 memcpy(new->data, random, random_len);
222 offset += random_len;
224 if (chunks) {
225 memcpy(new->data + offset, chunks, chunks_len);
226 offset += chunks_len;
229 memcpy(new->data + offset, hmacs, hmacs_len);
231 return new;
235 /* Make a key vector based on our local parameters */
236 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
237 const struct sctp_association *asoc,
238 gfp_t gfp)
240 return sctp_auth_make_key_vector(
241 (struct sctp_random_param *)asoc->c.auth_random,
242 (struct sctp_chunks_param *)asoc->c.auth_chunks,
243 (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
246 /* Make a key vector based on peer's parameters */
247 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
248 const struct sctp_association *asoc,
249 gfp_t gfp)
251 return sctp_auth_make_key_vector(asoc->peer.peer_random,
252 asoc->peer.peer_chunks,
253 asoc->peer.peer_hmacs,
254 gfp);
258 /* Set the value of the association shared key base on the parameters
259 * given. The algorithm is:
260 * From the endpoint pair shared keys and the key vectors the
261 * association shared keys are computed. This is performed by selecting
262 * the numerically smaller key vector and concatenating it to the
263 * endpoint pair shared key, and then concatenating the numerically
264 * larger key vector to that. The result of the concatenation is the
265 * association shared key.
267 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
268 struct sctp_shared_key *ep_key,
269 struct sctp_auth_bytes *first_vector,
270 struct sctp_auth_bytes *last_vector,
271 gfp_t gfp)
273 struct sctp_auth_bytes *secret;
274 __u32 offset = 0;
275 __u32 auth_len;
277 auth_len = first_vector->len + last_vector->len;
278 if (ep_key->key)
279 auth_len += ep_key->key->len;
281 secret = sctp_auth_create_key(auth_len, gfp);
282 if (!secret)
283 return NULL;
285 if (ep_key->key) {
286 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
287 offset += ep_key->key->len;
290 memcpy(secret->data + offset, first_vector->data, first_vector->len);
291 offset += first_vector->len;
293 memcpy(secret->data + offset, last_vector->data, last_vector->len);
295 return secret;
298 /* Create an association shared key. Follow the algorithm
299 * described in SCTP-AUTH, Section 6.1
301 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
302 const struct sctp_association *asoc,
303 struct sctp_shared_key *ep_key,
304 gfp_t gfp)
306 struct sctp_auth_bytes *local_key_vector;
307 struct sctp_auth_bytes *peer_key_vector;
308 struct sctp_auth_bytes *first_vector,
309 *last_vector;
310 struct sctp_auth_bytes *secret = NULL;
311 int cmp;
314 /* Now we need to build the key vectors
315 * SCTP-AUTH , Section 6.1
316 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
317 * parameter sent by each endpoint are concatenated as byte vectors.
318 * These parameters include the parameter type, parameter length, and
319 * the parameter value, but padding is omitted; all padding MUST be
320 * removed from this concatenation before proceeding with further
321 * computation of keys. Parameters which were not sent are simply
322 * omitted from the concatenation process. The resulting two vectors
323 * are called the two key vectors.
326 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
327 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
329 if (!peer_key_vector || !local_key_vector)
330 goto out;
332 /* Figure out the order in which the key_vectors will be
333 * added to the endpoint shared key.
334 * SCTP-AUTH, Section 6.1:
335 * This is performed by selecting the numerically smaller key
336 * vector and concatenating it to the endpoint pair shared
337 * key, and then concatenating the numerically larger key
338 * vector to that. If the key vectors are equal as numbers
339 * but differ in length, then the concatenation order is the
340 * endpoint shared key, followed by the shorter key vector,
341 * followed by the longer key vector. Otherwise, the key
342 * vectors are identical, and may be concatenated to the
343 * endpoint pair key in any order.
345 cmp = sctp_auth_compare_vectors(local_key_vector,
346 peer_key_vector);
347 if (cmp < 0) {
348 first_vector = local_key_vector;
349 last_vector = peer_key_vector;
350 } else {
351 first_vector = peer_key_vector;
352 last_vector = local_key_vector;
355 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
356 gfp);
357 out:
358 sctp_auth_key_put(local_key_vector);
359 sctp_auth_key_put(peer_key_vector);
361 return secret;
365 * Populate the association overlay list with the list
366 * from the endpoint.
368 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
369 struct sctp_association *asoc,
370 gfp_t gfp)
372 struct sctp_shared_key *sh_key;
373 struct sctp_shared_key *new;
375 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
377 key_for_each(sh_key, &ep->endpoint_shared_keys) {
378 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
379 if (!new)
380 goto nomem;
382 new->key = sh_key->key;
383 sctp_auth_key_hold(new->key);
384 list_add(&new->key_list, &asoc->endpoint_shared_keys);
387 return 0;
389 nomem:
390 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
391 return -ENOMEM;
395 /* Public interface to create the association shared key.
396 * See code above for the algorithm.
398 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
400 struct sctp_auth_bytes *secret;
401 struct sctp_shared_key *ep_key;
402 struct sctp_chunk *chunk;
404 /* If we don't support AUTH, or peer is not capable
405 * we don't need to do anything.
407 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
408 return 0;
410 /* If the key_id is non-zero and we couldn't find an
411 * endpoint pair shared key, we can't compute the
412 * secret.
413 * For key_id 0, endpoint pair shared key is a NULL key.
415 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
416 BUG_ON(!ep_key);
418 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
419 if (!secret)
420 return -ENOMEM;
422 sctp_auth_key_put(asoc->asoc_shared_key);
423 asoc->asoc_shared_key = secret;
424 asoc->shkey = ep_key;
426 /* Update send queue in case any chunk already in there now
427 * needs authenticating
429 list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
430 if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
431 chunk->auth = 1;
432 if (!chunk->shkey) {
433 chunk->shkey = asoc->shkey;
434 sctp_auth_shkey_hold(chunk->shkey);
439 return 0;
443 /* Find the endpoint pair shared key based on the key_id */
444 struct sctp_shared_key *sctp_auth_get_shkey(
445 const struct sctp_association *asoc,
446 __u16 key_id)
448 struct sctp_shared_key *key;
450 /* First search associations set of endpoint pair shared keys */
451 key_for_each(key, &asoc->endpoint_shared_keys) {
452 if (key->key_id == key_id) {
453 if (!key->deactivated)
454 return key;
455 break;
459 return NULL;
463 * Initialize all the possible digest transforms that we can use. Right now
464 * now, the supported digests are SHA1 and SHA256. We do this here once
465 * because of the restrictiong that transforms may only be allocated in
466 * user context. This forces us to pre-allocated all possible transforms
467 * at the endpoint init time.
469 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
471 struct crypto_shash *tfm = NULL;
472 __u16 id;
474 /* If the transforms are already allocated, we are done */
475 if (ep->auth_hmacs)
476 return 0;
478 /* Allocated the array of pointers to transorms */
479 ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS,
480 sizeof(struct crypto_shash *),
481 gfp);
482 if (!ep->auth_hmacs)
483 return -ENOMEM;
485 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
487 /* See is we support the id. Supported IDs have name and
488 * length fields set, so that we can allocated and use
489 * them. We can safely just check for name, for without the
490 * name, we can't allocate the TFM.
492 if (!sctp_hmac_list[id].hmac_name)
493 continue;
495 /* If this TFM has been allocated, we are all set */
496 if (ep->auth_hmacs[id])
497 continue;
499 /* Allocate the ID */
500 tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
501 if (IS_ERR(tfm))
502 goto out_err;
504 ep->auth_hmacs[id] = tfm;
507 return 0;
509 out_err:
510 /* Clean up any successful allocations */
511 sctp_auth_destroy_hmacs(ep->auth_hmacs);
512 return -ENOMEM;
515 /* Destroy the hmac tfm array */
516 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
518 int i;
520 if (!auth_hmacs)
521 return;
523 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
524 crypto_free_shash(auth_hmacs[i]);
526 kfree(auth_hmacs);
530 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
532 return &sctp_hmac_list[hmac_id];
535 /* Get an hmac description information that we can use to build
536 * the AUTH chunk
538 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
540 struct sctp_hmac_algo_param *hmacs;
541 __u16 n_elt;
542 __u16 id = 0;
543 int i;
545 /* If we have a default entry, use it */
546 if (asoc->default_hmac_id)
547 return &sctp_hmac_list[asoc->default_hmac_id];
549 /* Since we do not have a default entry, find the first entry
550 * we support and return that. Do not cache that id.
552 hmacs = asoc->peer.peer_hmacs;
553 if (!hmacs)
554 return NULL;
556 n_elt = (ntohs(hmacs->param_hdr.length) -
557 sizeof(struct sctp_paramhdr)) >> 1;
558 for (i = 0; i < n_elt; i++) {
559 id = ntohs(hmacs->hmac_ids[i]);
561 /* Check the id is in the supported range. And
562 * see if we support the id. Supported IDs have name and
563 * length fields set, so that we can allocate and use
564 * them. We can safely just check for name, for without the
565 * name, we can't allocate the TFM.
567 if (id > SCTP_AUTH_HMAC_ID_MAX ||
568 !sctp_hmac_list[id].hmac_name) {
569 id = 0;
570 continue;
573 break;
576 if (id == 0)
577 return NULL;
579 return &sctp_hmac_list[id];
582 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
584 int found = 0;
585 int i;
587 for (i = 0; i < n_elts; i++) {
588 if (hmac_id == hmacs[i]) {
589 found = 1;
590 break;
594 return found;
597 /* See if the HMAC_ID is one that we claim as supported */
598 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
599 __be16 hmac_id)
601 struct sctp_hmac_algo_param *hmacs;
602 __u16 n_elt;
604 if (!asoc)
605 return 0;
607 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
608 n_elt = (ntohs(hmacs->param_hdr.length) -
609 sizeof(struct sctp_paramhdr)) >> 1;
611 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
615 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
616 * Section 6.1:
617 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
618 * algorithm it supports.
620 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
621 struct sctp_hmac_algo_param *hmacs)
623 struct sctp_endpoint *ep;
624 __u16 id;
625 int i;
626 int n_params;
628 /* if the default id is already set, use it */
629 if (asoc->default_hmac_id)
630 return;
632 n_params = (ntohs(hmacs->param_hdr.length) -
633 sizeof(struct sctp_paramhdr)) >> 1;
634 ep = asoc->ep;
635 for (i = 0; i < n_params; i++) {
636 id = ntohs(hmacs->hmac_ids[i]);
638 /* Check the id is in the supported range */
639 if (id > SCTP_AUTH_HMAC_ID_MAX)
640 continue;
642 /* If this TFM has been allocated, use this id */
643 if (ep->auth_hmacs[id]) {
644 asoc->default_hmac_id = id;
645 break;
651 /* Check to see if the given chunk is supposed to be authenticated */
652 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
654 unsigned short len;
655 int found = 0;
656 int i;
658 if (!param || param->param_hdr.length == 0)
659 return 0;
661 len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
663 /* SCTP-AUTH, Section 3.2
664 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
665 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
666 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
667 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
669 for (i = 0; !found && i < len; i++) {
670 switch (param->chunks[i]) {
671 case SCTP_CID_INIT:
672 case SCTP_CID_INIT_ACK:
673 case SCTP_CID_SHUTDOWN_COMPLETE:
674 case SCTP_CID_AUTH:
675 break;
677 default:
678 if (param->chunks[i] == chunk)
679 found = 1;
680 break;
684 return found;
687 /* Check if peer requested that this chunk is authenticated */
688 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
690 if (!asoc)
691 return 0;
693 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
694 return 0;
696 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
699 /* Check if we requested that peer authenticate this chunk. */
700 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
702 if (!asoc)
703 return 0;
705 if (!asoc->ep->auth_enable)
706 return 0;
708 return __sctp_auth_cid(chunk,
709 (struct sctp_chunks_param *)asoc->c.auth_chunks);
712 /* SCTP-AUTH: Section 6.2:
713 * The sender MUST calculate the MAC as described in RFC2104 [2] using
714 * the hash function H as described by the MAC Identifier and the shared
715 * association key K based on the endpoint pair shared key described by
716 * the shared key identifier. The 'data' used for the computation of
717 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
718 * zero (as shown in Figure 6) followed by all chunks that are placed
719 * after the AUTH chunk in the SCTP packet.
721 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
722 struct sk_buff *skb, struct sctp_auth_chunk *auth,
723 struct sctp_shared_key *ep_key, gfp_t gfp)
725 struct sctp_auth_bytes *asoc_key;
726 struct crypto_shash *tfm;
727 __u16 key_id, hmac_id;
728 unsigned char *end;
729 int free_key = 0;
730 __u8 *digest;
732 /* Extract the info we need:
733 * - hmac id
734 * - key id
736 key_id = ntohs(auth->auth_hdr.shkey_id);
737 hmac_id = ntohs(auth->auth_hdr.hmac_id);
739 if (key_id == asoc->active_key_id)
740 asoc_key = asoc->asoc_shared_key;
741 else {
742 /* ep_key can't be NULL here */
743 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
744 if (!asoc_key)
745 return;
747 free_key = 1;
750 /* set up scatter list */
751 end = skb_tail_pointer(skb);
753 tfm = asoc->ep->auth_hmacs[hmac_id];
755 digest = auth->auth_hdr.hmac;
756 if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
757 goto free;
760 SHASH_DESC_ON_STACK(desc, tfm);
762 desc->tfm = tfm;
763 desc->flags = 0;
764 crypto_shash_digest(desc, (u8 *)auth,
765 end - (unsigned char *)auth, digest);
766 shash_desc_zero(desc);
769 free:
770 if (free_key)
771 sctp_auth_key_put(asoc_key);
774 /* API Helpers */
776 /* Add a chunk to the endpoint authenticated chunk list */
777 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
779 struct sctp_chunks_param *p = ep->auth_chunk_list;
780 __u16 nchunks;
781 __u16 param_len;
783 /* If this chunk is already specified, we are done */
784 if (__sctp_auth_cid(chunk_id, p))
785 return 0;
787 /* Check if we can add this chunk to the array */
788 param_len = ntohs(p->param_hdr.length);
789 nchunks = param_len - sizeof(struct sctp_paramhdr);
790 if (nchunks == SCTP_NUM_CHUNK_TYPES)
791 return -EINVAL;
793 p->chunks[nchunks] = chunk_id;
794 p->param_hdr.length = htons(param_len + 1);
795 return 0;
798 /* Add hmac identifires to the endpoint list of supported hmac ids */
799 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
800 struct sctp_hmacalgo *hmacs)
802 int has_sha1 = 0;
803 __u16 id;
804 int i;
806 /* Scan the list looking for unsupported id. Also make sure that
807 * SHA1 is specified.
809 for (i = 0; i < hmacs->shmac_num_idents; i++) {
810 id = hmacs->shmac_idents[i];
812 if (id > SCTP_AUTH_HMAC_ID_MAX)
813 return -EOPNOTSUPP;
815 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
816 has_sha1 = 1;
818 if (!sctp_hmac_list[id].hmac_name)
819 return -EOPNOTSUPP;
822 if (!has_sha1)
823 return -EINVAL;
825 for (i = 0; i < hmacs->shmac_num_idents; i++)
826 ep->auth_hmacs_list->hmac_ids[i] =
827 htons(hmacs->shmac_idents[i]);
828 ep->auth_hmacs_list->param_hdr.length =
829 htons(sizeof(struct sctp_paramhdr) +
830 hmacs->shmac_num_idents * sizeof(__u16));
831 return 0;
834 /* Set a new shared key on either endpoint or association. If the
835 * the key with a same ID already exists, replace the key (remove the
836 * old key and add a new one).
838 int sctp_auth_set_key(struct sctp_endpoint *ep,
839 struct sctp_association *asoc,
840 struct sctp_authkey *auth_key)
842 struct sctp_shared_key *cur_key, *shkey;
843 struct sctp_auth_bytes *key;
844 struct list_head *sh_keys;
845 int replace = 0;
847 /* Try to find the given key id to see if
848 * we are doing a replace, or adding a new key
850 if (asoc)
851 sh_keys = &asoc->endpoint_shared_keys;
852 else
853 sh_keys = &ep->endpoint_shared_keys;
855 key_for_each(shkey, sh_keys) {
856 if (shkey->key_id == auth_key->sca_keynumber) {
857 replace = 1;
858 break;
862 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
863 if (!cur_key)
864 return -ENOMEM;
866 /* Create a new key data based on the info passed in */
867 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
868 if (!key) {
869 kfree(cur_key);
870 return -ENOMEM;
873 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
874 cur_key->key = key;
876 if (replace) {
877 list_del_init(&shkey->key_list);
878 sctp_auth_shkey_release(shkey);
880 list_add(&cur_key->key_list, sh_keys);
882 return 0;
885 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
886 struct sctp_association *asoc,
887 __u16 key_id)
889 struct sctp_shared_key *key;
890 struct list_head *sh_keys;
891 int found = 0;
893 /* The key identifier MUST correst to an existing key */
894 if (asoc)
895 sh_keys = &asoc->endpoint_shared_keys;
896 else
897 sh_keys = &ep->endpoint_shared_keys;
899 key_for_each(key, sh_keys) {
900 if (key->key_id == key_id) {
901 found = 1;
902 break;
906 if (!found || key->deactivated)
907 return -EINVAL;
909 if (asoc) {
910 asoc->active_key_id = key_id;
911 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
912 } else
913 ep->active_key_id = key_id;
915 return 0;
918 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
919 struct sctp_association *asoc,
920 __u16 key_id)
922 struct sctp_shared_key *key;
923 struct list_head *sh_keys;
924 int found = 0;
926 /* The key identifier MUST NOT be the current active key
927 * The key identifier MUST correst to an existing key
929 if (asoc) {
930 if (asoc->active_key_id == key_id)
931 return -EINVAL;
933 sh_keys = &asoc->endpoint_shared_keys;
934 } else {
935 if (ep->active_key_id == key_id)
936 return -EINVAL;
938 sh_keys = &ep->endpoint_shared_keys;
941 key_for_each(key, sh_keys) {
942 if (key->key_id == key_id) {
943 found = 1;
944 break;
948 if (!found)
949 return -EINVAL;
951 /* Delete the shared key */
952 list_del_init(&key->key_list);
953 sctp_auth_shkey_release(key);
955 return 0;
958 int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
959 struct sctp_association *asoc, __u16 key_id)
961 struct sctp_shared_key *key;
962 struct list_head *sh_keys;
963 int found = 0;
965 /* The key identifier MUST NOT be the current active key
966 * The key identifier MUST correst to an existing key
968 if (asoc) {
969 if (asoc->active_key_id == key_id)
970 return -EINVAL;
972 sh_keys = &asoc->endpoint_shared_keys;
973 } else {
974 if (ep->active_key_id == key_id)
975 return -EINVAL;
977 sh_keys = &ep->endpoint_shared_keys;
980 key_for_each(key, sh_keys) {
981 if (key->key_id == key_id) {
982 found = 1;
983 break;
987 if (!found)
988 return -EINVAL;
990 /* refcnt == 1 and !list_empty mean it's not being used anywhere
991 * and deactivated will be set, so it's time to notify userland
992 * that this shkey can be freed.
994 if (asoc && !list_empty(&key->key_list) &&
995 refcount_read(&key->refcnt) == 1) {
996 struct sctp_ulpevent *ev;
998 ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
999 SCTP_AUTH_FREE_KEY, GFP_KERNEL);
1000 if (ev)
1001 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1004 key->deactivated = 1;
1006 return 0;