1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2017 HiSilicon Limited, All Rights Reserved.
4 * Author: Gabriele Paoloni <gabriele.paoloni@huawei.com>
5 * Author: Zhichang Yuan <yuanzhichang@hisilicon.com>
6 * Author: John Garry <john.garry@huawei.com>
9 #define pr_fmt(fmt) "LOGIC PIO: " fmt
13 #include <linux/logic_pio.h>
15 #include <linux/rculist.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
19 /* The unique hardware address list */
20 static LIST_HEAD(io_range_list
);
21 static DEFINE_MUTEX(io_range_mutex
);
23 /* Consider a kernel general helper for this */
24 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
27 * logic_pio_register_range - register logical PIO range for a host
28 * @new_range: pointer to the IO range to be registered.
30 * Returns 0 on success, the error code in case of failure.
32 * Register a new IO range node in the IO range list.
34 int logic_pio_register_range(struct logic_pio_hwaddr
*new_range
)
36 struct logic_pio_hwaddr
*range
;
37 resource_size_t start
;
39 resource_size_t mmio_end
= 0;
40 resource_size_t iio_sz
= MMIO_UPPER_LIMIT
;
43 if (!new_range
|| !new_range
->fwnode
|| !new_range
->size
||
44 (new_range
->flags
== LOGIC_PIO_INDIRECT
&& !new_range
->ops
))
47 start
= new_range
->hw_start
;
48 end
= new_range
->hw_start
+ new_range
->size
;
50 mutex_lock(&io_range_mutex
);
51 list_for_each_entry(range
, &io_range_list
, list
) {
52 if (range
->fwnode
== new_range
->fwnode
) {
53 /* range already there */
56 if (range
->flags
== LOGIC_PIO_CPU_MMIO
&&
57 new_range
->flags
== LOGIC_PIO_CPU_MMIO
) {
58 /* for MMIO ranges we need to check for overlap */
59 if (start
>= range
->hw_start
+ range
->size
||
60 end
< range
->hw_start
) {
61 mmio_end
= range
->io_start
+ range
->size
;
66 } else if (range
->flags
== LOGIC_PIO_INDIRECT
&&
67 new_range
->flags
== LOGIC_PIO_INDIRECT
) {
68 iio_sz
+= range
->size
;
72 /* range not registered yet, check for available space */
73 if (new_range
->flags
== LOGIC_PIO_CPU_MMIO
) {
74 if (mmio_end
+ new_range
->size
- 1 > MMIO_UPPER_LIMIT
) {
75 /* if it's too big check if 64K space can be reserved */
76 if (mmio_end
+ SZ_64K
- 1 > MMIO_UPPER_LIMIT
) {
80 new_range
->size
= SZ_64K
;
81 pr_warn("Requested IO range too big, new size set to 64K\n");
83 new_range
->io_start
= mmio_end
;
84 } else if (new_range
->flags
== LOGIC_PIO_INDIRECT
) {
85 if (iio_sz
+ new_range
->size
- 1 > IO_SPACE_LIMIT
) {
89 new_range
->io_start
= iio_sz
;
96 list_add_tail_rcu(&new_range
->list
, &io_range_list
);
99 mutex_unlock(&io_range_mutex
);
104 * logic_pio_unregister_range - unregister a logical PIO range for a host
105 * @range: pointer to the IO range which has been already registered.
107 * Unregister a previously-registered IO range node.
109 void logic_pio_unregister_range(struct logic_pio_hwaddr
*range
)
111 mutex_lock(&io_range_mutex
);
112 list_del_rcu(&range
->list
);
113 mutex_unlock(&io_range_mutex
);
118 * find_io_range_by_fwnode - find logical PIO range for given FW node
119 * @fwnode: FW node handle associated with logical PIO range
121 * Returns pointer to node on success, NULL otherwise.
123 * Traverse the io_range_list to find the registered node for @fwnode.
125 struct logic_pio_hwaddr
*find_io_range_by_fwnode(struct fwnode_handle
*fwnode
)
127 struct logic_pio_hwaddr
*range
, *found_range
= NULL
;
130 list_for_each_entry_rcu(range
, &io_range_list
, list
) {
131 if (range
->fwnode
== fwnode
) {
141 /* Return a registered range given an input PIO token */
142 static struct logic_pio_hwaddr
*find_io_range(unsigned long pio
)
144 struct logic_pio_hwaddr
*range
, *found_range
= NULL
;
147 list_for_each_entry_rcu(range
, &io_range_list
, list
) {
148 if (in_range(pio
, range
->io_start
, range
->size
)) {
156 pr_err("PIO entry token 0x%lx invalid\n", pio
);
162 * logic_pio_to_hwaddr - translate logical PIO to HW address
163 * @pio: logical PIO value
165 * Returns HW address if valid, ~0 otherwise.
167 * Translate the input logical PIO to the corresponding hardware address.
168 * The input PIO should be unique in the whole logical PIO space.
170 resource_size_t
logic_pio_to_hwaddr(unsigned long pio
)
172 struct logic_pio_hwaddr
*range
;
174 range
= find_io_range(pio
);
176 return range
->hw_start
+ pio
- range
->io_start
;
178 return (resource_size_t
)~0;
182 * logic_pio_trans_hwaddr - translate HW address to logical PIO
183 * @fwnode: FW node reference for the host
184 * @addr: Host-relative HW address
185 * @size: size to translate
187 * Returns Logical PIO value if successful, ~0UL otherwise
189 unsigned long logic_pio_trans_hwaddr(struct fwnode_handle
*fwnode
,
190 resource_size_t addr
, resource_size_t size
)
192 struct logic_pio_hwaddr
*range
;
194 range
= find_io_range_by_fwnode(fwnode
);
195 if (!range
|| range
->flags
== LOGIC_PIO_CPU_MMIO
) {
196 pr_err("IO range not found or invalid\n");
199 if (range
->size
< size
) {
200 pr_err("resource size %pa cannot fit in IO range size %pa\n",
201 &size
, &range
->size
);
204 return addr
- range
->hw_start
+ range
->io_start
;
207 unsigned long logic_pio_trans_cpuaddr(resource_size_t addr
)
209 struct logic_pio_hwaddr
*range
;
212 list_for_each_entry_rcu(range
, &io_range_list
, list
) {
213 if (range
->flags
!= LOGIC_PIO_CPU_MMIO
)
215 if (in_range(addr
, range
->hw_start
, range
->size
)) {
216 unsigned long cpuaddr
;
218 cpuaddr
= addr
- range
->hw_start
+ range
->io_start
;
226 pr_err("addr %pa not registered in io_range_list\n", &addr
);
231 #if defined(CONFIG_INDIRECT_PIO) && defined(PCI_IOBASE)
232 #define BUILD_LOGIC_IO(bw, type) \
233 type logic_in##bw(unsigned long addr) \
235 type ret = (type)~0; \
237 if (addr < MMIO_UPPER_LIMIT) { \
238 ret = read##bw(PCI_IOBASE + addr); \
239 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
240 struct logic_pio_hwaddr *entry = find_io_range(addr); \
243 ret = entry->ops->in(entry->hostdata, \
244 addr, sizeof(type)); \
251 void logic_out##bw(type value, unsigned long addr) \
253 if (addr < MMIO_UPPER_LIMIT) { \
254 write##bw(value, PCI_IOBASE + addr); \
255 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
256 struct logic_pio_hwaddr *entry = find_io_range(addr); \
259 entry->ops->out(entry->hostdata, \
260 addr, value, sizeof(type)); \
266 void logic_ins##bw(unsigned long addr, void *buffer, \
267 unsigned int count) \
269 if (addr < MMIO_UPPER_LIMIT) { \
270 reads##bw(PCI_IOBASE + addr, buffer, count); \
271 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
272 struct logic_pio_hwaddr *entry = find_io_range(addr); \
275 entry->ops->ins(entry->hostdata, \
276 addr, buffer, sizeof(type), count); \
283 void logic_outs##bw(unsigned long addr, const void *buffer, \
284 unsigned int count) \
286 if (addr < MMIO_UPPER_LIMIT) { \
287 writes##bw(PCI_IOBASE + addr, buffer, count); \
288 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
289 struct logic_pio_hwaddr *entry = find_io_range(addr); \
292 entry->ops->outs(entry->hostdata, \
293 addr, buffer, sizeof(type), count); \
299 BUILD_LOGIC_IO(b
, u8
)
300 EXPORT_SYMBOL(logic_inb
);
301 EXPORT_SYMBOL(logic_insb
);
302 EXPORT_SYMBOL(logic_outb
);
303 EXPORT_SYMBOL(logic_outsb
);
305 BUILD_LOGIC_IO(w
, u16
)
306 EXPORT_SYMBOL(logic_inw
);
307 EXPORT_SYMBOL(logic_insw
);
308 EXPORT_SYMBOL(logic_outw
);
309 EXPORT_SYMBOL(logic_outsw
);
311 BUILD_LOGIC_IO(l
, u32
)
312 EXPORT_SYMBOL(logic_inl
);
313 EXPORT_SYMBOL(logic_insl
);
314 EXPORT_SYMBOL(logic_outl
);
315 EXPORT_SYMBOL(logic_outsl
);
317 #endif /* CONFIG_INDIRECT_PIO && PCI_IOBASE */