2 * Interface for controlling IO bandwidth on a request queue
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum
= 8;
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum
= 32;
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice
= HZ
/10; /* 100 ms */
24 static struct blkcg_policy blkcg_policy_throtl
;
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct
*kthrotld_workqueue
;
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
53 struct list_head node
; /* service_queue->queued[] */
54 struct bio_list bios
; /* queued bios */
55 struct throtl_grp
*tg
; /* tg this qnode belongs to */
58 struct throtl_service_queue
{
59 struct throtl_service_queue
*parent_sq
; /* the parent service_queue */
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
65 struct list_head queued
[2]; /* throtl_qnode [READ/WRITE] */
66 unsigned int nr_queued
[2]; /* number of queued bios */
69 * RB tree of active children throtl_grp's, which are sorted by
72 struct rb_root pending_tree
; /* RB tree of active tgs */
73 struct rb_node
*first_pending
; /* first node in the tree */
74 unsigned int nr_pending
; /* # queued in the tree */
75 unsigned long first_pending_disptime
; /* disptime of the first tg */
76 struct timer_list pending_timer
; /* fires on first_pending_disptime */
80 THROTL_TG_PENDING
= 1 << 0, /* on parent's pending tree */
81 THROTL_TG_WAS_EMPTY
= 1 << 1, /* bio_lists[] became non-empty */
84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
87 /* must be the first member */
88 struct blkg_policy_data pd
;
90 /* active throtl group service_queue member */
91 struct rb_node rb_node
;
93 /* throtl_data this group belongs to */
94 struct throtl_data
*td
;
96 /* this group's service queue */
97 struct throtl_service_queue service_queue
;
100 * qnode_on_self is used when bios are directly queued to this
101 * throtl_grp so that local bios compete fairly with bios
102 * dispatched from children. qnode_on_parent is used when bios are
103 * dispatched from this throtl_grp into its parent and will compete
104 * with the sibling qnode_on_parents and the parent's
107 struct throtl_qnode qnode_on_self
[2];
108 struct throtl_qnode qnode_on_parent
[2];
111 * Dispatch time in jiffies. This is the estimated time when group
112 * will unthrottle and is ready to dispatch more bio. It is used as
113 * key to sort active groups in service tree.
115 unsigned long disptime
;
119 /* are there any throtl rules between this group and td? */
122 /* bytes per second rate limits */
126 unsigned int iops
[2];
128 /* Number of bytes disptached in current slice */
129 uint64_t bytes_disp
[2];
130 /* Number of bio's dispatched in current slice */
131 unsigned int io_disp
[2];
133 /* When did we start a new slice */
134 unsigned long slice_start
[2];
135 unsigned long slice_end
[2];
140 /* service tree for active throtl groups */
141 struct throtl_service_queue service_queue
;
143 struct request_queue
*queue
;
145 /* Total Number of queued bios on READ and WRITE lists */
146 unsigned int nr_queued
[2];
149 * number of total undestroyed groups
151 unsigned int nr_undestroyed_grps
;
153 /* Work for dispatching throttled bios */
154 struct work_struct dispatch_work
;
157 static void throtl_pending_timer_fn(unsigned long arg
);
159 static inline struct throtl_grp
*pd_to_tg(struct blkg_policy_data
*pd
)
161 return pd
? container_of(pd
, struct throtl_grp
, pd
) : NULL
;
164 static inline struct throtl_grp
*blkg_to_tg(struct blkcg_gq
*blkg
)
166 return pd_to_tg(blkg_to_pd(blkg
, &blkcg_policy_throtl
));
169 static inline struct blkcg_gq
*tg_to_blkg(struct throtl_grp
*tg
)
171 return pd_to_blkg(&tg
->pd
);
175 * sq_to_tg - return the throl_grp the specified service queue belongs to
176 * @sq: the throtl_service_queue of interest
178 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
179 * embedded in throtl_data, %NULL is returned.
181 static struct throtl_grp
*sq_to_tg(struct throtl_service_queue
*sq
)
183 if (sq
&& sq
->parent_sq
)
184 return container_of(sq
, struct throtl_grp
, service_queue
);
190 * sq_to_td - return throtl_data the specified service queue belongs to
191 * @sq: the throtl_service_queue of interest
193 * A service_queue can be embeded in either a throtl_grp or throtl_data.
194 * Determine the associated throtl_data accordingly and return it.
196 static struct throtl_data
*sq_to_td(struct throtl_service_queue
*sq
)
198 struct throtl_grp
*tg
= sq_to_tg(sq
);
203 return container_of(sq
, struct throtl_data
, service_queue
);
207 * throtl_log - log debug message via blktrace
208 * @sq: the service_queue being reported
209 * @fmt: printf format string
212 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
213 * throtl_grp; otherwise, just "throtl".
215 #define throtl_log(sq, fmt, args...) do { \
216 struct throtl_grp *__tg = sq_to_tg((sq)); \
217 struct throtl_data *__td = sq_to_td((sq)); \
220 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
225 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
226 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
228 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
232 static void throtl_qnode_init(struct throtl_qnode
*qn
, struct throtl_grp
*tg
)
234 INIT_LIST_HEAD(&qn
->node
);
235 bio_list_init(&qn
->bios
);
240 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
241 * @bio: bio being added
242 * @qn: qnode to add bio to
243 * @queued: the service_queue->queued[] list @qn belongs to
245 * Add @bio to @qn and put @qn on @queued if it's not already on.
246 * @qn->tg's reference count is bumped when @qn is activated. See the
247 * comment on top of throtl_qnode definition for details.
249 static void throtl_qnode_add_bio(struct bio
*bio
, struct throtl_qnode
*qn
,
250 struct list_head
*queued
)
252 bio_list_add(&qn
->bios
, bio
);
253 if (list_empty(&qn
->node
)) {
254 list_add_tail(&qn
->node
, queued
);
255 blkg_get(tg_to_blkg(qn
->tg
));
260 * throtl_peek_queued - peek the first bio on a qnode list
261 * @queued: the qnode list to peek
263 static struct bio
*throtl_peek_queued(struct list_head
*queued
)
265 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
268 if (list_empty(queued
))
271 bio
= bio_list_peek(&qn
->bios
);
277 * throtl_pop_queued - pop the first bio form a qnode list
278 * @queued: the qnode list to pop a bio from
279 * @tg_to_put: optional out argument for throtl_grp to put
281 * Pop the first bio from the qnode list @queued. After popping, the first
282 * qnode is removed from @queued if empty or moved to the end of @queued so
283 * that the popping order is round-robin.
285 * When the first qnode is removed, its associated throtl_grp should be put
286 * too. If @tg_to_put is NULL, this function automatically puts it;
287 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
288 * responsible for putting it.
290 static struct bio
*throtl_pop_queued(struct list_head
*queued
,
291 struct throtl_grp
**tg_to_put
)
293 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
296 if (list_empty(queued
))
299 bio
= bio_list_pop(&qn
->bios
);
302 if (bio_list_empty(&qn
->bios
)) {
303 list_del_init(&qn
->node
);
307 blkg_put(tg_to_blkg(qn
->tg
));
309 list_move_tail(&qn
->node
, queued
);
315 /* init a service_queue, assumes the caller zeroed it */
316 static void throtl_service_queue_init(struct throtl_service_queue
*sq
)
318 INIT_LIST_HEAD(&sq
->queued
[0]);
319 INIT_LIST_HEAD(&sq
->queued
[1]);
320 sq
->pending_tree
= RB_ROOT
;
321 setup_timer(&sq
->pending_timer
, throtl_pending_timer_fn
,
325 static struct blkg_policy_data
*throtl_pd_alloc(gfp_t gfp
, int node
)
327 struct throtl_grp
*tg
;
330 tg
= kzalloc_node(sizeof(*tg
), gfp
, node
);
334 throtl_service_queue_init(&tg
->service_queue
);
336 for (rw
= READ
; rw
<= WRITE
; rw
++) {
337 throtl_qnode_init(&tg
->qnode_on_self
[rw
], tg
);
338 throtl_qnode_init(&tg
->qnode_on_parent
[rw
], tg
);
341 RB_CLEAR_NODE(&tg
->rb_node
);
345 tg
->iops
[WRITE
] = -1;
350 static void throtl_pd_init(struct blkg_policy_data
*pd
)
352 struct throtl_grp
*tg
= pd_to_tg(pd
);
353 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
354 struct throtl_data
*td
= blkg
->q
->td
;
355 struct throtl_service_queue
*sq
= &tg
->service_queue
;
358 * If on the default hierarchy, we switch to properly hierarchical
359 * behavior where limits on a given throtl_grp are applied to the
360 * whole subtree rather than just the group itself. e.g. If 16M
361 * read_bps limit is set on the root group, the whole system can't
362 * exceed 16M for the device.
364 * If not on the default hierarchy, the broken flat hierarchy
365 * behavior is retained where all throtl_grps are treated as if
366 * they're all separate root groups right below throtl_data.
367 * Limits of a group don't interact with limits of other groups
368 * regardless of the position of the group in the hierarchy.
370 sq
->parent_sq
= &td
->service_queue
;
371 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && blkg
->parent
)
372 sq
->parent_sq
= &blkg_to_tg(blkg
->parent
)->service_queue
;
377 * Set has_rules[] if @tg or any of its parents have limits configured.
378 * This doesn't require walking up to the top of the hierarchy as the
379 * parent's has_rules[] is guaranteed to be correct.
381 static void tg_update_has_rules(struct throtl_grp
*tg
)
383 struct throtl_grp
*parent_tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
386 for (rw
= READ
; rw
<= WRITE
; rw
++)
387 tg
->has_rules
[rw
] = (parent_tg
&& parent_tg
->has_rules
[rw
]) ||
388 (tg
->bps
[rw
] != -1 || tg
->iops
[rw
] != -1);
391 static void throtl_pd_online(struct blkg_policy_data
*pd
)
394 * We don't want new groups to escape the limits of its ancestors.
395 * Update has_rules[] after a new group is brought online.
397 tg_update_has_rules(pd_to_tg(pd
));
400 static void throtl_pd_free(struct blkg_policy_data
*pd
)
402 struct throtl_grp
*tg
= pd_to_tg(pd
);
404 del_timer_sync(&tg
->service_queue
.pending_timer
);
408 static struct throtl_grp
*
409 throtl_rb_first(struct throtl_service_queue
*parent_sq
)
411 /* Service tree is empty */
412 if (!parent_sq
->nr_pending
)
415 if (!parent_sq
->first_pending
)
416 parent_sq
->first_pending
= rb_first(&parent_sq
->pending_tree
);
418 if (parent_sq
->first_pending
)
419 return rb_entry_tg(parent_sq
->first_pending
);
424 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
430 static void throtl_rb_erase(struct rb_node
*n
,
431 struct throtl_service_queue
*parent_sq
)
433 if (parent_sq
->first_pending
== n
)
434 parent_sq
->first_pending
= NULL
;
435 rb_erase_init(n
, &parent_sq
->pending_tree
);
436 --parent_sq
->nr_pending
;
439 static void update_min_dispatch_time(struct throtl_service_queue
*parent_sq
)
441 struct throtl_grp
*tg
;
443 tg
= throtl_rb_first(parent_sq
);
447 parent_sq
->first_pending_disptime
= tg
->disptime
;
450 static void tg_service_queue_add(struct throtl_grp
*tg
)
452 struct throtl_service_queue
*parent_sq
= tg
->service_queue
.parent_sq
;
453 struct rb_node
**node
= &parent_sq
->pending_tree
.rb_node
;
454 struct rb_node
*parent
= NULL
;
455 struct throtl_grp
*__tg
;
456 unsigned long key
= tg
->disptime
;
459 while (*node
!= NULL
) {
461 __tg
= rb_entry_tg(parent
);
463 if (time_before(key
, __tg
->disptime
))
464 node
= &parent
->rb_left
;
466 node
= &parent
->rb_right
;
472 parent_sq
->first_pending
= &tg
->rb_node
;
474 rb_link_node(&tg
->rb_node
, parent
, node
);
475 rb_insert_color(&tg
->rb_node
, &parent_sq
->pending_tree
);
478 static void __throtl_enqueue_tg(struct throtl_grp
*tg
)
480 tg_service_queue_add(tg
);
481 tg
->flags
|= THROTL_TG_PENDING
;
482 tg
->service_queue
.parent_sq
->nr_pending
++;
485 static void throtl_enqueue_tg(struct throtl_grp
*tg
)
487 if (!(tg
->flags
& THROTL_TG_PENDING
))
488 __throtl_enqueue_tg(tg
);
491 static void __throtl_dequeue_tg(struct throtl_grp
*tg
)
493 throtl_rb_erase(&tg
->rb_node
, tg
->service_queue
.parent_sq
);
494 tg
->flags
&= ~THROTL_TG_PENDING
;
497 static void throtl_dequeue_tg(struct throtl_grp
*tg
)
499 if (tg
->flags
& THROTL_TG_PENDING
)
500 __throtl_dequeue_tg(tg
);
503 /* Call with queue lock held */
504 static void throtl_schedule_pending_timer(struct throtl_service_queue
*sq
,
505 unsigned long expires
)
507 mod_timer(&sq
->pending_timer
, expires
);
508 throtl_log(sq
, "schedule timer. delay=%lu jiffies=%lu",
509 expires
- jiffies
, jiffies
);
513 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
514 * @sq: the service_queue to schedule dispatch for
515 * @force: force scheduling
517 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
518 * dispatch time of the first pending child. Returns %true if either timer
519 * is armed or there's no pending child left. %false if the current
520 * dispatch window is still open and the caller should continue
523 * If @force is %true, the dispatch timer is always scheduled and this
524 * function is guaranteed to return %true. This is to be used when the
525 * caller can't dispatch itself and needs to invoke pending_timer
526 * unconditionally. Note that forced scheduling is likely to induce short
527 * delay before dispatch starts even if @sq->first_pending_disptime is not
528 * in the future and thus shouldn't be used in hot paths.
530 static bool throtl_schedule_next_dispatch(struct throtl_service_queue
*sq
,
533 /* any pending children left? */
537 update_min_dispatch_time(sq
);
539 /* is the next dispatch time in the future? */
540 if (force
|| time_after(sq
->first_pending_disptime
, jiffies
)) {
541 throtl_schedule_pending_timer(sq
, sq
->first_pending_disptime
);
545 /* tell the caller to continue dispatching */
549 static inline void throtl_start_new_slice_with_credit(struct throtl_grp
*tg
,
550 bool rw
, unsigned long start
)
552 tg
->bytes_disp
[rw
] = 0;
556 * Previous slice has expired. We must have trimmed it after last
557 * bio dispatch. That means since start of last slice, we never used
558 * that bandwidth. Do try to make use of that bandwidth while giving
561 if (time_after_eq(start
, tg
->slice_start
[rw
]))
562 tg
->slice_start
[rw
] = start
;
564 tg
->slice_end
[rw
] = jiffies
+ throtl_slice
;
565 throtl_log(&tg
->service_queue
,
566 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
567 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
568 tg
->slice_end
[rw
], jiffies
);
571 static inline void throtl_start_new_slice(struct throtl_grp
*tg
, bool rw
)
573 tg
->bytes_disp
[rw
] = 0;
575 tg
->slice_start
[rw
] = jiffies
;
576 tg
->slice_end
[rw
] = jiffies
+ throtl_slice
;
577 throtl_log(&tg
->service_queue
,
578 "[%c] new slice start=%lu end=%lu jiffies=%lu",
579 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
580 tg
->slice_end
[rw
], jiffies
);
583 static inline void throtl_set_slice_end(struct throtl_grp
*tg
, bool rw
,
584 unsigned long jiffy_end
)
586 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
589 static inline void throtl_extend_slice(struct throtl_grp
*tg
, bool rw
,
590 unsigned long jiffy_end
)
592 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
593 throtl_log(&tg
->service_queue
,
594 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
595 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
596 tg
->slice_end
[rw
], jiffies
);
599 /* Determine if previously allocated or extended slice is complete or not */
600 static bool throtl_slice_used(struct throtl_grp
*tg
, bool rw
)
602 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
608 /* Trim the used slices and adjust slice start accordingly */
609 static inline void throtl_trim_slice(struct throtl_grp
*tg
, bool rw
)
611 unsigned long nr_slices
, time_elapsed
, io_trim
;
614 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
617 * If bps are unlimited (-1), then time slice don't get
618 * renewed. Don't try to trim the slice if slice is used. A new
619 * slice will start when appropriate.
621 if (throtl_slice_used(tg
, rw
))
625 * A bio has been dispatched. Also adjust slice_end. It might happen
626 * that initially cgroup limit was very low resulting in high
627 * slice_end, but later limit was bumped up and bio was dispached
628 * sooner, then we need to reduce slice_end. A high bogus slice_end
629 * is bad because it does not allow new slice to start.
632 throtl_set_slice_end(tg
, rw
, jiffies
+ throtl_slice
);
634 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
636 nr_slices
= time_elapsed
/ throtl_slice
;
640 tmp
= tg
->bps
[rw
] * throtl_slice
* nr_slices
;
644 io_trim
= (tg
->iops
[rw
] * throtl_slice
* nr_slices
)/HZ
;
646 if (!bytes_trim
&& !io_trim
)
649 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
650 tg
->bytes_disp
[rw
] -= bytes_trim
;
652 tg
->bytes_disp
[rw
] = 0;
654 if (tg
->io_disp
[rw
] >= io_trim
)
655 tg
->io_disp
[rw
] -= io_trim
;
659 tg
->slice_start
[rw
] += nr_slices
* throtl_slice
;
661 throtl_log(&tg
->service_queue
,
662 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
663 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
664 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
667 static bool tg_with_in_iops_limit(struct throtl_grp
*tg
, struct bio
*bio
,
670 bool rw
= bio_data_dir(bio
);
671 unsigned int io_allowed
;
672 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
675 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
677 /* Slice has just started. Consider one slice interval */
679 jiffy_elapsed_rnd
= throtl_slice
;
681 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
684 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
685 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
686 * will allow dispatch after 1 second and after that slice should
690 tmp
= (u64
)tg
->iops
[rw
] * jiffy_elapsed_rnd
;
694 io_allowed
= UINT_MAX
;
698 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
704 /* Calc approx time to dispatch */
705 jiffy_wait
= ((tg
->io_disp
[rw
] + 1) * HZ
)/tg
->iops
[rw
] + 1;
707 if (jiffy_wait
> jiffy_elapsed
)
708 jiffy_wait
= jiffy_wait
- jiffy_elapsed
;
717 static bool tg_with_in_bps_limit(struct throtl_grp
*tg
, struct bio
*bio
,
720 bool rw
= bio_data_dir(bio
);
721 u64 bytes_allowed
, extra_bytes
, tmp
;
722 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
724 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
726 /* Slice has just started. Consider one slice interval */
728 jiffy_elapsed_rnd
= throtl_slice
;
730 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
732 tmp
= tg
->bps
[rw
] * jiffy_elapsed_rnd
;
736 if (tg
->bytes_disp
[rw
] + bio
->bi_iter
.bi_size
<= bytes_allowed
) {
742 /* Calc approx time to dispatch */
743 extra_bytes
= tg
->bytes_disp
[rw
] + bio
->bi_iter
.bi_size
- bytes_allowed
;
744 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg
->bps
[rw
]);
750 * This wait time is without taking into consideration the rounding
751 * up we did. Add that time also.
753 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
760 * Returns whether one can dispatch a bio or not. Also returns approx number
761 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
763 static bool tg_may_dispatch(struct throtl_grp
*tg
, struct bio
*bio
,
766 bool rw
= bio_data_dir(bio
);
767 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
770 * Currently whole state machine of group depends on first bio
771 * queued in the group bio list. So one should not be calling
772 * this function with a different bio if there are other bios
775 BUG_ON(tg
->service_queue
.nr_queued
[rw
] &&
776 bio
!= throtl_peek_queued(&tg
->service_queue
.queued
[rw
]));
778 /* If tg->bps = -1, then BW is unlimited */
779 if (tg
->bps
[rw
] == -1 && tg
->iops
[rw
] == -1) {
786 * If previous slice expired, start a new one otherwise renew/extend
787 * existing slice to make sure it is at least throtl_slice interval
790 if (throtl_slice_used(tg
, rw
))
791 throtl_start_new_slice(tg
, rw
);
793 if (time_before(tg
->slice_end
[rw
], jiffies
+ throtl_slice
))
794 throtl_extend_slice(tg
, rw
, jiffies
+ throtl_slice
);
797 if (tg_with_in_bps_limit(tg
, bio
, &bps_wait
) &&
798 tg_with_in_iops_limit(tg
, bio
, &iops_wait
)) {
804 max_wait
= max(bps_wait
, iops_wait
);
809 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
810 throtl_extend_slice(tg
, rw
, jiffies
+ max_wait
);
815 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
817 bool rw
= bio_data_dir(bio
);
819 /* Charge the bio to the group */
820 tg
->bytes_disp
[rw
] += bio
->bi_iter
.bi_size
;
824 * REQ_THROTTLED is used to prevent the same bio to be throttled
825 * more than once as a throttled bio will go through blk-throtl the
826 * second time when it eventually gets issued. Set it when a bio
827 * is being charged to a tg.
829 if (!(bio
->bi_rw
& REQ_THROTTLED
))
830 bio
->bi_rw
|= REQ_THROTTLED
;
834 * throtl_add_bio_tg - add a bio to the specified throtl_grp
837 * @tg: the target throtl_grp
839 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
840 * tg->qnode_on_self[] is used.
842 static void throtl_add_bio_tg(struct bio
*bio
, struct throtl_qnode
*qn
,
843 struct throtl_grp
*tg
)
845 struct throtl_service_queue
*sq
= &tg
->service_queue
;
846 bool rw
= bio_data_dir(bio
);
849 qn
= &tg
->qnode_on_self
[rw
];
852 * If @tg doesn't currently have any bios queued in the same
853 * direction, queueing @bio can change when @tg should be
854 * dispatched. Mark that @tg was empty. This is automatically
855 * cleaered on the next tg_update_disptime().
857 if (!sq
->nr_queued
[rw
])
858 tg
->flags
|= THROTL_TG_WAS_EMPTY
;
860 throtl_qnode_add_bio(bio
, qn
, &sq
->queued
[rw
]);
863 throtl_enqueue_tg(tg
);
866 static void tg_update_disptime(struct throtl_grp
*tg
)
868 struct throtl_service_queue
*sq
= &tg
->service_queue
;
869 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
872 if ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
873 tg_may_dispatch(tg
, bio
, &read_wait
);
875 if ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
876 tg_may_dispatch(tg
, bio
, &write_wait
);
878 min_wait
= min(read_wait
, write_wait
);
879 disptime
= jiffies
+ min_wait
;
881 /* Update dispatch time */
882 throtl_dequeue_tg(tg
);
883 tg
->disptime
= disptime
;
884 throtl_enqueue_tg(tg
);
886 /* see throtl_add_bio_tg() */
887 tg
->flags
&= ~THROTL_TG_WAS_EMPTY
;
890 static void start_parent_slice_with_credit(struct throtl_grp
*child_tg
,
891 struct throtl_grp
*parent_tg
, bool rw
)
893 if (throtl_slice_used(parent_tg
, rw
)) {
894 throtl_start_new_slice_with_credit(parent_tg
, rw
,
895 child_tg
->slice_start
[rw
]);
900 static void tg_dispatch_one_bio(struct throtl_grp
*tg
, bool rw
)
902 struct throtl_service_queue
*sq
= &tg
->service_queue
;
903 struct throtl_service_queue
*parent_sq
= sq
->parent_sq
;
904 struct throtl_grp
*parent_tg
= sq_to_tg(parent_sq
);
905 struct throtl_grp
*tg_to_put
= NULL
;
909 * @bio is being transferred from @tg to @parent_sq. Popping a bio
910 * from @tg may put its reference and @parent_sq might end up
911 * getting released prematurely. Remember the tg to put and put it
912 * after @bio is transferred to @parent_sq.
914 bio
= throtl_pop_queued(&sq
->queued
[rw
], &tg_to_put
);
917 throtl_charge_bio(tg
, bio
);
920 * If our parent is another tg, we just need to transfer @bio to
921 * the parent using throtl_add_bio_tg(). If our parent is
922 * @td->service_queue, @bio is ready to be issued. Put it on its
923 * bio_lists[] and decrease total number queued. The caller is
924 * responsible for issuing these bios.
927 throtl_add_bio_tg(bio
, &tg
->qnode_on_parent
[rw
], parent_tg
);
928 start_parent_slice_with_credit(tg
, parent_tg
, rw
);
930 throtl_qnode_add_bio(bio
, &tg
->qnode_on_parent
[rw
],
931 &parent_sq
->queued
[rw
]);
932 BUG_ON(tg
->td
->nr_queued
[rw
] <= 0);
933 tg
->td
->nr_queued
[rw
]--;
936 throtl_trim_slice(tg
, rw
);
939 blkg_put(tg_to_blkg(tg_to_put
));
942 static int throtl_dispatch_tg(struct throtl_grp
*tg
)
944 struct throtl_service_queue
*sq
= &tg
->service_queue
;
945 unsigned int nr_reads
= 0, nr_writes
= 0;
946 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
947 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
950 /* Try to dispatch 75% READS and 25% WRITES */
952 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])) &&
953 tg_may_dispatch(tg
, bio
, NULL
)) {
955 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
958 if (nr_reads
>= max_nr_reads
)
962 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])) &&
963 tg_may_dispatch(tg
, bio
, NULL
)) {
965 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
968 if (nr_writes
>= max_nr_writes
)
972 return nr_reads
+ nr_writes
;
975 static int throtl_select_dispatch(struct throtl_service_queue
*parent_sq
)
977 unsigned int nr_disp
= 0;
980 struct throtl_grp
*tg
= throtl_rb_first(parent_sq
);
981 struct throtl_service_queue
*sq
= &tg
->service_queue
;
986 if (time_before(jiffies
, tg
->disptime
))
989 throtl_dequeue_tg(tg
);
991 nr_disp
+= throtl_dispatch_tg(tg
);
993 if (sq
->nr_queued
[0] || sq
->nr_queued
[1])
994 tg_update_disptime(tg
);
996 if (nr_disp
>= throtl_quantum
)
1004 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1005 * @arg: the throtl_service_queue being serviced
1007 * This timer is armed when a child throtl_grp with active bio's become
1008 * pending and queued on the service_queue's pending_tree and expires when
1009 * the first child throtl_grp should be dispatched. This function
1010 * dispatches bio's from the children throtl_grps to the parent
1013 * If the parent's parent is another throtl_grp, dispatching is propagated
1014 * by either arming its pending_timer or repeating dispatch directly. If
1015 * the top-level service_tree is reached, throtl_data->dispatch_work is
1016 * kicked so that the ready bio's are issued.
1018 static void throtl_pending_timer_fn(unsigned long arg
)
1020 struct throtl_service_queue
*sq
= (void *)arg
;
1021 struct throtl_grp
*tg
= sq_to_tg(sq
);
1022 struct throtl_data
*td
= sq_to_td(sq
);
1023 struct request_queue
*q
= td
->queue
;
1024 struct throtl_service_queue
*parent_sq
;
1028 spin_lock_irq(q
->queue_lock
);
1030 parent_sq
= sq
->parent_sq
;
1034 throtl_log(sq
, "dispatch nr_queued=%u read=%u write=%u",
1035 sq
->nr_queued
[READ
] + sq
->nr_queued
[WRITE
],
1036 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1038 ret
= throtl_select_dispatch(sq
);
1040 throtl_log(sq
, "bios disp=%u", ret
);
1044 if (throtl_schedule_next_dispatch(sq
, false))
1047 /* this dispatch windows is still open, relax and repeat */
1048 spin_unlock_irq(q
->queue_lock
);
1050 spin_lock_irq(q
->queue_lock
);
1057 /* @parent_sq is another throl_grp, propagate dispatch */
1058 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1059 tg_update_disptime(tg
);
1060 if (!throtl_schedule_next_dispatch(parent_sq
, false)) {
1061 /* window is already open, repeat dispatching */
1068 /* reached the top-level, queue issueing */
1069 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1072 spin_unlock_irq(q
->queue_lock
);
1076 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1077 * @work: work item being executed
1079 * This function is queued for execution when bio's reach the bio_lists[]
1080 * of throtl_data->service_queue. Those bio's are ready and issued by this
1083 static void blk_throtl_dispatch_work_fn(struct work_struct
*work
)
1085 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
1087 struct throtl_service_queue
*td_sq
= &td
->service_queue
;
1088 struct request_queue
*q
= td
->queue
;
1089 struct bio_list bio_list_on_stack
;
1091 struct blk_plug plug
;
1094 bio_list_init(&bio_list_on_stack
);
1096 spin_lock_irq(q
->queue_lock
);
1097 for (rw
= READ
; rw
<= WRITE
; rw
++)
1098 while ((bio
= throtl_pop_queued(&td_sq
->queued
[rw
], NULL
)))
1099 bio_list_add(&bio_list_on_stack
, bio
);
1100 spin_unlock_irq(q
->queue_lock
);
1102 if (!bio_list_empty(&bio_list_on_stack
)) {
1103 blk_start_plug(&plug
);
1104 while((bio
= bio_list_pop(&bio_list_on_stack
)))
1105 generic_make_request(bio
);
1106 blk_finish_plug(&plug
);
1110 static u64
tg_prfill_conf_u64(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1113 struct throtl_grp
*tg
= pd_to_tg(pd
);
1114 u64 v
= *(u64
*)((void *)tg
+ off
);
1118 return __blkg_prfill_u64(sf
, pd
, v
);
1121 static u64
tg_prfill_conf_uint(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1124 struct throtl_grp
*tg
= pd_to_tg(pd
);
1125 unsigned int v
= *(unsigned int *)((void *)tg
+ off
);
1129 return __blkg_prfill_u64(sf
, pd
, v
);
1132 static int tg_print_conf_u64(struct seq_file
*sf
, void *v
)
1134 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_u64
,
1135 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1139 static int tg_print_conf_uint(struct seq_file
*sf
, void *v
)
1141 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_uint
,
1142 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1146 static void tg_conf_updated(struct throtl_grp
*tg
)
1148 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1149 struct cgroup_subsys_state
*pos_css
;
1150 struct blkcg_gq
*blkg
;
1152 throtl_log(&tg
->service_queue
,
1153 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1154 tg
->bps
[READ
], tg
->bps
[WRITE
],
1155 tg
->iops
[READ
], tg
->iops
[WRITE
]);
1158 * Update has_rules[] flags for the updated tg's subtree. A tg is
1159 * considered to have rules if either the tg itself or any of its
1160 * ancestors has rules. This identifies groups without any
1161 * restrictions in the whole hierarchy and allows them to bypass
1164 blkg_for_each_descendant_pre(blkg
, pos_css
, tg_to_blkg(tg
))
1165 tg_update_has_rules(blkg_to_tg(blkg
));
1168 * We're already holding queue_lock and know @tg is valid. Let's
1169 * apply the new config directly.
1171 * Restart the slices for both READ and WRITES. It might happen
1172 * that a group's limit are dropped suddenly and we don't want to
1173 * account recently dispatched IO with new low rate.
1175 throtl_start_new_slice(tg
, 0);
1176 throtl_start_new_slice(tg
, 1);
1178 if (tg
->flags
& THROTL_TG_PENDING
) {
1179 tg_update_disptime(tg
);
1180 throtl_schedule_next_dispatch(sq
->parent_sq
, true);
1184 static ssize_t
tg_set_conf(struct kernfs_open_file
*of
,
1185 char *buf
, size_t nbytes
, loff_t off
, bool is_u64
)
1187 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1188 struct blkg_conf_ctx ctx
;
1189 struct throtl_grp
*tg
;
1193 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1198 if (sscanf(ctx
.body
, "%llu", &v
) != 1)
1203 tg
= blkg_to_tg(ctx
.blkg
);
1206 *(u64
*)((void *)tg
+ of_cft(of
)->private) = v
;
1208 *(unsigned int *)((void *)tg
+ of_cft(of
)->private) = v
;
1210 tg_conf_updated(tg
);
1213 blkg_conf_finish(&ctx
);
1214 return ret
?: nbytes
;
1217 static ssize_t
tg_set_conf_u64(struct kernfs_open_file
*of
,
1218 char *buf
, size_t nbytes
, loff_t off
)
1220 return tg_set_conf(of
, buf
, nbytes
, off
, true);
1223 static ssize_t
tg_set_conf_uint(struct kernfs_open_file
*of
,
1224 char *buf
, size_t nbytes
, loff_t off
)
1226 return tg_set_conf(of
, buf
, nbytes
, off
, false);
1229 static struct cftype throtl_legacy_files
[] = {
1231 .name
= "throttle.read_bps_device",
1232 .private = offsetof(struct throtl_grp
, bps
[READ
]),
1233 .seq_show
= tg_print_conf_u64
,
1234 .write
= tg_set_conf_u64
,
1237 .name
= "throttle.write_bps_device",
1238 .private = offsetof(struct throtl_grp
, bps
[WRITE
]),
1239 .seq_show
= tg_print_conf_u64
,
1240 .write
= tg_set_conf_u64
,
1243 .name
= "throttle.read_iops_device",
1244 .private = offsetof(struct throtl_grp
, iops
[READ
]),
1245 .seq_show
= tg_print_conf_uint
,
1246 .write
= tg_set_conf_uint
,
1249 .name
= "throttle.write_iops_device",
1250 .private = offsetof(struct throtl_grp
, iops
[WRITE
]),
1251 .seq_show
= tg_print_conf_uint
,
1252 .write
= tg_set_conf_uint
,
1255 .name
= "throttle.io_service_bytes",
1256 .private = (unsigned long)&blkcg_policy_throtl
,
1257 .seq_show
= blkg_print_stat_bytes
,
1260 .name
= "throttle.io_serviced",
1261 .private = (unsigned long)&blkcg_policy_throtl
,
1262 .seq_show
= blkg_print_stat_ios
,
1267 static u64
tg_prfill_max(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1270 struct throtl_grp
*tg
= pd_to_tg(pd
);
1271 const char *dname
= blkg_dev_name(pd
->blkg
);
1272 char bufs
[4][21] = { "max", "max", "max", "max" };
1276 if (tg
->bps
[READ
] == -1 && tg
->bps
[WRITE
] == -1 &&
1277 tg
->iops
[READ
] == -1 && tg
->iops
[WRITE
] == -1)
1280 if (tg
->bps
[READ
] != -1)
1281 snprintf(bufs
[0], sizeof(bufs
[0]), "%llu", tg
->bps
[READ
]);
1282 if (tg
->bps
[WRITE
] != -1)
1283 snprintf(bufs
[1], sizeof(bufs
[1]), "%llu", tg
->bps
[WRITE
]);
1284 if (tg
->iops
[READ
] != -1)
1285 snprintf(bufs
[2], sizeof(bufs
[2]), "%u", tg
->iops
[READ
]);
1286 if (tg
->iops
[WRITE
] != -1)
1287 snprintf(bufs
[3], sizeof(bufs
[3]), "%u", tg
->iops
[WRITE
]);
1289 seq_printf(sf
, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1290 dname
, bufs
[0], bufs
[1], bufs
[2], bufs
[3]);
1294 static int tg_print_max(struct seq_file
*sf
, void *v
)
1296 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_max
,
1297 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1301 static ssize_t
tg_set_max(struct kernfs_open_file
*of
,
1302 char *buf
, size_t nbytes
, loff_t off
)
1304 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1305 struct blkg_conf_ctx ctx
;
1306 struct throtl_grp
*tg
;
1310 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1314 tg
= blkg_to_tg(ctx
.blkg
);
1316 v
[0] = tg
->bps
[READ
];
1317 v
[1] = tg
->bps
[WRITE
];
1318 v
[2] = tg
->iops
[READ
];
1319 v
[3] = tg
->iops
[WRITE
];
1322 char tok
[27]; /* wiops=18446744073709551616 */
1327 if (sscanf(ctx
.body
, "%26s%n", tok
, &len
) != 1)
1336 if (!p
|| (sscanf(p
, "%llu", &val
) != 1 && strcmp(p
, "max")))
1344 if (!strcmp(tok
, "rbps"))
1346 else if (!strcmp(tok
, "wbps"))
1348 else if (!strcmp(tok
, "riops"))
1349 v
[2] = min_t(u64
, val
, UINT_MAX
);
1350 else if (!strcmp(tok
, "wiops"))
1351 v
[3] = min_t(u64
, val
, UINT_MAX
);
1356 tg
->bps
[READ
] = v
[0];
1357 tg
->bps
[WRITE
] = v
[1];
1358 tg
->iops
[READ
] = v
[2];
1359 tg
->iops
[WRITE
] = v
[3];
1361 tg_conf_updated(tg
);
1364 blkg_conf_finish(&ctx
);
1365 return ret
?: nbytes
;
1368 static struct cftype throtl_files
[] = {
1371 .flags
= CFTYPE_NOT_ON_ROOT
,
1372 .seq_show
= tg_print_max
,
1373 .write
= tg_set_max
,
1378 static void throtl_shutdown_wq(struct request_queue
*q
)
1380 struct throtl_data
*td
= q
->td
;
1382 cancel_work_sync(&td
->dispatch_work
);
1385 static struct blkcg_policy blkcg_policy_throtl
= {
1386 .dfl_cftypes
= throtl_files
,
1387 .legacy_cftypes
= throtl_legacy_files
,
1389 .pd_alloc_fn
= throtl_pd_alloc
,
1390 .pd_init_fn
= throtl_pd_init
,
1391 .pd_online_fn
= throtl_pd_online
,
1392 .pd_free_fn
= throtl_pd_free
,
1395 bool blk_throtl_bio(struct request_queue
*q
, struct blkcg_gq
*blkg
,
1398 struct throtl_qnode
*qn
= NULL
;
1399 struct throtl_grp
*tg
= blkg_to_tg(blkg
?: q
->root_blkg
);
1400 struct throtl_service_queue
*sq
;
1401 bool rw
= bio_data_dir(bio
);
1402 bool throttled
= false;
1404 WARN_ON_ONCE(!rcu_read_lock_held());
1406 /* see throtl_charge_bio() */
1407 if ((bio
->bi_rw
& REQ_THROTTLED
) || !tg
->has_rules
[rw
])
1410 spin_lock_irq(q
->queue_lock
);
1412 if (unlikely(blk_queue_bypass(q
)))
1415 sq
= &tg
->service_queue
;
1418 /* throtl is FIFO - if bios are already queued, should queue */
1419 if (sq
->nr_queued
[rw
])
1422 /* if above limits, break to queue */
1423 if (!tg_may_dispatch(tg
, bio
, NULL
))
1426 /* within limits, let's charge and dispatch directly */
1427 throtl_charge_bio(tg
, bio
);
1430 * We need to trim slice even when bios are not being queued
1431 * otherwise it might happen that a bio is not queued for
1432 * a long time and slice keeps on extending and trim is not
1433 * called for a long time. Now if limits are reduced suddenly
1434 * we take into account all the IO dispatched so far at new
1435 * low rate and * newly queued IO gets a really long dispatch
1438 * So keep on trimming slice even if bio is not queued.
1440 throtl_trim_slice(tg
, rw
);
1443 * @bio passed through this layer without being throttled.
1444 * Climb up the ladder. If we''re already at the top, it
1445 * can be executed directly.
1447 qn
= &tg
->qnode_on_parent
[rw
];
1454 /* out-of-limit, queue to @tg */
1455 throtl_log(sq
, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1456 rw
== READ
? 'R' : 'W',
1457 tg
->bytes_disp
[rw
], bio
->bi_iter
.bi_size
, tg
->bps
[rw
],
1458 tg
->io_disp
[rw
], tg
->iops
[rw
],
1459 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1461 bio_associate_current(bio
);
1462 tg
->td
->nr_queued
[rw
]++;
1463 throtl_add_bio_tg(bio
, qn
, tg
);
1467 * Update @tg's dispatch time and force schedule dispatch if @tg
1468 * was empty before @bio. The forced scheduling isn't likely to
1469 * cause undue delay as @bio is likely to be dispatched directly if
1470 * its @tg's disptime is not in the future.
1472 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1473 tg_update_disptime(tg
);
1474 throtl_schedule_next_dispatch(tg
->service_queue
.parent_sq
, true);
1478 spin_unlock_irq(q
->queue_lock
);
1481 * As multiple blk-throtls may stack in the same issue path, we
1482 * don't want bios to leave with the flag set. Clear the flag if
1486 bio
->bi_rw
&= ~REQ_THROTTLED
;
1491 * Dispatch all bios from all children tg's queued on @parent_sq. On
1492 * return, @parent_sq is guaranteed to not have any active children tg's
1493 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1495 static void tg_drain_bios(struct throtl_service_queue
*parent_sq
)
1497 struct throtl_grp
*tg
;
1499 while ((tg
= throtl_rb_first(parent_sq
))) {
1500 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1503 throtl_dequeue_tg(tg
);
1505 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
1506 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1507 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
1508 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1513 * blk_throtl_drain - drain throttled bios
1514 * @q: request_queue to drain throttled bios for
1516 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1518 void blk_throtl_drain(struct request_queue
*q
)
1519 __releases(q
->queue_lock
) __acquires(q
->queue_lock
)
1521 struct throtl_data
*td
= q
->td
;
1522 struct blkcg_gq
*blkg
;
1523 struct cgroup_subsys_state
*pos_css
;
1527 queue_lockdep_assert_held(q
);
1531 * Drain each tg while doing post-order walk on the blkg tree, so
1532 * that all bios are propagated to td->service_queue. It'd be
1533 * better to walk service_queue tree directly but blkg walk is
1536 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
)
1537 tg_drain_bios(&blkg_to_tg(blkg
)->service_queue
);
1539 /* finally, transfer bios from top-level tg's into the td */
1540 tg_drain_bios(&td
->service_queue
);
1543 spin_unlock_irq(q
->queue_lock
);
1545 /* all bios now should be in td->service_queue, issue them */
1546 for (rw
= READ
; rw
<= WRITE
; rw
++)
1547 while ((bio
= throtl_pop_queued(&td
->service_queue
.queued
[rw
],
1549 generic_make_request(bio
);
1551 spin_lock_irq(q
->queue_lock
);
1554 int blk_throtl_init(struct request_queue
*q
)
1556 struct throtl_data
*td
;
1559 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
1563 INIT_WORK(&td
->dispatch_work
, blk_throtl_dispatch_work_fn
);
1564 throtl_service_queue_init(&td
->service_queue
);
1569 /* activate policy */
1570 ret
= blkcg_activate_policy(q
, &blkcg_policy_throtl
);
1576 void blk_throtl_exit(struct request_queue
*q
)
1579 throtl_shutdown_wq(q
);
1580 blkcg_deactivate_policy(q
, &blkcg_policy_throtl
);
1584 static int __init
throtl_init(void)
1586 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
1587 if (!kthrotld_workqueue
)
1588 panic("Failed to create kthrotld\n");
1590 return blkcg_policy_register(&blkcg_policy_throtl
);
1593 module_init(throtl_init
);