1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
32 #include "workarounds.h"
34 /**************************************************************************
38 **************************************************************************
41 /* Loopback mode names (see LOOPBACK_MODE()) */
42 const unsigned int efx_loopback_mode_max
= LOOPBACK_MAX
;
43 const char *const efx_loopback_mode_names
[] = {
44 [LOOPBACK_NONE
] = "NONE",
45 [LOOPBACK_DATA
] = "DATAPATH",
46 [LOOPBACK_GMAC
] = "GMAC",
47 [LOOPBACK_XGMII
] = "XGMII",
48 [LOOPBACK_XGXS
] = "XGXS",
49 [LOOPBACK_XAUI
] = "XAUI",
50 [LOOPBACK_GMII
] = "GMII",
51 [LOOPBACK_SGMII
] = "SGMII",
52 [LOOPBACK_XGBR
] = "XGBR",
53 [LOOPBACK_XFI
] = "XFI",
54 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
55 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
56 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
57 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
58 [LOOPBACK_GPHY
] = "GPHY",
59 [LOOPBACK_PHYXS
] = "PHYXS",
60 [LOOPBACK_PCS
] = "PCS",
61 [LOOPBACK_PMAPMD
] = "PMA/PMD",
62 [LOOPBACK_XPORT
] = "XPORT",
63 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
64 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
65 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
66 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
67 [LOOPBACK_GMII_WS
] = "GMII_WS",
68 [LOOPBACK_XFI_WS
] = "XFI_WS",
69 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
70 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
73 const unsigned int efx_reset_type_max
= RESET_TYPE_MAX
;
74 const char *const efx_reset_type_names
[] = {
75 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
76 [RESET_TYPE_ALL
] = "ALL",
77 [RESET_TYPE_RECOVER_OR_ALL
] = "RECOVER_OR_ALL",
78 [RESET_TYPE_WORLD
] = "WORLD",
79 [RESET_TYPE_RECOVER_OR_DISABLE
] = "RECOVER_OR_DISABLE",
80 [RESET_TYPE_DATAPATH
] = "DATAPATH",
81 [RESET_TYPE_MC_BIST
] = "MC_BIST",
82 [RESET_TYPE_DISABLE
] = "DISABLE",
83 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
84 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
85 [RESET_TYPE_RX_RECOVERY
] = "RX_RECOVERY",
86 [RESET_TYPE_DMA_ERROR
] = "DMA_ERROR",
87 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
88 [RESET_TYPE_MC_FAILURE
] = "MC_FAILURE",
89 [RESET_TYPE_MCDI_TIMEOUT
] = "MCDI_TIMEOUT (FLR)",
92 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
93 * queued onto this work queue. This is not a per-nic work queue, because
94 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
96 static struct workqueue_struct
*reset_workqueue
;
98 /* How often and how many times to poll for a reset while waiting for a
99 * BIST that another function started to complete.
101 #define BIST_WAIT_DELAY_MS 100
102 #define BIST_WAIT_DELAY_COUNT 100
104 /**************************************************************************
106 * Configurable values
108 *************************************************************************/
111 * Use separate channels for TX and RX events
113 * Set this to 1 to use separate channels for TX and RX. It allows us
114 * to control interrupt affinity separately for TX and RX.
116 * This is only used in MSI-X interrupt mode
118 bool efx_separate_tx_channels
;
119 module_param(efx_separate_tx_channels
, bool, 0444);
120 MODULE_PARM_DESC(efx_separate_tx_channels
,
121 "Use separate channels for TX and RX");
123 /* This is the weight assigned to each of the (per-channel) virtual
126 static int napi_weight
= 64;
128 /* This is the time (in jiffies) between invocations of the hardware
130 * On Falcon-based NICs, this will:
131 * - Check the on-board hardware monitor;
132 * - Poll the link state and reconfigure the hardware as necessary.
133 * On Siena-based NICs for power systems with EEH support, this will give EEH a
136 static unsigned int efx_monitor_interval
= 1 * HZ
;
138 /* Initial interrupt moderation settings. They can be modified after
139 * module load with ethtool.
141 * The default for RX should strike a balance between increasing the
142 * round-trip latency and reducing overhead.
144 static unsigned int rx_irq_mod_usec
= 60;
146 /* Initial interrupt moderation settings. They can be modified after
147 * module load with ethtool.
149 * This default is chosen to ensure that a 10G link does not go idle
150 * while a TX queue is stopped after it has become full. A queue is
151 * restarted when it drops below half full. The time this takes (assuming
152 * worst case 3 descriptors per packet and 1024 descriptors) is
153 * 512 / 3 * 1.2 = 205 usec.
155 static unsigned int tx_irq_mod_usec
= 150;
157 /* This is the first interrupt mode to try out of:
162 static unsigned int interrupt_mode
;
164 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
165 * i.e. the number of CPUs among which we may distribute simultaneous
166 * interrupt handling.
168 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
169 * The default (0) means to assign an interrupt to each core.
171 static unsigned int rss_cpus
;
172 module_param(rss_cpus
, uint
, 0444);
173 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
175 static bool phy_flash_cfg
;
176 module_param(phy_flash_cfg
, bool, 0644);
177 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
179 static unsigned irq_adapt_low_thresh
= 8000;
180 module_param(irq_adapt_low_thresh
, uint
, 0644);
181 MODULE_PARM_DESC(irq_adapt_low_thresh
,
182 "Threshold score for reducing IRQ moderation");
184 static unsigned irq_adapt_high_thresh
= 16000;
185 module_param(irq_adapt_high_thresh
, uint
, 0644);
186 MODULE_PARM_DESC(irq_adapt_high_thresh
,
187 "Threshold score for increasing IRQ moderation");
189 static unsigned debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
190 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
191 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
192 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
193 module_param(debug
, uint
, 0);
194 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
196 /**************************************************************************
198 * Utility functions and prototypes
200 *************************************************************************/
202 static int efx_soft_enable_interrupts(struct efx_nic
*efx
);
203 static void efx_soft_disable_interrupts(struct efx_nic
*efx
);
204 static void efx_remove_channel(struct efx_channel
*channel
);
205 static void efx_remove_channels(struct efx_nic
*efx
);
206 static const struct efx_channel_type efx_default_channel_type
;
207 static void efx_remove_port(struct efx_nic
*efx
);
208 static void efx_init_napi_channel(struct efx_channel
*channel
);
209 static void efx_fini_napi(struct efx_nic
*efx
);
210 static void efx_fini_napi_channel(struct efx_channel
*channel
);
211 static void efx_fini_struct(struct efx_nic
*efx
);
212 static void efx_start_all(struct efx_nic
*efx
);
213 static void efx_stop_all(struct efx_nic
*efx
);
215 #define EFX_ASSERT_RESET_SERIALISED(efx) \
217 if ((efx->state == STATE_READY) || \
218 (efx->state == STATE_RECOVERY) || \
219 (efx->state == STATE_DISABLED)) \
223 static int efx_check_disabled(struct efx_nic
*efx
)
225 if (efx
->state
== STATE_DISABLED
|| efx
->state
== STATE_RECOVERY
) {
226 netif_err(efx
, drv
, efx
->net_dev
,
227 "device is disabled due to earlier errors\n");
233 /**************************************************************************
235 * Event queue processing
237 *************************************************************************/
239 /* Process channel's event queue
241 * This function is responsible for processing the event queue of a
242 * single channel. The caller must guarantee that this function will
243 * never be concurrently called more than once on the same channel,
244 * though different channels may be being processed concurrently.
246 static int efx_process_channel(struct efx_channel
*channel
, int budget
)
248 struct efx_tx_queue
*tx_queue
;
251 if (unlikely(!channel
->enabled
))
254 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
255 tx_queue
->pkts_compl
= 0;
256 tx_queue
->bytes_compl
= 0;
259 spent
= efx_nic_process_eventq(channel
, budget
);
260 if (spent
&& efx_channel_has_rx_queue(channel
)) {
261 struct efx_rx_queue
*rx_queue
=
262 efx_channel_get_rx_queue(channel
);
264 efx_rx_flush_packet(channel
);
265 efx_fast_push_rx_descriptors(rx_queue
, true);
269 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
270 if (tx_queue
->bytes_compl
) {
271 netdev_tx_completed_queue(tx_queue
->core_txq
,
272 tx_queue
->pkts_compl
, tx_queue
->bytes_compl
);
281 * NAPI guarantees serialisation of polls of the same device, which
282 * provides the guarantee required by efx_process_channel().
284 static int efx_poll(struct napi_struct
*napi
, int budget
)
286 struct efx_channel
*channel
=
287 container_of(napi
, struct efx_channel
, napi_str
);
288 struct efx_nic
*efx
= channel
->efx
;
291 if (!efx_channel_lock_napi(channel
))
294 netif_vdbg(efx
, intr
, efx
->net_dev
,
295 "channel %d NAPI poll executing on CPU %d\n",
296 channel
->channel
, raw_smp_processor_id());
298 spent
= efx_process_channel(channel
, budget
);
300 if (spent
< budget
) {
301 if (efx_channel_has_rx_queue(channel
) &&
302 efx
->irq_rx_adaptive
&&
303 unlikely(++channel
->irq_count
== 1000)) {
304 if (unlikely(channel
->irq_mod_score
<
305 irq_adapt_low_thresh
)) {
306 if (channel
->irq_moderation
> 1) {
307 channel
->irq_moderation
-= 1;
308 efx
->type
->push_irq_moderation(channel
);
310 } else if (unlikely(channel
->irq_mod_score
>
311 irq_adapt_high_thresh
)) {
312 if (channel
->irq_moderation
<
313 efx
->irq_rx_moderation
) {
314 channel
->irq_moderation
+= 1;
315 efx
->type
->push_irq_moderation(channel
);
318 channel
->irq_count
= 0;
319 channel
->irq_mod_score
= 0;
322 efx_filter_rfs_expire(channel
);
324 /* There is no race here; although napi_disable() will
325 * only wait for napi_complete(), this isn't a problem
326 * since efx_nic_eventq_read_ack() will have no effect if
327 * interrupts have already been disabled.
330 efx_nic_eventq_read_ack(channel
);
333 efx_channel_unlock_napi(channel
);
337 /* Create event queue
338 * Event queue memory allocations are done only once. If the channel
339 * is reset, the memory buffer will be reused; this guards against
340 * errors during channel reset and also simplifies interrupt handling.
342 static int efx_probe_eventq(struct efx_channel
*channel
)
344 struct efx_nic
*efx
= channel
->efx
;
345 unsigned long entries
;
347 netif_dbg(efx
, probe
, efx
->net_dev
,
348 "chan %d create event queue\n", channel
->channel
);
350 /* Build an event queue with room for one event per tx and rx buffer,
351 * plus some extra for link state events and MCDI completions. */
352 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
353 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_EVQ_SIZE
);
354 channel
->eventq_mask
= max(entries
, EFX_MIN_EVQ_SIZE
) - 1;
356 return efx_nic_probe_eventq(channel
);
359 /* Prepare channel's event queue */
360 static int efx_init_eventq(struct efx_channel
*channel
)
362 struct efx_nic
*efx
= channel
->efx
;
365 EFX_WARN_ON_PARANOID(channel
->eventq_init
);
367 netif_dbg(efx
, drv
, efx
->net_dev
,
368 "chan %d init event queue\n", channel
->channel
);
370 rc
= efx_nic_init_eventq(channel
);
372 efx
->type
->push_irq_moderation(channel
);
373 channel
->eventq_read_ptr
= 0;
374 channel
->eventq_init
= true;
379 /* Enable event queue processing and NAPI */
380 void efx_start_eventq(struct efx_channel
*channel
)
382 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
383 "chan %d start event queue\n", channel
->channel
);
385 /* Make sure the NAPI handler sees the enabled flag set */
386 channel
->enabled
= true;
389 efx_channel_enable(channel
);
390 napi_enable(&channel
->napi_str
);
391 efx_nic_eventq_read_ack(channel
);
394 /* Disable event queue processing and NAPI */
395 void efx_stop_eventq(struct efx_channel
*channel
)
397 if (!channel
->enabled
)
400 napi_disable(&channel
->napi_str
);
401 while (!efx_channel_disable(channel
))
402 usleep_range(1000, 20000);
403 channel
->enabled
= false;
406 static void efx_fini_eventq(struct efx_channel
*channel
)
408 if (!channel
->eventq_init
)
411 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
412 "chan %d fini event queue\n", channel
->channel
);
414 efx_nic_fini_eventq(channel
);
415 channel
->eventq_init
= false;
418 static void efx_remove_eventq(struct efx_channel
*channel
)
420 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
421 "chan %d remove event queue\n", channel
->channel
);
423 efx_nic_remove_eventq(channel
);
426 /**************************************************************************
430 *************************************************************************/
432 /* Allocate and initialise a channel structure. */
433 static struct efx_channel
*
434 efx_alloc_channel(struct efx_nic
*efx
, int i
, struct efx_channel
*old_channel
)
436 struct efx_channel
*channel
;
437 struct efx_rx_queue
*rx_queue
;
438 struct efx_tx_queue
*tx_queue
;
441 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
446 channel
->channel
= i
;
447 channel
->type
= &efx_default_channel_type
;
449 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
450 tx_queue
= &channel
->tx_queue
[j
];
452 tx_queue
->queue
= i
* EFX_TXQ_TYPES
+ j
;
453 tx_queue
->channel
= channel
;
456 rx_queue
= &channel
->rx_queue
;
458 setup_timer(&rx_queue
->slow_fill
, efx_rx_slow_fill
,
459 (unsigned long)rx_queue
);
464 /* Allocate and initialise a channel structure, copying parameters
465 * (but not resources) from an old channel structure.
467 static struct efx_channel
*
468 efx_copy_channel(const struct efx_channel
*old_channel
)
470 struct efx_channel
*channel
;
471 struct efx_rx_queue
*rx_queue
;
472 struct efx_tx_queue
*tx_queue
;
475 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
479 *channel
= *old_channel
;
481 channel
->napi_dev
= NULL
;
482 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
484 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
485 tx_queue
= &channel
->tx_queue
[j
];
486 if (tx_queue
->channel
)
487 tx_queue
->channel
= channel
;
488 tx_queue
->buffer
= NULL
;
489 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
492 rx_queue
= &channel
->rx_queue
;
493 rx_queue
->buffer
= NULL
;
494 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
495 setup_timer(&rx_queue
->slow_fill
, efx_rx_slow_fill
,
496 (unsigned long)rx_queue
);
501 static int efx_probe_channel(struct efx_channel
*channel
)
503 struct efx_tx_queue
*tx_queue
;
504 struct efx_rx_queue
*rx_queue
;
507 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
508 "creating channel %d\n", channel
->channel
);
510 rc
= channel
->type
->pre_probe(channel
);
514 rc
= efx_probe_eventq(channel
);
518 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
519 rc
= efx_probe_tx_queue(tx_queue
);
524 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
525 rc
= efx_probe_rx_queue(rx_queue
);
533 efx_remove_channel(channel
);
538 efx_get_channel_name(struct efx_channel
*channel
, char *buf
, size_t len
)
540 struct efx_nic
*efx
= channel
->efx
;
544 number
= channel
->channel
;
545 if (efx
->tx_channel_offset
== 0) {
547 } else if (channel
->channel
< efx
->tx_channel_offset
) {
551 number
-= efx
->tx_channel_offset
;
553 snprintf(buf
, len
, "%s%s-%d", efx
->name
, type
, number
);
556 static void efx_set_channel_names(struct efx_nic
*efx
)
558 struct efx_channel
*channel
;
560 efx_for_each_channel(channel
, efx
)
561 channel
->type
->get_name(channel
,
562 efx
->msi_context
[channel
->channel
].name
,
563 sizeof(efx
->msi_context
[0].name
));
566 static int efx_probe_channels(struct efx_nic
*efx
)
568 struct efx_channel
*channel
;
571 /* Restart special buffer allocation */
572 efx
->next_buffer_table
= 0;
574 /* Probe channels in reverse, so that any 'extra' channels
575 * use the start of the buffer table. This allows the traffic
576 * channels to be resized without moving them or wasting the
577 * entries before them.
579 efx_for_each_channel_rev(channel
, efx
) {
580 rc
= efx_probe_channel(channel
);
582 netif_err(efx
, probe
, efx
->net_dev
,
583 "failed to create channel %d\n",
588 efx_set_channel_names(efx
);
593 efx_remove_channels(efx
);
597 /* Channels are shutdown and reinitialised whilst the NIC is running
598 * to propagate configuration changes (mtu, checksum offload), or
599 * to clear hardware error conditions
601 static void efx_start_datapath(struct efx_nic
*efx
)
603 bool old_rx_scatter
= efx
->rx_scatter
;
604 struct efx_tx_queue
*tx_queue
;
605 struct efx_rx_queue
*rx_queue
;
606 struct efx_channel
*channel
;
609 /* Calculate the rx buffer allocation parameters required to
610 * support the current MTU, including padding for header
611 * alignment and overruns.
613 efx
->rx_dma_len
= (efx
->rx_prefix_size
+
614 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
615 efx
->type
->rx_buffer_padding
);
616 rx_buf_len
= (sizeof(struct efx_rx_page_state
) +
617 efx
->rx_ip_align
+ efx
->rx_dma_len
);
618 if (rx_buf_len
<= PAGE_SIZE
) {
619 efx
->rx_scatter
= efx
->type
->always_rx_scatter
;
620 efx
->rx_buffer_order
= 0;
621 } else if (efx
->type
->can_rx_scatter
) {
622 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE
% L1_CACHE_BYTES
);
623 BUILD_BUG_ON(sizeof(struct efx_rx_page_state
) +
624 2 * ALIGN(NET_IP_ALIGN
+ EFX_RX_USR_BUF_SIZE
,
625 EFX_RX_BUF_ALIGNMENT
) >
627 efx
->rx_scatter
= true;
628 efx
->rx_dma_len
= EFX_RX_USR_BUF_SIZE
;
629 efx
->rx_buffer_order
= 0;
631 efx
->rx_scatter
= false;
632 efx
->rx_buffer_order
= get_order(rx_buf_len
);
635 efx_rx_config_page_split(efx
);
636 if (efx
->rx_buffer_order
)
637 netif_dbg(efx
, drv
, efx
->net_dev
,
638 "RX buf len=%u; page order=%u batch=%u\n",
639 efx
->rx_dma_len
, efx
->rx_buffer_order
,
640 efx
->rx_pages_per_batch
);
642 netif_dbg(efx
, drv
, efx
->net_dev
,
643 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
644 efx
->rx_dma_len
, efx
->rx_page_buf_step
,
645 efx
->rx_bufs_per_page
, efx
->rx_pages_per_batch
);
647 /* RX filters may also have scatter-enabled flags */
648 if (efx
->rx_scatter
!= old_rx_scatter
)
649 efx
->type
->filter_update_rx_scatter(efx
);
651 /* We must keep at least one descriptor in a TX ring empty.
652 * We could avoid this when the queue size does not exactly
653 * match the hardware ring size, but it's not that important.
654 * Therefore we stop the queue when one more skb might fill
655 * the ring completely. We wake it when half way back to
658 efx
->txq_stop_thresh
= efx
->txq_entries
- efx_tx_max_skb_descs(efx
);
659 efx
->txq_wake_thresh
= efx
->txq_stop_thresh
/ 2;
661 /* Initialise the channels */
662 efx_for_each_channel(channel
, efx
) {
663 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
664 efx_init_tx_queue(tx_queue
);
665 atomic_inc(&efx
->active_queues
);
668 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
669 efx_init_rx_queue(rx_queue
);
670 atomic_inc(&efx
->active_queues
);
671 efx_stop_eventq(channel
);
672 efx_fast_push_rx_descriptors(rx_queue
, false);
673 efx_start_eventq(channel
);
676 WARN_ON(channel
->rx_pkt_n_frags
);
679 efx_ptp_start_datapath(efx
);
681 if (netif_device_present(efx
->net_dev
))
682 netif_tx_wake_all_queues(efx
->net_dev
);
685 static void efx_stop_datapath(struct efx_nic
*efx
)
687 struct efx_channel
*channel
;
688 struct efx_tx_queue
*tx_queue
;
689 struct efx_rx_queue
*rx_queue
;
692 EFX_ASSERT_RESET_SERIALISED(efx
);
693 BUG_ON(efx
->port_enabled
);
695 efx_ptp_stop_datapath(efx
);
698 efx_for_each_channel(channel
, efx
) {
699 efx_for_each_channel_rx_queue(rx_queue
, channel
)
700 rx_queue
->refill_enabled
= false;
703 efx_for_each_channel(channel
, efx
) {
704 /* RX packet processing is pipelined, so wait for the
705 * NAPI handler to complete. At least event queue 0
706 * might be kept active by non-data events, so don't
707 * use napi_synchronize() but actually disable NAPI
710 if (efx_channel_has_rx_queue(channel
)) {
711 efx_stop_eventq(channel
);
712 efx_start_eventq(channel
);
716 rc
= efx
->type
->fini_dmaq(efx
);
717 if (rc
&& EFX_WORKAROUND_7803(efx
)) {
718 /* Schedule a reset to recover from the flush failure. The
719 * descriptor caches reference memory we're about to free,
720 * but falcon_reconfigure_mac_wrapper() won't reconnect
721 * the MACs because of the pending reset.
723 netif_err(efx
, drv
, efx
->net_dev
,
724 "Resetting to recover from flush failure\n");
725 efx_schedule_reset(efx
, RESET_TYPE_ALL
);
727 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
729 netif_dbg(efx
, drv
, efx
->net_dev
,
730 "successfully flushed all queues\n");
733 efx_for_each_channel(channel
, efx
) {
734 efx_for_each_channel_rx_queue(rx_queue
, channel
)
735 efx_fini_rx_queue(rx_queue
);
736 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
737 efx_fini_tx_queue(tx_queue
);
741 static void efx_remove_channel(struct efx_channel
*channel
)
743 struct efx_tx_queue
*tx_queue
;
744 struct efx_rx_queue
*rx_queue
;
746 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
747 "destroy chan %d\n", channel
->channel
);
749 efx_for_each_channel_rx_queue(rx_queue
, channel
)
750 efx_remove_rx_queue(rx_queue
);
751 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
752 efx_remove_tx_queue(tx_queue
);
753 efx_remove_eventq(channel
);
754 channel
->type
->post_remove(channel
);
757 static void efx_remove_channels(struct efx_nic
*efx
)
759 struct efx_channel
*channel
;
761 efx_for_each_channel(channel
, efx
)
762 efx_remove_channel(channel
);
766 efx_realloc_channels(struct efx_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
768 struct efx_channel
*other_channel
[EFX_MAX_CHANNELS
], *channel
;
769 u32 old_rxq_entries
, old_txq_entries
;
770 unsigned i
, next_buffer_table
= 0;
773 rc
= efx_check_disabled(efx
);
777 /* Not all channels should be reallocated. We must avoid
778 * reallocating their buffer table entries.
780 efx_for_each_channel(channel
, efx
) {
781 struct efx_rx_queue
*rx_queue
;
782 struct efx_tx_queue
*tx_queue
;
784 if (channel
->type
->copy
)
786 next_buffer_table
= max(next_buffer_table
,
787 channel
->eventq
.index
+
788 channel
->eventq
.entries
);
789 efx_for_each_channel_rx_queue(rx_queue
, channel
)
790 next_buffer_table
= max(next_buffer_table
,
791 rx_queue
->rxd
.index
+
792 rx_queue
->rxd
.entries
);
793 efx_for_each_channel_tx_queue(tx_queue
, channel
)
794 next_buffer_table
= max(next_buffer_table
,
795 tx_queue
->txd
.index
+
796 tx_queue
->txd
.entries
);
799 efx_device_detach_sync(efx
);
801 efx_soft_disable_interrupts(efx
);
803 /* Clone channels (where possible) */
804 memset(other_channel
, 0, sizeof(other_channel
));
805 for (i
= 0; i
< efx
->n_channels
; i
++) {
806 channel
= efx
->channel
[i
];
807 if (channel
->type
->copy
)
808 channel
= channel
->type
->copy(channel
);
813 other_channel
[i
] = channel
;
816 /* Swap entry counts and channel pointers */
817 old_rxq_entries
= efx
->rxq_entries
;
818 old_txq_entries
= efx
->txq_entries
;
819 efx
->rxq_entries
= rxq_entries
;
820 efx
->txq_entries
= txq_entries
;
821 for (i
= 0; i
< efx
->n_channels
; i
++) {
822 channel
= efx
->channel
[i
];
823 efx
->channel
[i
] = other_channel
[i
];
824 other_channel
[i
] = channel
;
827 /* Restart buffer table allocation */
828 efx
->next_buffer_table
= next_buffer_table
;
830 for (i
= 0; i
< efx
->n_channels
; i
++) {
831 channel
= efx
->channel
[i
];
832 if (!channel
->type
->copy
)
834 rc
= efx_probe_channel(channel
);
837 efx_init_napi_channel(efx
->channel
[i
]);
841 /* Destroy unused channel structures */
842 for (i
= 0; i
< efx
->n_channels
; i
++) {
843 channel
= other_channel
[i
];
844 if (channel
&& channel
->type
->copy
) {
845 efx_fini_napi_channel(channel
);
846 efx_remove_channel(channel
);
851 rc2
= efx_soft_enable_interrupts(efx
);
854 netif_err(efx
, drv
, efx
->net_dev
,
855 "unable to restart interrupts on channel reallocation\n");
856 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
859 netif_device_attach(efx
->net_dev
);
865 efx
->rxq_entries
= old_rxq_entries
;
866 efx
->txq_entries
= old_txq_entries
;
867 for (i
= 0; i
< efx
->n_channels
; i
++) {
868 channel
= efx
->channel
[i
];
869 efx
->channel
[i
] = other_channel
[i
];
870 other_channel
[i
] = channel
;
875 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
)
877 mod_timer(&rx_queue
->slow_fill
, jiffies
+ msecs_to_jiffies(100));
880 static const struct efx_channel_type efx_default_channel_type
= {
881 .pre_probe
= efx_channel_dummy_op_int
,
882 .post_remove
= efx_channel_dummy_op_void
,
883 .get_name
= efx_get_channel_name
,
884 .copy
= efx_copy_channel
,
885 .keep_eventq
= false,
888 int efx_channel_dummy_op_int(struct efx_channel
*channel
)
893 void efx_channel_dummy_op_void(struct efx_channel
*channel
)
897 /**************************************************************************
901 **************************************************************************/
903 /* This ensures that the kernel is kept informed (via
904 * netif_carrier_on/off) of the link status, and also maintains the
905 * link status's stop on the port's TX queue.
907 void efx_link_status_changed(struct efx_nic
*efx
)
909 struct efx_link_state
*link_state
= &efx
->link_state
;
911 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
912 * that no events are triggered between unregister_netdev() and the
913 * driver unloading. A more general condition is that NETDEV_CHANGE
914 * can only be generated between NETDEV_UP and NETDEV_DOWN */
915 if (!netif_running(efx
->net_dev
))
918 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
919 efx
->n_link_state_changes
++;
922 netif_carrier_on(efx
->net_dev
);
924 netif_carrier_off(efx
->net_dev
);
927 /* Status message for kernel log */
929 netif_info(efx
, link
, efx
->net_dev
,
930 "link up at %uMbps %s-duplex (MTU %d)\n",
931 link_state
->speed
, link_state
->fd
? "full" : "half",
934 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
937 void efx_link_set_advertising(struct efx_nic
*efx
, u32 advertising
)
939 efx
->link_advertising
= advertising
;
941 if (advertising
& ADVERTISED_Pause
)
942 efx
->wanted_fc
|= (EFX_FC_TX
| EFX_FC_RX
);
944 efx
->wanted_fc
&= ~(EFX_FC_TX
| EFX_FC_RX
);
945 if (advertising
& ADVERTISED_Asym_Pause
)
946 efx
->wanted_fc
^= EFX_FC_TX
;
950 void efx_link_set_wanted_fc(struct efx_nic
*efx
, u8 wanted_fc
)
952 efx
->wanted_fc
= wanted_fc
;
953 if (efx
->link_advertising
) {
954 if (wanted_fc
& EFX_FC_RX
)
955 efx
->link_advertising
|= (ADVERTISED_Pause
|
956 ADVERTISED_Asym_Pause
);
958 efx
->link_advertising
&= ~(ADVERTISED_Pause
|
959 ADVERTISED_Asym_Pause
);
960 if (wanted_fc
& EFX_FC_TX
)
961 efx
->link_advertising
^= ADVERTISED_Asym_Pause
;
965 static void efx_fini_port(struct efx_nic
*efx
);
967 /* We assume that efx->type->reconfigure_mac will always try to sync RX
968 * filters and therefore needs to read-lock the filter table against freeing
970 void efx_mac_reconfigure(struct efx_nic
*efx
)
972 down_read(&efx
->filter_sem
);
973 efx
->type
->reconfigure_mac(efx
);
974 up_read(&efx
->filter_sem
);
977 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
978 * the MAC appropriately. All other PHY configuration changes are pushed
979 * through phy_op->set_settings(), and pushed asynchronously to the MAC
980 * through efx_monitor().
982 * Callers must hold the mac_lock
984 int __efx_reconfigure_port(struct efx_nic
*efx
)
986 enum efx_phy_mode phy_mode
;
989 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
991 /* Disable PHY transmit in mac level loopbacks */
992 phy_mode
= efx
->phy_mode
;
993 if (LOOPBACK_INTERNAL(efx
))
994 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
996 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
998 rc
= efx
->type
->reconfigure_port(efx
);
1001 efx
->phy_mode
= phy_mode
;
1006 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1008 int efx_reconfigure_port(struct efx_nic
*efx
)
1012 EFX_ASSERT_RESET_SERIALISED(efx
);
1014 mutex_lock(&efx
->mac_lock
);
1015 rc
= __efx_reconfigure_port(efx
);
1016 mutex_unlock(&efx
->mac_lock
);
1021 /* Asynchronous work item for changing MAC promiscuity and multicast
1022 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1024 static void efx_mac_work(struct work_struct
*data
)
1026 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
1028 mutex_lock(&efx
->mac_lock
);
1029 if (efx
->port_enabled
)
1030 efx_mac_reconfigure(efx
);
1031 mutex_unlock(&efx
->mac_lock
);
1034 static int efx_probe_port(struct efx_nic
*efx
)
1038 netif_dbg(efx
, probe
, efx
->net_dev
, "create port\n");
1041 efx
->phy_mode
= PHY_MODE_SPECIAL
;
1043 /* Connect up MAC/PHY operations table */
1044 rc
= efx
->type
->probe_port(efx
);
1048 /* Initialise MAC address to permanent address */
1049 ether_addr_copy(efx
->net_dev
->dev_addr
, efx
->net_dev
->perm_addr
);
1054 static int efx_init_port(struct efx_nic
*efx
)
1058 netif_dbg(efx
, drv
, efx
->net_dev
, "init port\n");
1060 mutex_lock(&efx
->mac_lock
);
1062 rc
= efx
->phy_op
->init(efx
);
1066 efx
->port_initialized
= true;
1068 /* Reconfigure the MAC before creating dma queues (required for
1069 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1070 efx_mac_reconfigure(efx
);
1072 /* Ensure the PHY advertises the correct flow control settings */
1073 rc
= efx
->phy_op
->reconfigure(efx
);
1074 if (rc
&& rc
!= -EPERM
)
1077 mutex_unlock(&efx
->mac_lock
);
1081 efx
->phy_op
->fini(efx
);
1083 mutex_unlock(&efx
->mac_lock
);
1087 static void efx_start_port(struct efx_nic
*efx
)
1089 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
1090 BUG_ON(efx
->port_enabled
);
1092 mutex_lock(&efx
->mac_lock
);
1093 efx
->port_enabled
= true;
1095 /* Ensure MAC ingress/egress is enabled */
1096 efx_mac_reconfigure(efx
);
1098 mutex_unlock(&efx
->mac_lock
);
1101 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1102 * and the async self-test, wait for them to finish and prevent them
1103 * being scheduled again. This doesn't cover online resets, which
1104 * should only be cancelled when removing the device.
1106 static void efx_stop_port(struct efx_nic
*efx
)
1108 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
1110 EFX_ASSERT_RESET_SERIALISED(efx
);
1112 mutex_lock(&efx
->mac_lock
);
1113 efx
->port_enabled
= false;
1114 mutex_unlock(&efx
->mac_lock
);
1116 /* Serialise against efx_set_multicast_list() */
1117 netif_addr_lock_bh(efx
->net_dev
);
1118 netif_addr_unlock_bh(efx
->net_dev
);
1120 cancel_delayed_work_sync(&efx
->monitor_work
);
1121 efx_selftest_async_cancel(efx
);
1122 cancel_work_sync(&efx
->mac_work
);
1125 static void efx_fini_port(struct efx_nic
*efx
)
1127 netif_dbg(efx
, drv
, efx
->net_dev
, "shut down port\n");
1129 if (!efx
->port_initialized
)
1132 efx
->phy_op
->fini(efx
);
1133 efx
->port_initialized
= false;
1135 efx
->link_state
.up
= false;
1136 efx_link_status_changed(efx
);
1139 static void efx_remove_port(struct efx_nic
*efx
)
1141 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying port\n");
1143 efx
->type
->remove_port(efx
);
1146 /**************************************************************************
1150 **************************************************************************/
1152 static LIST_HEAD(efx_primary_list
);
1153 static LIST_HEAD(efx_unassociated_list
);
1155 static bool efx_same_controller(struct efx_nic
*left
, struct efx_nic
*right
)
1157 return left
->type
== right
->type
&&
1158 left
->vpd_sn
&& right
->vpd_sn
&&
1159 !strcmp(left
->vpd_sn
, right
->vpd_sn
);
1162 static void efx_associate(struct efx_nic
*efx
)
1164 struct efx_nic
*other
, *next
;
1166 if (efx
->primary
== efx
) {
1167 /* Adding primary function; look for secondaries */
1169 netif_dbg(efx
, probe
, efx
->net_dev
, "adding to primary list\n");
1170 list_add_tail(&efx
->node
, &efx_primary_list
);
1172 list_for_each_entry_safe(other
, next
, &efx_unassociated_list
,
1174 if (efx_same_controller(efx
, other
)) {
1175 list_del(&other
->node
);
1176 netif_dbg(other
, probe
, other
->net_dev
,
1177 "moving to secondary list of %s %s\n",
1178 pci_name(efx
->pci_dev
),
1179 efx
->net_dev
->name
);
1180 list_add_tail(&other
->node
,
1181 &efx
->secondary_list
);
1182 other
->primary
= efx
;
1186 /* Adding secondary function; look for primary */
1188 list_for_each_entry(other
, &efx_primary_list
, node
) {
1189 if (efx_same_controller(efx
, other
)) {
1190 netif_dbg(efx
, probe
, efx
->net_dev
,
1191 "adding to secondary list of %s %s\n",
1192 pci_name(other
->pci_dev
),
1193 other
->net_dev
->name
);
1194 list_add_tail(&efx
->node
,
1195 &other
->secondary_list
);
1196 efx
->primary
= other
;
1201 netif_dbg(efx
, probe
, efx
->net_dev
,
1202 "adding to unassociated list\n");
1203 list_add_tail(&efx
->node
, &efx_unassociated_list
);
1207 static void efx_dissociate(struct efx_nic
*efx
)
1209 struct efx_nic
*other
, *next
;
1211 list_del(&efx
->node
);
1212 efx
->primary
= NULL
;
1214 list_for_each_entry_safe(other
, next
, &efx
->secondary_list
, node
) {
1215 list_del(&other
->node
);
1216 netif_dbg(other
, probe
, other
->net_dev
,
1217 "moving to unassociated list\n");
1218 list_add_tail(&other
->node
, &efx_unassociated_list
);
1219 other
->primary
= NULL
;
1223 /* This configures the PCI device to enable I/O and DMA. */
1224 static int efx_init_io(struct efx_nic
*efx
)
1226 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1227 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
1228 unsigned int mem_map_size
= efx
->type
->mem_map_size(efx
);
1231 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
1233 bar
= efx
->type
->mem_bar
;
1235 rc
= pci_enable_device(pci_dev
);
1237 netif_err(efx
, probe
, efx
->net_dev
,
1238 "failed to enable PCI device\n");
1242 pci_set_master(pci_dev
);
1244 /* Set the PCI DMA mask. Try all possibilities from our
1245 * genuine mask down to 32 bits, because some architectures
1246 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1247 * masks event though they reject 46 bit masks.
1249 while (dma_mask
> 0x7fffffffUL
) {
1250 rc
= dma_set_mask_and_coherent(&pci_dev
->dev
, dma_mask
);
1256 netif_err(efx
, probe
, efx
->net_dev
,
1257 "could not find a suitable DMA mask\n");
1260 netif_dbg(efx
, probe
, efx
->net_dev
,
1261 "using DMA mask %llx\n", (unsigned long long) dma_mask
);
1263 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, bar
);
1264 rc
= pci_request_region(pci_dev
, bar
, "sfc");
1266 netif_err(efx
, probe
, efx
->net_dev
,
1267 "request for memory BAR failed\n");
1271 efx
->membase
= ioremap_nocache(efx
->membase_phys
, mem_map_size
);
1272 if (!efx
->membase
) {
1273 netif_err(efx
, probe
, efx
->net_dev
,
1274 "could not map memory BAR at %llx+%x\n",
1275 (unsigned long long)efx
->membase_phys
, mem_map_size
);
1279 netif_dbg(efx
, probe
, efx
->net_dev
,
1280 "memory BAR at %llx+%x (virtual %p)\n",
1281 (unsigned long long)efx
->membase_phys
, mem_map_size
,
1287 pci_release_region(efx
->pci_dev
, bar
);
1289 efx
->membase_phys
= 0;
1291 pci_disable_device(efx
->pci_dev
);
1296 static void efx_fini_io(struct efx_nic
*efx
)
1300 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1303 iounmap(efx
->membase
);
1304 efx
->membase
= NULL
;
1307 if (efx
->membase_phys
) {
1308 bar
= efx
->type
->mem_bar
;
1309 pci_release_region(efx
->pci_dev
, bar
);
1310 efx
->membase_phys
= 0;
1313 /* Don't disable bus-mastering if VFs are assigned */
1314 if (!pci_vfs_assigned(efx
->pci_dev
))
1315 pci_disable_device(efx
->pci_dev
);
1318 void efx_set_default_rx_indir_table(struct efx_nic
*efx
)
1322 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); i
++)
1323 efx
->rx_indir_table
[i
] =
1324 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
1327 static unsigned int efx_wanted_parallelism(struct efx_nic
*efx
)
1329 cpumask_var_t thread_mask
;
1336 if (unlikely(!zalloc_cpumask_var(&thread_mask
, GFP_KERNEL
))) {
1337 netif_warn(efx
, probe
, efx
->net_dev
,
1338 "RSS disabled due to allocation failure\n");
1343 for_each_online_cpu(cpu
) {
1344 if (!cpumask_test_cpu(cpu
, thread_mask
)) {
1346 cpumask_or(thread_mask
, thread_mask
,
1347 topology_sibling_cpumask(cpu
));
1351 free_cpumask_var(thread_mask
);
1354 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1355 * table entries that are inaccessible to VFs
1357 #ifdef CONFIG_SFC_SRIOV
1358 if (efx
->type
->sriov_wanted
) {
1359 if (efx
->type
->sriov_wanted(efx
) && efx_vf_size(efx
) > 1 &&
1360 count
> efx_vf_size(efx
)) {
1361 netif_warn(efx
, probe
, efx
->net_dev
,
1362 "Reducing number of RSS channels from %u to %u for "
1363 "VF support. Increase vf-msix-limit to use more "
1364 "channels on the PF.\n",
1365 count
, efx_vf_size(efx
));
1366 count
= efx_vf_size(efx
);
1374 /* Probe the number and type of interrupts we are able to obtain, and
1375 * the resulting numbers of channels and RX queues.
1377 static int efx_probe_interrupts(struct efx_nic
*efx
)
1379 unsigned int extra_channels
= 0;
1383 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++)
1384 if (efx
->extra_channel_type
[i
])
1387 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
1388 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
1389 unsigned int n_channels
;
1391 n_channels
= efx_wanted_parallelism(efx
);
1392 if (efx_separate_tx_channels
)
1394 n_channels
+= extra_channels
;
1395 n_channels
= min(n_channels
, efx
->max_channels
);
1397 for (i
= 0; i
< n_channels
; i
++)
1398 xentries
[i
].entry
= i
;
1399 rc
= pci_enable_msix_range(efx
->pci_dev
,
1400 xentries
, 1, n_channels
);
1402 /* Fall back to single channel MSI */
1403 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
1404 netif_err(efx
, drv
, efx
->net_dev
,
1405 "could not enable MSI-X\n");
1406 } else if (rc
< n_channels
) {
1407 netif_err(efx
, drv
, efx
->net_dev
,
1408 "WARNING: Insufficient MSI-X vectors"
1409 " available (%d < %u).\n", rc
, n_channels
);
1410 netif_err(efx
, drv
, efx
->net_dev
,
1411 "WARNING: Performance may be reduced.\n");
1416 efx
->n_channels
= n_channels
;
1417 if (n_channels
> extra_channels
)
1418 n_channels
-= extra_channels
;
1419 if (efx_separate_tx_channels
) {
1420 efx
->n_tx_channels
= min(max(n_channels
/ 2,
1422 efx
->max_tx_channels
);
1423 efx
->n_rx_channels
= max(n_channels
-
1427 efx
->n_tx_channels
= min(n_channels
,
1428 efx
->max_tx_channels
);
1429 efx
->n_rx_channels
= n_channels
;
1431 for (i
= 0; i
< efx
->n_channels
; i
++)
1432 efx_get_channel(efx
, i
)->irq
=
1437 /* Try single interrupt MSI */
1438 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
1439 efx
->n_channels
= 1;
1440 efx
->n_rx_channels
= 1;
1441 efx
->n_tx_channels
= 1;
1442 rc
= pci_enable_msi(efx
->pci_dev
);
1444 efx_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
1446 netif_err(efx
, drv
, efx
->net_dev
,
1447 "could not enable MSI\n");
1448 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
1452 /* Assume legacy interrupts */
1453 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
1454 efx
->n_channels
= 1 + (efx_separate_tx_channels
? 1 : 0);
1455 efx
->n_rx_channels
= 1;
1456 efx
->n_tx_channels
= 1;
1457 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1460 /* Assign extra channels if possible */
1461 j
= efx
->n_channels
;
1462 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++) {
1463 if (!efx
->extra_channel_type
[i
])
1465 if (efx
->interrupt_mode
!= EFX_INT_MODE_MSIX
||
1466 efx
->n_channels
<= extra_channels
) {
1467 efx
->extra_channel_type
[i
]->handle_no_channel(efx
);
1470 efx_get_channel(efx
, j
)->type
=
1471 efx
->extra_channel_type
[i
];
1475 /* RSS might be usable on VFs even if it is disabled on the PF */
1476 #ifdef CONFIG_SFC_SRIOV
1477 if (efx
->type
->sriov_wanted
) {
1478 efx
->rss_spread
= ((efx
->n_rx_channels
> 1 ||
1479 !efx
->type
->sriov_wanted(efx
)) ?
1480 efx
->n_rx_channels
: efx_vf_size(efx
));
1484 efx
->rss_spread
= efx
->n_rx_channels
;
1489 static int efx_soft_enable_interrupts(struct efx_nic
*efx
)
1491 struct efx_channel
*channel
, *end_channel
;
1494 BUG_ON(efx
->state
== STATE_DISABLED
);
1496 efx
->irq_soft_enabled
= true;
1499 efx_for_each_channel(channel
, efx
) {
1500 if (!channel
->type
->keep_eventq
) {
1501 rc
= efx_init_eventq(channel
);
1505 efx_start_eventq(channel
);
1508 efx_mcdi_mode_event(efx
);
1512 end_channel
= channel
;
1513 efx_for_each_channel(channel
, efx
) {
1514 if (channel
== end_channel
)
1516 efx_stop_eventq(channel
);
1517 if (!channel
->type
->keep_eventq
)
1518 efx_fini_eventq(channel
);
1524 static void efx_soft_disable_interrupts(struct efx_nic
*efx
)
1526 struct efx_channel
*channel
;
1528 if (efx
->state
== STATE_DISABLED
)
1531 efx_mcdi_mode_poll(efx
);
1533 efx
->irq_soft_enabled
= false;
1536 if (efx
->legacy_irq
)
1537 synchronize_irq(efx
->legacy_irq
);
1539 efx_for_each_channel(channel
, efx
) {
1541 synchronize_irq(channel
->irq
);
1543 efx_stop_eventq(channel
);
1544 if (!channel
->type
->keep_eventq
)
1545 efx_fini_eventq(channel
);
1548 /* Flush the asynchronous MCDI request queue */
1549 efx_mcdi_flush_async(efx
);
1552 static int efx_enable_interrupts(struct efx_nic
*efx
)
1554 struct efx_channel
*channel
, *end_channel
;
1557 BUG_ON(efx
->state
== STATE_DISABLED
);
1559 if (efx
->eeh_disabled_legacy_irq
) {
1560 enable_irq(efx
->legacy_irq
);
1561 efx
->eeh_disabled_legacy_irq
= false;
1564 efx
->type
->irq_enable_master(efx
);
1566 efx_for_each_channel(channel
, efx
) {
1567 if (channel
->type
->keep_eventq
) {
1568 rc
= efx_init_eventq(channel
);
1574 rc
= efx_soft_enable_interrupts(efx
);
1581 end_channel
= channel
;
1582 efx_for_each_channel(channel
, efx
) {
1583 if (channel
== end_channel
)
1585 if (channel
->type
->keep_eventq
)
1586 efx_fini_eventq(channel
);
1589 efx
->type
->irq_disable_non_ev(efx
);
1594 static void efx_disable_interrupts(struct efx_nic
*efx
)
1596 struct efx_channel
*channel
;
1598 efx_soft_disable_interrupts(efx
);
1600 efx_for_each_channel(channel
, efx
) {
1601 if (channel
->type
->keep_eventq
)
1602 efx_fini_eventq(channel
);
1605 efx
->type
->irq_disable_non_ev(efx
);
1608 static void efx_remove_interrupts(struct efx_nic
*efx
)
1610 struct efx_channel
*channel
;
1612 /* Remove MSI/MSI-X interrupts */
1613 efx_for_each_channel(channel
, efx
)
1615 pci_disable_msi(efx
->pci_dev
);
1616 pci_disable_msix(efx
->pci_dev
);
1618 /* Remove legacy interrupt */
1619 efx
->legacy_irq
= 0;
1622 static void efx_set_channels(struct efx_nic
*efx
)
1624 struct efx_channel
*channel
;
1625 struct efx_tx_queue
*tx_queue
;
1627 efx
->tx_channel_offset
=
1628 efx_separate_tx_channels
?
1629 efx
->n_channels
- efx
->n_tx_channels
: 0;
1631 /* We need to mark which channels really have RX and TX
1632 * queues, and adjust the TX queue numbers if we have separate
1633 * RX-only and TX-only channels.
1635 efx_for_each_channel(channel
, efx
) {
1636 if (channel
->channel
< efx
->n_rx_channels
)
1637 channel
->rx_queue
.core_index
= channel
->channel
;
1639 channel
->rx_queue
.core_index
= -1;
1641 efx_for_each_channel_tx_queue(tx_queue
, channel
)
1642 tx_queue
->queue
-= (efx
->tx_channel_offset
*
1647 static int efx_probe_nic(struct efx_nic
*efx
)
1651 netif_dbg(efx
, probe
, efx
->net_dev
, "creating NIC\n");
1653 /* Carry out hardware-type specific initialisation */
1654 rc
= efx
->type
->probe(efx
);
1659 if (!efx
->max_channels
|| !efx
->max_tx_channels
) {
1660 netif_err(efx
, drv
, efx
->net_dev
,
1661 "Insufficient resources to allocate"
1667 /* Determine the number of channels and queues by trying
1668 * to hook in MSI-X interrupts.
1670 rc
= efx_probe_interrupts(efx
);
1674 efx_set_channels(efx
);
1676 /* dimension_resources can fail with EAGAIN */
1677 rc
= efx
->type
->dimension_resources(efx
);
1678 if (rc
!= 0 && rc
!= -EAGAIN
)
1682 /* try again with new max_channels */
1683 efx_remove_interrupts(efx
);
1685 } while (rc
== -EAGAIN
);
1687 if (efx
->n_channels
> 1)
1688 netdev_rss_key_fill(&efx
->rx_hash_key
,
1689 sizeof(efx
->rx_hash_key
));
1690 efx_set_default_rx_indir_table(efx
);
1692 netif_set_real_num_tx_queues(efx
->net_dev
, efx
->n_tx_channels
);
1693 netif_set_real_num_rx_queues(efx
->net_dev
, efx
->n_rx_channels
);
1695 /* Initialise the interrupt moderation settings */
1696 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true,
1702 efx_remove_interrupts(efx
);
1704 efx
->type
->remove(efx
);
1708 static void efx_remove_nic(struct efx_nic
*efx
)
1710 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying NIC\n");
1712 efx_remove_interrupts(efx
);
1713 efx
->type
->remove(efx
);
1716 static int efx_probe_filters(struct efx_nic
*efx
)
1720 spin_lock_init(&efx
->filter_lock
);
1721 init_rwsem(&efx
->filter_sem
);
1722 down_write(&efx
->filter_sem
);
1723 rc
= efx
->type
->filter_table_probe(efx
);
1727 #ifdef CONFIG_RFS_ACCEL
1728 if (efx
->type
->offload_features
& NETIF_F_NTUPLE
) {
1729 efx
->rps_flow_id
= kcalloc(efx
->type
->max_rx_ip_filters
,
1730 sizeof(*efx
->rps_flow_id
),
1732 if (!efx
->rps_flow_id
) {
1733 efx
->type
->filter_table_remove(efx
);
1740 up_write(&efx
->filter_sem
);
1744 static void efx_remove_filters(struct efx_nic
*efx
)
1746 #ifdef CONFIG_RFS_ACCEL
1747 kfree(efx
->rps_flow_id
);
1749 down_write(&efx
->filter_sem
);
1750 efx
->type
->filter_table_remove(efx
);
1751 up_write(&efx
->filter_sem
);
1754 static void efx_restore_filters(struct efx_nic
*efx
)
1756 down_read(&efx
->filter_sem
);
1757 efx
->type
->filter_table_restore(efx
);
1758 up_read(&efx
->filter_sem
);
1761 /**************************************************************************
1763 * NIC startup/shutdown
1765 *************************************************************************/
1767 static int efx_probe_all(struct efx_nic
*efx
)
1771 rc
= efx_probe_nic(efx
);
1773 netif_err(efx
, probe
, efx
->net_dev
, "failed to create NIC\n");
1777 rc
= efx_probe_port(efx
);
1779 netif_err(efx
, probe
, efx
->net_dev
, "failed to create port\n");
1783 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_RXQ_MIN_ENT
);
1784 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_TXQ_MIN_ENT(efx
))) {
1788 efx
->rxq_entries
= efx
->txq_entries
= EFX_DEFAULT_DMAQ_SIZE
;
1790 #ifdef CONFIG_SFC_SRIOV
1791 rc
= efx
->type
->vswitching_probe(efx
);
1792 if (rc
) /* not fatal; the PF will still work fine */
1793 netif_warn(efx
, probe
, efx
->net_dev
,
1794 "failed to setup vswitching rc=%d;"
1795 " VFs may not function\n", rc
);
1798 rc
= efx_probe_filters(efx
);
1800 netif_err(efx
, probe
, efx
->net_dev
,
1801 "failed to create filter tables\n");
1805 rc
= efx_probe_channels(efx
);
1812 efx_remove_filters(efx
);
1814 #ifdef CONFIG_SFC_SRIOV
1815 efx
->type
->vswitching_remove(efx
);
1818 efx_remove_port(efx
);
1820 efx_remove_nic(efx
);
1825 /* If the interface is supposed to be running but is not, start
1826 * the hardware and software data path, regular activity for the port
1827 * (MAC statistics, link polling, etc.) and schedule the port to be
1828 * reconfigured. Interrupts must already be enabled. This function
1829 * is safe to call multiple times, so long as the NIC is not disabled.
1830 * Requires the RTNL lock.
1832 static void efx_start_all(struct efx_nic
*efx
)
1834 EFX_ASSERT_RESET_SERIALISED(efx
);
1835 BUG_ON(efx
->state
== STATE_DISABLED
);
1837 /* Check that it is appropriate to restart the interface. All
1838 * of these flags are safe to read under just the rtnl lock */
1839 if (efx
->port_enabled
|| !netif_running(efx
->net_dev
) ||
1843 efx_start_port(efx
);
1844 efx_start_datapath(efx
);
1846 /* Start the hardware monitor if there is one */
1847 if (efx
->type
->monitor
!= NULL
)
1848 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1849 efx_monitor_interval
);
1851 /* If link state detection is normally event-driven, we have
1852 * to poll now because we could have missed a change
1854 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1855 mutex_lock(&efx
->mac_lock
);
1856 if (efx
->phy_op
->poll(efx
))
1857 efx_link_status_changed(efx
);
1858 mutex_unlock(&efx
->mac_lock
);
1861 efx
->type
->start_stats(efx
);
1862 efx
->type
->pull_stats(efx
);
1863 spin_lock_bh(&efx
->stats_lock
);
1864 efx
->type
->update_stats(efx
, NULL
, NULL
);
1865 spin_unlock_bh(&efx
->stats_lock
);
1868 /* Quiesce the hardware and software data path, and regular activity
1869 * for the port without bringing the link down. Safe to call multiple
1870 * times with the NIC in almost any state, but interrupts should be
1871 * enabled. Requires the RTNL lock.
1873 static void efx_stop_all(struct efx_nic
*efx
)
1875 EFX_ASSERT_RESET_SERIALISED(efx
);
1877 /* port_enabled can be read safely under the rtnl lock */
1878 if (!efx
->port_enabled
)
1881 /* update stats before we go down so we can accurately count
1884 efx
->type
->pull_stats(efx
);
1885 spin_lock_bh(&efx
->stats_lock
);
1886 efx
->type
->update_stats(efx
, NULL
, NULL
);
1887 spin_unlock_bh(&efx
->stats_lock
);
1888 efx
->type
->stop_stats(efx
);
1891 /* Stop the kernel transmit interface. This is only valid if
1892 * the device is stopped or detached; otherwise the watchdog
1893 * may fire immediately.
1895 WARN_ON(netif_running(efx
->net_dev
) &&
1896 netif_device_present(efx
->net_dev
));
1897 netif_tx_disable(efx
->net_dev
);
1899 efx_stop_datapath(efx
);
1902 static void efx_remove_all(struct efx_nic
*efx
)
1904 efx_remove_channels(efx
);
1905 efx_remove_filters(efx
);
1906 #ifdef CONFIG_SFC_SRIOV
1907 efx
->type
->vswitching_remove(efx
);
1909 efx_remove_port(efx
);
1910 efx_remove_nic(efx
);
1913 /**************************************************************************
1915 * Interrupt moderation
1917 **************************************************************************/
1919 static unsigned int irq_mod_ticks(unsigned int usecs
, unsigned int quantum_ns
)
1923 if (usecs
* 1000 < quantum_ns
)
1924 return 1; /* never round down to 0 */
1925 return usecs
* 1000 / quantum_ns
;
1928 /* Set interrupt moderation parameters */
1929 int efx_init_irq_moderation(struct efx_nic
*efx
, unsigned int tx_usecs
,
1930 unsigned int rx_usecs
, bool rx_adaptive
,
1931 bool rx_may_override_tx
)
1933 struct efx_channel
*channel
;
1934 unsigned int irq_mod_max
= DIV_ROUND_UP(efx
->type
->timer_period_max
*
1935 efx
->timer_quantum_ns
,
1937 unsigned int tx_ticks
;
1938 unsigned int rx_ticks
;
1940 EFX_ASSERT_RESET_SERIALISED(efx
);
1942 if (tx_usecs
> irq_mod_max
|| rx_usecs
> irq_mod_max
)
1945 tx_ticks
= irq_mod_ticks(tx_usecs
, efx
->timer_quantum_ns
);
1946 rx_ticks
= irq_mod_ticks(rx_usecs
, efx
->timer_quantum_ns
);
1948 if (tx_ticks
!= rx_ticks
&& efx
->tx_channel_offset
== 0 &&
1949 !rx_may_override_tx
) {
1950 netif_err(efx
, drv
, efx
->net_dev
, "Channels are shared. "
1951 "RX and TX IRQ moderation must be equal\n");
1955 efx
->irq_rx_adaptive
= rx_adaptive
;
1956 efx
->irq_rx_moderation
= rx_ticks
;
1957 efx_for_each_channel(channel
, efx
) {
1958 if (efx_channel_has_rx_queue(channel
))
1959 channel
->irq_moderation
= rx_ticks
;
1960 else if (efx_channel_has_tx_queues(channel
))
1961 channel
->irq_moderation
= tx_ticks
;
1967 void efx_get_irq_moderation(struct efx_nic
*efx
, unsigned int *tx_usecs
,
1968 unsigned int *rx_usecs
, bool *rx_adaptive
)
1970 /* We must round up when converting ticks to microseconds
1971 * because we round down when converting the other way.
1974 *rx_adaptive
= efx
->irq_rx_adaptive
;
1975 *rx_usecs
= DIV_ROUND_UP(efx
->irq_rx_moderation
*
1976 efx
->timer_quantum_ns
,
1979 /* If channels are shared between RX and TX, so is IRQ
1980 * moderation. Otherwise, IRQ moderation is the same for all
1981 * TX channels and is not adaptive.
1983 if (efx
->tx_channel_offset
== 0)
1984 *tx_usecs
= *rx_usecs
;
1986 *tx_usecs
= DIV_ROUND_UP(
1987 efx
->channel
[efx
->tx_channel_offset
]->irq_moderation
*
1988 efx
->timer_quantum_ns
,
1992 /**************************************************************************
1996 **************************************************************************/
1998 /* Run periodically off the general workqueue */
1999 static void efx_monitor(struct work_struct
*data
)
2001 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
2004 netif_vdbg(efx
, timer
, efx
->net_dev
,
2005 "hardware monitor executing on CPU %d\n",
2006 raw_smp_processor_id());
2007 BUG_ON(efx
->type
->monitor
== NULL
);
2009 /* If the mac_lock is already held then it is likely a port
2010 * reconfiguration is already in place, which will likely do
2011 * most of the work of monitor() anyway. */
2012 if (mutex_trylock(&efx
->mac_lock
)) {
2013 if (efx
->port_enabled
)
2014 efx
->type
->monitor(efx
);
2015 mutex_unlock(&efx
->mac_lock
);
2018 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
2019 efx_monitor_interval
);
2022 /**************************************************************************
2026 *************************************************************************/
2029 * Context: process, rtnl_lock() held.
2031 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
2033 struct efx_nic
*efx
= netdev_priv(net_dev
);
2034 struct mii_ioctl_data
*data
= if_mii(ifr
);
2036 if (cmd
== SIOCSHWTSTAMP
)
2037 return efx_ptp_set_ts_config(efx
, ifr
);
2038 if (cmd
== SIOCGHWTSTAMP
)
2039 return efx_ptp_get_ts_config(efx
, ifr
);
2041 /* Convert phy_id from older PRTAD/DEVAD format */
2042 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
2043 (data
->phy_id
& 0xfc00) == 0x0400)
2044 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
2046 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
2049 /**************************************************************************
2053 **************************************************************************/
2055 static void efx_init_napi_channel(struct efx_channel
*channel
)
2057 struct efx_nic
*efx
= channel
->efx
;
2059 channel
->napi_dev
= efx
->net_dev
;
2060 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
2061 efx_poll
, napi_weight
);
2062 efx_channel_busy_poll_init(channel
);
2065 static void efx_init_napi(struct efx_nic
*efx
)
2067 struct efx_channel
*channel
;
2069 efx_for_each_channel(channel
, efx
)
2070 efx_init_napi_channel(channel
);
2073 static void efx_fini_napi_channel(struct efx_channel
*channel
)
2075 if (channel
->napi_dev
) {
2076 netif_napi_del(&channel
->napi_str
);
2077 napi_hash_del(&channel
->napi_str
);
2079 channel
->napi_dev
= NULL
;
2082 static void efx_fini_napi(struct efx_nic
*efx
)
2084 struct efx_channel
*channel
;
2086 efx_for_each_channel(channel
, efx
)
2087 efx_fini_napi_channel(channel
);
2090 /**************************************************************************
2092 * Kernel netpoll interface
2094 *************************************************************************/
2096 #ifdef CONFIG_NET_POLL_CONTROLLER
2098 /* Although in the common case interrupts will be disabled, this is not
2099 * guaranteed. However, all our work happens inside the NAPI callback,
2100 * so no locking is required.
2102 static void efx_netpoll(struct net_device
*net_dev
)
2104 struct efx_nic
*efx
= netdev_priv(net_dev
);
2105 struct efx_channel
*channel
;
2107 efx_for_each_channel(channel
, efx
)
2108 efx_schedule_channel(channel
);
2113 #ifdef CONFIG_NET_RX_BUSY_POLL
2114 static int efx_busy_poll(struct napi_struct
*napi
)
2116 struct efx_channel
*channel
=
2117 container_of(napi
, struct efx_channel
, napi_str
);
2118 struct efx_nic
*efx
= channel
->efx
;
2120 int old_rx_packets
, rx_packets
;
2122 if (!netif_running(efx
->net_dev
))
2123 return LL_FLUSH_FAILED
;
2125 if (!efx_channel_try_lock_poll(channel
))
2126 return LL_FLUSH_BUSY
;
2128 old_rx_packets
= channel
->rx_queue
.rx_packets
;
2129 efx_process_channel(channel
, budget
);
2131 rx_packets
= channel
->rx_queue
.rx_packets
- old_rx_packets
;
2133 /* There is no race condition with NAPI here.
2134 * NAPI will automatically be rescheduled if it yielded during busy
2135 * polling, because it was not able to take the lock and thus returned
2138 efx_channel_unlock_poll(channel
);
2144 /**************************************************************************
2146 * Kernel net device interface
2148 *************************************************************************/
2150 /* Context: process, rtnl_lock() held. */
2151 int efx_net_open(struct net_device
*net_dev
)
2153 struct efx_nic
*efx
= netdev_priv(net_dev
);
2156 netif_dbg(efx
, ifup
, efx
->net_dev
, "opening device on CPU %d\n",
2157 raw_smp_processor_id());
2159 rc
= efx_check_disabled(efx
);
2162 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
2164 if (efx_mcdi_poll_reboot(efx
) && efx_reset(efx
, RESET_TYPE_ALL
))
2167 /* Notify the kernel of the link state polled during driver load,
2168 * before the monitor starts running */
2169 efx_link_status_changed(efx
);
2172 efx_selftest_async_start(efx
);
2176 /* Context: process, rtnl_lock() held.
2177 * Note that the kernel will ignore our return code; this method
2178 * should really be a void.
2180 int efx_net_stop(struct net_device
*net_dev
)
2182 struct efx_nic
*efx
= netdev_priv(net_dev
);
2184 netif_dbg(efx
, ifdown
, efx
->net_dev
, "closing on CPU %d\n",
2185 raw_smp_processor_id());
2187 /* Stop the device and flush all the channels */
2193 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2194 static struct rtnl_link_stats64
*efx_net_stats(struct net_device
*net_dev
,
2195 struct rtnl_link_stats64
*stats
)
2197 struct efx_nic
*efx
= netdev_priv(net_dev
);
2199 spin_lock_bh(&efx
->stats_lock
);
2200 efx
->type
->update_stats(efx
, NULL
, stats
);
2201 spin_unlock_bh(&efx
->stats_lock
);
2206 /* Context: netif_tx_lock held, BHs disabled. */
2207 static void efx_watchdog(struct net_device
*net_dev
)
2209 struct efx_nic
*efx
= netdev_priv(net_dev
);
2211 netif_err(efx
, tx_err
, efx
->net_dev
,
2212 "TX stuck with port_enabled=%d: resetting channels\n",
2215 efx_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
2219 /* Context: process, rtnl_lock() held. */
2220 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
2222 struct efx_nic
*efx
= netdev_priv(net_dev
);
2225 rc
= efx_check_disabled(efx
);
2228 if (new_mtu
> EFX_MAX_MTU
)
2231 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
2233 efx_device_detach_sync(efx
);
2236 mutex_lock(&efx
->mac_lock
);
2237 net_dev
->mtu
= new_mtu
;
2238 efx_mac_reconfigure(efx
);
2239 mutex_unlock(&efx
->mac_lock
);
2242 netif_device_attach(efx
->net_dev
);
2246 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
2248 struct efx_nic
*efx
= netdev_priv(net_dev
);
2249 struct sockaddr
*addr
= data
;
2250 u8
*new_addr
= addr
->sa_data
;
2254 if (!is_valid_ether_addr(new_addr
)) {
2255 netif_err(efx
, drv
, efx
->net_dev
,
2256 "invalid ethernet MAC address requested: %pM\n",
2258 return -EADDRNOTAVAIL
;
2261 /* save old address */
2262 ether_addr_copy(old_addr
, net_dev
->dev_addr
);
2263 ether_addr_copy(net_dev
->dev_addr
, new_addr
);
2264 if (efx
->type
->set_mac_address
) {
2265 rc
= efx
->type
->set_mac_address(efx
);
2267 ether_addr_copy(net_dev
->dev_addr
, old_addr
);
2272 /* Reconfigure the MAC */
2273 mutex_lock(&efx
->mac_lock
);
2274 efx_mac_reconfigure(efx
);
2275 mutex_unlock(&efx
->mac_lock
);
2280 /* Context: netif_addr_lock held, BHs disabled. */
2281 static void efx_set_rx_mode(struct net_device
*net_dev
)
2283 struct efx_nic
*efx
= netdev_priv(net_dev
);
2285 if (efx
->port_enabled
)
2286 queue_work(efx
->workqueue
, &efx
->mac_work
);
2287 /* Otherwise efx_start_port() will do this */
2290 static int efx_set_features(struct net_device
*net_dev
, netdev_features_t data
)
2292 struct efx_nic
*efx
= netdev_priv(net_dev
);
2294 /* If disabling RX n-tuple filtering, clear existing filters */
2295 if (net_dev
->features
& ~data
& NETIF_F_NTUPLE
)
2296 return efx
->type
->filter_clear_rx(efx
, EFX_FILTER_PRI_MANUAL
);
2301 static const struct net_device_ops efx_netdev_ops
= {
2302 .ndo_open
= efx_net_open
,
2303 .ndo_stop
= efx_net_stop
,
2304 .ndo_get_stats64
= efx_net_stats
,
2305 .ndo_tx_timeout
= efx_watchdog
,
2306 .ndo_start_xmit
= efx_hard_start_xmit
,
2307 .ndo_validate_addr
= eth_validate_addr
,
2308 .ndo_do_ioctl
= efx_ioctl
,
2309 .ndo_change_mtu
= efx_change_mtu
,
2310 .ndo_set_mac_address
= efx_set_mac_address
,
2311 .ndo_set_rx_mode
= efx_set_rx_mode
,
2312 .ndo_set_features
= efx_set_features
,
2313 #ifdef CONFIG_SFC_SRIOV
2314 .ndo_set_vf_mac
= efx_sriov_set_vf_mac
,
2315 .ndo_set_vf_vlan
= efx_sriov_set_vf_vlan
,
2316 .ndo_set_vf_spoofchk
= efx_sriov_set_vf_spoofchk
,
2317 .ndo_get_vf_config
= efx_sriov_get_vf_config
,
2318 .ndo_set_vf_link_state
= efx_sriov_set_vf_link_state
,
2319 .ndo_get_phys_port_id
= efx_sriov_get_phys_port_id
,
2321 #ifdef CONFIG_NET_POLL_CONTROLLER
2322 .ndo_poll_controller
= efx_netpoll
,
2324 .ndo_setup_tc
= efx_setup_tc
,
2325 #ifdef CONFIG_NET_RX_BUSY_POLL
2326 .ndo_busy_poll
= efx_busy_poll
,
2328 #ifdef CONFIG_RFS_ACCEL
2329 .ndo_rx_flow_steer
= efx_filter_rfs
,
2333 static void efx_update_name(struct efx_nic
*efx
)
2335 strcpy(efx
->name
, efx
->net_dev
->name
);
2336 efx_mtd_rename(efx
);
2337 efx_set_channel_names(efx
);
2340 static int efx_netdev_event(struct notifier_block
*this,
2341 unsigned long event
, void *ptr
)
2343 struct net_device
*net_dev
= netdev_notifier_info_to_dev(ptr
);
2345 if ((net_dev
->netdev_ops
== &efx_netdev_ops
) &&
2346 event
== NETDEV_CHANGENAME
)
2347 efx_update_name(netdev_priv(net_dev
));
2352 static struct notifier_block efx_netdev_notifier
= {
2353 .notifier_call
= efx_netdev_event
,
2357 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2359 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2360 return sprintf(buf
, "%d\n", efx
->phy_type
);
2362 static DEVICE_ATTR(phy_type
, 0444, show_phy_type
, NULL
);
2364 #ifdef CONFIG_SFC_MCDI_LOGGING
2365 static ssize_t
show_mcdi_log(struct device
*dev
, struct device_attribute
*attr
,
2368 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2369 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
2371 return scnprintf(buf
, PAGE_SIZE
, "%d\n", mcdi
->logging_enabled
);
2373 static ssize_t
set_mcdi_log(struct device
*dev
, struct device_attribute
*attr
,
2374 const char *buf
, size_t count
)
2376 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2377 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
2378 bool enable
= count
> 0 && *buf
!= '0';
2380 mcdi
->logging_enabled
= enable
;
2383 static DEVICE_ATTR(mcdi_logging
, 0644, show_mcdi_log
, set_mcdi_log
);
2386 static int efx_register_netdev(struct efx_nic
*efx
)
2388 struct net_device
*net_dev
= efx
->net_dev
;
2389 struct efx_channel
*channel
;
2392 net_dev
->watchdog_timeo
= 5 * HZ
;
2393 net_dev
->irq
= efx
->pci_dev
->irq
;
2394 net_dev
->netdev_ops
= &efx_netdev_ops
;
2395 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
)
2396 net_dev
->priv_flags
|= IFF_UNICAST_FLT
;
2397 net_dev
->ethtool_ops
= &efx_ethtool_ops
;
2398 net_dev
->gso_max_segs
= EFX_TSO_MAX_SEGS
;
2402 /* Enable resets to be scheduled and check whether any were
2403 * already requested. If so, the NIC is probably hosed so we
2406 efx
->state
= STATE_READY
;
2407 smp_mb(); /* ensure we change state before checking reset_pending */
2408 if (efx
->reset_pending
) {
2409 netif_err(efx
, probe
, efx
->net_dev
,
2410 "aborting probe due to scheduled reset\n");
2415 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
2418 efx_update_name(efx
);
2420 /* Always start with carrier off; PHY events will detect the link */
2421 netif_carrier_off(net_dev
);
2423 rc
= register_netdevice(net_dev
);
2427 efx_for_each_channel(channel
, efx
) {
2428 struct efx_tx_queue
*tx_queue
;
2429 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2430 efx_init_tx_queue_core_txq(tx_queue
);
2437 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2439 netif_err(efx
, drv
, efx
->net_dev
,
2440 "failed to init net dev attributes\n");
2441 goto fail_registered
;
2443 #ifdef CONFIG_SFC_MCDI_LOGGING
2444 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_mcdi_logging
);
2446 netif_err(efx
, drv
, efx
->net_dev
,
2447 "failed to init net dev attributes\n");
2448 goto fail_attr_mcdi_logging
;
2454 #ifdef CONFIG_SFC_MCDI_LOGGING
2455 fail_attr_mcdi_logging
:
2456 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2460 efx_dissociate(efx
);
2461 unregister_netdevice(net_dev
);
2463 efx
->state
= STATE_UNINIT
;
2465 netif_err(efx
, drv
, efx
->net_dev
, "could not register net dev\n");
2469 static void efx_unregister_netdev(struct efx_nic
*efx
)
2474 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
2476 if (efx_dev_registered(efx
)) {
2477 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
2478 #ifdef CONFIG_SFC_MCDI_LOGGING
2479 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_mcdi_logging
);
2481 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2482 unregister_netdev(efx
->net_dev
);
2486 /**************************************************************************
2488 * Device reset and suspend
2490 **************************************************************************/
2492 /* Tears down the entire software state and most of the hardware state
2494 void efx_reset_down(struct efx_nic
*efx
, enum reset_type method
)
2496 EFX_ASSERT_RESET_SERIALISED(efx
);
2498 if (method
== RESET_TYPE_MCDI_TIMEOUT
)
2499 efx
->type
->prepare_flr(efx
);
2502 efx_disable_interrupts(efx
);
2504 mutex_lock(&efx
->mac_lock
);
2505 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2506 method
!= RESET_TYPE_DATAPATH
)
2507 efx
->phy_op
->fini(efx
);
2508 efx
->type
->fini(efx
);
2511 /* This function will always ensure that the locks acquired in
2512 * efx_reset_down() are released. A failure return code indicates
2513 * that we were unable to reinitialise the hardware, and the
2514 * driver should be disabled. If ok is false, then the rx and tx
2515 * engines are not restarted, pending a RESET_DISABLE. */
2516 int efx_reset_up(struct efx_nic
*efx
, enum reset_type method
, bool ok
)
2520 EFX_ASSERT_RESET_SERIALISED(efx
);
2522 if (method
== RESET_TYPE_MCDI_TIMEOUT
)
2523 efx
->type
->finish_flr(efx
);
2525 /* Ensure that SRAM is initialised even if we're disabling the device */
2526 rc
= efx
->type
->init(efx
);
2528 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
2535 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2536 method
!= RESET_TYPE_DATAPATH
) {
2537 rc
= efx
->phy_op
->init(efx
);
2540 rc
= efx
->phy_op
->reconfigure(efx
);
2541 if (rc
&& rc
!= -EPERM
)
2542 netif_err(efx
, drv
, efx
->net_dev
,
2543 "could not restore PHY settings\n");
2546 rc
= efx_enable_interrupts(efx
);
2550 #ifdef CONFIG_SFC_SRIOV
2551 rc
= efx
->type
->vswitching_restore(efx
);
2552 if (rc
) /* not fatal; the PF will still work fine */
2553 netif_warn(efx
, probe
, efx
->net_dev
,
2554 "failed to restore vswitching rc=%d;"
2555 " VFs may not function\n", rc
);
2558 down_read(&efx
->filter_sem
);
2559 efx_restore_filters(efx
);
2560 up_read(&efx
->filter_sem
);
2561 if (efx
->type
->sriov_reset
)
2562 efx
->type
->sriov_reset(efx
);
2564 mutex_unlock(&efx
->mac_lock
);
2571 efx
->port_initialized
= false;
2573 mutex_unlock(&efx
->mac_lock
);
2578 /* Reset the NIC using the specified method. Note that the reset may
2579 * fail, in which case the card will be left in an unusable state.
2581 * Caller must hold the rtnl_lock.
2583 int efx_reset(struct efx_nic
*efx
, enum reset_type method
)
2588 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
2589 RESET_TYPE(method
));
2591 efx_device_detach_sync(efx
);
2592 efx_reset_down(efx
, method
);
2594 rc
= efx
->type
->reset(efx
, method
);
2596 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
2600 /* Clear flags for the scopes we covered. We assume the NIC and
2601 * driver are now quiescent so that there is no race here.
2603 if (method
< RESET_TYPE_MAX_METHOD
)
2604 efx
->reset_pending
&= -(1 << (method
+ 1));
2605 else /* it doesn't fit into the well-ordered scope hierarchy */
2606 __clear_bit(method
, &efx
->reset_pending
);
2608 /* Reinitialise bus-mastering, which may have been turned off before
2609 * the reset was scheduled. This is still appropriate, even in the
2610 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2611 * can respond to requests. */
2612 pci_set_master(efx
->pci_dev
);
2615 /* Leave device stopped if necessary */
2617 method
== RESET_TYPE_DISABLE
||
2618 method
== RESET_TYPE_RECOVER_OR_DISABLE
;
2619 rc2
= efx_reset_up(efx
, method
, !disabled
);
2627 dev_close(efx
->net_dev
);
2628 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
2629 efx
->state
= STATE_DISABLED
;
2631 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
2632 netif_device_attach(efx
->net_dev
);
2637 /* Try recovery mechanisms.
2638 * For now only EEH is supported.
2639 * Returns 0 if the recovery mechanisms are unsuccessful.
2640 * Returns a non-zero value otherwise.
2642 int efx_try_recovery(struct efx_nic
*efx
)
2645 /* A PCI error can occur and not be seen by EEH because nothing
2646 * happens on the PCI bus. In this case the driver may fail and
2647 * schedule a 'recover or reset', leading to this recovery handler.
2648 * Manually call the eeh failure check function.
2650 struct eeh_dev
*eehdev
= pci_dev_to_eeh_dev(efx
->pci_dev
);
2651 if (eeh_dev_check_failure(eehdev
)) {
2652 /* The EEH mechanisms will handle the error and reset the
2653 * device if necessary.
2661 static void efx_wait_for_bist_end(struct efx_nic
*efx
)
2665 for (i
= 0; i
< BIST_WAIT_DELAY_COUNT
; ++i
) {
2666 if (efx_mcdi_poll_reboot(efx
))
2668 msleep(BIST_WAIT_DELAY_MS
);
2671 netif_err(efx
, drv
, efx
->net_dev
, "Warning: No MC reboot after BIST mode\n");
2673 /* Either way unset the BIST flag. If we found no reboot we probably
2674 * won't recover, but we should try.
2676 efx
->mc_bist_for_other_fn
= false;
2679 /* The worker thread exists so that code that cannot sleep can
2680 * schedule a reset for later.
2682 static void efx_reset_work(struct work_struct
*data
)
2684 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, reset_work
);
2685 unsigned long pending
;
2686 enum reset_type method
;
2688 pending
= ACCESS_ONCE(efx
->reset_pending
);
2689 method
= fls(pending
) - 1;
2691 if (method
== RESET_TYPE_MC_BIST
)
2692 efx_wait_for_bist_end(efx
);
2694 if ((method
== RESET_TYPE_RECOVER_OR_DISABLE
||
2695 method
== RESET_TYPE_RECOVER_OR_ALL
) &&
2696 efx_try_recovery(efx
))
2704 /* We checked the state in efx_schedule_reset() but it may
2705 * have changed by now. Now that we have the RTNL lock,
2706 * it cannot change again.
2708 if (efx
->state
== STATE_READY
)
2709 (void)efx_reset(efx
, method
);
2714 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
2716 enum reset_type method
;
2718 if (efx
->state
== STATE_RECOVERY
) {
2719 netif_dbg(efx
, drv
, efx
->net_dev
,
2720 "recovering: skip scheduling %s reset\n",
2726 case RESET_TYPE_INVISIBLE
:
2727 case RESET_TYPE_ALL
:
2728 case RESET_TYPE_RECOVER_OR_ALL
:
2729 case RESET_TYPE_WORLD
:
2730 case RESET_TYPE_DISABLE
:
2731 case RESET_TYPE_RECOVER_OR_DISABLE
:
2732 case RESET_TYPE_DATAPATH
:
2733 case RESET_TYPE_MC_BIST
:
2734 case RESET_TYPE_MCDI_TIMEOUT
:
2736 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
2737 RESET_TYPE(method
));
2740 method
= efx
->type
->map_reset_reason(type
);
2741 netif_dbg(efx
, drv
, efx
->net_dev
,
2742 "scheduling %s reset for %s\n",
2743 RESET_TYPE(method
), RESET_TYPE(type
));
2747 set_bit(method
, &efx
->reset_pending
);
2748 smp_mb(); /* ensure we change reset_pending before checking state */
2750 /* If we're not READY then just leave the flags set as the cue
2751 * to abort probing or reschedule the reset later.
2753 if (ACCESS_ONCE(efx
->state
) != STATE_READY
)
2756 /* efx_process_channel() will no longer read events once a
2757 * reset is scheduled. So switch back to poll'd MCDI completions. */
2758 efx_mcdi_mode_poll(efx
);
2760 queue_work(reset_workqueue
, &efx
->reset_work
);
2763 /**************************************************************************
2765 * List of NICs we support
2767 **************************************************************************/
2769 /* PCI device ID table */
2770 static const struct pci_device_id efx_pci_table
[] = {
2771 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2772 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0
),
2773 .driver_data
= (unsigned long) &falcon_a1_nic_type
},
2774 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2775 PCI_DEVICE_ID_SOLARFLARE_SFC4000B
),
2776 .driver_data
= (unsigned long) &falcon_b0_nic_type
},
2777 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0803), /* SFC9020 */
2778 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2779 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0813), /* SFL9021 */
2780 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2781 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0903), /* SFC9120 PF */
2782 .driver_data
= (unsigned long) &efx_hunt_a0_nic_type
},
2783 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x1903), /* SFC9120 VF */
2784 .driver_data
= (unsigned long) &efx_hunt_a0_vf_nic_type
},
2785 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0923), /* SFC9140 PF */
2786 .driver_data
= (unsigned long) &efx_hunt_a0_nic_type
},
2787 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x1923), /* SFC9140 VF */
2788 .driver_data
= (unsigned long) &efx_hunt_a0_vf_nic_type
},
2789 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0a03), /* SFC9220 PF */
2790 .driver_data
= (unsigned long) &efx_hunt_a0_nic_type
},
2791 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x1a03), /* SFC9220 VF */
2792 .driver_data
= (unsigned long) &efx_hunt_a0_vf_nic_type
},
2793 {0} /* end of list */
2796 /**************************************************************************
2798 * Dummy PHY/MAC operations
2800 * Can be used for some unimplemented operations
2801 * Needed so all function pointers are valid and do not have to be tested
2804 **************************************************************************/
2805 int efx_port_dummy_op_int(struct efx_nic
*efx
)
2809 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
2811 static bool efx_port_dummy_op_poll(struct efx_nic
*efx
)
2816 static const struct efx_phy_operations efx_dummy_phy_operations
= {
2817 .init
= efx_port_dummy_op_int
,
2818 .reconfigure
= efx_port_dummy_op_int
,
2819 .poll
= efx_port_dummy_op_poll
,
2820 .fini
= efx_port_dummy_op_void
,
2823 /**************************************************************************
2827 **************************************************************************/
2829 /* This zeroes out and then fills in the invariants in a struct
2830 * efx_nic (including all sub-structures).
2832 static int efx_init_struct(struct efx_nic
*efx
,
2833 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2837 /* Initialise common structures */
2838 INIT_LIST_HEAD(&efx
->node
);
2839 INIT_LIST_HEAD(&efx
->secondary_list
);
2840 spin_lock_init(&efx
->biu_lock
);
2841 #ifdef CONFIG_SFC_MTD
2842 INIT_LIST_HEAD(&efx
->mtd_list
);
2844 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
2845 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
2846 INIT_DELAYED_WORK(&efx
->selftest_work
, efx_selftest_async_work
);
2847 efx
->pci_dev
= pci_dev
;
2848 efx
->msg_enable
= debug
;
2849 efx
->state
= STATE_UNINIT
;
2850 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2852 efx
->net_dev
= net_dev
;
2853 efx
->rx_prefix_size
= efx
->type
->rx_prefix_size
;
2855 NET_IP_ALIGN
? (efx
->rx_prefix_size
+ NET_IP_ALIGN
) % 4 : 0;
2856 efx
->rx_packet_hash_offset
=
2857 efx
->type
->rx_hash_offset
- efx
->type
->rx_prefix_size
;
2858 efx
->rx_packet_ts_offset
=
2859 efx
->type
->rx_ts_offset
- efx
->type
->rx_prefix_size
;
2860 spin_lock_init(&efx
->stats_lock
);
2861 mutex_init(&efx
->mac_lock
);
2862 efx
->phy_op
= &efx_dummy_phy_operations
;
2863 efx
->mdio
.dev
= net_dev
;
2864 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
2865 init_waitqueue_head(&efx
->flush_wq
);
2867 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
2868 efx
->channel
[i
] = efx_alloc_channel(efx
, i
, NULL
);
2869 if (!efx
->channel
[i
])
2871 efx
->msi_context
[i
].efx
= efx
;
2872 efx
->msi_context
[i
].index
= i
;
2875 /* Higher numbered interrupt modes are less capable! */
2876 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2879 /* Would be good to use the net_dev name, but we're too early */
2880 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2882 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2883 if (!efx
->workqueue
)
2889 efx_fini_struct(efx
);
2893 static void efx_fini_struct(struct efx_nic
*efx
)
2897 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++)
2898 kfree(efx
->channel
[i
]);
2902 if (efx
->workqueue
) {
2903 destroy_workqueue(efx
->workqueue
);
2904 efx
->workqueue
= NULL
;
2908 void efx_update_sw_stats(struct efx_nic
*efx
, u64
*stats
)
2910 u64 n_rx_nodesc_trunc
= 0;
2911 struct efx_channel
*channel
;
2913 efx_for_each_channel(channel
, efx
)
2914 n_rx_nodesc_trunc
+= channel
->n_rx_nodesc_trunc
;
2915 stats
[GENERIC_STAT_rx_nodesc_trunc
] = n_rx_nodesc_trunc
;
2916 stats
[GENERIC_STAT_rx_noskb_drops
] = atomic_read(&efx
->n_rx_noskb_drops
);
2919 /**************************************************************************
2923 **************************************************************************/
2925 /* Main body of final NIC shutdown code
2926 * This is called only at module unload (or hotplug removal).
2928 static void efx_pci_remove_main(struct efx_nic
*efx
)
2930 /* Flush reset_work. It can no longer be scheduled since we
2933 BUG_ON(efx
->state
== STATE_READY
);
2934 cancel_work_sync(&efx
->reset_work
);
2936 efx_disable_interrupts(efx
);
2937 efx_nic_fini_interrupt(efx
);
2939 efx
->type
->fini(efx
);
2941 efx_remove_all(efx
);
2944 /* Final NIC shutdown
2945 * This is called only at module unload (or hotplug removal). A PF can call
2946 * this on its VFs to ensure they are unbound first.
2948 static void efx_pci_remove(struct pci_dev
*pci_dev
)
2950 struct efx_nic
*efx
;
2952 efx
= pci_get_drvdata(pci_dev
);
2956 /* Mark the NIC as fini, then stop the interface */
2958 efx_dissociate(efx
);
2959 dev_close(efx
->net_dev
);
2960 efx_disable_interrupts(efx
);
2961 efx
->state
= STATE_UNINIT
;
2964 if (efx
->type
->sriov_fini
)
2965 efx
->type
->sriov_fini(efx
);
2967 efx_unregister_netdev(efx
);
2969 efx_mtd_remove(efx
);
2971 efx_pci_remove_main(efx
);
2974 netif_dbg(efx
, drv
, efx
->net_dev
, "shutdown successful\n");
2976 efx_fini_struct(efx
);
2977 free_netdev(efx
->net_dev
);
2979 pci_disable_pcie_error_reporting(pci_dev
);
2982 /* NIC VPD information
2983 * Called during probe to display the part number of the
2984 * installed NIC. VPD is potentially very large but this should
2985 * always appear within the first 512 bytes.
2987 #define SFC_VPD_LEN 512
2988 static void efx_probe_vpd_strings(struct efx_nic
*efx
)
2990 struct pci_dev
*dev
= efx
->pci_dev
;
2991 char vpd_data
[SFC_VPD_LEN
];
2993 int ro_start
, ro_size
, i
, j
;
2995 /* Get the vpd data from the device */
2996 vpd_size
= pci_read_vpd(dev
, 0, sizeof(vpd_data
), vpd_data
);
2997 if (vpd_size
<= 0) {
2998 netif_err(efx
, drv
, efx
->net_dev
, "Unable to read VPD\n");
3002 /* Get the Read only section */
3003 ro_start
= pci_vpd_find_tag(vpd_data
, 0, vpd_size
, PCI_VPD_LRDT_RO_DATA
);
3005 netif_err(efx
, drv
, efx
->net_dev
, "VPD Read-only not found\n");
3009 ro_size
= pci_vpd_lrdt_size(&vpd_data
[ro_start
]);
3011 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
3012 if (i
+ j
> vpd_size
)
3015 /* Get the Part number */
3016 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "PN");
3018 netif_err(efx
, drv
, efx
->net_dev
, "Part number not found\n");
3022 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
3023 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
3024 if (i
+ j
> vpd_size
) {
3025 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete part number\n");
3029 netif_info(efx
, drv
, efx
->net_dev
,
3030 "Part Number : %.*s\n", j
, &vpd_data
[i
]);
3032 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
3034 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "SN");
3036 netif_err(efx
, drv
, efx
->net_dev
, "Serial number not found\n");
3040 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
3041 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
3042 if (i
+ j
> vpd_size
) {
3043 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete serial number\n");
3047 efx
->vpd_sn
= kmalloc(j
+ 1, GFP_KERNEL
);
3051 snprintf(efx
->vpd_sn
, j
+ 1, "%s", &vpd_data
[i
]);
3055 /* Main body of NIC initialisation
3056 * This is called at module load (or hotplug insertion, theoretically).
3058 static int efx_pci_probe_main(struct efx_nic
*efx
)
3062 /* Do start-of-day initialisation */
3063 rc
= efx_probe_all(efx
);
3069 rc
= efx
->type
->init(efx
);
3071 netif_err(efx
, probe
, efx
->net_dev
,
3072 "failed to initialise NIC\n");
3076 rc
= efx_init_port(efx
);
3078 netif_err(efx
, probe
, efx
->net_dev
,
3079 "failed to initialise port\n");
3083 rc
= efx_nic_init_interrupt(efx
);
3086 rc
= efx_enable_interrupts(efx
);
3093 efx_nic_fini_interrupt(efx
);
3097 efx
->type
->fini(efx
);
3100 efx_remove_all(efx
);
3105 /* NIC initialisation
3107 * This is called at module load (or hotplug insertion,
3108 * theoretically). It sets up PCI mappings, resets the NIC,
3109 * sets up and registers the network devices with the kernel and hooks
3110 * the interrupt service routine. It does not prepare the device for
3111 * transmission; this is left to the first time one of the network
3112 * interfaces is brought up (i.e. efx_net_open).
3114 static int efx_pci_probe(struct pci_dev
*pci_dev
,
3115 const struct pci_device_id
*entry
)
3117 struct net_device
*net_dev
;
3118 struct efx_nic
*efx
;
3121 /* Allocate and initialise a struct net_device and struct efx_nic */
3122 net_dev
= alloc_etherdev_mqs(sizeof(*efx
), EFX_MAX_CORE_TX_QUEUES
,
3126 efx
= netdev_priv(net_dev
);
3127 efx
->type
= (const struct efx_nic_type
*) entry
->driver_data
;
3128 net_dev
->features
|= (efx
->type
->offload_features
| NETIF_F_SG
|
3129 NETIF_F_HIGHDMA
| NETIF_F_TSO
|
3131 if (efx
->type
->offload_features
& NETIF_F_V6_CSUM
)
3132 net_dev
->features
|= NETIF_F_TSO6
;
3133 /* Mask for features that also apply to VLAN devices */
3134 net_dev
->vlan_features
|= (NETIF_F_ALL_CSUM
| NETIF_F_SG
|
3135 NETIF_F_HIGHDMA
| NETIF_F_ALL_TSO
|
3137 /* All offloads can be toggled */
3138 net_dev
->hw_features
= net_dev
->features
& ~NETIF_F_HIGHDMA
;
3139 pci_set_drvdata(pci_dev
, efx
);
3140 SET_NETDEV_DEV(net_dev
, &pci_dev
->dev
);
3141 rc
= efx_init_struct(efx
, pci_dev
, net_dev
);
3145 netif_info(efx
, probe
, efx
->net_dev
,
3146 "Solarflare NIC detected\n");
3148 if (!efx
->type
->is_vf
)
3149 efx_probe_vpd_strings(efx
);
3151 /* Set up basic I/O (BAR mappings etc) */
3152 rc
= efx_init_io(efx
);
3156 rc
= efx_pci_probe_main(efx
);
3160 rc
= efx_register_netdev(efx
);
3164 if (efx
->type
->sriov_init
) {
3165 rc
= efx
->type
->sriov_init(efx
);
3167 netif_err(efx
, probe
, efx
->net_dev
,
3168 "SR-IOV can't be enabled rc %d\n", rc
);
3171 netif_dbg(efx
, probe
, efx
->net_dev
, "initialisation successful\n");
3173 /* Try to create MTDs, but allow this to fail */
3175 rc
= efx_mtd_probe(efx
);
3178 netif_warn(efx
, probe
, efx
->net_dev
,
3179 "failed to create MTDs (%d)\n", rc
);
3181 rc
= pci_enable_pcie_error_reporting(pci_dev
);
3182 if (rc
&& rc
!= -EINVAL
)
3183 netif_warn(efx
, probe
, efx
->net_dev
,
3184 "pci_enable_pcie_error_reporting failed (%d)\n", rc
);
3189 efx_pci_remove_main(efx
);
3193 efx_fini_struct(efx
);
3196 netif_dbg(efx
, drv
, efx
->net_dev
, "initialisation failed. rc=%d\n", rc
);
3197 free_netdev(net_dev
);
3201 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3202 * enabled on success
3204 #ifdef CONFIG_SFC_SRIOV
3205 static int efx_pci_sriov_configure(struct pci_dev
*dev
, int num_vfs
)
3208 struct efx_nic
*efx
= pci_get_drvdata(dev
);
3210 if (efx
->type
->sriov_configure
) {
3211 rc
= efx
->type
->sriov_configure(efx
, num_vfs
);
3221 static int efx_pm_freeze(struct device
*dev
)
3223 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
3227 if (efx
->state
!= STATE_DISABLED
) {
3228 efx
->state
= STATE_UNINIT
;
3230 efx_device_detach_sync(efx
);
3233 efx_disable_interrupts(efx
);
3241 static int efx_pm_thaw(struct device
*dev
)
3244 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
3248 if (efx
->state
!= STATE_DISABLED
) {
3249 rc
= efx_enable_interrupts(efx
);
3253 mutex_lock(&efx
->mac_lock
);
3254 efx
->phy_op
->reconfigure(efx
);
3255 mutex_unlock(&efx
->mac_lock
);
3259 netif_device_attach(efx
->net_dev
);
3261 efx
->state
= STATE_READY
;
3263 efx
->type
->resume_wol(efx
);
3268 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3269 queue_work(reset_workqueue
, &efx
->reset_work
);
3279 static int efx_pm_poweroff(struct device
*dev
)
3281 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3282 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
3284 efx
->type
->fini(efx
);
3286 efx
->reset_pending
= 0;
3288 pci_save_state(pci_dev
);
3289 return pci_set_power_state(pci_dev
, PCI_D3hot
);
3292 /* Used for both resume and restore */
3293 static int efx_pm_resume(struct device
*dev
)
3295 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3296 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
3299 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
3302 pci_restore_state(pci_dev
);
3303 rc
= pci_enable_device(pci_dev
);
3306 pci_set_master(efx
->pci_dev
);
3307 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
3310 rc
= efx
->type
->init(efx
);
3313 rc
= efx_pm_thaw(dev
);
3317 static int efx_pm_suspend(struct device
*dev
)
3322 rc
= efx_pm_poweroff(dev
);
3328 static const struct dev_pm_ops efx_pm_ops
= {
3329 .suspend
= efx_pm_suspend
,
3330 .resume
= efx_pm_resume
,
3331 .freeze
= efx_pm_freeze
,
3332 .thaw
= efx_pm_thaw
,
3333 .poweroff
= efx_pm_poweroff
,
3334 .restore
= efx_pm_resume
,
3337 /* A PCI error affecting this device was detected.
3338 * At this point MMIO and DMA may be disabled.
3339 * Stop the software path and request a slot reset.
3341 static pci_ers_result_t
efx_io_error_detected(struct pci_dev
*pdev
,
3342 enum pci_channel_state state
)
3344 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3345 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
3347 if (state
== pci_channel_io_perm_failure
)
3348 return PCI_ERS_RESULT_DISCONNECT
;
3352 if (efx
->state
!= STATE_DISABLED
) {
3353 efx
->state
= STATE_RECOVERY
;
3354 efx
->reset_pending
= 0;
3356 efx_device_detach_sync(efx
);
3359 efx_disable_interrupts(efx
);
3361 status
= PCI_ERS_RESULT_NEED_RESET
;
3363 /* If the interface is disabled we don't want to do anything
3366 status
= PCI_ERS_RESULT_RECOVERED
;
3371 pci_disable_device(pdev
);
3376 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3377 static pci_ers_result_t
efx_io_slot_reset(struct pci_dev
*pdev
)
3379 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
3380 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3383 if (pci_enable_device(pdev
)) {
3384 netif_err(efx
, hw
, efx
->net_dev
,
3385 "Cannot re-enable PCI device after reset.\n");
3386 status
= PCI_ERS_RESULT_DISCONNECT
;
3389 rc
= pci_cleanup_aer_uncorrect_error_status(pdev
);
3391 netif_err(efx
, hw
, efx
->net_dev
,
3392 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc
);
3393 /* Non-fatal error. Continue. */
3399 /* Perform the actual reset and resume I/O operations. */
3400 static void efx_io_resume(struct pci_dev
*pdev
)
3402 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
3407 if (efx
->state
== STATE_DISABLED
)
3410 rc
= efx_reset(efx
, RESET_TYPE_ALL
);
3412 netif_err(efx
, hw
, efx
->net_dev
,
3413 "efx_reset failed after PCI error (%d)\n", rc
);
3415 efx
->state
= STATE_READY
;
3416 netif_dbg(efx
, hw
, efx
->net_dev
,
3417 "Done resetting and resuming IO after PCI error.\n");
3424 /* For simplicity and reliability, we always require a slot reset and try to
3425 * reset the hardware when a pci error affecting the device is detected.
3426 * We leave both the link_reset and mmio_enabled callback unimplemented:
3427 * with our request for slot reset the mmio_enabled callback will never be
3428 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3430 static const struct pci_error_handlers efx_err_handlers
= {
3431 .error_detected
= efx_io_error_detected
,
3432 .slot_reset
= efx_io_slot_reset
,
3433 .resume
= efx_io_resume
,
3436 static struct pci_driver efx_pci_driver
= {
3437 .name
= KBUILD_MODNAME
,
3438 .id_table
= efx_pci_table
,
3439 .probe
= efx_pci_probe
,
3440 .remove
= efx_pci_remove
,
3441 .driver
.pm
= &efx_pm_ops
,
3442 .err_handler
= &efx_err_handlers
,
3443 #ifdef CONFIG_SFC_SRIOV
3444 .sriov_configure
= efx_pci_sriov_configure
,
3448 /**************************************************************************
3450 * Kernel module interface
3452 *************************************************************************/
3454 module_param(interrupt_mode
, uint
, 0444);
3455 MODULE_PARM_DESC(interrupt_mode
,
3456 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3458 static int __init
efx_init_module(void)
3462 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
3464 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
3468 #ifdef CONFIG_SFC_SRIOV
3469 rc
= efx_init_sriov();
3474 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
3475 if (!reset_workqueue
) {
3480 rc
= pci_register_driver(&efx_pci_driver
);
3487 destroy_workqueue(reset_workqueue
);
3489 #ifdef CONFIG_SFC_SRIOV
3493 unregister_netdevice_notifier(&efx_netdev_notifier
);
3498 static void __exit
efx_exit_module(void)
3500 printk(KERN_INFO
"Solarflare NET driver unloading\n");
3502 pci_unregister_driver(&efx_pci_driver
);
3503 destroy_workqueue(reset_workqueue
);
3504 #ifdef CONFIG_SFC_SRIOV
3507 unregister_netdevice_notifier(&efx_netdev_notifier
);
3511 module_init(efx_init_module
);
3512 module_exit(efx_exit_module
);
3514 MODULE_AUTHOR("Solarflare Communications and "
3515 "Michael Brown <mbrown@fensystems.co.uk>");
3516 MODULE_DESCRIPTION("Solarflare network driver");
3517 MODULE_LICENSE("GPL");
3518 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);