1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
22 #include "farch_regs.h"
24 #include "siena_sriov.h"
26 #include "workarounds.h"
28 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
30 /**************************************************************************
34 **************************************************************************
37 /* This is set to 16 for a good reason. In summary, if larger than
38 * 16, the descriptor cache holds more than a default socket
39 * buffer's worth of packets (for UDP we can only have at most one
40 * socket buffer's worth outstanding). This combined with the fact
41 * that we only get 1 TX event per descriptor cache means the NIC
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
66 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
69 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
72 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
73 efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
75 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
76 efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
78 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
81 static void efx_farch_magic_event(struct efx_channel
*channel
, u32 magic
);
83 /**************************************************************************
87 **************************************************************************/
89 static inline void efx_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
92 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
96 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
97 const efx_oword_t
*mask
)
99 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
100 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
103 int efx_farch_test_registers(struct efx_nic
*efx
,
104 const struct efx_farch_register_test
*regs
,
107 unsigned address
= 0, i
, j
;
108 efx_oword_t mask
, imask
, original
, reg
, buf
;
110 for (i
= 0; i
< n_regs
; ++i
) {
111 address
= regs
[i
].address
;
112 mask
= imask
= regs
[i
].mask
;
113 EFX_INVERT_OWORD(imask
);
115 efx_reado(efx
, &original
, address
);
117 /* bit sweep on and off */
118 for (j
= 0; j
< 128; j
++) {
119 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
122 /* Test this testable bit can be set in isolation */
123 EFX_AND_OWORD(reg
, original
, mask
);
124 EFX_SET_OWORD32(reg
, j
, j
, 1);
126 efx_writeo(efx
, ®
, address
);
127 efx_reado(efx
, &buf
, address
);
129 if (efx_masked_compare_oword(®
, &buf
, &mask
))
132 /* Test this testable bit can be cleared in isolation */
133 EFX_OR_OWORD(reg
, original
, mask
);
134 EFX_SET_OWORD32(reg
, j
, j
, 0);
136 efx_writeo(efx
, ®
, address
);
137 efx_reado(efx
, &buf
, address
);
139 if (efx_masked_compare_oword(®
, &buf
, &mask
))
143 efx_writeo(efx
, &original
, address
);
149 netif_err(efx
, hw
, efx
->net_dev
,
150 "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
151 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
152 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
156 /**************************************************************************
158 * Special buffer handling
159 * Special buffers are used for event queues and the TX and RX
162 *************************************************************************/
165 * Initialise a special buffer
167 * This will define a buffer (previously allocated via
168 * efx_alloc_special_buffer()) in the buffer table, allowing
169 * it to be used for event queues, descriptor rings etc.
172 efx_init_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
174 efx_qword_t buf_desc
;
179 EFX_BUG_ON_PARANOID(!buffer
->buf
.addr
);
181 /* Write buffer descriptors to NIC */
182 for (i
= 0; i
< buffer
->entries
; i
++) {
183 index
= buffer
->index
+ i
;
184 dma_addr
= buffer
->buf
.dma_addr
+ (i
* EFX_BUF_SIZE
);
185 netif_dbg(efx
, probe
, efx
->net_dev
,
186 "mapping special buffer %d at %llx\n",
187 index
, (unsigned long long)dma_addr
);
188 EFX_POPULATE_QWORD_3(buf_desc
,
189 FRF_AZ_BUF_ADR_REGION
, 0,
190 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
191 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
192 efx_write_buf_tbl(efx
, &buf_desc
, index
);
196 /* Unmaps a buffer and clears the buffer table entries */
198 efx_fini_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
200 efx_oword_t buf_tbl_upd
;
201 unsigned int start
= buffer
->index
;
202 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
204 if (!buffer
->entries
)
207 netif_dbg(efx
, hw
, efx
->net_dev
, "unmapping special buffers %d-%d\n",
208 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
210 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
211 FRF_AZ_BUF_UPD_CMD
, 0,
212 FRF_AZ_BUF_CLR_CMD
, 1,
213 FRF_AZ_BUF_CLR_END_ID
, end
,
214 FRF_AZ_BUF_CLR_START_ID
, start
);
215 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
219 * Allocate a new special buffer
221 * This allocates memory for a new buffer, clears it and allocates a
222 * new buffer ID range. It does not write into the buffer table.
224 * This call will allocate 4KB buffers, since 8KB buffers can't be
225 * used for event queues and descriptor rings.
227 static int efx_alloc_special_buffer(struct efx_nic
*efx
,
228 struct efx_special_buffer
*buffer
,
231 #ifdef CONFIG_SFC_SRIOV
232 struct siena_nic_data
*nic_data
= efx
->nic_data
;
234 len
= ALIGN(len
, EFX_BUF_SIZE
);
236 if (efx_nic_alloc_buffer(efx
, &buffer
->buf
, len
, GFP_KERNEL
))
238 buffer
->entries
= len
/ EFX_BUF_SIZE
;
239 BUG_ON(buffer
->buf
.dma_addr
& (EFX_BUF_SIZE
- 1));
241 /* Select new buffer ID */
242 buffer
->index
= efx
->next_buffer_table
;
243 efx
->next_buffer_table
+= buffer
->entries
;
244 #ifdef CONFIG_SFC_SRIOV
245 BUG_ON(efx_siena_sriov_enabled(efx
) &&
246 nic_data
->vf_buftbl_base
< efx
->next_buffer_table
);
249 netif_dbg(efx
, probe
, efx
->net_dev
,
250 "allocating special buffers %d-%d at %llx+%x "
251 "(virt %p phys %llx)\n", buffer
->index
,
252 buffer
->index
+ buffer
->entries
- 1,
253 (u64
)buffer
->buf
.dma_addr
, len
,
254 buffer
->buf
.addr
, (u64
)virt_to_phys(buffer
->buf
.addr
));
260 efx_free_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
262 if (!buffer
->buf
.addr
)
265 netif_dbg(efx
, hw
, efx
->net_dev
,
266 "deallocating special buffers %d-%d at %llx+%x "
267 "(virt %p phys %llx)\n", buffer
->index
,
268 buffer
->index
+ buffer
->entries
- 1,
269 (u64
)buffer
->buf
.dma_addr
, buffer
->buf
.len
,
270 buffer
->buf
.addr
, (u64
)virt_to_phys(buffer
->buf
.addr
));
272 efx_nic_free_buffer(efx
, &buffer
->buf
);
276 /**************************************************************************
280 **************************************************************************/
282 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
283 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
288 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
289 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
290 efx_writed_page(tx_queue
->efx
, ®
,
291 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
294 /* Write pointer and first descriptor for TX descriptor ring */
295 static inline void efx_farch_push_tx_desc(struct efx_tx_queue
*tx_queue
,
296 const efx_qword_t
*txd
)
301 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN
!= 0);
302 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER
!= FR_BZ_TX_DESC_UPD_P0
);
304 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
305 EFX_POPULATE_OWORD_2(reg
, FRF_AZ_TX_DESC_PUSH_CMD
, true,
306 FRF_AZ_TX_DESC_WPTR
, write_ptr
);
308 efx_writeo_page(tx_queue
->efx
, ®
,
309 FR_BZ_TX_DESC_UPD_P0
, tx_queue
->queue
);
313 /* For each entry inserted into the software descriptor ring, create a
314 * descriptor in the hardware TX descriptor ring (in host memory), and
317 void efx_farch_tx_write(struct efx_tx_queue
*tx_queue
)
319 struct efx_tx_buffer
*buffer
;
322 unsigned old_write_count
= tx_queue
->write_count
;
324 tx_queue
->xmit_more_available
= false;
325 if (unlikely(tx_queue
->write_count
== tx_queue
->insert_count
))
329 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
330 buffer
= &tx_queue
->buffer
[write_ptr
];
331 txd
= efx_tx_desc(tx_queue
, write_ptr
);
332 ++tx_queue
->write_count
;
334 EFX_BUG_ON_PARANOID(buffer
->flags
& EFX_TX_BUF_OPTION
);
336 /* Create TX descriptor ring entry */
337 BUILD_BUG_ON(EFX_TX_BUF_CONT
!= 1);
338 EFX_POPULATE_QWORD_4(*txd
,
340 buffer
->flags
& EFX_TX_BUF_CONT
,
341 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
342 FSF_AZ_TX_KER_BUF_REGION
, 0,
343 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
344 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
346 wmb(); /* Ensure descriptors are written before they are fetched */
348 if (efx_nic_may_push_tx_desc(tx_queue
, old_write_count
)) {
349 txd
= efx_tx_desc(tx_queue
,
350 old_write_count
& tx_queue
->ptr_mask
);
351 efx_farch_push_tx_desc(tx_queue
, txd
);
354 efx_farch_notify_tx_desc(tx_queue
);
358 /* Allocate hardware resources for a TX queue */
359 int efx_farch_tx_probe(struct efx_tx_queue
*tx_queue
)
361 struct efx_nic
*efx
= tx_queue
->efx
;
364 entries
= tx_queue
->ptr_mask
+ 1;
365 return efx_alloc_special_buffer(efx
, &tx_queue
->txd
,
366 entries
* sizeof(efx_qword_t
));
369 void efx_farch_tx_init(struct efx_tx_queue
*tx_queue
)
371 struct efx_nic
*efx
= tx_queue
->efx
;
374 /* Pin TX descriptor ring */
375 efx_init_special_buffer(efx
, &tx_queue
->txd
);
377 /* Push TX descriptor ring to card */
378 EFX_POPULATE_OWORD_10(reg
,
379 FRF_AZ_TX_DESCQ_EN
, 1,
380 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
381 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
382 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
383 FRF_AZ_TX_DESCQ_EVQ_ID
,
384 tx_queue
->channel
->channel
,
385 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
386 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
387 FRF_AZ_TX_DESCQ_SIZE
,
388 __ffs(tx_queue
->txd
.entries
),
389 FRF_AZ_TX_DESCQ_TYPE
, 0,
390 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
392 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
393 int csum
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
394 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
395 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_TCP_CHKSM_DIS
,
399 efx_writeo_table(efx
, ®
, efx
->type
->txd_ptr_tbl_base
,
402 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
403 /* Only 128 bits in this register */
404 BUILD_BUG_ON(EFX_MAX_TX_QUEUES
> 128);
406 efx_reado(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
407 if (tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
)
408 __clear_bit_le(tx_queue
->queue
, ®
);
410 __set_bit_le(tx_queue
->queue
, ®
);
411 efx_writeo(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
414 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
415 EFX_POPULATE_OWORD_1(reg
,
417 (tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
419 FFE_BZ_TX_PACE_RESERVED
);
420 efx_writeo_table(efx
, ®
, FR_BZ_TX_PACE_TBL
,
425 static void efx_farch_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
427 struct efx_nic
*efx
= tx_queue
->efx
;
428 efx_oword_t tx_flush_descq
;
430 WARN_ON(atomic_read(&tx_queue
->flush_outstanding
));
431 atomic_set(&tx_queue
->flush_outstanding
, 1);
433 EFX_POPULATE_OWORD_2(tx_flush_descq
,
434 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
435 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
436 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
439 void efx_farch_tx_fini(struct efx_tx_queue
*tx_queue
)
441 struct efx_nic
*efx
= tx_queue
->efx
;
442 efx_oword_t tx_desc_ptr
;
444 /* Remove TX descriptor ring from card */
445 EFX_ZERO_OWORD(tx_desc_ptr
);
446 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
449 /* Unpin TX descriptor ring */
450 efx_fini_special_buffer(efx
, &tx_queue
->txd
);
453 /* Free buffers backing TX queue */
454 void efx_farch_tx_remove(struct efx_tx_queue
*tx_queue
)
456 efx_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
459 /**************************************************************************
463 **************************************************************************/
465 /* This creates an entry in the RX descriptor queue */
467 efx_farch_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned index
)
469 struct efx_rx_buffer
*rx_buf
;
472 rxd
= efx_rx_desc(rx_queue
, index
);
473 rx_buf
= efx_rx_buffer(rx_queue
, index
);
474 EFX_POPULATE_QWORD_3(*rxd
,
475 FSF_AZ_RX_KER_BUF_SIZE
,
477 rx_queue
->efx
->type
->rx_buffer_padding
,
478 FSF_AZ_RX_KER_BUF_REGION
, 0,
479 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
482 /* This writes to the RX_DESC_WPTR register for the specified receive
485 void efx_farch_rx_write(struct efx_rx_queue
*rx_queue
)
487 struct efx_nic
*efx
= rx_queue
->efx
;
491 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
492 efx_farch_build_rx_desc(
494 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
495 ++rx_queue
->notified_count
;
499 write_ptr
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
500 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
501 efx_writed_page(efx
, ®
, FR_AZ_RX_DESC_UPD_DWORD_P0
,
502 efx_rx_queue_index(rx_queue
));
505 int efx_farch_rx_probe(struct efx_rx_queue
*rx_queue
)
507 struct efx_nic
*efx
= rx_queue
->efx
;
510 entries
= rx_queue
->ptr_mask
+ 1;
511 return efx_alloc_special_buffer(efx
, &rx_queue
->rxd
,
512 entries
* sizeof(efx_qword_t
));
515 void efx_farch_rx_init(struct efx_rx_queue
*rx_queue
)
517 efx_oword_t rx_desc_ptr
;
518 struct efx_nic
*efx
= rx_queue
->efx
;
519 bool is_b0
= efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
;
520 bool iscsi_digest_en
= is_b0
;
523 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
524 * DMA to continue after a PCIe page boundary (and scattering
525 * is not possible). In Falcon B0 and Siena, it enables
528 jumbo_en
= !is_b0
|| efx
->rx_scatter
;
530 netif_dbg(efx
, hw
, efx
->net_dev
,
531 "RX queue %d ring in special buffers %d-%d\n",
532 efx_rx_queue_index(rx_queue
), rx_queue
->rxd
.index
,
533 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
535 rx_queue
->scatter_n
= 0;
537 /* Pin RX descriptor ring */
538 efx_init_special_buffer(efx
, &rx_queue
->rxd
);
540 /* Push RX descriptor ring to card */
541 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
542 FRF_AZ_RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
543 FRF_AZ_RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
544 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
545 FRF_AZ_RX_DESCQ_EVQ_ID
,
546 efx_rx_queue_channel(rx_queue
)->channel
,
547 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
548 FRF_AZ_RX_DESCQ_LABEL
,
549 efx_rx_queue_index(rx_queue
),
550 FRF_AZ_RX_DESCQ_SIZE
,
551 __ffs(rx_queue
->rxd
.entries
),
552 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
553 FRF_AZ_RX_DESCQ_JUMBO
, jumbo_en
,
554 FRF_AZ_RX_DESCQ_EN
, 1);
555 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
556 efx_rx_queue_index(rx_queue
));
559 static void efx_farch_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
561 struct efx_nic
*efx
= rx_queue
->efx
;
562 efx_oword_t rx_flush_descq
;
564 EFX_POPULATE_OWORD_2(rx_flush_descq
,
565 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
566 FRF_AZ_RX_FLUSH_DESCQ
,
567 efx_rx_queue_index(rx_queue
));
568 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
571 void efx_farch_rx_fini(struct efx_rx_queue
*rx_queue
)
573 efx_oword_t rx_desc_ptr
;
574 struct efx_nic
*efx
= rx_queue
->efx
;
576 /* Remove RX descriptor ring from card */
577 EFX_ZERO_OWORD(rx_desc_ptr
);
578 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
579 efx_rx_queue_index(rx_queue
));
581 /* Unpin RX descriptor ring */
582 efx_fini_special_buffer(efx
, &rx_queue
->rxd
);
585 /* Free buffers backing RX queue */
586 void efx_farch_rx_remove(struct efx_rx_queue
*rx_queue
)
588 efx_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
591 /**************************************************************************
595 **************************************************************************/
597 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
598 * or more RX flushes can be kicked off.
600 static bool efx_farch_flush_wake(struct efx_nic
*efx
)
602 /* Ensure that all updates are visible to efx_farch_flush_queues() */
605 return (atomic_read(&efx
->active_queues
) == 0 ||
606 (atomic_read(&efx
->rxq_flush_outstanding
) < EFX_RX_FLUSH_COUNT
607 && atomic_read(&efx
->rxq_flush_pending
) > 0));
610 static bool efx_check_tx_flush_complete(struct efx_nic
*efx
)
613 efx_oword_t txd_ptr_tbl
;
614 struct efx_channel
*channel
;
615 struct efx_tx_queue
*tx_queue
;
617 efx_for_each_channel(channel
, efx
) {
618 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
619 efx_reado_table(efx
, &txd_ptr_tbl
,
620 FR_BZ_TX_DESC_PTR_TBL
, tx_queue
->queue
);
621 if (EFX_OWORD_FIELD(txd_ptr_tbl
,
622 FRF_AZ_TX_DESCQ_FLUSH
) ||
623 EFX_OWORD_FIELD(txd_ptr_tbl
,
624 FRF_AZ_TX_DESCQ_EN
)) {
625 netif_dbg(efx
, hw
, efx
->net_dev
,
626 "flush did not complete on TXQ %d\n",
629 } else if (atomic_cmpxchg(&tx_queue
->flush_outstanding
,
631 /* The flush is complete, but we didn't
632 * receive a flush completion event
634 netif_dbg(efx
, hw
, efx
->net_dev
,
635 "flush complete on TXQ %d, so drain "
636 "the queue\n", tx_queue
->queue
);
637 /* Don't need to increment active_queues as it
638 * has already been incremented for the queues
639 * which did not drain
641 efx_farch_magic_event(channel
,
642 EFX_CHANNEL_MAGIC_TX_DRAIN(
651 /* Flush all the transmit queues, and continue flushing receive queues until
652 * they're all flushed. Wait for the DRAIN events to be received so that there
653 * are no more RX and TX events left on any channel. */
654 static int efx_farch_do_flush(struct efx_nic
*efx
)
656 unsigned timeout
= msecs_to_jiffies(5000); /* 5s for all flushes and drains */
657 struct efx_channel
*channel
;
658 struct efx_rx_queue
*rx_queue
;
659 struct efx_tx_queue
*tx_queue
;
662 efx_for_each_channel(channel
, efx
) {
663 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
664 efx_farch_flush_tx_queue(tx_queue
);
666 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
667 rx_queue
->flush_pending
= true;
668 atomic_inc(&efx
->rxq_flush_pending
);
672 while (timeout
&& atomic_read(&efx
->active_queues
) > 0) {
673 /* If SRIOV is enabled, then offload receive queue flushing to
674 * the firmware (though we will still have to poll for
675 * completion). If that fails, fall back to the old scheme.
677 if (efx_siena_sriov_enabled(efx
)) {
678 rc
= efx_mcdi_flush_rxqs(efx
);
683 /* The hardware supports four concurrent rx flushes, each of
684 * which may need to be retried if there is an outstanding
687 efx_for_each_channel(channel
, efx
) {
688 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
689 if (atomic_read(&efx
->rxq_flush_outstanding
) >=
693 if (rx_queue
->flush_pending
) {
694 rx_queue
->flush_pending
= false;
695 atomic_dec(&efx
->rxq_flush_pending
);
696 atomic_inc(&efx
->rxq_flush_outstanding
);
697 efx_farch_flush_rx_queue(rx_queue
);
703 timeout
= wait_event_timeout(efx
->flush_wq
,
704 efx_farch_flush_wake(efx
),
708 if (atomic_read(&efx
->active_queues
) &&
709 !efx_check_tx_flush_complete(efx
)) {
710 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues "
711 "(rx %d+%d)\n", atomic_read(&efx
->active_queues
),
712 atomic_read(&efx
->rxq_flush_outstanding
),
713 atomic_read(&efx
->rxq_flush_pending
));
716 atomic_set(&efx
->active_queues
, 0);
717 atomic_set(&efx
->rxq_flush_pending
, 0);
718 atomic_set(&efx
->rxq_flush_outstanding
, 0);
724 int efx_farch_fini_dmaq(struct efx_nic
*efx
)
726 struct efx_channel
*channel
;
727 struct efx_tx_queue
*tx_queue
;
728 struct efx_rx_queue
*rx_queue
;
731 /* Do not attempt to write to the NIC during EEH recovery */
732 if (efx
->state
!= STATE_RECOVERY
) {
733 /* Only perform flush if DMA is enabled */
734 if (efx
->pci_dev
->is_busmaster
) {
735 efx
->type
->prepare_flush(efx
);
736 rc
= efx_farch_do_flush(efx
);
737 efx
->type
->finish_flush(efx
);
740 efx_for_each_channel(channel
, efx
) {
741 efx_for_each_channel_rx_queue(rx_queue
, channel
)
742 efx_farch_rx_fini(rx_queue
);
743 efx_for_each_channel_tx_queue(tx_queue
, channel
)
744 efx_farch_tx_fini(tx_queue
);
751 /* Reset queue and flush accounting after FLR
753 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
754 * mastering was disabled), in which case we don't receive (RXQ) flush
755 * completion events. This means that efx->rxq_flush_outstanding remained at 4
756 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
757 * events were received, and we didn't go through efx_check_tx_flush_complete())
758 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
759 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
760 * for batched flush requests; and the efx->active_queues gets messed up because
761 * we keep incrementing for the newly initialised queues, but it never went to
762 * zero previously. Then we get a timeout every time we try to restart the
763 * queues, as it doesn't go back to zero when we should be flushing the queues.
765 void efx_farch_finish_flr(struct efx_nic
*efx
)
767 atomic_set(&efx
->rxq_flush_pending
, 0);
768 atomic_set(&efx
->rxq_flush_outstanding
, 0);
769 atomic_set(&efx
->active_queues
, 0);
773 /**************************************************************************
775 * Event queue processing
776 * Event queues are processed by per-channel tasklets.
778 **************************************************************************/
780 /* Update a channel's event queue's read pointer (RPTR) register
782 * This writes the EVQ_RPTR_REG register for the specified channel's
785 void efx_farch_ev_read_ack(struct efx_channel
*channel
)
788 struct efx_nic
*efx
= channel
->efx
;
790 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
,
791 channel
->eventq_read_ptr
& channel
->eventq_mask
);
793 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
794 * of 4 bytes, but it is really 16 bytes just like later revisions.
796 efx_writed(efx
, ®
,
797 efx
->type
->evq_rptr_tbl_base
+
798 FR_BZ_EVQ_RPTR_STEP
* channel
->channel
);
801 /* Use HW to insert a SW defined event */
802 void efx_farch_generate_event(struct efx_nic
*efx
, unsigned int evq
,
805 efx_oword_t drv_ev_reg
;
807 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
808 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
809 drv_ev_reg
.u32
[0] = event
->u32
[0];
810 drv_ev_reg
.u32
[1] = event
->u32
[1];
811 drv_ev_reg
.u32
[2] = 0;
812 drv_ev_reg
.u32
[3] = 0;
813 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, evq
);
814 efx_writeo(efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
817 static void efx_farch_magic_event(struct efx_channel
*channel
, u32 magic
)
821 EFX_POPULATE_QWORD_2(event
, FSF_AZ_EV_CODE
,
822 FSE_AZ_EV_CODE_DRV_GEN_EV
,
823 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
824 efx_farch_generate_event(channel
->efx
, channel
->channel
, &event
);
827 /* Handle a transmit completion event
829 * The NIC batches TX completion events; the message we receive is of
830 * the form "complete all TX events up to this index".
833 efx_farch_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
835 unsigned int tx_ev_desc_ptr
;
836 unsigned int tx_ev_q_label
;
837 struct efx_tx_queue
*tx_queue
;
838 struct efx_nic
*efx
= channel
->efx
;
841 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
844 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
845 /* Transmit completion */
846 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
847 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
848 tx_queue
= efx_channel_get_tx_queue(
849 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
850 tx_packets
= ((tx_ev_desc_ptr
- tx_queue
->read_count
) &
852 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
853 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
854 /* Rewrite the FIFO write pointer */
855 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
856 tx_queue
= efx_channel_get_tx_queue(
857 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
859 netif_tx_lock(efx
->net_dev
);
860 efx_farch_notify_tx_desc(tx_queue
);
861 netif_tx_unlock(efx
->net_dev
);
862 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
)) {
863 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
865 netif_err(efx
, tx_err
, efx
->net_dev
,
866 "channel %d unexpected TX event "
867 EFX_QWORD_FMT
"\n", channel
->channel
,
868 EFX_QWORD_VAL(*event
));
874 /* Detect errors included in the rx_evt_pkt_ok bit. */
875 static u16
efx_farch_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
876 const efx_qword_t
*event
)
878 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
879 struct efx_nic
*efx
= rx_queue
->efx
;
880 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
881 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
882 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
883 bool rx_ev_other_err
, rx_ev_pause_frm
;
884 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
885 unsigned rx_ev_pkt_type
;
887 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
888 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
889 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
890 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
891 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
892 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
893 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
894 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
895 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
896 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
897 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
898 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
899 rx_ev_drib_nib
= ((efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) ?
900 0 : EFX_QWORD_FIELD(*event
, FSF_AA_RX_EV_DRIB_NIB
));
901 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
903 /* Every error apart from tobe_disc and pause_frm */
904 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
905 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
906 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
908 /* Count errors that are not in MAC stats. Ignore expected
909 * checksum errors during self-test. */
911 ++channel
->n_rx_frm_trunc
;
912 else if (rx_ev_tobe_disc
)
913 ++channel
->n_rx_tobe_disc
;
914 else if (!efx
->loopback_selftest
) {
915 if (rx_ev_ip_hdr_chksum_err
)
916 ++channel
->n_rx_ip_hdr_chksum_err
;
917 else if (rx_ev_tcp_udp_chksum_err
)
918 ++channel
->n_rx_tcp_udp_chksum_err
;
921 /* TOBE_DISC is expected on unicast mismatches; don't print out an
922 * error message. FRM_TRUNC indicates RXDP dropped the packet due
923 * to a FIFO overflow.
926 if (rx_ev_other_err
&& net_ratelimit()) {
927 netif_dbg(efx
, rx_err
, efx
->net_dev
,
928 " RX queue %d unexpected RX event "
929 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
930 efx_rx_queue_index(rx_queue
), EFX_QWORD_VAL(*event
),
931 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
932 rx_ev_ip_hdr_chksum_err
?
933 " [IP_HDR_CHKSUM_ERR]" : "",
934 rx_ev_tcp_udp_chksum_err
?
935 " [TCP_UDP_CHKSUM_ERR]" : "",
936 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
937 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
938 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
939 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
940 rx_ev_pause_frm
? " [PAUSE]" : "");
944 /* The frame must be discarded if any of these are true. */
945 return (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
946 rx_ev_tobe_disc
| rx_ev_pause_frm
) ?
947 EFX_RX_PKT_DISCARD
: 0;
950 /* Handle receive events that are not in-order. Return true if this
951 * can be handled as a partial packet discard, false if it's more
955 efx_farch_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
, unsigned index
)
957 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
958 struct efx_nic
*efx
= rx_queue
->efx
;
959 unsigned expected
, dropped
;
961 if (rx_queue
->scatter_n
&&
962 index
== ((rx_queue
->removed_count
+ rx_queue
->scatter_n
- 1) &
963 rx_queue
->ptr_mask
)) {
964 ++channel
->n_rx_nodesc_trunc
;
968 expected
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
969 dropped
= (index
- expected
) & rx_queue
->ptr_mask
;
970 netif_info(efx
, rx_err
, efx
->net_dev
,
971 "dropped %d events (index=%d expected=%d)\n",
972 dropped
, index
, expected
);
974 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
975 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
979 /* Handle a packet received event
981 * The NIC gives a "discard" flag if it's a unicast packet with the
982 * wrong destination address
983 * Also "is multicast" and "matches multicast filter" flags can be used to
984 * discard non-matching multicast packets.
987 efx_farch_handle_rx_event(struct efx_channel
*channel
, const efx_qword_t
*event
)
989 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
990 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
991 unsigned expected_ptr
;
992 bool rx_ev_pkt_ok
, rx_ev_sop
, rx_ev_cont
;
994 struct efx_rx_queue
*rx_queue
;
995 struct efx_nic
*efx
= channel
->efx
;
997 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
1000 rx_ev_cont
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
);
1001 rx_ev_sop
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
);
1002 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
1005 rx_queue
= efx_channel_get_rx_queue(channel
);
1007 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
1008 expected_ptr
= ((rx_queue
->removed_count
+ rx_queue
->scatter_n
) &
1009 rx_queue
->ptr_mask
);
1011 /* Check for partial drops and other errors */
1012 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
) ||
1013 unlikely(rx_ev_sop
!= (rx_queue
->scatter_n
== 0))) {
1014 if (rx_ev_desc_ptr
!= expected_ptr
&&
1015 !efx_farch_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
))
1018 /* Discard all pending fragments */
1019 if (rx_queue
->scatter_n
) {
1022 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1023 rx_queue
->scatter_n
, 0, EFX_RX_PKT_DISCARD
);
1024 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1025 rx_queue
->scatter_n
= 0;
1028 /* Return if there is no new fragment */
1029 if (rx_ev_desc_ptr
!= expected_ptr
)
1032 /* Discard new fragment if not SOP */
1036 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1037 1, 0, EFX_RX_PKT_DISCARD
);
1038 ++rx_queue
->removed_count
;
1043 ++rx_queue
->scatter_n
;
1047 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
1048 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
1049 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
1051 if (likely(rx_ev_pkt_ok
)) {
1052 /* If packet is marked as OK then we can rely on the
1053 * hardware checksum and classification.
1056 switch (rx_ev_hdr_type
) {
1057 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
:
1058 flags
|= EFX_RX_PKT_TCP
;
1060 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
:
1061 flags
|= EFX_RX_PKT_CSUMMED
;
1063 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER
:
1064 case FSE_AZ_RX_EV_HDR_TYPE_OTHER
:
1068 flags
= efx_farch_handle_rx_not_ok(rx_queue
, event
);
1071 /* Detect multicast packets that didn't match the filter */
1072 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
1073 if (rx_ev_mcast_pkt
) {
1074 unsigned int rx_ev_mcast_hash_match
=
1075 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
1077 if (unlikely(!rx_ev_mcast_hash_match
)) {
1078 ++channel
->n_rx_mcast_mismatch
;
1079 flags
|= EFX_RX_PKT_DISCARD
;
1083 channel
->irq_mod_score
+= 2;
1085 /* Handle received packet */
1086 efx_rx_packet(rx_queue
,
1087 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1088 rx_queue
->scatter_n
, rx_ev_byte_cnt
, flags
);
1089 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1090 rx_queue
->scatter_n
= 0;
1093 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1094 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1095 * of all transmit completions.
1098 efx_farch_handle_tx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1100 struct efx_tx_queue
*tx_queue
;
1103 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1104 if (qid
< EFX_TXQ_TYPES
* efx
->n_tx_channels
) {
1105 tx_queue
= efx_get_tx_queue(efx
, qid
/ EFX_TXQ_TYPES
,
1106 qid
% EFX_TXQ_TYPES
);
1107 if (atomic_cmpxchg(&tx_queue
->flush_outstanding
, 1, 0)) {
1108 efx_farch_magic_event(tx_queue
->channel
,
1109 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue
));
1114 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1115 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1116 * the RX queue back to the mask of RX queues in need of flushing.
1119 efx_farch_handle_rx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1121 struct efx_channel
*channel
;
1122 struct efx_rx_queue
*rx_queue
;
1126 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1127 failed
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1128 if (qid
>= efx
->n_channels
)
1130 channel
= efx_get_channel(efx
, qid
);
1131 if (!efx_channel_has_rx_queue(channel
))
1133 rx_queue
= efx_channel_get_rx_queue(channel
);
1136 netif_info(efx
, hw
, efx
->net_dev
,
1137 "RXQ %d flush retry\n", qid
);
1138 rx_queue
->flush_pending
= true;
1139 atomic_inc(&efx
->rxq_flush_pending
);
1141 efx_farch_magic_event(efx_rx_queue_channel(rx_queue
),
1142 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
));
1144 atomic_dec(&efx
->rxq_flush_outstanding
);
1145 if (efx_farch_flush_wake(efx
))
1146 wake_up(&efx
->flush_wq
);
1150 efx_farch_handle_drain_event(struct efx_channel
*channel
)
1152 struct efx_nic
*efx
= channel
->efx
;
1154 WARN_ON(atomic_read(&efx
->active_queues
) == 0);
1155 atomic_dec(&efx
->active_queues
);
1156 if (efx_farch_flush_wake(efx
))
1157 wake_up(&efx
->flush_wq
);
1160 static void efx_farch_handle_generated_event(struct efx_channel
*channel
,
1163 struct efx_nic
*efx
= channel
->efx
;
1164 struct efx_rx_queue
*rx_queue
=
1165 efx_channel_has_rx_queue(channel
) ?
1166 efx_channel_get_rx_queue(channel
) : NULL
;
1167 unsigned magic
, code
;
1169 magic
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
1170 code
= _EFX_CHANNEL_MAGIC_CODE(magic
);
1172 if (magic
== EFX_CHANNEL_MAGIC_TEST(channel
)) {
1173 channel
->event_test_cpu
= raw_smp_processor_id();
1174 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_FILL(rx_queue
)) {
1175 /* The queue must be empty, so we won't receive any rx
1176 * events, so efx_process_channel() won't refill the
1177 * queue. Refill it here */
1178 efx_fast_push_rx_descriptors(rx_queue
, true);
1179 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
)) {
1180 efx_farch_handle_drain_event(channel
);
1181 } else if (code
== _EFX_CHANNEL_MAGIC_TX_DRAIN
) {
1182 efx_farch_handle_drain_event(channel
);
1184 netif_dbg(efx
, hw
, efx
->net_dev
, "channel %d received "
1185 "generated event "EFX_QWORD_FMT
"\n",
1186 channel
->channel
, EFX_QWORD_VAL(*event
));
1191 efx_farch_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1193 struct efx_nic
*efx
= channel
->efx
;
1194 unsigned int ev_sub_code
;
1195 unsigned int ev_sub_data
;
1197 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
1198 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1200 switch (ev_sub_code
) {
1201 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
1202 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d TXQ %d flushed\n",
1203 channel
->channel
, ev_sub_data
);
1204 efx_farch_handle_tx_flush_done(efx
, event
);
1205 #ifdef CONFIG_SFC_SRIOV
1206 efx_siena_sriov_tx_flush_done(efx
, event
);
1209 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
1210 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d RXQ %d flushed\n",
1211 channel
->channel
, ev_sub_data
);
1212 efx_farch_handle_rx_flush_done(efx
, event
);
1213 #ifdef CONFIG_SFC_SRIOV
1214 efx_siena_sriov_rx_flush_done(efx
, event
);
1217 case FSE_AZ_EVQ_INIT_DONE_EV
:
1218 netif_dbg(efx
, hw
, efx
->net_dev
,
1219 "channel %d EVQ %d initialised\n",
1220 channel
->channel
, ev_sub_data
);
1222 case FSE_AZ_SRM_UPD_DONE_EV
:
1223 netif_vdbg(efx
, hw
, efx
->net_dev
,
1224 "channel %d SRAM update done\n", channel
->channel
);
1226 case FSE_AZ_WAKE_UP_EV
:
1227 netif_vdbg(efx
, hw
, efx
->net_dev
,
1228 "channel %d RXQ %d wakeup event\n",
1229 channel
->channel
, ev_sub_data
);
1231 case FSE_AZ_TIMER_EV
:
1232 netif_vdbg(efx
, hw
, efx
->net_dev
,
1233 "channel %d RX queue %d timer expired\n",
1234 channel
->channel
, ev_sub_data
);
1236 case FSE_AA_RX_RECOVER_EV
:
1237 netif_err(efx
, rx_err
, efx
->net_dev
,
1238 "channel %d seen DRIVER RX_RESET event. "
1239 "Resetting.\n", channel
->channel
);
1240 atomic_inc(&efx
->rx_reset
);
1241 efx_schedule_reset(efx
,
1242 EFX_WORKAROUND_6555(efx
) ?
1243 RESET_TYPE_RX_RECOVERY
:
1244 RESET_TYPE_DISABLE
);
1246 case FSE_BZ_RX_DSC_ERROR_EV
:
1247 if (ev_sub_data
< EFX_VI_BASE
) {
1248 netif_err(efx
, rx_err
, efx
->net_dev
,
1249 "RX DMA Q %d reports descriptor fetch error."
1250 " RX Q %d is disabled.\n", ev_sub_data
,
1252 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1254 #ifdef CONFIG_SFC_SRIOV
1256 efx_siena_sriov_desc_fetch_err(efx
, ev_sub_data
);
1259 case FSE_BZ_TX_DSC_ERROR_EV
:
1260 if (ev_sub_data
< EFX_VI_BASE
) {
1261 netif_err(efx
, tx_err
, efx
->net_dev
,
1262 "TX DMA Q %d reports descriptor fetch error."
1263 " TX Q %d is disabled.\n", ev_sub_data
,
1265 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1267 #ifdef CONFIG_SFC_SRIOV
1269 efx_siena_sriov_desc_fetch_err(efx
, ev_sub_data
);
1273 netif_vdbg(efx
, hw
, efx
->net_dev
,
1274 "channel %d unknown driver event code %d "
1275 "data %04x\n", channel
->channel
, ev_sub_code
,
1281 int efx_farch_ev_process(struct efx_channel
*channel
, int budget
)
1283 struct efx_nic
*efx
= channel
->efx
;
1284 unsigned int read_ptr
;
1285 efx_qword_t event
, *p_event
;
1293 read_ptr
= channel
->eventq_read_ptr
;
1296 p_event
= efx_event(channel
, read_ptr
);
1299 if (!efx_event_present(&event
))
1303 netif_vdbg(channel
->efx
, intr
, channel
->efx
->net_dev
,
1304 "channel %d event is "EFX_QWORD_FMT
"\n",
1305 channel
->channel
, EFX_QWORD_VAL(event
));
1307 /* Clear this event by marking it all ones */
1308 EFX_SET_QWORD(*p_event
);
1312 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1315 case FSE_AZ_EV_CODE_RX_EV
:
1316 efx_farch_handle_rx_event(channel
, &event
);
1317 if (++spent
== budget
)
1320 case FSE_AZ_EV_CODE_TX_EV
:
1321 tx_packets
+= efx_farch_handle_tx_event(channel
,
1323 if (tx_packets
> efx
->txq_entries
) {
1328 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1329 efx_farch_handle_generated_event(channel
, &event
);
1331 case FSE_AZ_EV_CODE_DRIVER_EV
:
1332 efx_farch_handle_driver_event(channel
, &event
);
1334 #ifdef CONFIG_SFC_SRIOV
1335 case FSE_CZ_EV_CODE_USER_EV
:
1336 efx_siena_sriov_event(channel
, &event
);
1339 case FSE_CZ_EV_CODE_MCDI_EV
:
1340 efx_mcdi_process_event(channel
, &event
);
1342 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1343 if (efx
->type
->handle_global_event
&&
1344 efx
->type
->handle_global_event(channel
, &event
))
1346 /* else fall through */
1348 netif_err(channel
->efx
, hw
, channel
->efx
->net_dev
,
1349 "channel %d unknown event type %d (data "
1350 EFX_QWORD_FMT
")\n", channel
->channel
,
1351 ev_code
, EFX_QWORD_VAL(event
));
1356 channel
->eventq_read_ptr
= read_ptr
;
1360 /* Allocate buffer table entries for event queue */
1361 int efx_farch_ev_probe(struct efx_channel
*channel
)
1363 struct efx_nic
*efx
= channel
->efx
;
1366 entries
= channel
->eventq_mask
+ 1;
1367 return efx_alloc_special_buffer(efx
, &channel
->eventq
,
1368 entries
* sizeof(efx_qword_t
));
1371 int efx_farch_ev_init(struct efx_channel
*channel
)
1374 struct efx_nic
*efx
= channel
->efx
;
1376 netif_dbg(efx
, hw
, efx
->net_dev
,
1377 "channel %d event queue in special buffers %d-%d\n",
1378 channel
->channel
, channel
->eventq
.index
,
1379 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1381 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1382 EFX_POPULATE_OWORD_3(reg
,
1383 FRF_CZ_TIMER_Q_EN
, 1,
1384 FRF_CZ_HOST_NOTIFY_MODE
, 0,
1385 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
1386 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1389 /* Pin event queue buffer */
1390 efx_init_special_buffer(efx
, &channel
->eventq
);
1392 /* Fill event queue with all ones (i.e. empty events) */
1393 memset(channel
->eventq
.buf
.addr
, 0xff, channel
->eventq
.buf
.len
);
1395 /* Push event queue to card */
1396 EFX_POPULATE_OWORD_3(reg
,
1398 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1399 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1400 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1406 void efx_farch_ev_fini(struct efx_channel
*channel
)
1409 struct efx_nic
*efx
= channel
->efx
;
1411 /* Remove event queue from card */
1412 EFX_ZERO_OWORD(reg
);
1413 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1415 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1416 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1418 /* Unpin event queue */
1419 efx_fini_special_buffer(efx
, &channel
->eventq
);
1422 /* Free buffers backing event queue */
1423 void efx_farch_ev_remove(struct efx_channel
*channel
)
1425 efx_free_special_buffer(channel
->efx
, &channel
->eventq
);
1429 void efx_farch_ev_test_generate(struct efx_channel
*channel
)
1431 efx_farch_magic_event(channel
, EFX_CHANNEL_MAGIC_TEST(channel
));
1434 void efx_farch_rx_defer_refill(struct efx_rx_queue
*rx_queue
)
1436 efx_farch_magic_event(efx_rx_queue_channel(rx_queue
),
1437 EFX_CHANNEL_MAGIC_FILL(rx_queue
));
1440 /**************************************************************************
1442 * Hardware interrupts
1443 * The hardware interrupt handler does very little work; all the event
1444 * queue processing is carried out by per-channel tasklets.
1446 **************************************************************************/
1448 /* Enable/disable/generate interrupts */
1449 static inline void efx_farch_interrupts(struct efx_nic
*efx
,
1450 bool enabled
, bool force
)
1452 efx_oword_t int_en_reg_ker
;
1454 EFX_POPULATE_OWORD_3(int_en_reg_ker
,
1455 FRF_AZ_KER_INT_LEVE_SEL
, efx
->irq_level
,
1456 FRF_AZ_KER_INT_KER
, force
,
1457 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1458 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1461 void efx_farch_irq_enable_master(struct efx_nic
*efx
)
1463 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1464 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1466 efx_farch_interrupts(efx
, true, false);
1469 void efx_farch_irq_disable_master(struct efx_nic
*efx
)
1471 /* Disable interrupts */
1472 efx_farch_interrupts(efx
, false, false);
1475 /* Generate a test interrupt
1476 * Interrupt must already have been enabled, otherwise nasty things
1479 void efx_farch_irq_test_generate(struct efx_nic
*efx
)
1481 efx_farch_interrupts(efx
, true, true);
1484 /* Process a fatal interrupt
1485 * Disable bus mastering ASAP and schedule a reset
1487 irqreturn_t
efx_farch_fatal_interrupt(struct efx_nic
*efx
)
1489 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1490 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1491 efx_oword_t fatal_intr
;
1492 int error
, mem_perr
;
1494 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1495 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1497 netif_err(efx
, hw
, efx
->net_dev
, "SYSTEM ERROR "EFX_OWORD_FMT
" status "
1498 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1499 EFX_OWORD_VAL(fatal_intr
),
1500 error
? "disabling bus mastering" : "no recognised error");
1502 /* If this is a memory parity error dump which blocks are offending */
1503 mem_perr
= (EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
) ||
1504 EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_SRM_PERR_INT_KER
));
1507 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1508 netif_err(efx
, hw
, efx
->net_dev
,
1509 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT
"\n",
1510 EFX_OWORD_VAL(reg
));
1513 /* Disable both devices */
1514 pci_clear_master(efx
->pci_dev
);
1515 if (efx_nic_is_dual_func(efx
))
1516 pci_clear_master(nic_data
->pci_dev2
);
1517 efx_farch_irq_disable_master(efx
);
1519 /* Count errors and reset or disable the NIC accordingly */
1520 if (efx
->int_error_count
== 0 ||
1521 time_after(jiffies
, efx
->int_error_expire
)) {
1522 efx
->int_error_count
= 0;
1523 efx
->int_error_expire
=
1524 jiffies
+ EFX_INT_ERROR_EXPIRE
* HZ
;
1526 if (++efx
->int_error_count
< EFX_MAX_INT_ERRORS
) {
1527 netif_err(efx
, hw
, efx
->net_dev
,
1528 "SYSTEM ERROR - reset scheduled\n");
1529 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1531 netif_err(efx
, hw
, efx
->net_dev
,
1532 "SYSTEM ERROR - max number of errors seen."
1533 "NIC will be disabled\n");
1534 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1540 /* Handle a legacy interrupt
1541 * Acknowledges the interrupt and schedule event queue processing.
1543 irqreturn_t
efx_farch_legacy_interrupt(int irq
, void *dev_id
)
1545 struct efx_nic
*efx
= dev_id
;
1546 bool soft_enabled
= ACCESS_ONCE(efx
->irq_soft_enabled
);
1547 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1548 irqreturn_t result
= IRQ_NONE
;
1549 struct efx_channel
*channel
;
1554 /* Read the ISR which also ACKs the interrupts */
1555 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1556 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1558 /* Legacy interrupts are disabled too late by the EEH kernel
1559 * code. Disable them earlier.
1560 * If an EEH error occurred, the read will have returned all ones.
1562 if (EFX_DWORD_IS_ALL_ONES(reg
) && efx_try_recovery(efx
) &&
1563 !efx
->eeh_disabled_legacy_irq
) {
1564 disable_irq_nosync(efx
->legacy_irq
);
1565 efx
->eeh_disabled_legacy_irq
= true;
1568 /* Handle non-event-queue sources */
1569 if (queues
& (1U << efx
->irq_level
) && soft_enabled
) {
1570 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1571 if (unlikely(syserr
))
1572 return efx_farch_fatal_interrupt(efx
);
1573 efx
->last_irq_cpu
= raw_smp_processor_id();
1577 efx
->irq_zero_count
= 0;
1579 /* Schedule processing of any interrupting queues */
1580 if (likely(soft_enabled
)) {
1581 efx_for_each_channel(channel
, efx
) {
1583 efx_schedule_channel_irq(channel
);
1587 result
= IRQ_HANDLED
;
1592 /* Legacy ISR read can return zero once (SF bug 15783) */
1594 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1595 * because this might be a shared interrupt. */
1596 if (efx
->irq_zero_count
++ == 0)
1597 result
= IRQ_HANDLED
;
1599 /* Ensure we schedule or rearm all event queues */
1600 if (likely(soft_enabled
)) {
1601 efx_for_each_channel(channel
, efx
) {
1602 event
= efx_event(channel
,
1603 channel
->eventq_read_ptr
);
1604 if (efx_event_present(event
))
1605 efx_schedule_channel_irq(channel
);
1607 efx_farch_ev_read_ack(channel
);
1612 if (result
== IRQ_HANDLED
)
1613 netif_vdbg(efx
, intr
, efx
->net_dev
,
1614 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1615 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1620 /* Handle an MSI interrupt
1622 * Handle an MSI hardware interrupt. This routine schedules event
1623 * queue processing. No interrupt acknowledgement cycle is necessary.
1624 * Also, we never need to check that the interrupt is for us, since
1625 * MSI interrupts cannot be shared.
1627 irqreturn_t
efx_farch_msi_interrupt(int irq
, void *dev_id
)
1629 struct efx_msi_context
*context
= dev_id
;
1630 struct efx_nic
*efx
= context
->efx
;
1631 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1634 netif_vdbg(efx
, intr
, efx
->net_dev
,
1635 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1636 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1638 if (!likely(ACCESS_ONCE(efx
->irq_soft_enabled
)))
1641 /* Handle non-event-queue sources */
1642 if (context
->index
== efx
->irq_level
) {
1643 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1644 if (unlikely(syserr
))
1645 return efx_farch_fatal_interrupt(efx
);
1646 efx
->last_irq_cpu
= raw_smp_processor_id();
1649 /* Schedule processing of the channel */
1650 efx_schedule_channel_irq(efx
->channel
[context
->index
]);
1655 /* Setup RSS indirection table.
1656 * This maps from the hash value of the packet to RXQ
1658 void efx_farch_rx_push_indir_table(struct efx_nic
*efx
)
1663 BUG_ON(efx_nic_rev(efx
) < EFX_REV_FALCON_B0
);
1665 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1666 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1668 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1669 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1670 efx
->rx_indir_table
[i
]);
1671 efx_writed(efx
, &dword
,
1672 FR_BZ_RX_INDIRECTION_TBL
+
1673 FR_BZ_RX_INDIRECTION_TBL_STEP
* i
);
1677 /* Looks at available SRAM resources and works out how many queues we
1678 * can support, and where things like descriptor caches should live.
1680 * SRAM is split up as follows:
1681 * 0 buftbl entries for channels
1682 * efx->vf_buftbl_base buftbl entries for SR-IOV
1683 * efx->rx_dc_base RX descriptor caches
1684 * efx->tx_dc_base TX descriptor caches
1686 void efx_farch_dimension_resources(struct efx_nic
*efx
, unsigned sram_lim_qw
)
1688 unsigned vi_count
, buftbl_min
;
1690 #ifdef CONFIG_SFC_SRIOV
1691 struct siena_nic_data
*nic_data
= efx
->nic_data
;
1694 /* Account for the buffer table entries backing the datapath channels
1695 * and the descriptor caches for those channels.
1697 buftbl_min
= ((efx
->n_rx_channels
* EFX_MAX_DMAQ_SIZE
+
1698 efx
->n_tx_channels
* EFX_TXQ_TYPES
* EFX_MAX_DMAQ_SIZE
+
1699 efx
->n_channels
* EFX_MAX_EVQ_SIZE
)
1700 * sizeof(efx_qword_t
) / EFX_BUF_SIZE
);
1701 vi_count
= max(efx
->n_channels
, efx
->n_tx_channels
* EFX_TXQ_TYPES
);
1703 #ifdef CONFIG_SFC_SRIOV
1704 if (efx
->type
->sriov_wanted
) {
1705 if (efx
->type
->sriov_wanted(efx
)) {
1706 unsigned vi_dc_entries
, buftbl_free
;
1707 unsigned entries_per_vf
, vf_limit
;
1709 nic_data
->vf_buftbl_base
= buftbl_min
;
1711 vi_dc_entries
= RX_DC_ENTRIES
+ TX_DC_ENTRIES
;
1712 vi_count
= max(vi_count
, EFX_VI_BASE
);
1713 buftbl_free
= (sram_lim_qw
- buftbl_min
-
1714 vi_count
* vi_dc_entries
);
1716 entries_per_vf
= ((vi_dc_entries
+
1717 EFX_VF_BUFTBL_PER_VI
) *
1719 vf_limit
= min(buftbl_free
/ entries_per_vf
,
1720 (1024U - EFX_VI_BASE
) >> efx
->vi_scale
);
1722 if (efx
->vf_count
> vf_limit
) {
1723 netif_err(efx
, probe
, efx
->net_dev
,
1724 "Reducing VF count from from %d to %d\n",
1725 efx
->vf_count
, vf_limit
);
1726 efx
->vf_count
= vf_limit
;
1728 vi_count
+= efx
->vf_count
* efx_vf_size(efx
);
1733 efx
->tx_dc_base
= sram_lim_qw
- vi_count
* TX_DC_ENTRIES
;
1734 efx
->rx_dc_base
= efx
->tx_dc_base
- vi_count
* RX_DC_ENTRIES
;
1737 u32
efx_farch_fpga_ver(struct efx_nic
*efx
)
1739 efx_oword_t altera_build
;
1740 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1741 return EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1744 void efx_farch_init_common(struct efx_nic
*efx
)
1748 /* Set positions of descriptor caches in SRAM. */
1749 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
, efx
->tx_dc_base
);
1750 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1751 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
, efx
->rx_dc_base
);
1752 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1754 /* Set TX descriptor cache size. */
1755 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1756 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1757 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1759 /* Set RX descriptor cache size. Set low watermark to size-8, as
1760 * this allows most efficient prefetching.
1762 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1763 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1764 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1765 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1766 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1768 /* Program INT_KER address */
1769 EFX_POPULATE_OWORD_2(temp
,
1770 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1771 EFX_INT_MODE_USE_MSI(efx
),
1772 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1773 efx_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1775 if (EFX_WORKAROUND_17213(efx
) && !EFX_INT_MODE_USE_MSI(efx
))
1776 /* Use an interrupt level unused by event queues */
1777 efx
->irq_level
= 0x1f;
1779 /* Use a valid MSI-X vector */
1782 /* Enable all the genuinely fatal interrupts. (They are still
1783 * masked by the overall interrupt mask, controlled by
1784 * falcon_interrupts()).
1786 * Note: All other fatal interrupts are enabled
1788 EFX_POPULATE_OWORD_3(temp
,
1789 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1790 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1791 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1792 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1793 EFX_SET_OWORD_FIELD(temp
, FRF_CZ_SRAM_PERR_INT_P_KER_EN
, 1);
1794 EFX_INVERT_OWORD(temp
);
1795 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1797 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1798 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1800 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1801 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1802 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1803 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1804 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 1);
1805 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1806 /* Enable SW_EV to inherit in char driver - assume harmless here */
1807 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1808 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1809 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1810 /* Disable hardware watchdog which can misfire */
1811 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1812 /* Squash TX of packets of 16 bytes or less */
1813 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1814 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1815 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
1817 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1818 EFX_POPULATE_OWORD_4(temp
,
1819 /* Default values */
1820 FRF_BZ_TX_PACE_SB_NOT_AF
, 0x15,
1821 FRF_BZ_TX_PACE_SB_AF
, 0xb,
1822 FRF_BZ_TX_PACE_FB_BASE
, 0,
1823 /* Allow large pace values in the
1825 FRF_BZ_TX_PACE_BIN_TH
,
1826 FFE_BZ_TX_PACE_RESERVED
);
1827 efx_writeo(efx
, &temp
, FR_BZ_TX_PACE
);
1831 /**************************************************************************
1835 **************************************************************************
1838 /* "Fudge factors" - difference between programmed value and actual depth.
1839 * Due to pipelined implementation we need to program H/W with a value that
1840 * is larger than the hop limit we want.
1842 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1843 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1845 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1846 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1849 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1851 /* Don't try very hard to find space for performance hints, as this is
1852 * counter-productive. */
1853 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1855 enum efx_farch_filter_type
{
1856 EFX_FARCH_FILTER_TCP_FULL
= 0,
1857 EFX_FARCH_FILTER_TCP_WILD
,
1858 EFX_FARCH_FILTER_UDP_FULL
,
1859 EFX_FARCH_FILTER_UDP_WILD
,
1860 EFX_FARCH_FILTER_MAC_FULL
= 4,
1861 EFX_FARCH_FILTER_MAC_WILD
,
1862 EFX_FARCH_FILTER_UC_DEF
= 8,
1863 EFX_FARCH_FILTER_MC_DEF
,
1864 EFX_FARCH_FILTER_TYPE_COUNT
, /* number of specific types */
1867 enum efx_farch_filter_table_id
{
1868 EFX_FARCH_FILTER_TABLE_RX_IP
= 0,
1869 EFX_FARCH_FILTER_TABLE_RX_MAC
,
1870 EFX_FARCH_FILTER_TABLE_RX_DEF
,
1871 EFX_FARCH_FILTER_TABLE_TX_MAC
,
1872 EFX_FARCH_FILTER_TABLE_COUNT
,
1875 enum efx_farch_filter_index
{
1876 EFX_FARCH_FILTER_INDEX_UC_DEF
,
1877 EFX_FARCH_FILTER_INDEX_MC_DEF
,
1878 EFX_FARCH_FILTER_SIZE_RX_DEF
,
1881 struct efx_farch_filter_spec
{
1889 struct efx_farch_filter_table
{
1890 enum efx_farch_filter_table_id id
;
1891 u32 offset
; /* address of table relative to BAR */
1892 unsigned size
; /* number of entries */
1893 unsigned step
; /* step between entries */
1894 unsigned used
; /* number currently used */
1895 unsigned long *used_bitmap
;
1896 struct efx_farch_filter_spec
*spec
;
1897 unsigned search_limit
[EFX_FARCH_FILTER_TYPE_COUNT
];
1900 struct efx_farch_filter_state
{
1901 struct efx_farch_filter_table table
[EFX_FARCH_FILTER_TABLE_COUNT
];
1905 efx_farch_filter_table_clear_entry(struct efx_nic
*efx
,
1906 struct efx_farch_filter_table
*table
,
1907 unsigned int filter_idx
);
1909 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1910 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1911 static u16
efx_farch_filter_hash(u32 key
)
1915 /* First 16 rounds */
1916 tmp
= 0x1fff ^ key
>> 16;
1917 tmp
= tmp
^ tmp
>> 3 ^ tmp
>> 6;
1918 tmp
= tmp
^ tmp
>> 9;
1919 /* Last 16 rounds */
1920 tmp
= tmp
^ tmp
<< 13 ^ key
;
1921 tmp
= tmp
^ tmp
>> 3 ^ tmp
>> 6;
1922 return tmp
^ tmp
>> 9;
1925 /* To allow for hash collisions, filter search continues at these
1926 * increments from the first possible entry selected by the hash. */
1927 static u16
efx_farch_filter_increment(u32 key
)
1932 static enum efx_farch_filter_table_id
1933 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec
*spec
)
1935 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1936 (EFX_FARCH_FILTER_TCP_FULL
>> 2));
1937 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1938 (EFX_FARCH_FILTER_TCP_WILD
>> 2));
1939 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1940 (EFX_FARCH_FILTER_UDP_FULL
>> 2));
1941 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1942 (EFX_FARCH_FILTER_UDP_WILD
>> 2));
1943 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC
!=
1944 (EFX_FARCH_FILTER_MAC_FULL
>> 2));
1945 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC
!=
1946 (EFX_FARCH_FILTER_MAC_WILD
>> 2));
1947 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC
!=
1948 EFX_FARCH_FILTER_TABLE_RX_MAC
+ 2);
1949 return (spec
->type
>> 2) + ((spec
->flags
& EFX_FILTER_FLAG_TX
) ? 2 : 0);
1952 static void efx_farch_filter_push_rx_config(struct efx_nic
*efx
)
1954 struct efx_farch_filter_state
*state
= efx
->filter_state
;
1955 struct efx_farch_filter_table
*table
;
1956 efx_oword_t filter_ctl
;
1958 efx_reado(efx
, &filter_ctl
, FR_BZ_RX_FILTER_CTL
);
1960 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
1961 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_TCP_FULL_SRCH_LIMIT
,
1962 table
->search_limit
[EFX_FARCH_FILTER_TCP_FULL
] +
1963 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1964 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_TCP_WILD_SRCH_LIMIT
,
1965 table
->search_limit
[EFX_FARCH_FILTER_TCP_WILD
] +
1966 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1967 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_UDP_FULL_SRCH_LIMIT
,
1968 table
->search_limit
[EFX_FARCH_FILTER_UDP_FULL
] +
1969 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1970 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_UDP_WILD_SRCH_LIMIT
,
1971 table
->search_limit
[EFX_FARCH_FILTER_UDP_WILD
] +
1972 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1974 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_MAC
];
1976 EFX_SET_OWORD_FIELD(
1977 filter_ctl
, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT
,
1978 table
->search_limit
[EFX_FARCH_FILTER_MAC_FULL
] +
1979 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1980 EFX_SET_OWORD_FIELD(
1981 filter_ctl
, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT
,
1982 table
->search_limit
[EFX_FARCH_FILTER_MAC_WILD
] +
1983 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1986 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
1988 EFX_SET_OWORD_FIELD(
1989 filter_ctl
, FRF_CZ_UNICAST_NOMATCH_Q_ID
,
1990 table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].dmaq_id
);
1991 EFX_SET_OWORD_FIELD(
1992 filter_ctl
, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED
,
1993 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].flags
&
1994 EFX_FILTER_FLAG_RX_RSS
));
1995 EFX_SET_OWORD_FIELD(
1996 filter_ctl
, FRF_CZ_MULTICAST_NOMATCH_Q_ID
,
1997 table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].dmaq_id
);
1998 EFX_SET_OWORD_FIELD(
1999 filter_ctl
, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED
,
2000 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].flags
&
2001 EFX_FILTER_FLAG_RX_RSS
));
2003 /* There is a single bit to enable RX scatter for all
2004 * unmatched packets. Only set it if scatter is
2005 * enabled in both filter specs.
2007 EFX_SET_OWORD_FIELD(
2008 filter_ctl
, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q
,
2009 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].flags
&
2010 table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].flags
&
2011 EFX_FILTER_FLAG_RX_SCATTER
));
2012 } else if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
2013 /* We don't expose 'default' filters because unmatched
2014 * packets always go to the queue number found in the
2015 * RSS table. But we still need to set the RX scatter
2018 EFX_SET_OWORD_FIELD(
2019 filter_ctl
, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q
,
2023 efx_writeo(efx
, &filter_ctl
, FR_BZ_RX_FILTER_CTL
);
2026 static void efx_farch_filter_push_tx_limits(struct efx_nic
*efx
)
2028 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2029 struct efx_farch_filter_table
*table
;
2032 efx_reado(efx
, &tx_cfg
, FR_AZ_TX_CFG
);
2034 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_TX_MAC
];
2036 EFX_SET_OWORD_FIELD(
2037 tx_cfg
, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE
,
2038 table
->search_limit
[EFX_FARCH_FILTER_MAC_FULL
] +
2039 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
2040 EFX_SET_OWORD_FIELD(
2041 tx_cfg
, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE
,
2042 table
->search_limit
[EFX_FARCH_FILTER_MAC_WILD
] +
2043 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
2046 efx_writeo(efx
, &tx_cfg
, FR_AZ_TX_CFG
);
2050 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec
*spec
,
2051 const struct efx_filter_spec
*gen_spec
)
2053 bool is_full
= false;
2055 if ((gen_spec
->flags
& EFX_FILTER_FLAG_RX_RSS
) &&
2056 gen_spec
->rss_context
!= EFX_FILTER_RSS_CONTEXT_DEFAULT
)
2059 spec
->priority
= gen_spec
->priority
;
2060 spec
->flags
= gen_spec
->flags
;
2061 spec
->dmaq_id
= gen_spec
->dmaq_id
;
2063 switch (gen_spec
->match_flags
) {
2064 case (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_IP_PROTO
|
2065 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
|
2066 EFX_FILTER_MATCH_REM_HOST
| EFX_FILTER_MATCH_REM_PORT
):
2069 case (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_IP_PROTO
|
2070 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
): {
2071 __be32 rhost
, host1
, host2
;
2072 __be16 rport
, port1
, port2
;
2074 EFX_BUG_ON_PARANOID(!(gen_spec
->flags
& EFX_FILTER_FLAG_RX
));
2076 if (gen_spec
->ether_type
!= htons(ETH_P_IP
))
2077 return -EPROTONOSUPPORT
;
2078 if (gen_spec
->loc_port
== 0 ||
2079 (is_full
&& gen_spec
->rem_port
== 0))
2080 return -EADDRNOTAVAIL
;
2081 switch (gen_spec
->ip_proto
) {
2083 spec
->type
= (is_full
? EFX_FARCH_FILTER_TCP_FULL
:
2084 EFX_FARCH_FILTER_TCP_WILD
);
2087 spec
->type
= (is_full
? EFX_FARCH_FILTER_UDP_FULL
:
2088 EFX_FARCH_FILTER_UDP_WILD
);
2091 return -EPROTONOSUPPORT
;
2094 /* Filter is constructed in terms of source and destination,
2095 * with the odd wrinkle that the ports are swapped in a UDP
2096 * wildcard filter. We need to convert from local and remote
2097 * (= zero for wildcard) addresses.
2099 rhost
= is_full
? gen_spec
->rem_host
[0] : 0;
2100 rport
= is_full
? gen_spec
->rem_port
: 0;
2102 host2
= gen_spec
->loc_host
[0];
2103 if (!is_full
&& gen_spec
->ip_proto
== IPPROTO_UDP
) {
2104 port1
= gen_spec
->loc_port
;
2108 port2
= gen_spec
->loc_port
;
2110 spec
->data
[0] = ntohl(host1
) << 16 | ntohs(port1
);
2111 spec
->data
[1] = ntohs(port2
) << 16 | ntohl(host1
) >> 16;
2112 spec
->data
[2] = ntohl(host2
);
2117 case EFX_FILTER_MATCH_LOC_MAC
| EFX_FILTER_MATCH_OUTER_VID
:
2120 case EFX_FILTER_MATCH_LOC_MAC
:
2121 spec
->type
= (is_full
? EFX_FARCH_FILTER_MAC_FULL
:
2122 EFX_FARCH_FILTER_MAC_WILD
);
2123 spec
->data
[0] = is_full
? ntohs(gen_spec
->outer_vid
) : 0;
2124 spec
->data
[1] = (gen_spec
->loc_mac
[2] << 24 |
2125 gen_spec
->loc_mac
[3] << 16 |
2126 gen_spec
->loc_mac
[4] << 8 |
2127 gen_spec
->loc_mac
[5]);
2128 spec
->data
[2] = (gen_spec
->loc_mac
[0] << 8 |
2129 gen_spec
->loc_mac
[1]);
2132 case EFX_FILTER_MATCH_LOC_MAC_IG
:
2133 spec
->type
= (is_multicast_ether_addr(gen_spec
->loc_mac
) ?
2134 EFX_FARCH_FILTER_MC_DEF
:
2135 EFX_FARCH_FILTER_UC_DEF
);
2136 memset(spec
->data
, 0, sizeof(spec
->data
)); /* ensure equality */
2140 return -EPROTONOSUPPORT
;
2147 efx_farch_filter_to_gen_spec(struct efx_filter_spec
*gen_spec
,
2148 const struct efx_farch_filter_spec
*spec
)
2150 bool is_full
= false;
2152 /* *gen_spec should be completely initialised, to be consistent
2153 * with efx_filter_init_{rx,tx}() and in case we want to copy
2154 * it back to userland.
2156 memset(gen_spec
, 0, sizeof(*gen_spec
));
2158 gen_spec
->priority
= spec
->priority
;
2159 gen_spec
->flags
= spec
->flags
;
2160 gen_spec
->dmaq_id
= spec
->dmaq_id
;
2162 switch (spec
->type
) {
2163 case EFX_FARCH_FILTER_TCP_FULL
:
2164 case EFX_FARCH_FILTER_UDP_FULL
:
2167 case EFX_FARCH_FILTER_TCP_WILD
:
2168 case EFX_FARCH_FILTER_UDP_WILD
: {
2169 __be32 host1
, host2
;
2170 __be16 port1
, port2
;
2172 gen_spec
->match_flags
=
2173 EFX_FILTER_MATCH_ETHER_TYPE
|
2174 EFX_FILTER_MATCH_IP_PROTO
|
2175 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
;
2177 gen_spec
->match_flags
|= (EFX_FILTER_MATCH_REM_HOST
|
2178 EFX_FILTER_MATCH_REM_PORT
);
2179 gen_spec
->ether_type
= htons(ETH_P_IP
);
2180 gen_spec
->ip_proto
=
2181 (spec
->type
== EFX_FARCH_FILTER_TCP_FULL
||
2182 spec
->type
== EFX_FARCH_FILTER_TCP_WILD
) ?
2183 IPPROTO_TCP
: IPPROTO_UDP
;
2185 host1
= htonl(spec
->data
[0] >> 16 | spec
->data
[1] << 16);
2186 port1
= htons(spec
->data
[0]);
2187 host2
= htonl(spec
->data
[2]);
2188 port2
= htons(spec
->data
[1] >> 16);
2189 if (spec
->flags
& EFX_FILTER_FLAG_TX
) {
2190 gen_spec
->loc_host
[0] = host1
;
2191 gen_spec
->rem_host
[0] = host2
;
2193 gen_spec
->loc_host
[0] = host2
;
2194 gen_spec
->rem_host
[0] = host1
;
2196 if (!!(gen_spec
->flags
& EFX_FILTER_FLAG_TX
) ^
2197 (!is_full
&& gen_spec
->ip_proto
== IPPROTO_UDP
)) {
2198 gen_spec
->loc_port
= port1
;
2199 gen_spec
->rem_port
= port2
;
2201 gen_spec
->loc_port
= port2
;
2202 gen_spec
->rem_port
= port1
;
2208 case EFX_FARCH_FILTER_MAC_FULL
:
2211 case EFX_FARCH_FILTER_MAC_WILD
:
2212 gen_spec
->match_flags
= EFX_FILTER_MATCH_LOC_MAC
;
2214 gen_spec
->match_flags
|= EFX_FILTER_MATCH_OUTER_VID
;
2215 gen_spec
->loc_mac
[0] = spec
->data
[2] >> 8;
2216 gen_spec
->loc_mac
[1] = spec
->data
[2];
2217 gen_spec
->loc_mac
[2] = spec
->data
[1] >> 24;
2218 gen_spec
->loc_mac
[3] = spec
->data
[1] >> 16;
2219 gen_spec
->loc_mac
[4] = spec
->data
[1] >> 8;
2220 gen_spec
->loc_mac
[5] = spec
->data
[1];
2221 gen_spec
->outer_vid
= htons(spec
->data
[0]);
2224 case EFX_FARCH_FILTER_UC_DEF
:
2225 case EFX_FARCH_FILTER_MC_DEF
:
2226 gen_spec
->match_flags
= EFX_FILTER_MATCH_LOC_MAC_IG
;
2227 gen_spec
->loc_mac
[0] = spec
->type
== EFX_FARCH_FILTER_MC_DEF
;
2237 efx_farch_filter_init_rx_auto(struct efx_nic
*efx
,
2238 struct efx_farch_filter_spec
*spec
)
2240 /* If there's only one channel then disable RSS for non VF
2241 * traffic, thereby allowing VFs to use RSS when the PF can't.
2243 spec
->priority
= EFX_FILTER_PRI_AUTO
;
2244 spec
->flags
= (EFX_FILTER_FLAG_RX
|
2245 (efx
->n_rx_channels
> 1 ? EFX_FILTER_FLAG_RX_RSS
: 0) |
2246 (efx
->rx_scatter
? EFX_FILTER_FLAG_RX_SCATTER
: 0));
2250 /* Build a filter entry and return its n-tuple key. */
2251 static u32
efx_farch_filter_build(efx_oword_t
*filter
,
2252 struct efx_farch_filter_spec
*spec
)
2256 switch (efx_farch_filter_spec_table_id(spec
)) {
2257 case EFX_FARCH_FILTER_TABLE_RX_IP
: {
2258 bool is_udp
= (spec
->type
== EFX_FARCH_FILTER_UDP_FULL
||
2259 spec
->type
== EFX_FARCH_FILTER_UDP_WILD
);
2260 EFX_POPULATE_OWORD_7(
2263 !!(spec
->flags
& EFX_FILTER_FLAG_RX_RSS
),
2265 !!(spec
->flags
& EFX_FILTER_FLAG_RX_SCATTER
),
2266 FRF_BZ_TCP_UDP
, is_udp
,
2267 FRF_BZ_RXQ_ID
, spec
->dmaq_id
,
2268 EFX_DWORD_2
, spec
->data
[2],
2269 EFX_DWORD_1
, spec
->data
[1],
2270 EFX_DWORD_0
, spec
->data
[0]);
2275 case EFX_FARCH_FILTER_TABLE_RX_MAC
: {
2276 bool is_wild
= spec
->type
== EFX_FARCH_FILTER_MAC_WILD
;
2277 EFX_POPULATE_OWORD_7(
2280 !!(spec
->flags
& EFX_FILTER_FLAG_RX_RSS
),
2281 FRF_CZ_RMFT_SCATTER_EN
,
2282 !!(spec
->flags
& EFX_FILTER_FLAG_RX_SCATTER
),
2283 FRF_CZ_RMFT_RXQ_ID
, spec
->dmaq_id
,
2284 FRF_CZ_RMFT_WILDCARD_MATCH
, is_wild
,
2285 FRF_CZ_RMFT_DEST_MAC_HI
, spec
->data
[2],
2286 FRF_CZ_RMFT_DEST_MAC_LO
, spec
->data
[1],
2287 FRF_CZ_RMFT_VLAN_ID
, spec
->data
[0]);
2292 case EFX_FARCH_FILTER_TABLE_TX_MAC
: {
2293 bool is_wild
= spec
->type
== EFX_FARCH_FILTER_MAC_WILD
;
2294 EFX_POPULATE_OWORD_5(*filter
,
2295 FRF_CZ_TMFT_TXQ_ID
, spec
->dmaq_id
,
2296 FRF_CZ_TMFT_WILDCARD_MATCH
, is_wild
,
2297 FRF_CZ_TMFT_SRC_MAC_HI
, spec
->data
[2],
2298 FRF_CZ_TMFT_SRC_MAC_LO
, spec
->data
[1],
2299 FRF_CZ_TMFT_VLAN_ID
, spec
->data
[0]);
2300 data3
= is_wild
| spec
->dmaq_id
<< 1;
2308 return spec
->data
[0] ^ spec
->data
[1] ^ spec
->data
[2] ^ data3
;
2311 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec
*left
,
2312 const struct efx_farch_filter_spec
*right
)
2314 if (left
->type
!= right
->type
||
2315 memcmp(left
->data
, right
->data
, sizeof(left
->data
)))
2318 if (left
->flags
& EFX_FILTER_FLAG_TX
&&
2319 left
->dmaq_id
!= right
->dmaq_id
)
2326 * Construct/deconstruct external filter IDs. At least the RX filter
2327 * IDs must be ordered by matching priority, for RX NFC semantics.
2329 * Deconstruction needs to be robust against invalid IDs so that
2330 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2331 * accept user-provided IDs.
2334 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2336 static const u8 efx_farch_filter_type_match_pri
[EFX_FARCH_FILTER_TYPE_COUNT
] = {
2337 [EFX_FARCH_FILTER_TCP_FULL
] = 0,
2338 [EFX_FARCH_FILTER_UDP_FULL
] = 0,
2339 [EFX_FARCH_FILTER_TCP_WILD
] = 1,
2340 [EFX_FARCH_FILTER_UDP_WILD
] = 1,
2341 [EFX_FARCH_FILTER_MAC_FULL
] = 2,
2342 [EFX_FARCH_FILTER_MAC_WILD
] = 3,
2343 [EFX_FARCH_FILTER_UC_DEF
] = 4,
2344 [EFX_FARCH_FILTER_MC_DEF
] = 4,
2347 static const enum efx_farch_filter_table_id efx_farch_filter_range_table
[] = {
2348 EFX_FARCH_FILTER_TABLE_RX_IP
, /* RX match pri 0 */
2349 EFX_FARCH_FILTER_TABLE_RX_IP
,
2350 EFX_FARCH_FILTER_TABLE_RX_MAC
,
2351 EFX_FARCH_FILTER_TABLE_RX_MAC
,
2352 EFX_FARCH_FILTER_TABLE_RX_DEF
, /* RX match pri 4 */
2353 EFX_FARCH_FILTER_TABLE_TX_MAC
, /* TX match pri 0 */
2354 EFX_FARCH_FILTER_TABLE_TX_MAC
, /* TX match pri 1 */
2357 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2358 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2361 efx_farch_filter_make_id(const struct efx_farch_filter_spec
*spec
,
2366 range
= efx_farch_filter_type_match_pri
[spec
->type
];
2367 if (!(spec
->flags
& EFX_FILTER_FLAG_RX
))
2368 range
+= EFX_FARCH_FILTER_MATCH_PRI_COUNT
;
2370 return range
<< EFX_FARCH_FILTER_INDEX_WIDTH
| index
;
2373 static inline enum efx_farch_filter_table_id
2374 efx_farch_filter_id_table_id(u32 id
)
2376 unsigned int range
= id
>> EFX_FARCH_FILTER_INDEX_WIDTH
;
2378 if (range
< ARRAY_SIZE(efx_farch_filter_range_table
))
2379 return efx_farch_filter_range_table
[range
];
2381 return EFX_FARCH_FILTER_TABLE_COUNT
; /* invalid */
2384 static inline unsigned int efx_farch_filter_id_index(u32 id
)
2386 return id
& EFX_FARCH_FILTER_INDEX_MASK
;
2389 u32
efx_farch_filter_get_rx_id_limit(struct efx_nic
*efx
)
2391 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2392 unsigned int range
= EFX_FARCH_FILTER_MATCH_PRI_COUNT
- 1;
2393 enum efx_farch_filter_table_id table_id
;
2396 table_id
= efx_farch_filter_range_table
[range
];
2397 if (state
->table
[table_id
].size
!= 0)
2398 return range
<< EFX_FARCH_FILTER_INDEX_WIDTH
|
2399 state
->table
[table_id
].size
;
2405 s32
efx_farch_filter_insert(struct efx_nic
*efx
,
2406 struct efx_filter_spec
*gen_spec
,
2409 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2410 struct efx_farch_filter_table
*table
;
2411 struct efx_farch_filter_spec spec
;
2413 int rep_index
, ins_index
;
2414 unsigned int depth
= 0;
2417 rc
= efx_farch_filter_from_gen_spec(&spec
, gen_spec
);
2421 table
= &state
->table
[efx_farch_filter_spec_table_id(&spec
)];
2422 if (table
->size
== 0)
2425 netif_vdbg(efx
, hw
, efx
->net_dev
,
2426 "%s: type %d search_limit=%d", __func__
, spec
.type
,
2427 table
->search_limit
[spec
.type
]);
2429 if (table
->id
== EFX_FARCH_FILTER_TABLE_RX_DEF
) {
2430 /* One filter spec per type */
2431 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF
!= 0);
2432 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF
!=
2433 EFX_FARCH_FILTER_MC_DEF
- EFX_FARCH_FILTER_UC_DEF
);
2434 rep_index
= spec
.type
- EFX_FARCH_FILTER_UC_DEF
;
2435 ins_index
= rep_index
;
2437 spin_lock_bh(&efx
->filter_lock
);
2439 /* Search concurrently for
2440 * (1) a filter to be replaced (rep_index): any filter
2441 * with the same match values, up to the current
2442 * search depth for this type, and
2443 * (2) the insertion point (ins_index): (1) or any
2444 * free slot before it or up to the maximum search
2445 * depth for this priority
2446 * We fail if we cannot find (2).
2448 * We can stop once either
2449 * (a) we find (1), in which case we have definitely
2450 * found (2) as well; or
2451 * (b) we have searched exhaustively for (1), and have
2452 * either found (2) or searched exhaustively for it
2454 u32 key
= efx_farch_filter_build(&filter
, &spec
);
2455 unsigned int hash
= efx_farch_filter_hash(key
);
2456 unsigned int incr
= efx_farch_filter_increment(key
);
2457 unsigned int max_rep_depth
= table
->search_limit
[spec
.type
];
2458 unsigned int max_ins_depth
=
2459 spec
.priority
<= EFX_FILTER_PRI_HINT
?
2460 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX
:
2461 EFX_FARCH_FILTER_CTL_SRCH_MAX
;
2462 unsigned int i
= hash
& (table
->size
- 1);
2467 spin_lock_bh(&efx
->filter_lock
);
2470 if (!test_bit(i
, table
->used_bitmap
)) {
2473 } else if (efx_farch_filter_equal(&spec
,
2482 if (depth
>= max_rep_depth
&&
2483 (ins_index
>= 0 || depth
>= max_ins_depth
)) {
2485 if (ins_index
< 0) {
2493 i
= (i
+ incr
) & (table
->size
- 1);
2498 /* If we found a filter to be replaced, check whether we
2501 if (rep_index
>= 0) {
2502 struct efx_farch_filter_spec
*saved_spec
=
2503 &table
->spec
[rep_index
];
2505 if (spec
.priority
== saved_spec
->priority
&& !replace_equal
) {
2509 if (spec
.priority
< saved_spec
->priority
) {
2513 if (saved_spec
->priority
== EFX_FILTER_PRI_AUTO
||
2514 saved_spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
)
2515 spec
.flags
|= EFX_FILTER_FLAG_RX_OVER_AUTO
;
2518 /* Insert the filter */
2519 if (ins_index
!= rep_index
) {
2520 __set_bit(ins_index
, table
->used_bitmap
);
2523 table
->spec
[ins_index
] = spec
;
2525 if (table
->id
== EFX_FARCH_FILTER_TABLE_RX_DEF
) {
2526 efx_farch_filter_push_rx_config(efx
);
2528 if (table
->search_limit
[spec
.type
] < depth
) {
2529 table
->search_limit
[spec
.type
] = depth
;
2530 if (spec
.flags
& EFX_FILTER_FLAG_TX
)
2531 efx_farch_filter_push_tx_limits(efx
);
2533 efx_farch_filter_push_rx_config(efx
);
2536 efx_writeo(efx
, &filter
,
2537 table
->offset
+ table
->step
* ins_index
);
2539 /* If we were able to replace a filter by inserting
2540 * at a lower depth, clear the replaced filter
2542 if (ins_index
!= rep_index
&& rep_index
>= 0)
2543 efx_farch_filter_table_clear_entry(efx
, table
,
2547 netif_vdbg(efx
, hw
, efx
->net_dev
,
2548 "%s: filter type %d index %d rxq %u set",
2549 __func__
, spec
.type
, ins_index
, spec
.dmaq_id
);
2550 rc
= efx_farch_filter_make_id(&spec
, ins_index
);
2553 spin_unlock_bh(&efx
->filter_lock
);
2558 efx_farch_filter_table_clear_entry(struct efx_nic
*efx
,
2559 struct efx_farch_filter_table
*table
,
2560 unsigned int filter_idx
)
2562 static efx_oword_t filter
;
2564 EFX_WARN_ON_PARANOID(!test_bit(filter_idx
, table
->used_bitmap
));
2565 BUG_ON(table
->offset
== 0); /* can't clear MAC default filters */
2567 __clear_bit(filter_idx
, table
->used_bitmap
);
2569 memset(&table
->spec
[filter_idx
], 0, sizeof(table
->spec
[0]));
2571 efx_writeo(efx
, &filter
, table
->offset
+ table
->step
* filter_idx
);
2573 /* If this filter required a greater search depth than
2574 * any other, the search limit for its type can now be
2575 * decreased. However, it is hard to determine that
2576 * unless the table has become completely empty - in
2577 * which case, all its search limits can be set to 0.
2579 if (unlikely(table
->used
== 0)) {
2580 memset(table
->search_limit
, 0, sizeof(table
->search_limit
));
2581 if (table
->id
== EFX_FARCH_FILTER_TABLE_TX_MAC
)
2582 efx_farch_filter_push_tx_limits(efx
);
2584 efx_farch_filter_push_rx_config(efx
);
2588 static int efx_farch_filter_remove(struct efx_nic
*efx
,
2589 struct efx_farch_filter_table
*table
,
2590 unsigned int filter_idx
,
2591 enum efx_filter_priority priority
)
2593 struct efx_farch_filter_spec
*spec
= &table
->spec
[filter_idx
];
2595 if (!test_bit(filter_idx
, table
->used_bitmap
) ||
2596 spec
->priority
!= priority
)
2599 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
) {
2600 efx_farch_filter_init_rx_auto(efx
, spec
);
2601 efx_farch_filter_push_rx_config(efx
);
2603 efx_farch_filter_table_clear_entry(efx
, table
, filter_idx
);
2609 int efx_farch_filter_remove_safe(struct efx_nic
*efx
,
2610 enum efx_filter_priority priority
,
2613 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2614 enum efx_farch_filter_table_id table_id
;
2615 struct efx_farch_filter_table
*table
;
2616 unsigned int filter_idx
;
2617 struct efx_farch_filter_spec
*spec
;
2620 table_id
= efx_farch_filter_id_table_id(filter_id
);
2621 if ((unsigned int)table_id
>= EFX_FARCH_FILTER_TABLE_COUNT
)
2623 table
= &state
->table
[table_id
];
2625 filter_idx
= efx_farch_filter_id_index(filter_id
);
2626 if (filter_idx
>= table
->size
)
2628 spec
= &table
->spec
[filter_idx
];
2630 spin_lock_bh(&efx
->filter_lock
);
2631 rc
= efx_farch_filter_remove(efx
, table
, filter_idx
, priority
);
2632 spin_unlock_bh(&efx
->filter_lock
);
2637 int efx_farch_filter_get_safe(struct efx_nic
*efx
,
2638 enum efx_filter_priority priority
,
2639 u32 filter_id
, struct efx_filter_spec
*spec_buf
)
2641 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2642 enum efx_farch_filter_table_id table_id
;
2643 struct efx_farch_filter_table
*table
;
2644 struct efx_farch_filter_spec
*spec
;
2645 unsigned int filter_idx
;
2648 table_id
= efx_farch_filter_id_table_id(filter_id
);
2649 if ((unsigned int)table_id
>= EFX_FARCH_FILTER_TABLE_COUNT
)
2651 table
= &state
->table
[table_id
];
2653 filter_idx
= efx_farch_filter_id_index(filter_id
);
2654 if (filter_idx
>= table
->size
)
2656 spec
= &table
->spec
[filter_idx
];
2658 spin_lock_bh(&efx
->filter_lock
);
2660 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2661 spec
->priority
== priority
) {
2662 efx_farch_filter_to_gen_spec(spec_buf
, spec
);
2668 spin_unlock_bh(&efx
->filter_lock
);
2674 efx_farch_filter_table_clear(struct efx_nic
*efx
,
2675 enum efx_farch_filter_table_id table_id
,
2676 enum efx_filter_priority priority
)
2678 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2679 struct efx_farch_filter_table
*table
= &state
->table
[table_id
];
2680 unsigned int filter_idx
;
2682 spin_lock_bh(&efx
->filter_lock
);
2683 for (filter_idx
= 0; filter_idx
< table
->size
; ++filter_idx
) {
2684 if (table
->spec
[filter_idx
].priority
!= EFX_FILTER_PRI_AUTO
)
2685 efx_farch_filter_remove(efx
, table
,
2686 filter_idx
, priority
);
2688 spin_unlock_bh(&efx
->filter_lock
);
2691 int efx_farch_filter_clear_rx(struct efx_nic
*efx
,
2692 enum efx_filter_priority priority
)
2694 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_IP
,
2696 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_MAC
,
2698 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_DEF
,
2703 u32
efx_farch_filter_count_rx_used(struct efx_nic
*efx
,
2704 enum efx_filter_priority priority
)
2706 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2707 enum efx_farch_filter_table_id table_id
;
2708 struct efx_farch_filter_table
*table
;
2709 unsigned int filter_idx
;
2712 spin_lock_bh(&efx
->filter_lock
);
2714 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2715 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2717 table
= &state
->table
[table_id
];
2718 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2719 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2720 table
->spec
[filter_idx
].priority
== priority
)
2725 spin_unlock_bh(&efx
->filter_lock
);
2730 s32
efx_farch_filter_get_rx_ids(struct efx_nic
*efx
,
2731 enum efx_filter_priority priority
,
2734 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2735 enum efx_farch_filter_table_id table_id
;
2736 struct efx_farch_filter_table
*table
;
2737 unsigned int filter_idx
;
2740 spin_lock_bh(&efx
->filter_lock
);
2742 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2743 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2745 table
= &state
->table
[table_id
];
2746 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2747 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2748 table
->spec
[filter_idx
].priority
== priority
) {
2749 if (count
== size
) {
2753 buf
[count
++] = efx_farch_filter_make_id(
2754 &table
->spec
[filter_idx
], filter_idx
);
2759 spin_unlock_bh(&efx
->filter_lock
);
2764 /* Restore filter stater after reset */
2765 void efx_farch_filter_table_restore(struct efx_nic
*efx
)
2767 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2768 enum efx_farch_filter_table_id table_id
;
2769 struct efx_farch_filter_table
*table
;
2771 unsigned int filter_idx
;
2773 spin_lock_bh(&efx
->filter_lock
);
2775 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2776 table
= &state
->table
[table_id
];
2778 /* Check whether this is a regular register table */
2779 if (table
->step
== 0)
2782 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2783 if (!test_bit(filter_idx
, table
->used_bitmap
))
2785 efx_farch_filter_build(&filter
, &table
->spec
[filter_idx
]);
2786 efx_writeo(efx
, &filter
,
2787 table
->offset
+ table
->step
* filter_idx
);
2791 efx_farch_filter_push_rx_config(efx
);
2792 efx_farch_filter_push_tx_limits(efx
);
2794 spin_unlock_bh(&efx
->filter_lock
);
2797 void efx_farch_filter_table_remove(struct efx_nic
*efx
)
2799 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2800 enum efx_farch_filter_table_id table_id
;
2802 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2803 kfree(state
->table
[table_id
].used_bitmap
);
2804 vfree(state
->table
[table_id
].spec
);
2809 int efx_farch_filter_table_probe(struct efx_nic
*efx
)
2811 struct efx_farch_filter_state
*state
;
2812 struct efx_farch_filter_table
*table
;
2815 state
= kzalloc(sizeof(struct efx_farch_filter_state
), GFP_KERNEL
);
2818 efx
->filter_state
= state
;
2820 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
2821 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
2822 table
->id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2823 table
->offset
= FR_BZ_RX_FILTER_TBL0
;
2824 table
->size
= FR_BZ_RX_FILTER_TBL0_ROWS
;
2825 table
->step
= FR_BZ_RX_FILTER_TBL0_STEP
;
2828 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
2829 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_MAC
];
2830 table
->id
= EFX_FARCH_FILTER_TABLE_RX_MAC
;
2831 table
->offset
= FR_CZ_RX_MAC_FILTER_TBL0
;
2832 table
->size
= FR_CZ_RX_MAC_FILTER_TBL0_ROWS
;
2833 table
->step
= FR_CZ_RX_MAC_FILTER_TBL0_STEP
;
2835 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
2836 table
->id
= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2837 table
->size
= EFX_FARCH_FILTER_SIZE_RX_DEF
;
2839 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_TX_MAC
];
2840 table
->id
= EFX_FARCH_FILTER_TABLE_TX_MAC
;
2841 table
->offset
= FR_CZ_TX_MAC_FILTER_TBL0
;
2842 table
->size
= FR_CZ_TX_MAC_FILTER_TBL0_ROWS
;
2843 table
->step
= FR_CZ_TX_MAC_FILTER_TBL0_STEP
;
2846 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2847 table
= &state
->table
[table_id
];
2848 if (table
->size
== 0)
2850 table
->used_bitmap
= kcalloc(BITS_TO_LONGS(table
->size
),
2851 sizeof(unsigned long),
2853 if (!table
->used_bitmap
)
2855 table
->spec
= vzalloc(table
->size
* sizeof(*table
->spec
));
2860 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
2862 /* RX default filters must always exist */
2863 struct efx_farch_filter_spec
*spec
;
2866 for (i
= 0; i
< EFX_FARCH_FILTER_SIZE_RX_DEF
; i
++) {
2867 spec
= &table
->spec
[i
];
2868 spec
->type
= EFX_FARCH_FILTER_UC_DEF
+ i
;
2869 efx_farch_filter_init_rx_auto(efx
, spec
);
2870 __set_bit(i
, table
->used_bitmap
);
2874 efx_farch_filter_push_rx_config(efx
);
2879 efx_farch_filter_table_remove(efx
);
2883 /* Update scatter enable flags for filters pointing to our own RX queues */
2884 void efx_farch_filter_update_rx_scatter(struct efx_nic
*efx
)
2886 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2887 enum efx_farch_filter_table_id table_id
;
2888 struct efx_farch_filter_table
*table
;
2890 unsigned int filter_idx
;
2892 spin_lock_bh(&efx
->filter_lock
);
2894 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2895 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2897 table
= &state
->table
[table_id
];
2899 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2900 if (!test_bit(filter_idx
, table
->used_bitmap
) ||
2901 table
->spec
[filter_idx
].dmaq_id
>=
2905 if (efx
->rx_scatter
)
2906 table
->spec
[filter_idx
].flags
|=
2907 EFX_FILTER_FLAG_RX_SCATTER
;
2909 table
->spec
[filter_idx
].flags
&=
2910 ~EFX_FILTER_FLAG_RX_SCATTER
;
2912 if (table_id
== EFX_FARCH_FILTER_TABLE_RX_DEF
)
2913 /* Pushed by efx_farch_filter_push_rx_config() */
2916 efx_farch_filter_build(&filter
, &table
->spec
[filter_idx
]);
2917 efx_writeo(efx
, &filter
,
2918 table
->offset
+ table
->step
* filter_idx
);
2922 efx_farch_filter_push_rx_config(efx
);
2924 spin_unlock_bh(&efx
->filter_lock
);
2927 #ifdef CONFIG_RFS_ACCEL
2929 s32
efx_farch_filter_rfs_insert(struct efx_nic
*efx
,
2930 struct efx_filter_spec
*gen_spec
)
2932 return efx_farch_filter_insert(efx
, gen_spec
, true);
2935 bool efx_farch_filter_rfs_expire_one(struct efx_nic
*efx
, u32 flow_id
,
2938 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2939 struct efx_farch_filter_table
*table
=
2940 &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
2942 if (test_bit(index
, table
->used_bitmap
) &&
2943 table
->spec
[index
].priority
== EFX_FILTER_PRI_HINT
&&
2944 rps_may_expire_flow(efx
->net_dev
, table
->spec
[index
].dmaq_id
,
2946 efx_farch_filter_table_clear_entry(efx
, table
, index
);
2953 #endif /* CONFIG_RFS_ACCEL */
2955 void efx_farch_filter_sync_rx_mode(struct efx_nic
*efx
)
2957 struct net_device
*net_dev
= efx
->net_dev
;
2958 struct netdev_hw_addr
*ha
;
2959 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
2963 if (!efx_dev_registered(efx
))
2966 netif_addr_lock_bh(net_dev
);
2968 efx
->unicast_filter
= !(net_dev
->flags
& IFF_PROMISC
);
2970 /* Build multicast hash table */
2971 if (net_dev
->flags
& (IFF_PROMISC
| IFF_ALLMULTI
)) {
2972 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
2974 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
2975 netdev_for_each_mc_addr(ha
, net_dev
) {
2976 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2977 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
2978 __set_bit_le(bit
, mc_hash
);
2981 /* Broadcast packets go through the multicast hash filter.
2982 * ether_crc_le() of the broadcast address is 0xbe2612ff
2983 * so we always add bit 0xff to the mask.
2985 __set_bit_le(0xff, mc_hash
);
2988 netif_addr_unlock_bh(net_dev
);