[PATCH] uml: separate libc-dependent uaccess code
[linux/fpc-iii.git] / fs / namespace.c
blob2fa9fdf7d6f573f1f6b004ab82d9a0945d9a6f9c
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/module.h>
20 #include <linux/seq_file.h>
21 #include <linux/namespace.h>
22 #include <linux/namei.h>
23 #include <linux/security.h>
24 #include <linux/mount.h>
25 #include <asm/uaccess.h>
26 #include <asm/unistd.h>
28 extern int __init init_rootfs(void);
30 #ifdef CONFIG_SYSFS
31 extern int __init sysfs_init(void);
32 #else
33 static inline int sysfs_init(void)
35 return 0;
37 #endif
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42 static struct list_head *mount_hashtable;
43 static int hash_mask __read_mostly, hash_bits __read_mostly;
44 static kmem_cache_t *mnt_cache;
46 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
48 unsigned long tmp = ((unsigned long) mnt / L1_CACHE_BYTES);
49 tmp += ((unsigned long) dentry / L1_CACHE_BYTES);
50 tmp = tmp + (tmp >> hash_bits);
51 return tmp & hash_mask;
54 struct vfsmount *alloc_vfsmnt(const char *name)
56 struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
57 if (mnt) {
58 memset(mnt, 0, sizeof(struct vfsmount));
59 atomic_set(&mnt->mnt_count,1);
60 INIT_LIST_HEAD(&mnt->mnt_hash);
61 INIT_LIST_HEAD(&mnt->mnt_child);
62 INIT_LIST_HEAD(&mnt->mnt_mounts);
63 INIT_LIST_HEAD(&mnt->mnt_list);
64 INIT_LIST_HEAD(&mnt->mnt_expire);
65 if (name) {
66 int size = strlen(name)+1;
67 char *newname = kmalloc(size, GFP_KERNEL);
68 if (newname) {
69 memcpy(newname, name, size);
70 mnt->mnt_devname = newname;
74 return mnt;
77 void free_vfsmnt(struct vfsmount *mnt)
79 kfree(mnt->mnt_devname);
80 kmem_cache_free(mnt_cache, mnt);
84 * Now, lookup_mnt increments the ref count before returning
85 * the vfsmount struct.
87 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
89 struct list_head * head = mount_hashtable + hash(mnt, dentry);
90 struct list_head * tmp = head;
91 struct vfsmount *p, *found = NULL;
93 spin_lock(&vfsmount_lock);
94 for (;;) {
95 tmp = tmp->next;
96 p = NULL;
97 if (tmp == head)
98 break;
99 p = list_entry(tmp, struct vfsmount, mnt_hash);
100 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
101 found = mntget(p);
102 break;
105 spin_unlock(&vfsmount_lock);
106 return found;
109 static inline int check_mnt(struct vfsmount *mnt)
111 return mnt->mnt_namespace == current->namespace;
114 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
116 old_nd->dentry = mnt->mnt_mountpoint;
117 old_nd->mnt = mnt->mnt_parent;
118 mnt->mnt_parent = mnt;
119 mnt->mnt_mountpoint = mnt->mnt_root;
120 list_del_init(&mnt->mnt_child);
121 list_del_init(&mnt->mnt_hash);
122 old_nd->dentry->d_mounted--;
125 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
127 mnt->mnt_parent = mntget(nd->mnt);
128 mnt->mnt_mountpoint = dget(nd->dentry);
129 list_add(&mnt->mnt_hash, mount_hashtable+hash(nd->mnt, nd->dentry));
130 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
131 nd->dentry->d_mounted++;
134 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
136 struct list_head *next = p->mnt_mounts.next;
137 if (next == &p->mnt_mounts) {
138 while (1) {
139 if (p == root)
140 return NULL;
141 next = p->mnt_child.next;
142 if (next != &p->mnt_parent->mnt_mounts)
143 break;
144 p = p->mnt_parent;
147 return list_entry(next, struct vfsmount, mnt_child);
150 static struct vfsmount *
151 clone_mnt(struct vfsmount *old, struct dentry *root)
153 struct super_block *sb = old->mnt_sb;
154 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
156 if (mnt) {
157 mnt->mnt_flags = old->mnt_flags;
158 atomic_inc(&sb->s_active);
159 mnt->mnt_sb = sb;
160 mnt->mnt_root = dget(root);
161 mnt->mnt_mountpoint = mnt->mnt_root;
162 mnt->mnt_parent = mnt;
163 mnt->mnt_namespace = current->namespace;
165 /* stick the duplicate mount on the same expiry list
166 * as the original if that was on one */
167 spin_lock(&vfsmount_lock);
168 if (!list_empty(&old->mnt_expire))
169 list_add(&mnt->mnt_expire, &old->mnt_expire);
170 spin_unlock(&vfsmount_lock);
172 return mnt;
175 void __mntput(struct vfsmount *mnt)
177 struct super_block *sb = mnt->mnt_sb;
178 dput(mnt->mnt_root);
179 free_vfsmnt(mnt);
180 deactivate_super(sb);
183 EXPORT_SYMBOL(__mntput);
185 /* iterator */
186 static void *m_start(struct seq_file *m, loff_t *pos)
188 struct namespace *n = m->private;
189 struct list_head *p;
190 loff_t l = *pos;
192 down_read(&n->sem);
193 list_for_each(p, &n->list)
194 if (!l--)
195 return list_entry(p, struct vfsmount, mnt_list);
196 return NULL;
199 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
201 struct namespace *n = m->private;
202 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
203 (*pos)++;
204 return p==&n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
207 static void m_stop(struct seq_file *m, void *v)
209 struct namespace *n = m->private;
210 up_read(&n->sem);
213 static inline void mangle(struct seq_file *m, const char *s)
215 seq_escape(m, s, " \t\n\\");
218 static int show_vfsmnt(struct seq_file *m, void *v)
220 struct vfsmount *mnt = v;
221 int err = 0;
222 static struct proc_fs_info {
223 int flag;
224 char *str;
225 } fs_info[] = {
226 { MS_SYNCHRONOUS, ",sync" },
227 { MS_DIRSYNC, ",dirsync" },
228 { MS_MANDLOCK, ",mand" },
229 { MS_NOATIME, ",noatime" },
230 { MS_NODIRATIME, ",nodiratime" },
231 { 0, NULL }
233 static struct proc_fs_info mnt_info[] = {
234 { MNT_NOSUID, ",nosuid" },
235 { MNT_NODEV, ",nodev" },
236 { MNT_NOEXEC, ",noexec" },
237 { 0, NULL }
239 struct proc_fs_info *fs_infop;
241 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
242 seq_putc(m, ' ');
243 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
244 seq_putc(m, ' ');
245 mangle(m, mnt->mnt_sb->s_type->name);
246 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
247 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
248 if (mnt->mnt_sb->s_flags & fs_infop->flag)
249 seq_puts(m, fs_infop->str);
251 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
252 if (mnt->mnt_flags & fs_infop->flag)
253 seq_puts(m, fs_infop->str);
255 if (mnt->mnt_sb->s_op->show_options)
256 err = mnt->mnt_sb->s_op->show_options(m, mnt);
257 seq_puts(m, " 0 0\n");
258 return err;
261 struct seq_operations mounts_op = {
262 .start = m_start,
263 .next = m_next,
264 .stop = m_stop,
265 .show = show_vfsmnt
269 * may_umount_tree - check if a mount tree is busy
270 * @mnt: root of mount tree
272 * This is called to check if a tree of mounts has any
273 * open files, pwds, chroots or sub mounts that are
274 * busy.
276 int may_umount_tree(struct vfsmount *mnt)
278 struct list_head *next;
279 struct vfsmount *this_parent = mnt;
280 int actual_refs;
281 int minimum_refs;
283 spin_lock(&vfsmount_lock);
284 actual_refs = atomic_read(&mnt->mnt_count);
285 minimum_refs = 2;
286 repeat:
287 next = this_parent->mnt_mounts.next;
288 resume:
289 while (next != &this_parent->mnt_mounts) {
290 struct vfsmount *p = list_entry(next, struct vfsmount, mnt_child);
292 next = next->next;
294 actual_refs += atomic_read(&p->mnt_count);
295 minimum_refs += 2;
297 if (!list_empty(&p->mnt_mounts)) {
298 this_parent = p;
299 goto repeat;
303 if (this_parent != mnt) {
304 next = this_parent->mnt_child.next;
305 this_parent = this_parent->mnt_parent;
306 goto resume;
308 spin_unlock(&vfsmount_lock);
310 if (actual_refs > minimum_refs)
311 return -EBUSY;
313 return 0;
316 EXPORT_SYMBOL(may_umount_tree);
319 * may_umount - check if a mount point is busy
320 * @mnt: root of mount
322 * This is called to check if a mount point has any
323 * open files, pwds, chroots or sub mounts. If the
324 * mount has sub mounts this will return busy
325 * regardless of whether the sub mounts are busy.
327 * Doesn't take quota and stuff into account. IOW, in some cases it will
328 * give false negatives. The main reason why it's here is that we need
329 * a non-destructive way to look for easily umountable filesystems.
331 int may_umount(struct vfsmount *mnt)
333 if (atomic_read(&mnt->mnt_count) > 2)
334 return -EBUSY;
335 return 0;
338 EXPORT_SYMBOL(may_umount);
340 static void umount_tree(struct vfsmount *mnt)
342 struct vfsmount *p;
343 LIST_HEAD(kill);
345 for (p = mnt; p; p = next_mnt(p, mnt)) {
346 list_del(&p->mnt_list);
347 list_add(&p->mnt_list, &kill);
348 p->mnt_namespace = NULL;
351 while (!list_empty(&kill)) {
352 mnt = list_entry(kill.next, struct vfsmount, mnt_list);
353 list_del_init(&mnt->mnt_list);
354 list_del_init(&mnt->mnt_expire);
355 if (mnt->mnt_parent == mnt) {
356 spin_unlock(&vfsmount_lock);
357 } else {
358 struct nameidata old_nd;
359 detach_mnt(mnt, &old_nd);
360 spin_unlock(&vfsmount_lock);
361 path_release(&old_nd);
363 mntput(mnt);
364 spin_lock(&vfsmount_lock);
368 static int do_umount(struct vfsmount *mnt, int flags)
370 struct super_block * sb = mnt->mnt_sb;
371 int retval;
373 retval = security_sb_umount(mnt, flags);
374 if (retval)
375 return retval;
378 * Allow userspace to request a mountpoint be expired rather than
379 * unmounting unconditionally. Unmount only happens if:
380 * (1) the mark is already set (the mark is cleared by mntput())
381 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
383 if (flags & MNT_EXPIRE) {
384 if (mnt == current->fs->rootmnt ||
385 flags & (MNT_FORCE | MNT_DETACH))
386 return -EINVAL;
388 if (atomic_read(&mnt->mnt_count) != 2)
389 return -EBUSY;
391 if (!xchg(&mnt->mnt_expiry_mark, 1))
392 return -EAGAIN;
396 * If we may have to abort operations to get out of this
397 * mount, and they will themselves hold resources we must
398 * allow the fs to do things. In the Unix tradition of
399 * 'Gee thats tricky lets do it in userspace' the umount_begin
400 * might fail to complete on the first run through as other tasks
401 * must return, and the like. Thats for the mount program to worry
402 * about for the moment.
405 lock_kernel();
406 if( (flags&MNT_FORCE) && sb->s_op->umount_begin)
407 sb->s_op->umount_begin(sb);
408 unlock_kernel();
411 * No sense to grab the lock for this test, but test itself looks
412 * somewhat bogus. Suggestions for better replacement?
413 * Ho-hum... In principle, we might treat that as umount + switch
414 * to rootfs. GC would eventually take care of the old vfsmount.
415 * Actually it makes sense, especially if rootfs would contain a
416 * /reboot - static binary that would close all descriptors and
417 * call reboot(9). Then init(8) could umount root and exec /reboot.
419 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
421 * Special case for "unmounting" root ...
422 * we just try to remount it readonly.
424 down_write(&sb->s_umount);
425 if (!(sb->s_flags & MS_RDONLY)) {
426 lock_kernel();
427 DQUOT_OFF(sb);
428 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
429 unlock_kernel();
431 up_write(&sb->s_umount);
432 return retval;
435 down_write(&current->namespace->sem);
436 spin_lock(&vfsmount_lock);
438 if (atomic_read(&sb->s_active) == 1) {
439 /* last instance - try to be smart */
440 spin_unlock(&vfsmount_lock);
441 lock_kernel();
442 DQUOT_OFF(sb);
443 acct_auto_close(sb);
444 unlock_kernel();
445 security_sb_umount_close(mnt);
446 spin_lock(&vfsmount_lock);
448 retval = -EBUSY;
449 if (atomic_read(&mnt->mnt_count) == 2 || flags & MNT_DETACH) {
450 if (!list_empty(&mnt->mnt_list))
451 umount_tree(mnt);
452 retval = 0;
454 spin_unlock(&vfsmount_lock);
455 if (retval)
456 security_sb_umount_busy(mnt);
457 up_write(&current->namespace->sem);
458 return retval;
462 * Now umount can handle mount points as well as block devices.
463 * This is important for filesystems which use unnamed block devices.
465 * We now support a flag for forced unmount like the other 'big iron'
466 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
469 asmlinkage long sys_umount(char __user * name, int flags)
471 struct nameidata nd;
472 int retval;
474 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
475 if (retval)
476 goto out;
477 retval = -EINVAL;
478 if (nd.dentry != nd.mnt->mnt_root)
479 goto dput_and_out;
480 if (!check_mnt(nd.mnt))
481 goto dput_and_out;
483 retval = -EPERM;
484 if (!capable(CAP_SYS_ADMIN))
485 goto dput_and_out;
487 retval = do_umount(nd.mnt, flags);
488 dput_and_out:
489 path_release_on_umount(&nd);
490 out:
491 return retval;
494 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
497 * The 2.0 compatible umount. No flags.
500 asmlinkage long sys_oldumount(char __user * name)
502 return sys_umount(name,0);
505 #endif
507 static int mount_is_safe(struct nameidata *nd)
509 if (capable(CAP_SYS_ADMIN))
510 return 0;
511 return -EPERM;
512 #ifdef notyet
513 if (S_ISLNK(nd->dentry->d_inode->i_mode))
514 return -EPERM;
515 if (nd->dentry->d_inode->i_mode & S_ISVTX) {
516 if (current->uid != nd->dentry->d_inode->i_uid)
517 return -EPERM;
519 if (permission(nd->dentry->d_inode, MAY_WRITE, nd))
520 return -EPERM;
521 return 0;
522 #endif
525 static int
526 lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
528 while (1) {
529 if (d == dentry)
530 return 1;
531 if (d == NULL || d == d->d_parent)
532 return 0;
533 d = d->d_parent;
537 static struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry)
539 struct vfsmount *res, *p, *q, *r, *s;
540 struct nameidata nd;
542 res = q = clone_mnt(mnt, dentry);
543 if (!q)
544 goto Enomem;
545 q->mnt_mountpoint = mnt->mnt_mountpoint;
547 p = mnt;
548 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
549 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
550 continue;
552 for (s = r; s; s = next_mnt(s, r)) {
553 while (p != s->mnt_parent) {
554 p = p->mnt_parent;
555 q = q->mnt_parent;
557 p = s;
558 nd.mnt = q;
559 nd.dentry = p->mnt_mountpoint;
560 q = clone_mnt(p, p->mnt_root);
561 if (!q)
562 goto Enomem;
563 spin_lock(&vfsmount_lock);
564 list_add_tail(&q->mnt_list, &res->mnt_list);
565 attach_mnt(q, &nd);
566 spin_unlock(&vfsmount_lock);
569 return res;
570 Enomem:
571 if (res) {
572 spin_lock(&vfsmount_lock);
573 umount_tree(res);
574 spin_unlock(&vfsmount_lock);
576 return NULL;
579 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
581 int err;
582 if (mnt->mnt_sb->s_flags & MS_NOUSER)
583 return -EINVAL;
585 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
586 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
587 return -ENOTDIR;
589 err = -ENOENT;
590 down(&nd->dentry->d_inode->i_sem);
591 if (IS_DEADDIR(nd->dentry->d_inode))
592 goto out_unlock;
594 err = security_sb_check_sb(mnt, nd);
595 if (err)
596 goto out_unlock;
598 err = -ENOENT;
599 spin_lock(&vfsmount_lock);
600 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry)) {
601 struct list_head head;
603 attach_mnt(mnt, nd);
604 list_add_tail(&head, &mnt->mnt_list);
605 list_splice(&head, current->namespace->list.prev);
606 mntget(mnt);
607 err = 0;
609 spin_unlock(&vfsmount_lock);
610 out_unlock:
611 up(&nd->dentry->d_inode->i_sem);
612 if (!err)
613 security_sb_post_addmount(mnt, nd);
614 return err;
618 * do loopback mount.
620 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
622 struct nameidata old_nd;
623 struct vfsmount *mnt = NULL;
624 int err = mount_is_safe(nd);
625 if (err)
626 return err;
627 if (!old_name || !*old_name)
628 return -EINVAL;
629 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
630 if (err)
631 return err;
633 down_write(&current->namespace->sem);
634 err = -EINVAL;
635 if (check_mnt(nd->mnt) && (!recurse || check_mnt(old_nd.mnt))) {
636 err = -ENOMEM;
637 if (recurse)
638 mnt = copy_tree(old_nd.mnt, old_nd.dentry);
639 else
640 mnt = clone_mnt(old_nd.mnt, old_nd.dentry);
643 if (mnt) {
644 /* stop bind mounts from expiring */
645 spin_lock(&vfsmount_lock);
646 list_del_init(&mnt->mnt_expire);
647 spin_unlock(&vfsmount_lock);
649 err = graft_tree(mnt, nd);
650 if (err) {
651 spin_lock(&vfsmount_lock);
652 umount_tree(mnt);
653 spin_unlock(&vfsmount_lock);
654 } else
655 mntput(mnt);
658 up_write(&current->namespace->sem);
659 path_release(&old_nd);
660 return err;
664 * change filesystem flags. dir should be a physical root of filesystem.
665 * If you've mounted a non-root directory somewhere and want to do remount
666 * on it - tough luck.
669 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
670 void *data)
672 int err;
673 struct super_block * sb = nd->mnt->mnt_sb;
675 if (!capable(CAP_SYS_ADMIN))
676 return -EPERM;
678 if (!check_mnt(nd->mnt))
679 return -EINVAL;
681 if (nd->dentry != nd->mnt->mnt_root)
682 return -EINVAL;
684 down_write(&sb->s_umount);
685 err = do_remount_sb(sb, flags, data, 0);
686 if (!err)
687 nd->mnt->mnt_flags=mnt_flags;
688 up_write(&sb->s_umount);
689 if (!err)
690 security_sb_post_remount(nd->mnt, flags, data);
691 return err;
694 static int do_move_mount(struct nameidata *nd, char *old_name)
696 struct nameidata old_nd, parent_nd;
697 struct vfsmount *p;
698 int err = 0;
699 if (!capable(CAP_SYS_ADMIN))
700 return -EPERM;
701 if (!old_name || !*old_name)
702 return -EINVAL;
703 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
704 if (err)
705 return err;
707 down_write(&current->namespace->sem);
708 while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
710 err = -EINVAL;
711 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
712 goto out;
714 err = -ENOENT;
715 down(&nd->dentry->d_inode->i_sem);
716 if (IS_DEADDIR(nd->dentry->d_inode))
717 goto out1;
719 spin_lock(&vfsmount_lock);
720 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
721 goto out2;
723 err = -EINVAL;
724 if (old_nd.dentry != old_nd.mnt->mnt_root)
725 goto out2;
727 if (old_nd.mnt == old_nd.mnt->mnt_parent)
728 goto out2;
730 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
731 S_ISDIR(old_nd.dentry->d_inode->i_mode))
732 goto out2;
734 err = -ELOOP;
735 for (p = nd->mnt; p->mnt_parent!=p; p = p->mnt_parent)
736 if (p == old_nd.mnt)
737 goto out2;
738 err = 0;
740 detach_mnt(old_nd.mnt, &parent_nd);
741 attach_mnt(old_nd.mnt, nd);
743 /* if the mount is moved, it should no longer be expire
744 * automatically */
745 list_del_init(&old_nd.mnt->mnt_expire);
746 out2:
747 spin_unlock(&vfsmount_lock);
748 out1:
749 up(&nd->dentry->d_inode->i_sem);
750 out:
751 up_write(&current->namespace->sem);
752 if (!err)
753 path_release(&parent_nd);
754 path_release(&old_nd);
755 return err;
759 * create a new mount for userspace and request it to be added into the
760 * namespace's tree
762 static int do_new_mount(struct nameidata *nd, char *type, int flags,
763 int mnt_flags, char *name, void *data)
765 struct vfsmount *mnt;
767 if (!type || !memchr(type, 0, PAGE_SIZE))
768 return -EINVAL;
770 /* we need capabilities... */
771 if (!capable(CAP_SYS_ADMIN))
772 return -EPERM;
774 mnt = do_kern_mount(type, flags, name, data);
775 if (IS_ERR(mnt))
776 return PTR_ERR(mnt);
778 return do_add_mount(mnt, nd, mnt_flags, NULL);
782 * add a mount into a namespace's mount tree
783 * - provide the option of adding the new mount to an expiration list
785 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
786 int mnt_flags, struct list_head *fslist)
788 int err;
790 down_write(&current->namespace->sem);
791 /* Something was mounted here while we slept */
792 while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
794 err = -EINVAL;
795 if (!check_mnt(nd->mnt))
796 goto unlock;
798 /* Refuse the same filesystem on the same mount point */
799 err = -EBUSY;
800 if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
801 nd->mnt->mnt_root == nd->dentry)
802 goto unlock;
804 err = -EINVAL;
805 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
806 goto unlock;
808 newmnt->mnt_flags = mnt_flags;
809 newmnt->mnt_namespace = current->namespace;
810 err = graft_tree(newmnt, nd);
812 if (err == 0 && fslist) {
813 /* add to the specified expiration list */
814 spin_lock(&vfsmount_lock);
815 list_add_tail(&newmnt->mnt_expire, fslist);
816 spin_unlock(&vfsmount_lock);
819 unlock:
820 up_write(&current->namespace->sem);
821 mntput(newmnt);
822 return err;
825 EXPORT_SYMBOL_GPL(do_add_mount);
827 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts)
829 spin_lock(&vfsmount_lock);
832 * Check if mount is still attached, if not, let whoever holds it deal
833 * with the sucker
835 if (mnt->mnt_parent == mnt) {
836 spin_unlock(&vfsmount_lock);
837 return;
841 * Check that it is still dead: the count should now be 2 - as
842 * contributed by the vfsmount parent and the mntget above
844 if (atomic_read(&mnt->mnt_count) == 2) {
845 struct nameidata old_nd;
847 /* delete from the namespace */
848 list_del_init(&mnt->mnt_list);
849 mnt->mnt_namespace = NULL;
850 detach_mnt(mnt, &old_nd);
851 spin_unlock(&vfsmount_lock);
852 path_release(&old_nd);
855 * Now lay it to rest if this was the last ref on the superblock
857 if (atomic_read(&mnt->mnt_sb->s_active) == 1) {
858 /* last instance - try to be smart */
859 lock_kernel();
860 DQUOT_OFF(mnt->mnt_sb);
861 acct_auto_close(mnt->mnt_sb);
862 unlock_kernel();
864 mntput(mnt);
865 } else {
867 * Someone brought it back to life whilst we didn't have any
868 * locks held so return it to the expiration list
870 list_add_tail(&mnt->mnt_expire, mounts);
871 spin_unlock(&vfsmount_lock);
876 * process a list of expirable mountpoints with the intent of discarding any
877 * mountpoints that aren't in use and haven't been touched since last we came
878 * here
880 void mark_mounts_for_expiry(struct list_head *mounts)
882 struct namespace *namespace;
883 struct vfsmount *mnt, *next;
884 LIST_HEAD(graveyard);
886 if (list_empty(mounts))
887 return;
889 spin_lock(&vfsmount_lock);
891 /* extract from the expiration list every vfsmount that matches the
892 * following criteria:
893 * - only referenced by its parent vfsmount
894 * - still marked for expiry (marked on the last call here; marks are
895 * cleared by mntput())
897 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
898 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
899 atomic_read(&mnt->mnt_count) != 1)
900 continue;
902 mntget(mnt);
903 list_move(&mnt->mnt_expire, &graveyard);
907 * go through the vfsmounts we've just consigned to the graveyard to
908 * - check that they're still dead
909 * - delete the vfsmount from the appropriate namespace under lock
910 * - dispose of the corpse
912 while (!list_empty(&graveyard)) {
913 mnt = list_entry(graveyard.next, struct vfsmount, mnt_expire);
914 list_del_init(&mnt->mnt_expire);
916 /* don't do anything if the namespace is dead - all the
917 * vfsmounts from it are going away anyway */
918 namespace = mnt->mnt_namespace;
919 if (!namespace || !namespace->root)
920 continue;
921 get_namespace(namespace);
923 spin_unlock(&vfsmount_lock);
924 down_write(&namespace->sem);
925 expire_mount(mnt, mounts);
926 up_write(&namespace->sem);
928 mntput(mnt);
929 put_namespace(namespace);
931 spin_lock(&vfsmount_lock);
934 spin_unlock(&vfsmount_lock);
937 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
940 * Some copy_from_user() implementations do not return the exact number of
941 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
942 * Note that this function differs from copy_from_user() in that it will oops
943 * on bad values of `to', rather than returning a short copy.
945 static long
946 exact_copy_from_user(void *to, const void __user *from, unsigned long n)
948 char *t = to;
949 const char __user *f = from;
950 char c;
952 if (!access_ok(VERIFY_READ, from, n))
953 return n;
955 while (n) {
956 if (__get_user(c, f)) {
957 memset(t, 0, n);
958 break;
960 *t++ = c;
961 f++;
962 n--;
964 return n;
967 int copy_mount_options(const void __user *data, unsigned long *where)
969 int i;
970 unsigned long page;
971 unsigned long size;
973 *where = 0;
974 if (!data)
975 return 0;
977 if (!(page = __get_free_page(GFP_KERNEL)))
978 return -ENOMEM;
980 /* We only care that *some* data at the address the user
981 * gave us is valid. Just in case, we'll zero
982 * the remainder of the page.
984 /* copy_from_user cannot cross TASK_SIZE ! */
985 size = TASK_SIZE - (unsigned long)data;
986 if (size > PAGE_SIZE)
987 size = PAGE_SIZE;
989 i = size - exact_copy_from_user((void *)page, data, size);
990 if (!i) {
991 free_page(page);
992 return -EFAULT;
994 if (i != PAGE_SIZE)
995 memset((char *)page + i, 0, PAGE_SIZE - i);
996 *where = page;
997 return 0;
1001 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1002 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1004 * data is a (void *) that can point to any structure up to
1005 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1006 * information (or be NULL).
1008 * Pre-0.97 versions of mount() didn't have a flags word.
1009 * When the flags word was introduced its top half was required
1010 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1011 * Therefore, if this magic number is present, it carries no information
1012 * and must be discarded.
1014 long do_mount(char * dev_name, char * dir_name, char *type_page,
1015 unsigned long flags, void *data_page)
1017 struct nameidata nd;
1018 int retval = 0;
1019 int mnt_flags = 0;
1021 /* Discard magic */
1022 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1023 flags &= ~MS_MGC_MSK;
1025 /* Basic sanity checks */
1027 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1028 return -EINVAL;
1029 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1030 return -EINVAL;
1032 if (data_page)
1033 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1035 /* Separate the per-mountpoint flags */
1036 if (flags & MS_NOSUID)
1037 mnt_flags |= MNT_NOSUID;
1038 if (flags & MS_NODEV)
1039 mnt_flags |= MNT_NODEV;
1040 if (flags & MS_NOEXEC)
1041 mnt_flags |= MNT_NOEXEC;
1042 flags &= ~(MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_ACTIVE);
1044 /* ... and get the mountpoint */
1045 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1046 if (retval)
1047 return retval;
1049 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1050 if (retval)
1051 goto dput_out;
1053 if (flags & MS_REMOUNT)
1054 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1055 data_page);
1056 else if (flags & MS_BIND)
1057 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1058 else if (flags & MS_MOVE)
1059 retval = do_move_mount(&nd, dev_name);
1060 else
1061 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1062 dev_name, data_page);
1063 dput_out:
1064 path_release(&nd);
1065 return retval;
1068 int copy_namespace(int flags, struct task_struct *tsk)
1070 struct namespace *namespace = tsk->namespace;
1071 struct namespace *new_ns;
1072 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1073 struct fs_struct *fs = tsk->fs;
1074 struct vfsmount *p, *q;
1076 if (!namespace)
1077 return 0;
1079 get_namespace(namespace);
1081 if (!(flags & CLONE_NEWNS))
1082 return 0;
1084 if (!capable(CAP_SYS_ADMIN)) {
1085 put_namespace(namespace);
1086 return -EPERM;
1089 new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1090 if (!new_ns)
1091 goto out;
1093 atomic_set(&new_ns->count, 1);
1094 init_rwsem(&new_ns->sem);
1095 INIT_LIST_HEAD(&new_ns->list);
1097 down_write(&tsk->namespace->sem);
1098 /* First pass: copy the tree topology */
1099 new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root);
1100 if (!new_ns->root) {
1101 up_write(&tsk->namespace->sem);
1102 kfree(new_ns);
1103 goto out;
1105 spin_lock(&vfsmount_lock);
1106 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1107 spin_unlock(&vfsmount_lock);
1110 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1111 * as belonging to new namespace. We have already acquired a private
1112 * fs_struct, so tsk->fs->lock is not needed.
1114 p = namespace->root;
1115 q = new_ns->root;
1116 while (p) {
1117 q->mnt_namespace = new_ns;
1118 if (fs) {
1119 if (p == fs->rootmnt) {
1120 rootmnt = p;
1121 fs->rootmnt = mntget(q);
1123 if (p == fs->pwdmnt) {
1124 pwdmnt = p;
1125 fs->pwdmnt = mntget(q);
1127 if (p == fs->altrootmnt) {
1128 altrootmnt = p;
1129 fs->altrootmnt = mntget(q);
1132 p = next_mnt(p, namespace->root);
1133 q = next_mnt(q, new_ns->root);
1135 up_write(&tsk->namespace->sem);
1137 tsk->namespace = new_ns;
1139 if (rootmnt)
1140 mntput(rootmnt);
1141 if (pwdmnt)
1142 mntput(pwdmnt);
1143 if (altrootmnt)
1144 mntput(altrootmnt);
1146 put_namespace(namespace);
1147 return 0;
1149 out:
1150 put_namespace(namespace);
1151 return -ENOMEM;
1154 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1155 char __user * type, unsigned long flags,
1156 void __user * data)
1158 int retval;
1159 unsigned long data_page;
1160 unsigned long type_page;
1161 unsigned long dev_page;
1162 char *dir_page;
1164 retval = copy_mount_options (type, &type_page);
1165 if (retval < 0)
1166 return retval;
1168 dir_page = getname(dir_name);
1169 retval = PTR_ERR(dir_page);
1170 if (IS_ERR(dir_page))
1171 goto out1;
1173 retval = copy_mount_options (dev_name, &dev_page);
1174 if (retval < 0)
1175 goto out2;
1177 retval = copy_mount_options (data, &data_page);
1178 if (retval < 0)
1179 goto out3;
1181 lock_kernel();
1182 retval = do_mount((char*)dev_page, dir_page, (char*)type_page,
1183 flags, (void*)data_page);
1184 unlock_kernel();
1185 free_page(data_page);
1187 out3:
1188 free_page(dev_page);
1189 out2:
1190 putname(dir_page);
1191 out1:
1192 free_page(type_page);
1193 return retval;
1197 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1198 * It can block. Requires the big lock held.
1200 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1201 struct dentry *dentry)
1203 struct dentry *old_root;
1204 struct vfsmount *old_rootmnt;
1205 write_lock(&fs->lock);
1206 old_root = fs->root;
1207 old_rootmnt = fs->rootmnt;
1208 fs->rootmnt = mntget(mnt);
1209 fs->root = dget(dentry);
1210 write_unlock(&fs->lock);
1211 if (old_root) {
1212 dput(old_root);
1213 mntput(old_rootmnt);
1218 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1219 * It can block. Requires the big lock held.
1221 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1222 struct dentry *dentry)
1224 struct dentry *old_pwd;
1225 struct vfsmount *old_pwdmnt;
1227 write_lock(&fs->lock);
1228 old_pwd = fs->pwd;
1229 old_pwdmnt = fs->pwdmnt;
1230 fs->pwdmnt = mntget(mnt);
1231 fs->pwd = dget(dentry);
1232 write_unlock(&fs->lock);
1234 if (old_pwd) {
1235 dput(old_pwd);
1236 mntput(old_pwdmnt);
1240 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1242 struct task_struct *g, *p;
1243 struct fs_struct *fs;
1245 read_lock(&tasklist_lock);
1246 do_each_thread(g, p) {
1247 task_lock(p);
1248 fs = p->fs;
1249 if (fs) {
1250 atomic_inc(&fs->count);
1251 task_unlock(p);
1252 if (fs->root==old_nd->dentry&&fs->rootmnt==old_nd->mnt)
1253 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1254 if (fs->pwd==old_nd->dentry&&fs->pwdmnt==old_nd->mnt)
1255 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1256 put_fs_struct(fs);
1257 } else
1258 task_unlock(p);
1259 } while_each_thread(g, p);
1260 read_unlock(&tasklist_lock);
1264 * pivot_root Semantics:
1265 * Moves the root file system of the current process to the directory put_old,
1266 * makes new_root as the new root file system of the current process, and sets
1267 * root/cwd of all processes which had them on the current root to new_root.
1269 * Restrictions:
1270 * The new_root and put_old must be directories, and must not be on the
1271 * same file system as the current process root. The put_old must be
1272 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1273 * pointed to by put_old must yield the same directory as new_root. No other
1274 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1276 * Notes:
1277 * - we don't move root/cwd if they are not at the root (reason: if something
1278 * cared enough to change them, it's probably wrong to force them elsewhere)
1279 * - it's okay to pick a root that isn't the root of a file system, e.g.
1280 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1281 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1282 * first.
1285 asmlinkage long sys_pivot_root(const char __user *new_root, const char __user *put_old)
1287 struct vfsmount *tmp;
1288 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1289 int error;
1291 if (!capable(CAP_SYS_ADMIN))
1292 return -EPERM;
1294 lock_kernel();
1296 error = __user_walk(new_root, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &new_nd);
1297 if (error)
1298 goto out0;
1299 error = -EINVAL;
1300 if (!check_mnt(new_nd.mnt))
1301 goto out1;
1303 error = __user_walk(put_old, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &old_nd);
1304 if (error)
1305 goto out1;
1307 error = security_sb_pivotroot(&old_nd, &new_nd);
1308 if (error) {
1309 path_release(&old_nd);
1310 goto out1;
1313 read_lock(&current->fs->lock);
1314 user_nd.mnt = mntget(current->fs->rootmnt);
1315 user_nd.dentry = dget(current->fs->root);
1316 read_unlock(&current->fs->lock);
1317 down_write(&current->namespace->sem);
1318 down(&old_nd.dentry->d_inode->i_sem);
1319 error = -EINVAL;
1320 if (!check_mnt(user_nd.mnt))
1321 goto out2;
1322 error = -ENOENT;
1323 if (IS_DEADDIR(new_nd.dentry->d_inode))
1324 goto out2;
1325 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1326 goto out2;
1327 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1328 goto out2;
1329 error = -EBUSY;
1330 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1331 goto out2; /* loop, on the same file system */
1332 error = -EINVAL;
1333 if (user_nd.mnt->mnt_root != user_nd.dentry)
1334 goto out2; /* not a mountpoint */
1335 if (user_nd.mnt->mnt_parent == user_nd.mnt)
1336 goto out2; /* not attached */
1337 if (new_nd.mnt->mnt_root != new_nd.dentry)
1338 goto out2; /* not a mountpoint */
1339 if (new_nd.mnt->mnt_parent == new_nd.mnt)
1340 goto out2; /* not attached */
1341 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1342 spin_lock(&vfsmount_lock);
1343 if (tmp != new_nd.mnt) {
1344 for (;;) {
1345 if (tmp->mnt_parent == tmp)
1346 goto out3; /* already mounted on put_old */
1347 if (tmp->mnt_parent == new_nd.mnt)
1348 break;
1349 tmp = tmp->mnt_parent;
1351 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1352 goto out3;
1353 } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1354 goto out3;
1355 detach_mnt(new_nd.mnt, &parent_nd);
1356 detach_mnt(user_nd.mnt, &root_parent);
1357 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
1358 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1359 spin_unlock(&vfsmount_lock);
1360 chroot_fs_refs(&user_nd, &new_nd);
1361 security_sb_post_pivotroot(&user_nd, &new_nd);
1362 error = 0;
1363 path_release(&root_parent);
1364 path_release(&parent_nd);
1365 out2:
1366 up(&old_nd.dentry->d_inode->i_sem);
1367 up_write(&current->namespace->sem);
1368 path_release(&user_nd);
1369 path_release(&old_nd);
1370 out1:
1371 path_release(&new_nd);
1372 out0:
1373 unlock_kernel();
1374 return error;
1375 out3:
1376 spin_unlock(&vfsmount_lock);
1377 goto out2;
1380 static void __init init_mount_tree(void)
1382 struct vfsmount *mnt;
1383 struct namespace *namespace;
1384 struct task_struct *g, *p;
1386 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1387 if (IS_ERR(mnt))
1388 panic("Can't create rootfs");
1389 namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1390 if (!namespace)
1391 panic("Can't allocate initial namespace");
1392 atomic_set(&namespace->count, 1);
1393 INIT_LIST_HEAD(&namespace->list);
1394 init_rwsem(&namespace->sem);
1395 list_add(&mnt->mnt_list, &namespace->list);
1396 namespace->root = mnt;
1397 mnt->mnt_namespace = namespace;
1399 init_task.namespace = namespace;
1400 read_lock(&tasklist_lock);
1401 do_each_thread(g, p) {
1402 get_namespace(namespace);
1403 p->namespace = namespace;
1404 } while_each_thread(g, p);
1405 read_unlock(&tasklist_lock);
1407 set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1408 set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1411 void __init mnt_init(unsigned long mempages)
1413 struct list_head *d;
1414 unsigned int nr_hash;
1415 int i;
1417 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1418 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1420 mount_hashtable = (struct list_head *)
1421 __get_free_page(GFP_ATOMIC);
1423 if (!mount_hashtable)
1424 panic("Failed to allocate mount hash table\n");
1427 * Find the power-of-two list-heads that can fit into the allocation..
1428 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1429 * a power-of-two.
1431 nr_hash = PAGE_SIZE / sizeof(struct list_head);
1432 hash_bits = 0;
1433 do {
1434 hash_bits++;
1435 } while ((nr_hash >> hash_bits) != 0);
1436 hash_bits--;
1439 * Re-calculate the actual number of entries and the mask
1440 * from the number of bits we can fit.
1442 nr_hash = 1UL << hash_bits;
1443 hash_mask = nr_hash-1;
1445 printk("Mount-cache hash table entries: %d\n", nr_hash);
1447 /* And initialize the newly allocated array */
1448 d = mount_hashtable;
1449 i = nr_hash;
1450 do {
1451 INIT_LIST_HEAD(d);
1452 d++;
1453 i--;
1454 } while (i);
1455 sysfs_init();
1456 init_rootfs();
1457 init_mount_tree();
1460 void __put_namespace(struct namespace *namespace)
1462 struct vfsmount *root = namespace->root;
1463 namespace->root = NULL;
1464 spin_unlock(&vfsmount_lock);
1465 down_write(&namespace->sem);
1466 spin_lock(&vfsmount_lock);
1467 umount_tree(root);
1468 spin_unlock(&vfsmount_lock);
1469 up_write(&namespace->sem);
1470 kfree(namespace);