Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux/fpc-iii.git] / arch / mips / kernel / gdb-stub.c
blob25f4eab8ea9cad18dc2339969d482d83e4c1e1f0
1 /*
2 * arch/mips/kernel/gdb-stub.c
4 * Originally written by Glenn Engel, Lake Stevens Instrument Division
6 * Contributed by HP Systems
8 * Modified for SPARC by Stu Grossman, Cygnus Support.
10 * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
11 * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
13 * Copyright (C) 1995 Andreas Busse
15 * Copyright (C) 2003 MontaVista Software Inc.
16 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
20 * To enable debugger support, two things need to happen. One, a
21 * call to set_debug_traps() is necessary in order to allow any breakpoints
22 * or error conditions to be properly intercepted and reported to gdb.
23 * Two, a breakpoint needs to be generated to begin communication. This
24 * is most easily accomplished by a call to breakpoint(). Breakpoint()
25 * simulates a breakpoint by executing a BREAK instruction.
28 * The following gdb commands are supported:
30 * command function Return value
32 * g return the value of the CPU registers hex data or ENN
33 * G set the value of the CPU registers OK or ENN
35 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
36 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
38 * c Resume at current address SNN ( signal NN)
39 * cAA..AA Continue at address AA..AA SNN
41 * s Step one instruction SNN
42 * sAA..AA Step one instruction from AA..AA SNN
44 * k kill
46 * ? What was the last sigval ? SNN (signal NN)
48 * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
49 * baud rate
51 * All commands and responses are sent with a packet which includes a
52 * checksum. A packet consists of
54 * $<packet info>#<checksum>.
56 * where
57 * <packet info> :: <characters representing the command or response>
58 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
60 * When a packet is received, it is first acknowledged with either '+' or '-'.
61 * '+' indicates a successful transfer. '-' indicates a failed transfer.
63 * Example:
65 * Host: Reply:
66 * $m0,10#2a +$00010203040506070809101112131415#42
69 * ==============
70 * MORE EXAMPLES:
71 * ==============
73 * For reference -- the following are the steps that one
74 * company took (RidgeRun Inc) to get remote gdb debugging
75 * going. In this scenario the host machine was a PC and the
76 * target platform was a Galileo EVB64120A MIPS evaluation
77 * board.
79 * Step 1:
80 * First download gdb-5.0.tar.gz from the internet.
81 * and then build/install the package.
83 * Example:
84 * $ tar zxf gdb-5.0.tar.gz
85 * $ cd gdb-5.0
86 * $ ./configure --target=mips-linux-elf
87 * $ make
88 * $ install
89 * $ which mips-linux-elf-gdb
90 * /usr/local/bin/mips-linux-elf-gdb
92 * Step 2:
93 * Configure linux for remote debugging and build it.
95 * Example:
96 * $ cd ~/linux
97 * $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging>
98 * $ make
100 * Step 3:
101 * Download the kernel to the remote target and start
102 * the kernel running. It will promptly halt and wait
103 * for the host gdb session to connect. It does this
104 * since the "Kernel Hacking" option has defined
105 * CONFIG_KGDB which in turn enables your calls
106 * to:
107 * set_debug_traps();
108 * breakpoint();
110 * Step 4:
111 * Start the gdb session on the host.
113 * Example:
114 * $ mips-linux-elf-gdb vmlinux
115 * (gdb) set remotebaud 115200
116 * (gdb) target remote /dev/ttyS1
117 * ...at this point you are connected to
118 * the remote target and can use gdb
119 * in the normal fasion. Setting
120 * breakpoints, single stepping,
121 * printing variables, etc.
123 #include <linux/string.h>
124 #include <linux/kernel.h>
125 #include <linux/signal.h>
126 #include <linux/sched.h>
127 #include <linux/mm.h>
128 #include <linux/console.h>
129 #include <linux/init.h>
130 #include <linux/smp.h>
131 #include <linux/spinlock.h>
132 #include <linux/slab.h>
133 #include <linux/reboot.h>
135 #include <asm/asm.h>
136 #include <asm/cacheflush.h>
137 #include <asm/mipsregs.h>
138 #include <asm/pgtable.h>
139 #include <asm/system.h>
140 #include <asm/gdb-stub.h>
141 #include <asm/inst.h>
144 * external low-level support routines
147 extern int putDebugChar(char c); /* write a single character */
148 extern char getDebugChar(void); /* read and return a single char */
149 extern void trap_low(void);
152 * breakpoint and test functions
154 extern void breakpoint(void);
155 extern void breakinst(void);
156 extern void async_breakpoint(void);
157 extern void async_breakinst(void);
158 extern void adel(void);
161 * local prototypes
164 static void getpacket(char *buffer);
165 static void putpacket(char *buffer);
166 static int computeSignal(int tt);
167 static int hex(unsigned char ch);
168 static int hexToInt(char **ptr, int *intValue);
169 static int hexToLong(char **ptr, long *longValue);
170 static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault);
171 void handle_exception(struct gdb_regs *regs);
173 int kgdb_enabled;
176 * spin locks for smp case
178 static DEFINE_SPINLOCK(kgdb_lock);
179 static raw_spinlock_t kgdb_cpulock[NR_CPUS] = {
180 [0 ... NR_CPUS-1] = __RAW_SPIN_LOCK_UNLOCKED,
184 * BUFMAX defines the maximum number of characters in inbound/outbound buffers
185 * at least NUMREGBYTES*2 are needed for register packets
187 #define BUFMAX 2048
189 static char input_buffer[BUFMAX];
190 static char output_buffer[BUFMAX];
191 static int initialized; /* !0 means we've been initialized */
192 static int kgdb_started;
193 static const char hexchars[]="0123456789abcdef";
195 /* Used to prevent crashes in memory access. Note that they'll crash anyway if
196 we haven't set up fault handlers yet... */
197 int kgdb_read_byte(unsigned char *address, unsigned char *dest);
198 int kgdb_write_byte(unsigned char val, unsigned char *dest);
201 * Convert ch from a hex digit to an int
203 static int hex(unsigned char ch)
205 if (ch >= 'a' && ch <= 'f')
206 return ch-'a'+10;
207 if (ch >= '0' && ch <= '9')
208 return ch-'0';
209 if (ch >= 'A' && ch <= 'F')
210 return ch-'A'+10;
211 return -1;
215 * scan for the sequence $<data>#<checksum>
217 static void getpacket(char *buffer)
219 unsigned char checksum;
220 unsigned char xmitcsum;
221 int i;
222 int count;
223 unsigned char ch;
225 do {
227 * wait around for the start character,
228 * ignore all other characters
230 while ((ch = (getDebugChar() & 0x7f)) != '$') ;
232 checksum = 0;
233 xmitcsum = -1;
234 count = 0;
237 * now, read until a # or end of buffer is found
239 while (count < BUFMAX) {
240 ch = getDebugChar();
241 if (ch == '#')
242 break;
243 checksum = checksum + ch;
244 buffer[count] = ch;
245 count = count + 1;
248 if (count >= BUFMAX)
249 continue;
251 buffer[count] = 0;
253 if (ch == '#') {
254 xmitcsum = hex(getDebugChar() & 0x7f) << 4;
255 xmitcsum |= hex(getDebugChar() & 0x7f);
257 if (checksum != xmitcsum)
258 putDebugChar('-'); /* failed checksum */
259 else {
260 putDebugChar('+'); /* successful transfer */
263 * if a sequence char is present,
264 * reply the sequence ID
266 if (buffer[2] == ':') {
267 putDebugChar(buffer[0]);
268 putDebugChar(buffer[1]);
271 * remove sequence chars from buffer
273 count = strlen(buffer);
274 for (i=3; i <= count; i++)
275 buffer[i-3] = buffer[i];
280 while (checksum != xmitcsum);
284 * send the packet in buffer.
286 static void putpacket(char *buffer)
288 unsigned char checksum;
289 int count;
290 unsigned char ch;
293 * $<packet info>#<checksum>.
296 do {
297 putDebugChar('$');
298 checksum = 0;
299 count = 0;
301 while ((ch = buffer[count]) != 0) {
302 if (!(putDebugChar(ch)))
303 return;
304 checksum += ch;
305 count += 1;
308 putDebugChar('#');
309 putDebugChar(hexchars[checksum >> 4]);
310 putDebugChar(hexchars[checksum & 0xf]);
313 while ((getDebugChar() & 0x7f) != '+');
318 * Convert the memory pointed to by mem into hex, placing result in buf.
319 * Return a pointer to the last char put in buf (null), in case of mem fault,
320 * return 0.
321 * may_fault is non-zero if we are reading from arbitrary memory, but is currently
322 * not used.
324 static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault)
326 unsigned char ch;
328 while (count-- > 0) {
329 if (kgdb_read_byte(mem++, &ch) != 0)
330 return 0;
331 *buf++ = hexchars[ch >> 4];
332 *buf++ = hexchars[ch & 0xf];
335 *buf = 0;
337 return buf;
341 * convert the hex array pointed to by buf into binary to be placed in mem
342 * return a pointer to the character AFTER the last byte written
343 * may_fault is non-zero if we are reading from arbitrary memory, but is currently
344 * not used.
346 static char *hex2mem(char *buf, char *mem, int count, int binary, int may_fault)
348 int i;
349 unsigned char ch;
351 for (i=0; i<count; i++)
353 if (binary) {
354 ch = *buf++;
355 if (ch == 0x7d)
356 ch = 0x20 ^ *buf++;
358 else {
359 ch = hex(*buf++) << 4;
360 ch |= hex(*buf++);
362 if (kgdb_write_byte(ch, mem++) != 0)
363 return 0;
366 return mem;
370 * This table contains the mapping between SPARC hardware trap types, and
371 * signals, which are primarily what GDB understands. It also indicates
372 * which hardware traps we need to commandeer when initializing the stub.
374 static struct hard_trap_info {
375 unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */
376 unsigned char signo; /* Signal that we map this trap into */
377 } hard_trap_info[] = {
378 { 6, SIGBUS }, /* instruction bus error */
379 { 7, SIGBUS }, /* data bus error */
380 { 9, SIGTRAP }, /* break */
381 { 10, SIGILL }, /* reserved instruction */
382 /* { 11, SIGILL }, */ /* CPU unusable */
383 { 12, SIGFPE }, /* overflow */
384 { 13, SIGTRAP }, /* trap */
385 { 14, SIGSEGV }, /* virtual instruction cache coherency */
386 { 15, SIGFPE }, /* floating point exception */
387 { 23, SIGSEGV }, /* watch */
388 { 31, SIGSEGV }, /* virtual data cache coherency */
389 { 0, 0} /* Must be last */
392 /* Save the normal trap handlers for user-mode traps. */
393 void *saved_vectors[32];
396 * Set up exception handlers for tracing and breakpoints
398 void set_debug_traps(void)
400 struct hard_trap_info *ht;
401 unsigned long flags;
402 unsigned char c;
404 local_irq_save(flags);
405 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
406 saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low);
408 putDebugChar('+'); /* 'hello world' */
410 * In case GDB is started before us, ack any packets
411 * (presumably "$?#xx") sitting there.
413 while((c = getDebugChar()) != '$');
414 while((c = getDebugChar()) != '#');
415 c = getDebugChar(); /* eat first csum byte */
416 c = getDebugChar(); /* eat second csum byte */
417 putDebugChar('+'); /* ack it */
419 initialized = 1;
420 local_irq_restore(flags);
423 void restore_debug_traps(void)
425 struct hard_trap_info *ht;
426 unsigned long flags;
428 local_irq_save(flags);
429 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
430 set_except_vector(ht->tt, saved_vectors[ht->tt]);
431 local_irq_restore(flags);
435 * Convert the MIPS hardware trap type code to a Unix signal number.
437 static int computeSignal(int tt)
439 struct hard_trap_info *ht;
441 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
442 if (ht->tt == tt)
443 return ht->signo;
445 return SIGHUP; /* default for things we don't know about */
449 * While we find nice hex chars, build an int.
450 * Return number of chars processed.
452 static int hexToInt(char **ptr, int *intValue)
454 int numChars = 0;
455 int hexValue;
457 *intValue = 0;
459 while (**ptr) {
460 hexValue = hex(**ptr);
461 if (hexValue < 0)
462 break;
464 *intValue = (*intValue << 4) | hexValue;
465 numChars ++;
467 (*ptr)++;
470 return (numChars);
473 static int hexToLong(char **ptr, long *longValue)
475 int numChars = 0;
476 int hexValue;
478 *longValue = 0;
480 while (**ptr) {
481 hexValue = hex(**ptr);
482 if (hexValue < 0)
483 break;
485 *longValue = (*longValue << 4) | hexValue;
486 numChars ++;
488 (*ptr)++;
491 return numChars;
495 #if 0
497 * Print registers (on target console)
498 * Used only to debug the stub...
500 void show_gdbregs(struct gdb_regs * regs)
503 * Saved main processor registers
505 printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
506 regs->reg0, regs->reg1, regs->reg2, regs->reg3,
507 regs->reg4, regs->reg5, regs->reg6, regs->reg7);
508 printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
509 regs->reg8, regs->reg9, regs->reg10, regs->reg11,
510 regs->reg12, regs->reg13, regs->reg14, regs->reg15);
511 printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
512 regs->reg16, regs->reg17, regs->reg18, regs->reg19,
513 regs->reg20, regs->reg21, regs->reg22, regs->reg23);
514 printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
515 regs->reg24, regs->reg25, regs->reg26, regs->reg27,
516 regs->reg28, regs->reg29, regs->reg30, regs->reg31);
519 * Saved cp0 registers
521 printk("epc : %08lx\nStatus: %08lx\nCause : %08lx\n",
522 regs->cp0_epc, regs->cp0_status, regs->cp0_cause);
524 #endif /* dead code */
527 * We single-step by setting breakpoints. When an exception
528 * is handled, we need to restore the instructions hoisted
529 * when the breakpoints were set.
531 * This is where we save the original instructions.
533 static struct gdb_bp_save {
534 unsigned long addr;
535 unsigned int val;
536 } step_bp[2];
538 #define BP 0x0000000d /* break opcode */
541 * Set breakpoint instructions for single stepping.
543 static void single_step(struct gdb_regs *regs)
545 union mips_instruction insn;
546 unsigned long targ;
547 int is_branch, is_cond, i;
549 targ = regs->cp0_epc;
550 insn.word = *(unsigned int *)targ;
551 is_branch = is_cond = 0;
553 switch (insn.i_format.opcode) {
555 * jr and jalr are in r_format format.
557 case spec_op:
558 switch (insn.r_format.func) {
559 case jalr_op:
560 case jr_op:
561 targ = *(&regs->reg0 + insn.r_format.rs);
562 is_branch = 1;
563 break;
565 break;
568 * This group contains:
569 * bltz_op, bgez_op, bltzl_op, bgezl_op,
570 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
572 case bcond_op:
573 is_branch = is_cond = 1;
574 targ += 4 + (insn.i_format.simmediate << 2);
575 break;
578 * These are unconditional and in j_format.
580 case jal_op:
581 case j_op:
582 is_branch = 1;
583 targ += 4;
584 targ >>= 28;
585 targ <<= 28;
586 targ |= (insn.j_format.target << 2);
587 break;
590 * These are conditional.
592 case beq_op:
593 case beql_op:
594 case bne_op:
595 case bnel_op:
596 case blez_op:
597 case blezl_op:
598 case bgtz_op:
599 case bgtzl_op:
600 case cop0_op:
601 case cop1_op:
602 case cop2_op:
603 case cop1x_op:
604 is_branch = is_cond = 1;
605 targ += 4 + (insn.i_format.simmediate << 2);
606 break;
609 if (is_branch) {
610 i = 0;
611 if (is_cond && targ != (regs->cp0_epc + 8)) {
612 step_bp[i].addr = regs->cp0_epc + 8;
613 step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8);
614 *(unsigned *)(regs->cp0_epc + 8) = BP;
616 step_bp[i].addr = targ;
617 step_bp[i].val = *(unsigned *)targ;
618 *(unsigned *)targ = BP;
619 } else {
620 step_bp[0].addr = regs->cp0_epc + 4;
621 step_bp[0].val = *(unsigned *)(regs->cp0_epc + 4);
622 *(unsigned *)(regs->cp0_epc + 4) = BP;
627 * If asynchronously interrupted by gdb, then we need to set a breakpoint
628 * at the interrupted instruction so that we wind up stopped with a
629 * reasonable stack frame.
631 static struct gdb_bp_save async_bp;
634 * Swap the interrupted EPC with our asynchronous breakpoint routine.
635 * This is safer than stuffing the breakpoint in-place, since no cache
636 * flushes (or resulting smp_call_functions) are required. The
637 * assumption is that only one CPU will be handling asynchronous bp's,
638 * and only one can be active at a time.
640 extern spinlock_t smp_call_lock;
642 void set_async_breakpoint(unsigned long *epc)
644 /* skip breaking into userland */
645 if ((*epc & 0x80000000) == 0)
646 return;
648 #ifdef CONFIG_SMP
649 /* avoid deadlock if someone is make IPC */
650 if (spin_is_locked(&smp_call_lock))
651 return;
652 #endif
654 async_bp.addr = *epc;
655 *epc = (unsigned long)async_breakpoint;
658 #ifdef CONFIG_SMP
659 static void kgdb_wait(void *arg)
661 unsigned flags;
662 int cpu = smp_processor_id();
664 local_irq_save(flags);
666 __raw_spin_lock(&kgdb_cpulock[cpu]);
667 __raw_spin_unlock(&kgdb_cpulock[cpu]);
669 local_irq_restore(flags);
671 #endif
674 * GDB stub needs to call kgdb_wait on all processor with interrupts
675 * disabled, so it uses it's own special variant.
677 static int kgdb_smp_call_kgdb_wait(void)
679 #ifdef CONFIG_SMP
680 cpumask_t mask = cpu_online_map;
681 struct call_data_struct data;
682 int cpu = smp_processor_id();
683 int cpus;
686 * Can die spectacularly if this CPU isn't yet marked online
688 BUG_ON(!cpu_online(cpu));
690 cpu_clear(cpu, mask);
691 cpus = cpus_weight(mask);
692 if (!cpus)
693 return 0;
695 if (spin_is_locked(&smp_call_lock)) {
697 * Some other processor is trying to make us do something
698 * but we're not going to respond... give up
700 return -1;
704 * We will continue here, accepting the fact that
705 * the kernel may deadlock if another CPU attempts
706 * to call smp_call_function now...
709 data.func = kgdb_wait;
710 data.info = NULL;
711 atomic_set(&data.started, 0);
712 data.wait = 0;
714 spin_lock(&smp_call_lock);
715 call_data = &data;
716 mb();
718 core_send_ipi_mask(mask, SMP_CALL_FUNCTION);
720 /* Wait for response */
721 /* FIXME: lock-up detection, backtrace on lock-up */
722 while (atomic_read(&data.started) != cpus)
723 barrier();
725 call_data = NULL;
726 spin_unlock(&smp_call_lock);
727 #endif
729 return 0;
733 * This function does all command processing for interfacing to gdb. It
734 * returns 1 if you should skip the instruction at the trap address, 0
735 * otherwise.
737 void handle_exception(struct gdb_regs *regs)
739 int trap; /* Trap type */
740 int sigval;
741 long addr;
742 int length;
743 char *ptr;
744 unsigned long *stack;
745 int i;
746 int bflag = 0;
748 kgdb_started = 1;
751 * acquire the big kgdb spinlock
753 if (!spin_trylock(&kgdb_lock)) {
755 * some other CPU has the lock, we should go back to
756 * receive the gdb_wait IPC
758 return;
762 * If we're in async_breakpoint(), restore the real EPC from
763 * the breakpoint.
765 if (regs->cp0_epc == (unsigned long)async_breakinst) {
766 regs->cp0_epc = async_bp.addr;
767 async_bp.addr = 0;
771 * acquire the CPU spinlocks
773 for_each_online_cpu(i)
774 if (__raw_spin_trylock(&kgdb_cpulock[i]) == 0)
775 panic("kgdb: couldn't get cpulock %d\n", i);
778 * force other cpus to enter kgdb
780 kgdb_smp_call_kgdb_wait();
783 * If we're in breakpoint() increment the PC
785 trap = (regs->cp0_cause & 0x7c) >> 2;
786 if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst)
787 regs->cp0_epc += 4;
790 * If we were single_stepping, restore the opcodes hoisted
791 * for the breakpoint[s].
793 if (step_bp[0].addr) {
794 *(unsigned *)step_bp[0].addr = step_bp[0].val;
795 step_bp[0].addr = 0;
797 if (step_bp[1].addr) {
798 *(unsigned *)step_bp[1].addr = step_bp[1].val;
799 step_bp[1].addr = 0;
803 stack = (long *)regs->reg29; /* stack ptr */
804 sigval = computeSignal(trap);
807 * reply to host that an exception has occurred
809 ptr = output_buffer;
812 * Send trap type (converted to signal)
814 *ptr++ = 'T';
815 *ptr++ = hexchars[sigval >> 4];
816 *ptr++ = hexchars[sigval & 0xf];
819 * Send Error PC
821 *ptr++ = hexchars[REG_EPC >> 4];
822 *ptr++ = hexchars[REG_EPC & 0xf];
823 *ptr++ = ':';
824 ptr = mem2hex((char *)&regs->cp0_epc, ptr, sizeof(long), 0);
825 *ptr++ = ';';
828 * Send frame pointer
830 *ptr++ = hexchars[REG_FP >> 4];
831 *ptr++ = hexchars[REG_FP & 0xf];
832 *ptr++ = ':';
833 ptr = mem2hex((char *)&regs->reg30, ptr, sizeof(long), 0);
834 *ptr++ = ';';
837 * Send stack pointer
839 *ptr++ = hexchars[REG_SP >> 4];
840 *ptr++ = hexchars[REG_SP & 0xf];
841 *ptr++ = ':';
842 ptr = mem2hex((char *)&regs->reg29, ptr, sizeof(long), 0);
843 *ptr++ = ';';
845 *ptr++ = 0;
846 putpacket(output_buffer); /* send it off... */
849 * Wait for input from remote GDB
851 while (1) {
852 output_buffer[0] = 0;
853 getpacket(input_buffer);
855 switch (input_buffer[0])
857 case '?':
858 output_buffer[0] = 'S';
859 output_buffer[1] = hexchars[sigval >> 4];
860 output_buffer[2] = hexchars[sigval & 0xf];
861 output_buffer[3] = 0;
862 break;
865 * Detach debugger; let CPU run
867 case 'D':
868 putpacket(output_buffer);
869 goto finish_kgdb;
870 break;
872 case 'd':
873 /* toggle debug flag */
874 break;
877 * Return the value of the CPU registers
879 case 'g':
880 ptr = output_buffer;
881 ptr = mem2hex((char *)&regs->reg0, ptr, 32*sizeof(long), 0); /* r0...r31 */
882 ptr = mem2hex((char *)&regs->cp0_status, ptr, 6*sizeof(long), 0); /* cp0 */
883 ptr = mem2hex((char *)&regs->fpr0, ptr, 32*sizeof(long), 0); /* f0...31 */
884 ptr = mem2hex((char *)&regs->cp1_fsr, ptr, 2*sizeof(long), 0); /* cp1 */
885 ptr = mem2hex((char *)&regs->frame_ptr, ptr, 2*sizeof(long), 0); /* frp */
886 ptr = mem2hex((char *)&regs->cp0_index, ptr, 16*sizeof(long), 0); /* cp0 */
887 break;
890 * set the value of the CPU registers - return OK
892 case 'G':
894 ptr = &input_buffer[1];
895 hex2mem(ptr, (char *)&regs->reg0, 32*sizeof(long), 0, 0);
896 ptr += 32*(2*sizeof(long));
897 hex2mem(ptr, (char *)&regs->cp0_status, 6*sizeof(long), 0, 0);
898 ptr += 6*(2*sizeof(long));
899 hex2mem(ptr, (char *)&regs->fpr0, 32*sizeof(long), 0, 0);
900 ptr += 32*(2*sizeof(long));
901 hex2mem(ptr, (char *)&regs->cp1_fsr, 2*sizeof(long), 0, 0);
902 ptr += 2*(2*sizeof(long));
903 hex2mem(ptr, (char *)&regs->frame_ptr, 2*sizeof(long), 0, 0);
904 ptr += 2*(2*sizeof(long));
905 hex2mem(ptr, (char *)&regs->cp0_index, 16*sizeof(long), 0, 0);
906 strcpy(output_buffer, "OK");
908 break;
911 * mAA..AA,LLLL Read LLLL bytes at address AA..AA
913 case 'm':
914 ptr = &input_buffer[1];
916 if (hexToLong(&ptr, &addr)
917 && *ptr++ == ','
918 && hexToInt(&ptr, &length)) {
919 if (mem2hex((char *)addr, output_buffer, length, 1))
920 break;
921 strcpy(output_buffer, "E03");
922 } else
923 strcpy(output_buffer, "E01");
924 break;
927 * XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA
929 case 'X':
930 bflag = 1;
931 /* fall through */
934 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK
936 case 'M':
937 ptr = &input_buffer[1];
939 if (hexToLong(&ptr, &addr)
940 && *ptr++ == ','
941 && hexToInt(&ptr, &length)
942 && *ptr++ == ':') {
943 if (hex2mem(ptr, (char *)addr, length, bflag, 1))
944 strcpy(output_buffer, "OK");
945 else
946 strcpy(output_buffer, "E03");
948 else
949 strcpy(output_buffer, "E02");
950 break;
953 * cAA..AA Continue at address AA..AA(optional)
955 case 'c':
956 /* try to read optional parameter, pc unchanged if no parm */
958 ptr = &input_buffer[1];
959 if (hexToLong(&ptr, &addr))
960 regs->cp0_epc = addr;
962 goto exit_kgdb_exception;
963 break;
966 * kill the program; let us try to restart the machine
967 * Reset the whole machine.
969 case 'k':
970 case 'r':
971 machine_restart("kgdb restarts machine");
972 break;
975 * Step to next instruction
977 case 's':
979 * There is no single step insn in the MIPS ISA, so we
980 * use breakpoints and continue, instead.
982 single_step(regs);
983 goto exit_kgdb_exception;
984 /* NOTREACHED */
985 break;
988 * Set baud rate (bBB)
989 * FIXME: Needs to be written
991 case 'b':
993 #if 0
994 int baudrate;
995 extern void set_timer_3();
997 ptr = &input_buffer[1];
998 if (!hexToInt(&ptr, &baudrate))
1000 strcpy(output_buffer, "B01");
1001 break;
1004 /* Convert baud rate to uart clock divider */
1006 switch (baudrate)
1008 case 38400:
1009 baudrate = 16;
1010 break;
1011 case 19200:
1012 baudrate = 33;
1013 break;
1014 case 9600:
1015 baudrate = 65;
1016 break;
1017 default:
1018 baudrate = 0;
1019 strcpy(output_buffer, "B02");
1020 goto x1;
1023 if (baudrate) {
1024 putpacket("OK"); /* Ack before changing speed */
1025 set_timer_3(baudrate); /* Set it */
1027 #endif
1029 break;
1031 } /* switch */
1034 * reply to the request
1037 putpacket(output_buffer);
1039 } /* while */
1041 return;
1043 finish_kgdb:
1044 restore_debug_traps();
1046 exit_kgdb_exception:
1047 /* release locks so other CPUs can go */
1048 for_each_online_cpu(i)
1049 __raw_spin_unlock(&kgdb_cpulock[i]);
1050 spin_unlock(&kgdb_lock);
1052 __flush_cache_all();
1053 return;
1057 * This function will generate a breakpoint exception. It is used at the
1058 * beginning of a program to sync up with a debugger and can be used
1059 * otherwise as a quick means to stop program execution and "break" into
1060 * the debugger.
1062 void breakpoint(void)
1064 if (!initialized)
1065 return;
1067 __asm__ __volatile__(
1068 ".globl breakinst\n\t"
1069 ".set\tnoreorder\n\t"
1070 "nop\n"
1071 "breakinst:\tbreak\n\t"
1072 "nop\n\t"
1073 ".set\treorder"
1077 /* Nothing but the break; don't pollute any registers */
1078 void async_breakpoint(void)
1080 __asm__ __volatile__(
1081 ".globl async_breakinst\n\t"
1082 ".set\tnoreorder\n\t"
1083 "nop\n"
1084 "async_breakinst:\tbreak\n\t"
1085 "nop\n\t"
1086 ".set\treorder"
1090 void adel(void)
1092 __asm__ __volatile__(
1093 ".globl\tadel\n\t"
1094 "lui\t$8,0x8000\n\t"
1095 "lw\t$9,1($8)\n\t"
1100 * malloc is needed by gdb client in "call func()", even a private one
1101 * will make gdb happy
1103 static void __used *malloc(size_t size)
1105 return kmalloc(size, GFP_ATOMIC);
1108 static void __used free(void *where)
1110 kfree(where);
1113 #ifdef CONFIG_GDB_CONSOLE
1115 void gdb_putsn(const char *str, int l)
1117 char outbuf[18];
1119 if (!kgdb_started)
1120 return;
1122 outbuf[0]='O';
1124 while(l) {
1125 int i = (l>8)?8:l;
1126 mem2hex((char *)str, &outbuf[1], i, 0);
1127 outbuf[(i*2)+1]=0;
1128 putpacket(outbuf);
1129 str += i;
1130 l -= i;
1134 static void gdb_console_write(struct console *con, const char *s, unsigned n)
1136 gdb_putsn(s, n);
1139 static struct console gdb_console = {
1140 .name = "gdb",
1141 .write = gdb_console_write,
1142 .flags = CON_PRINTBUFFER,
1143 .index = -1
1146 static int __init register_gdb_console(void)
1148 register_console(&gdb_console);
1150 return 0;
1153 console_initcall(register_gdb_console);
1155 #endif