Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux/fpc-iii.git] / fs / ext4 / inode.c
blob8d9707746413d90bc5bf019ea6e2dacad91842c2
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include "ext4_jbd2.h"
39 #include "xattr.h"
40 #include "acl.h"
43 * Test whether an inode is a fast symlink.
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 (inode->i_sb->s_blocksize >> 9) : 0;
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
65 int err;
67 might_sleep();
69 BUFFER_TRACE(bh, "enter");
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
83 if (bh) {
84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle, bh);
87 return 0;
91 * data!=journal && (is_metadata || should_journal_data(inode))
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
95 if (err)
96 ext4_abort(inode->i_sb, __func__,
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
99 return err;
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
106 static unsigned long blocks_for_truncate(struct inode *inode)
108 ext4_lblk_t needed;
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
118 if (needed < 2)
119 needed = 2;
121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
139 static handle_t *start_transaction(struct inode *inode)
141 handle_t *result;
143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 if (!IS_ERR(result))
145 return result;
147 ext4_std_error(inode->i_sb, PTR_ERR(result));
148 return result;
152 * Try to extend this transaction for the purposes of truncation.
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160 return 0;
161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 return 0;
163 return 1;
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
173 jbd_debug(2, "restarting handle %p\n", handle);
174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
178 * Called at the last iput() if i_nlink is zero.
180 void ext4_delete_inode (struct inode * inode)
182 handle_t *handle;
184 truncate_inode_pages(&inode->i_data, 0);
186 if (is_bad_inode(inode))
187 goto no_delete;
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
194 * cleaned up.
196 ext4_orphan_del(NULL, inode);
197 goto no_delete;
200 if (IS_SYNC(inode))
201 handle->h_sync = 1;
202 inode->i_size = 0;
203 if (inode->i_blocks)
204 ext4_truncate(inode);
206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works)
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
221 * fails.
223 if (ext4_mark_inode_dirty(handle, inode))
224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode);
226 else
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
229 return;
230 no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */
234 typedef struct {
235 __le32 *p;
236 __le32 key;
237 struct buffer_head *bh;
238 } Indirect;
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
242 p->key = *(p->p = v);
243 p->bh = bh;
247 * ext4_block_to_path - parse the block number into array of offsets
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
254 * To store the locations of file's data ext4 uses a data structure common
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
264 * inode->i_sb).
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
274 * get there at all.
277 static int ext4_block_to_path(struct inode *inode,
278 ext4_lblk_t i_block,
279 ext4_lblk_t offsets[4], int *boundary)
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS,
284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2));
286 int n = 0;
287 int final = 0;
289 if (i_block < 0) {
290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block;
293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295 offsets[n++] = EXT4_IND_BLOCK;
296 offsets[n++] = i_block;
297 final = ptrs;
298 } else if ((i_block -= indirect_blocks) < double_blocks) {
299 offsets[n++] = EXT4_DIND_BLOCK;
300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1);
302 final = ptrs;
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304 offsets[n++] = EXT4_TIND_BLOCK;
305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs;
309 } else {
310 ext4_warning(inode->i_sb, "ext4_block_to_path",
311 "block %lu > max",
312 i_block + direct_blocks +
313 indirect_blocks + double_blocks);
315 if (boundary)
316 *boundary = final - 1 - (i_block & (ptrs - 1));
317 return n;
321 * ext4_get_branch - read the chain of indirect blocks leading to data
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
338 * numbers.
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
347 * Need to be called with
348 * down_read(&EXT4_I(inode)->i_data_sem)
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets,
352 Indirect chain[4], int *err)
354 struct super_block *sb = inode->i_sb;
355 Indirect *p = chain;
356 struct buffer_head *bh;
358 *err = 0;
359 /* i_data is not going away, no lock needed */
360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 if (!p->key)
362 goto no_block;
363 while (--depth) {
364 bh = sb_bread(sb, le32_to_cpu(p->key));
365 if (!bh)
366 goto failure;
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 /* Reader: end */
369 if (!p->key)
370 goto no_block;
372 return NULL;
374 failure:
375 *err = -EIO;
376 no_block:
377 return p;
381 * ext4_find_near - find a place for allocation with sufficient locality
382 * @inode: owner
383 * @ind: descriptor of indirect block.
385 * This function returns the preferred place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
387 * Rules are:
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
391 * cylinder group.
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
398 * Caller must make sure that @ind is valid and will stay that way.
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
402 struct ext4_inode_info *ei = EXT4_I(inode);
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 __le32 *p;
405 ext4_fsblk_t bg_start;
406 ext4_fsblk_t last_block;
407 ext4_grpblk_t colour;
409 /* Try to find previous block */
410 for (p = ind->p - 1; p >= start; p--) {
411 if (*p)
412 return le32_to_cpu(*p);
415 /* No such thing, so let's try location of indirect block */
416 if (ind->bh)
417 return ind->bh->b_blocknr;
420 * It is going to be referred to from the inode itself? OK, just put it
421 * into the same cylinder group then.
423 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
424 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
426 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
427 colour = (current->pid % 16) *
428 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
429 else
430 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
431 return bg_start + colour;
435 * ext4_find_goal - find a preferred place for allocation.
436 * @inode: owner
437 * @block: block we want
438 * @partial: pointer to the last triple within a chain
440 * Normally this function find the preferred place for block allocation,
441 * returns it.
443 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
444 Indirect *partial)
446 struct ext4_block_alloc_info *block_i;
448 block_i = EXT4_I(inode)->i_block_alloc_info;
451 * try the heuristic for sequential allocation,
452 * failing that at least try to get decent locality.
454 if (block_i && (block == block_i->last_alloc_logical_block + 1)
455 && (block_i->last_alloc_physical_block != 0)) {
456 return block_i->last_alloc_physical_block + 1;
459 return ext4_find_near(inode, partial);
463 * ext4_blks_to_allocate: Look up the block map and count the number
464 * of direct blocks need to be allocated for the given branch.
466 * @branch: chain of indirect blocks
467 * @k: number of blocks need for indirect blocks
468 * @blks: number of data blocks to be mapped.
469 * @blocks_to_boundary: the offset in the indirect block
471 * return the total number of blocks to be allocate, including the
472 * direct and indirect blocks.
474 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
475 int blocks_to_boundary)
477 unsigned long count = 0;
480 * Simple case, [t,d]Indirect block(s) has not allocated yet
481 * then it's clear blocks on that path have not allocated
483 if (k > 0) {
484 /* right now we don't handle cross boundary allocation */
485 if (blks < blocks_to_boundary + 1)
486 count += blks;
487 else
488 count += blocks_to_boundary + 1;
489 return count;
492 count++;
493 while (count < blks && count <= blocks_to_boundary &&
494 le32_to_cpu(*(branch[0].p + count)) == 0) {
495 count++;
497 return count;
501 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
502 * @indirect_blks: the number of blocks need to allocate for indirect
503 * blocks
505 * @new_blocks: on return it will store the new block numbers for
506 * the indirect blocks(if needed) and the first direct block,
507 * @blks: on return it will store the total number of allocated
508 * direct blocks
510 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
511 ext4_fsblk_t goal, int indirect_blks, int blks,
512 ext4_fsblk_t new_blocks[4], int *err)
514 int target, i;
515 unsigned long count = 0;
516 int index = 0;
517 ext4_fsblk_t current_block = 0;
518 int ret = 0;
521 * Here we try to allocate the requested multiple blocks at once,
522 * on a best-effort basis.
523 * To build a branch, we should allocate blocks for
524 * the indirect blocks(if not allocated yet), and at least
525 * the first direct block of this branch. That's the
526 * minimum number of blocks need to allocate(required)
528 target = blks + indirect_blks;
530 while (1) {
531 count = target;
532 /* allocating blocks for indirect blocks and direct blocks */
533 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
534 if (*err)
535 goto failed_out;
537 target -= count;
538 /* allocate blocks for indirect blocks */
539 while (index < indirect_blks && count) {
540 new_blocks[index++] = current_block++;
541 count--;
544 if (count > 0)
545 break;
548 /* save the new block number for the first direct block */
549 new_blocks[index] = current_block;
551 /* total number of blocks allocated for direct blocks */
552 ret = count;
553 *err = 0;
554 return ret;
555 failed_out:
556 for (i = 0; i <index; i++)
557 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
558 return ret;
562 * ext4_alloc_branch - allocate and set up a chain of blocks.
563 * @inode: owner
564 * @indirect_blks: number of allocated indirect blocks
565 * @blks: number of allocated direct blocks
566 * @offsets: offsets (in the blocks) to store the pointers to next.
567 * @branch: place to store the chain in.
569 * This function allocates blocks, zeroes out all but the last one,
570 * links them into chain and (if we are synchronous) writes them to disk.
571 * In other words, it prepares a branch that can be spliced onto the
572 * inode. It stores the information about that chain in the branch[], in
573 * the same format as ext4_get_branch() would do. We are calling it after
574 * we had read the existing part of chain and partial points to the last
575 * triple of that (one with zero ->key). Upon the exit we have the same
576 * picture as after the successful ext4_get_block(), except that in one
577 * place chain is disconnected - *branch->p is still zero (we did not
578 * set the last link), but branch->key contains the number that should
579 * be placed into *branch->p to fill that gap.
581 * If allocation fails we free all blocks we've allocated (and forget
582 * their buffer_heads) and return the error value the from failed
583 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
584 * as described above and return 0.
586 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
587 int indirect_blks, int *blks, ext4_fsblk_t goal,
588 ext4_lblk_t *offsets, Indirect *branch)
590 int blocksize = inode->i_sb->s_blocksize;
591 int i, n = 0;
592 int err = 0;
593 struct buffer_head *bh;
594 int num;
595 ext4_fsblk_t new_blocks[4];
596 ext4_fsblk_t current_block;
598 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
599 *blks, new_blocks, &err);
600 if (err)
601 return err;
603 branch[0].key = cpu_to_le32(new_blocks[0]);
605 * metadata blocks and data blocks are allocated.
607 for (n = 1; n <= indirect_blks; n++) {
609 * Get buffer_head for parent block, zero it out
610 * and set the pointer to new one, then send
611 * parent to disk.
613 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
614 branch[n].bh = bh;
615 lock_buffer(bh);
616 BUFFER_TRACE(bh, "call get_create_access");
617 err = ext4_journal_get_create_access(handle, bh);
618 if (err) {
619 unlock_buffer(bh);
620 brelse(bh);
621 goto failed;
624 memset(bh->b_data, 0, blocksize);
625 branch[n].p = (__le32 *) bh->b_data + offsets[n];
626 branch[n].key = cpu_to_le32(new_blocks[n]);
627 *branch[n].p = branch[n].key;
628 if ( n == indirect_blks) {
629 current_block = new_blocks[n];
631 * End of chain, update the last new metablock of
632 * the chain to point to the new allocated
633 * data blocks numbers
635 for (i=1; i < num; i++)
636 *(branch[n].p + i) = cpu_to_le32(++current_block);
638 BUFFER_TRACE(bh, "marking uptodate");
639 set_buffer_uptodate(bh);
640 unlock_buffer(bh);
642 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
643 err = ext4_journal_dirty_metadata(handle, bh);
644 if (err)
645 goto failed;
647 *blks = num;
648 return err;
649 failed:
650 /* Allocation failed, free what we already allocated */
651 for (i = 1; i <= n ; i++) {
652 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
653 ext4_journal_forget(handle, branch[i].bh);
655 for (i = 0; i <indirect_blks; i++)
656 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
658 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
660 return err;
664 * ext4_splice_branch - splice the allocated branch onto inode.
665 * @inode: owner
666 * @block: (logical) number of block we are adding
667 * @chain: chain of indirect blocks (with a missing link - see
668 * ext4_alloc_branch)
669 * @where: location of missing link
670 * @num: number of indirect blocks we are adding
671 * @blks: number of direct blocks we are adding
673 * This function fills the missing link and does all housekeeping needed in
674 * inode (->i_blocks, etc.). In case of success we end up with the full
675 * chain to new block and return 0.
677 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
678 ext4_lblk_t block, Indirect *where, int num, int blks)
680 int i;
681 int err = 0;
682 struct ext4_block_alloc_info *block_i;
683 ext4_fsblk_t current_block;
685 block_i = EXT4_I(inode)->i_block_alloc_info;
687 * If we're splicing into a [td]indirect block (as opposed to the
688 * inode) then we need to get write access to the [td]indirect block
689 * before the splice.
691 if (where->bh) {
692 BUFFER_TRACE(where->bh, "get_write_access");
693 err = ext4_journal_get_write_access(handle, where->bh);
694 if (err)
695 goto err_out;
697 /* That's it */
699 *where->p = where->key;
702 * Update the host buffer_head or inode to point to more just allocated
703 * direct blocks blocks
705 if (num == 0 && blks > 1) {
706 current_block = le32_to_cpu(where->key) + 1;
707 for (i = 1; i < blks; i++)
708 *(where->p + i ) = cpu_to_le32(current_block++);
712 * update the most recently allocated logical & physical block
713 * in i_block_alloc_info, to assist find the proper goal block for next
714 * allocation
716 if (block_i) {
717 block_i->last_alloc_logical_block = block + blks - 1;
718 block_i->last_alloc_physical_block =
719 le32_to_cpu(where[num].key) + blks - 1;
722 /* We are done with atomic stuff, now do the rest of housekeeping */
724 inode->i_ctime = ext4_current_time(inode);
725 ext4_mark_inode_dirty(handle, inode);
727 /* had we spliced it onto indirect block? */
728 if (where->bh) {
730 * If we spliced it onto an indirect block, we haven't
731 * altered the inode. Note however that if it is being spliced
732 * onto an indirect block at the very end of the file (the
733 * file is growing) then we *will* alter the inode to reflect
734 * the new i_size. But that is not done here - it is done in
735 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
737 jbd_debug(5, "splicing indirect only\n");
738 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
739 err = ext4_journal_dirty_metadata(handle, where->bh);
740 if (err)
741 goto err_out;
742 } else {
744 * OK, we spliced it into the inode itself on a direct block.
745 * Inode was dirtied above.
747 jbd_debug(5, "splicing direct\n");
749 return err;
751 err_out:
752 for (i = 1; i <= num; i++) {
753 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
754 ext4_journal_forget(handle, where[i].bh);
755 ext4_free_blocks(handle, inode,
756 le32_to_cpu(where[i-1].key), 1, 0);
758 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
760 return err;
764 * Allocation strategy is simple: if we have to allocate something, we will
765 * have to go the whole way to leaf. So let's do it before attaching anything
766 * to tree, set linkage between the newborn blocks, write them if sync is
767 * required, recheck the path, free and repeat if check fails, otherwise
768 * set the last missing link (that will protect us from any truncate-generated
769 * removals - all blocks on the path are immune now) and possibly force the
770 * write on the parent block.
771 * That has a nice additional property: no special recovery from the failed
772 * allocations is needed - we simply release blocks and do not touch anything
773 * reachable from inode.
775 * `handle' can be NULL if create == 0.
777 * return > 0, # of blocks mapped or allocated.
778 * return = 0, if plain lookup failed.
779 * return < 0, error case.
782 * Need to be called with
783 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
784 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
786 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
787 ext4_lblk_t iblock, unsigned long maxblocks,
788 struct buffer_head *bh_result,
789 int create, int extend_disksize)
791 int err = -EIO;
792 ext4_lblk_t offsets[4];
793 Indirect chain[4];
794 Indirect *partial;
795 ext4_fsblk_t goal;
796 int indirect_blks;
797 int blocks_to_boundary = 0;
798 int depth;
799 struct ext4_inode_info *ei = EXT4_I(inode);
800 int count = 0;
801 ext4_fsblk_t first_block = 0;
804 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
805 J_ASSERT(handle != NULL || create == 0);
806 depth = ext4_block_to_path(inode, iblock, offsets,
807 &blocks_to_boundary);
809 if (depth == 0)
810 goto out;
812 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
814 /* Simplest case - block found, no allocation needed */
815 if (!partial) {
816 first_block = le32_to_cpu(chain[depth - 1].key);
817 clear_buffer_new(bh_result);
818 count++;
819 /*map more blocks*/
820 while (count < maxblocks && count <= blocks_to_boundary) {
821 ext4_fsblk_t blk;
823 blk = le32_to_cpu(*(chain[depth-1].p + count));
825 if (blk == first_block + count)
826 count++;
827 else
828 break;
830 goto got_it;
833 /* Next simple case - plain lookup or failed read of indirect block */
834 if (!create || err == -EIO)
835 goto cleanup;
838 * Okay, we need to do block allocation. Lazily initialize the block
839 * allocation info here if necessary
841 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
842 ext4_init_block_alloc_info(inode);
844 goal = ext4_find_goal(inode, iblock, partial);
846 /* the number of blocks need to allocate for [d,t]indirect blocks */
847 indirect_blks = (chain + depth) - partial - 1;
850 * Next look up the indirect map to count the totoal number of
851 * direct blocks to allocate for this branch.
853 count = ext4_blks_to_allocate(partial, indirect_blks,
854 maxblocks, blocks_to_boundary);
856 * Block out ext4_truncate while we alter the tree
858 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
859 offsets + (partial - chain), partial);
862 * The ext4_splice_branch call will free and forget any buffers
863 * on the new chain if there is a failure, but that risks using
864 * up transaction credits, especially for bitmaps where the
865 * credits cannot be returned. Can we handle this somehow? We
866 * may need to return -EAGAIN upwards in the worst case. --sct
868 if (!err)
869 err = ext4_splice_branch(handle, inode, iblock,
870 partial, indirect_blks, count);
872 * i_disksize growing is protected by i_data_sem. Don't forget to
873 * protect it if you're about to implement concurrent
874 * ext4_get_block() -bzzz
876 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
877 ei->i_disksize = inode->i_size;
878 if (err)
879 goto cleanup;
881 set_buffer_new(bh_result);
882 got_it:
883 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
884 if (count > blocks_to_boundary)
885 set_buffer_boundary(bh_result);
886 err = count;
887 /* Clean up and exit */
888 partial = chain + depth - 1; /* the whole chain */
889 cleanup:
890 while (partial > chain) {
891 BUFFER_TRACE(partial->bh, "call brelse");
892 brelse(partial->bh);
893 partial--;
895 BUFFER_TRACE(bh_result, "returned");
896 out:
897 return err;
900 /* Maximum number of blocks we map for direct IO at once. */
901 #define DIO_MAX_BLOCKS 4096
903 * Number of credits we need for writing DIO_MAX_BLOCKS:
904 * We need sb + group descriptor + bitmap + inode -> 4
905 * For B blocks with A block pointers per block we need:
906 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
907 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
909 #define DIO_CREDITS 25
915 * ext4_ext4 get_block() wrapper function
916 * It will do a look up first, and returns if the blocks already mapped.
917 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
918 * and store the allocated blocks in the result buffer head and mark it
919 * mapped.
921 * If file type is extents based, it will call ext4_ext_get_blocks(),
922 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
923 * based files
925 * On success, it returns the number of blocks being mapped or allocate.
926 * if create==0 and the blocks are pre-allocated and uninitialized block,
927 * the result buffer head is unmapped. If the create ==1, it will make sure
928 * the buffer head is mapped.
930 * It returns 0 if plain look up failed (blocks have not been allocated), in
931 * that casem, buffer head is unmapped
933 * It returns the error in case of allocation failure.
935 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
936 unsigned long max_blocks, struct buffer_head *bh,
937 int create, int extend_disksize)
939 int retval;
941 clear_buffer_mapped(bh);
944 * Try to see if we can get the block without requesting
945 * for new file system block.
947 down_read((&EXT4_I(inode)->i_data_sem));
948 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
949 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
950 bh, 0, 0);
951 } else {
952 retval = ext4_get_blocks_handle(handle,
953 inode, block, max_blocks, bh, 0, 0);
955 up_read((&EXT4_I(inode)->i_data_sem));
957 /* If it is only a block(s) look up */
958 if (!create)
959 return retval;
962 * Returns if the blocks have already allocated
964 * Note that if blocks have been preallocated
965 * ext4_ext_get_block() returns th create = 0
966 * with buffer head unmapped.
968 if (retval > 0 && buffer_mapped(bh))
969 return retval;
972 * New blocks allocate and/or writing to uninitialized extent
973 * will possibly result in updating i_data, so we take
974 * the write lock of i_data_sem, and call get_blocks()
975 * with create == 1 flag.
977 down_write((&EXT4_I(inode)->i_data_sem));
979 * We need to check for EXT4 here because migrate
980 * could have changed the inode type in between
982 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
983 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
984 bh, create, extend_disksize);
985 } else {
986 retval = ext4_get_blocks_handle(handle, inode, block,
987 max_blocks, bh, create, extend_disksize);
989 if (retval > 0 && buffer_new(bh)) {
991 * We allocated new blocks which will result in
992 * i_data's format changing. Force the migrate
993 * to fail by clearing migrate flags
995 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
996 ~EXT4_EXT_MIGRATE;
999 up_write((&EXT4_I(inode)->i_data_sem));
1000 return retval;
1003 static int ext4_get_block(struct inode *inode, sector_t iblock,
1004 struct buffer_head *bh_result, int create)
1006 handle_t *handle = ext4_journal_current_handle();
1007 int ret = 0, started = 0;
1008 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1010 if (create && !handle) {
1011 /* Direct IO write... */
1012 if (max_blocks > DIO_MAX_BLOCKS)
1013 max_blocks = DIO_MAX_BLOCKS;
1014 handle = ext4_journal_start(inode, DIO_CREDITS +
1015 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1016 if (IS_ERR(handle)) {
1017 ret = PTR_ERR(handle);
1018 goto out;
1020 started = 1;
1023 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1024 max_blocks, bh_result, create, 0);
1025 if (ret > 0) {
1026 bh_result->b_size = (ret << inode->i_blkbits);
1027 ret = 0;
1029 if (started)
1030 ext4_journal_stop(handle);
1031 out:
1032 return ret;
1036 * `handle' can be NULL if create is zero
1038 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1039 ext4_lblk_t block, int create, int *errp)
1041 struct buffer_head dummy;
1042 int fatal = 0, err;
1044 J_ASSERT(handle != NULL || create == 0);
1046 dummy.b_state = 0;
1047 dummy.b_blocknr = -1000;
1048 buffer_trace_init(&dummy.b_history);
1049 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1050 &dummy, create, 1);
1052 * ext4_get_blocks_handle() returns number of blocks
1053 * mapped. 0 in case of a HOLE.
1055 if (err > 0) {
1056 if (err > 1)
1057 WARN_ON(1);
1058 err = 0;
1060 *errp = err;
1061 if (!err && buffer_mapped(&dummy)) {
1062 struct buffer_head *bh;
1063 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1064 if (!bh) {
1065 *errp = -EIO;
1066 goto err;
1068 if (buffer_new(&dummy)) {
1069 J_ASSERT(create != 0);
1070 J_ASSERT(handle != NULL);
1073 * Now that we do not always journal data, we should
1074 * keep in mind whether this should always journal the
1075 * new buffer as metadata. For now, regular file
1076 * writes use ext4_get_block instead, so it's not a
1077 * problem.
1079 lock_buffer(bh);
1080 BUFFER_TRACE(bh, "call get_create_access");
1081 fatal = ext4_journal_get_create_access(handle, bh);
1082 if (!fatal && !buffer_uptodate(bh)) {
1083 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1084 set_buffer_uptodate(bh);
1086 unlock_buffer(bh);
1087 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1088 err = ext4_journal_dirty_metadata(handle, bh);
1089 if (!fatal)
1090 fatal = err;
1091 } else {
1092 BUFFER_TRACE(bh, "not a new buffer");
1094 if (fatal) {
1095 *errp = fatal;
1096 brelse(bh);
1097 bh = NULL;
1099 return bh;
1101 err:
1102 return NULL;
1105 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1106 ext4_lblk_t block, int create, int *err)
1108 struct buffer_head * bh;
1110 bh = ext4_getblk(handle, inode, block, create, err);
1111 if (!bh)
1112 return bh;
1113 if (buffer_uptodate(bh))
1114 return bh;
1115 ll_rw_block(READ_META, 1, &bh);
1116 wait_on_buffer(bh);
1117 if (buffer_uptodate(bh))
1118 return bh;
1119 put_bh(bh);
1120 *err = -EIO;
1121 return NULL;
1124 static int walk_page_buffers( handle_t *handle,
1125 struct buffer_head *head,
1126 unsigned from,
1127 unsigned to,
1128 int *partial,
1129 int (*fn)( handle_t *handle,
1130 struct buffer_head *bh))
1132 struct buffer_head *bh;
1133 unsigned block_start, block_end;
1134 unsigned blocksize = head->b_size;
1135 int err, ret = 0;
1136 struct buffer_head *next;
1138 for ( bh = head, block_start = 0;
1139 ret == 0 && (bh != head || !block_start);
1140 block_start = block_end, bh = next)
1142 next = bh->b_this_page;
1143 block_end = block_start + blocksize;
1144 if (block_end <= from || block_start >= to) {
1145 if (partial && !buffer_uptodate(bh))
1146 *partial = 1;
1147 continue;
1149 err = (*fn)(handle, bh);
1150 if (!ret)
1151 ret = err;
1153 return ret;
1157 * To preserve ordering, it is essential that the hole instantiation and
1158 * the data write be encapsulated in a single transaction. We cannot
1159 * close off a transaction and start a new one between the ext4_get_block()
1160 * and the commit_write(). So doing the jbd2_journal_start at the start of
1161 * prepare_write() is the right place.
1163 * Also, this function can nest inside ext4_writepage() ->
1164 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1165 * has generated enough buffer credits to do the whole page. So we won't
1166 * block on the journal in that case, which is good, because the caller may
1167 * be PF_MEMALLOC.
1169 * By accident, ext4 can be reentered when a transaction is open via
1170 * quota file writes. If we were to commit the transaction while thus
1171 * reentered, there can be a deadlock - we would be holding a quota
1172 * lock, and the commit would never complete if another thread had a
1173 * transaction open and was blocking on the quota lock - a ranking
1174 * violation.
1176 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1177 * will _not_ run commit under these circumstances because handle->h_ref
1178 * is elevated. We'll still have enough credits for the tiny quotafile
1179 * write.
1181 static int do_journal_get_write_access(handle_t *handle,
1182 struct buffer_head *bh)
1184 if (!buffer_mapped(bh) || buffer_freed(bh))
1185 return 0;
1186 return ext4_journal_get_write_access(handle, bh);
1189 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1190 loff_t pos, unsigned len, unsigned flags,
1191 struct page **pagep, void **fsdata)
1193 struct inode *inode = mapping->host;
1194 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1195 handle_t *handle;
1196 int retries = 0;
1197 struct page *page;
1198 pgoff_t index;
1199 unsigned from, to;
1201 index = pos >> PAGE_CACHE_SHIFT;
1202 from = pos & (PAGE_CACHE_SIZE - 1);
1203 to = from + len;
1205 retry:
1206 page = __grab_cache_page(mapping, index);
1207 if (!page)
1208 return -ENOMEM;
1209 *pagep = page;
1211 handle = ext4_journal_start(inode, needed_blocks);
1212 if (IS_ERR(handle)) {
1213 unlock_page(page);
1214 page_cache_release(page);
1215 ret = PTR_ERR(handle);
1216 goto out;
1219 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1220 ext4_get_block);
1222 if (!ret && ext4_should_journal_data(inode)) {
1223 ret = walk_page_buffers(handle, page_buffers(page),
1224 from, to, NULL, do_journal_get_write_access);
1227 if (ret) {
1228 ext4_journal_stop(handle);
1229 unlock_page(page);
1230 page_cache_release(page);
1233 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1234 goto retry;
1235 out:
1236 return ret;
1239 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1241 int err = jbd2_journal_dirty_data(handle, bh);
1242 if (err)
1243 ext4_journal_abort_handle(__func__, __func__,
1244 bh, handle, err);
1245 return err;
1248 /* For write_end() in data=journal mode */
1249 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1251 if (!buffer_mapped(bh) || buffer_freed(bh))
1252 return 0;
1253 set_buffer_uptodate(bh);
1254 return ext4_journal_dirty_metadata(handle, bh);
1258 * Generic write_end handler for ordered and writeback ext4 journal modes.
1259 * We can't use generic_write_end, because that unlocks the page and we need to
1260 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1261 * after block_write_end.
1263 static int ext4_generic_write_end(struct file *file,
1264 struct address_space *mapping,
1265 loff_t pos, unsigned len, unsigned copied,
1266 struct page *page, void *fsdata)
1268 struct inode *inode = file->f_mapping->host;
1270 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1272 if (pos+copied > inode->i_size) {
1273 i_size_write(inode, pos+copied);
1274 mark_inode_dirty(inode);
1277 return copied;
1281 * We need to pick up the new inode size which generic_commit_write gave us
1282 * `file' can be NULL - eg, when called from page_symlink().
1284 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1285 * buffers are managed internally.
1287 static int ext4_ordered_write_end(struct file *file,
1288 struct address_space *mapping,
1289 loff_t pos, unsigned len, unsigned copied,
1290 struct page *page, void *fsdata)
1292 handle_t *handle = ext4_journal_current_handle();
1293 struct inode *inode = file->f_mapping->host;
1294 unsigned from, to;
1295 int ret = 0, ret2;
1297 from = pos & (PAGE_CACHE_SIZE - 1);
1298 to = from + len;
1300 ret = walk_page_buffers(handle, page_buffers(page),
1301 from, to, NULL, ext4_journal_dirty_data);
1303 if (ret == 0) {
1305 * generic_write_end() will run mark_inode_dirty() if i_size
1306 * changes. So let's piggyback the i_disksize mark_inode_dirty
1307 * into that.
1309 loff_t new_i_size;
1311 new_i_size = pos + copied;
1312 if (new_i_size > EXT4_I(inode)->i_disksize)
1313 EXT4_I(inode)->i_disksize = new_i_size;
1314 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1315 page, fsdata);
1316 copied = ret2;
1317 if (ret2 < 0)
1318 ret = ret2;
1320 ret2 = ext4_journal_stop(handle);
1321 if (!ret)
1322 ret = ret2;
1323 unlock_page(page);
1324 page_cache_release(page);
1326 return ret ? ret : copied;
1329 static int ext4_writeback_write_end(struct file *file,
1330 struct address_space *mapping,
1331 loff_t pos, unsigned len, unsigned copied,
1332 struct page *page, void *fsdata)
1334 handle_t *handle = ext4_journal_current_handle();
1335 struct inode *inode = file->f_mapping->host;
1336 int ret = 0, ret2;
1337 loff_t new_i_size;
1339 new_i_size = pos + copied;
1340 if (new_i_size > EXT4_I(inode)->i_disksize)
1341 EXT4_I(inode)->i_disksize = new_i_size;
1343 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1344 page, fsdata);
1345 copied = ret2;
1346 if (ret2 < 0)
1347 ret = ret2;
1349 ret2 = ext4_journal_stop(handle);
1350 if (!ret)
1351 ret = ret2;
1352 unlock_page(page);
1353 page_cache_release(page);
1355 return ret ? ret : copied;
1358 static int ext4_journalled_write_end(struct file *file,
1359 struct address_space *mapping,
1360 loff_t pos, unsigned len, unsigned copied,
1361 struct page *page, void *fsdata)
1363 handle_t *handle = ext4_journal_current_handle();
1364 struct inode *inode = mapping->host;
1365 int ret = 0, ret2;
1366 int partial = 0;
1367 unsigned from, to;
1369 from = pos & (PAGE_CACHE_SIZE - 1);
1370 to = from + len;
1372 if (copied < len) {
1373 if (!PageUptodate(page))
1374 copied = 0;
1375 page_zero_new_buffers(page, from+copied, to);
1378 ret = walk_page_buffers(handle, page_buffers(page), from,
1379 to, &partial, write_end_fn);
1380 if (!partial)
1381 SetPageUptodate(page);
1382 if (pos+copied > inode->i_size)
1383 i_size_write(inode, pos+copied);
1384 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1385 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1386 EXT4_I(inode)->i_disksize = inode->i_size;
1387 ret2 = ext4_mark_inode_dirty(handle, inode);
1388 if (!ret)
1389 ret = ret2;
1392 ret2 = ext4_journal_stop(handle);
1393 if (!ret)
1394 ret = ret2;
1395 unlock_page(page);
1396 page_cache_release(page);
1398 return ret ? ret : copied;
1402 * bmap() is special. It gets used by applications such as lilo and by
1403 * the swapper to find the on-disk block of a specific piece of data.
1405 * Naturally, this is dangerous if the block concerned is still in the
1406 * journal. If somebody makes a swapfile on an ext4 data-journaling
1407 * filesystem and enables swap, then they may get a nasty shock when the
1408 * data getting swapped to that swapfile suddenly gets overwritten by
1409 * the original zero's written out previously to the journal and
1410 * awaiting writeback in the kernel's buffer cache.
1412 * So, if we see any bmap calls here on a modified, data-journaled file,
1413 * take extra steps to flush any blocks which might be in the cache.
1415 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1417 struct inode *inode = mapping->host;
1418 journal_t *journal;
1419 int err;
1421 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1423 * This is a REALLY heavyweight approach, but the use of
1424 * bmap on dirty files is expected to be extremely rare:
1425 * only if we run lilo or swapon on a freshly made file
1426 * do we expect this to happen.
1428 * (bmap requires CAP_SYS_RAWIO so this does not
1429 * represent an unprivileged user DOS attack --- we'd be
1430 * in trouble if mortal users could trigger this path at
1431 * will.)
1433 * NB. EXT4_STATE_JDATA is not set on files other than
1434 * regular files. If somebody wants to bmap a directory
1435 * or symlink and gets confused because the buffer
1436 * hasn't yet been flushed to disk, they deserve
1437 * everything they get.
1440 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1441 journal = EXT4_JOURNAL(inode);
1442 jbd2_journal_lock_updates(journal);
1443 err = jbd2_journal_flush(journal);
1444 jbd2_journal_unlock_updates(journal);
1446 if (err)
1447 return 0;
1450 return generic_block_bmap(mapping,block,ext4_get_block);
1453 static int bget_one(handle_t *handle, struct buffer_head *bh)
1455 get_bh(bh);
1456 return 0;
1459 static int bput_one(handle_t *handle, struct buffer_head *bh)
1461 put_bh(bh);
1462 return 0;
1465 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1467 if (buffer_mapped(bh))
1468 return ext4_journal_dirty_data(handle, bh);
1469 return 0;
1473 * Note that we always start a transaction even if we're not journalling
1474 * data. This is to preserve ordering: any hole instantiation within
1475 * __block_write_full_page -> ext4_get_block() should be journalled
1476 * along with the data so we don't crash and then get metadata which
1477 * refers to old data.
1479 * In all journalling modes block_write_full_page() will start the I/O.
1481 * Problem:
1483 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1484 * ext4_writepage()
1486 * Similar for:
1488 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1490 * Same applies to ext4_get_block(). We will deadlock on various things like
1491 * lock_journal and i_data_sem
1493 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1494 * allocations fail.
1496 * 16May01: If we're reentered then journal_current_handle() will be
1497 * non-zero. We simply *return*.
1499 * 1 July 2001: @@@ FIXME:
1500 * In journalled data mode, a data buffer may be metadata against the
1501 * current transaction. But the same file is part of a shared mapping
1502 * and someone does a writepage() on it.
1504 * We will move the buffer onto the async_data list, but *after* it has
1505 * been dirtied. So there's a small window where we have dirty data on
1506 * BJ_Metadata.
1508 * Note that this only applies to the last partial page in the file. The
1509 * bit which block_write_full_page() uses prepare/commit for. (That's
1510 * broken code anyway: it's wrong for msync()).
1512 * It's a rare case: affects the final partial page, for journalled data
1513 * where the file is subject to bith write() and writepage() in the same
1514 * transction. To fix it we'll need a custom block_write_full_page().
1515 * We'll probably need that anyway for journalling writepage() output.
1517 * We don't honour synchronous mounts for writepage(). That would be
1518 * disastrous. Any write() or metadata operation will sync the fs for
1519 * us.
1521 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1522 * we don't need to open a transaction here.
1524 static int ext4_ordered_writepage(struct page *page,
1525 struct writeback_control *wbc)
1527 struct inode *inode = page->mapping->host;
1528 struct buffer_head *page_bufs;
1529 handle_t *handle = NULL;
1530 int ret = 0;
1531 int err;
1533 J_ASSERT(PageLocked(page));
1536 * We give up here if we're reentered, because it might be for a
1537 * different filesystem.
1539 if (ext4_journal_current_handle())
1540 goto out_fail;
1542 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1544 if (IS_ERR(handle)) {
1545 ret = PTR_ERR(handle);
1546 goto out_fail;
1549 if (!page_has_buffers(page)) {
1550 create_empty_buffers(page, inode->i_sb->s_blocksize,
1551 (1 << BH_Dirty)|(1 << BH_Uptodate));
1553 page_bufs = page_buffers(page);
1554 walk_page_buffers(handle, page_bufs, 0,
1555 PAGE_CACHE_SIZE, NULL, bget_one);
1557 ret = block_write_full_page(page, ext4_get_block, wbc);
1560 * The page can become unlocked at any point now, and
1561 * truncate can then come in and change things. So we
1562 * can't touch *page from now on. But *page_bufs is
1563 * safe due to elevated refcount.
1567 * And attach them to the current transaction. But only if
1568 * block_write_full_page() succeeded. Otherwise they are unmapped,
1569 * and generally junk.
1571 if (ret == 0) {
1572 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1573 NULL, jbd2_journal_dirty_data_fn);
1574 if (!ret)
1575 ret = err;
1577 walk_page_buffers(handle, page_bufs, 0,
1578 PAGE_CACHE_SIZE, NULL, bput_one);
1579 err = ext4_journal_stop(handle);
1580 if (!ret)
1581 ret = err;
1582 return ret;
1584 out_fail:
1585 redirty_page_for_writepage(wbc, page);
1586 unlock_page(page);
1587 return ret;
1590 static int ext4_writeback_writepage(struct page *page,
1591 struct writeback_control *wbc)
1593 struct inode *inode = page->mapping->host;
1594 handle_t *handle = NULL;
1595 int ret = 0;
1596 int err;
1598 if (ext4_journal_current_handle())
1599 goto out_fail;
1601 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1602 if (IS_ERR(handle)) {
1603 ret = PTR_ERR(handle);
1604 goto out_fail;
1607 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1608 ret = nobh_writepage(page, ext4_get_block, wbc);
1609 else
1610 ret = block_write_full_page(page, ext4_get_block, wbc);
1612 err = ext4_journal_stop(handle);
1613 if (!ret)
1614 ret = err;
1615 return ret;
1617 out_fail:
1618 redirty_page_for_writepage(wbc, page);
1619 unlock_page(page);
1620 return ret;
1623 static int ext4_journalled_writepage(struct page *page,
1624 struct writeback_control *wbc)
1626 struct inode *inode = page->mapping->host;
1627 handle_t *handle = NULL;
1628 int ret = 0;
1629 int err;
1631 if (ext4_journal_current_handle())
1632 goto no_write;
1634 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1635 if (IS_ERR(handle)) {
1636 ret = PTR_ERR(handle);
1637 goto no_write;
1640 if (!page_has_buffers(page) || PageChecked(page)) {
1642 * It's mmapped pagecache. Add buffers and journal it. There
1643 * doesn't seem much point in redirtying the page here.
1645 ClearPageChecked(page);
1646 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1647 ext4_get_block);
1648 if (ret != 0) {
1649 ext4_journal_stop(handle);
1650 goto out_unlock;
1652 ret = walk_page_buffers(handle, page_buffers(page), 0,
1653 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1655 err = walk_page_buffers(handle, page_buffers(page), 0,
1656 PAGE_CACHE_SIZE, NULL, write_end_fn);
1657 if (ret == 0)
1658 ret = err;
1659 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1660 unlock_page(page);
1661 } else {
1663 * It may be a page full of checkpoint-mode buffers. We don't
1664 * really know unless we go poke around in the buffer_heads.
1665 * But block_write_full_page will do the right thing.
1667 ret = block_write_full_page(page, ext4_get_block, wbc);
1669 err = ext4_journal_stop(handle);
1670 if (!ret)
1671 ret = err;
1672 out:
1673 return ret;
1675 no_write:
1676 redirty_page_for_writepage(wbc, page);
1677 out_unlock:
1678 unlock_page(page);
1679 goto out;
1682 static int ext4_readpage(struct file *file, struct page *page)
1684 return mpage_readpage(page, ext4_get_block);
1687 static int
1688 ext4_readpages(struct file *file, struct address_space *mapping,
1689 struct list_head *pages, unsigned nr_pages)
1691 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1694 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1696 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1699 * If it's a full truncate we just forget about the pending dirtying
1701 if (offset == 0)
1702 ClearPageChecked(page);
1704 jbd2_journal_invalidatepage(journal, page, offset);
1707 static int ext4_releasepage(struct page *page, gfp_t wait)
1709 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1711 WARN_ON(PageChecked(page));
1712 if (!page_has_buffers(page))
1713 return 0;
1714 return jbd2_journal_try_to_free_buffers(journal, page, wait);
1718 * If the O_DIRECT write will extend the file then add this inode to the
1719 * orphan list. So recovery will truncate it back to the original size
1720 * if the machine crashes during the write.
1722 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1723 * crashes then stale disk data _may_ be exposed inside the file. But current
1724 * VFS code falls back into buffered path in that case so we are safe.
1726 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1727 const struct iovec *iov, loff_t offset,
1728 unsigned long nr_segs)
1730 struct file *file = iocb->ki_filp;
1731 struct inode *inode = file->f_mapping->host;
1732 struct ext4_inode_info *ei = EXT4_I(inode);
1733 handle_t *handle;
1734 ssize_t ret;
1735 int orphan = 0;
1736 size_t count = iov_length(iov, nr_segs);
1738 if (rw == WRITE) {
1739 loff_t final_size = offset + count;
1741 if (final_size > inode->i_size) {
1742 /* Credits for sb + inode write */
1743 handle = ext4_journal_start(inode, 2);
1744 if (IS_ERR(handle)) {
1745 ret = PTR_ERR(handle);
1746 goto out;
1748 ret = ext4_orphan_add(handle, inode);
1749 if (ret) {
1750 ext4_journal_stop(handle);
1751 goto out;
1753 orphan = 1;
1754 ei->i_disksize = inode->i_size;
1755 ext4_journal_stop(handle);
1759 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1760 offset, nr_segs,
1761 ext4_get_block, NULL);
1763 if (orphan) {
1764 int err;
1766 /* Credits for sb + inode write */
1767 handle = ext4_journal_start(inode, 2);
1768 if (IS_ERR(handle)) {
1769 /* This is really bad luck. We've written the data
1770 * but cannot extend i_size. Bail out and pretend
1771 * the write failed... */
1772 ret = PTR_ERR(handle);
1773 goto out;
1775 if (inode->i_nlink)
1776 ext4_orphan_del(handle, inode);
1777 if (ret > 0) {
1778 loff_t end = offset + ret;
1779 if (end > inode->i_size) {
1780 ei->i_disksize = end;
1781 i_size_write(inode, end);
1783 * We're going to return a positive `ret'
1784 * here due to non-zero-length I/O, so there's
1785 * no way of reporting error returns from
1786 * ext4_mark_inode_dirty() to userspace. So
1787 * ignore it.
1789 ext4_mark_inode_dirty(handle, inode);
1792 err = ext4_journal_stop(handle);
1793 if (ret == 0)
1794 ret = err;
1796 out:
1797 return ret;
1801 * Pages can be marked dirty completely asynchronously from ext4's journalling
1802 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1803 * much here because ->set_page_dirty is called under VFS locks. The page is
1804 * not necessarily locked.
1806 * We cannot just dirty the page and leave attached buffers clean, because the
1807 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1808 * or jbddirty because all the journalling code will explode.
1810 * So what we do is to mark the page "pending dirty" and next time writepage
1811 * is called, propagate that into the buffers appropriately.
1813 static int ext4_journalled_set_page_dirty(struct page *page)
1815 SetPageChecked(page);
1816 return __set_page_dirty_nobuffers(page);
1819 static const struct address_space_operations ext4_ordered_aops = {
1820 .readpage = ext4_readpage,
1821 .readpages = ext4_readpages,
1822 .writepage = ext4_ordered_writepage,
1823 .sync_page = block_sync_page,
1824 .write_begin = ext4_write_begin,
1825 .write_end = ext4_ordered_write_end,
1826 .bmap = ext4_bmap,
1827 .invalidatepage = ext4_invalidatepage,
1828 .releasepage = ext4_releasepage,
1829 .direct_IO = ext4_direct_IO,
1830 .migratepage = buffer_migrate_page,
1833 static const struct address_space_operations ext4_writeback_aops = {
1834 .readpage = ext4_readpage,
1835 .readpages = ext4_readpages,
1836 .writepage = ext4_writeback_writepage,
1837 .sync_page = block_sync_page,
1838 .write_begin = ext4_write_begin,
1839 .write_end = ext4_writeback_write_end,
1840 .bmap = ext4_bmap,
1841 .invalidatepage = ext4_invalidatepage,
1842 .releasepage = ext4_releasepage,
1843 .direct_IO = ext4_direct_IO,
1844 .migratepage = buffer_migrate_page,
1847 static const struct address_space_operations ext4_journalled_aops = {
1848 .readpage = ext4_readpage,
1849 .readpages = ext4_readpages,
1850 .writepage = ext4_journalled_writepage,
1851 .sync_page = block_sync_page,
1852 .write_begin = ext4_write_begin,
1853 .write_end = ext4_journalled_write_end,
1854 .set_page_dirty = ext4_journalled_set_page_dirty,
1855 .bmap = ext4_bmap,
1856 .invalidatepage = ext4_invalidatepage,
1857 .releasepage = ext4_releasepage,
1860 void ext4_set_aops(struct inode *inode)
1862 if (ext4_should_order_data(inode))
1863 inode->i_mapping->a_ops = &ext4_ordered_aops;
1864 else if (ext4_should_writeback_data(inode))
1865 inode->i_mapping->a_ops = &ext4_writeback_aops;
1866 else
1867 inode->i_mapping->a_ops = &ext4_journalled_aops;
1871 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1872 * up to the end of the block which corresponds to `from'.
1873 * This required during truncate. We need to physically zero the tail end
1874 * of that block so it doesn't yield old data if the file is later grown.
1876 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1877 struct address_space *mapping, loff_t from)
1879 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1880 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1881 unsigned blocksize, length, pos;
1882 ext4_lblk_t iblock;
1883 struct inode *inode = mapping->host;
1884 struct buffer_head *bh;
1885 int err = 0;
1887 blocksize = inode->i_sb->s_blocksize;
1888 length = blocksize - (offset & (blocksize - 1));
1889 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1892 * For "nobh" option, we can only work if we don't need to
1893 * read-in the page - otherwise we create buffers to do the IO.
1895 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1896 ext4_should_writeback_data(inode) && PageUptodate(page)) {
1897 zero_user(page, offset, length);
1898 set_page_dirty(page);
1899 goto unlock;
1902 if (!page_has_buffers(page))
1903 create_empty_buffers(page, blocksize, 0);
1905 /* Find the buffer that contains "offset" */
1906 bh = page_buffers(page);
1907 pos = blocksize;
1908 while (offset >= pos) {
1909 bh = bh->b_this_page;
1910 iblock++;
1911 pos += blocksize;
1914 err = 0;
1915 if (buffer_freed(bh)) {
1916 BUFFER_TRACE(bh, "freed: skip");
1917 goto unlock;
1920 if (!buffer_mapped(bh)) {
1921 BUFFER_TRACE(bh, "unmapped");
1922 ext4_get_block(inode, iblock, bh, 0);
1923 /* unmapped? It's a hole - nothing to do */
1924 if (!buffer_mapped(bh)) {
1925 BUFFER_TRACE(bh, "still unmapped");
1926 goto unlock;
1930 /* Ok, it's mapped. Make sure it's up-to-date */
1931 if (PageUptodate(page))
1932 set_buffer_uptodate(bh);
1934 if (!buffer_uptodate(bh)) {
1935 err = -EIO;
1936 ll_rw_block(READ, 1, &bh);
1937 wait_on_buffer(bh);
1938 /* Uhhuh. Read error. Complain and punt. */
1939 if (!buffer_uptodate(bh))
1940 goto unlock;
1943 if (ext4_should_journal_data(inode)) {
1944 BUFFER_TRACE(bh, "get write access");
1945 err = ext4_journal_get_write_access(handle, bh);
1946 if (err)
1947 goto unlock;
1950 zero_user(page, offset, length);
1952 BUFFER_TRACE(bh, "zeroed end of block");
1954 err = 0;
1955 if (ext4_should_journal_data(inode)) {
1956 err = ext4_journal_dirty_metadata(handle, bh);
1957 } else {
1958 if (ext4_should_order_data(inode))
1959 err = ext4_journal_dirty_data(handle, bh);
1960 mark_buffer_dirty(bh);
1963 unlock:
1964 unlock_page(page);
1965 page_cache_release(page);
1966 return err;
1970 * Probably it should be a library function... search for first non-zero word
1971 * or memcmp with zero_page, whatever is better for particular architecture.
1972 * Linus?
1974 static inline int all_zeroes(__le32 *p, __le32 *q)
1976 while (p < q)
1977 if (*p++)
1978 return 0;
1979 return 1;
1983 * ext4_find_shared - find the indirect blocks for partial truncation.
1984 * @inode: inode in question
1985 * @depth: depth of the affected branch
1986 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1987 * @chain: place to store the pointers to partial indirect blocks
1988 * @top: place to the (detached) top of branch
1990 * This is a helper function used by ext4_truncate().
1992 * When we do truncate() we may have to clean the ends of several
1993 * indirect blocks but leave the blocks themselves alive. Block is
1994 * partially truncated if some data below the new i_size is refered
1995 * from it (and it is on the path to the first completely truncated
1996 * data block, indeed). We have to free the top of that path along
1997 * with everything to the right of the path. Since no allocation
1998 * past the truncation point is possible until ext4_truncate()
1999 * finishes, we may safely do the latter, but top of branch may
2000 * require special attention - pageout below the truncation point
2001 * might try to populate it.
2003 * We atomically detach the top of branch from the tree, store the
2004 * block number of its root in *@top, pointers to buffer_heads of
2005 * partially truncated blocks - in @chain[].bh and pointers to
2006 * their last elements that should not be removed - in
2007 * @chain[].p. Return value is the pointer to last filled element
2008 * of @chain.
2010 * The work left to caller to do the actual freeing of subtrees:
2011 * a) free the subtree starting from *@top
2012 * b) free the subtrees whose roots are stored in
2013 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2014 * c) free the subtrees growing from the inode past the @chain[0].
2015 * (no partially truncated stuff there). */
2017 static Indirect *ext4_find_shared(struct inode *inode, int depth,
2018 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2020 Indirect *partial, *p;
2021 int k, err;
2023 *top = 0;
2024 /* Make k index the deepest non-null offest + 1 */
2025 for (k = depth; k > 1 && !offsets[k-1]; k--)
2027 partial = ext4_get_branch(inode, k, offsets, chain, &err);
2028 /* Writer: pointers */
2029 if (!partial)
2030 partial = chain + k-1;
2032 * If the branch acquired continuation since we've looked at it -
2033 * fine, it should all survive and (new) top doesn't belong to us.
2035 if (!partial->key && *partial->p)
2036 /* Writer: end */
2037 goto no_top;
2038 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2041 * OK, we've found the last block that must survive. The rest of our
2042 * branch should be detached before unlocking. However, if that rest
2043 * of branch is all ours and does not grow immediately from the inode
2044 * it's easier to cheat and just decrement partial->p.
2046 if (p == chain + k - 1 && p > chain) {
2047 p->p--;
2048 } else {
2049 *top = *p->p;
2050 /* Nope, don't do this in ext4. Must leave the tree intact */
2051 #if 0
2052 *p->p = 0;
2053 #endif
2055 /* Writer: end */
2057 while(partial > p) {
2058 brelse(partial->bh);
2059 partial--;
2061 no_top:
2062 return partial;
2066 * Zero a number of block pointers in either an inode or an indirect block.
2067 * If we restart the transaction we must again get write access to the
2068 * indirect block for further modification.
2070 * We release `count' blocks on disk, but (last - first) may be greater
2071 * than `count' because there can be holes in there.
2073 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2074 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2075 unsigned long count, __le32 *first, __le32 *last)
2077 __le32 *p;
2078 if (try_to_extend_transaction(handle, inode)) {
2079 if (bh) {
2080 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2081 ext4_journal_dirty_metadata(handle, bh);
2083 ext4_mark_inode_dirty(handle, inode);
2084 ext4_journal_test_restart(handle, inode);
2085 if (bh) {
2086 BUFFER_TRACE(bh, "retaking write access");
2087 ext4_journal_get_write_access(handle, bh);
2092 * Any buffers which are on the journal will be in memory. We find
2093 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2094 * on them. We've already detached each block from the file, so
2095 * bforget() in jbd2_journal_forget() should be safe.
2097 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2099 for (p = first; p < last; p++) {
2100 u32 nr = le32_to_cpu(*p);
2101 if (nr) {
2102 struct buffer_head *tbh;
2104 *p = 0;
2105 tbh = sb_find_get_block(inode->i_sb, nr);
2106 ext4_forget(handle, 0, inode, tbh, nr);
2110 ext4_free_blocks(handle, inode, block_to_free, count, 0);
2114 * ext4_free_data - free a list of data blocks
2115 * @handle: handle for this transaction
2116 * @inode: inode we are dealing with
2117 * @this_bh: indirect buffer_head which contains *@first and *@last
2118 * @first: array of block numbers
2119 * @last: points immediately past the end of array
2121 * We are freeing all blocks refered from that array (numbers are stored as
2122 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2124 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2125 * blocks are contiguous then releasing them at one time will only affect one
2126 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2127 * actually use a lot of journal space.
2129 * @this_bh will be %NULL if @first and @last point into the inode's direct
2130 * block pointers.
2132 static void ext4_free_data(handle_t *handle, struct inode *inode,
2133 struct buffer_head *this_bh,
2134 __le32 *first, __le32 *last)
2136 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
2137 unsigned long count = 0; /* Number of blocks in the run */
2138 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2139 corresponding to
2140 block_to_free */
2141 ext4_fsblk_t nr; /* Current block # */
2142 __le32 *p; /* Pointer into inode/ind
2143 for current block */
2144 int err;
2146 if (this_bh) { /* For indirect block */
2147 BUFFER_TRACE(this_bh, "get_write_access");
2148 err = ext4_journal_get_write_access(handle, this_bh);
2149 /* Important: if we can't update the indirect pointers
2150 * to the blocks, we can't free them. */
2151 if (err)
2152 return;
2155 for (p = first; p < last; p++) {
2156 nr = le32_to_cpu(*p);
2157 if (nr) {
2158 /* accumulate blocks to free if they're contiguous */
2159 if (count == 0) {
2160 block_to_free = nr;
2161 block_to_free_p = p;
2162 count = 1;
2163 } else if (nr == block_to_free + count) {
2164 count++;
2165 } else {
2166 ext4_clear_blocks(handle, inode, this_bh,
2167 block_to_free,
2168 count, block_to_free_p, p);
2169 block_to_free = nr;
2170 block_to_free_p = p;
2171 count = 1;
2176 if (count > 0)
2177 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2178 count, block_to_free_p, p);
2180 if (this_bh) {
2181 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2182 ext4_journal_dirty_metadata(handle, this_bh);
2187 * ext4_free_branches - free an array of branches
2188 * @handle: JBD handle for this transaction
2189 * @inode: inode we are dealing with
2190 * @parent_bh: the buffer_head which contains *@first and *@last
2191 * @first: array of block numbers
2192 * @last: pointer immediately past the end of array
2193 * @depth: depth of the branches to free
2195 * We are freeing all blocks refered from these branches (numbers are
2196 * stored as little-endian 32-bit) and updating @inode->i_blocks
2197 * appropriately.
2199 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2200 struct buffer_head *parent_bh,
2201 __le32 *first, __le32 *last, int depth)
2203 ext4_fsblk_t nr;
2204 __le32 *p;
2206 if (is_handle_aborted(handle))
2207 return;
2209 if (depth--) {
2210 struct buffer_head *bh;
2211 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2212 p = last;
2213 while (--p >= first) {
2214 nr = le32_to_cpu(*p);
2215 if (!nr)
2216 continue; /* A hole */
2218 /* Go read the buffer for the next level down */
2219 bh = sb_bread(inode->i_sb, nr);
2222 * A read failure? Report error and clear slot
2223 * (should be rare).
2225 if (!bh) {
2226 ext4_error(inode->i_sb, "ext4_free_branches",
2227 "Read failure, inode=%lu, block=%llu",
2228 inode->i_ino, nr);
2229 continue;
2232 /* This zaps the entire block. Bottom up. */
2233 BUFFER_TRACE(bh, "free child branches");
2234 ext4_free_branches(handle, inode, bh,
2235 (__le32*)bh->b_data,
2236 (__le32*)bh->b_data + addr_per_block,
2237 depth);
2240 * We've probably journalled the indirect block several
2241 * times during the truncate. But it's no longer
2242 * needed and we now drop it from the transaction via
2243 * jbd2_journal_revoke().
2245 * That's easy if it's exclusively part of this
2246 * transaction. But if it's part of the committing
2247 * transaction then jbd2_journal_forget() will simply
2248 * brelse() it. That means that if the underlying
2249 * block is reallocated in ext4_get_block(),
2250 * unmap_underlying_metadata() will find this block
2251 * and will try to get rid of it. damn, damn.
2253 * If this block has already been committed to the
2254 * journal, a revoke record will be written. And
2255 * revoke records must be emitted *before* clearing
2256 * this block's bit in the bitmaps.
2258 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2261 * Everything below this this pointer has been
2262 * released. Now let this top-of-subtree go.
2264 * We want the freeing of this indirect block to be
2265 * atomic in the journal with the updating of the
2266 * bitmap block which owns it. So make some room in
2267 * the journal.
2269 * We zero the parent pointer *after* freeing its
2270 * pointee in the bitmaps, so if extend_transaction()
2271 * for some reason fails to put the bitmap changes and
2272 * the release into the same transaction, recovery
2273 * will merely complain about releasing a free block,
2274 * rather than leaking blocks.
2276 if (is_handle_aborted(handle))
2277 return;
2278 if (try_to_extend_transaction(handle, inode)) {
2279 ext4_mark_inode_dirty(handle, inode);
2280 ext4_journal_test_restart(handle, inode);
2283 ext4_free_blocks(handle, inode, nr, 1, 1);
2285 if (parent_bh) {
2287 * The block which we have just freed is
2288 * pointed to by an indirect block: journal it
2290 BUFFER_TRACE(parent_bh, "get_write_access");
2291 if (!ext4_journal_get_write_access(handle,
2292 parent_bh)){
2293 *p = 0;
2294 BUFFER_TRACE(parent_bh,
2295 "call ext4_journal_dirty_metadata");
2296 ext4_journal_dirty_metadata(handle,
2297 parent_bh);
2301 } else {
2302 /* We have reached the bottom of the tree. */
2303 BUFFER_TRACE(parent_bh, "free data blocks");
2304 ext4_free_data(handle, inode, parent_bh, first, last);
2309 * ext4_truncate()
2311 * We block out ext4_get_block() block instantiations across the entire
2312 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2313 * simultaneously on behalf of the same inode.
2315 * As we work through the truncate and commmit bits of it to the journal there
2316 * is one core, guiding principle: the file's tree must always be consistent on
2317 * disk. We must be able to restart the truncate after a crash.
2319 * The file's tree may be transiently inconsistent in memory (although it
2320 * probably isn't), but whenever we close off and commit a journal transaction,
2321 * the contents of (the filesystem + the journal) must be consistent and
2322 * restartable. It's pretty simple, really: bottom up, right to left (although
2323 * left-to-right works OK too).
2325 * Note that at recovery time, journal replay occurs *before* the restart of
2326 * truncate against the orphan inode list.
2328 * The committed inode has the new, desired i_size (which is the same as
2329 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2330 * that this inode's truncate did not complete and it will again call
2331 * ext4_truncate() to have another go. So there will be instantiated blocks
2332 * to the right of the truncation point in a crashed ext4 filesystem. But
2333 * that's fine - as long as they are linked from the inode, the post-crash
2334 * ext4_truncate() run will find them and release them.
2336 void ext4_truncate(struct inode *inode)
2338 handle_t *handle;
2339 struct ext4_inode_info *ei = EXT4_I(inode);
2340 __le32 *i_data = ei->i_data;
2341 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2342 struct address_space *mapping = inode->i_mapping;
2343 ext4_lblk_t offsets[4];
2344 Indirect chain[4];
2345 Indirect *partial;
2346 __le32 nr = 0;
2347 int n;
2348 ext4_lblk_t last_block;
2349 unsigned blocksize = inode->i_sb->s_blocksize;
2350 struct page *page;
2352 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2353 S_ISLNK(inode->i_mode)))
2354 return;
2355 if (ext4_inode_is_fast_symlink(inode))
2356 return;
2357 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2358 return;
2361 * We have to lock the EOF page here, because lock_page() nests
2362 * outside jbd2_journal_start().
2364 if ((inode->i_size & (blocksize - 1)) == 0) {
2365 /* Block boundary? Nothing to do */
2366 page = NULL;
2367 } else {
2368 page = grab_cache_page(mapping,
2369 inode->i_size >> PAGE_CACHE_SHIFT);
2370 if (!page)
2371 return;
2374 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2375 ext4_ext_truncate(inode, page);
2376 return;
2379 handle = start_transaction(inode);
2380 if (IS_ERR(handle)) {
2381 if (page) {
2382 clear_highpage(page);
2383 flush_dcache_page(page);
2384 unlock_page(page);
2385 page_cache_release(page);
2387 return; /* AKPM: return what? */
2390 last_block = (inode->i_size + blocksize-1)
2391 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2393 if (page)
2394 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2396 n = ext4_block_to_path(inode, last_block, offsets, NULL);
2397 if (n == 0)
2398 goto out_stop; /* error */
2401 * OK. This truncate is going to happen. We add the inode to the
2402 * orphan list, so that if this truncate spans multiple transactions,
2403 * and we crash, we will resume the truncate when the filesystem
2404 * recovers. It also marks the inode dirty, to catch the new size.
2406 * Implication: the file must always be in a sane, consistent
2407 * truncatable state while each transaction commits.
2409 if (ext4_orphan_add(handle, inode))
2410 goto out_stop;
2413 * The orphan list entry will now protect us from any crash which
2414 * occurs before the truncate completes, so it is now safe to propagate
2415 * the new, shorter inode size (held for now in i_size) into the
2416 * on-disk inode. We do this via i_disksize, which is the value which
2417 * ext4 *really* writes onto the disk inode.
2419 ei->i_disksize = inode->i_size;
2422 * From here we block out all ext4_get_block() callers who want to
2423 * modify the block allocation tree.
2425 down_write(&ei->i_data_sem);
2427 if (n == 1) { /* direct blocks */
2428 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2429 i_data + EXT4_NDIR_BLOCKS);
2430 goto do_indirects;
2433 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2434 /* Kill the top of shared branch (not detached) */
2435 if (nr) {
2436 if (partial == chain) {
2437 /* Shared branch grows from the inode */
2438 ext4_free_branches(handle, inode, NULL,
2439 &nr, &nr+1, (chain+n-1) - partial);
2440 *partial->p = 0;
2442 * We mark the inode dirty prior to restart,
2443 * and prior to stop. No need for it here.
2445 } else {
2446 /* Shared branch grows from an indirect block */
2447 BUFFER_TRACE(partial->bh, "get_write_access");
2448 ext4_free_branches(handle, inode, partial->bh,
2449 partial->p,
2450 partial->p+1, (chain+n-1) - partial);
2453 /* Clear the ends of indirect blocks on the shared branch */
2454 while (partial > chain) {
2455 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2456 (__le32*)partial->bh->b_data+addr_per_block,
2457 (chain+n-1) - partial);
2458 BUFFER_TRACE(partial->bh, "call brelse");
2459 brelse (partial->bh);
2460 partial--;
2462 do_indirects:
2463 /* Kill the remaining (whole) subtrees */
2464 switch (offsets[0]) {
2465 default:
2466 nr = i_data[EXT4_IND_BLOCK];
2467 if (nr) {
2468 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2469 i_data[EXT4_IND_BLOCK] = 0;
2471 case EXT4_IND_BLOCK:
2472 nr = i_data[EXT4_DIND_BLOCK];
2473 if (nr) {
2474 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2475 i_data[EXT4_DIND_BLOCK] = 0;
2477 case EXT4_DIND_BLOCK:
2478 nr = i_data[EXT4_TIND_BLOCK];
2479 if (nr) {
2480 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2481 i_data[EXT4_TIND_BLOCK] = 0;
2483 case EXT4_TIND_BLOCK:
2487 ext4_discard_reservation(inode);
2489 up_write(&ei->i_data_sem);
2490 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2491 ext4_mark_inode_dirty(handle, inode);
2494 * In a multi-transaction truncate, we only make the final transaction
2495 * synchronous
2497 if (IS_SYNC(inode))
2498 handle->h_sync = 1;
2499 out_stop:
2501 * If this was a simple ftruncate(), and the file will remain alive
2502 * then we need to clear up the orphan record which we created above.
2503 * However, if this was a real unlink then we were called by
2504 * ext4_delete_inode(), and we allow that function to clean up the
2505 * orphan info for us.
2507 if (inode->i_nlink)
2508 ext4_orphan_del(handle, inode);
2510 ext4_journal_stop(handle);
2513 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2514 unsigned long ino, struct ext4_iloc *iloc)
2516 ext4_group_t block_group;
2517 unsigned long offset;
2518 ext4_fsblk_t block;
2519 struct ext4_group_desc *gdp;
2521 if (!ext4_valid_inum(sb, ino)) {
2523 * This error is already checked for in namei.c unless we are
2524 * looking at an NFS filehandle, in which case no error
2525 * report is needed
2527 return 0;
2530 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2531 gdp = ext4_get_group_desc(sb, block_group, NULL);
2532 if (!gdp)
2533 return 0;
2536 * Figure out the offset within the block group inode table
2538 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2539 EXT4_INODE_SIZE(sb);
2540 block = ext4_inode_table(sb, gdp) +
2541 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2543 iloc->block_group = block_group;
2544 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2545 return block;
2549 * ext4_get_inode_loc returns with an extra refcount against the inode's
2550 * underlying buffer_head on success. If 'in_mem' is true, we have all
2551 * data in memory that is needed to recreate the on-disk version of this
2552 * inode.
2554 static int __ext4_get_inode_loc(struct inode *inode,
2555 struct ext4_iloc *iloc, int in_mem)
2557 ext4_fsblk_t block;
2558 struct buffer_head *bh;
2560 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2561 if (!block)
2562 return -EIO;
2564 bh = sb_getblk(inode->i_sb, block);
2565 if (!bh) {
2566 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2567 "unable to read inode block - "
2568 "inode=%lu, block=%llu",
2569 inode->i_ino, block);
2570 return -EIO;
2572 if (!buffer_uptodate(bh)) {
2573 lock_buffer(bh);
2574 if (buffer_uptodate(bh)) {
2575 /* someone brought it uptodate while we waited */
2576 unlock_buffer(bh);
2577 goto has_buffer;
2581 * If we have all information of the inode in memory and this
2582 * is the only valid inode in the block, we need not read the
2583 * block.
2585 if (in_mem) {
2586 struct buffer_head *bitmap_bh;
2587 struct ext4_group_desc *desc;
2588 int inodes_per_buffer;
2589 int inode_offset, i;
2590 ext4_group_t block_group;
2591 int start;
2593 block_group = (inode->i_ino - 1) /
2594 EXT4_INODES_PER_GROUP(inode->i_sb);
2595 inodes_per_buffer = bh->b_size /
2596 EXT4_INODE_SIZE(inode->i_sb);
2597 inode_offset = ((inode->i_ino - 1) %
2598 EXT4_INODES_PER_GROUP(inode->i_sb));
2599 start = inode_offset & ~(inodes_per_buffer - 1);
2601 /* Is the inode bitmap in cache? */
2602 desc = ext4_get_group_desc(inode->i_sb,
2603 block_group, NULL);
2604 if (!desc)
2605 goto make_io;
2607 bitmap_bh = sb_getblk(inode->i_sb,
2608 ext4_inode_bitmap(inode->i_sb, desc));
2609 if (!bitmap_bh)
2610 goto make_io;
2613 * If the inode bitmap isn't in cache then the
2614 * optimisation may end up performing two reads instead
2615 * of one, so skip it.
2617 if (!buffer_uptodate(bitmap_bh)) {
2618 brelse(bitmap_bh);
2619 goto make_io;
2621 for (i = start; i < start + inodes_per_buffer; i++) {
2622 if (i == inode_offset)
2623 continue;
2624 if (ext4_test_bit(i, bitmap_bh->b_data))
2625 break;
2627 brelse(bitmap_bh);
2628 if (i == start + inodes_per_buffer) {
2629 /* all other inodes are free, so skip I/O */
2630 memset(bh->b_data, 0, bh->b_size);
2631 set_buffer_uptodate(bh);
2632 unlock_buffer(bh);
2633 goto has_buffer;
2637 make_io:
2639 * There are other valid inodes in the buffer, this inode
2640 * has in-inode xattrs, or we don't have this inode in memory.
2641 * Read the block from disk.
2643 get_bh(bh);
2644 bh->b_end_io = end_buffer_read_sync;
2645 submit_bh(READ_META, bh);
2646 wait_on_buffer(bh);
2647 if (!buffer_uptodate(bh)) {
2648 ext4_error(inode->i_sb, "ext4_get_inode_loc",
2649 "unable to read inode block - "
2650 "inode=%lu, block=%llu",
2651 inode->i_ino, block);
2652 brelse(bh);
2653 return -EIO;
2656 has_buffer:
2657 iloc->bh = bh;
2658 return 0;
2661 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2663 /* We have all inode data except xattrs in memory here. */
2664 return __ext4_get_inode_loc(inode, iloc,
2665 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2668 void ext4_set_inode_flags(struct inode *inode)
2670 unsigned int flags = EXT4_I(inode)->i_flags;
2672 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2673 if (flags & EXT4_SYNC_FL)
2674 inode->i_flags |= S_SYNC;
2675 if (flags & EXT4_APPEND_FL)
2676 inode->i_flags |= S_APPEND;
2677 if (flags & EXT4_IMMUTABLE_FL)
2678 inode->i_flags |= S_IMMUTABLE;
2679 if (flags & EXT4_NOATIME_FL)
2680 inode->i_flags |= S_NOATIME;
2681 if (flags & EXT4_DIRSYNC_FL)
2682 inode->i_flags |= S_DIRSYNC;
2685 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2686 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2688 unsigned int flags = ei->vfs_inode.i_flags;
2690 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2691 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2692 if (flags & S_SYNC)
2693 ei->i_flags |= EXT4_SYNC_FL;
2694 if (flags & S_APPEND)
2695 ei->i_flags |= EXT4_APPEND_FL;
2696 if (flags & S_IMMUTABLE)
2697 ei->i_flags |= EXT4_IMMUTABLE_FL;
2698 if (flags & S_NOATIME)
2699 ei->i_flags |= EXT4_NOATIME_FL;
2700 if (flags & S_DIRSYNC)
2701 ei->i_flags |= EXT4_DIRSYNC_FL;
2703 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2704 struct ext4_inode_info *ei)
2706 blkcnt_t i_blocks ;
2707 struct inode *inode = &(ei->vfs_inode);
2708 struct super_block *sb = inode->i_sb;
2710 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2711 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2712 /* we are using combined 48 bit field */
2713 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2714 le32_to_cpu(raw_inode->i_blocks_lo);
2715 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2716 /* i_blocks represent file system block size */
2717 return i_blocks << (inode->i_blkbits - 9);
2718 } else {
2719 return i_blocks;
2721 } else {
2722 return le32_to_cpu(raw_inode->i_blocks_lo);
2726 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2728 struct ext4_iloc iloc;
2729 struct ext4_inode *raw_inode;
2730 struct ext4_inode_info *ei;
2731 struct buffer_head *bh;
2732 struct inode *inode;
2733 long ret;
2734 int block;
2736 inode = iget_locked(sb, ino);
2737 if (!inode)
2738 return ERR_PTR(-ENOMEM);
2739 if (!(inode->i_state & I_NEW))
2740 return inode;
2742 ei = EXT4_I(inode);
2743 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2744 ei->i_acl = EXT4_ACL_NOT_CACHED;
2745 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2746 #endif
2747 ei->i_block_alloc_info = NULL;
2749 ret = __ext4_get_inode_loc(inode, &iloc, 0);
2750 if (ret < 0)
2751 goto bad_inode;
2752 bh = iloc.bh;
2753 raw_inode = ext4_raw_inode(&iloc);
2754 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2755 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2756 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2757 if(!(test_opt (inode->i_sb, NO_UID32))) {
2758 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2759 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2761 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2763 ei->i_state = 0;
2764 ei->i_dir_start_lookup = 0;
2765 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2766 /* We now have enough fields to check if the inode was active or not.
2767 * This is needed because nfsd might try to access dead inodes
2768 * the test is that same one that e2fsck uses
2769 * NeilBrown 1999oct15
2771 if (inode->i_nlink == 0) {
2772 if (inode->i_mode == 0 ||
2773 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2774 /* this inode is deleted */
2775 brelse (bh);
2776 ret = -ESTALE;
2777 goto bad_inode;
2779 /* The only unlinked inodes we let through here have
2780 * valid i_mode and are being read by the orphan
2781 * recovery code: that's fine, we're about to complete
2782 * the process of deleting those. */
2784 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2785 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2786 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2787 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2788 cpu_to_le32(EXT4_OS_HURD)) {
2789 ei->i_file_acl |=
2790 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2792 inode->i_size = ext4_isize(raw_inode);
2793 ei->i_disksize = inode->i_size;
2794 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2795 ei->i_block_group = iloc.block_group;
2797 * NOTE! The in-memory inode i_data array is in little-endian order
2798 * even on big-endian machines: we do NOT byteswap the block numbers!
2800 for (block = 0; block < EXT4_N_BLOCKS; block++)
2801 ei->i_data[block] = raw_inode->i_block[block];
2802 INIT_LIST_HEAD(&ei->i_orphan);
2804 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2805 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2806 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2807 EXT4_INODE_SIZE(inode->i_sb)) {
2808 brelse (bh);
2809 ret = -EIO;
2810 goto bad_inode;
2812 if (ei->i_extra_isize == 0) {
2813 /* The extra space is currently unused. Use it. */
2814 ei->i_extra_isize = sizeof(struct ext4_inode) -
2815 EXT4_GOOD_OLD_INODE_SIZE;
2816 } else {
2817 __le32 *magic = (void *)raw_inode +
2818 EXT4_GOOD_OLD_INODE_SIZE +
2819 ei->i_extra_isize;
2820 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2821 ei->i_state |= EXT4_STATE_XATTR;
2823 } else
2824 ei->i_extra_isize = 0;
2826 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2827 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2828 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2829 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2831 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2832 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2833 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2834 inode->i_version |=
2835 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2838 if (S_ISREG(inode->i_mode)) {
2839 inode->i_op = &ext4_file_inode_operations;
2840 inode->i_fop = &ext4_file_operations;
2841 ext4_set_aops(inode);
2842 } else if (S_ISDIR(inode->i_mode)) {
2843 inode->i_op = &ext4_dir_inode_operations;
2844 inode->i_fop = &ext4_dir_operations;
2845 } else if (S_ISLNK(inode->i_mode)) {
2846 if (ext4_inode_is_fast_symlink(inode))
2847 inode->i_op = &ext4_fast_symlink_inode_operations;
2848 else {
2849 inode->i_op = &ext4_symlink_inode_operations;
2850 ext4_set_aops(inode);
2852 } else {
2853 inode->i_op = &ext4_special_inode_operations;
2854 if (raw_inode->i_block[0])
2855 init_special_inode(inode, inode->i_mode,
2856 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2857 else
2858 init_special_inode(inode, inode->i_mode,
2859 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2861 brelse (iloc.bh);
2862 ext4_set_inode_flags(inode);
2863 unlock_new_inode(inode);
2864 return inode;
2866 bad_inode:
2867 iget_failed(inode);
2868 return ERR_PTR(ret);
2871 static int ext4_inode_blocks_set(handle_t *handle,
2872 struct ext4_inode *raw_inode,
2873 struct ext4_inode_info *ei)
2875 struct inode *inode = &(ei->vfs_inode);
2876 u64 i_blocks = inode->i_blocks;
2877 struct super_block *sb = inode->i_sb;
2878 int err = 0;
2880 if (i_blocks <= ~0U) {
2882 * i_blocks can be represnted in a 32 bit variable
2883 * as multiple of 512 bytes
2885 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2886 raw_inode->i_blocks_high = 0;
2887 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2888 } else if (i_blocks <= 0xffffffffffffULL) {
2890 * i_blocks can be represented in a 48 bit variable
2891 * as multiple of 512 bytes
2893 err = ext4_update_rocompat_feature(handle, sb,
2894 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2895 if (err)
2896 goto err_out;
2897 /* i_block is stored in the split 48 bit fields */
2898 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2899 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2900 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2901 } else {
2903 * i_blocks should be represented in a 48 bit variable
2904 * as multiple of file system block size
2906 err = ext4_update_rocompat_feature(handle, sb,
2907 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2908 if (err)
2909 goto err_out;
2910 ei->i_flags |= EXT4_HUGE_FILE_FL;
2911 /* i_block is stored in file system block size */
2912 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2913 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2914 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2916 err_out:
2917 return err;
2921 * Post the struct inode info into an on-disk inode location in the
2922 * buffer-cache. This gobbles the caller's reference to the
2923 * buffer_head in the inode location struct.
2925 * The caller must have write access to iloc->bh.
2927 static int ext4_do_update_inode(handle_t *handle,
2928 struct inode *inode,
2929 struct ext4_iloc *iloc)
2931 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2932 struct ext4_inode_info *ei = EXT4_I(inode);
2933 struct buffer_head *bh = iloc->bh;
2934 int err = 0, rc, block;
2936 /* For fields not not tracking in the in-memory inode,
2937 * initialise them to zero for new inodes. */
2938 if (ei->i_state & EXT4_STATE_NEW)
2939 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2941 ext4_get_inode_flags(ei);
2942 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2943 if(!(test_opt(inode->i_sb, NO_UID32))) {
2944 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2945 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2947 * Fix up interoperability with old kernels. Otherwise, old inodes get
2948 * re-used with the upper 16 bits of the uid/gid intact
2950 if(!ei->i_dtime) {
2951 raw_inode->i_uid_high =
2952 cpu_to_le16(high_16_bits(inode->i_uid));
2953 raw_inode->i_gid_high =
2954 cpu_to_le16(high_16_bits(inode->i_gid));
2955 } else {
2956 raw_inode->i_uid_high = 0;
2957 raw_inode->i_gid_high = 0;
2959 } else {
2960 raw_inode->i_uid_low =
2961 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2962 raw_inode->i_gid_low =
2963 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2964 raw_inode->i_uid_high = 0;
2965 raw_inode->i_gid_high = 0;
2967 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2969 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2970 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2971 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2972 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2974 if (ext4_inode_blocks_set(handle, raw_inode, ei))
2975 goto out_brelse;
2976 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2977 /* clear the migrate flag in the raw_inode */
2978 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
2979 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2980 cpu_to_le32(EXT4_OS_HURD))
2981 raw_inode->i_file_acl_high =
2982 cpu_to_le16(ei->i_file_acl >> 32);
2983 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2984 ext4_isize_set(raw_inode, ei->i_disksize);
2985 if (ei->i_disksize > 0x7fffffffULL) {
2986 struct super_block *sb = inode->i_sb;
2987 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2988 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2989 EXT4_SB(sb)->s_es->s_rev_level ==
2990 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2991 /* If this is the first large file
2992 * created, add a flag to the superblock.
2994 err = ext4_journal_get_write_access(handle,
2995 EXT4_SB(sb)->s_sbh);
2996 if (err)
2997 goto out_brelse;
2998 ext4_update_dynamic_rev(sb);
2999 EXT4_SET_RO_COMPAT_FEATURE(sb,
3000 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3001 sb->s_dirt = 1;
3002 handle->h_sync = 1;
3003 err = ext4_journal_dirty_metadata(handle,
3004 EXT4_SB(sb)->s_sbh);
3007 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3008 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3009 if (old_valid_dev(inode->i_rdev)) {
3010 raw_inode->i_block[0] =
3011 cpu_to_le32(old_encode_dev(inode->i_rdev));
3012 raw_inode->i_block[1] = 0;
3013 } else {
3014 raw_inode->i_block[0] = 0;
3015 raw_inode->i_block[1] =
3016 cpu_to_le32(new_encode_dev(inode->i_rdev));
3017 raw_inode->i_block[2] = 0;
3019 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
3020 raw_inode->i_block[block] = ei->i_data[block];
3022 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3023 if (ei->i_extra_isize) {
3024 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3025 raw_inode->i_version_hi =
3026 cpu_to_le32(inode->i_version >> 32);
3027 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3031 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3032 rc = ext4_journal_dirty_metadata(handle, bh);
3033 if (!err)
3034 err = rc;
3035 ei->i_state &= ~EXT4_STATE_NEW;
3037 out_brelse:
3038 brelse (bh);
3039 ext4_std_error(inode->i_sb, err);
3040 return err;
3044 * ext4_write_inode()
3046 * We are called from a few places:
3048 * - Within generic_file_write() for O_SYNC files.
3049 * Here, there will be no transaction running. We wait for any running
3050 * trasnaction to commit.
3052 * - Within sys_sync(), kupdate and such.
3053 * We wait on commit, if tol to.
3055 * - Within prune_icache() (PF_MEMALLOC == true)
3056 * Here we simply return. We can't afford to block kswapd on the
3057 * journal commit.
3059 * In all cases it is actually safe for us to return without doing anything,
3060 * because the inode has been copied into a raw inode buffer in
3061 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3062 * knfsd.
3064 * Note that we are absolutely dependent upon all inode dirtiers doing the
3065 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3066 * which we are interested.
3068 * It would be a bug for them to not do this. The code:
3070 * mark_inode_dirty(inode)
3071 * stuff();
3072 * inode->i_size = expr;
3074 * is in error because a kswapd-driven write_inode() could occur while
3075 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3076 * will no longer be on the superblock's dirty inode list.
3078 int ext4_write_inode(struct inode *inode, int wait)
3080 if (current->flags & PF_MEMALLOC)
3081 return 0;
3083 if (ext4_journal_current_handle()) {
3084 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3085 dump_stack();
3086 return -EIO;
3089 if (!wait)
3090 return 0;
3092 return ext4_force_commit(inode->i_sb);
3096 * ext4_setattr()
3098 * Called from notify_change.
3100 * We want to trap VFS attempts to truncate the file as soon as
3101 * possible. In particular, we want to make sure that when the VFS
3102 * shrinks i_size, we put the inode on the orphan list and modify
3103 * i_disksize immediately, so that during the subsequent flushing of
3104 * dirty pages and freeing of disk blocks, we can guarantee that any
3105 * commit will leave the blocks being flushed in an unused state on
3106 * disk. (On recovery, the inode will get truncated and the blocks will
3107 * be freed, so we have a strong guarantee that no future commit will
3108 * leave these blocks visible to the user.)
3110 * Called with inode->sem down.
3112 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3114 struct inode *inode = dentry->d_inode;
3115 int error, rc = 0;
3116 const unsigned int ia_valid = attr->ia_valid;
3118 error = inode_change_ok(inode, attr);
3119 if (error)
3120 return error;
3122 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3123 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3124 handle_t *handle;
3126 /* (user+group)*(old+new) structure, inode write (sb,
3127 * inode block, ? - but truncate inode update has it) */
3128 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3129 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3130 if (IS_ERR(handle)) {
3131 error = PTR_ERR(handle);
3132 goto err_out;
3134 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3135 if (error) {
3136 ext4_journal_stop(handle);
3137 return error;
3139 /* Update corresponding info in inode so that everything is in
3140 * one transaction */
3141 if (attr->ia_valid & ATTR_UID)
3142 inode->i_uid = attr->ia_uid;
3143 if (attr->ia_valid & ATTR_GID)
3144 inode->i_gid = attr->ia_gid;
3145 error = ext4_mark_inode_dirty(handle, inode);
3146 ext4_journal_stop(handle);
3149 if (attr->ia_valid & ATTR_SIZE) {
3150 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3151 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3153 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3154 error = -EFBIG;
3155 goto err_out;
3160 if (S_ISREG(inode->i_mode) &&
3161 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3162 handle_t *handle;
3164 handle = ext4_journal_start(inode, 3);
3165 if (IS_ERR(handle)) {
3166 error = PTR_ERR(handle);
3167 goto err_out;
3170 error = ext4_orphan_add(handle, inode);
3171 EXT4_I(inode)->i_disksize = attr->ia_size;
3172 rc = ext4_mark_inode_dirty(handle, inode);
3173 if (!error)
3174 error = rc;
3175 ext4_journal_stop(handle);
3178 rc = inode_setattr(inode, attr);
3180 /* If inode_setattr's call to ext4_truncate failed to get a
3181 * transaction handle at all, we need to clean up the in-core
3182 * orphan list manually. */
3183 if (inode->i_nlink)
3184 ext4_orphan_del(NULL, inode);
3186 if (!rc && (ia_valid & ATTR_MODE))
3187 rc = ext4_acl_chmod(inode);
3189 err_out:
3190 ext4_std_error(inode->i_sb, error);
3191 if (!error)
3192 error = rc;
3193 return error;
3198 * How many blocks doth make a writepage()?
3200 * With N blocks per page, it may be:
3201 * N data blocks
3202 * 2 indirect block
3203 * 2 dindirect
3204 * 1 tindirect
3205 * N+5 bitmap blocks (from the above)
3206 * N+5 group descriptor summary blocks
3207 * 1 inode block
3208 * 1 superblock.
3209 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3211 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3213 * With ordered or writeback data it's the same, less the N data blocks.
3215 * If the inode's direct blocks can hold an integral number of pages then a
3216 * page cannot straddle two indirect blocks, and we can only touch one indirect
3217 * and dindirect block, and the "5" above becomes "3".
3219 * This still overestimates under most circumstances. If we were to pass the
3220 * start and end offsets in here as well we could do block_to_path() on each
3221 * block and work out the exact number of indirects which are touched. Pah.
3224 int ext4_writepage_trans_blocks(struct inode *inode)
3226 int bpp = ext4_journal_blocks_per_page(inode);
3227 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3228 int ret;
3230 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3231 return ext4_ext_writepage_trans_blocks(inode, bpp);
3233 if (ext4_should_journal_data(inode))
3234 ret = 3 * (bpp + indirects) + 2;
3235 else
3236 ret = 2 * (bpp + indirects) + 2;
3238 #ifdef CONFIG_QUOTA
3239 /* We know that structure was already allocated during DQUOT_INIT so
3240 * we will be updating only the data blocks + inodes */
3241 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3242 #endif
3244 return ret;
3248 * The caller must have previously called ext4_reserve_inode_write().
3249 * Give this, we know that the caller already has write access to iloc->bh.
3251 int ext4_mark_iloc_dirty(handle_t *handle,
3252 struct inode *inode, struct ext4_iloc *iloc)
3254 int err = 0;
3256 if (test_opt(inode->i_sb, I_VERSION))
3257 inode_inc_iversion(inode);
3259 /* the do_update_inode consumes one bh->b_count */
3260 get_bh(iloc->bh);
3262 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3263 err = ext4_do_update_inode(handle, inode, iloc);
3264 put_bh(iloc->bh);
3265 return err;
3269 * On success, We end up with an outstanding reference count against
3270 * iloc->bh. This _must_ be cleaned up later.
3274 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3275 struct ext4_iloc *iloc)
3277 int err = 0;
3278 if (handle) {
3279 err = ext4_get_inode_loc(inode, iloc);
3280 if (!err) {
3281 BUFFER_TRACE(iloc->bh, "get_write_access");
3282 err = ext4_journal_get_write_access(handle, iloc->bh);
3283 if (err) {
3284 brelse(iloc->bh);
3285 iloc->bh = NULL;
3289 ext4_std_error(inode->i_sb, err);
3290 return err;
3294 * Expand an inode by new_extra_isize bytes.
3295 * Returns 0 on success or negative error number on failure.
3297 static int ext4_expand_extra_isize(struct inode *inode,
3298 unsigned int new_extra_isize,
3299 struct ext4_iloc iloc,
3300 handle_t *handle)
3302 struct ext4_inode *raw_inode;
3303 struct ext4_xattr_ibody_header *header;
3304 struct ext4_xattr_entry *entry;
3306 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3307 return 0;
3309 raw_inode = ext4_raw_inode(&iloc);
3311 header = IHDR(inode, raw_inode);
3312 entry = IFIRST(header);
3314 /* No extended attributes present */
3315 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3316 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3317 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3318 new_extra_isize);
3319 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3320 return 0;
3323 /* try to expand with EAs present */
3324 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3325 raw_inode, handle);
3329 * What we do here is to mark the in-core inode as clean with respect to inode
3330 * dirtiness (it may still be data-dirty).
3331 * This means that the in-core inode may be reaped by prune_icache
3332 * without having to perform any I/O. This is a very good thing,
3333 * because *any* task may call prune_icache - even ones which
3334 * have a transaction open against a different journal.
3336 * Is this cheating? Not really. Sure, we haven't written the
3337 * inode out, but prune_icache isn't a user-visible syncing function.
3338 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3339 * we start and wait on commits.
3341 * Is this efficient/effective? Well, we're being nice to the system
3342 * by cleaning up our inodes proactively so they can be reaped
3343 * without I/O. But we are potentially leaving up to five seconds'
3344 * worth of inodes floating about which prune_icache wants us to
3345 * write out. One way to fix that would be to get prune_icache()
3346 * to do a write_super() to free up some memory. It has the desired
3347 * effect.
3349 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3351 struct ext4_iloc iloc;
3352 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3353 static unsigned int mnt_count;
3354 int err, ret;
3356 might_sleep();
3357 err = ext4_reserve_inode_write(handle, inode, &iloc);
3358 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3359 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3361 * We need extra buffer credits since we may write into EA block
3362 * with this same handle. If journal_extend fails, then it will
3363 * only result in a minor loss of functionality for that inode.
3364 * If this is felt to be critical, then e2fsck should be run to
3365 * force a large enough s_min_extra_isize.
3367 if ((jbd2_journal_extend(handle,
3368 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3369 ret = ext4_expand_extra_isize(inode,
3370 sbi->s_want_extra_isize,
3371 iloc, handle);
3372 if (ret) {
3373 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3374 if (mnt_count !=
3375 le16_to_cpu(sbi->s_es->s_mnt_count)) {
3376 ext4_warning(inode->i_sb, __func__,
3377 "Unable to expand inode %lu. Delete"
3378 " some EAs or run e2fsck.",
3379 inode->i_ino);
3380 mnt_count =
3381 le16_to_cpu(sbi->s_es->s_mnt_count);
3386 if (!err)
3387 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3388 return err;
3392 * ext4_dirty_inode() is called from __mark_inode_dirty()
3394 * We're really interested in the case where a file is being extended.
3395 * i_size has been changed by generic_commit_write() and we thus need
3396 * to include the updated inode in the current transaction.
3398 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3399 * are allocated to the file.
3401 * If the inode is marked synchronous, we don't honour that here - doing
3402 * so would cause a commit on atime updates, which we don't bother doing.
3403 * We handle synchronous inodes at the highest possible level.
3405 void ext4_dirty_inode(struct inode *inode)
3407 handle_t *current_handle = ext4_journal_current_handle();
3408 handle_t *handle;
3410 handle = ext4_journal_start(inode, 2);
3411 if (IS_ERR(handle))
3412 goto out;
3413 if (current_handle &&
3414 current_handle->h_transaction != handle->h_transaction) {
3415 /* This task has a transaction open against a different fs */
3416 printk(KERN_EMERG "%s: transactions do not match!\n",
3417 __func__);
3418 } else {
3419 jbd_debug(5, "marking dirty. outer handle=%p\n",
3420 current_handle);
3421 ext4_mark_inode_dirty(handle, inode);
3423 ext4_journal_stop(handle);
3424 out:
3425 return;
3428 #if 0
3430 * Bind an inode's backing buffer_head into this transaction, to prevent
3431 * it from being flushed to disk early. Unlike
3432 * ext4_reserve_inode_write, this leaves behind no bh reference and
3433 * returns no iloc structure, so the caller needs to repeat the iloc
3434 * lookup to mark the inode dirty later.
3436 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3438 struct ext4_iloc iloc;
3440 int err = 0;
3441 if (handle) {
3442 err = ext4_get_inode_loc(inode, &iloc);
3443 if (!err) {
3444 BUFFER_TRACE(iloc.bh, "get_write_access");
3445 err = jbd2_journal_get_write_access(handle, iloc.bh);
3446 if (!err)
3447 err = ext4_journal_dirty_metadata(handle,
3448 iloc.bh);
3449 brelse(iloc.bh);
3452 ext4_std_error(inode->i_sb, err);
3453 return err;
3455 #endif
3457 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3459 journal_t *journal;
3460 handle_t *handle;
3461 int err;
3464 * We have to be very careful here: changing a data block's
3465 * journaling status dynamically is dangerous. If we write a
3466 * data block to the journal, change the status and then delete
3467 * that block, we risk forgetting to revoke the old log record
3468 * from the journal and so a subsequent replay can corrupt data.
3469 * So, first we make sure that the journal is empty and that
3470 * nobody is changing anything.
3473 journal = EXT4_JOURNAL(inode);
3474 if (is_journal_aborted(journal))
3475 return -EROFS;
3477 jbd2_journal_lock_updates(journal);
3478 jbd2_journal_flush(journal);
3481 * OK, there are no updates running now, and all cached data is
3482 * synced to disk. We are now in a completely consistent state
3483 * which doesn't have anything in the journal, and we know that
3484 * no filesystem updates are running, so it is safe to modify
3485 * the inode's in-core data-journaling state flag now.
3488 if (val)
3489 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3490 else
3491 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3492 ext4_set_aops(inode);
3494 jbd2_journal_unlock_updates(journal);
3496 /* Finally we can mark the inode as dirty. */
3498 handle = ext4_journal_start(inode, 1);
3499 if (IS_ERR(handle))
3500 return PTR_ERR(handle);
3502 err = ext4_mark_inode_dirty(handle, inode);
3503 handle->h_sync = 1;
3504 ext4_journal_stop(handle);
3505 ext4_std_error(inode->i_sb, err);
3507 return err;