4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/mount.h>
15 #include <linux/pipe_fs_i.h>
16 #include <linux/uio.h>
17 #include <linux/highmem.h>
18 #include <linux/pagemap.h>
19 #include <linux/audit.h>
21 #include <asm/uaccess.h>
22 #include <asm/ioctls.h>
25 * We use a start+len construction, which provides full use of the
27 * -- Florian Coosmann (FGC)
29 * Reads with count = 0 should always return 0.
30 * -- Julian Bradfield 1999-06-07.
32 * FIFOs and Pipes now generate SIGIO for both readers and writers.
33 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
35 * pipe_read & write cleanup
36 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
39 /* Drop the inode semaphore and wait for a pipe event, atomically */
40 void pipe_wait(struct pipe_inode_info
*pipe
)
45 * Pipes are system-local resources, so sleeping on them
46 * is considered a noninteractive wait:
48 prepare_to_wait(&pipe
->wait
, &wait
, TASK_INTERRUPTIBLE
);
50 mutex_unlock(&pipe
->inode
->i_mutex
);
52 finish_wait(&pipe
->wait
, &wait
);
54 mutex_lock(&pipe
->inode
->i_mutex
);
58 pipe_iov_copy_from_user(void *to
, struct iovec
*iov
, unsigned long len
,
66 copy
= min_t(unsigned long, len
, iov
->iov_len
);
69 if (__copy_from_user_inatomic(to
, iov
->iov_base
, copy
))
72 if (copy_from_user(to
, iov
->iov_base
, copy
))
77 iov
->iov_base
+= copy
;
84 pipe_iov_copy_to_user(struct iovec
*iov
, const void *from
, unsigned long len
,
92 copy
= min_t(unsigned long, len
, iov
->iov_len
);
95 if (__copy_to_user_inatomic(iov
->iov_base
, from
, copy
))
98 if (copy_to_user(iov
->iov_base
, from
, copy
))
103 iov
->iov_base
+= copy
;
104 iov
->iov_len
-= copy
;
110 * Attempt to pre-fault in the user memory, so we can use atomic copies.
111 * Returns the number of bytes not faulted in.
113 static int iov_fault_in_pages_write(struct iovec
*iov
, unsigned long len
)
115 while (!iov
->iov_len
)
119 unsigned long this_len
;
121 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
122 if (fault_in_pages_writeable(iov
->iov_base
, this_len
))
133 * Pre-fault in the user memory, so we can use atomic copies.
135 static void iov_fault_in_pages_read(struct iovec
*iov
, unsigned long len
)
137 while (!iov
->iov_len
)
141 unsigned long this_len
;
143 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
144 fault_in_pages_readable(iov
->iov_base
, this_len
);
150 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
151 struct pipe_buffer
*buf
)
153 struct page
*page
= buf
->page
;
156 * If nobody else uses this page, and we don't already have a
157 * temporary page, let's keep track of it as a one-deep
158 * allocation cache. (Otherwise just release our reference to it)
160 if (page_count(page
) == 1 && !pipe
->tmp_page
)
161 pipe
->tmp_page
= page
;
163 page_cache_release(page
);
167 * generic_pipe_buf_map - virtually map a pipe buffer
168 * @pipe: the pipe that the buffer belongs to
169 * @buf: the buffer that should be mapped
170 * @atomic: whether to use an atomic map
173 * This function returns a kernel virtual address mapping for the
174 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
175 * and the caller has to be careful not to fault before calling
176 * the unmap function.
178 * Note that this function occupies KM_USER0 if @atomic != 0.
180 void *generic_pipe_buf_map(struct pipe_inode_info
*pipe
,
181 struct pipe_buffer
*buf
, int atomic
)
184 buf
->flags
|= PIPE_BUF_FLAG_ATOMIC
;
185 return kmap_atomic(buf
->page
, KM_USER0
);
188 return kmap(buf
->page
);
192 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
193 * @pipe: the pipe that the buffer belongs to
194 * @buf: the buffer that should be unmapped
195 * @map_data: the data that the mapping function returned
198 * This function undoes the mapping that ->map() provided.
200 void generic_pipe_buf_unmap(struct pipe_inode_info
*pipe
,
201 struct pipe_buffer
*buf
, void *map_data
)
203 if (buf
->flags
& PIPE_BUF_FLAG_ATOMIC
) {
204 buf
->flags
&= ~PIPE_BUF_FLAG_ATOMIC
;
205 kunmap_atomic(map_data
, KM_USER0
);
211 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
212 * @pipe: the pipe that the buffer belongs to
213 * @buf: the buffer to attempt to steal
216 * This function attempts to steal the &struct page attached to
217 * @buf. If successful, this function returns 0 and returns with
218 * the page locked. The caller may then reuse the page for whatever
219 * he wishes; the typical use is insertion into a different file
222 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
223 struct pipe_buffer
*buf
)
225 struct page
*page
= buf
->page
;
228 * A reference of one is golden, that means that the owner of this
229 * page is the only one holding a reference to it. lock the page
232 if (page_count(page
) == 1) {
241 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
242 * @pipe: the pipe that the buffer belongs to
243 * @buf: the buffer to get a reference to
246 * This function grabs an extra reference to @buf. It's used in
247 * in the tee() system call, when we duplicate the buffers in one
250 void generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
252 page_cache_get(buf
->page
);
256 * generic_pipe_buf_confirm - verify contents of the pipe buffer
257 * @info: the pipe that the buffer belongs to
258 * @buf: the buffer to confirm
261 * This function does nothing, because the generic pipe code uses
262 * pages that are always good when inserted into the pipe.
264 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
265 struct pipe_buffer
*buf
)
270 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
272 .map
= generic_pipe_buf_map
,
273 .unmap
= generic_pipe_buf_unmap
,
274 .confirm
= generic_pipe_buf_confirm
,
275 .release
= anon_pipe_buf_release
,
276 .steal
= generic_pipe_buf_steal
,
277 .get
= generic_pipe_buf_get
,
281 pipe_read(struct kiocb
*iocb
, const struct iovec
*_iov
,
282 unsigned long nr_segs
, loff_t pos
)
284 struct file
*filp
= iocb
->ki_filp
;
285 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
286 struct pipe_inode_info
*pipe
;
289 struct iovec
*iov
= (struct iovec
*)_iov
;
292 total_len
= iov_length(iov
, nr_segs
);
293 /* Null read succeeds. */
294 if (unlikely(total_len
== 0))
299 mutex_lock(&inode
->i_mutex
);
300 pipe
= inode
->i_pipe
;
302 int bufs
= pipe
->nrbufs
;
304 int curbuf
= pipe
->curbuf
;
305 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
306 const struct pipe_buf_operations
*ops
= buf
->ops
;
308 size_t chars
= buf
->len
;
311 if (chars
> total_len
)
314 error
= ops
->confirm(pipe
, buf
);
321 atomic
= !iov_fault_in_pages_write(iov
, chars
);
323 addr
= ops
->map(pipe
, buf
, atomic
);
324 error
= pipe_iov_copy_to_user(iov
, addr
+ buf
->offset
, chars
, atomic
);
325 ops
->unmap(pipe
, buf
, addr
);
326 if (unlikely(error
)) {
328 * Just retry with the slow path if we failed.
339 buf
->offset
+= chars
;
343 ops
->release(pipe
, buf
);
344 curbuf
= (curbuf
+ 1) & (PIPE_BUFFERS
-1);
345 pipe
->curbuf
= curbuf
;
346 pipe
->nrbufs
= --bufs
;
351 break; /* common path: read succeeded */
353 if (bufs
) /* More to do? */
357 if (!pipe
->waiting_writers
) {
358 /* syscall merging: Usually we must not sleep
359 * if O_NONBLOCK is set, or if we got some data.
360 * But if a writer sleeps in kernel space, then
361 * we can wait for that data without violating POSIX.
365 if (filp
->f_flags
& O_NONBLOCK
) {
370 if (signal_pending(current
)) {
376 wake_up_interruptible_sync(&pipe
->wait
);
377 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
381 mutex_unlock(&inode
->i_mutex
);
383 /* Signal writers asynchronously that there is more room. */
385 wake_up_interruptible_sync(&pipe
->wait
);
386 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
394 pipe_write(struct kiocb
*iocb
, const struct iovec
*_iov
,
395 unsigned long nr_segs
, loff_t ppos
)
397 struct file
*filp
= iocb
->ki_filp
;
398 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
399 struct pipe_inode_info
*pipe
;
402 struct iovec
*iov
= (struct iovec
*)_iov
;
406 total_len
= iov_length(iov
, nr_segs
);
407 /* Null write succeeds. */
408 if (unlikely(total_len
== 0))
413 mutex_lock(&inode
->i_mutex
);
414 pipe
= inode
->i_pipe
;
416 if (!pipe
->readers
) {
417 send_sig(SIGPIPE
, current
, 0);
422 /* We try to merge small writes */
423 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
424 if (pipe
->nrbufs
&& chars
!= 0) {
425 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
427 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
428 const struct pipe_buf_operations
*ops
= buf
->ops
;
429 int offset
= buf
->offset
+ buf
->len
;
431 if (ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
432 int error
, atomic
= 1;
435 error
= ops
->confirm(pipe
, buf
);
439 iov_fault_in_pages_read(iov
, chars
);
441 addr
= ops
->map(pipe
, buf
, atomic
);
442 error
= pipe_iov_copy_from_user(offset
+ addr
, iov
,
444 ops
->unmap(pipe
, buf
, addr
);
465 if (!pipe
->readers
) {
466 send_sig(SIGPIPE
, current
, 0);
472 if (bufs
< PIPE_BUFFERS
) {
473 int newbuf
= (pipe
->curbuf
+ bufs
) & (PIPE_BUFFERS
-1);
474 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
475 struct page
*page
= pipe
->tmp_page
;
477 int error
, atomic
= 1;
480 page
= alloc_page(GFP_HIGHUSER
);
481 if (unlikely(!page
)) {
482 ret
= ret
? : -ENOMEM
;
485 pipe
->tmp_page
= page
;
487 /* Always wake up, even if the copy fails. Otherwise
488 * we lock up (O_NONBLOCK-)readers that sleep due to
490 * FIXME! Is this really true?
494 if (chars
> total_len
)
497 iov_fault_in_pages_read(iov
, chars
);
500 src
= kmap_atomic(page
, KM_USER0
);
504 error
= pipe_iov_copy_from_user(src
, iov
, chars
,
507 kunmap_atomic(src
, KM_USER0
);
511 if (unlikely(error
)) {
522 /* Insert it into the buffer array */
524 buf
->ops
= &anon_pipe_buf_ops
;
527 pipe
->nrbufs
= ++bufs
;
528 pipe
->tmp_page
= NULL
;
534 if (bufs
< PIPE_BUFFERS
)
536 if (filp
->f_flags
& O_NONBLOCK
) {
541 if (signal_pending(current
)) {
547 wake_up_interruptible_sync(&pipe
->wait
);
548 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
551 pipe
->waiting_writers
++;
553 pipe
->waiting_writers
--;
556 mutex_unlock(&inode
->i_mutex
);
558 wake_up_interruptible_sync(&pipe
->wait
);
559 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
562 file_update_time(filp
);
567 bad_pipe_r(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
573 bad_pipe_w(struct file
*filp
, const char __user
*buf
, size_t count
,
579 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
581 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
582 struct pipe_inode_info
*pipe
;
583 int count
, buf
, nrbufs
;
587 mutex_lock(&inode
->i_mutex
);
588 pipe
= inode
->i_pipe
;
591 nrbufs
= pipe
->nrbufs
;
592 while (--nrbufs
>= 0) {
593 count
+= pipe
->bufs
[buf
].len
;
594 buf
= (buf
+1) & (PIPE_BUFFERS
-1);
596 mutex_unlock(&inode
->i_mutex
);
598 return put_user(count
, (int __user
*)arg
);
604 /* No kernel lock held - fine */
606 pipe_poll(struct file
*filp
, poll_table
*wait
)
609 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
610 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
613 poll_wait(filp
, &pipe
->wait
, wait
);
615 /* Reading only -- no need for acquiring the semaphore. */
616 nrbufs
= pipe
->nrbufs
;
618 if (filp
->f_mode
& FMODE_READ
) {
619 mask
= (nrbufs
> 0) ? POLLIN
| POLLRDNORM
: 0;
620 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
624 if (filp
->f_mode
& FMODE_WRITE
) {
625 mask
|= (nrbufs
< PIPE_BUFFERS
) ? POLLOUT
| POLLWRNORM
: 0;
627 * Most Unices do not set POLLERR for FIFOs but on Linux they
628 * behave exactly like pipes for poll().
638 pipe_release(struct inode
*inode
, int decr
, int decw
)
640 struct pipe_inode_info
*pipe
;
642 mutex_lock(&inode
->i_mutex
);
643 pipe
= inode
->i_pipe
;
644 pipe
->readers
-= decr
;
645 pipe
->writers
-= decw
;
647 if (!pipe
->readers
&& !pipe
->writers
) {
648 free_pipe_info(inode
);
650 wake_up_interruptible_sync(&pipe
->wait
);
651 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
652 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
654 mutex_unlock(&inode
->i_mutex
);
660 pipe_read_fasync(int fd
, struct file
*filp
, int on
)
662 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
665 mutex_lock(&inode
->i_mutex
);
666 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_readers
);
667 mutex_unlock(&inode
->i_mutex
);
677 pipe_write_fasync(int fd
, struct file
*filp
, int on
)
679 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
682 mutex_lock(&inode
->i_mutex
);
683 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_writers
);
684 mutex_unlock(&inode
->i_mutex
);
694 pipe_rdwr_fasync(int fd
, struct file
*filp
, int on
)
696 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
697 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
700 mutex_lock(&inode
->i_mutex
);
702 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
705 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
707 mutex_unlock(&inode
->i_mutex
);
717 pipe_read_release(struct inode
*inode
, struct file
*filp
)
719 pipe_read_fasync(-1, filp
, 0);
720 return pipe_release(inode
, 1, 0);
724 pipe_write_release(struct inode
*inode
, struct file
*filp
)
726 pipe_write_fasync(-1, filp
, 0);
727 return pipe_release(inode
, 0, 1);
731 pipe_rdwr_release(struct inode
*inode
, struct file
*filp
)
735 pipe_rdwr_fasync(-1, filp
, 0);
736 decr
= (filp
->f_mode
& FMODE_READ
) != 0;
737 decw
= (filp
->f_mode
& FMODE_WRITE
) != 0;
738 return pipe_release(inode
, decr
, decw
);
742 pipe_read_open(struct inode
*inode
, struct file
*filp
)
744 /* We could have perhaps used atomic_t, but this and friends
745 below are the only places. So it doesn't seem worthwhile. */
746 mutex_lock(&inode
->i_mutex
);
747 inode
->i_pipe
->readers
++;
748 mutex_unlock(&inode
->i_mutex
);
754 pipe_write_open(struct inode
*inode
, struct file
*filp
)
756 mutex_lock(&inode
->i_mutex
);
757 inode
->i_pipe
->writers
++;
758 mutex_unlock(&inode
->i_mutex
);
764 pipe_rdwr_open(struct inode
*inode
, struct file
*filp
)
766 mutex_lock(&inode
->i_mutex
);
767 if (filp
->f_mode
& FMODE_READ
)
768 inode
->i_pipe
->readers
++;
769 if (filp
->f_mode
& FMODE_WRITE
)
770 inode
->i_pipe
->writers
++;
771 mutex_unlock(&inode
->i_mutex
);
777 * The file_operations structs are not static because they
778 * are also used in linux/fs/fifo.c to do operations on FIFOs.
780 const struct file_operations read_fifo_fops
= {
782 .read
= do_sync_read
,
783 .aio_read
= pipe_read
,
786 .unlocked_ioctl
= pipe_ioctl
,
787 .open
= pipe_read_open
,
788 .release
= pipe_read_release
,
789 .fasync
= pipe_read_fasync
,
792 const struct file_operations write_fifo_fops
= {
795 .write
= do_sync_write
,
796 .aio_write
= pipe_write
,
798 .unlocked_ioctl
= pipe_ioctl
,
799 .open
= pipe_write_open
,
800 .release
= pipe_write_release
,
801 .fasync
= pipe_write_fasync
,
804 const struct file_operations rdwr_fifo_fops
= {
806 .read
= do_sync_read
,
807 .aio_read
= pipe_read
,
808 .write
= do_sync_write
,
809 .aio_write
= pipe_write
,
811 .unlocked_ioctl
= pipe_ioctl
,
812 .open
= pipe_rdwr_open
,
813 .release
= pipe_rdwr_release
,
814 .fasync
= pipe_rdwr_fasync
,
817 static const struct file_operations read_pipe_fops
= {
819 .read
= do_sync_read
,
820 .aio_read
= pipe_read
,
823 .unlocked_ioctl
= pipe_ioctl
,
824 .open
= pipe_read_open
,
825 .release
= pipe_read_release
,
826 .fasync
= pipe_read_fasync
,
829 static const struct file_operations write_pipe_fops
= {
832 .write
= do_sync_write
,
833 .aio_write
= pipe_write
,
835 .unlocked_ioctl
= pipe_ioctl
,
836 .open
= pipe_write_open
,
837 .release
= pipe_write_release
,
838 .fasync
= pipe_write_fasync
,
841 static const struct file_operations rdwr_pipe_fops
= {
843 .read
= do_sync_read
,
844 .aio_read
= pipe_read
,
845 .write
= do_sync_write
,
846 .aio_write
= pipe_write
,
848 .unlocked_ioctl
= pipe_ioctl
,
849 .open
= pipe_rdwr_open
,
850 .release
= pipe_rdwr_release
,
851 .fasync
= pipe_rdwr_fasync
,
854 struct pipe_inode_info
* alloc_pipe_info(struct inode
*inode
)
856 struct pipe_inode_info
*pipe
;
858 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL
);
860 init_waitqueue_head(&pipe
->wait
);
861 pipe
->r_counter
= pipe
->w_counter
= 1;
868 void __free_pipe_info(struct pipe_inode_info
*pipe
)
872 for (i
= 0; i
< PIPE_BUFFERS
; i
++) {
873 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
875 buf
->ops
->release(pipe
, buf
);
878 __free_page(pipe
->tmp_page
);
882 void free_pipe_info(struct inode
*inode
)
884 __free_pipe_info(inode
->i_pipe
);
885 inode
->i_pipe
= NULL
;
888 static struct vfsmount
*pipe_mnt __read_mostly
;
889 static int pipefs_delete_dentry(struct dentry
*dentry
)
892 * At creation time, we pretended this dentry was hashed
893 * (by clearing DCACHE_UNHASHED bit in d_flags)
894 * At delete time, we restore the truth : not hashed.
895 * (so that dput() can proceed correctly)
897 dentry
->d_flags
|= DCACHE_UNHASHED
;
902 * pipefs_dname() is called from d_path().
904 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
906 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
907 dentry
->d_inode
->i_ino
);
910 static struct dentry_operations pipefs_dentry_operations
= {
911 .d_delete
= pipefs_delete_dentry
,
912 .d_dname
= pipefs_dname
,
915 static struct inode
* get_pipe_inode(void)
917 struct inode
*inode
= new_inode(pipe_mnt
->mnt_sb
);
918 struct pipe_inode_info
*pipe
;
923 pipe
= alloc_pipe_info(inode
);
926 inode
->i_pipe
= pipe
;
928 pipe
->readers
= pipe
->writers
= 1;
929 inode
->i_fop
= &rdwr_pipe_fops
;
932 * Mark the inode dirty from the very beginning,
933 * that way it will never be moved to the dirty
934 * list because "mark_inode_dirty()" will think
935 * that it already _is_ on the dirty list.
937 inode
->i_state
= I_DIRTY
;
938 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
939 inode
->i_uid
= current
->fsuid
;
940 inode
->i_gid
= current
->fsgid
;
941 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
952 struct file
*create_write_pipe(void)
957 struct dentry
*dentry
;
958 struct qstr name
= { .name
= "" };
961 inode
= get_pipe_inode();
966 dentry
= d_alloc(pipe_mnt
->mnt_sb
->s_root
, &name
);
970 dentry
->d_op
= &pipefs_dentry_operations
;
972 * We dont want to publish this dentry into global dentry hash table.
973 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
974 * This permits a working /proc/$pid/fd/XXX on pipes
976 dentry
->d_flags
&= ~DCACHE_UNHASHED
;
977 d_instantiate(dentry
, inode
);
980 f
= alloc_file(pipe_mnt
, dentry
, FMODE_WRITE
, &write_pipe_fops
);
983 f
->f_mapping
= inode
->i_mapping
;
985 f
->f_flags
= O_WRONLY
;
991 free_pipe_info(inode
);
996 free_pipe_info(inode
);
1002 void free_write_pipe(struct file
*f
)
1004 free_pipe_info(f
->f_dentry
->d_inode
);
1005 dput(f
->f_path
.dentry
);
1006 mntput(f
->f_path
.mnt
);
1010 struct file
*create_read_pipe(struct file
*wrf
)
1012 struct file
*f
= get_empty_filp();
1014 return ERR_PTR(-ENFILE
);
1016 /* Grab pipe from the writer */
1017 f
->f_path
.mnt
= mntget(wrf
->f_path
.mnt
);
1018 f
->f_path
.dentry
= dget(wrf
->f_path
.dentry
);
1019 f
->f_mapping
= wrf
->f_path
.dentry
->d_inode
->i_mapping
;
1022 f
->f_flags
= O_RDONLY
;
1023 f
->f_op
= &read_pipe_fops
;
1024 f
->f_mode
= FMODE_READ
;
1030 int do_pipe(int *fd
)
1032 struct file
*fw
, *fr
;
1036 fw
= create_write_pipe();
1039 fr
= create_read_pipe(fw
);
1040 error
= PTR_ERR(fr
);
1042 goto err_write_pipe
;
1044 error
= get_unused_fd();
1049 error
= get_unused_fd();
1054 error
= audit_fd_pair(fdr
, fdw
);
1058 fd_install(fdr
, fr
);
1059 fd_install(fdw
, fw
);
1071 mntput(fr
->f_vfsmnt
);
1074 free_write_pipe(fw
);
1079 * sys_pipe() is the normal C calling standard for creating
1080 * a pipe. It's not the way Unix traditionally does this, though.
1082 asmlinkage
long __weak
sys_pipe(int __user
*fildes
)
1087 error
= do_pipe(fd
);
1089 if (copy_to_user(fildes
, fd
, sizeof(fd
)))
1096 * pipefs should _never_ be mounted by userland - too much of security hassle,
1097 * no real gain from having the whole whorehouse mounted. So we don't need
1098 * any operations on the root directory. However, we need a non-trivial
1099 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1101 static int pipefs_get_sb(struct file_system_type
*fs_type
,
1102 int flags
, const char *dev_name
, void *data
,
1103 struct vfsmount
*mnt
)
1105 return get_sb_pseudo(fs_type
, "pipe:", NULL
, PIPEFS_MAGIC
, mnt
);
1108 static struct file_system_type pipe_fs_type
= {
1110 .get_sb
= pipefs_get_sb
,
1111 .kill_sb
= kill_anon_super
,
1114 static int __init
init_pipe_fs(void)
1116 int err
= register_filesystem(&pipe_fs_type
);
1119 pipe_mnt
= kern_mount(&pipe_fs_type
);
1120 if (IS_ERR(pipe_mnt
)) {
1121 err
= PTR_ERR(pipe_mnt
);
1122 unregister_filesystem(&pipe_fs_type
);
1128 static void __exit
exit_pipe_fs(void)
1130 unregister_filesystem(&pipe_fs_type
);
1134 fs_initcall(init_pipe_fs
);
1135 module_exit(exit_pipe_fs
);