Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux/fpc-iii.git] / fs / splice.c
blob633f58ebfb72a2ad7b132adb7492f7c268daecca
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
34 * Attempt to steal a page from a pipe buffer. This should perhaps go into
35 * a vm helper function, it's already simplified quite a bit by the
36 * addition of remove_mapping(). If success is returned, the caller may
37 * attempt to reuse this page for another destination.
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 struct pipe_buffer *buf)
42 struct page *page = buf->page;
43 struct address_space *mapping;
45 lock_page(page);
47 mapping = page_mapping(page);
48 if (mapping) {
49 WARN_ON(!PageUptodate(page));
52 * At least for ext2 with nobh option, we need to wait on
53 * writeback completing on this page, since we'll remove it
54 * from the pagecache. Otherwise truncate wont wait on the
55 * page, allowing the disk blocks to be reused by someone else
56 * before we actually wrote our data to them. fs corruption
57 * ensues.
59 wait_on_page_writeback(page);
61 if (PagePrivate(page))
62 try_to_release_page(page, GFP_KERNEL);
65 * If we succeeded in removing the mapping, set LRU flag
66 * and return good.
68 if (remove_mapping(mapping, page)) {
69 buf->flags |= PIPE_BUF_FLAG_LRU;
70 return 0;
75 * Raced with truncate or failed to remove page from current
76 * address space, unlock and return failure.
78 unlock_page(page);
79 return 1;
82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
83 struct pipe_buffer *buf)
85 page_cache_release(buf->page);
86 buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 * Check whether the contents of buf is OK to access. Since the content
91 * is a page cache page, IO may be in flight.
93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
94 struct pipe_buffer *buf)
96 struct page *page = buf->page;
97 int err;
99 if (!PageUptodate(page)) {
100 lock_page(page);
103 * Page got truncated/unhashed. This will cause a 0-byte
104 * splice, if this is the first page.
106 if (!page->mapping) {
107 err = -ENODATA;
108 goto error;
112 * Uh oh, read-error from disk.
114 if (!PageUptodate(page)) {
115 err = -EIO;
116 goto error;
120 * Page is ok afterall, we are done.
122 unlock_page(page);
125 return 0;
126 error:
127 unlock_page(page);
128 return err;
131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
132 .can_merge = 0,
133 .map = generic_pipe_buf_map,
134 .unmap = generic_pipe_buf_unmap,
135 .confirm = page_cache_pipe_buf_confirm,
136 .release = page_cache_pipe_buf_release,
137 .steal = page_cache_pipe_buf_steal,
138 .get = generic_pipe_buf_get,
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
144 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
145 return 1;
147 buf->flags |= PIPE_BUF_FLAG_LRU;
148 return generic_pipe_buf_steal(pipe, buf);
151 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
152 .can_merge = 0,
153 .map = generic_pipe_buf_map,
154 .unmap = generic_pipe_buf_unmap,
155 .confirm = generic_pipe_buf_confirm,
156 .release = page_cache_pipe_buf_release,
157 .steal = user_page_pipe_buf_steal,
158 .get = generic_pipe_buf_get,
162 * splice_to_pipe - fill passed data into a pipe
163 * @pipe: pipe to fill
164 * @spd: data to fill
166 * Description:
167 * @spd contains a map of pages and len/offset tuples, along with
168 * the struct pipe_buf_operations associated with these pages. This
169 * function will link that data to the pipe.
172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
173 struct splice_pipe_desc *spd)
175 unsigned int spd_pages = spd->nr_pages;
176 int ret, do_wakeup, page_nr;
178 ret = 0;
179 do_wakeup = 0;
180 page_nr = 0;
182 if (pipe->inode)
183 mutex_lock(&pipe->inode->i_mutex);
185 for (;;) {
186 if (!pipe->readers) {
187 send_sig(SIGPIPE, current, 0);
188 if (!ret)
189 ret = -EPIPE;
190 break;
193 if (pipe->nrbufs < PIPE_BUFFERS) {
194 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
195 struct pipe_buffer *buf = pipe->bufs + newbuf;
197 buf->page = spd->pages[page_nr];
198 buf->offset = spd->partial[page_nr].offset;
199 buf->len = spd->partial[page_nr].len;
200 buf->private = spd->partial[page_nr].private;
201 buf->ops = spd->ops;
202 if (spd->flags & SPLICE_F_GIFT)
203 buf->flags |= PIPE_BUF_FLAG_GIFT;
205 pipe->nrbufs++;
206 page_nr++;
207 ret += buf->len;
209 if (pipe->inode)
210 do_wakeup = 1;
212 if (!--spd->nr_pages)
213 break;
214 if (pipe->nrbufs < PIPE_BUFFERS)
215 continue;
217 break;
220 if (spd->flags & SPLICE_F_NONBLOCK) {
221 if (!ret)
222 ret = -EAGAIN;
223 break;
226 if (signal_pending(current)) {
227 if (!ret)
228 ret = -ERESTARTSYS;
229 break;
232 if (do_wakeup) {
233 smp_mb();
234 if (waitqueue_active(&pipe->wait))
235 wake_up_interruptible_sync(&pipe->wait);
236 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
237 do_wakeup = 0;
240 pipe->waiting_writers++;
241 pipe_wait(pipe);
242 pipe->waiting_writers--;
245 if (pipe->inode) {
246 mutex_unlock(&pipe->inode->i_mutex);
248 if (do_wakeup) {
249 smp_mb();
250 if (waitqueue_active(&pipe->wait))
251 wake_up_interruptible(&pipe->wait);
252 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256 while (page_nr < spd_pages)
257 spd->spd_release(spd, page_nr++);
259 return ret;
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 page_cache_release(spd->pages[i]);
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 struct pipe_inode_info *pipe, size_t len,
270 unsigned int flags)
272 struct address_space *mapping = in->f_mapping;
273 unsigned int loff, nr_pages, req_pages;
274 struct page *pages[PIPE_BUFFERS];
275 struct partial_page partial[PIPE_BUFFERS];
276 struct page *page;
277 pgoff_t index, end_index;
278 loff_t isize;
279 int error, page_nr;
280 struct splice_pipe_desc spd = {
281 .pages = pages,
282 .partial = partial,
283 .flags = flags,
284 .ops = &page_cache_pipe_buf_ops,
285 .spd_release = spd_release_page,
288 index = *ppos >> PAGE_CACHE_SHIFT;
289 loff = *ppos & ~PAGE_CACHE_MASK;
290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
294 * Lookup the (hopefully) full range of pages we need.
296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 index += spd.nr_pages;
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * readahead/allocate the rest and fill in the holes.
303 if (spd.nr_pages < nr_pages)
304 page_cache_sync_readahead(mapping, &in->f_ra, in,
305 index, req_pages - spd.nr_pages);
307 error = 0;
308 while (spd.nr_pages < nr_pages) {
310 * Page could be there, find_get_pages_contig() breaks on
311 * the first hole.
313 page = find_get_page(mapping, index);
314 if (!page) {
316 * page didn't exist, allocate one.
318 page = page_cache_alloc_cold(mapping);
319 if (!page)
320 break;
322 error = add_to_page_cache_lru(page, mapping, index,
323 mapping_gfp_mask(mapping));
324 if (unlikely(error)) {
325 page_cache_release(page);
326 if (error == -EEXIST)
327 continue;
328 break;
331 * add_to_page_cache() locks the page, unlock it
332 * to avoid convoluting the logic below even more.
334 unlock_page(page);
337 pages[spd.nr_pages++] = page;
338 index++;
342 * Now loop over the map and see if we need to start IO on any
343 * pages, fill in the partial map, etc.
345 index = *ppos >> PAGE_CACHE_SHIFT;
346 nr_pages = spd.nr_pages;
347 spd.nr_pages = 0;
348 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 unsigned int this_len;
351 if (!len)
352 break;
355 * this_len is the max we'll use from this page
357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 page = pages[page_nr];
360 if (PageReadahead(page))
361 page_cache_async_readahead(mapping, &in->f_ra, in,
362 page, index, req_pages - page_nr);
365 * If the page isn't uptodate, we may need to start io on it
367 if (!PageUptodate(page)) {
369 * If in nonblock mode then dont block on waiting
370 * for an in-flight io page
372 if (flags & SPLICE_F_NONBLOCK) {
373 if (TestSetPageLocked(page)) {
374 error = -EAGAIN;
375 break;
377 } else
378 lock_page(page);
381 * page was truncated, stop here. if this isn't the
382 * first page, we'll just complete what we already
383 * added
385 if (!page->mapping) {
386 unlock_page(page);
387 break;
390 * page was already under io and is now done, great
392 if (PageUptodate(page)) {
393 unlock_page(page);
394 goto fill_it;
398 * need to read in the page
400 error = mapping->a_ops->readpage(in, page);
401 if (unlikely(error)) {
403 * We really should re-lookup the page here,
404 * but it complicates things a lot. Instead
405 * lets just do what we already stored, and
406 * we'll get it the next time we are called.
408 if (error == AOP_TRUNCATED_PAGE)
409 error = 0;
411 break;
414 fill_it:
416 * i_size must be checked after PageUptodate.
418 isize = i_size_read(mapping->host);
419 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
420 if (unlikely(!isize || index > end_index))
421 break;
424 * if this is the last page, see if we need to shrink
425 * the length and stop
427 if (end_index == index) {
428 unsigned int plen;
431 * max good bytes in this page
433 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
434 if (plen <= loff)
435 break;
438 * force quit after adding this page
440 this_len = min(this_len, plen - loff);
441 len = this_len;
444 partial[page_nr].offset = loff;
445 partial[page_nr].len = this_len;
446 len -= this_len;
447 loff = 0;
448 spd.nr_pages++;
449 index++;
453 * Release any pages at the end, if we quit early. 'page_nr' is how far
454 * we got, 'nr_pages' is how many pages are in the map.
456 while (page_nr < nr_pages)
457 page_cache_release(pages[page_nr++]);
458 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
460 if (spd.nr_pages)
461 return splice_to_pipe(pipe, &spd);
463 return error;
467 * generic_file_splice_read - splice data from file to a pipe
468 * @in: file to splice from
469 * @ppos: position in @in
470 * @pipe: pipe to splice to
471 * @len: number of bytes to splice
472 * @flags: splice modifier flags
474 * Description:
475 * Will read pages from given file and fill them into a pipe. Can be
476 * used as long as the address_space operations for the source implements
477 * a readpage() hook.
480 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
481 struct pipe_inode_info *pipe, size_t len,
482 unsigned int flags)
484 loff_t isize, left;
485 int ret;
487 isize = i_size_read(in->f_mapping->host);
488 if (unlikely(*ppos >= isize))
489 return 0;
491 left = isize - *ppos;
492 if (unlikely(left < len))
493 len = left;
495 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
496 if (ret > 0)
497 *ppos += ret;
499 return ret;
502 EXPORT_SYMBOL(generic_file_splice_read);
505 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
506 * using sendpage(). Return the number of bytes sent.
508 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
509 struct pipe_buffer *buf, struct splice_desc *sd)
511 struct file *file = sd->u.file;
512 loff_t pos = sd->pos;
513 int ret, more;
515 ret = buf->ops->confirm(pipe, buf);
516 if (!ret) {
517 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
519 ret = file->f_op->sendpage(file, buf->page, buf->offset,
520 sd->len, &pos, more);
523 return ret;
527 * This is a little more tricky than the file -> pipe splicing. There are
528 * basically three cases:
530 * - Destination page already exists in the address space and there
531 * are users of it. For that case we have no other option that
532 * copying the data. Tough luck.
533 * - Destination page already exists in the address space, but there
534 * are no users of it. Make sure it's uptodate, then drop it. Fall
535 * through to last case.
536 * - Destination page does not exist, we can add the pipe page to
537 * the page cache and avoid the copy.
539 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
540 * sd->flags), we attempt to migrate pages from the pipe to the output
541 * file address space page cache. This is possible if no one else has
542 * the pipe page referenced outside of the pipe and page cache. If
543 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
544 * a new page in the output file page cache and fill/dirty that.
546 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
547 struct splice_desc *sd)
549 struct file *file = sd->u.file;
550 struct address_space *mapping = file->f_mapping;
551 unsigned int offset, this_len;
552 struct page *page;
553 void *fsdata;
554 int ret;
557 * make sure the data in this buffer is uptodate
559 ret = buf->ops->confirm(pipe, buf);
560 if (unlikely(ret))
561 return ret;
563 offset = sd->pos & ~PAGE_CACHE_MASK;
565 this_len = sd->len;
566 if (this_len + offset > PAGE_CACHE_SIZE)
567 this_len = PAGE_CACHE_SIZE - offset;
569 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
570 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
571 if (unlikely(ret))
572 goto out;
574 if (buf->page != page) {
576 * Careful, ->map() uses KM_USER0!
578 char *src = buf->ops->map(pipe, buf, 1);
579 char *dst = kmap_atomic(page, KM_USER1);
581 memcpy(dst + offset, src + buf->offset, this_len);
582 flush_dcache_page(page);
583 kunmap_atomic(dst, KM_USER1);
584 buf->ops->unmap(pipe, buf, src);
586 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
587 page, fsdata);
588 out:
589 return ret;
593 * __splice_from_pipe - splice data from a pipe to given actor
594 * @pipe: pipe to splice from
595 * @sd: information to @actor
596 * @actor: handler that splices the data
598 * Description:
599 * This function does little more than loop over the pipe and call
600 * @actor to do the actual moving of a single struct pipe_buffer to
601 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
602 * pipe_to_user.
605 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
606 splice_actor *actor)
608 int ret, do_wakeup, err;
610 ret = 0;
611 do_wakeup = 0;
613 for (;;) {
614 if (pipe->nrbufs) {
615 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
616 const struct pipe_buf_operations *ops = buf->ops;
618 sd->len = buf->len;
619 if (sd->len > sd->total_len)
620 sd->len = sd->total_len;
622 err = actor(pipe, buf, sd);
623 if (err <= 0) {
624 if (!ret && err != -ENODATA)
625 ret = err;
627 break;
630 ret += err;
631 buf->offset += err;
632 buf->len -= err;
634 sd->len -= err;
635 sd->pos += err;
636 sd->total_len -= err;
637 if (sd->len)
638 continue;
640 if (!buf->len) {
641 buf->ops = NULL;
642 ops->release(pipe, buf);
643 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
644 pipe->nrbufs--;
645 if (pipe->inode)
646 do_wakeup = 1;
649 if (!sd->total_len)
650 break;
653 if (pipe->nrbufs)
654 continue;
655 if (!pipe->writers)
656 break;
657 if (!pipe->waiting_writers) {
658 if (ret)
659 break;
662 if (sd->flags & SPLICE_F_NONBLOCK) {
663 if (!ret)
664 ret = -EAGAIN;
665 break;
668 if (signal_pending(current)) {
669 if (!ret)
670 ret = -ERESTARTSYS;
671 break;
674 if (do_wakeup) {
675 smp_mb();
676 if (waitqueue_active(&pipe->wait))
677 wake_up_interruptible_sync(&pipe->wait);
678 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
679 do_wakeup = 0;
682 pipe_wait(pipe);
685 if (do_wakeup) {
686 smp_mb();
687 if (waitqueue_active(&pipe->wait))
688 wake_up_interruptible(&pipe->wait);
689 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
692 return ret;
694 EXPORT_SYMBOL(__splice_from_pipe);
697 * splice_from_pipe - splice data from a pipe to a file
698 * @pipe: pipe to splice from
699 * @out: file to splice to
700 * @ppos: position in @out
701 * @len: how many bytes to splice
702 * @flags: splice modifier flags
703 * @actor: handler that splices the data
705 * Description:
706 * See __splice_from_pipe. This function locks the input and output inodes,
707 * otherwise it's identical to __splice_from_pipe().
710 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
711 loff_t *ppos, size_t len, unsigned int flags,
712 splice_actor *actor)
714 ssize_t ret;
715 struct inode *inode = out->f_mapping->host;
716 struct splice_desc sd = {
717 .total_len = len,
718 .flags = flags,
719 .pos = *ppos,
720 .u.file = out,
724 * The actor worker might be calling ->prepare_write and
725 * ->commit_write. Most of the time, these expect i_mutex to
726 * be held. Since this may result in an ABBA deadlock with
727 * pipe->inode, we have to order lock acquiry here.
729 inode_double_lock(inode, pipe->inode);
730 ret = __splice_from_pipe(pipe, &sd, actor);
731 inode_double_unlock(inode, pipe->inode);
733 return ret;
737 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
738 * @pipe: pipe info
739 * @out: file to write to
740 * @ppos: position in @out
741 * @len: number of bytes to splice
742 * @flags: splice modifier flags
744 * Description:
745 * Will either move or copy pages (determined by @flags options) from
746 * the given pipe inode to the given file. The caller is responsible
747 * for acquiring i_mutex on both inodes.
750 ssize_t
751 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
752 loff_t *ppos, size_t len, unsigned int flags)
754 struct address_space *mapping = out->f_mapping;
755 struct inode *inode = mapping->host;
756 struct splice_desc sd = {
757 .total_len = len,
758 .flags = flags,
759 .pos = *ppos,
760 .u.file = out,
762 ssize_t ret;
763 int err;
765 err = remove_suid(out->f_path.dentry);
766 if (unlikely(err))
767 return err;
769 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
770 if (ret > 0) {
771 unsigned long nr_pages;
773 *ppos += ret;
774 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
777 * If file or inode is SYNC and we actually wrote some data,
778 * sync it.
780 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
781 err = generic_osync_inode(inode, mapping,
782 OSYNC_METADATA|OSYNC_DATA);
784 if (err)
785 ret = err;
787 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
790 return ret;
793 EXPORT_SYMBOL(generic_file_splice_write_nolock);
796 * generic_file_splice_write - splice data from a pipe to a file
797 * @pipe: pipe info
798 * @out: file to write to
799 * @ppos: position in @out
800 * @len: number of bytes to splice
801 * @flags: splice modifier flags
803 * Description:
804 * Will either move or copy pages (determined by @flags options) from
805 * the given pipe inode to the given file.
808 ssize_t
809 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
810 loff_t *ppos, size_t len, unsigned int flags)
812 struct address_space *mapping = out->f_mapping;
813 struct inode *inode = mapping->host;
814 int killsuid, killpriv;
815 ssize_t ret;
816 int err = 0;
818 killpriv = security_inode_need_killpriv(out->f_path.dentry);
819 killsuid = should_remove_suid(out->f_path.dentry);
820 if (unlikely(killsuid || killpriv)) {
821 mutex_lock(&inode->i_mutex);
822 if (killpriv)
823 err = security_inode_killpriv(out->f_path.dentry);
824 if (!err && killsuid)
825 err = __remove_suid(out->f_path.dentry, killsuid);
826 mutex_unlock(&inode->i_mutex);
827 if (err)
828 return err;
831 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
832 if (ret > 0) {
833 unsigned long nr_pages;
835 *ppos += ret;
836 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
839 * If file or inode is SYNC and we actually wrote some data,
840 * sync it.
842 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
843 mutex_lock(&inode->i_mutex);
844 err = generic_osync_inode(inode, mapping,
845 OSYNC_METADATA|OSYNC_DATA);
846 mutex_unlock(&inode->i_mutex);
848 if (err)
849 ret = err;
851 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
854 return ret;
857 EXPORT_SYMBOL(generic_file_splice_write);
860 * generic_splice_sendpage - splice data from a pipe to a socket
861 * @pipe: pipe to splice from
862 * @out: socket to write to
863 * @ppos: position in @out
864 * @len: number of bytes to splice
865 * @flags: splice modifier flags
867 * Description:
868 * Will send @len bytes from the pipe to a network socket. No data copying
869 * is involved.
872 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
873 loff_t *ppos, size_t len, unsigned int flags)
875 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
878 EXPORT_SYMBOL(generic_splice_sendpage);
881 * Attempt to initiate a splice from pipe to file.
883 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
884 loff_t *ppos, size_t len, unsigned int flags)
886 int ret;
888 if (unlikely(!out->f_op || !out->f_op->splice_write))
889 return -EINVAL;
891 if (unlikely(!(out->f_mode & FMODE_WRITE)))
892 return -EBADF;
894 ret = rw_verify_area(WRITE, out, ppos, len);
895 if (unlikely(ret < 0))
896 return ret;
898 return out->f_op->splice_write(pipe, out, ppos, len, flags);
902 * Attempt to initiate a splice from a file to a pipe.
904 static long do_splice_to(struct file *in, loff_t *ppos,
905 struct pipe_inode_info *pipe, size_t len,
906 unsigned int flags)
908 int ret;
910 if (unlikely(!in->f_op || !in->f_op->splice_read))
911 return -EINVAL;
913 if (unlikely(!(in->f_mode & FMODE_READ)))
914 return -EBADF;
916 ret = rw_verify_area(READ, in, ppos, len);
917 if (unlikely(ret < 0))
918 return ret;
920 return in->f_op->splice_read(in, ppos, pipe, len, flags);
924 * splice_direct_to_actor - splices data directly between two non-pipes
925 * @in: file to splice from
926 * @sd: actor information on where to splice to
927 * @actor: handles the data splicing
929 * Description:
930 * This is a special case helper to splice directly between two
931 * points, without requiring an explicit pipe. Internally an allocated
932 * pipe is cached in the process, and reused during the lifetime of
933 * that process.
936 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
937 splice_direct_actor *actor)
939 struct pipe_inode_info *pipe;
940 long ret, bytes;
941 umode_t i_mode;
942 size_t len;
943 int i, flags;
946 * We require the input being a regular file, as we don't want to
947 * randomly drop data for eg socket -> socket splicing. Use the
948 * piped splicing for that!
950 i_mode = in->f_path.dentry->d_inode->i_mode;
951 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
952 return -EINVAL;
955 * neither in nor out is a pipe, setup an internal pipe attached to
956 * 'out' and transfer the wanted data from 'in' to 'out' through that
958 pipe = current->splice_pipe;
959 if (unlikely(!pipe)) {
960 pipe = alloc_pipe_info(NULL);
961 if (!pipe)
962 return -ENOMEM;
965 * We don't have an immediate reader, but we'll read the stuff
966 * out of the pipe right after the splice_to_pipe(). So set
967 * PIPE_READERS appropriately.
969 pipe->readers = 1;
971 current->splice_pipe = pipe;
975 * Do the splice.
977 ret = 0;
978 bytes = 0;
979 len = sd->total_len;
980 flags = sd->flags;
983 * Don't block on output, we have to drain the direct pipe.
985 sd->flags &= ~SPLICE_F_NONBLOCK;
987 while (len) {
988 size_t read_len;
989 loff_t pos = sd->pos;
991 ret = do_splice_to(in, &pos, pipe, len, flags);
992 if (unlikely(ret <= 0))
993 goto out_release;
995 read_len = ret;
996 sd->total_len = read_len;
999 * NOTE: nonblocking mode only applies to the input. We
1000 * must not do the output in nonblocking mode as then we
1001 * could get stuck data in the internal pipe:
1003 ret = actor(pipe, sd);
1004 if (unlikely(ret <= 0))
1005 goto out_release;
1007 bytes += ret;
1008 len -= ret;
1009 sd->pos = pos;
1011 if (ret < read_len)
1012 goto out_release;
1015 done:
1016 pipe->nrbufs = pipe->curbuf = 0;
1017 file_accessed(in);
1018 return bytes;
1020 out_release:
1022 * If we did an incomplete transfer we must release
1023 * the pipe buffers in question:
1025 for (i = 0; i < PIPE_BUFFERS; i++) {
1026 struct pipe_buffer *buf = pipe->bufs + i;
1028 if (buf->ops) {
1029 buf->ops->release(pipe, buf);
1030 buf->ops = NULL;
1034 if (!bytes)
1035 bytes = ret;
1037 goto done;
1039 EXPORT_SYMBOL(splice_direct_to_actor);
1041 static int direct_splice_actor(struct pipe_inode_info *pipe,
1042 struct splice_desc *sd)
1044 struct file *file = sd->u.file;
1046 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1050 * do_splice_direct - splices data directly between two files
1051 * @in: file to splice from
1052 * @ppos: input file offset
1053 * @out: file to splice to
1054 * @len: number of bytes to splice
1055 * @flags: splice modifier flags
1057 * Description:
1058 * For use by do_sendfile(). splice can easily emulate sendfile, but
1059 * doing it in the application would incur an extra system call
1060 * (splice in + splice out, as compared to just sendfile()). So this helper
1061 * can splice directly through a process-private pipe.
1064 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1065 size_t len, unsigned int flags)
1067 struct splice_desc sd = {
1068 .len = len,
1069 .total_len = len,
1070 .flags = flags,
1071 .pos = *ppos,
1072 .u.file = out,
1074 long ret;
1076 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1077 if (ret > 0)
1078 *ppos = sd.pos;
1080 return ret;
1084 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1085 * location, so checking ->i_pipe is not enough to verify that this is a
1086 * pipe.
1088 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1090 if (S_ISFIFO(inode->i_mode))
1091 return inode->i_pipe;
1093 return NULL;
1097 * Determine where to splice to/from.
1099 static long do_splice(struct file *in, loff_t __user *off_in,
1100 struct file *out, loff_t __user *off_out,
1101 size_t len, unsigned int flags)
1103 struct pipe_inode_info *pipe;
1104 loff_t offset, *off;
1105 long ret;
1107 pipe = pipe_info(in->f_path.dentry->d_inode);
1108 if (pipe) {
1109 if (off_in)
1110 return -ESPIPE;
1111 if (off_out) {
1112 if (out->f_op->llseek == no_llseek)
1113 return -EINVAL;
1114 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1115 return -EFAULT;
1116 off = &offset;
1117 } else
1118 off = &out->f_pos;
1120 ret = do_splice_from(pipe, out, off, len, flags);
1122 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1123 ret = -EFAULT;
1125 return ret;
1128 pipe = pipe_info(out->f_path.dentry->d_inode);
1129 if (pipe) {
1130 if (off_out)
1131 return -ESPIPE;
1132 if (off_in) {
1133 if (in->f_op->llseek == no_llseek)
1134 return -EINVAL;
1135 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1136 return -EFAULT;
1137 off = &offset;
1138 } else
1139 off = &in->f_pos;
1141 ret = do_splice_to(in, off, pipe, len, flags);
1143 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1144 ret = -EFAULT;
1146 return ret;
1149 return -EINVAL;
1153 * Do a copy-from-user while holding the mmap_semaphore for reading, in a
1154 * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem
1155 * for writing) and page faulting on the user memory pointed to by src.
1156 * This assumes that we will very rarely hit the partial != 0 path, or this
1157 * will not be a win.
1159 static int copy_from_user_mmap_sem(void *dst, const void __user *src, size_t n)
1161 int partial;
1163 if (!access_ok(VERIFY_READ, src, n))
1164 return -EFAULT;
1166 pagefault_disable();
1167 partial = __copy_from_user_inatomic(dst, src, n);
1168 pagefault_enable();
1171 * Didn't copy everything, drop the mmap_sem and do a faulting copy
1173 if (unlikely(partial)) {
1174 up_read(&current->mm->mmap_sem);
1175 partial = copy_from_user(dst, src, n);
1176 down_read(&current->mm->mmap_sem);
1179 return partial;
1183 * Map an iov into an array of pages and offset/length tupples. With the
1184 * partial_page structure, we can map several non-contiguous ranges into
1185 * our ones pages[] map instead of splitting that operation into pieces.
1186 * Could easily be exported as a generic helper for other users, in which
1187 * case one would probably want to add a 'max_nr_pages' parameter as well.
1189 static int get_iovec_page_array(const struct iovec __user *iov,
1190 unsigned int nr_vecs, struct page **pages,
1191 struct partial_page *partial, int aligned)
1193 int buffers = 0, error = 0;
1195 down_read(&current->mm->mmap_sem);
1197 while (nr_vecs) {
1198 unsigned long off, npages;
1199 struct iovec entry;
1200 void __user *base;
1201 size_t len;
1202 int i;
1204 error = -EFAULT;
1205 if (copy_from_user_mmap_sem(&entry, iov, sizeof(entry)))
1206 break;
1208 base = entry.iov_base;
1209 len = entry.iov_len;
1212 * Sanity check this iovec. 0 read succeeds.
1214 error = 0;
1215 if (unlikely(!len))
1216 break;
1217 error = -EFAULT;
1218 if (!access_ok(VERIFY_READ, base, len))
1219 break;
1222 * Get this base offset and number of pages, then map
1223 * in the user pages.
1225 off = (unsigned long) base & ~PAGE_MASK;
1228 * If asked for alignment, the offset must be zero and the
1229 * length a multiple of the PAGE_SIZE.
1231 error = -EINVAL;
1232 if (aligned && (off || len & ~PAGE_MASK))
1233 break;
1235 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1236 if (npages > PIPE_BUFFERS - buffers)
1237 npages = PIPE_BUFFERS - buffers;
1239 error = get_user_pages(current, current->mm,
1240 (unsigned long) base, npages, 0, 0,
1241 &pages[buffers], NULL);
1243 if (unlikely(error <= 0))
1244 break;
1247 * Fill this contiguous range into the partial page map.
1249 for (i = 0; i < error; i++) {
1250 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1252 partial[buffers].offset = off;
1253 partial[buffers].len = plen;
1255 off = 0;
1256 len -= plen;
1257 buffers++;
1261 * We didn't complete this iov, stop here since it probably
1262 * means we have to move some of this into a pipe to
1263 * be able to continue.
1265 if (len)
1266 break;
1269 * Don't continue if we mapped fewer pages than we asked for,
1270 * or if we mapped the max number of pages that we have
1271 * room for.
1273 if (error < npages || buffers == PIPE_BUFFERS)
1274 break;
1276 nr_vecs--;
1277 iov++;
1280 up_read(&current->mm->mmap_sem);
1282 if (buffers)
1283 return buffers;
1285 return error;
1288 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1289 struct splice_desc *sd)
1291 char *src;
1292 int ret;
1294 ret = buf->ops->confirm(pipe, buf);
1295 if (unlikely(ret))
1296 return ret;
1299 * See if we can use the atomic maps, by prefaulting in the
1300 * pages and doing an atomic copy
1302 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1303 src = buf->ops->map(pipe, buf, 1);
1304 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1305 sd->len);
1306 buf->ops->unmap(pipe, buf, src);
1307 if (!ret) {
1308 ret = sd->len;
1309 goto out;
1314 * No dice, use slow non-atomic map and copy
1316 src = buf->ops->map(pipe, buf, 0);
1318 ret = sd->len;
1319 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1320 ret = -EFAULT;
1322 buf->ops->unmap(pipe, buf, src);
1323 out:
1324 if (ret > 0)
1325 sd->u.userptr += ret;
1326 return ret;
1330 * For lack of a better implementation, implement vmsplice() to userspace
1331 * as a simple copy of the pipes pages to the user iov.
1333 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1334 unsigned long nr_segs, unsigned int flags)
1336 struct pipe_inode_info *pipe;
1337 struct splice_desc sd;
1338 ssize_t size;
1339 int error;
1340 long ret;
1342 pipe = pipe_info(file->f_path.dentry->d_inode);
1343 if (!pipe)
1344 return -EBADF;
1346 if (pipe->inode)
1347 mutex_lock(&pipe->inode->i_mutex);
1349 error = ret = 0;
1350 while (nr_segs) {
1351 void __user *base;
1352 size_t len;
1355 * Get user address base and length for this iovec.
1357 error = get_user(base, &iov->iov_base);
1358 if (unlikely(error))
1359 break;
1360 error = get_user(len, &iov->iov_len);
1361 if (unlikely(error))
1362 break;
1365 * Sanity check this iovec. 0 read succeeds.
1367 if (unlikely(!len))
1368 break;
1369 if (unlikely(!base)) {
1370 error = -EFAULT;
1371 break;
1374 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1375 error = -EFAULT;
1376 break;
1379 sd.len = 0;
1380 sd.total_len = len;
1381 sd.flags = flags;
1382 sd.u.userptr = base;
1383 sd.pos = 0;
1385 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1386 if (size < 0) {
1387 if (!ret)
1388 ret = size;
1390 break;
1393 ret += size;
1395 if (size < len)
1396 break;
1398 nr_segs--;
1399 iov++;
1402 if (pipe->inode)
1403 mutex_unlock(&pipe->inode->i_mutex);
1405 if (!ret)
1406 ret = error;
1408 return ret;
1412 * vmsplice splices a user address range into a pipe. It can be thought of
1413 * as splice-from-memory, where the regular splice is splice-from-file (or
1414 * to file). In both cases the output is a pipe, naturally.
1416 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1417 unsigned long nr_segs, unsigned int flags)
1419 struct pipe_inode_info *pipe;
1420 struct page *pages[PIPE_BUFFERS];
1421 struct partial_page partial[PIPE_BUFFERS];
1422 struct splice_pipe_desc spd = {
1423 .pages = pages,
1424 .partial = partial,
1425 .flags = flags,
1426 .ops = &user_page_pipe_buf_ops,
1427 .spd_release = spd_release_page,
1430 pipe = pipe_info(file->f_path.dentry->d_inode);
1431 if (!pipe)
1432 return -EBADF;
1434 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1435 flags & SPLICE_F_GIFT);
1436 if (spd.nr_pages <= 0)
1437 return spd.nr_pages;
1439 return splice_to_pipe(pipe, &spd);
1443 * Note that vmsplice only really supports true splicing _from_ user memory
1444 * to a pipe, not the other way around. Splicing from user memory is a simple
1445 * operation that can be supported without any funky alignment restrictions
1446 * or nasty vm tricks. We simply map in the user memory and fill them into
1447 * a pipe. The reverse isn't quite as easy, though. There are two possible
1448 * solutions for that:
1450 * - memcpy() the data internally, at which point we might as well just
1451 * do a regular read() on the buffer anyway.
1452 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1453 * has restriction limitations on both ends of the pipe).
1455 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1458 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1459 unsigned long nr_segs, unsigned int flags)
1461 struct file *file;
1462 long error;
1463 int fput;
1465 if (unlikely(nr_segs > UIO_MAXIOV))
1466 return -EINVAL;
1467 else if (unlikely(!nr_segs))
1468 return 0;
1470 error = -EBADF;
1471 file = fget_light(fd, &fput);
1472 if (file) {
1473 if (file->f_mode & FMODE_WRITE)
1474 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1475 else if (file->f_mode & FMODE_READ)
1476 error = vmsplice_to_user(file, iov, nr_segs, flags);
1478 fput_light(file, fput);
1481 return error;
1484 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1485 int fd_out, loff_t __user *off_out,
1486 size_t len, unsigned int flags)
1488 long error;
1489 struct file *in, *out;
1490 int fput_in, fput_out;
1492 if (unlikely(!len))
1493 return 0;
1495 error = -EBADF;
1496 in = fget_light(fd_in, &fput_in);
1497 if (in) {
1498 if (in->f_mode & FMODE_READ) {
1499 out = fget_light(fd_out, &fput_out);
1500 if (out) {
1501 if (out->f_mode & FMODE_WRITE)
1502 error = do_splice(in, off_in,
1503 out, off_out,
1504 len, flags);
1505 fput_light(out, fput_out);
1509 fput_light(in, fput_in);
1512 return error;
1516 * Make sure there's data to read. Wait for input if we can, otherwise
1517 * return an appropriate error.
1519 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1521 int ret;
1524 * Check ->nrbufs without the inode lock first. This function
1525 * is speculative anyways, so missing one is ok.
1527 if (pipe->nrbufs)
1528 return 0;
1530 ret = 0;
1531 mutex_lock(&pipe->inode->i_mutex);
1533 while (!pipe->nrbufs) {
1534 if (signal_pending(current)) {
1535 ret = -ERESTARTSYS;
1536 break;
1538 if (!pipe->writers)
1539 break;
1540 if (!pipe->waiting_writers) {
1541 if (flags & SPLICE_F_NONBLOCK) {
1542 ret = -EAGAIN;
1543 break;
1546 pipe_wait(pipe);
1549 mutex_unlock(&pipe->inode->i_mutex);
1550 return ret;
1554 * Make sure there's writeable room. Wait for room if we can, otherwise
1555 * return an appropriate error.
1557 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1559 int ret;
1562 * Check ->nrbufs without the inode lock first. This function
1563 * is speculative anyways, so missing one is ok.
1565 if (pipe->nrbufs < PIPE_BUFFERS)
1566 return 0;
1568 ret = 0;
1569 mutex_lock(&pipe->inode->i_mutex);
1571 while (pipe->nrbufs >= PIPE_BUFFERS) {
1572 if (!pipe->readers) {
1573 send_sig(SIGPIPE, current, 0);
1574 ret = -EPIPE;
1575 break;
1577 if (flags & SPLICE_F_NONBLOCK) {
1578 ret = -EAGAIN;
1579 break;
1581 if (signal_pending(current)) {
1582 ret = -ERESTARTSYS;
1583 break;
1585 pipe->waiting_writers++;
1586 pipe_wait(pipe);
1587 pipe->waiting_writers--;
1590 mutex_unlock(&pipe->inode->i_mutex);
1591 return ret;
1595 * Link contents of ipipe to opipe.
1597 static int link_pipe(struct pipe_inode_info *ipipe,
1598 struct pipe_inode_info *opipe,
1599 size_t len, unsigned int flags)
1601 struct pipe_buffer *ibuf, *obuf;
1602 int ret = 0, i = 0, nbuf;
1605 * Potential ABBA deadlock, work around it by ordering lock
1606 * grabbing by inode address. Otherwise two different processes
1607 * could deadlock (one doing tee from A -> B, the other from B -> A).
1609 inode_double_lock(ipipe->inode, opipe->inode);
1611 do {
1612 if (!opipe->readers) {
1613 send_sig(SIGPIPE, current, 0);
1614 if (!ret)
1615 ret = -EPIPE;
1616 break;
1620 * If we have iterated all input buffers or ran out of
1621 * output room, break.
1623 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1624 break;
1626 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1627 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1630 * Get a reference to this pipe buffer,
1631 * so we can copy the contents over.
1633 ibuf->ops->get(ipipe, ibuf);
1635 obuf = opipe->bufs + nbuf;
1636 *obuf = *ibuf;
1639 * Don't inherit the gift flag, we need to
1640 * prevent multiple steals of this page.
1642 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1644 if (obuf->len > len)
1645 obuf->len = len;
1647 opipe->nrbufs++;
1648 ret += obuf->len;
1649 len -= obuf->len;
1650 i++;
1651 } while (len);
1654 * return EAGAIN if we have the potential of some data in the
1655 * future, otherwise just return 0
1657 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1658 ret = -EAGAIN;
1660 inode_double_unlock(ipipe->inode, opipe->inode);
1663 * If we put data in the output pipe, wakeup any potential readers.
1665 if (ret > 0) {
1666 smp_mb();
1667 if (waitqueue_active(&opipe->wait))
1668 wake_up_interruptible(&opipe->wait);
1669 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1672 return ret;
1676 * This is a tee(1) implementation that works on pipes. It doesn't copy
1677 * any data, it simply references the 'in' pages on the 'out' pipe.
1678 * The 'flags' used are the SPLICE_F_* variants, currently the only
1679 * applicable one is SPLICE_F_NONBLOCK.
1681 static long do_tee(struct file *in, struct file *out, size_t len,
1682 unsigned int flags)
1684 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1685 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1686 int ret = -EINVAL;
1689 * Duplicate the contents of ipipe to opipe without actually
1690 * copying the data.
1692 if (ipipe && opipe && ipipe != opipe) {
1694 * Keep going, unless we encounter an error. The ipipe/opipe
1695 * ordering doesn't really matter.
1697 ret = link_ipipe_prep(ipipe, flags);
1698 if (!ret) {
1699 ret = link_opipe_prep(opipe, flags);
1700 if (!ret)
1701 ret = link_pipe(ipipe, opipe, len, flags);
1705 return ret;
1708 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1710 struct file *in;
1711 int error, fput_in;
1713 if (unlikely(!len))
1714 return 0;
1716 error = -EBADF;
1717 in = fget_light(fdin, &fput_in);
1718 if (in) {
1719 if (in->f_mode & FMODE_READ) {
1720 int fput_out;
1721 struct file *out = fget_light(fdout, &fput_out);
1723 if (out) {
1724 if (out->f_mode & FMODE_WRITE)
1725 error = do_tee(in, out, len, flags);
1726 fput_light(out, fput_out);
1729 fput_light(in, fput_in);
1732 return error;