2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
52 struct buffer_head
*bh
, *head
;
54 *delalloc
= *unmapped
= *unwritten
= 0;
56 bh
= head
= page_buffers(page
);
58 if (buffer_uptodate(bh
) && !buffer_mapped(bh
))
60 else if (buffer_unwritten(bh
))
62 else if (buffer_delay(bh
))
64 } while ((bh
= bh
->b_this_page
) != head
);
67 #if defined(XFS_RW_TRACE)
76 bhv_vnode_t
*vp
= vn_from_inode(inode
);
77 loff_t isize
= i_size_read(inode
);
78 loff_t offset
= page_offset(page
);
79 int delalloc
= -1, unmapped
= -1, unwritten
= -1;
81 if (page_has_buffers(page
))
82 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
88 ktrace_enter(ip
->i_rwtrace
,
89 (void *)((unsigned long)tag
),
94 (void *)((unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff)),
95 (void *)((unsigned long)(ip
->i_d
.di_size
& 0xffffffff)),
96 (void *)((unsigned long)((isize
>> 32) & 0xffffffff)),
97 (void *)((unsigned long)(isize
& 0xffffffff)),
98 (void *)((unsigned long)((offset
>> 32) & 0xffffffff)),
99 (void *)((unsigned long)(offset
& 0xffffffff)),
100 (void *)((unsigned long)delalloc
),
101 (void *)((unsigned long)unmapped
),
102 (void *)((unsigned long)unwritten
),
103 (void *)((unsigned long)current_pid()),
107 #define xfs_page_trace(tag, inode, page, pgoff)
110 STATIC
struct block_device
*
111 xfs_find_bdev_for_inode(
112 struct xfs_inode
*ip
)
114 struct xfs_mount
*mp
= ip
->i_mount
;
116 if (XFS_IS_REALTIME_INODE(ip
))
117 return mp
->m_rtdev_targp
->bt_bdev
;
119 return mp
->m_ddev_targp
->bt_bdev
;
123 * Schedule IO completion handling on a xfsdatad if this was
124 * the final hold on this ioend. If we are asked to wait,
125 * flush the workqueue.
132 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
133 queue_work(xfsdatad_workqueue
, &ioend
->io_work
);
135 flush_workqueue(xfsdatad_workqueue
);
140 * We're now finished for good with this ioend structure.
141 * Update the page state via the associated buffer_heads,
142 * release holds on the inode and bio, and finally free
143 * up memory. Do not use the ioend after this.
149 struct buffer_head
*bh
, *next
;
151 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
152 next
= bh
->b_private
;
153 bh
->b_end_io(bh
, !ioend
->io_error
);
155 if (unlikely(ioend
->io_error
)) {
156 vn_ioerror(XFS_I(ioend
->io_inode
), ioend
->io_error
,
159 vn_iowake(XFS_I(ioend
->io_inode
));
160 mempool_free(ioend
, xfs_ioend_pool
);
164 * Update on-disk file size now that data has been written to disk.
165 * The current in-memory file size is i_size. If a write is beyond
166 * eof i_new_size will be the intended file size until i_size is
167 * updated. If this write does not extend all the way to the valid
168 * file size then restrict this update to the end of the write.
174 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
178 ASSERT((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
);
179 ASSERT(ioend
->io_type
!= IOMAP_READ
);
181 if (unlikely(ioend
->io_error
))
184 bsize
= ioend
->io_offset
+ ioend
->io_size
;
186 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
188 isize
= MAX(ip
->i_size
, ip
->i_new_size
);
189 isize
= MIN(isize
, bsize
);
191 if (ip
->i_d
.di_size
< isize
) {
192 ip
->i_d
.di_size
= isize
;
193 ip
->i_update_core
= 1;
194 ip
->i_update_size
= 1;
195 mark_inode_dirty_sync(ioend
->io_inode
);
198 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
202 * Buffered IO write completion for delayed allocate extents.
205 xfs_end_bio_delalloc(
206 struct work_struct
*work
)
209 container_of(work
, xfs_ioend_t
, io_work
);
211 xfs_setfilesize(ioend
);
212 xfs_destroy_ioend(ioend
);
216 * Buffered IO write completion for regular, written extents.
220 struct work_struct
*work
)
223 container_of(work
, xfs_ioend_t
, io_work
);
225 xfs_setfilesize(ioend
);
226 xfs_destroy_ioend(ioend
);
230 * IO write completion for unwritten extents.
232 * Issue transactions to convert a buffer range from unwritten
233 * to written extents.
236 xfs_end_bio_unwritten(
237 struct work_struct
*work
)
240 container_of(work
, xfs_ioend_t
, io_work
);
241 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
242 xfs_off_t offset
= ioend
->io_offset
;
243 size_t size
= ioend
->io_size
;
245 if (likely(!ioend
->io_error
)) {
246 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
248 error
= xfs_iomap_write_unwritten(ip
, offset
, size
);
250 ioend
->io_error
= error
;
252 xfs_setfilesize(ioend
);
254 xfs_destroy_ioend(ioend
);
258 * IO read completion for regular, written extents.
262 struct work_struct
*work
)
265 container_of(work
, xfs_ioend_t
, io_work
);
267 xfs_destroy_ioend(ioend
);
271 * Allocate and initialise an IO completion structure.
272 * We need to track unwritten extent write completion here initially.
273 * We'll need to extend this for updating the ondisk inode size later
283 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
286 * Set the count to 1 initially, which will prevent an I/O
287 * completion callback from happening before we have started
288 * all the I/O from calling the completion routine too early.
290 atomic_set(&ioend
->io_remaining
, 1);
292 ioend
->io_list
= NULL
;
293 ioend
->io_type
= type
;
294 ioend
->io_inode
= inode
;
295 ioend
->io_buffer_head
= NULL
;
296 ioend
->io_buffer_tail
= NULL
;
297 atomic_inc(&XFS_I(ioend
->io_inode
)->i_iocount
);
298 ioend
->io_offset
= 0;
301 if (type
== IOMAP_UNWRITTEN
)
302 INIT_WORK(&ioend
->io_work
, xfs_end_bio_unwritten
);
303 else if (type
== IOMAP_DELAY
)
304 INIT_WORK(&ioend
->io_work
, xfs_end_bio_delalloc
);
305 else if (type
== IOMAP_READ
)
306 INIT_WORK(&ioend
->io_work
, xfs_end_bio_read
);
308 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
);
321 xfs_inode_t
*ip
= XFS_I(inode
);
322 int error
, nmaps
= 1;
324 error
= xfs_iomap(ip
, offset
, count
,
325 flags
, mapp
, &nmaps
);
326 if (!error
&& (flags
& (BMAPI_WRITE
|BMAPI_ALLOCATE
)))
327 xfs_iflags_set(ip
, XFS_IMODIFIED
);
336 return offset
>= iomapp
->iomap_offset
&&
337 offset
< iomapp
->iomap_offset
+ iomapp
->iomap_bsize
;
341 * BIO completion handler for buffered IO.
348 xfs_ioend_t
*ioend
= bio
->bi_private
;
350 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
351 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
353 /* Toss bio and pass work off to an xfsdatad thread */
354 bio
->bi_private
= NULL
;
355 bio
->bi_end_io
= NULL
;
358 xfs_finish_ioend(ioend
, 0);
362 xfs_submit_ioend_bio(
366 atomic_inc(&ioend
->io_remaining
);
368 bio
->bi_private
= ioend
;
369 bio
->bi_end_io
= xfs_end_bio
;
371 submit_bio(WRITE
, bio
);
372 ASSERT(!bio_flagged(bio
, BIO_EOPNOTSUPP
));
378 struct buffer_head
*bh
)
381 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
384 bio
= bio_alloc(GFP_NOIO
, nvecs
);
388 ASSERT(bio
->bi_private
== NULL
);
389 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
390 bio
->bi_bdev
= bh
->b_bdev
;
396 xfs_start_buffer_writeback(
397 struct buffer_head
*bh
)
399 ASSERT(buffer_mapped(bh
));
400 ASSERT(buffer_locked(bh
));
401 ASSERT(!buffer_delay(bh
));
402 ASSERT(!buffer_unwritten(bh
));
404 mark_buffer_async_write(bh
);
405 set_buffer_uptodate(bh
);
406 clear_buffer_dirty(bh
);
410 xfs_start_page_writeback(
412 struct writeback_control
*wbc
,
416 ASSERT(PageLocked(page
));
417 ASSERT(!PageWriteback(page
));
419 clear_page_dirty_for_io(page
);
420 set_page_writeback(page
);
422 /* If no buffers on the page are to be written, finish it here */
424 end_page_writeback(page
);
427 static inline int bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
429 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
433 * Submit all of the bios for all of the ioends we have saved up, covering the
434 * initial writepage page and also any probed pages.
436 * Because we may have multiple ioends spanning a page, we need to start
437 * writeback on all the buffers before we submit them for I/O. If we mark the
438 * buffers as we got, then we can end up with a page that only has buffers
439 * marked async write and I/O complete on can occur before we mark the other
440 * buffers async write.
442 * The end result of this is that we trip a bug in end_page_writeback() because
443 * we call it twice for the one page as the code in end_buffer_async_write()
444 * assumes that all buffers on the page are started at the same time.
446 * The fix is two passes across the ioend list - one to start writeback on the
447 * buffer_heads, and then submit them for I/O on the second pass.
453 xfs_ioend_t
*head
= ioend
;
455 struct buffer_head
*bh
;
457 sector_t lastblock
= 0;
459 /* Pass 1 - start writeback */
461 next
= ioend
->io_list
;
462 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
463 xfs_start_buffer_writeback(bh
);
465 } while ((ioend
= next
) != NULL
);
467 /* Pass 2 - submit I/O */
470 next
= ioend
->io_list
;
473 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
477 bio
= xfs_alloc_ioend_bio(bh
);
478 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
479 xfs_submit_ioend_bio(ioend
, bio
);
483 if (bio_add_buffer(bio
, bh
) != bh
->b_size
) {
484 xfs_submit_ioend_bio(ioend
, bio
);
488 lastblock
= bh
->b_blocknr
;
491 xfs_submit_ioend_bio(ioend
, bio
);
492 xfs_finish_ioend(ioend
, 0);
493 } while ((ioend
= next
) != NULL
);
497 * Cancel submission of all buffer_heads so far in this endio.
498 * Toss the endio too. Only ever called for the initial page
499 * in a writepage request, so only ever one page.
506 struct buffer_head
*bh
, *next_bh
;
509 next
= ioend
->io_list
;
510 bh
= ioend
->io_buffer_head
;
512 next_bh
= bh
->b_private
;
513 clear_buffer_async_write(bh
);
515 } while ((bh
= next_bh
) != NULL
);
517 vn_iowake(XFS_I(ioend
->io_inode
));
518 mempool_free(ioend
, xfs_ioend_pool
);
519 } while ((ioend
= next
) != NULL
);
523 * Test to see if we've been building up a completion structure for
524 * earlier buffers -- if so, we try to append to this ioend if we
525 * can, otherwise we finish off any current ioend and start another.
526 * Return true if we've finished the given ioend.
531 struct buffer_head
*bh
,
534 xfs_ioend_t
**result
,
537 xfs_ioend_t
*ioend
= *result
;
539 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
540 xfs_ioend_t
*previous
= *result
;
542 ioend
= xfs_alloc_ioend(inode
, type
);
543 ioend
->io_offset
= offset
;
544 ioend
->io_buffer_head
= bh
;
545 ioend
->io_buffer_tail
= bh
;
547 previous
->io_list
= ioend
;
550 ioend
->io_buffer_tail
->b_private
= bh
;
551 ioend
->io_buffer_tail
= bh
;
554 bh
->b_private
= NULL
;
555 ioend
->io_size
+= bh
->b_size
;
560 struct buffer_head
*bh
,
567 ASSERT(mp
->iomap_bn
!= IOMAP_DADDR_NULL
);
569 bn
= (mp
->iomap_bn
>> (block_bits
- BBSHIFT
)) +
570 ((offset
- mp
->iomap_offset
) >> block_bits
);
572 ASSERT(bn
|| (mp
->iomap_flags
& IOMAP_REALTIME
));
575 set_buffer_mapped(bh
);
580 struct buffer_head
*bh
,
585 ASSERT(!(iomapp
->iomap_flags
& IOMAP_HOLE
));
586 ASSERT(!(iomapp
->iomap_flags
& IOMAP_DELAY
));
589 xfs_map_buffer(bh
, iomapp
, offset
, block_bits
);
590 bh
->b_bdev
= iomapp
->iomap_target
->bt_bdev
;
591 set_buffer_mapped(bh
);
592 clear_buffer_delay(bh
);
593 clear_buffer_unwritten(bh
);
597 * Look for a page at index that is suitable for clustering.
602 unsigned int pg_offset
,
607 if (PageWriteback(page
))
610 if (page
->mapping
&& PageDirty(page
)) {
611 if (page_has_buffers(page
)) {
612 struct buffer_head
*bh
, *head
;
614 bh
= head
= page_buffers(page
);
616 if (!buffer_uptodate(bh
))
618 if (mapped
!= buffer_mapped(bh
))
621 if (ret
>= pg_offset
)
623 } while ((bh
= bh
->b_this_page
) != head
);
625 ret
= mapped
? 0 : PAGE_CACHE_SIZE
;
634 struct page
*startpage
,
635 struct buffer_head
*bh
,
636 struct buffer_head
*head
,
640 pgoff_t tindex
, tlast
, tloff
;
644 /* First sum forwards in this page */
646 if (!buffer_uptodate(bh
) || (mapped
!= buffer_mapped(bh
)))
649 } while ((bh
= bh
->b_this_page
) != head
);
651 /* if we reached the end of the page, sum forwards in following pages */
652 tlast
= i_size_read(inode
) >> PAGE_CACHE_SHIFT
;
653 tindex
= startpage
->index
+ 1;
655 /* Prune this back to avoid pathological behavior */
656 tloff
= min(tlast
, startpage
->index
+ 64);
658 pagevec_init(&pvec
, 0);
659 while (!done
&& tindex
<= tloff
) {
660 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
662 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
665 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
666 struct page
*page
= pvec
.pages
[i
];
667 size_t pg_offset
, pg_len
= 0;
669 if (tindex
== tlast
) {
671 i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1);
677 pg_offset
= PAGE_CACHE_SIZE
;
679 if (page
->index
== tindex
&& !TestSetPageLocked(page
)) {
680 pg_len
= xfs_probe_page(page
, pg_offset
, mapped
);
693 pagevec_release(&pvec
);
701 * Test if a given page is suitable for writing as part of an unwritten
702 * or delayed allocate extent.
709 if (PageWriteback(page
))
712 if (page
->mapping
&& page_has_buffers(page
)) {
713 struct buffer_head
*bh
, *head
;
716 bh
= head
= page_buffers(page
);
718 if (buffer_unwritten(bh
))
719 acceptable
= (type
== IOMAP_UNWRITTEN
);
720 else if (buffer_delay(bh
))
721 acceptable
= (type
== IOMAP_DELAY
);
722 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
723 acceptable
= (type
== IOMAP_NEW
);
726 } while ((bh
= bh
->b_this_page
) != head
);
736 * Allocate & map buffers for page given the extent map. Write it out.
737 * except for the original page of a writepage, this is called on
738 * delalloc/unwritten pages only, for the original page it is possible
739 * that the page has no mapping at all.
747 xfs_ioend_t
**ioendp
,
748 struct writeback_control
*wbc
,
752 struct buffer_head
*bh
, *head
;
753 xfs_off_t end_offset
;
754 unsigned long p_offset
;
756 int bbits
= inode
->i_blkbits
;
758 int count
= 0, done
= 0, uptodate
= 1;
759 xfs_off_t offset
= page_offset(page
);
761 if (page
->index
!= tindex
)
763 if (TestSetPageLocked(page
))
765 if (PageWriteback(page
))
766 goto fail_unlock_page
;
767 if (page
->mapping
!= inode
->i_mapping
)
768 goto fail_unlock_page
;
769 if (!xfs_is_delayed_page(page
, (*ioendp
)->io_type
))
770 goto fail_unlock_page
;
773 * page_dirty is initially a count of buffers on the page before
774 * EOF and is decremented as we move each into a cleanable state.
778 * End offset is the highest offset that this page should represent.
779 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
780 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
781 * hence give us the correct page_dirty count. On any other page,
782 * it will be zero and in that case we need page_dirty to be the
783 * count of buffers on the page.
785 end_offset
= min_t(unsigned long long,
786 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
789 len
= 1 << inode
->i_blkbits
;
790 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
792 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
793 page_dirty
= p_offset
/ len
;
795 bh
= head
= page_buffers(page
);
797 if (offset
>= end_offset
)
799 if (!buffer_uptodate(bh
))
801 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
806 if (buffer_unwritten(bh
) || buffer_delay(bh
)) {
807 if (buffer_unwritten(bh
))
808 type
= IOMAP_UNWRITTEN
;
812 if (!xfs_iomap_valid(mp
, offset
)) {
817 ASSERT(!(mp
->iomap_flags
& IOMAP_HOLE
));
818 ASSERT(!(mp
->iomap_flags
& IOMAP_DELAY
));
820 xfs_map_at_offset(bh
, offset
, bbits
, mp
);
822 xfs_add_to_ioend(inode
, bh
, offset
,
825 set_buffer_dirty(bh
);
827 mark_buffer_dirty(bh
);
833 if (buffer_mapped(bh
) && all_bh
&& startio
) {
835 xfs_add_to_ioend(inode
, bh
, offset
,
843 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
845 if (uptodate
&& bh
== head
)
846 SetPageUptodate(page
);
850 struct backing_dev_info
*bdi
;
852 bdi
= inode
->i_mapping
->backing_dev_info
;
854 if (bdi_write_congested(bdi
)) {
855 wbc
->encountered_congestion
= 1;
857 } else if (wbc
->nr_to_write
<= 0) {
861 xfs_start_page_writeback(page
, wbc
, !page_dirty
, count
);
872 * Convert & write out a cluster of pages in the same extent as defined
873 * by mp and following the start page.
880 xfs_ioend_t
**ioendp
,
881 struct writeback_control
*wbc
,
889 pagevec_init(&pvec
, 0);
890 while (!done
&& tindex
<= tlast
) {
891 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
893 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
896 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
897 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
898 iomapp
, ioendp
, wbc
, startio
, all_bh
);
903 pagevec_release(&pvec
);
909 * Calling this without startio set means we are being asked to make a dirty
910 * page ready for freeing it's buffers. When called with startio set then
911 * we are coming from writepage.
913 * When called with startio set it is important that we write the WHOLE
915 * The bh->b_state's cannot know if any of the blocks or which block for
916 * that matter are dirty due to mmap writes, and therefore bh uptodate is
917 * only valid if the page itself isn't completely uptodate. Some layers
918 * may clear the page dirty flag prior to calling write page, under the
919 * assumption the entire page will be written out; by not writing out the
920 * whole page the page can be reused before all valid dirty data is
921 * written out. Note: in the case of a page that has been dirty'd by
922 * mapwrite and but partially setup by block_prepare_write the
923 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
924 * valid state, thus the whole page must be written out thing.
928 xfs_page_state_convert(
931 struct writeback_control
*wbc
,
933 int unmapped
) /* also implies page uptodate */
935 struct buffer_head
*bh
, *head
;
937 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
939 unsigned long p_offset
= 0;
941 __uint64_t end_offset
;
942 pgoff_t end_index
, last_index
, tlast
;
944 int flags
, err
, iomap_valid
= 0, uptodate
= 1;
945 int page_dirty
, count
= 0;
947 int all_bh
= unmapped
;
950 if (wbc
->sync_mode
== WB_SYNC_NONE
&& wbc
->nonblocking
)
951 trylock
|= BMAPI_TRYLOCK
;
954 /* Is this page beyond the end of the file? */
955 offset
= i_size_read(inode
);
956 end_index
= offset
>> PAGE_CACHE_SHIFT
;
957 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
958 if (page
->index
>= end_index
) {
959 if ((page
->index
>= end_index
+ 1) ||
960 !(i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1))) {
968 * page_dirty is initially a count of buffers on the page before
969 * EOF and is decremented as we move each into a cleanable state.
973 * End offset is the highest offset that this page should represent.
974 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
975 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
976 * hence give us the correct page_dirty count. On any other page,
977 * it will be zero and in that case we need page_dirty to be the
978 * count of buffers on the page.
980 end_offset
= min_t(unsigned long long,
981 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
, offset
);
982 len
= 1 << inode
->i_blkbits
;
983 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
985 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
986 page_dirty
= p_offset
/ len
;
988 bh
= head
= page_buffers(page
);
989 offset
= page_offset(page
);
993 /* TODO: cleanup count and page_dirty */
996 if (offset
>= end_offset
)
998 if (!buffer_uptodate(bh
))
1000 if (!(PageUptodate(page
) || buffer_uptodate(bh
)) && !startio
) {
1002 * the iomap is actually still valid, but the ioend
1003 * isn't. shouldn't happen too often.
1010 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1013 * First case, map an unwritten extent and prepare for
1014 * extent state conversion transaction on completion.
1016 * Second case, allocate space for a delalloc buffer.
1017 * We can return EAGAIN here in the release page case.
1019 * Third case, an unmapped buffer was found, and we are
1020 * in a path where we need to write the whole page out.
1022 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
1023 ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1024 !buffer_mapped(bh
) && (unmapped
|| startio
))) {
1028 * Make sure we don't use a read-only iomap
1030 if (flags
== BMAPI_READ
)
1033 if (buffer_unwritten(bh
)) {
1034 type
= IOMAP_UNWRITTEN
;
1035 flags
= BMAPI_WRITE
| BMAPI_IGNSTATE
;
1036 } else if (buffer_delay(bh
)) {
1038 flags
= BMAPI_ALLOCATE
| trylock
;
1041 flags
= BMAPI_WRITE
| BMAPI_MMAP
;
1046 * if we didn't have a valid mapping then we
1047 * need to ensure that we put the new mapping
1048 * in a new ioend structure. This needs to be
1049 * done to ensure that the ioends correctly
1050 * reflect the block mappings at io completion
1051 * for unwritten extent conversion.
1054 if (type
== IOMAP_NEW
) {
1055 size
= xfs_probe_cluster(inode
,
1061 err
= xfs_map_blocks(inode
, offset
, size
,
1065 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1068 xfs_map_at_offset(bh
, offset
,
1069 inode
->i_blkbits
, &iomap
);
1071 xfs_add_to_ioend(inode
, bh
, offset
,
1075 set_buffer_dirty(bh
);
1077 mark_buffer_dirty(bh
);
1082 } else if (buffer_uptodate(bh
) && startio
) {
1084 * we got here because the buffer is already mapped.
1085 * That means it must already have extents allocated
1086 * underneath it. Map the extent by reading it.
1088 if (!iomap_valid
|| flags
!= BMAPI_READ
) {
1090 size
= xfs_probe_cluster(inode
, page
, bh
,
1092 err
= xfs_map_blocks(inode
, offset
, size
,
1096 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1100 * We set the type to IOMAP_NEW in case we are doing a
1101 * small write at EOF that is extending the file but
1102 * without needing an allocation. We need to update the
1103 * file size on I/O completion in this case so it is
1104 * the same case as having just allocated a new extent
1105 * that we are writing into for the first time.
1108 if (!test_and_set_bit(BH_Lock
, &bh
->b_state
)) {
1109 ASSERT(buffer_mapped(bh
));
1112 xfs_add_to_ioend(inode
, bh
, offset
, type
,
1113 &ioend
, !iomap_valid
);
1119 } else if ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1120 (unmapped
|| startio
)) {
1127 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1129 if (uptodate
&& bh
== head
)
1130 SetPageUptodate(page
);
1133 xfs_start_page_writeback(page
, wbc
, 1, count
);
1135 if (ioend
&& iomap_valid
) {
1136 offset
= (iomap
.iomap_offset
+ iomap
.iomap_bsize
- 1) >>
1138 tlast
= min_t(pgoff_t
, offset
, last_index
);
1139 xfs_cluster_write(inode
, page
->index
+ 1, &iomap
, &ioend
,
1140 wbc
, startio
, all_bh
, tlast
);
1144 xfs_submit_ioend(iohead
);
1150 xfs_cancel_ioend(iohead
);
1153 * If it's delalloc and we have nowhere to put it,
1154 * throw it away, unless the lower layers told
1157 if (err
!= -EAGAIN
) {
1159 block_invalidatepage(page
, 0);
1160 ClearPageUptodate(page
);
1166 * writepage: Called from one of two places:
1168 * 1. we are flushing a delalloc buffer head.
1170 * 2. we are writing out a dirty page. Typically the page dirty
1171 * state is cleared before we get here. In this case is it
1172 * conceivable we have no buffer heads.
1174 * For delalloc space on the page we need to allocate space and
1175 * flush it. For unmapped buffer heads on the page we should
1176 * allocate space if the page is uptodate. For any other dirty
1177 * buffer heads on the page we should flush them.
1179 * If we detect that a transaction would be required to flush
1180 * the page, we have to check the process flags first, if we
1181 * are already in a transaction or disk I/O during allocations
1182 * is off, we need to fail the writepage and redirty the page.
1188 struct writeback_control
*wbc
)
1192 int delalloc
, unmapped
, unwritten
;
1193 struct inode
*inode
= page
->mapping
->host
;
1195 xfs_page_trace(XFS_WRITEPAGE_ENTER
, inode
, page
, 0);
1198 * We need a transaction if:
1199 * 1. There are delalloc buffers on the page
1200 * 2. The page is uptodate and we have unmapped buffers
1201 * 3. The page is uptodate and we have no buffers
1202 * 4. There are unwritten buffers on the page
1205 if (!page_has_buffers(page
)) {
1209 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1210 if (!PageUptodate(page
))
1212 need_trans
= delalloc
+ unmapped
+ unwritten
;
1216 * If we need a transaction and the process flags say
1217 * we are already in a transaction, or no IO is allowed
1218 * then mark the page dirty again and leave the page
1221 if (current_test_flags(PF_FSTRANS
) && need_trans
)
1225 * Delay hooking up buffer heads until we have
1226 * made our go/no-go decision.
1228 if (!page_has_buffers(page
))
1229 create_empty_buffers(page
, 1 << inode
->i_blkbits
, 0);
1232 * Convert delayed allocate, unwritten or unmapped space
1233 * to real space and flush out to disk.
1235 error
= xfs_page_state_convert(inode
, page
, wbc
, 1, unmapped
);
1236 if (error
== -EAGAIN
)
1238 if (unlikely(error
< 0))
1244 redirty_page_for_writepage(wbc
, page
);
1254 struct address_space
*mapping
,
1255 struct writeback_control
*wbc
)
1257 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1258 return generic_writepages(mapping
, wbc
);
1262 * Called to move a page into cleanable state - and from there
1263 * to be released. Possibly the page is already clean. We always
1264 * have buffer heads in this call.
1266 * Returns 0 if the page is ok to release, 1 otherwise.
1268 * Possible scenarios are:
1270 * 1. We are being called to release a page which has been written
1271 * to via regular I/O. buffer heads will be dirty and possibly
1272 * delalloc. If no delalloc buffer heads in this case then we
1273 * can just return zero.
1275 * 2. We are called to release a page which has been written via
1276 * mmap, all we need to do is ensure there is no delalloc
1277 * state in the buffer heads, if not we can let the caller
1278 * free them and we should come back later via writepage.
1285 struct inode
*inode
= page
->mapping
->host
;
1286 int dirty
, delalloc
, unmapped
, unwritten
;
1287 struct writeback_control wbc
= {
1288 .sync_mode
= WB_SYNC_ALL
,
1292 xfs_page_trace(XFS_RELEASEPAGE_ENTER
, inode
, page
, 0);
1294 if (!page_has_buffers(page
))
1297 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1298 if (!delalloc
&& !unwritten
)
1301 if (!(gfp_mask
& __GFP_FS
))
1304 /* If we are already inside a transaction or the thread cannot
1305 * do I/O, we cannot release this page.
1307 if (current_test_flags(PF_FSTRANS
))
1311 * Convert delalloc space to real space, do not flush the
1312 * data out to disk, that will be done by the caller.
1313 * Never need to allocate space here - we will always
1314 * come back to writepage in that case.
1316 dirty
= xfs_page_state_convert(inode
, page
, &wbc
, 0, 0);
1317 if (dirty
== 0 && !unwritten
)
1322 return try_to_free_buffers(page
);
1327 struct inode
*inode
,
1329 struct buffer_head
*bh_result
,
1332 bmapi_flags_t flags
)
1340 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1341 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1342 size
= bh_result
->b_size
;
1343 error
= xfs_iomap(XFS_I(inode
), offset
, size
,
1344 create
? flags
: BMAPI_READ
, &iomap
, &niomap
);
1350 if (iomap
.iomap_bn
!= IOMAP_DADDR_NULL
) {
1352 * For unwritten extents do not report a disk address on
1353 * the read case (treat as if we're reading into a hole).
1355 if (create
|| !(iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1356 xfs_map_buffer(bh_result
, &iomap
, offset
,
1359 if (create
&& (iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1361 bh_result
->b_private
= inode
;
1362 set_buffer_unwritten(bh_result
);
1367 * If this is a realtime file, data may be on a different device.
1368 * to that pointed to from the buffer_head b_bdev currently.
1370 bh_result
->b_bdev
= iomap
.iomap_target
->bt_bdev
;
1373 * If we previously allocated a block out beyond eof and we are now
1374 * coming back to use it then we will need to flag it as new even if it
1375 * has a disk address.
1377 * With sub-block writes into unwritten extents we also need to mark
1378 * the buffer as new so that the unwritten parts of the buffer gets
1382 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1383 (offset
>= i_size_read(inode
)) ||
1384 (iomap
.iomap_flags
& (IOMAP_NEW
|IOMAP_UNWRITTEN
))))
1385 set_buffer_new(bh_result
);
1387 if (iomap
.iomap_flags
& IOMAP_DELAY
) {
1390 set_buffer_uptodate(bh_result
);
1391 set_buffer_mapped(bh_result
);
1392 set_buffer_delay(bh_result
);
1396 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1397 ASSERT(iomap
.iomap_bsize
- iomap
.iomap_delta
> 0);
1398 offset
= min_t(xfs_off_t
,
1399 iomap
.iomap_bsize
- iomap
.iomap_delta
, size
);
1400 bh_result
->b_size
= (ssize_t
)min_t(xfs_off_t
, LONG_MAX
, offset
);
1408 struct inode
*inode
,
1410 struct buffer_head
*bh_result
,
1413 return __xfs_get_blocks(inode
, iblock
,
1414 bh_result
, create
, 0, BMAPI_WRITE
);
1418 xfs_get_blocks_direct(
1419 struct inode
*inode
,
1421 struct buffer_head
*bh_result
,
1424 return __xfs_get_blocks(inode
, iblock
,
1425 bh_result
, create
, 1, BMAPI_WRITE
|BMAPI_DIRECT
);
1435 xfs_ioend_t
*ioend
= iocb
->private;
1438 * Non-NULL private data means we need to issue a transaction to
1439 * convert a range from unwritten to written extents. This needs
1440 * to happen from process context but aio+dio I/O completion
1441 * happens from irq context so we need to defer it to a workqueue.
1442 * This is not necessary for synchronous direct I/O, but we do
1443 * it anyway to keep the code uniform and simpler.
1445 * Well, if only it were that simple. Because synchronous direct I/O
1446 * requires extent conversion to occur *before* we return to userspace,
1447 * we have to wait for extent conversion to complete. Look at the
1448 * iocb that has been passed to us to determine if this is AIO or
1449 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1450 * workqueue and wait for it to complete.
1452 * The core direct I/O code might be changed to always call the
1453 * completion handler in the future, in which case all this can
1456 ioend
->io_offset
= offset
;
1457 ioend
->io_size
= size
;
1458 if (ioend
->io_type
== IOMAP_READ
) {
1459 xfs_finish_ioend(ioend
, 0);
1460 } else if (private && size
> 0) {
1461 xfs_finish_ioend(ioend
, is_sync_kiocb(iocb
));
1464 * A direct I/O write ioend starts it's life in unwritten
1465 * state in case they map an unwritten extent. This write
1466 * didn't map an unwritten extent so switch it's completion
1469 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
);
1470 xfs_finish_ioend(ioend
, 0);
1474 * blockdev_direct_IO can return an error even after the I/O
1475 * completion handler was called. Thus we need to protect
1476 * against double-freeing.
1478 iocb
->private = NULL
;
1485 const struct iovec
*iov
,
1487 unsigned long nr_segs
)
1489 struct file
*file
= iocb
->ki_filp
;
1490 struct inode
*inode
= file
->f_mapping
->host
;
1491 struct block_device
*bdev
;
1494 bdev
= xfs_find_bdev_for_inode(XFS_I(inode
));
1497 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_UNWRITTEN
);
1498 ret
= blockdev_direct_IO_own_locking(rw
, iocb
, inode
,
1499 bdev
, iov
, offset
, nr_segs
,
1500 xfs_get_blocks_direct
,
1503 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_READ
);
1504 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
1505 bdev
, iov
, offset
, nr_segs
,
1506 xfs_get_blocks_direct
,
1510 if (unlikely(ret
!= -EIOCBQUEUED
&& iocb
->private))
1511 xfs_destroy_ioend(iocb
->private);
1518 struct address_space
*mapping
,
1522 struct page
**pagep
,
1526 return block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1532 struct address_space
*mapping
,
1535 struct inode
*inode
= (struct inode
*)mapping
->host
;
1536 struct xfs_inode
*ip
= XFS_I(inode
);
1538 xfs_itrace_entry(XFS_I(inode
));
1539 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1540 xfs_flush_pages(ip
, (xfs_off_t
)0, -1, 0, FI_REMAPF
);
1541 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1542 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1547 struct file
*unused
,
1550 return mpage_readpage(page
, xfs_get_blocks
);
1555 struct file
*unused
,
1556 struct address_space
*mapping
,
1557 struct list_head
*pages
,
1560 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1564 xfs_vm_invalidatepage(
1566 unsigned long offset
)
1568 xfs_page_trace(XFS_INVALIDPAGE_ENTER
,
1569 page
->mapping
->host
, page
, offset
);
1570 block_invalidatepage(page
, offset
);
1573 const struct address_space_operations xfs_address_space_operations
= {
1574 .readpage
= xfs_vm_readpage
,
1575 .readpages
= xfs_vm_readpages
,
1576 .writepage
= xfs_vm_writepage
,
1577 .writepages
= xfs_vm_writepages
,
1578 .sync_page
= block_sync_page
,
1579 .releasepage
= xfs_vm_releasepage
,
1580 .invalidatepage
= xfs_vm_invalidatepage
,
1581 .write_begin
= xfs_vm_write_begin
,
1582 .write_end
= generic_write_end
,
1583 .bmap
= xfs_vm_bmap
,
1584 .direct_IO
= xfs_vm_direct_IO
,
1585 .migratepage
= buffer_migrate_page
,