2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 static kmem_zone_t
*xfs_buf_zone
;
38 STATIC
int xfsbufd(void *);
39 STATIC
int xfsbufd_wakeup(int, gfp_t
);
40 STATIC
void xfs_buf_delwri_queue(xfs_buf_t
*, int);
41 static struct shrinker xfs_buf_shake
= {
42 .shrink
= xfsbufd_wakeup
,
43 .seeks
= DEFAULT_SEEKS
,
46 static struct workqueue_struct
*xfslogd_workqueue
;
47 struct workqueue_struct
*xfsdatad_workqueue
;
57 ktrace_enter(xfs_buf_trace_buf
,
59 (void *)(unsigned long)bp
->b_flags
,
60 (void *)(unsigned long)bp
->b_hold
.counter
,
61 (void *)(unsigned long)bp
->b_sema
.count
.counter
,
64 (void *)(unsigned long)((bp
->b_file_offset
>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp
->b_file_offset
& 0xffffffff),
66 (void *)(unsigned long)bp
->b_buffer_length
,
67 NULL
, NULL
, NULL
, NULL
, NULL
);
69 ktrace_t
*xfs_buf_trace_buf
;
70 #define XFS_BUF_TRACE_SIZE 4096
71 #define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
74 #define XB_TRACE(bp, id, data) do { } while (0)
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
82 # define XB_SET_OWNER(bp) do { } while (0)
83 # define XB_CLEAR_OWNER(bp) do { } while (0)
84 # define XB_GET_OWNER(bp) do { } while (0)
87 #define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
91 #define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
94 #define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
100 * Page Region interfaces.
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
106 * Each such region is "bytes per page / bits per long" bytes long.
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
117 #error BITS_PER_LONG must be 32 or 64
119 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
131 first
= BTOPR(offset
);
132 final
= BTOPRT(offset
+ length
- 1);
133 first
= min(first
, final
);
136 mask
<<= BITS_PER_LONG
- (final
- first
);
137 mask
>>= BITS_PER_LONG
- (final
);
139 ASSERT(offset
+ length
<= PAGE_CACHE_SIZE
);
140 ASSERT((final
- first
) < BITS_PER_LONG
&& (final
- first
) >= 0);
151 set_page_private(page
,
152 page_private(page
) | page_region_mask(offset
, length
));
153 if (page_private(page
) == ~0UL)
154 SetPageUptodate(page
);
163 unsigned long mask
= page_region_mask(offset
, length
);
165 return (mask
&& (page_private(page
) & mask
) == mask
);
169 * Mapping of multi-page buffers into contiguous virtual space
172 typedef struct a_list
{
177 static a_list_t
*as_free_head
;
178 static int as_list_len
;
179 static DEFINE_SPINLOCK(as_lock
);
182 * Try to batch vunmaps because they are costly.
192 * Xen needs to be able to make sure it can get an exclusive
193 * RO mapping of pages it wants to turn into a pagetable. If
194 * a newly allocated page is also still being vmap()ed by xfs,
195 * it will cause pagetable construction to fail. This is a
196 * quick workaround to always eagerly unmap pages so that Xen
203 aentry
= kmalloc(sizeof(a_list_t
), GFP_NOWAIT
);
204 if (likely(aentry
)) {
206 aentry
->next
= as_free_head
;
207 aentry
->vm_addr
= addr
;
208 as_free_head
= aentry
;
210 spin_unlock(&as_lock
);
217 purge_addresses(void)
219 a_list_t
*aentry
, *old
;
221 if (as_free_head
== NULL
)
225 aentry
= as_free_head
;
228 spin_unlock(&as_lock
);
230 while ((old
= aentry
) != NULL
) {
231 vunmap(aentry
->vm_addr
);
232 aentry
= aentry
->next
;
238 * Internal xfs_buf_t object manipulation
244 xfs_buftarg_t
*target
,
245 xfs_off_t range_base
,
247 xfs_buf_flags_t flags
)
250 * We don't want certain flags to appear in b_flags.
252 flags
&= ~(XBF_LOCK
|XBF_MAPPED
|XBF_DONT_BLOCK
|XBF_READ_AHEAD
);
254 memset(bp
, 0, sizeof(xfs_buf_t
));
255 atomic_set(&bp
->b_hold
, 1);
256 init_MUTEX_LOCKED(&bp
->b_iodonesema
);
257 INIT_LIST_HEAD(&bp
->b_list
);
258 INIT_LIST_HEAD(&bp
->b_hash_list
);
259 init_MUTEX_LOCKED(&bp
->b_sema
); /* held, no waiters */
261 bp
->b_target
= target
;
262 bp
->b_file_offset
= range_base
;
264 * Set buffer_length and count_desired to the same value initially.
265 * I/O routines should use count_desired, which will be the same in
266 * most cases but may be reset (e.g. XFS recovery).
268 bp
->b_buffer_length
= bp
->b_count_desired
= range_length
;
270 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
271 atomic_set(&bp
->b_pin_count
, 0);
272 init_waitqueue_head(&bp
->b_waiters
);
274 XFS_STATS_INC(xb_create
);
275 XB_TRACE(bp
, "initialize", target
);
279 * Allocate a page array capable of holding a specified number
280 * of pages, and point the page buf at it.
286 xfs_buf_flags_t flags
)
288 /* Make sure that we have a page list */
289 if (bp
->b_pages
== NULL
) {
290 bp
->b_offset
= xfs_buf_poff(bp
->b_file_offset
);
291 bp
->b_page_count
= page_count
;
292 if (page_count
<= XB_PAGES
) {
293 bp
->b_pages
= bp
->b_page_array
;
295 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
296 page_count
, xb_to_km(flags
));
297 if (bp
->b_pages
== NULL
)
300 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
306 * Frees b_pages if it was allocated.
312 if (bp
->b_pages
!= bp
->b_page_array
) {
313 kmem_free(bp
->b_pages
,
314 bp
->b_page_count
* sizeof(struct page
*));
319 * Releases the specified buffer.
321 * The modification state of any associated pages is left unchanged.
322 * The buffer most not be on any hash - use xfs_buf_rele instead for
323 * hashed and refcounted buffers
329 XB_TRACE(bp
, "free", 0);
331 ASSERT(list_empty(&bp
->b_hash_list
));
333 if (bp
->b_flags
& (_XBF_PAGE_CACHE
|_XBF_PAGES
)) {
336 if ((bp
->b_flags
& XBF_MAPPED
) && (bp
->b_page_count
> 1))
337 free_address(bp
->b_addr
- bp
->b_offset
);
339 for (i
= 0; i
< bp
->b_page_count
; i
++) {
340 struct page
*page
= bp
->b_pages
[i
];
342 if (bp
->b_flags
& _XBF_PAGE_CACHE
)
343 ASSERT(!PagePrivate(page
));
344 page_cache_release(page
);
346 _xfs_buf_free_pages(bp
);
349 xfs_buf_deallocate(bp
);
353 * Finds all pages for buffer in question and builds it's page list.
356 _xfs_buf_lookup_pages(
360 struct address_space
*mapping
= bp
->b_target
->bt_mapping
;
361 size_t blocksize
= bp
->b_target
->bt_bsize
;
362 size_t size
= bp
->b_count_desired
;
363 size_t nbytes
, offset
;
364 gfp_t gfp_mask
= xb_to_gfp(flags
);
365 unsigned short page_count
, i
;
370 end
= bp
->b_file_offset
+ bp
->b_buffer_length
;
371 page_count
= xfs_buf_btoc(end
) - xfs_buf_btoct(bp
->b_file_offset
);
373 error
= _xfs_buf_get_pages(bp
, page_count
, flags
);
376 bp
->b_flags
|= _XBF_PAGE_CACHE
;
378 offset
= bp
->b_offset
;
379 first
= bp
->b_file_offset
>> PAGE_CACHE_SHIFT
;
381 for (i
= 0; i
< bp
->b_page_count
; i
++) {
386 page
= find_or_create_page(mapping
, first
+ i
, gfp_mask
);
387 if (unlikely(page
== NULL
)) {
388 if (flags
& XBF_READ_AHEAD
) {
389 bp
->b_page_count
= i
;
394 * This could deadlock.
396 * But until all the XFS lowlevel code is revamped to
397 * handle buffer allocation failures we can't do much.
399 if (!(++retries
% 100))
401 "XFS: possible memory allocation "
402 "deadlock in %s (mode:0x%x)\n",
405 XFS_STATS_INC(xb_page_retries
);
406 xfsbufd_wakeup(0, gfp_mask
);
407 congestion_wait(WRITE
, HZ
/50);
411 XFS_STATS_INC(xb_page_found
);
413 nbytes
= min_t(size_t, size
, PAGE_CACHE_SIZE
- offset
);
416 ASSERT(!PagePrivate(page
));
417 if (!PageUptodate(page
)) {
419 if (blocksize
< PAGE_CACHE_SIZE
&& !PagePrivate(page
)) {
420 if (test_page_region(page
, offset
, nbytes
))
426 bp
->b_pages
[i
] = page
;
430 if (page_count
== bp
->b_page_count
)
431 bp
->b_flags
|= XBF_DONE
;
433 XB_TRACE(bp
, "lookup_pages", (long)page_count
);
438 * Map buffer into kernel address-space if nessecary.
445 /* A single page buffer is always mappable */
446 if (bp
->b_page_count
== 1) {
447 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
448 bp
->b_flags
|= XBF_MAPPED
;
449 } else if (flags
& XBF_MAPPED
) {
450 if (as_list_len
> 64)
452 bp
->b_addr
= vmap(bp
->b_pages
, bp
->b_page_count
,
453 VM_MAP
, PAGE_KERNEL
);
454 if (unlikely(bp
->b_addr
== NULL
))
456 bp
->b_addr
+= bp
->b_offset
;
457 bp
->b_flags
|= XBF_MAPPED
;
464 * Finding and Reading Buffers
468 * Look up, and creates if absent, a lockable buffer for
469 * a given range of an inode. The buffer is returned
470 * locked. If other overlapping buffers exist, they are
471 * released before the new buffer is created and locked,
472 * which may imply that this call will block until those buffers
473 * are unlocked. No I/O is implied by this call.
477 xfs_buftarg_t
*btp
, /* block device target */
478 xfs_off_t ioff
, /* starting offset of range */
479 size_t isize
, /* length of range */
480 xfs_buf_flags_t flags
,
483 xfs_off_t range_base
;
488 range_base
= (ioff
<< BBSHIFT
);
489 range_length
= (isize
<< BBSHIFT
);
491 /* Check for IOs smaller than the sector size / not sector aligned */
492 ASSERT(!(range_length
< (1 << btp
->bt_sshift
)));
493 ASSERT(!(range_base
& (xfs_off_t
)btp
->bt_smask
));
495 hash
= &btp
->bt_hash
[hash_long((unsigned long)ioff
, btp
->bt_hashshift
)];
497 spin_lock(&hash
->bh_lock
);
499 list_for_each_entry_safe(bp
, n
, &hash
->bh_list
, b_hash_list
) {
500 ASSERT(btp
== bp
->b_target
);
501 if (bp
->b_file_offset
== range_base
&&
502 bp
->b_buffer_length
== range_length
) {
504 * If we look at something, bring it to the
505 * front of the list for next time.
507 atomic_inc(&bp
->b_hold
);
508 list_move(&bp
->b_hash_list
, &hash
->bh_list
);
515 _xfs_buf_initialize(new_bp
, btp
, range_base
,
516 range_length
, flags
);
517 new_bp
->b_hash
= hash
;
518 list_add(&new_bp
->b_hash_list
, &hash
->bh_list
);
520 XFS_STATS_INC(xb_miss_locked
);
523 spin_unlock(&hash
->bh_lock
);
527 spin_unlock(&hash
->bh_lock
);
529 /* Attempt to get the semaphore without sleeping,
530 * if this does not work then we need to drop the
531 * spinlock and do a hard attempt on the semaphore.
533 if (down_trylock(&bp
->b_sema
)) {
534 if (!(flags
& XBF_TRYLOCK
)) {
535 /* wait for buffer ownership */
536 XB_TRACE(bp
, "get_lock", 0);
538 XFS_STATS_INC(xb_get_locked_waited
);
540 /* We asked for a trylock and failed, no need
541 * to look at file offset and length here, we
542 * know that this buffer at least overlaps our
543 * buffer and is locked, therefore our buffer
544 * either does not exist, or is this buffer.
547 XFS_STATS_INC(xb_busy_locked
);
555 if (bp
->b_flags
& XBF_STALE
) {
556 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
557 bp
->b_flags
&= XBF_MAPPED
;
559 XB_TRACE(bp
, "got_lock", 0);
560 XFS_STATS_INC(xb_get_locked
);
565 * Assembles a buffer covering the specified range.
566 * Storage in memory for all portions of the buffer will be allocated,
567 * although backing storage may not be.
571 xfs_buftarg_t
*target
,/* target for buffer */
572 xfs_off_t ioff
, /* starting offset of range */
573 size_t isize
, /* length of range */
574 xfs_buf_flags_t flags
)
576 xfs_buf_t
*bp
, *new_bp
;
579 new_bp
= xfs_buf_allocate(flags
);
580 if (unlikely(!new_bp
))
583 bp
= _xfs_buf_find(target
, ioff
, isize
, flags
, new_bp
);
585 error
= _xfs_buf_lookup_pages(bp
, flags
);
589 xfs_buf_deallocate(new_bp
);
590 if (unlikely(bp
== NULL
))
594 for (i
= 0; i
< bp
->b_page_count
; i
++)
595 mark_page_accessed(bp
->b_pages
[i
]);
597 if (!(bp
->b_flags
& XBF_MAPPED
)) {
598 error
= _xfs_buf_map_pages(bp
, flags
);
599 if (unlikely(error
)) {
600 printk(KERN_WARNING
"%s: failed to map pages\n",
606 XFS_STATS_INC(xb_get
);
609 * Always fill in the block number now, the mapped cases can do
610 * their own overlay of this later.
613 bp
->b_count_desired
= bp
->b_buffer_length
;
615 XB_TRACE(bp
, "get", (unsigned long)flags
);
619 if (flags
& (XBF_LOCK
| XBF_TRYLOCK
))
627 xfs_buftarg_t
*target
,
630 xfs_buf_flags_t flags
)
636 bp
= xfs_buf_get_flags(target
, ioff
, isize
, flags
);
638 if (!XFS_BUF_ISDONE(bp
)) {
639 XB_TRACE(bp
, "read", (unsigned long)flags
);
640 XFS_STATS_INC(xb_get_read
);
641 xfs_buf_iostart(bp
, flags
);
642 } else if (flags
& XBF_ASYNC
) {
643 XB_TRACE(bp
, "read_async", (unsigned long)flags
);
645 * Read ahead call which is already satisfied,
650 XB_TRACE(bp
, "read_done", (unsigned long)flags
);
651 /* We do not want read in the flags */
652 bp
->b_flags
&= ~XBF_READ
;
659 if (flags
& (XBF_LOCK
| XBF_TRYLOCK
))
666 * If we are not low on memory then do the readahead in a deadlock
671 xfs_buftarg_t
*target
,
674 xfs_buf_flags_t flags
)
676 struct backing_dev_info
*bdi
;
678 bdi
= target
->bt_mapping
->backing_dev_info
;
679 if (bdi_read_congested(bdi
))
682 flags
|= (XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
);
683 xfs_buf_read_flags(target
, ioff
, isize
, flags
);
689 xfs_buftarg_t
*target
)
693 bp
= xfs_buf_allocate(0);
695 _xfs_buf_initialize(bp
, target
, 0, len
, 0);
699 static inline struct page
*
703 if ((!is_vmalloc_addr(addr
))) {
704 return virt_to_page(addr
);
706 return vmalloc_to_page(addr
);
711 xfs_buf_associate_memory(
718 unsigned long pageaddr
;
719 unsigned long offset
;
723 pageaddr
= (unsigned long)mem
& PAGE_CACHE_MASK
;
724 offset
= (unsigned long)mem
- pageaddr
;
725 buflen
= PAGE_CACHE_ALIGN(len
+ offset
);
726 page_count
= buflen
>> PAGE_CACHE_SHIFT
;
728 /* Free any previous set of page pointers */
730 _xfs_buf_free_pages(bp
);
735 rval
= _xfs_buf_get_pages(bp
, page_count
, 0);
739 bp
->b_offset
= offset
;
741 for (i
= 0; i
< bp
->b_page_count
; i
++) {
742 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
743 pageaddr
+= PAGE_CACHE_SIZE
;
746 bp
->b_count_desired
= len
;
747 bp
->b_buffer_length
= buflen
;
748 bp
->b_flags
|= XBF_MAPPED
;
756 xfs_buftarg_t
*target
)
758 unsigned long page_count
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
762 bp
= xfs_buf_allocate(0);
763 if (unlikely(bp
== NULL
))
765 _xfs_buf_initialize(bp
, target
, 0, len
, 0);
767 error
= _xfs_buf_get_pages(bp
, page_count
, 0);
771 for (i
= 0; i
< page_count
; i
++) {
772 bp
->b_pages
[i
] = alloc_page(GFP_KERNEL
);
776 bp
->b_flags
|= _XBF_PAGES
;
778 error
= _xfs_buf_map_pages(bp
, XBF_MAPPED
);
779 if (unlikely(error
)) {
780 printk(KERN_WARNING
"%s: failed to map pages\n",
787 XB_TRACE(bp
, "no_daddr", len
);
792 __free_page(bp
->b_pages
[i
]);
793 _xfs_buf_free_pages(bp
);
795 xfs_buf_deallocate(bp
);
801 * Increment reference count on buffer, to hold the buffer concurrently
802 * with another thread which may release (free) the buffer asynchronously.
803 * Must hold the buffer already to call this function.
809 atomic_inc(&bp
->b_hold
);
810 XB_TRACE(bp
, "hold", 0);
814 * Releases a hold on the specified buffer. If the
815 * the hold count is 1, calls xfs_buf_free.
821 xfs_bufhash_t
*hash
= bp
->b_hash
;
823 XB_TRACE(bp
, "rele", bp
->b_relse
);
825 if (unlikely(!hash
)) {
826 ASSERT(!bp
->b_relse
);
827 if (atomic_dec_and_test(&bp
->b_hold
))
832 if (atomic_dec_and_lock(&bp
->b_hold
, &hash
->bh_lock
)) {
834 atomic_inc(&bp
->b_hold
);
835 spin_unlock(&hash
->bh_lock
);
836 (*(bp
->b_relse
)) (bp
);
837 } else if (bp
->b_flags
& XBF_FS_MANAGED
) {
838 spin_unlock(&hash
->bh_lock
);
840 ASSERT(!(bp
->b_flags
& (XBF_DELWRI
|_XBF_DELWRI_Q
)));
841 list_del_init(&bp
->b_hash_list
);
842 spin_unlock(&hash
->bh_lock
);
847 * Catch reference count leaks
849 ASSERT(atomic_read(&bp
->b_hold
) >= 0);
855 * Mutual exclusion on buffers. Locking model:
857 * Buffers associated with inodes for which buffer locking
858 * is not enabled are not protected by semaphores, and are
859 * assumed to be exclusively owned by the caller. There is a
860 * spinlock in the buffer, used by the caller when concurrent
861 * access is possible.
865 * Locks a buffer object, if it is not already locked.
866 * Note that this in no way locks the underlying pages, so it is only
867 * useful for synchronizing concurrent use of buffer objects, not for
868 * synchronizing independent access to the underlying pages.
876 locked
= down_trylock(&bp
->b_sema
) == 0;
880 XB_TRACE(bp
, "cond_lock", (long)locked
);
881 return locked
? 0 : -EBUSY
;
884 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
889 return bp
->b_sema
.count
;
894 * Locks a buffer object.
895 * Note that this in no way locks the underlying pages, so it is only
896 * useful for synchronizing concurrent use of buffer objects, not for
897 * synchronizing independent access to the underlying pages.
903 XB_TRACE(bp
, "lock", 0);
904 if (atomic_read(&bp
->b_io_remaining
))
905 blk_run_address_space(bp
->b_target
->bt_mapping
);
908 XB_TRACE(bp
, "locked", 0);
912 * Releases the lock on the buffer object.
913 * If the buffer is marked delwri but is not queued, do so before we
914 * unlock the buffer as we need to set flags correctly. We also need to
915 * take a reference for the delwri queue because the unlocker is going to
916 * drop their's and they don't know we just queued it.
922 if ((bp
->b_flags
& (XBF_DELWRI
|_XBF_DELWRI_Q
)) == XBF_DELWRI
) {
923 atomic_inc(&bp
->b_hold
);
924 bp
->b_flags
|= XBF_ASYNC
;
925 xfs_buf_delwri_queue(bp
, 0);
930 XB_TRACE(bp
, "unlock", 0);
935 * Pinning Buffer Storage in Memory
936 * Ensure that no attempt to force a buffer to disk will succeed.
942 atomic_inc(&bp
->b_pin_count
);
943 XB_TRACE(bp
, "pin", (long)bp
->b_pin_count
.counter
);
950 if (atomic_dec_and_test(&bp
->b_pin_count
))
951 wake_up_all(&bp
->b_waiters
);
952 XB_TRACE(bp
, "unpin", (long)bp
->b_pin_count
.counter
);
959 return atomic_read(&bp
->b_pin_count
);
966 DECLARE_WAITQUEUE (wait
, current
);
968 if (atomic_read(&bp
->b_pin_count
) == 0)
971 add_wait_queue(&bp
->b_waiters
, &wait
);
973 set_current_state(TASK_UNINTERRUPTIBLE
);
974 if (atomic_read(&bp
->b_pin_count
) == 0)
976 if (atomic_read(&bp
->b_io_remaining
))
977 blk_run_address_space(bp
->b_target
->bt_mapping
);
980 remove_wait_queue(&bp
->b_waiters
, &wait
);
981 set_current_state(TASK_RUNNING
);
985 * Buffer Utility Routines
990 struct work_struct
*work
)
993 container_of(work
, xfs_buf_t
, b_iodone_work
);
996 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
997 * ordered flag and reissue them. Because we can't tell the higher
998 * layers directly that they should not issue ordered I/O anymore, they
999 * need to check if the ordered flag was cleared during I/O completion.
1001 if ((bp
->b_error
== EOPNOTSUPP
) &&
1002 (bp
->b_flags
& (XBF_ORDERED
|XBF_ASYNC
)) == (XBF_ORDERED
|XBF_ASYNC
)) {
1003 XB_TRACE(bp
, "ordered_retry", bp
->b_iodone
);
1004 bp
->b_flags
&= ~XBF_ORDERED
;
1005 xfs_buf_iorequest(bp
);
1006 } else if (bp
->b_iodone
)
1007 (*(bp
->b_iodone
))(bp
);
1008 else if (bp
->b_flags
& XBF_ASYNC
)
1017 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1018 if (bp
->b_error
== 0)
1019 bp
->b_flags
|= XBF_DONE
;
1021 XB_TRACE(bp
, "iodone", bp
->b_iodone
);
1023 if ((bp
->b_iodone
) || (bp
->b_flags
& XBF_ASYNC
)) {
1025 INIT_WORK(&bp
->b_iodone_work
, xfs_buf_iodone_work
);
1026 queue_work(xfslogd_workqueue
, &bp
->b_iodone_work
);
1028 xfs_buf_iodone_work(&bp
->b_iodone_work
);
1031 up(&bp
->b_iodonesema
);
1040 ASSERT(error
>= 0 && error
<= 0xffff);
1041 bp
->b_error
= (unsigned short)error
;
1042 XB_TRACE(bp
, "ioerror", (unsigned long)error
);
1046 * Initiate I/O on a buffer, based on the flags supplied.
1047 * The b_iodone routine in the buffer supplied will only be called
1048 * when all of the subsidiary I/O requests, if any, have been completed.
1053 xfs_buf_flags_t flags
)
1057 XB_TRACE(bp
, "iostart", (unsigned long)flags
);
1059 if (flags
& XBF_DELWRI
) {
1060 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_ASYNC
);
1061 bp
->b_flags
|= flags
& (XBF_DELWRI
| XBF_ASYNC
);
1062 xfs_buf_delwri_queue(bp
, 1);
1066 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_ASYNC
| XBF_DELWRI
| \
1067 XBF_READ_AHEAD
| _XBF_RUN_QUEUES
);
1068 bp
->b_flags
|= flags
& (XBF_READ
| XBF_WRITE
| XBF_ASYNC
| \
1069 XBF_READ_AHEAD
| _XBF_RUN_QUEUES
);
1071 BUG_ON(bp
->b_bn
== XFS_BUF_DADDR_NULL
);
1073 /* For writes allow an alternate strategy routine to precede
1074 * the actual I/O request (which may not be issued at all in
1075 * a shutdown situation, for example).
1077 status
= (flags
& XBF_WRITE
) ?
1078 xfs_buf_iostrategy(bp
) : xfs_buf_iorequest(bp
);
1080 /* Wait for I/O if we are not an async request.
1081 * Note: async I/O request completion will release the buffer,
1082 * and that can already be done by this point. So using the
1083 * buffer pointer from here on, after async I/O, is invalid.
1085 if (!status
&& !(flags
& XBF_ASYNC
))
1086 status
= xfs_buf_iowait(bp
);
1096 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1097 xfs_buf_ioend(bp
, schedule
);
1105 xfs_buf_t
*bp
= (xfs_buf_t
*)bio
->bi_private
;
1106 unsigned int blocksize
= bp
->b_target
->bt_bsize
;
1107 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1109 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1113 struct page
*page
= bvec
->bv_page
;
1115 ASSERT(!PagePrivate(page
));
1116 if (unlikely(bp
->b_error
)) {
1117 if (bp
->b_flags
& XBF_READ
)
1118 ClearPageUptodate(page
);
1119 } else if (blocksize
>= PAGE_CACHE_SIZE
) {
1120 SetPageUptodate(page
);
1121 } else if (!PagePrivate(page
) &&
1122 (bp
->b_flags
& _XBF_PAGE_CACHE
)) {
1123 set_page_region(page
, bvec
->bv_offset
, bvec
->bv_len
);
1126 if (--bvec
>= bio
->bi_io_vec
)
1127 prefetchw(&bvec
->bv_page
->flags
);
1128 } while (bvec
>= bio
->bi_io_vec
);
1130 _xfs_buf_ioend(bp
, 1);
1138 int rw
, map_i
, total_nr_pages
, nr_pages
;
1140 int offset
= bp
->b_offset
;
1141 int size
= bp
->b_count_desired
;
1142 sector_t sector
= bp
->b_bn
;
1143 unsigned int blocksize
= bp
->b_target
->bt_bsize
;
1145 total_nr_pages
= bp
->b_page_count
;
1148 if (bp
->b_flags
& XBF_ORDERED
) {
1149 ASSERT(!(bp
->b_flags
& XBF_READ
));
1151 } else if (bp
->b_flags
& _XBF_RUN_QUEUES
) {
1152 ASSERT(!(bp
->b_flags
& XBF_READ_AHEAD
));
1153 bp
->b_flags
&= ~_XBF_RUN_QUEUES
;
1154 rw
= (bp
->b_flags
& XBF_WRITE
) ? WRITE_SYNC
: READ_SYNC
;
1156 rw
= (bp
->b_flags
& XBF_WRITE
) ? WRITE
:
1157 (bp
->b_flags
& XBF_READ_AHEAD
) ? READA
: READ
;
1160 /* Special code path for reading a sub page size buffer in --
1161 * we populate up the whole page, and hence the other metadata
1162 * in the same page. This optimization is only valid when the
1163 * filesystem block size is not smaller than the page size.
1165 if ((bp
->b_buffer_length
< PAGE_CACHE_SIZE
) &&
1166 (bp
->b_flags
& XBF_READ
) &&
1167 (blocksize
>= PAGE_CACHE_SIZE
)) {
1168 bio
= bio_alloc(GFP_NOIO
, 1);
1170 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1171 bio
->bi_sector
= sector
- (offset
>> BBSHIFT
);
1172 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1173 bio
->bi_private
= bp
;
1175 bio_add_page(bio
, bp
->b_pages
[0], PAGE_CACHE_SIZE
, 0);
1178 atomic_inc(&bp
->b_io_remaining
);
1184 atomic_inc(&bp
->b_io_remaining
);
1185 nr_pages
= BIO_MAX_SECTORS
>> (PAGE_SHIFT
- BBSHIFT
);
1186 if (nr_pages
> total_nr_pages
)
1187 nr_pages
= total_nr_pages
;
1189 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1190 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1191 bio
->bi_sector
= sector
;
1192 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1193 bio
->bi_private
= bp
;
1195 for (; size
&& nr_pages
; nr_pages
--, map_i
++) {
1196 int rbytes
, nbytes
= PAGE_CACHE_SIZE
- offset
;
1201 rbytes
= bio_add_page(bio
, bp
->b_pages
[map_i
], nbytes
, offset
);
1202 if (rbytes
< nbytes
)
1206 sector
+= nbytes
>> BBSHIFT
;
1212 if (likely(bio
->bi_size
)) {
1213 submit_bio(rw
, bio
);
1218 xfs_buf_ioerror(bp
, EIO
);
1226 XB_TRACE(bp
, "iorequest", 0);
1228 if (bp
->b_flags
& XBF_DELWRI
) {
1229 xfs_buf_delwri_queue(bp
, 1);
1233 if (bp
->b_flags
& XBF_WRITE
) {
1234 xfs_buf_wait_unpin(bp
);
1239 /* Set the count to 1 initially, this will stop an I/O
1240 * completion callout which happens before we have started
1241 * all the I/O from calling xfs_buf_ioend too early.
1243 atomic_set(&bp
->b_io_remaining
, 1);
1244 _xfs_buf_ioapply(bp
);
1245 _xfs_buf_ioend(bp
, 0);
1252 * Waits for I/O to complete on the buffer supplied.
1253 * It returns immediately if no I/O is pending.
1254 * It returns the I/O error code, if any, or 0 if there was no error.
1260 XB_TRACE(bp
, "iowait", 0);
1261 if (atomic_read(&bp
->b_io_remaining
))
1262 blk_run_address_space(bp
->b_target
->bt_mapping
);
1263 down(&bp
->b_iodonesema
);
1264 XB_TRACE(bp
, "iowaited", (long)bp
->b_error
);
1275 if (bp
->b_flags
& XBF_MAPPED
)
1276 return XFS_BUF_PTR(bp
) + offset
;
1278 offset
+= bp
->b_offset
;
1279 page
= bp
->b_pages
[offset
>> PAGE_CACHE_SHIFT
];
1280 return (xfs_caddr_t
)page_address(page
) + (offset
& (PAGE_CACHE_SIZE
-1));
1284 * Move data into or out of a buffer.
1288 xfs_buf_t
*bp
, /* buffer to process */
1289 size_t boff
, /* starting buffer offset */
1290 size_t bsize
, /* length to copy */
1291 caddr_t data
, /* data address */
1292 xfs_buf_rw_t mode
) /* read/write/zero flag */
1294 size_t bend
, cpoff
, csize
;
1297 bend
= boff
+ bsize
;
1298 while (boff
< bend
) {
1299 page
= bp
->b_pages
[xfs_buf_btoct(boff
+ bp
->b_offset
)];
1300 cpoff
= xfs_buf_poff(boff
+ bp
->b_offset
);
1301 csize
= min_t(size_t,
1302 PAGE_CACHE_SIZE
-cpoff
, bp
->b_count_desired
-boff
);
1304 ASSERT(((csize
+ cpoff
) <= PAGE_CACHE_SIZE
));
1308 memset(page_address(page
) + cpoff
, 0, csize
);
1311 memcpy(data
, page_address(page
) + cpoff
, csize
);
1314 memcpy(page_address(page
) + cpoff
, data
, csize
);
1323 * Handling of buffer targets (buftargs).
1327 * Wait for any bufs with callbacks that have been submitted but
1328 * have not yet returned... walk the hash list for the target.
1335 xfs_bufhash_t
*hash
;
1338 for (i
= 0; i
< (1 << btp
->bt_hashshift
); i
++) {
1339 hash
= &btp
->bt_hash
[i
];
1341 spin_lock(&hash
->bh_lock
);
1342 list_for_each_entry_safe(bp
, n
, &hash
->bh_list
, b_hash_list
) {
1343 ASSERT(btp
== bp
->b_target
);
1344 if (!(bp
->b_flags
& XBF_FS_MANAGED
)) {
1345 spin_unlock(&hash
->bh_lock
);
1347 * Catch superblock reference count leaks
1350 BUG_ON(bp
->b_bn
== 0);
1355 spin_unlock(&hash
->bh_lock
);
1360 * Allocate buffer hash table for a given target.
1361 * For devices containing metadata (i.e. not the log/realtime devices)
1362 * we need to allocate a much larger hash table.
1371 btp
->bt_hashshift
= external
? 3 : 8; /* 8 or 256 buckets */
1372 btp
->bt_hashmask
= (1 << btp
->bt_hashshift
) - 1;
1373 btp
->bt_hash
= kmem_zalloc((1 << btp
->bt_hashshift
) *
1374 sizeof(xfs_bufhash_t
), KM_SLEEP
| KM_LARGE
);
1375 for (i
= 0; i
< (1 << btp
->bt_hashshift
); i
++) {
1376 spin_lock_init(&btp
->bt_hash
[i
].bh_lock
);
1377 INIT_LIST_HEAD(&btp
->bt_hash
[i
].bh_list
);
1385 kmem_free(btp
->bt_hash
, (1<<btp
->bt_hashshift
) * sizeof(xfs_bufhash_t
));
1386 btp
->bt_hash
= NULL
;
1390 * buftarg list for delwrite queue processing
1392 static LIST_HEAD(xfs_buftarg_list
);
1393 static DEFINE_SPINLOCK(xfs_buftarg_lock
);
1396 xfs_register_buftarg(
1399 spin_lock(&xfs_buftarg_lock
);
1400 list_add(&btp
->bt_list
, &xfs_buftarg_list
);
1401 spin_unlock(&xfs_buftarg_lock
);
1405 xfs_unregister_buftarg(
1408 spin_lock(&xfs_buftarg_lock
);
1409 list_del(&btp
->bt_list
);
1410 spin_unlock(&xfs_buftarg_lock
);
1418 xfs_flush_buftarg(btp
, 1);
1419 xfs_blkdev_issue_flush(btp
);
1421 xfs_blkdev_put(btp
->bt_bdev
);
1422 xfs_free_bufhash(btp
);
1423 iput(btp
->bt_mapping
->host
);
1425 /* Unregister the buftarg first so that we don't get a
1426 * wakeup finding a non-existent task
1428 xfs_unregister_buftarg(btp
);
1429 kthread_stop(btp
->bt_task
);
1431 kmem_free(btp
, sizeof(*btp
));
1435 xfs_setsize_buftarg_flags(
1437 unsigned int blocksize
,
1438 unsigned int sectorsize
,
1441 btp
->bt_bsize
= blocksize
;
1442 btp
->bt_sshift
= ffs(sectorsize
) - 1;
1443 btp
->bt_smask
= sectorsize
- 1;
1445 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1447 "XFS: Cannot set_blocksize to %u on device %s\n",
1448 sectorsize
, XFS_BUFTARG_NAME(btp
));
1453 (PAGE_CACHE_SIZE
/ BITS_PER_LONG
) > sectorsize
) {
1455 "XFS: %u byte sectors in use on device %s. "
1456 "This is suboptimal; %u or greater is ideal.\n",
1457 sectorsize
, XFS_BUFTARG_NAME(btp
),
1458 (unsigned int)PAGE_CACHE_SIZE
/ BITS_PER_LONG
);
1465 * When allocating the initial buffer target we have not yet
1466 * read in the superblock, so don't know what sized sectors
1467 * are being used is at this early stage. Play safe.
1470 xfs_setsize_buftarg_early(
1472 struct block_device
*bdev
)
1474 return xfs_setsize_buftarg_flags(btp
,
1475 PAGE_CACHE_SIZE
, bdev_hardsect_size(bdev
), 0);
1479 xfs_setsize_buftarg(
1481 unsigned int blocksize
,
1482 unsigned int sectorsize
)
1484 return xfs_setsize_buftarg_flags(btp
, blocksize
, sectorsize
, 1);
1488 xfs_mapping_buftarg(
1490 struct block_device
*bdev
)
1492 struct backing_dev_info
*bdi
;
1493 struct inode
*inode
;
1494 struct address_space
*mapping
;
1495 static const struct address_space_operations mapping_aops
= {
1496 .sync_page
= block_sync_page
,
1497 .migratepage
= fail_migrate_page
,
1500 inode
= new_inode(bdev
->bd_inode
->i_sb
);
1503 "XFS: Cannot allocate mapping inode for device %s\n",
1504 XFS_BUFTARG_NAME(btp
));
1507 inode
->i_mode
= S_IFBLK
;
1508 inode
->i_bdev
= bdev
;
1509 inode
->i_rdev
= bdev
->bd_dev
;
1510 bdi
= blk_get_backing_dev_info(bdev
);
1512 bdi
= &default_backing_dev_info
;
1513 mapping
= &inode
->i_data
;
1514 mapping
->a_ops
= &mapping_aops
;
1515 mapping
->backing_dev_info
= bdi
;
1516 mapping_set_gfp_mask(mapping
, GFP_NOFS
);
1517 btp
->bt_mapping
= mapping
;
1522 xfs_alloc_delwrite_queue(
1527 INIT_LIST_HEAD(&btp
->bt_list
);
1528 INIT_LIST_HEAD(&btp
->bt_delwrite_queue
);
1529 spin_lock_init(&btp
->bt_delwrite_lock
);
1531 btp
->bt_task
= kthread_run(xfsbufd
, btp
, "xfsbufd");
1532 if (IS_ERR(btp
->bt_task
)) {
1533 error
= PTR_ERR(btp
->bt_task
);
1536 xfs_register_buftarg(btp
);
1543 struct block_device
*bdev
,
1548 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
);
1550 btp
->bt_dev
= bdev
->bd_dev
;
1551 btp
->bt_bdev
= bdev
;
1552 if (xfs_setsize_buftarg_early(btp
, bdev
))
1554 if (xfs_mapping_buftarg(btp
, bdev
))
1556 if (xfs_alloc_delwrite_queue(btp
))
1558 xfs_alloc_bufhash(btp
, external
);
1562 kmem_free(btp
, sizeof(*btp
));
1568 * Delayed write buffer handling
1571 xfs_buf_delwri_queue(
1575 struct list_head
*dwq
= &bp
->b_target
->bt_delwrite_queue
;
1576 spinlock_t
*dwlk
= &bp
->b_target
->bt_delwrite_lock
;
1578 XB_TRACE(bp
, "delwri_q", (long)unlock
);
1579 ASSERT((bp
->b_flags
&(XBF_DELWRI
|XBF_ASYNC
)) == (XBF_DELWRI
|XBF_ASYNC
));
1582 /* If already in the queue, dequeue and place at tail */
1583 if (!list_empty(&bp
->b_list
)) {
1584 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1586 atomic_dec(&bp
->b_hold
);
1587 list_del(&bp
->b_list
);
1590 bp
->b_flags
|= _XBF_DELWRI_Q
;
1591 list_add_tail(&bp
->b_list
, dwq
);
1592 bp
->b_queuetime
= jiffies
;
1600 xfs_buf_delwri_dequeue(
1603 spinlock_t
*dwlk
= &bp
->b_target
->bt_delwrite_lock
;
1607 if ((bp
->b_flags
& XBF_DELWRI
) && !list_empty(&bp
->b_list
)) {
1608 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1609 list_del_init(&bp
->b_list
);
1612 bp
->b_flags
&= ~(XBF_DELWRI
|_XBF_DELWRI_Q
);
1618 XB_TRACE(bp
, "delwri_dq", (long)dequeued
);
1622 xfs_buf_runall_queues(
1623 struct workqueue_struct
*queue
)
1625 flush_workqueue(queue
);
1635 spin_lock(&xfs_buftarg_lock
);
1636 list_for_each_entry(btp
, &xfs_buftarg_list
, bt_list
) {
1637 if (test_bit(XBT_FORCE_SLEEP
, &btp
->bt_flags
))
1639 set_bit(XBT_FORCE_FLUSH
, &btp
->bt_flags
);
1640 wake_up_process(btp
->bt_task
);
1642 spin_unlock(&xfs_buftarg_lock
);
1647 * Move as many buffers as specified to the supplied list
1648 * idicating if we skipped any buffers to prevent deadlocks.
1651 xfs_buf_delwri_split(
1652 xfs_buftarg_t
*target
,
1653 struct list_head
*list
,
1657 struct list_head
*dwq
= &target
->bt_delwrite_queue
;
1658 spinlock_t
*dwlk
= &target
->bt_delwrite_lock
;
1662 force
= test_and_clear_bit(XBT_FORCE_FLUSH
, &target
->bt_flags
);
1663 INIT_LIST_HEAD(list
);
1665 list_for_each_entry_safe(bp
, n
, dwq
, b_list
) {
1666 XB_TRACE(bp
, "walkq1", (long)xfs_buf_ispin(bp
));
1667 ASSERT(bp
->b_flags
& XBF_DELWRI
);
1669 if (!xfs_buf_ispin(bp
) && !xfs_buf_cond_lock(bp
)) {
1671 time_before(jiffies
, bp
->b_queuetime
+ age
)) {
1676 bp
->b_flags
&= ~(XBF_DELWRI
|_XBF_DELWRI_Q
|
1678 bp
->b_flags
|= XBF_WRITE
;
1679 list_move_tail(&bp
->b_list
, list
);
1693 struct list_head tmp
;
1694 xfs_buftarg_t
*target
= (xfs_buftarg_t
*)data
;
1698 current
->flags
|= PF_MEMALLOC
;
1703 if (unlikely(freezing(current
))) {
1704 set_bit(XBT_FORCE_SLEEP
, &target
->bt_flags
);
1707 clear_bit(XBT_FORCE_SLEEP
, &target
->bt_flags
);
1710 schedule_timeout_interruptible(
1711 xfs_buf_timer_centisecs
* msecs_to_jiffies(10));
1713 xfs_buf_delwri_split(target
, &tmp
,
1714 xfs_buf_age_centisecs
* msecs_to_jiffies(10));
1717 while (!list_empty(&tmp
)) {
1718 bp
= list_entry(tmp
.next
, xfs_buf_t
, b_list
);
1719 ASSERT(target
== bp
->b_target
);
1721 list_del_init(&bp
->b_list
);
1722 xfs_buf_iostrategy(bp
);
1726 if (as_list_len
> 0)
1729 blk_run_address_space(target
->bt_mapping
);
1731 } while (!kthread_should_stop());
1737 * Go through all incore buffers, and release buffers if they belong to
1738 * the given device. This is used in filesystem error handling to
1739 * preserve the consistency of its metadata.
1743 xfs_buftarg_t
*target
,
1746 struct list_head tmp
;
1750 xfs_buf_runall_queues(xfsdatad_workqueue
);
1751 xfs_buf_runall_queues(xfslogd_workqueue
);
1753 set_bit(XBT_FORCE_FLUSH
, &target
->bt_flags
);
1754 pincount
= xfs_buf_delwri_split(target
, &tmp
, 0);
1757 * Dropped the delayed write list lock, now walk the temporary list
1759 list_for_each_entry_safe(bp
, n
, &tmp
, b_list
) {
1760 ASSERT(target
== bp
->b_target
);
1762 bp
->b_flags
&= ~XBF_ASYNC
;
1764 list_del_init(&bp
->b_list
);
1766 xfs_buf_iostrategy(bp
);
1770 blk_run_address_space(target
->bt_mapping
);
1773 * Remaining list items must be flushed before returning
1775 while (!list_empty(&tmp
)) {
1776 bp
= list_entry(tmp
.next
, xfs_buf_t
, b_list
);
1778 list_del_init(&bp
->b_list
);
1789 #ifdef XFS_BUF_TRACE
1790 xfs_buf_trace_buf
= ktrace_alloc(XFS_BUF_TRACE_SIZE
, KM_SLEEP
);
1793 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
1794 KM_ZONE_HWALIGN
, NULL
);
1796 goto out_free_trace_buf
;
1798 xfslogd_workqueue
= create_workqueue("xfslogd");
1799 if (!xfslogd_workqueue
)
1800 goto out_free_buf_zone
;
1802 xfsdatad_workqueue
= create_workqueue("xfsdatad");
1803 if (!xfsdatad_workqueue
)
1804 goto out_destroy_xfslogd_workqueue
;
1806 register_shrinker(&xfs_buf_shake
);
1809 out_destroy_xfslogd_workqueue
:
1810 destroy_workqueue(xfslogd_workqueue
);
1812 kmem_zone_destroy(xfs_buf_zone
);
1814 #ifdef XFS_BUF_TRACE
1815 ktrace_free(xfs_buf_trace_buf
);
1821 xfs_buf_terminate(void)
1823 unregister_shrinker(&xfs_buf_shake
);
1824 destroy_workqueue(xfsdatad_workqueue
);
1825 destroy_workqueue(xfslogd_workqueue
);
1826 kmem_zone_destroy(xfs_buf_zone
);
1827 #ifdef XFS_BUF_TRACE
1828 ktrace_free(xfs_buf_trace_buf
);
1832 #ifdef CONFIG_KDB_MODULES
1834 xfs_get_buftarg_list(void)
1836 return &xfs_buftarg_list
;