Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux/fpc-iii.git] / fs / xfs / linux-2.6 / xfs_lrw.c
blob5e3b57516ec7293fe8bffe42cc995b9025780b8e
1 /*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_bmap.h"
39 #include "xfs_btree.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_inode_item.h"
48 #include "xfs_buf_item.h"
49 #include "xfs_utils.h"
50 #include "xfs_iomap.h"
51 #include "xfs_vnodeops.h"
53 #include <linux/capability.h>
54 #include <linux/mount.h>
55 #include <linux/writeback.h>
58 #if defined(XFS_RW_TRACE)
59 void
60 xfs_rw_enter_trace(
61 int tag,
62 xfs_inode_t *ip,
63 void *data,
64 size_t segs,
65 loff_t offset,
66 int ioflags)
68 if (ip->i_rwtrace == NULL)
69 return;
70 ktrace_enter(ip->i_rwtrace,
71 (void *)(unsigned long)tag,
72 (void *)ip,
73 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
74 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
75 (void *)data,
76 (void *)((unsigned long)segs),
77 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
78 (void *)((unsigned long)(offset & 0xffffffff)),
79 (void *)((unsigned long)ioflags),
80 (void *)((unsigned long)((ip->i_new_size >> 32) & 0xffffffff)),
81 (void *)((unsigned long)(ip->i_new_size & 0xffffffff)),
82 (void *)((unsigned long)current_pid()),
83 (void *)NULL,
84 (void *)NULL,
85 (void *)NULL,
86 (void *)NULL);
89 void
90 xfs_inval_cached_trace(
91 xfs_inode_t *ip,
92 xfs_off_t offset,
93 xfs_off_t len,
94 xfs_off_t first,
95 xfs_off_t last)
98 if (ip->i_rwtrace == NULL)
99 return;
100 ktrace_enter(ip->i_rwtrace,
101 (void *)(__psint_t)XFS_INVAL_CACHED,
102 (void *)ip,
103 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
104 (void *)((unsigned long)(offset & 0xffffffff)),
105 (void *)((unsigned long)((len >> 32) & 0xffffffff)),
106 (void *)((unsigned long)(len & 0xffffffff)),
107 (void *)((unsigned long)((first >> 32) & 0xffffffff)),
108 (void *)((unsigned long)(first & 0xffffffff)),
109 (void *)((unsigned long)((last >> 32) & 0xffffffff)),
110 (void *)((unsigned long)(last & 0xffffffff)),
111 (void *)((unsigned long)current_pid()),
112 (void *)NULL,
113 (void *)NULL,
114 (void *)NULL,
115 (void *)NULL,
116 (void *)NULL);
118 #endif
121 * xfs_iozero
123 * xfs_iozero clears the specified range of buffer supplied,
124 * and marks all the affected blocks as valid and modified. If
125 * an affected block is not allocated, it will be allocated. If
126 * an affected block is not completely overwritten, and is not
127 * valid before the operation, it will be read from disk before
128 * being partially zeroed.
130 STATIC int
131 xfs_iozero(
132 struct xfs_inode *ip, /* inode */
133 loff_t pos, /* offset in file */
134 size_t count) /* size of data to zero */
136 struct page *page;
137 struct address_space *mapping;
138 int status;
140 mapping = ip->i_vnode->i_mapping;
141 do {
142 unsigned offset, bytes;
143 void *fsdata;
145 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
146 bytes = PAGE_CACHE_SIZE - offset;
147 if (bytes > count)
148 bytes = count;
150 status = pagecache_write_begin(NULL, mapping, pos, bytes,
151 AOP_FLAG_UNINTERRUPTIBLE,
152 &page, &fsdata);
153 if (status)
154 break;
156 zero_user(page, offset, bytes);
158 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
159 page, fsdata);
160 WARN_ON(status <= 0); /* can't return less than zero! */
161 pos += bytes;
162 count -= bytes;
163 status = 0;
164 } while (count);
166 return (-status);
169 ssize_t /* bytes read, or (-) error */
170 xfs_read(
171 xfs_inode_t *ip,
172 struct kiocb *iocb,
173 const struct iovec *iovp,
174 unsigned int segs,
175 loff_t *offset,
176 int ioflags)
178 struct file *file = iocb->ki_filp;
179 struct inode *inode = file->f_mapping->host;
180 xfs_mount_t *mp = ip->i_mount;
181 size_t size = 0;
182 ssize_t ret = 0;
183 xfs_fsize_t n;
184 unsigned long seg;
187 XFS_STATS_INC(xs_read_calls);
189 /* START copy & waste from filemap.c */
190 for (seg = 0; seg < segs; seg++) {
191 const struct iovec *iv = &iovp[seg];
194 * If any segment has a negative length, or the cumulative
195 * length ever wraps negative then return -EINVAL.
197 size += iv->iov_len;
198 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
199 return XFS_ERROR(-EINVAL);
201 /* END copy & waste from filemap.c */
203 if (unlikely(ioflags & IO_ISDIRECT)) {
204 xfs_buftarg_t *target =
205 XFS_IS_REALTIME_INODE(ip) ?
206 mp->m_rtdev_targp : mp->m_ddev_targp;
207 if ((*offset & target->bt_smask) ||
208 (size & target->bt_smask)) {
209 if (*offset == ip->i_size) {
210 return (0);
212 return -XFS_ERROR(EINVAL);
216 n = XFS_MAXIOFFSET(mp) - *offset;
217 if ((n <= 0) || (size == 0))
218 return 0;
220 if (n < size)
221 size = n;
223 if (XFS_FORCED_SHUTDOWN(mp))
224 return -EIO;
226 if (unlikely(ioflags & IO_ISDIRECT))
227 mutex_lock(&inode->i_mutex);
228 xfs_ilock(ip, XFS_IOLOCK_SHARED);
230 if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) {
231 int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags);
232 int iolock = XFS_IOLOCK_SHARED;
234 ret = -XFS_SEND_DATA(mp, DM_EVENT_READ, ip, *offset, size,
235 dmflags, &iolock);
236 if (ret) {
237 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
238 if (unlikely(ioflags & IO_ISDIRECT))
239 mutex_unlock(&inode->i_mutex);
240 return ret;
244 if (unlikely(ioflags & IO_ISDIRECT)) {
245 if (inode->i_mapping->nrpages)
246 ret = xfs_flushinval_pages(ip, (*offset & PAGE_CACHE_MASK),
247 -1, FI_REMAPF_LOCKED);
248 mutex_unlock(&inode->i_mutex);
249 if (ret) {
250 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
251 return ret;
255 xfs_rw_enter_trace(XFS_READ_ENTER, ip,
256 (void *)iovp, segs, *offset, ioflags);
258 iocb->ki_pos = *offset;
259 ret = generic_file_aio_read(iocb, iovp, segs, *offset);
260 if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
261 ret = wait_on_sync_kiocb(iocb);
262 if (ret > 0)
263 XFS_STATS_ADD(xs_read_bytes, ret);
265 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
266 return ret;
269 ssize_t
270 xfs_splice_read(
271 xfs_inode_t *ip,
272 struct file *infilp,
273 loff_t *ppos,
274 struct pipe_inode_info *pipe,
275 size_t count,
276 int flags,
277 int ioflags)
279 xfs_mount_t *mp = ip->i_mount;
280 ssize_t ret;
282 XFS_STATS_INC(xs_read_calls);
283 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
284 return -EIO;
286 xfs_ilock(ip, XFS_IOLOCK_SHARED);
288 if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) {
289 int iolock = XFS_IOLOCK_SHARED;
290 int error;
292 error = XFS_SEND_DATA(mp, DM_EVENT_READ, ip, *ppos, count,
293 FILP_DELAY_FLAG(infilp), &iolock);
294 if (error) {
295 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
296 return -error;
299 xfs_rw_enter_trace(XFS_SPLICE_READ_ENTER, ip,
300 pipe, count, *ppos, ioflags);
301 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
302 if (ret > 0)
303 XFS_STATS_ADD(xs_read_bytes, ret);
305 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
306 return ret;
309 ssize_t
310 xfs_splice_write(
311 xfs_inode_t *ip,
312 struct pipe_inode_info *pipe,
313 struct file *outfilp,
314 loff_t *ppos,
315 size_t count,
316 int flags,
317 int ioflags)
319 xfs_mount_t *mp = ip->i_mount;
320 ssize_t ret;
321 struct inode *inode = outfilp->f_mapping->host;
322 xfs_fsize_t isize, new_size;
324 XFS_STATS_INC(xs_write_calls);
325 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
326 return -EIO;
328 xfs_ilock(ip, XFS_IOLOCK_EXCL);
330 if (DM_EVENT_ENABLED(ip, DM_EVENT_WRITE) && !(ioflags & IO_INVIS)) {
331 int iolock = XFS_IOLOCK_EXCL;
332 int error;
334 error = XFS_SEND_DATA(mp, DM_EVENT_WRITE, ip, *ppos, count,
335 FILP_DELAY_FLAG(outfilp), &iolock);
336 if (error) {
337 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
338 return -error;
342 new_size = *ppos + count;
344 xfs_ilock(ip, XFS_ILOCK_EXCL);
345 if (new_size > ip->i_size)
346 ip->i_new_size = new_size;
347 xfs_iunlock(ip, XFS_ILOCK_EXCL);
349 xfs_rw_enter_trace(XFS_SPLICE_WRITE_ENTER, ip,
350 pipe, count, *ppos, ioflags);
351 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
352 if (ret > 0)
353 XFS_STATS_ADD(xs_write_bytes, ret);
355 isize = i_size_read(inode);
356 if (unlikely(ret < 0 && ret != -EFAULT && *ppos > isize))
357 *ppos = isize;
359 if (*ppos > ip->i_size) {
360 xfs_ilock(ip, XFS_ILOCK_EXCL);
361 if (*ppos > ip->i_size)
362 ip->i_size = *ppos;
363 xfs_iunlock(ip, XFS_ILOCK_EXCL);
366 if (ip->i_new_size) {
367 xfs_ilock(ip, XFS_ILOCK_EXCL);
368 ip->i_new_size = 0;
369 if (ip->i_d.di_size > ip->i_size)
370 ip->i_d.di_size = ip->i_size;
371 xfs_iunlock(ip, XFS_ILOCK_EXCL);
373 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
374 return ret;
378 * This routine is called to handle zeroing any space in the last
379 * block of the file that is beyond the EOF. We do this since the
380 * size is being increased without writing anything to that block
381 * and we don't want anyone to read the garbage on the disk.
383 STATIC int /* error (positive) */
384 xfs_zero_last_block(
385 xfs_inode_t *ip,
386 xfs_fsize_t offset,
387 xfs_fsize_t isize)
389 xfs_fileoff_t last_fsb;
390 xfs_mount_t *mp = ip->i_mount;
391 int nimaps;
392 int zero_offset;
393 int zero_len;
394 int error = 0;
395 xfs_bmbt_irec_t imap;
397 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
399 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
400 if (zero_offset == 0) {
402 * There are no extra bytes in the last block on disk to
403 * zero, so return.
405 return 0;
408 last_fsb = XFS_B_TO_FSBT(mp, isize);
409 nimaps = 1;
410 error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
411 &nimaps, NULL, NULL);
412 if (error) {
413 return error;
415 ASSERT(nimaps > 0);
417 * If the block underlying isize is just a hole, then there
418 * is nothing to zero.
420 if (imap.br_startblock == HOLESTARTBLOCK) {
421 return 0;
424 * Zero the part of the last block beyond the EOF, and write it
425 * out sync. We need to drop the ilock while we do this so we
426 * don't deadlock when the buffer cache calls back to us.
428 xfs_iunlock(ip, XFS_ILOCK_EXCL);
430 zero_len = mp->m_sb.sb_blocksize - zero_offset;
431 if (isize + zero_len > offset)
432 zero_len = offset - isize;
433 error = xfs_iozero(ip, isize, zero_len);
435 xfs_ilock(ip, XFS_ILOCK_EXCL);
436 ASSERT(error >= 0);
437 return error;
441 * Zero any on disk space between the current EOF and the new,
442 * larger EOF. This handles the normal case of zeroing the remainder
443 * of the last block in the file and the unusual case of zeroing blocks
444 * out beyond the size of the file. This second case only happens
445 * with fixed size extents and when the system crashes before the inode
446 * size was updated but after blocks were allocated. If fill is set,
447 * then any holes in the range are filled and zeroed. If not, the holes
448 * are left alone as holes.
451 int /* error (positive) */
452 xfs_zero_eof(
453 xfs_inode_t *ip,
454 xfs_off_t offset, /* starting I/O offset */
455 xfs_fsize_t isize) /* current inode size */
457 xfs_mount_t *mp = ip->i_mount;
458 xfs_fileoff_t start_zero_fsb;
459 xfs_fileoff_t end_zero_fsb;
460 xfs_fileoff_t zero_count_fsb;
461 xfs_fileoff_t last_fsb;
462 xfs_fileoff_t zero_off;
463 xfs_fsize_t zero_len;
464 int nimaps;
465 int error = 0;
466 xfs_bmbt_irec_t imap;
468 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
469 ASSERT(offset > isize);
472 * First handle zeroing the block on which isize resides.
473 * We only zero a part of that block so it is handled specially.
475 error = xfs_zero_last_block(ip, offset, isize);
476 if (error) {
477 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
478 return error;
482 * Calculate the range between the new size and the old
483 * where blocks needing to be zeroed may exist. To get the
484 * block where the last byte in the file currently resides,
485 * we need to subtract one from the size and truncate back
486 * to a block boundary. We subtract 1 in case the size is
487 * exactly on a block boundary.
489 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
490 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
491 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
492 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
493 if (last_fsb == end_zero_fsb) {
495 * The size was only incremented on its last block.
496 * We took care of that above, so just return.
498 return 0;
501 ASSERT(start_zero_fsb <= end_zero_fsb);
502 while (start_zero_fsb <= end_zero_fsb) {
503 nimaps = 1;
504 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
505 error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
506 0, NULL, 0, &imap, &nimaps, NULL, NULL);
507 if (error) {
508 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
509 return error;
511 ASSERT(nimaps > 0);
513 if (imap.br_state == XFS_EXT_UNWRITTEN ||
514 imap.br_startblock == HOLESTARTBLOCK) {
516 * This loop handles initializing pages that were
517 * partially initialized by the code below this
518 * loop. It basically zeroes the part of the page
519 * that sits on a hole and sets the page as P_HOLE
520 * and calls remapf if it is a mapped file.
522 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
523 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
524 continue;
528 * There are blocks we need to zero.
529 * Drop the inode lock while we're doing the I/O.
530 * We'll still have the iolock to protect us.
532 xfs_iunlock(ip, XFS_ILOCK_EXCL);
534 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
535 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
537 if ((zero_off + zero_len) > offset)
538 zero_len = offset - zero_off;
540 error = xfs_iozero(ip, zero_off, zero_len);
541 if (error) {
542 goto out_lock;
545 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
546 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
548 xfs_ilock(ip, XFS_ILOCK_EXCL);
551 return 0;
553 out_lock:
554 xfs_ilock(ip, XFS_ILOCK_EXCL);
555 ASSERT(error >= 0);
556 return error;
559 ssize_t /* bytes written, or (-) error */
560 xfs_write(
561 struct xfs_inode *xip,
562 struct kiocb *iocb,
563 const struct iovec *iovp,
564 unsigned int nsegs,
565 loff_t *offset,
566 int ioflags)
568 struct file *file = iocb->ki_filp;
569 struct address_space *mapping = file->f_mapping;
570 struct inode *inode = mapping->host;
571 unsigned long segs = nsegs;
572 xfs_mount_t *mp;
573 ssize_t ret = 0, error = 0;
574 xfs_fsize_t isize, new_size;
575 int iolock;
576 int eventsent = 0;
577 size_t ocount = 0, count;
578 loff_t pos;
579 int need_i_mutex;
581 XFS_STATS_INC(xs_write_calls);
583 error = generic_segment_checks(iovp, &segs, &ocount, VERIFY_READ);
584 if (error)
585 return error;
587 count = ocount;
588 pos = *offset;
590 if (count == 0)
591 return 0;
593 mp = xip->i_mount;
595 xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);
597 if (XFS_FORCED_SHUTDOWN(mp))
598 return -EIO;
600 relock:
601 if (ioflags & IO_ISDIRECT) {
602 iolock = XFS_IOLOCK_SHARED;
603 need_i_mutex = 0;
604 } else {
605 iolock = XFS_IOLOCK_EXCL;
606 need_i_mutex = 1;
607 mutex_lock(&inode->i_mutex);
610 xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
612 start:
613 error = -generic_write_checks(file, &pos, &count,
614 S_ISBLK(inode->i_mode));
615 if (error) {
616 xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
617 goto out_unlock_mutex;
620 if ((DM_EVENT_ENABLED(xip, DM_EVENT_WRITE) &&
621 !(ioflags & IO_INVIS) && !eventsent)) {
622 int dmflags = FILP_DELAY_FLAG(file);
624 if (need_i_mutex)
625 dmflags |= DM_FLAGS_IMUX;
627 xfs_iunlock(xip, XFS_ILOCK_EXCL);
628 error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, xip,
629 pos, count, dmflags, &iolock);
630 if (error) {
631 goto out_unlock_internal;
633 xfs_ilock(xip, XFS_ILOCK_EXCL);
634 eventsent = 1;
637 * The iolock was dropped and reacquired in XFS_SEND_DATA
638 * so we have to recheck the size when appending.
639 * We will only "goto start;" once, since having sent the
640 * event prevents another call to XFS_SEND_DATA, which is
641 * what allows the size to change in the first place.
643 if ((file->f_flags & O_APPEND) && pos != xip->i_size)
644 goto start;
647 if (ioflags & IO_ISDIRECT) {
648 xfs_buftarg_t *target =
649 XFS_IS_REALTIME_INODE(xip) ?
650 mp->m_rtdev_targp : mp->m_ddev_targp;
652 if ((pos & target->bt_smask) || (count & target->bt_smask)) {
653 xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
654 return XFS_ERROR(-EINVAL);
657 if (!need_i_mutex && (mapping->nrpages || pos > xip->i_size)) {
658 xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
659 iolock = XFS_IOLOCK_EXCL;
660 need_i_mutex = 1;
661 mutex_lock(&inode->i_mutex);
662 xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
663 goto start;
667 new_size = pos + count;
668 if (new_size > xip->i_size)
669 xip->i_new_size = new_size;
672 * We're not supposed to change timestamps in readonly-mounted
673 * filesystems. Throw it away if anyone asks us.
675 if (likely(!(ioflags & IO_INVIS) &&
676 !mnt_want_write(file->f_path.mnt))) {
677 file_update_time(file);
678 xfs_ichgtime_fast(xip, inode,
679 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
680 mnt_drop_write(file->f_path.mnt);
684 * If the offset is beyond the size of the file, we have a couple
685 * of things to do. First, if there is already space allocated
686 * we need to either create holes or zero the disk or ...
688 * If there is a page where the previous size lands, we need
689 * to zero it out up to the new size.
692 if (pos > xip->i_size) {
693 error = xfs_zero_eof(xip, pos, xip->i_size);
694 if (error) {
695 xfs_iunlock(xip, XFS_ILOCK_EXCL);
696 goto out_unlock_internal;
699 xfs_iunlock(xip, XFS_ILOCK_EXCL);
702 * If we're writing the file then make sure to clear the
703 * setuid and setgid bits if the process is not being run
704 * by root. This keeps people from modifying setuid and
705 * setgid binaries.
708 if (((xip->i_d.di_mode & S_ISUID) ||
709 ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
710 (S_ISGID | S_IXGRP))) &&
711 !capable(CAP_FSETID)) {
712 error = xfs_write_clear_setuid(xip);
713 if (likely(!error))
714 error = -remove_suid(file->f_path.dentry);
715 if (unlikely(error)) {
716 goto out_unlock_internal;
720 retry:
721 /* We can write back this queue in page reclaim */
722 current->backing_dev_info = mapping->backing_dev_info;
724 if ((ioflags & IO_ISDIRECT)) {
725 if (mapping->nrpages) {
726 WARN_ON(need_i_mutex == 0);
727 xfs_inval_cached_trace(xip, pos, -1,
728 (pos & PAGE_CACHE_MASK), -1);
729 error = xfs_flushinval_pages(xip,
730 (pos & PAGE_CACHE_MASK),
731 -1, FI_REMAPF_LOCKED);
732 if (error)
733 goto out_unlock_internal;
736 if (need_i_mutex) {
737 /* demote the lock now the cached pages are gone */
738 xfs_ilock_demote(xip, XFS_IOLOCK_EXCL);
739 mutex_unlock(&inode->i_mutex);
741 iolock = XFS_IOLOCK_SHARED;
742 need_i_mutex = 0;
745 xfs_rw_enter_trace(XFS_DIOWR_ENTER, xip, (void *)iovp, segs,
746 *offset, ioflags);
747 ret = generic_file_direct_write(iocb, iovp,
748 &segs, pos, offset, count, ocount);
751 * direct-io write to a hole: fall through to buffered I/O
752 * for completing the rest of the request.
754 if (ret >= 0 && ret != count) {
755 XFS_STATS_ADD(xs_write_bytes, ret);
757 pos += ret;
758 count -= ret;
760 ioflags &= ~IO_ISDIRECT;
761 xfs_iunlock(xip, iolock);
762 goto relock;
764 } else {
765 xfs_rw_enter_trace(XFS_WRITE_ENTER, xip, (void *)iovp, segs,
766 *offset, ioflags);
767 ret = generic_file_buffered_write(iocb, iovp, segs,
768 pos, offset, count, ret);
771 current->backing_dev_info = NULL;
773 if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
774 ret = wait_on_sync_kiocb(iocb);
776 if (ret == -ENOSPC &&
777 DM_EVENT_ENABLED(xip, DM_EVENT_NOSPACE) && !(ioflags & IO_INVIS)) {
778 xfs_iunlock(xip, iolock);
779 if (need_i_mutex)
780 mutex_unlock(&inode->i_mutex);
781 error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, xip,
782 DM_RIGHT_NULL, xip, DM_RIGHT_NULL, NULL, NULL,
783 0, 0, 0); /* Delay flag intentionally unused */
784 if (need_i_mutex)
785 mutex_lock(&inode->i_mutex);
786 xfs_ilock(xip, iolock);
787 if (error)
788 goto out_unlock_internal;
789 pos = xip->i_size;
790 ret = 0;
791 goto retry;
794 isize = i_size_read(inode);
795 if (unlikely(ret < 0 && ret != -EFAULT && *offset > isize))
796 *offset = isize;
798 if (*offset > xip->i_size) {
799 xfs_ilock(xip, XFS_ILOCK_EXCL);
800 if (*offset > xip->i_size)
801 xip->i_size = *offset;
802 xfs_iunlock(xip, XFS_ILOCK_EXCL);
805 error = -ret;
806 if (ret <= 0)
807 goto out_unlock_internal;
809 XFS_STATS_ADD(xs_write_bytes, ret);
811 /* Handle various SYNC-type writes */
812 if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
813 int error2;
815 xfs_iunlock(xip, iolock);
816 if (need_i_mutex)
817 mutex_unlock(&inode->i_mutex);
818 error2 = sync_page_range(inode, mapping, pos, ret);
819 if (!error)
820 error = error2;
821 if (need_i_mutex)
822 mutex_lock(&inode->i_mutex);
823 xfs_ilock(xip, iolock);
824 error2 = xfs_write_sync_logforce(mp, xip);
825 if (!error)
826 error = error2;
829 out_unlock_internal:
830 if (xip->i_new_size) {
831 xfs_ilock(xip, XFS_ILOCK_EXCL);
832 xip->i_new_size = 0;
834 * If this was a direct or synchronous I/O that failed (such
835 * as ENOSPC) then part of the I/O may have been written to
836 * disk before the error occured. In this case the on-disk
837 * file size may have been adjusted beyond the in-memory file
838 * size and now needs to be truncated back.
840 if (xip->i_d.di_size > xip->i_size)
841 xip->i_d.di_size = xip->i_size;
842 xfs_iunlock(xip, XFS_ILOCK_EXCL);
844 xfs_iunlock(xip, iolock);
845 out_unlock_mutex:
846 if (need_i_mutex)
847 mutex_unlock(&inode->i_mutex);
848 return -error;
852 * All xfs metadata buffers except log state machine buffers
853 * get this attached as their b_bdstrat callback function.
854 * This is so that we can catch a buffer
855 * after prematurely unpinning it to forcibly shutdown the filesystem.
858 xfs_bdstrat_cb(struct xfs_buf *bp)
860 xfs_mount_t *mp;
862 mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
863 if (!XFS_FORCED_SHUTDOWN(mp)) {
864 xfs_buf_iorequest(bp);
865 return 0;
866 } else {
867 xfs_buftrace("XFS__BDSTRAT IOERROR", bp);
869 * Metadata write that didn't get logged but
870 * written delayed anyway. These aren't associated
871 * with a transaction, and can be ignored.
873 if (XFS_BUF_IODONE_FUNC(bp) == NULL &&
874 (XFS_BUF_ISREAD(bp)) == 0)
875 return (xfs_bioerror_relse(bp));
876 else
877 return (xfs_bioerror(bp));
882 * Wrapper around bdstrat so that we can stop data from going to disk in case
883 * we are shutting down the filesystem. Typically user data goes thru this
884 * path; one of the exceptions is the superblock.
886 void
887 xfsbdstrat(
888 struct xfs_mount *mp,
889 struct xfs_buf *bp)
891 ASSERT(mp);
892 if (!XFS_FORCED_SHUTDOWN(mp)) {
893 xfs_buf_iorequest(bp);
894 return;
897 xfs_buftrace("XFSBDSTRAT IOERROR", bp);
898 xfs_bioerror_relse(bp);
902 * If the underlying (data/log/rt) device is readonly, there are some
903 * operations that cannot proceed.
906 xfs_dev_is_read_only(
907 xfs_mount_t *mp,
908 char *message)
910 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
911 xfs_readonly_buftarg(mp->m_logdev_targp) ||
912 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
913 cmn_err(CE_NOTE,
914 "XFS: %s required on read-only device.", message);
915 cmn_err(CE_NOTE,
916 "XFS: write access unavailable, cannot proceed.");
917 return EROFS;
919 return 0;