2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
32 #include "xfs_dmapi.h"
33 #include "xfs_mount.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
56 kmem_zone_t
*xfs_ifork_zone
;
57 kmem_zone_t
*xfs_inode_zone
;
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
66 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
67 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
68 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
72 * Make sure that the extents in the given memory buffer
82 xfs_bmbt_rec_host_t rec
;
85 for (i
= 0; i
< nrecs
; i
++) {
86 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
87 rec
.l0
= get_unaligned(&ep
->l0
);
88 rec
.l1
= get_unaligned(&ep
->l1
);
89 xfs_bmbt_get_all(&rec
, &irec
);
90 if (fmt
== XFS_EXTFMT_NOSTATE
)
91 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
95 #define xfs_validate_extents(ifp, nrecs, fmt)
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
112 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
114 for (i
= 0; i
< j
; i
++) {
115 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
116 i
* mp
->m_sb
.sb_inodesize
);
117 if (!dip
->di_next_unlinked
) {
118 xfs_fs_cmn_err(CE_ALERT
, mp
,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 ASSERT(dip
->di_next_unlinked
);
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
146 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
147 (int)imap
->im_len
, buf_flags
, &bp
);
149 if (error
!= EAGAIN
) {
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 "an error %d on %s. Returning error.",
153 error
, mp
->m_fsname
);
155 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
165 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
166 #else /* usual case */
170 for (i
= 0; i
< ni
; i
++) {
174 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
175 (i
<< mp
->m_sb
.sb_inodelog
));
176 di_ok
= be16_to_cpu(dip
->di_core
.di_magic
) == XFS_DINODE_MAGIC
&&
177 XFS_DINODE_GOOD_VERSION(dip
->di_core
.di_version
);
178 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
179 XFS_ERRTAG_ITOBP_INOTOBP
,
180 XFS_RANDOM_ITOBP_INOTOBP
))) {
181 if (imap_flags
& XFS_IMAP_BULKSTAT
) {
182 xfs_trans_brelse(tp
, bp
);
183 return XFS_ERROR(EINVAL
);
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH
, mp
, dip
);
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
192 (unsigned long long)imap
->im_blkno
, i
,
193 be16_to_cpu(dip
->di_core
.di_magic
));
195 xfs_trans_brelse(tp
, bp
);
196 return XFS_ERROR(EFSCORRUPTED
);
200 xfs_inobp_check(mp
, bp
);
203 * Mark the buffer as an inode buffer now that it looks good
205 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
238 error
= xfs_imap(mp
, tp
, ino
, &imap
, XFS_IMAP_LOOKUP
);
242 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XFS_BUF_LOCK
, 0);
246 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
248 *offset
= imap
.im_boffset
;
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
263 * If the inode is new and has not yet been initialized, use xfs_imap()
264 * to determine the size and location of the buffer to read from disk.
265 * If the inode has already been mapped to its buffer and read in once,
266 * then use the mapping information stored in the inode rather than
267 * calling xfs_imap(). This allows us to avoid the overhead of looking
268 * at the inode btree for small block file systems (see xfs_dilocate()).
269 * We can tell whether the inode has been mapped in before by comparing
270 * its disk block address to 0. Only uninitialized inodes will have
271 * 0 for the disk block address.
288 if (ip
->i_blkno
== (xfs_daddr_t
)0) {
290 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &imap
,
291 XFS_IMAP_LOOKUP
| imap_flags
);
296 * Fill in the fields in the inode that will be used to
297 * map the inode to its buffer from now on.
299 ip
->i_blkno
= imap
.im_blkno
;
300 ip
->i_len
= imap
.im_len
;
301 ip
->i_boffset
= imap
.im_boffset
;
304 * We've already mapped the inode once, so just use the
305 * mapping that we saved the first time.
307 imap
.im_blkno
= ip
->i_blkno
;
308 imap
.im_len
= ip
->i_len
;
309 imap
.im_boffset
= ip
->i_boffset
;
311 ASSERT(bno
== 0 || bno
== imap
.im_blkno
);
313 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, buf_flags
, imap_flags
);
318 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
324 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
330 * Move inode type and inode format specific information from the
331 * on-disk inode to the in-core inode. For fifos, devs, and sockets
332 * this means set if_rdev to the proper value. For files, directories,
333 * and symlinks this means to bring in the in-line data or extent
334 * pointers. For a file in B-tree format, only the root is immediately
335 * brought in-core. The rest will be in-lined in if_extents when it
336 * is first referenced (see xfs_iread_extents()).
343 xfs_attr_shortform_t
*atp
;
347 ip
->i_df
.if_ext_max
=
348 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
351 if (unlikely(be32_to_cpu(dip
->di_core
.di_nextents
) +
352 be16_to_cpu(dip
->di_core
.di_anextents
) >
353 be64_to_cpu(dip
->di_core
.di_nblocks
))) {
354 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
355 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
356 (unsigned long long)ip
->i_ino
,
357 (int)(be32_to_cpu(dip
->di_core
.di_nextents
) +
358 be16_to_cpu(dip
->di_core
.di_anextents
)),
360 be64_to_cpu(dip
->di_core
.di_nblocks
));
361 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
363 return XFS_ERROR(EFSCORRUPTED
);
366 if (unlikely(dip
->di_core
.di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
367 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
368 "corrupt dinode %Lu, forkoff = 0x%x.",
369 (unsigned long long)ip
->i_ino
,
370 dip
->di_core
.di_forkoff
);
371 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
373 return XFS_ERROR(EFSCORRUPTED
);
376 switch (ip
->i_d
.di_mode
& S_IFMT
) {
381 if (unlikely(dip
->di_core
.di_format
!= XFS_DINODE_FMT_DEV
)) {
382 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
384 return XFS_ERROR(EFSCORRUPTED
);
388 ip
->i_df
.if_u2
.if_rdev
= be32_to_cpu(dip
->di_u
.di_dev
);
394 switch (dip
->di_core
.di_format
) {
395 case XFS_DINODE_FMT_LOCAL
:
397 * no local regular files yet
399 if (unlikely((be16_to_cpu(dip
->di_core
.di_mode
) & S_IFMT
) == S_IFREG
)) {
400 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
402 "(local format for regular file).",
403 (unsigned long long) ip
->i_ino
);
404 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
407 return XFS_ERROR(EFSCORRUPTED
);
410 di_size
= be64_to_cpu(dip
->di_core
.di_size
);
411 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
412 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
414 "(bad size %Ld for local inode).",
415 (unsigned long long) ip
->i_ino
,
416 (long long) di_size
);
417 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
420 return XFS_ERROR(EFSCORRUPTED
);
424 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
426 case XFS_DINODE_FMT_EXTENTS
:
427 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
429 case XFS_DINODE_FMT_BTREE
:
430 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
433 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
435 return XFS_ERROR(EFSCORRUPTED
);
440 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
441 return XFS_ERROR(EFSCORRUPTED
);
446 if (!XFS_DFORK_Q(dip
))
448 ASSERT(ip
->i_afp
== NULL
);
449 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
450 ip
->i_afp
->if_ext_max
=
451 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
452 switch (dip
->di_core
.di_aformat
) {
453 case XFS_DINODE_FMT_LOCAL
:
454 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
455 size
= be16_to_cpu(atp
->hdr
.totsize
);
456 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
458 case XFS_DINODE_FMT_EXTENTS
:
459 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
461 case XFS_DINODE_FMT_BTREE
:
462 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
465 error
= XFS_ERROR(EFSCORRUPTED
);
469 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
471 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
477 * The file is in-lined in the on-disk inode.
478 * If it fits into if_inline_data, then copy
479 * it there, otherwise allocate a buffer for it
480 * and copy the data there. Either way, set
481 * if_data to point at the data.
482 * If we allocate a buffer for the data, make
483 * sure that its size is a multiple of 4 and
484 * record the real size in i_real_bytes.
497 * If the size is unreasonable, then something
498 * is wrong and we just bail out rather than crash in
499 * kmem_alloc() or memcpy() below.
501 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
502 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
504 "(bad size %d for local fork, size = %d).",
505 (unsigned long long) ip
->i_ino
, size
,
506 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
507 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
509 return XFS_ERROR(EFSCORRUPTED
);
511 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
514 ifp
->if_u1
.if_data
= NULL
;
515 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
516 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
518 real_size
= roundup(size
, 4);
519 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
521 ifp
->if_bytes
= size
;
522 ifp
->if_real_bytes
= real_size
;
524 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
525 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
526 ifp
->if_flags
|= XFS_IFINLINE
;
531 * The file consists of a set of extents all
532 * of which fit into the on-disk inode.
533 * If there are few enough extents to fit into
534 * the if_inline_ext, then copy them there.
535 * Otherwise allocate a buffer for them and copy
536 * them into it. Either way, set if_extents
537 * to point at the extents.
551 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
552 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
553 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
556 * If the number of extents is unreasonable, then something
557 * is wrong and we just bail out rather than crash in
558 * kmem_alloc() or memcpy() below.
560 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
561 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
562 "corrupt inode %Lu ((a)extents = %d).",
563 (unsigned long long) ip
->i_ino
, nex
);
564 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
566 return XFS_ERROR(EFSCORRUPTED
);
569 ifp
->if_real_bytes
= 0;
571 ifp
->if_u1
.if_extents
= NULL
;
572 else if (nex
<= XFS_INLINE_EXTS
)
573 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
575 xfs_iext_add(ifp
, 0, nex
);
577 ifp
->if_bytes
= size
;
579 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
580 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
581 for (i
= 0; i
< nex
; i
++, dp
++) {
582 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
583 ep
->l0
= be64_to_cpu(get_unaligned(&dp
->l0
));
584 ep
->l1
= be64_to_cpu(get_unaligned(&dp
->l1
));
586 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
587 if (whichfork
!= XFS_DATA_FORK
||
588 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
589 if (unlikely(xfs_check_nostate_extents(
591 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
594 return XFS_ERROR(EFSCORRUPTED
);
597 ifp
->if_flags
|= XFS_IFEXTENTS
;
602 * The file has too many extents to fit into
603 * the inode, so they are in B-tree format.
604 * Allocate a buffer for the root of the B-tree
605 * and copy the root into it. The i_extents
606 * field will remain NULL until all of the
607 * extents are read in (when they are needed).
615 xfs_bmdr_block_t
*dfp
;
621 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
622 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
623 size
= XFS_BMAP_BROOT_SPACE(dfp
);
624 nrecs
= XFS_BMAP_BROOT_NUMRECS(dfp
);
627 * blow out if -- fork has less extents than can fit in
628 * fork (fork shouldn't be a btree format), root btree
629 * block has more records than can fit into the fork,
630 * or the number of extents is greater than the number of
633 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
634 || XFS_BMDR_SPACE_CALC(nrecs
) >
635 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
636 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
637 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
638 "corrupt inode %Lu (btree).",
639 (unsigned long long) ip
->i_ino
);
640 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
642 return XFS_ERROR(EFSCORRUPTED
);
645 ifp
->if_broot_bytes
= size
;
646 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
647 ASSERT(ifp
->if_broot
!= NULL
);
649 * Copy and convert from the on-disk structure
650 * to the in-memory structure.
652 xfs_bmdr_to_bmbt(dfp
, XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
653 ifp
->if_broot
, size
);
654 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
655 ifp
->if_flags
|= XFS_IFBROOT
;
661 xfs_dinode_from_disk(
663 xfs_dinode_core_t
*from
)
665 to
->di_magic
= be16_to_cpu(from
->di_magic
);
666 to
->di_mode
= be16_to_cpu(from
->di_mode
);
667 to
->di_version
= from
->di_version
;
668 to
->di_format
= from
->di_format
;
669 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
670 to
->di_uid
= be32_to_cpu(from
->di_uid
);
671 to
->di_gid
= be32_to_cpu(from
->di_gid
);
672 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
673 to
->di_projid
= be16_to_cpu(from
->di_projid
);
674 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
675 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
676 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
677 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
678 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
679 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
680 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
681 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
682 to
->di_size
= be64_to_cpu(from
->di_size
);
683 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
684 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
685 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
686 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
687 to
->di_forkoff
= from
->di_forkoff
;
688 to
->di_aformat
= from
->di_aformat
;
689 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
690 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
691 to
->di_flags
= be16_to_cpu(from
->di_flags
);
692 to
->di_gen
= be32_to_cpu(from
->di_gen
);
697 xfs_dinode_core_t
*to
,
698 xfs_icdinode_t
*from
)
700 to
->di_magic
= cpu_to_be16(from
->di_magic
);
701 to
->di_mode
= cpu_to_be16(from
->di_mode
);
702 to
->di_version
= from
->di_version
;
703 to
->di_format
= from
->di_format
;
704 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
705 to
->di_uid
= cpu_to_be32(from
->di_uid
);
706 to
->di_gid
= cpu_to_be32(from
->di_gid
);
707 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
708 to
->di_projid
= cpu_to_be16(from
->di_projid
);
709 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
710 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
711 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
712 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
713 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
714 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
715 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
716 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
717 to
->di_size
= cpu_to_be64(from
->di_size
);
718 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
719 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
720 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
721 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
722 to
->di_forkoff
= from
->di_forkoff
;
723 to
->di_aformat
= from
->di_aformat
;
724 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
725 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
726 to
->di_flags
= cpu_to_be16(from
->di_flags
);
727 to
->di_gen
= cpu_to_be32(from
->di_gen
);
736 if (di_flags
& XFS_DIFLAG_ANY
) {
737 if (di_flags
& XFS_DIFLAG_REALTIME
)
738 flags
|= XFS_XFLAG_REALTIME
;
739 if (di_flags
& XFS_DIFLAG_PREALLOC
)
740 flags
|= XFS_XFLAG_PREALLOC
;
741 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
742 flags
|= XFS_XFLAG_IMMUTABLE
;
743 if (di_flags
& XFS_DIFLAG_APPEND
)
744 flags
|= XFS_XFLAG_APPEND
;
745 if (di_flags
& XFS_DIFLAG_SYNC
)
746 flags
|= XFS_XFLAG_SYNC
;
747 if (di_flags
& XFS_DIFLAG_NOATIME
)
748 flags
|= XFS_XFLAG_NOATIME
;
749 if (di_flags
& XFS_DIFLAG_NODUMP
)
750 flags
|= XFS_XFLAG_NODUMP
;
751 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
752 flags
|= XFS_XFLAG_RTINHERIT
;
753 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
754 flags
|= XFS_XFLAG_PROJINHERIT
;
755 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
756 flags
|= XFS_XFLAG_NOSYMLINKS
;
757 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
758 flags
|= XFS_XFLAG_EXTSIZE
;
759 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
760 flags
|= XFS_XFLAG_EXTSZINHERIT
;
761 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
762 flags
|= XFS_XFLAG_NODEFRAG
;
763 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
764 flags
|= XFS_XFLAG_FILESTREAM
;
774 xfs_icdinode_t
*dic
= &ip
->i_d
;
776 return _xfs_dic2xflags(dic
->di_flags
) |
777 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
784 xfs_dinode_core_t
*dic
= &dip
->di_core
;
786 return _xfs_dic2xflags(be16_to_cpu(dic
->di_flags
)) |
787 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
791 * Given a mount structure and an inode number, return a pointer
792 * to a newly allocated in-core inode corresponding to the given
795 * Initialize the inode's attributes and extent pointers if it
796 * already has them (it will not if the inode has no links).
812 ASSERT(xfs_inode_zone
!= NULL
);
814 ip
= kmem_zone_zalloc(xfs_inode_zone
, KM_SLEEP
);
817 atomic_set(&ip
->i_iocount
, 0);
818 spin_lock_init(&ip
->i_flags_lock
);
821 * Get pointer's to the on-disk inode and the buffer containing it.
822 * If the inode number refers to a block outside the file system
823 * then xfs_itobp() will return NULL. In this case we should
824 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
825 * know that this is a new incore inode.
827 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &bp
, bno
, imap_flags
, XFS_BUF_LOCK
);
829 kmem_zone_free(xfs_inode_zone
, ip
);
834 * Initialize inode's trace buffers.
835 * Do this before xfs_iformat in case it adds entries.
837 #ifdef XFS_INODE_TRACE
838 ip
->i_trace
= ktrace_alloc(INODE_TRACE_SIZE
, KM_SLEEP
);
840 #ifdef XFS_BMAP_TRACE
841 ip
->i_xtrace
= ktrace_alloc(XFS_BMAP_KTRACE_SIZE
, KM_SLEEP
);
843 #ifdef XFS_BMBT_TRACE
844 ip
->i_btrace
= ktrace_alloc(XFS_BMBT_KTRACE_SIZE
, KM_SLEEP
);
847 ip
->i_rwtrace
= ktrace_alloc(XFS_RW_KTRACE_SIZE
, KM_SLEEP
);
849 #ifdef XFS_ILOCK_TRACE
850 ip
->i_lock_trace
= ktrace_alloc(XFS_ILOCK_KTRACE_SIZE
, KM_SLEEP
);
852 #ifdef XFS_DIR2_TRACE
853 ip
->i_dir_trace
= ktrace_alloc(XFS_DIR2_KTRACE_SIZE
, KM_SLEEP
);
857 * If we got something that isn't an inode it means someone
858 * (nfs or dmi) has a stale handle.
860 if (be16_to_cpu(dip
->di_core
.di_magic
) != XFS_DINODE_MAGIC
) {
861 kmem_zone_free(xfs_inode_zone
, ip
);
862 xfs_trans_brelse(tp
, bp
);
864 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
865 "dip->di_core.di_magic (0x%x) != "
866 "XFS_DINODE_MAGIC (0x%x)",
867 be16_to_cpu(dip
->di_core
.di_magic
),
870 return XFS_ERROR(EINVAL
);
874 * If the on-disk inode is already linked to a directory
875 * entry, copy all of the inode into the in-core inode.
876 * xfs_iformat() handles copying in the inode format
877 * specific information.
878 * Otherwise, just get the truly permanent information.
880 if (dip
->di_core
.di_mode
) {
881 xfs_dinode_from_disk(&ip
->i_d
, &dip
->di_core
);
882 error
= xfs_iformat(ip
, dip
);
884 kmem_zone_free(xfs_inode_zone
, ip
);
885 xfs_trans_brelse(tp
, bp
);
887 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
888 "xfs_iformat() returned error %d",
894 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_core
.di_magic
);
895 ip
->i_d
.di_version
= dip
->di_core
.di_version
;
896 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_core
.di_gen
);
897 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_core
.di_flushiter
);
899 * Make sure to pull in the mode here as well in
900 * case the inode is released without being used.
901 * This ensures that xfs_inactive() will see that
902 * the inode is already free and not try to mess
903 * with the uninitialized part of it.
907 * Initialize the per-fork minima and maxima for a new
908 * inode here. xfs_iformat will do it for old inodes.
910 ip
->i_df
.if_ext_max
=
911 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
914 INIT_LIST_HEAD(&ip
->i_reclaim
);
917 * The inode format changed when we moved the link count and
918 * made it 32 bits long. If this is an old format inode,
919 * convert it in memory to look like a new one. If it gets
920 * flushed to disk we will convert back before flushing or
921 * logging it. We zero out the new projid field and the old link
922 * count field. We'll handle clearing the pad field (the remains
923 * of the old uuid field) when we actually convert the inode to
924 * the new format. We don't change the version number so that we
925 * can distinguish this from a real new format inode.
927 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
928 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
929 ip
->i_d
.di_onlink
= 0;
930 ip
->i_d
.di_projid
= 0;
933 ip
->i_delayed_blks
= 0;
934 ip
->i_size
= ip
->i_d
.di_size
;
937 * Mark the buffer containing the inode as something to keep
938 * around for a while. This helps to keep recently accessed
939 * meta-data in-core longer.
941 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
944 * Use xfs_trans_brelse() to release the buffer containing the
945 * on-disk inode, because it was acquired with xfs_trans_read_buf()
946 * in xfs_itobp() above. If tp is NULL, this is just a normal
947 * brelse(). If we're within a transaction, then xfs_trans_brelse()
948 * will only release the buffer if it is not dirty within the
949 * transaction. It will be OK to release the buffer in this case,
950 * because inodes on disk are never destroyed and we will be
951 * locking the new in-core inode before putting it in the hash
952 * table where other processes can find it. Thus we don't have
953 * to worry about the inode being changed just because we released
956 xfs_trans_brelse(tp
, bp
);
962 * Read in extents from a btree-format inode.
963 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
973 xfs_extnum_t nextents
;
976 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
977 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
979 return XFS_ERROR(EFSCORRUPTED
);
981 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
982 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
983 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
986 * We know that the size is valid (it's checked in iformat_btree)
988 ifp
->if_lastex
= NULLEXTNUM
;
989 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
990 ifp
->if_flags
|= XFS_IFEXTENTS
;
991 xfs_iext_add(ifp
, 0, nextents
);
992 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
994 xfs_iext_destroy(ifp
);
995 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
998 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
1003 * Allocate an inode on disk and return a copy of its in-core version.
1004 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1005 * appropriately within the inode. The uid and gid for the inode are
1006 * set according to the contents of the given cred structure.
1008 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1009 * has a free inode available, call xfs_iget()
1010 * to obtain the in-core version of the allocated inode. Finally,
1011 * fill in the inode and log its initial contents. In this case,
1012 * ialloc_context would be set to NULL and call_again set to false.
1014 * If xfs_dialloc() does not have an available inode,
1015 * it will replenish its supply by doing an allocation. Since we can
1016 * only do one allocation within a transaction without deadlocks, we
1017 * must commit the current transaction before returning the inode itself.
1018 * In this case, therefore, we will set call_again to true and return.
1019 * The caller should then commit the current transaction, start a new
1020 * transaction, and call xfs_ialloc() again to actually get the inode.
1022 * To ensure that some other process does not grab the inode that
1023 * was allocated during the first call to xfs_ialloc(), this routine
1024 * also returns the [locked] bp pointing to the head of the freelist
1025 * as ialloc_context. The caller should hold this buffer across
1026 * the commit and pass it back into this routine on the second call.
1028 * If we are allocating quota inodes, we do not have a parent inode
1029 * to attach to or associate with (i.e. pip == NULL) because they
1030 * are not linked into the directory structure - they are attached
1031 * directly to the superblock - and so have no parent.
1043 xfs_buf_t
**ialloc_context
,
1044 boolean_t
*call_again
,
1054 * Call the space management code to pick
1055 * the on-disk inode to be allocated.
1057 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1058 ialloc_context
, call_again
, &ino
);
1062 if (*call_again
|| ino
== NULLFSINO
) {
1066 ASSERT(*ialloc_context
== NULL
);
1069 * Get the in-core inode with the lock held exclusively.
1070 * This is because we're setting fields here we need
1071 * to prevent others from looking at until we're done.
1073 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1074 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1081 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1082 ip
->i_d
.di_onlink
= 0;
1083 ip
->i_d
.di_nlink
= nlink
;
1084 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1085 ip
->i_d
.di_uid
= current_fsuid(cr
);
1086 ip
->i_d
.di_gid
= current_fsgid(cr
);
1087 ip
->i_d
.di_projid
= prid
;
1088 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1091 * If the superblock version is up to where we support new format
1092 * inodes and this is currently an old format inode, then change
1093 * the inode version number now. This way we only do the conversion
1094 * here rather than here and in the flush/logging code.
1096 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1097 ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
1098 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
1100 * We've already zeroed the old link count, the projid field,
1101 * and the pad field.
1106 * Project ids won't be stored on disk if we are using a version 1 inode.
1108 if ((prid
!= 0) && (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
))
1109 xfs_bump_ino_vers2(tp
, ip
);
1111 if (pip
&& XFS_INHERIT_GID(pip
)) {
1112 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1113 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1114 ip
->i_d
.di_mode
|= S_ISGID
;
1119 * If the group ID of the new file does not match the effective group
1120 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1121 * (and only if the irix_sgid_inherit compatibility variable is set).
1123 if ((irix_sgid_inherit
) &&
1124 (ip
->i_d
.di_mode
& S_ISGID
) &&
1125 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1126 ip
->i_d
.di_mode
&= ~S_ISGID
;
1129 ip
->i_d
.di_size
= 0;
1131 ip
->i_d
.di_nextents
= 0;
1132 ASSERT(ip
->i_d
.di_nblocks
== 0);
1133 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
|XFS_ICHGTIME_ACC
|XFS_ICHGTIME_MOD
);
1135 * di_gen will have been taken care of in xfs_iread.
1137 ip
->i_d
.di_extsize
= 0;
1138 ip
->i_d
.di_dmevmask
= 0;
1139 ip
->i_d
.di_dmstate
= 0;
1140 ip
->i_d
.di_flags
= 0;
1141 flags
= XFS_ILOG_CORE
;
1142 switch (mode
& S_IFMT
) {
1147 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1148 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1149 ip
->i_df
.if_flags
= 0;
1150 flags
|= XFS_ILOG_DEV
;
1153 if (pip
&& xfs_inode_is_filestream(pip
)) {
1154 error
= xfs_filestream_associate(pip
, ip
);
1158 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1162 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1165 if ((mode
& S_IFMT
) == S_IFDIR
) {
1166 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1167 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1168 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1169 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1170 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1172 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1173 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1174 di_flags
|= XFS_DIFLAG_REALTIME
;
1175 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1176 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1177 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1180 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1181 xfs_inherit_noatime
)
1182 di_flags
|= XFS_DIFLAG_NOATIME
;
1183 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1185 di_flags
|= XFS_DIFLAG_NODUMP
;
1186 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1188 di_flags
|= XFS_DIFLAG_SYNC
;
1189 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1190 xfs_inherit_nosymlinks
)
1191 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1192 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1193 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1194 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1195 xfs_inherit_nodefrag
)
1196 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1197 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1198 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1199 ip
->i_d
.di_flags
|= di_flags
;
1203 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1204 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1205 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1206 ip
->i_df
.if_u1
.if_extents
= NULL
;
1212 * Attribute fork settings for new inode.
1214 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1215 ip
->i_d
.di_anextents
= 0;
1218 * Log the new values stuffed into the inode.
1220 xfs_trans_log_inode(tp
, ip
, flags
);
1222 /* now that we have an i_mode we can setup inode ops and unlock */
1223 xfs_initialize_vnode(tp
->t_mountp
, vp
, ip
);
1230 * Check to make sure that there are no blocks allocated to the
1231 * file beyond the size of the file. We don't check this for
1232 * files with fixed size extents or real time extents, but we
1233 * at least do it for regular files.
1242 xfs_fileoff_t map_first
;
1244 xfs_bmbt_irec_t imaps
[2];
1246 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1249 if (XFS_IS_REALTIME_INODE(ip
))
1252 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1256 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1258 * The filesystem could be shutting down, so bmapi may return
1261 if (xfs_bmapi(NULL
, ip
, map_first
,
1263 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1265 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1268 ASSERT(nimaps
== 1);
1269 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1274 * Calculate the last possible buffered byte in a file. This must
1275 * include data that was buffered beyond the EOF by the write code.
1276 * This also needs to deal with overflowing the xfs_fsize_t type
1277 * which can happen for sizes near the limit.
1279 * We also need to take into account any blocks beyond the EOF. It
1280 * may be the case that they were buffered by a write which failed.
1281 * In that case the pages will still be in memory, but the inode size
1282 * will never have been updated.
1289 xfs_fsize_t last_byte
;
1290 xfs_fileoff_t last_block
;
1291 xfs_fileoff_t size_last_block
;
1294 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
));
1298 * Only check for blocks beyond the EOF if the extents have
1299 * been read in. This eliminates the need for the inode lock,
1300 * and it also saves us from looking when it really isn't
1303 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1304 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1312 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1313 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1315 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1316 if (last_byte
< 0) {
1317 return XFS_MAXIOFFSET(mp
);
1319 last_byte
+= (1 << mp
->m_writeio_log
);
1320 if (last_byte
< 0) {
1321 return XFS_MAXIOFFSET(mp
);
1326 #if defined(XFS_RW_TRACE)
1332 xfs_fsize_t new_size
,
1333 xfs_off_t toss_start
,
1334 xfs_off_t toss_finish
)
1336 if (ip
->i_rwtrace
== NULL
) {
1340 ktrace_enter(ip
->i_rwtrace
,
1343 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1344 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1345 (void*)((long)flag
),
1346 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1347 (void*)(unsigned long)(new_size
& 0xffffffff),
1348 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1349 (void*)(unsigned long)(toss_start
& 0xffffffff),
1350 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1351 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1352 (void*)(unsigned long)current_cpu(),
1353 (void*)(unsigned long)current_pid(),
1359 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1363 * Start the truncation of the file to new_size. The new size
1364 * must be smaller than the current size. This routine will
1365 * clear the buffer and page caches of file data in the removed
1366 * range, and xfs_itruncate_finish() will remove the underlying
1369 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1370 * must NOT have the inode lock held at all. This is because we're
1371 * calling into the buffer/page cache code and we can't hold the
1372 * inode lock when we do so.
1374 * We need to wait for any direct I/Os in flight to complete before we
1375 * proceed with the truncate. This is needed to prevent the extents
1376 * being read or written by the direct I/Os from being removed while the
1377 * I/O is in flight as there is no other method of synchronising
1378 * direct I/O with the truncate operation. Also, because we hold
1379 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1380 * started until the truncate completes and drops the lock. Essentially,
1381 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1382 * between direct I/Os and the truncate operation.
1384 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1385 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1386 * in the case that the caller is locking things out of order and
1387 * may not be able to call xfs_itruncate_finish() with the inode lock
1388 * held without dropping the I/O lock. If the caller must drop the
1389 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1390 * must be called again with all the same restrictions as the initial
1394 xfs_itruncate_start(
1397 xfs_fsize_t new_size
)
1399 xfs_fsize_t last_byte
;
1400 xfs_off_t toss_start
;
1405 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1406 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1407 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1408 (flags
== XFS_ITRUNC_MAYBE
));
1413 /* wait for the completion of any pending DIOs */
1414 if (new_size
< ip
->i_size
)
1418 * Call toss_pages or flushinval_pages to get rid of pages
1419 * overlapping the region being removed. We have to use
1420 * the less efficient flushinval_pages in the case that the
1421 * caller may not be able to finish the truncate without
1422 * dropping the inode's I/O lock. Make sure
1423 * to catch any pages brought in by buffers overlapping
1424 * the EOF by searching out beyond the isize by our
1425 * block size. We round new_size up to a block boundary
1426 * so that we don't toss things on the same block as
1427 * new_size but before it.
1429 * Before calling toss_page or flushinval_pages, make sure to
1430 * call remapf() over the same region if the file is mapped.
1431 * This frees up mapped file references to the pages in the
1432 * given range and for the flushinval_pages case it ensures
1433 * that we get the latest mapped changes flushed out.
1435 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1436 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1437 if (toss_start
< 0) {
1439 * The place to start tossing is beyond our maximum
1440 * file size, so there is no way that the data extended
1445 last_byte
= xfs_file_last_byte(ip
);
1446 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1448 if (last_byte
> toss_start
) {
1449 if (flags
& XFS_ITRUNC_DEFINITE
) {
1450 xfs_tosspages(ip
, toss_start
,
1451 -1, FI_REMAPF_LOCKED
);
1453 error
= xfs_flushinval_pages(ip
, toss_start
,
1454 -1, FI_REMAPF_LOCKED
);
1459 if (new_size
== 0) {
1460 ASSERT(VN_CACHED(vp
) == 0);
1467 * Shrink the file to the given new_size. The new size must be smaller than
1468 * the current size. This will free up the underlying blocks in the removed
1469 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1471 * The transaction passed to this routine must have made a permanent log
1472 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1473 * given transaction and start new ones, so make sure everything involved in
1474 * the transaction is tidy before calling here. Some transaction will be
1475 * returned to the caller to be committed. The incoming transaction must
1476 * already include the inode, and both inode locks must be held exclusively.
1477 * The inode must also be "held" within the transaction. On return the inode
1478 * will be "held" within the returned transaction. This routine does NOT
1479 * require any disk space to be reserved for it within the transaction.
1481 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1482 * indicates the fork which is to be truncated. For the attribute fork we only
1483 * support truncation to size 0.
1485 * We use the sync parameter to indicate whether or not the first transaction
1486 * we perform might have to be synchronous. For the attr fork, it needs to be
1487 * so if the unlink of the inode is not yet known to be permanent in the log.
1488 * This keeps us from freeing and reusing the blocks of the attribute fork
1489 * before the unlink of the inode becomes permanent.
1491 * For the data fork, we normally have to run synchronously if we're being
1492 * called out of the inactive path or we're being called out of the create path
1493 * where we're truncating an existing file. Either way, the truncate needs to
1494 * be sync so blocks don't reappear in the file with altered data in case of a
1495 * crash. wsync filesystems can run the first case async because anything that
1496 * shrinks the inode has to run sync so by the time we're called here from
1497 * inactive, the inode size is permanently set to 0.
1499 * Calls from the truncate path always need to be sync unless we're in a wsync
1500 * filesystem and the file has already been unlinked.
1502 * The caller is responsible for correctly setting the sync parameter. It gets
1503 * too hard for us to guess here which path we're being called out of just
1504 * based on inode state.
1506 * If we get an error, we must return with the inode locked and linked into the
1507 * current transaction. This keeps things simple for the higher level code,
1508 * because it always knows that the inode is locked and held in the transaction
1509 * that returns to it whether errors occur or not. We don't mark the inode
1510 * dirty on error so that transactions can be easily aborted if possible.
1513 xfs_itruncate_finish(
1516 xfs_fsize_t new_size
,
1520 xfs_fsblock_t first_block
;
1521 xfs_fileoff_t first_unmap_block
;
1522 xfs_fileoff_t last_block
;
1523 xfs_filblks_t unmap_len
=0;
1528 xfs_bmap_free_t free_list
;
1531 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1532 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1533 ASSERT(*tp
!= NULL
);
1534 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1535 ASSERT(ip
->i_transp
== *tp
);
1536 ASSERT(ip
->i_itemp
!= NULL
);
1537 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1541 mp
= (ntp
)->t_mountp
;
1542 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1545 * We only support truncating the entire attribute fork.
1547 if (fork
== XFS_ATTR_FORK
) {
1550 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1551 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1553 * The first thing we do is set the size to new_size permanently
1554 * on disk. This way we don't have to worry about anyone ever
1555 * being able to look at the data being freed even in the face
1556 * of a crash. What we're getting around here is the case where
1557 * we free a block, it is allocated to another file, it is written
1558 * to, and then we crash. If the new data gets written to the
1559 * file but the log buffers containing the free and reallocation
1560 * don't, then we'd end up with garbage in the blocks being freed.
1561 * As long as we make the new_size permanent before actually
1562 * freeing any blocks it doesn't matter if they get writtten to.
1564 * The callers must signal into us whether or not the size
1565 * setting here must be synchronous. There are a few cases
1566 * where it doesn't have to be synchronous. Those cases
1567 * occur if the file is unlinked and we know the unlink is
1568 * permanent or if the blocks being truncated are guaranteed
1569 * to be beyond the inode eof (regardless of the link count)
1570 * and the eof value is permanent. Both of these cases occur
1571 * only on wsync-mounted filesystems. In those cases, we're
1572 * guaranteed that no user will ever see the data in the blocks
1573 * that are being truncated so the truncate can run async.
1574 * In the free beyond eof case, the file may wind up with
1575 * more blocks allocated to it than it needs if we crash
1576 * and that won't get fixed until the next time the file
1577 * is re-opened and closed but that's ok as that shouldn't
1578 * be too many blocks.
1580 * However, we can't just make all wsync xactions run async
1581 * because there's one call out of the create path that needs
1582 * to run sync where it's truncating an existing file to size
1583 * 0 whose size is > 0.
1585 * It's probably possible to come up with a test in this
1586 * routine that would correctly distinguish all the above
1587 * cases from the values of the function parameters and the
1588 * inode state but for sanity's sake, I've decided to let the
1589 * layers above just tell us. It's simpler to correctly figure
1590 * out in the layer above exactly under what conditions we
1591 * can run async and I think it's easier for others read and
1592 * follow the logic in case something has to be changed.
1593 * cscope is your friend -- rcc.
1595 * The attribute fork is much simpler.
1597 * For the attribute fork we allow the caller to tell us whether
1598 * the unlink of the inode that led to this call is yet permanent
1599 * in the on disk log. If it is not and we will be freeing extents
1600 * in this inode then we make the first transaction synchronous
1601 * to make sure that the unlink is permanent by the time we free
1604 if (fork
== XFS_DATA_FORK
) {
1605 if (ip
->i_d
.di_nextents
> 0) {
1607 * If we are not changing the file size then do
1608 * not update the on-disk file size - we may be
1609 * called from xfs_inactive_free_eofblocks(). If we
1610 * update the on-disk file size and then the system
1611 * crashes before the contents of the file are
1612 * flushed to disk then the files may be full of
1613 * holes (ie NULL files bug).
1615 if (ip
->i_size
!= new_size
) {
1616 ip
->i_d
.di_size
= new_size
;
1617 ip
->i_size
= new_size
;
1618 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1622 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1623 if (ip
->i_d
.di_anextents
> 0)
1624 xfs_trans_set_sync(ntp
);
1626 ASSERT(fork
== XFS_DATA_FORK
||
1627 (fork
== XFS_ATTR_FORK
&&
1628 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1629 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1632 * Since it is possible for space to become allocated beyond
1633 * the end of the file (in a crash where the space is allocated
1634 * but the inode size is not yet updated), simply remove any
1635 * blocks which show up between the new EOF and the maximum
1636 * possible file size. If the first block to be removed is
1637 * beyond the maximum file size (ie it is the same as last_block),
1638 * then there is nothing to do.
1640 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1641 ASSERT(first_unmap_block
<= last_block
);
1643 if (last_block
== first_unmap_block
) {
1646 unmap_len
= last_block
- first_unmap_block
+ 1;
1650 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1651 * will tell us whether it freed the entire range or
1652 * not. If this is a synchronous mount (wsync),
1653 * then we can tell bunmapi to keep all the
1654 * transactions asynchronous since the unlink
1655 * transaction that made this inode inactive has
1656 * already hit the disk. There's no danger of
1657 * the freed blocks being reused, there being a
1658 * crash, and the reused blocks suddenly reappearing
1659 * in this file with garbage in them once recovery
1662 XFS_BMAP_INIT(&free_list
, &first_block
);
1663 error
= xfs_bunmapi(ntp
, ip
,
1664 first_unmap_block
, unmap_len
,
1665 XFS_BMAPI_AFLAG(fork
) |
1666 (sync
? 0 : XFS_BMAPI_ASYNC
),
1667 XFS_ITRUNC_MAX_EXTENTS
,
1668 &first_block
, &free_list
,
1672 * If the bunmapi call encounters an error,
1673 * return to the caller where the transaction
1674 * can be properly aborted. We just need to
1675 * make sure we're not holding any resources
1676 * that we were not when we came in.
1678 xfs_bmap_cancel(&free_list
);
1683 * Duplicate the transaction that has the permanent
1684 * reservation and commit the old transaction.
1686 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1689 /* link the inode into the next xact in the chain */
1690 xfs_trans_ijoin(ntp
, ip
,
1691 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1692 xfs_trans_ihold(ntp
, ip
);
1697 * If the bmap finish call encounters an error, return
1698 * to the caller where the transaction can be properly
1699 * aborted. We just need to make sure we're not
1700 * holding any resources that we were not when we came
1703 * Aborting from this point might lose some blocks in
1704 * the file system, but oh well.
1706 xfs_bmap_cancel(&free_list
);
1712 * Mark the inode dirty so it will be logged and
1713 * moved forward in the log as part of every commit.
1715 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1718 ntp
= xfs_trans_dup(ntp
);
1719 error
= xfs_trans_commit(*tp
, 0);
1722 /* link the inode into the next transaction in the chain */
1723 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1724 xfs_trans_ihold(ntp
, ip
);
1727 error
= xfs_trans_reserve(ntp
, 0,
1728 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1729 XFS_TRANS_PERM_LOG_RES
,
1730 XFS_ITRUNCATE_LOG_COUNT
);
1735 * Only update the size in the case of the data fork, but
1736 * always re-log the inode so that our permanent transaction
1737 * can keep on rolling it forward in the log.
1739 if (fork
== XFS_DATA_FORK
) {
1740 xfs_isize_check(mp
, ip
, new_size
);
1742 * If we are not changing the file size then do
1743 * not update the on-disk file size - we may be
1744 * called from xfs_inactive_free_eofblocks(). If we
1745 * update the on-disk file size and then the system
1746 * crashes before the contents of the file are
1747 * flushed to disk then the files may be full of
1748 * holes (ie NULL files bug).
1750 if (ip
->i_size
!= new_size
) {
1751 ip
->i_d
.di_size
= new_size
;
1752 ip
->i_size
= new_size
;
1755 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1756 ASSERT((new_size
!= 0) ||
1757 (fork
== XFS_ATTR_FORK
) ||
1758 (ip
->i_delayed_blks
== 0));
1759 ASSERT((new_size
!= 0) ||
1760 (fork
== XFS_ATTR_FORK
) ||
1761 (ip
->i_d
.di_nextents
== 0));
1762 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1770 * Do the first part of growing a file: zero any data in the last
1771 * block that is beyond the old EOF. We need to do this before
1772 * the inode is joined to the transaction to modify the i_size.
1773 * That way we can drop the inode lock and call into the buffer
1774 * cache to get the buffer mapping the EOF.
1779 xfs_fsize_t new_size
,
1782 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1783 ASSERT(new_size
> ip
->i_size
);
1786 * Zero any pages that may have been created by
1787 * xfs_write_file() beyond the end of the file
1788 * and any blocks between the old and new file sizes.
1790 return xfs_zero_eof(ip
, new_size
, ip
->i_size
);
1796 * This routine is called to extend the size of a file.
1797 * The inode must have both the iolock and the ilock locked
1798 * for update and it must be a part of the current transaction.
1799 * The xfs_igrow_start() function must have been called previously.
1800 * If the change_flag is not zero, the inode change timestamp will
1807 xfs_fsize_t new_size
,
1810 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1811 ASSERT(ip
->i_transp
== tp
);
1812 ASSERT(new_size
> ip
->i_size
);
1815 * Update the file size. Update the inode change timestamp
1816 * if change_flag set.
1818 ip
->i_d
.di_size
= new_size
;
1819 ip
->i_size
= new_size
;
1821 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
);
1822 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1828 * This is called when the inode's link count goes to 0.
1829 * We place the on-disk inode on a list in the AGI. It
1830 * will be pulled from this list when the inode is freed.
1842 xfs_agnumber_t agno
;
1843 xfs_daddr_t agdaddr
;
1850 ASSERT(ip
->i_d
.di_nlink
== 0);
1851 ASSERT(ip
->i_d
.di_mode
!= 0);
1852 ASSERT(ip
->i_transp
== tp
);
1856 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1857 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1860 * Get the agi buffer first. It ensures lock ordering
1863 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1864 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1869 * Validate the magic number of the agi block.
1871 agi
= XFS_BUF_TO_AGI(agibp
);
1873 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1874 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1875 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK
,
1876 XFS_RANDOM_IUNLINK
))) {
1877 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW
, mp
, agi
);
1878 xfs_trans_brelse(tp
, agibp
);
1879 return XFS_ERROR(EFSCORRUPTED
);
1882 * Get the index into the agi hash table for the
1883 * list this inode will go on.
1885 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1887 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1888 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1889 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1891 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1893 * There is already another inode in the bucket we need
1894 * to add ourselves to. Add us at the front of the list.
1895 * Here we put the head pointer into our next pointer,
1896 * and then we fall through to point the head at us.
1898 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0, XFS_BUF_LOCK
);
1902 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1903 /* both on-disk, don't endian flip twice */
1904 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1905 offset
= ip
->i_boffset
+
1906 offsetof(xfs_dinode_t
, di_next_unlinked
);
1907 xfs_trans_inode_buf(tp
, ibp
);
1908 xfs_trans_log_buf(tp
, ibp
, offset
,
1909 (offset
+ sizeof(xfs_agino_t
) - 1));
1910 xfs_inobp_check(mp
, ibp
);
1914 * Point the bucket head pointer at the inode being inserted.
1917 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1918 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1919 (sizeof(xfs_agino_t
) * bucket_index
);
1920 xfs_trans_log_buf(tp
, agibp
, offset
,
1921 (offset
+ sizeof(xfs_agino_t
) - 1));
1926 * Pull the on-disk inode from the AGI unlinked list.
1939 xfs_agnumber_t agno
;
1940 xfs_daddr_t agdaddr
;
1942 xfs_agino_t next_agino
;
1943 xfs_buf_t
*last_ibp
;
1944 xfs_dinode_t
*last_dip
= NULL
;
1946 int offset
, last_offset
= 0;
1951 * First pull the on-disk inode from the AGI unlinked list.
1955 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1956 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1959 * Get the agi buffer first. It ensures lock ordering
1962 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1963 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1966 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1967 error
, mp
->m_fsname
);
1971 * Validate the magic number of the agi block.
1973 agi
= XFS_BUF_TO_AGI(agibp
);
1975 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1976 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1977 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK_REMOVE
,
1978 XFS_RANDOM_IUNLINK_REMOVE
))) {
1979 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW
,
1981 xfs_trans_brelse(tp
, agibp
);
1983 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1985 return XFS_ERROR(EFSCORRUPTED
);
1988 * Get the index into the agi hash table for the
1989 * list this inode will go on.
1991 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1993 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1994 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1995 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1997 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1999 * We're at the head of the list. Get the inode's
2000 * on-disk buffer to see if there is anyone after us
2001 * on the list. Only modify our next pointer if it
2002 * is not already NULLAGINO. This saves us the overhead
2003 * of dealing with the buffer when there is no need to
2006 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0, XFS_BUF_LOCK
);
2009 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2010 error
, mp
->m_fsname
);
2013 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2014 ASSERT(next_agino
!= 0);
2015 if (next_agino
!= NULLAGINO
) {
2016 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2017 offset
= ip
->i_boffset
+
2018 offsetof(xfs_dinode_t
, di_next_unlinked
);
2019 xfs_trans_inode_buf(tp
, ibp
);
2020 xfs_trans_log_buf(tp
, ibp
, offset
,
2021 (offset
+ sizeof(xfs_agino_t
) - 1));
2022 xfs_inobp_check(mp
, ibp
);
2024 xfs_trans_brelse(tp
, ibp
);
2027 * Point the bucket head pointer at the next inode.
2029 ASSERT(next_agino
!= 0);
2030 ASSERT(next_agino
!= agino
);
2031 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2032 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2033 (sizeof(xfs_agino_t
) * bucket_index
);
2034 xfs_trans_log_buf(tp
, agibp
, offset
,
2035 (offset
+ sizeof(xfs_agino_t
) - 1));
2038 * We need to search the list for the inode being freed.
2040 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2042 while (next_agino
!= agino
) {
2044 * If the last inode wasn't the one pointing to
2045 * us, then release its buffer since we're not
2046 * going to do anything with it.
2048 if (last_ibp
!= NULL
) {
2049 xfs_trans_brelse(tp
, last_ibp
);
2051 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2052 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
2053 &last_ibp
, &last_offset
);
2056 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2057 error
, mp
->m_fsname
);
2060 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2061 ASSERT(next_agino
!= NULLAGINO
);
2062 ASSERT(next_agino
!= 0);
2065 * Now last_ibp points to the buffer previous to us on
2066 * the unlinked list. Pull us from the list.
2068 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0, XFS_BUF_LOCK
);
2071 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2072 error
, mp
->m_fsname
);
2075 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2076 ASSERT(next_agino
!= 0);
2077 ASSERT(next_agino
!= agino
);
2078 if (next_agino
!= NULLAGINO
) {
2079 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2080 offset
= ip
->i_boffset
+
2081 offsetof(xfs_dinode_t
, di_next_unlinked
);
2082 xfs_trans_inode_buf(tp
, ibp
);
2083 xfs_trans_log_buf(tp
, ibp
, offset
,
2084 (offset
+ sizeof(xfs_agino_t
) - 1));
2085 xfs_inobp_check(mp
, ibp
);
2087 xfs_trans_brelse(tp
, ibp
);
2090 * Point the previous inode on the list to the next inode.
2092 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2093 ASSERT(next_agino
!= 0);
2094 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2095 xfs_trans_inode_buf(tp
, last_ibp
);
2096 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2097 (offset
+ sizeof(xfs_agino_t
) - 1));
2098 xfs_inobp_check(mp
, last_ibp
);
2105 xfs_inode_t
*free_ip
,
2109 xfs_mount_t
*mp
= free_ip
->i_mount
;
2110 int blks_per_cluster
;
2113 int i
, j
, found
, pre_flushed
;
2116 xfs_inode_t
*ip
, **ip_found
;
2117 xfs_inode_log_item_t
*iip
;
2118 xfs_log_item_t
*lip
;
2119 xfs_perag_t
*pag
= xfs_get_perag(mp
, inum
);
2121 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
2122 blks_per_cluster
= 1;
2123 ninodes
= mp
->m_sb
.sb_inopblock
;
2124 nbufs
= XFS_IALLOC_BLOCKS(mp
);
2126 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
2127 mp
->m_sb
.sb_blocksize
;
2128 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
2129 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
2132 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
2134 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
2135 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2136 XFS_INO_TO_AGBNO(mp
, inum
));
2140 * Look for each inode in memory and attempt to lock it,
2141 * we can be racing with flush and tail pushing here.
2142 * any inode we get the locks on, add to an array of
2143 * inode items to process later.
2145 * The get the buffer lock, we could beat a flush
2146 * or tail pushing thread to the lock here, in which
2147 * case they will go looking for the inode buffer
2148 * and fail, we need some other form of interlock
2152 for (i
= 0; i
< ninodes
; i
++) {
2153 read_lock(&pag
->pag_ici_lock
);
2154 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2155 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2157 /* Inode not in memory or we found it already,
2160 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
2161 read_unlock(&pag
->pag_ici_lock
);
2165 if (xfs_inode_clean(ip
)) {
2166 read_unlock(&pag
->pag_ici_lock
);
2170 /* If we can get the locks then add it to the
2171 * list, otherwise by the time we get the bp lock
2172 * below it will already be attached to the
2176 /* This inode will already be locked - by us, lets
2180 if (ip
== free_ip
) {
2181 if (xfs_iflock_nowait(ip
)) {
2182 xfs_iflags_set(ip
, XFS_ISTALE
);
2183 if (xfs_inode_clean(ip
)) {
2186 ip_found
[found
++] = ip
;
2189 read_unlock(&pag
->pag_ici_lock
);
2193 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2194 if (xfs_iflock_nowait(ip
)) {
2195 xfs_iflags_set(ip
, XFS_ISTALE
);
2197 if (xfs_inode_clean(ip
)) {
2199 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2201 ip_found
[found
++] = ip
;
2204 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2207 read_unlock(&pag
->pag_ici_lock
);
2210 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2211 mp
->m_bsize
* blks_per_cluster
,
2215 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2217 if (lip
->li_type
== XFS_LI_INODE
) {
2218 iip
= (xfs_inode_log_item_t
*)lip
;
2219 ASSERT(iip
->ili_logged
== 1);
2220 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2221 spin_lock(&mp
->m_ail_lock
);
2222 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2223 spin_unlock(&mp
->m_ail_lock
);
2224 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2227 lip
= lip
->li_bio_list
;
2230 for (i
= 0; i
< found
; i
++) {
2235 ip
->i_update_core
= 0;
2237 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2241 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2242 iip
->ili_format
.ilf_fields
= 0;
2243 iip
->ili_logged
= 1;
2244 spin_lock(&mp
->m_ail_lock
);
2245 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2246 spin_unlock(&mp
->m_ail_lock
);
2248 xfs_buf_attach_iodone(bp
,
2249 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2250 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2251 if (ip
!= free_ip
) {
2252 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2256 if (found
|| pre_flushed
)
2257 xfs_trans_stale_inode_buf(tp
, bp
);
2258 xfs_trans_binval(tp
, bp
);
2261 kmem_free(ip_found
, ninodes
* sizeof(xfs_inode_t
*));
2262 xfs_put_perag(mp
, pag
);
2266 * This is called to return an inode to the inode free list.
2267 * The inode should already be truncated to 0 length and have
2268 * no pages associated with it. This routine also assumes that
2269 * the inode is already a part of the transaction.
2271 * The on-disk copy of the inode will have been added to the list
2272 * of unlinked inodes in the AGI. We need to remove the inode from
2273 * that list atomically with respect to freeing it here.
2279 xfs_bmap_free_t
*flist
)
2283 xfs_ino_t first_ino
;
2287 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2288 ASSERT(ip
->i_transp
== tp
);
2289 ASSERT(ip
->i_d
.di_nlink
== 0);
2290 ASSERT(ip
->i_d
.di_nextents
== 0);
2291 ASSERT(ip
->i_d
.di_anextents
== 0);
2292 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2293 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2294 ASSERT(ip
->i_d
.di_nblocks
== 0);
2297 * Pull the on-disk inode from the AGI unlinked list.
2299 error
= xfs_iunlink_remove(tp
, ip
);
2304 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2308 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2309 ip
->i_d
.di_flags
= 0;
2310 ip
->i_d
.di_dmevmask
= 0;
2311 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2312 ip
->i_df
.if_ext_max
=
2313 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2314 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2315 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2317 * Bump the generation count so no one will be confused
2318 * by reincarnations of this inode.
2322 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2324 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, 0, 0, XFS_BUF_LOCK
);
2329 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2330 * from picking up this inode when it is reclaimed (its incore state
2331 * initialzed but not flushed to disk yet). The in-core di_mode is
2332 * already cleared and a corresponding transaction logged.
2333 * The hack here just synchronizes the in-core to on-disk
2334 * di_mode value in advance before the actual inode sync to disk.
2335 * This is OK because the inode is already unlinked and would never
2336 * change its di_mode again for this inode generation.
2337 * This is a temporary hack that would require a proper fix
2340 dip
->di_core
.di_mode
= 0;
2343 xfs_ifree_cluster(ip
, tp
, first_ino
);
2350 * Reallocate the space for if_broot based on the number of records
2351 * being added or deleted as indicated in rec_diff. Move the records
2352 * and pointers in if_broot to fit the new size. When shrinking this
2353 * will eliminate holes between the records and pointers created by
2354 * the caller. When growing this will create holes to be filled in
2357 * The caller must not request to add more records than would fit in
2358 * the on-disk inode root. If the if_broot is currently NULL, then
2359 * if we adding records one will be allocated. The caller must also
2360 * not request that the number of records go below zero, although
2361 * it can go to zero.
2363 * ip -- the inode whose if_broot area is changing
2364 * ext_diff -- the change in the number of records, positive or negative,
2365 * requested for the if_broot array.
2375 xfs_bmbt_block_t
*new_broot
;
2382 * Handle the degenerate case quietly.
2384 if (rec_diff
== 0) {
2388 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2391 * If there wasn't any memory allocated before, just
2392 * allocate it now and get out.
2394 if (ifp
->if_broot_bytes
== 0) {
2395 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2396 ifp
->if_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
,
2398 ifp
->if_broot_bytes
= (int)new_size
;
2403 * If there is already an existing if_broot, then we need
2404 * to realloc() it and shift the pointers to their new
2405 * location. The records don't change location because
2406 * they are kept butted up against the btree block header.
2408 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2409 new_max
= cur_max
+ rec_diff
;
2410 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2411 ifp
->if_broot
= (xfs_bmbt_block_t
*)
2412 kmem_realloc(ifp
->if_broot
,
2414 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2416 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2417 ifp
->if_broot_bytes
);
2418 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2420 ifp
->if_broot_bytes
= (int)new_size
;
2421 ASSERT(ifp
->if_broot_bytes
<=
2422 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2423 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2428 * rec_diff is less than 0. In this case, we are shrinking the
2429 * if_broot buffer. It must already exist. If we go to zero
2430 * records, just get rid of the root and clear the status bit.
2432 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2433 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2434 new_max
= cur_max
+ rec_diff
;
2435 ASSERT(new_max
>= 0);
2437 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2441 new_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
, KM_SLEEP
);
2443 * First copy over the btree block header.
2445 memcpy(new_broot
, ifp
->if_broot
, sizeof(xfs_bmbt_block_t
));
2448 ifp
->if_flags
&= ~XFS_IFBROOT
;
2452 * Only copy the records and pointers if there are any.
2456 * First copy the records.
2458 op
= (char *)XFS_BMAP_BROOT_REC_ADDR(ifp
->if_broot
, 1,
2459 ifp
->if_broot_bytes
);
2460 np
= (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot
, 1,
2462 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2465 * Then copy the pointers.
2467 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2468 ifp
->if_broot_bytes
);
2469 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot
, 1,
2471 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2473 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2474 ifp
->if_broot
= new_broot
;
2475 ifp
->if_broot_bytes
= (int)new_size
;
2476 ASSERT(ifp
->if_broot_bytes
<=
2477 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2483 * This is called when the amount of space needed for if_data
2484 * is increased or decreased. The change in size is indicated by
2485 * the number of bytes that need to be added or deleted in the
2486 * byte_diff parameter.
2488 * If the amount of space needed has decreased below the size of the
2489 * inline buffer, then switch to using the inline buffer. Otherwise,
2490 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2491 * to what is needed.
2493 * ip -- the inode whose if_data area is changing
2494 * byte_diff -- the change in the number of bytes, positive or negative,
2495 * requested for the if_data array.
2507 if (byte_diff
== 0) {
2511 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2512 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2513 ASSERT(new_size
>= 0);
2515 if (new_size
== 0) {
2516 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2517 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2519 ifp
->if_u1
.if_data
= NULL
;
2521 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2523 * If the valid extents/data can fit in if_inline_ext/data,
2524 * copy them from the malloc'd vector and free it.
2526 if (ifp
->if_u1
.if_data
== NULL
) {
2527 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2528 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2529 ASSERT(ifp
->if_real_bytes
!= 0);
2530 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2532 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2533 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2538 * Stuck with malloc/realloc.
2539 * For inline data, the underlying buffer must be
2540 * a multiple of 4 bytes in size so that it can be
2541 * logged and stay on word boundaries. We enforce
2544 real_size
= roundup(new_size
, 4);
2545 if (ifp
->if_u1
.if_data
== NULL
) {
2546 ASSERT(ifp
->if_real_bytes
== 0);
2547 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2548 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2550 * Only do the realloc if the underlying size
2551 * is really changing.
2553 if (ifp
->if_real_bytes
!= real_size
) {
2554 ifp
->if_u1
.if_data
=
2555 kmem_realloc(ifp
->if_u1
.if_data
,
2561 ASSERT(ifp
->if_real_bytes
== 0);
2562 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2563 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2567 ifp
->if_real_bytes
= real_size
;
2568 ifp
->if_bytes
= new_size
;
2569 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2576 * Map inode to disk block and offset.
2578 * mp -- the mount point structure for the current file system
2579 * tp -- the current transaction
2580 * ino -- the inode number of the inode to be located
2581 * imap -- this structure is filled in with the information necessary
2582 * to retrieve the given inode from disk
2583 * flags -- flags to pass to xfs_dilocate indicating whether or not
2584 * lookups in the inode btree were OK or not
2594 xfs_fsblock_t fsbno
;
2599 fsbno
= imap
->im_blkno
?
2600 XFS_DADDR_TO_FSB(mp
, imap
->im_blkno
) : NULLFSBLOCK
;
2601 error
= xfs_dilocate(mp
, tp
, ino
, &fsbno
, &len
, &off
, flags
);
2605 imap
->im_blkno
= XFS_FSB_TO_DADDR(mp
, fsbno
);
2606 imap
->im_len
= XFS_FSB_TO_BB(mp
, len
);
2607 imap
->im_agblkno
= XFS_FSB_TO_AGBNO(mp
, fsbno
);
2608 imap
->im_ioffset
= (ushort
)off
;
2609 imap
->im_boffset
= (ushort
)(off
<< mp
->m_sb
.sb_inodelog
);
2612 * If the inode number maps to a block outside the bounds
2613 * of the file system then return NULL rather than calling
2614 * read_buf and panicing when we get an error from the
2617 if ((imap
->im_blkno
+ imap
->im_len
) >
2618 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
2619 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_imap: "
2620 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2621 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2622 (unsigned long long) imap
->im_blkno
,
2623 (unsigned long long) imap
->im_len
,
2624 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
2637 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2638 if (ifp
->if_broot
!= NULL
) {
2639 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2640 ifp
->if_broot
= NULL
;
2644 * If the format is local, then we can't have an extents
2645 * array so just look for an inline data array. If we're
2646 * not local then we may or may not have an extents list,
2647 * so check and free it up if we do.
2649 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2650 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2651 (ifp
->if_u1
.if_data
!= NULL
)) {
2652 ASSERT(ifp
->if_real_bytes
!= 0);
2653 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2654 ifp
->if_u1
.if_data
= NULL
;
2655 ifp
->if_real_bytes
= 0;
2657 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2658 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2659 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2660 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2661 ASSERT(ifp
->if_real_bytes
!= 0);
2662 xfs_iext_destroy(ifp
);
2664 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2665 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2666 ASSERT(ifp
->if_real_bytes
== 0);
2667 if (whichfork
== XFS_ATTR_FORK
) {
2668 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2674 * This is called free all the memory associated with an inode.
2675 * It must free the inode itself and any buffers allocated for
2676 * if_extents/if_data and if_broot. It must also free the lock
2677 * associated with the inode.
2683 switch (ip
->i_d
.di_mode
& S_IFMT
) {
2687 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
2691 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
2692 mrfree(&ip
->i_lock
);
2693 mrfree(&ip
->i_iolock
);
2694 freesema(&ip
->i_flock
);
2696 #ifdef XFS_INODE_TRACE
2697 ktrace_free(ip
->i_trace
);
2699 #ifdef XFS_BMAP_TRACE
2700 ktrace_free(ip
->i_xtrace
);
2702 #ifdef XFS_BMBT_TRACE
2703 ktrace_free(ip
->i_btrace
);
2706 ktrace_free(ip
->i_rwtrace
);
2708 #ifdef XFS_ILOCK_TRACE
2709 ktrace_free(ip
->i_lock_trace
);
2711 #ifdef XFS_DIR2_TRACE
2712 ktrace_free(ip
->i_dir_trace
);
2716 * Only if we are shutting down the fs will we see an
2717 * inode still in the AIL. If it is there, we should remove
2718 * it to prevent a use-after-free from occurring.
2720 xfs_mount_t
*mp
= ip
->i_mount
;
2721 xfs_log_item_t
*lip
= &ip
->i_itemp
->ili_item
;
2723 ASSERT(((lip
->li_flags
& XFS_LI_IN_AIL
) == 0) ||
2724 XFS_FORCED_SHUTDOWN(ip
->i_mount
));
2725 if (lip
->li_flags
& XFS_LI_IN_AIL
) {
2726 spin_lock(&mp
->m_ail_lock
);
2727 if (lip
->li_flags
& XFS_LI_IN_AIL
)
2728 xfs_trans_delete_ail(mp
, lip
);
2730 spin_unlock(&mp
->m_ail_lock
);
2732 xfs_inode_item_destroy(ip
);
2734 kmem_zone_free(xfs_inode_zone
, ip
);
2739 * Increment the pin count of the given buffer.
2740 * This value is protected by ipinlock spinlock in the mount structure.
2746 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2748 atomic_inc(&ip
->i_pincount
);
2752 * Decrement the pin count of the given inode, and wake up
2753 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2754 * inode must have been previously pinned with a call to xfs_ipin().
2760 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2762 if (atomic_dec_and_test(&ip
->i_pincount
))
2763 wake_up(&ip
->i_ipin_wait
);
2767 * This is called to unpin an inode. It can be directed to wait or to return
2768 * immediately without waiting for the inode to be unpinned. The caller must
2769 * have the inode locked in at least shared mode so that the buffer cannot be
2770 * subsequently pinned once someone is waiting for it to be unpinned.
2777 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
2779 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2780 if (atomic_read(&ip
->i_pincount
) == 0)
2783 /* Give the log a push to start the unpinning I/O */
2784 xfs_log_force(ip
->i_mount
, (iip
&& iip
->ili_last_lsn
) ?
2785 iip
->ili_last_lsn
: 0, XFS_LOG_FORCE
);
2787 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2794 __xfs_iunpin_wait(ip
, 1);
2801 __xfs_iunpin_wait(ip
, 0);
2806 * xfs_iextents_copy()
2808 * This is called to copy the REAL extents (as opposed to the delayed
2809 * allocation extents) from the inode into the given buffer. It
2810 * returns the number of bytes copied into the buffer.
2812 * If there are no delayed allocation extents, then we can just
2813 * memcpy() the extents into the buffer. Otherwise, we need to
2814 * examine each extent in turn and skip those which are delayed.
2826 xfs_fsblock_t start_block
;
2828 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2829 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2830 ASSERT(ifp
->if_bytes
> 0);
2832 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2833 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2837 * There are some delayed allocation extents in the
2838 * inode, so copy the extents one at a time and skip
2839 * the delayed ones. There must be at least one
2840 * non-delayed extent.
2843 for (i
= 0; i
< nrecs
; i
++) {
2844 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2845 start_block
= xfs_bmbt_get_startblock(ep
);
2846 if (ISNULLSTARTBLOCK(start_block
)) {
2848 * It's a delayed allocation extent, so skip it.
2853 /* Translate to on disk format */
2854 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2855 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2859 ASSERT(copied
!= 0);
2860 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2862 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2866 * Each of the following cases stores data into the same region
2867 * of the on-disk inode, so only one of them can be valid at
2868 * any given time. While it is possible to have conflicting formats
2869 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2870 * in EXTENTS format, this can only happen when the fork has
2871 * changed formats after being modified but before being flushed.
2872 * In these cases, the format always takes precedence, because the
2873 * format indicates the current state of the fork.
2880 xfs_inode_log_item_t
*iip
,
2887 #ifdef XFS_TRANS_DEBUG
2890 static const short brootflag
[2] =
2891 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2892 static const short dataflag
[2] =
2893 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2894 static const short extflag
[2] =
2895 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2899 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2901 * This can happen if we gave up in iformat in an error path,
2902 * for the attribute fork.
2905 ASSERT(whichfork
== XFS_ATTR_FORK
);
2908 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2910 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2911 case XFS_DINODE_FMT_LOCAL
:
2912 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2913 (ifp
->if_bytes
> 0)) {
2914 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2915 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2916 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2920 case XFS_DINODE_FMT_EXTENTS
:
2921 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2922 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2923 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2924 (ifp
->if_bytes
== 0));
2925 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2926 (ifp
->if_bytes
> 0));
2927 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2928 (ifp
->if_bytes
> 0)) {
2929 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2930 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2935 case XFS_DINODE_FMT_BTREE
:
2936 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2937 (ifp
->if_broot_bytes
> 0)) {
2938 ASSERT(ifp
->if_broot
!= NULL
);
2939 ASSERT(ifp
->if_broot_bytes
<=
2940 (XFS_IFORK_SIZE(ip
, whichfork
) +
2941 XFS_BROOT_SIZE_ADJ
));
2942 xfs_bmbt_to_bmdr(ifp
->if_broot
, ifp
->if_broot_bytes
,
2943 (xfs_bmdr_block_t
*)cp
,
2944 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2948 case XFS_DINODE_FMT_DEV
:
2949 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2950 ASSERT(whichfork
== XFS_DATA_FORK
);
2951 dip
->di_u
.di_dev
= cpu_to_be32(ip
->i_df
.if_u2
.if_rdev
);
2955 case XFS_DINODE_FMT_UUID
:
2956 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2957 ASSERT(whichfork
== XFS_DATA_FORK
);
2958 memcpy(&dip
->di_u
.di_muuid
, &ip
->i_df
.if_u2
.if_uuid
,
2974 xfs_mount_t
*mp
= ip
->i_mount
;
2975 xfs_perag_t
*pag
= xfs_get_perag(mp
, ip
->i_ino
);
2976 unsigned long first_index
, mask
;
2978 xfs_inode_t
**ilist
;
2985 ASSERT(pag
->pagi_inodeok
);
2986 ASSERT(pag
->pag_ici_init
);
2988 ilist_size
= XFS_INODE_CLUSTER_SIZE(mp
) * sizeof(xfs_inode_t
*);
2989 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
);
2993 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2994 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2995 read_lock(&pag
->pag_ici_lock
);
2996 /* really need a gang lookup range call here */
2997 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2999 XFS_INODE_CLUSTER_SIZE(mp
));
3003 for (i
= 0; i
< nr_found
; i
++) {
3007 /* if the inode lies outside this cluster, we're done. */
3008 if ((XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
)
3011 * Do an un-protected check to see if the inode is dirty and
3012 * is a candidate for flushing. These checks will be repeated
3013 * later after the appropriate locks are acquired.
3015 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
3019 * Try to get locks. If any are unavailable or it is pinned,
3020 * then this inode cannot be flushed and is skipped.
3023 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
3025 if (!xfs_iflock_nowait(iq
)) {
3026 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3029 if (xfs_ipincount(iq
)) {
3031 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3036 * arriving here means that this inode can be flushed. First
3037 * re-check that it's dirty before flushing.
3039 if (!xfs_inode_clean(iq
)) {
3041 error
= xfs_iflush_int(iq
, bp
);
3043 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3044 goto cluster_corrupt_out
;
3050 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3054 XFS_STATS_INC(xs_icluster_flushcnt
);
3055 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
3059 read_unlock(&pag
->pag_ici_lock
);
3060 kmem_free(ilist
, ilist_size
);
3064 cluster_corrupt_out
:
3066 * Corruption detected in the clustering loop. Invalidate the
3067 * inode buffer and shut down the filesystem.
3069 read_unlock(&pag
->pag_ici_lock
);
3071 * Clean up the buffer. If it was B_DELWRI, just release it --
3072 * brelse can handle it with no problems. If not, shut down the
3073 * filesystem before releasing the buffer.
3075 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
3079 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3081 if (!bufwasdelwri
) {
3083 * Just like incore_relse: if we have b_iodone functions,
3084 * mark the buffer as an error and call them. Otherwise
3085 * mark it as stale and brelse.
3087 if (XFS_BUF_IODONE_FUNC(bp
)) {
3088 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
3092 XFS_BUF_ERROR(bp
,EIO
);
3101 * Unlocks the flush lock
3103 xfs_iflush_abort(iq
);
3104 kmem_free(ilist
, ilist_size
);
3105 return XFS_ERROR(EFSCORRUPTED
);
3109 * xfs_iflush() will write a modified inode's changes out to the
3110 * inode's on disk home. The caller must have the inode lock held
3111 * in at least shared mode and the inode flush semaphore must be
3112 * held as well. The inode lock will still be held upon return from
3113 * the call and the caller is free to unlock it.
3114 * The inode flush lock will be unlocked when the inode reaches the disk.
3115 * The flags indicate how the inode's buffer should be written out.
3122 xfs_inode_log_item_t
*iip
;
3127 int noblock
= (flags
== XFS_IFLUSH_ASYNC_NOBLOCK
);
3128 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
3130 XFS_STATS_INC(xs_iflush_count
);
3132 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3133 ASSERT(issemalocked(&(ip
->i_flock
)));
3134 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3135 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3141 * If the inode isn't dirty, then just release the inode
3142 * flush lock and do nothing.
3144 if (xfs_inode_clean(ip
)) {
3145 ASSERT((iip
!= NULL
) ?
3146 !(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) : 1);
3152 * We can't flush the inode until it is unpinned, so wait for it if we
3153 * are allowed to block. We know noone new can pin it, because we are
3154 * holding the inode lock shared and you need to hold it exclusively to
3157 * If we are not allowed to block, force the log out asynchronously so
3158 * that when we come back the inode will be unpinned. If other inodes
3159 * in the same cluster are dirty, they will probably write the inode
3160 * out for us if they occur after the log force completes.
3162 if (noblock
&& xfs_ipincount(ip
)) {
3163 xfs_iunpin_nowait(ip
);
3167 xfs_iunpin_wait(ip
);
3170 * This may have been unpinned because the filesystem is shutting
3171 * down forcibly. If that's the case we must not write this inode
3172 * to disk, because the log record didn't make it to disk!
3174 if (XFS_FORCED_SHUTDOWN(mp
)) {
3175 ip
->i_update_core
= 0;
3177 iip
->ili_format
.ilf_fields
= 0;
3179 return XFS_ERROR(EIO
);
3183 * Decide how buffer will be flushed out. This is done before
3184 * the call to xfs_iflush_int because this field is zeroed by it.
3186 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3188 * Flush out the inode buffer according to the directions
3189 * of the caller. In the cases where the caller has given
3190 * us a choice choose the non-delwri case. This is because
3191 * the inode is in the AIL and we need to get it out soon.
3194 case XFS_IFLUSH_SYNC
:
3195 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3198 case XFS_IFLUSH_ASYNC_NOBLOCK
:
3199 case XFS_IFLUSH_ASYNC
:
3200 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3203 case XFS_IFLUSH_DELWRI
:
3213 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3214 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3215 case XFS_IFLUSH_DELWRI
:
3218 case XFS_IFLUSH_ASYNC_NOBLOCK
:
3219 case XFS_IFLUSH_ASYNC
:
3222 case XFS_IFLUSH_SYNC
:
3233 * Get the buffer containing the on-disk inode.
3235 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
, 0, 0,
3236 noblock
? XFS_BUF_TRYLOCK
: XFS_BUF_LOCK
);
3243 * First flush out the inode that xfs_iflush was called with.
3245 error
= xfs_iflush_int(ip
, bp
);
3250 * If the buffer is pinned then push on the log now so we won't
3251 * get stuck waiting in the write for too long.
3253 if (XFS_BUF_ISPINNED(bp
))
3254 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
3258 * see if other inodes can be gathered into this write
3260 error
= xfs_iflush_cluster(ip
, bp
);
3262 goto cluster_corrupt_out
;
3264 if (flags
& INT_DELWRI
) {
3265 xfs_bdwrite(mp
, bp
);
3266 } else if (flags
& INT_ASYNC
) {
3267 error
= xfs_bawrite(mp
, bp
);
3269 error
= xfs_bwrite(mp
, bp
);
3275 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3276 cluster_corrupt_out
:
3278 * Unlocks the flush lock
3280 xfs_iflush_abort(ip
);
3281 return XFS_ERROR(EFSCORRUPTED
);
3290 xfs_inode_log_item_t
*iip
;
3293 #ifdef XFS_TRANS_DEBUG
3297 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3298 ASSERT(issemalocked(&(ip
->i_flock
)));
3299 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3300 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3307 * If the inode isn't dirty, then just release the inode
3308 * flush lock and do nothing.
3310 if (xfs_inode_clean(ip
)) {
3315 /* set *dip = inode's place in the buffer */
3316 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_boffset
);
3319 * Clear i_update_core before copying out the data.
3320 * This is for coordination with our timestamp updates
3321 * that don't hold the inode lock. They will always
3322 * update the timestamps BEFORE setting i_update_core,
3323 * so if we clear i_update_core after they set it we
3324 * are guaranteed to see their updates to the timestamps.
3325 * I believe that this depends on strongly ordered memory
3326 * semantics, but we have that. We use the SYNCHRONIZE
3327 * macro to make sure that the compiler does not reorder
3328 * the i_update_core access below the data copy below.
3330 ip
->i_update_core
= 0;
3334 * Make sure to get the latest atime from the Linux inode.
3336 xfs_synchronize_atime(ip
);
3338 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_core
.di_magic
) != XFS_DINODE_MAGIC
,
3339 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3340 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3341 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3342 ip
->i_ino
, be16_to_cpu(dip
->di_core
.di_magic
), dip
);
3345 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3346 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3347 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3348 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3349 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3352 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3354 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3355 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3356 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3357 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3358 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3362 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3364 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3365 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3366 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3367 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3368 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3369 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3374 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3375 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3376 XFS_RANDOM_IFLUSH_5
)) {
3377 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3378 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3380 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3385 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3386 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3387 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3388 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3389 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3393 * bump the flush iteration count, used to detect flushes which
3394 * postdate a log record during recovery.
3397 ip
->i_d
.di_flushiter
++;
3400 * Copy the dirty parts of the inode into the on-disk
3401 * inode. We always copy out the core of the inode,
3402 * because if the inode is dirty at all the core must
3405 xfs_dinode_to_disk(&dip
->di_core
, &ip
->i_d
);
3407 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3408 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3409 ip
->i_d
.di_flushiter
= 0;
3412 * If this is really an old format inode and the superblock version
3413 * has not been updated to support only new format inodes, then
3414 * convert back to the old inode format. If the superblock version
3415 * has been updated, then make the conversion permanent.
3417 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
3418 xfs_sb_version_hasnlink(&mp
->m_sb
));
3419 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
3420 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
3424 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3425 dip
->di_core
.di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3428 * The superblock version has already been bumped,
3429 * so just make the conversion to the new inode
3432 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
3433 dip
->di_core
.di_version
= XFS_DINODE_VERSION_2
;
3434 ip
->i_d
.di_onlink
= 0;
3435 dip
->di_core
.di_onlink
= 0;
3436 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3437 memset(&(dip
->di_core
.di_pad
[0]), 0,
3438 sizeof(dip
->di_core
.di_pad
));
3439 ASSERT(ip
->i_d
.di_projid
== 0);
3443 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
3444 if (XFS_IFORK_Q(ip
))
3445 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3446 xfs_inobp_check(mp
, bp
);
3449 * We've recorded everything logged in the inode, so we'd
3450 * like to clear the ilf_fields bits so we don't log and
3451 * flush things unnecessarily. However, we can't stop
3452 * logging all this information until the data we've copied
3453 * into the disk buffer is written to disk. If we did we might
3454 * overwrite the copy of the inode in the log with all the
3455 * data after re-logging only part of it, and in the face of
3456 * a crash we wouldn't have all the data we need to recover.
3458 * What we do is move the bits to the ili_last_fields field.
3459 * When logging the inode, these bits are moved back to the
3460 * ilf_fields field. In the xfs_iflush_done() routine we
3461 * clear ili_last_fields, since we know that the information
3462 * those bits represent is permanently on disk. As long as
3463 * the flush completes before the inode is logged again, then
3464 * both ilf_fields and ili_last_fields will be cleared.
3466 * We can play with the ilf_fields bits here, because the inode
3467 * lock must be held exclusively in order to set bits there
3468 * and the flush lock protects the ili_last_fields bits.
3469 * Set ili_logged so the flush done
3470 * routine can tell whether or not to look in the AIL.
3471 * Also, store the current LSN of the inode so that we can tell
3472 * whether the item has moved in the AIL from xfs_iflush_done().
3473 * In order to read the lsn we need the AIL lock, because
3474 * it is a 64 bit value that cannot be read atomically.
3476 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3477 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3478 iip
->ili_format
.ilf_fields
= 0;
3479 iip
->ili_logged
= 1;
3481 ASSERT(sizeof(xfs_lsn_t
) == 8); /* don't lock if it shrinks */
3482 spin_lock(&mp
->m_ail_lock
);
3483 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
3484 spin_unlock(&mp
->m_ail_lock
);
3487 * Attach the function xfs_iflush_done to the inode's
3488 * buffer. This will remove the inode from the AIL
3489 * and unlock the inode's flush lock when the inode is
3490 * completely written to disk.
3492 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3493 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3495 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3496 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3499 * We're flushing an inode which is not in the AIL and has
3500 * not been logged but has i_update_core set. For this
3501 * case we can use a B_DELWRI flush and immediately drop
3502 * the inode flush lock because we can avoid the whole
3503 * AIL state thing. It's OK to drop the flush lock now,
3504 * because we've already locked the buffer and to do anything
3505 * you really need both.
3508 ASSERT(iip
->ili_logged
== 0);
3509 ASSERT(iip
->ili_last_fields
== 0);
3510 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3518 return XFS_ERROR(EFSCORRUPTED
);
3523 * Flush all inactive inodes in mp.
3533 XFS_MOUNT_ILOCK(mp
);
3539 /* Make sure we skip markers inserted by sync */
3540 if (ip
->i_mount
== NULL
) {
3545 vp
= XFS_ITOV_NULL(ip
);
3547 XFS_MOUNT_IUNLOCK(mp
);
3548 xfs_finish_reclaim(ip
, 0, XFS_IFLUSH_ASYNC
);
3552 ASSERT(vn_count(vp
) == 0);
3555 } while (ip
!= mp
->m_inodes
);
3557 XFS_MOUNT_IUNLOCK(mp
);
3560 #ifdef XFS_ILOCK_TRACE
3561 ktrace_t
*xfs_ilock_trace_buf
;
3564 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3566 ktrace_enter(ip
->i_lock_trace
,
3568 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3569 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3570 (void *)ra
, /* caller of ilock */
3571 (void *)(unsigned long)current_cpu(),
3572 (void *)(unsigned long)current_pid(),
3573 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3578 * Return a pointer to the extent record at file index idx.
3580 xfs_bmbt_rec_host_t
*
3582 xfs_ifork_t
*ifp
, /* inode fork pointer */
3583 xfs_extnum_t idx
) /* index of target extent */
3586 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3587 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3588 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3589 xfs_ext_irec_t
*erp
; /* irec pointer */
3590 int erp_idx
= 0; /* irec index */
3591 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3593 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3594 return &erp
->er_extbuf
[page_idx
];
3595 } else if (ifp
->if_bytes
) {
3596 return &ifp
->if_u1
.if_extents
[idx
];
3603 * Insert new item(s) into the extent records for incore inode
3604 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3608 xfs_ifork_t
*ifp
, /* inode fork pointer */
3609 xfs_extnum_t idx
, /* starting index of new items */
3610 xfs_extnum_t count
, /* number of inserted items */
3611 xfs_bmbt_irec_t
*new) /* items to insert */
3613 xfs_extnum_t i
; /* extent record index */
3615 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3616 xfs_iext_add(ifp
, idx
, count
);
3617 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3618 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3622 * This is called when the amount of space required for incore file
3623 * extents needs to be increased. The ext_diff parameter stores the
3624 * number of new extents being added and the idx parameter contains
3625 * the extent index where the new extents will be added. If the new
3626 * extents are being appended, then we just need to (re)allocate and
3627 * initialize the space. Otherwise, if the new extents are being
3628 * inserted into the middle of the existing entries, a bit more work
3629 * is required to make room for the new extents to be inserted. The
3630 * caller is responsible for filling in the new extent entries upon
3635 xfs_ifork_t
*ifp
, /* inode fork pointer */
3636 xfs_extnum_t idx
, /* index to begin adding exts */
3637 int ext_diff
) /* number of extents to add */
3639 int byte_diff
; /* new bytes being added */
3640 int new_size
; /* size of extents after adding */
3641 xfs_extnum_t nextents
; /* number of extents in file */
3643 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3644 ASSERT((idx
>= 0) && (idx
<= nextents
));
3645 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3646 new_size
= ifp
->if_bytes
+ byte_diff
;
3648 * If the new number of extents (nextents + ext_diff)
3649 * fits inside the inode, then continue to use the inline
3652 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3653 if (idx
< nextents
) {
3654 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3655 &ifp
->if_u2
.if_inline_ext
[idx
],
3656 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3657 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3659 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3660 ifp
->if_real_bytes
= 0;
3661 ifp
->if_lastex
= nextents
+ ext_diff
;
3664 * Otherwise use a linear (direct) extent list.
3665 * If the extents are currently inside the inode,
3666 * xfs_iext_realloc_direct will switch us from
3667 * inline to direct extent allocation mode.
3669 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3670 xfs_iext_realloc_direct(ifp
, new_size
);
3671 if (idx
< nextents
) {
3672 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3673 &ifp
->if_u1
.if_extents
[idx
],
3674 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3675 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3678 /* Indirection array */
3680 xfs_ext_irec_t
*erp
;
3684 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3685 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3686 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3688 xfs_iext_irec_init(ifp
);
3689 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3690 erp
= ifp
->if_u1
.if_ext_irec
;
3692 /* Extents fit in target extent page */
3693 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3694 if (page_idx
< erp
->er_extcount
) {
3695 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3696 &erp
->er_extbuf
[page_idx
],
3697 (erp
->er_extcount
- page_idx
) *
3698 sizeof(xfs_bmbt_rec_t
));
3699 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3701 erp
->er_extcount
+= ext_diff
;
3702 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3704 /* Insert a new extent page */
3706 xfs_iext_add_indirect_multi(ifp
,
3707 erp_idx
, page_idx
, ext_diff
);
3710 * If extent(s) are being appended to the last page in
3711 * the indirection array and the new extent(s) don't fit
3712 * in the page, then erp is NULL and erp_idx is set to
3713 * the next index needed in the indirection array.
3716 int count
= ext_diff
;
3719 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3720 erp
->er_extcount
= count
;
3721 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3728 ifp
->if_bytes
= new_size
;
3732 * This is called when incore extents are being added to the indirection
3733 * array and the new extents do not fit in the target extent list. The
3734 * erp_idx parameter contains the irec index for the target extent list
3735 * in the indirection array, and the idx parameter contains the extent
3736 * index within the list. The number of extents being added is stored
3737 * in the count parameter.
3739 * |-------| |-------|
3740 * | | | | idx - number of extents before idx
3742 * | | | | count - number of extents being inserted at idx
3743 * |-------| |-------|
3744 * | count | | nex2 | nex2 - number of extents after idx + count
3745 * |-------| |-------|
3748 xfs_iext_add_indirect_multi(
3749 xfs_ifork_t
*ifp
, /* inode fork pointer */
3750 int erp_idx
, /* target extent irec index */
3751 xfs_extnum_t idx
, /* index within target list */
3752 int count
) /* new extents being added */
3754 int byte_diff
; /* new bytes being added */
3755 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3756 xfs_extnum_t ext_diff
; /* number of extents to add */
3757 xfs_extnum_t ext_cnt
; /* new extents still needed */
3758 xfs_extnum_t nex2
; /* extents after idx + count */
3759 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3760 int nlists
; /* number of irec's (lists) */
3762 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3763 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3764 nex2
= erp
->er_extcount
- idx
;
3765 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3768 * Save second part of target extent list
3769 * (all extents past */
3771 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3772 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_SLEEP
);
3773 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3774 erp
->er_extcount
-= nex2
;
3775 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3776 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3780 * Add the new extents to the end of the target
3781 * list, then allocate new irec record(s) and
3782 * extent buffer(s) as needed to store the rest
3783 * of the new extents.
3786 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3788 erp
->er_extcount
+= ext_diff
;
3789 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3790 ext_cnt
-= ext_diff
;
3794 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3795 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3796 erp
->er_extcount
= ext_diff
;
3797 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3798 ext_cnt
-= ext_diff
;
3801 /* Add nex2 extents back to indirection array */
3803 xfs_extnum_t ext_avail
;
3806 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3807 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3810 * If nex2 extents fit in the current page, append
3811 * nex2_ep after the new extents.
3813 if (nex2
<= ext_avail
) {
3814 i
= erp
->er_extcount
;
3817 * Otherwise, check if space is available in the
3820 else if ((erp_idx
< nlists
- 1) &&
3821 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3822 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3825 /* Create a hole for nex2 extents */
3826 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3827 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3830 * Final choice, create a new extent page for
3835 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3837 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3838 kmem_free(nex2_ep
, byte_diff
);
3839 erp
->er_extcount
+= nex2
;
3840 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3845 * This is called when the amount of space required for incore file
3846 * extents needs to be decreased. The ext_diff parameter stores the
3847 * number of extents to be removed and the idx parameter contains
3848 * the extent index where the extents will be removed from.
3850 * If the amount of space needed has decreased below the linear
3851 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3852 * extent array. Otherwise, use kmem_realloc() to adjust the
3853 * size to what is needed.
3857 xfs_ifork_t
*ifp
, /* inode fork pointer */
3858 xfs_extnum_t idx
, /* index to begin removing exts */
3859 int ext_diff
) /* number of extents to remove */
3861 xfs_extnum_t nextents
; /* number of extents in file */
3862 int new_size
; /* size of extents after removal */
3864 ASSERT(ext_diff
> 0);
3865 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3866 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3868 if (new_size
== 0) {
3869 xfs_iext_destroy(ifp
);
3870 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3871 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3872 } else if (ifp
->if_real_bytes
) {
3873 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3875 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3877 ifp
->if_bytes
= new_size
;
3881 * This removes ext_diff extents from the inline buffer, beginning
3882 * at extent index idx.
3885 xfs_iext_remove_inline(
3886 xfs_ifork_t
*ifp
, /* inode fork pointer */
3887 xfs_extnum_t idx
, /* index to begin removing exts */
3888 int ext_diff
) /* number of extents to remove */
3890 int nextents
; /* number of extents in file */
3892 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3893 ASSERT(idx
< XFS_INLINE_EXTS
);
3894 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3895 ASSERT(((nextents
- ext_diff
) > 0) &&
3896 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3898 if (idx
+ ext_diff
< nextents
) {
3899 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3900 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3901 (nextents
- (idx
+ ext_diff
)) *
3902 sizeof(xfs_bmbt_rec_t
));
3903 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3904 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3906 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3907 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3912 * This removes ext_diff extents from a linear (direct) extent list,
3913 * beginning at extent index idx. If the extents are being removed
3914 * from the end of the list (ie. truncate) then we just need to re-
3915 * allocate the list to remove the extra space. Otherwise, if the
3916 * extents are being removed from the middle of the existing extent
3917 * entries, then we first need to move the extent records beginning
3918 * at idx + ext_diff up in the list to overwrite the records being
3919 * removed, then remove the extra space via kmem_realloc.
3922 xfs_iext_remove_direct(
3923 xfs_ifork_t
*ifp
, /* inode fork pointer */
3924 xfs_extnum_t idx
, /* index to begin removing exts */
3925 int ext_diff
) /* number of extents to remove */
3927 xfs_extnum_t nextents
; /* number of extents in file */
3928 int new_size
; /* size of extents after removal */
3930 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3931 new_size
= ifp
->if_bytes
-
3932 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3933 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3935 if (new_size
== 0) {
3936 xfs_iext_destroy(ifp
);
3939 /* Move extents up in the list (if needed) */
3940 if (idx
+ ext_diff
< nextents
) {
3941 memmove(&ifp
->if_u1
.if_extents
[idx
],
3942 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3943 (nextents
- (idx
+ ext_diff
)) *
3944 sizeof(xfs_bmbt_rec_t
));
3946 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3947 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3949 * Reallocate the direct extent list. If the extents
3950 * will fit inside the inode then xfs_iext_realloc_direct
3951 * will switch from direct to inline extent allocation
3954 xfs_iext_realloc_direct(ifp
, new_size
);
3955 ifp
->if_bytes
= new_size
;
3959 * This is called when incore extents are being removed from the
3960 * indirection array and the extents being removed span multiple extent
3961 * buffers. The idx parameter contains the file extent index where we
3962 * want to begin removing extents, and the count parameter contains
3963 * how many extents need to be removed.
3965 * |-------| |-------|
3966 * | nex1 | | | nex1 - number of extents before idx
3967 * |-------| | count |
3968 * | | | | count - number of extents being removed at idx
3969 * | count | |-------|
3970 * | | | nex2 | nex2 - number of extents after idx + count
3971 * |-------| |-------|
3974 xfs_iext_remove_indirect(
3975 xfs_ifork_t
*ifp
, /* inode fork pointer */
3976 xfs_extnum_t idx
, /* index to begin removing extents */
3977 int count
) /* number of extents to remove */
3979 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3980 int erp_idx
= 0; /* indirection array index */
3981 xfs_extnum_t ext_cnt
; /* extents left to remove */
3982 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3983 xfs_extnum_t nex1
; /* number of extents before idx */
3984 xfs_extnum_t nex2
; /* extents after idx + count */
3985 int nlists
; /* entries in indirection array */
3986 int page_idx
= idx
; /* index in target extent list */
3988 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3989 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3990 ASSERT(erp
!= NULL
);
3991 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3995 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3996 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3998 * Check for deletion of entire list;
3999 * xfs_iext_irec_remove() updates extent offsets.
4001 if (ext_diff
== erp
->er_extcount
) {
4002 xfs_iext_irec_remove(ifp
, erp_idx
);
4003 ext_cnt
-= ext_diff
;
4006 ASSERT(erp_idx
< ifp
->if_real_bytes
/
4008 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4015 /* Move extents up (if needed) */
4017 memmove(&erp
->er_extbuf
[nex1
],
4018 &erp
->er_extbuf
[nex1
+ ext_diff
],
4019 nex2
* sizeof(xfs_bmbt_rec_t
));
4021 /* Zero out rest of page */
4022 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
4023 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
4024 /* Update remaining counters */
4025 erp
->er_extcount
-= ext_diff
;
4026 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
4027 ext_cnt
-= ext_diff
;
4032 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
4033 xfs_iext_irec_compact(ifp
);
4037 * Create, destroy, or resize a linear (direct) block of extents.
4040 xfs_iext_realloc_direct(
4041 xfs_ifork_t
*ifp
, /* inode fork pointer */
4042 int new_size
) /* new size of extents */
4044 int rnew_size
; /* real new size of extents */
4046 rnew_size
= new_size
;
4048 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
4049 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
4050 (new_size
!= ifp
->if_real_bytes
)));
4052 /* Free extent records */
4053 if (new_size
== 0) {
4054 xfs_iext_destroy(ifp
);
4056 /* Resize direct extent list and zero any new bytes */
4057 else if (ifp
->if_real_bytes
) {
4058 /* Check if extents will fit inside the inode */
4059 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
4060 xfs_iext_direct_to_inline(ifp
, new_size
/
4061 (uint
)sizeof(xfs_bmbt_rec_t
));
4062 ifp
->if_bytes
= new_size
;
4065 if (!is_power_of_2(new_size
)){
4066 rnew_size
= roundup_pow_of_two(new_size
);
4068 if (rnew_size
!= ifp
->if_real_bytes
) {
4069 ifp
->if_u1
.if_extents
=
4070 kmem_realloc(ifp
->if_u1
.if_extents
,
4075 if (rnew_size
> ifp
->if_real_bytes
) {
4076 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
4077 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
4078 rnew_size
- ifp
->if_real_bytes
);
4082 * Switch from the inline extent buffer to a direct
4083 * extent list. Be sure to include the inline extent
4084 * bytes in new_size.
4087 new_size
+= ifp
->if_bytes
;
4088 if (!is_power_of_2(new_size
)) {
4089 rnew_size
= roundup_pow_of_two(new_size
);
4091 xfs_iext_inline_to_direct(ifp
, rnew_size
);
4093 ifp
->if_real_bytes
= rnew_size
;
4094 ifp
->if_bytes
= new_size
;
4098 * Switch from linear (direct) extent records to inline buffer.
4101 xfs_iext_direct_to_inline(
4102 xfs_ifork_t
*ifp
, /* inode fork pointer */
4103 xfs_extnum_t nextents
) /* number of extents in file */
4105 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
4106 ASSERT(nextents
<= XFS_INLINE_EXTS
);
4108 * The inline buffer was zeroed when we switched
4109 * from inline to direct extent allocation mode,
4110 * so we don't need to clear it here.
4112 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
4113 nextents
* sizeof(xfs_bmbt_rec_t
));
4114 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4115 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
4116 ifp
->if_real_bytes
= 0;
4120 * Switch from inline buffer to linear (direct) extent records.
4121 * new_size should already be rounded up to the next power of 2
4122 * by the caller (when appropriate), so use new_size as it is.
4123 * However, since new_size may be rounded up, we can't update
4124 * if_bytes here. It is the caller's responsibility to update
4125 * if_bytes upon return.
4128 xfs_iext_inline_to_direct(
4129 xfs_ifork_t
*ifp
, /* inode fork pointer */
4130 int new_size
) /* number of extents in file */
4132 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_SLEEP
);
4133 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
4134 if (ifp
->if_bytes
) {
4135 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
4137 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4138 sizeof(xfs_bmbt_rec_t
));
4140 ifp
->if_real_bytes
= new_size
;
4144 * Resize an extent indirection array to new_size bytes.
4147 xfs_iext_realloc_indirect(
4148 xfs_ifork_t
*ifp
, /* inode fork pointer */
4149 int new_size
) /* new indirection array size */
4151 int nlists
; /* number of irec's (ex lists) */
4152 int size
; /* current indirection array size */
4154 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4155 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4156 size
= nlists
* sizeof(xfs_ext_irec_t
);
4157 ASSERT(ifp
->if_real_bytes
);
4158 ASSERT((new_size
>= 0) && (new_size
!= size
));
4159 if (new_size
== 0) {
4160 xfs_iext_destroy(ifp
);
4162 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
4163 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
4164 new_size
, size
, KM_SLEEP
);
4169 * Switch from indirection array to linear (direct) extent allocations.
4172 xfs_iext_indirect_to_direct(
4173 xfs_ifork_t
*ifp
) /* inode fork pointer */
4175 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
4176 xfs_extnum_t nextents
; /* number of extents in file */
4177 int size
; /* size of file extents */
4179 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4180 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4181 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4182 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
4184 xfs_iext_irec_compact_full(ifp
);
4185 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
4187 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
4188 kmem_free(ifp
->if_u1
.if_ext_irec
, sizeof(xfs_ext_irec_t
));
4189 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4190 ifp
->if_u1
.if_extents
= ep
;
4191 ifp
->if_bytes
= size
;
4192 if (nextents
< XFS_LINEAR_EXTS
) {
4193 xfs_iext_realloc_direct(ifp
, size
);
4198 * Free incore file extents.
4202 xfs_ifork_t
*ifp
) /* inode fork pointer */
4204 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4208 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4209 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
4210 xfs_iext_irec_remove(ifp
, erp_idx
);
4212 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4213 } else if (ifp
->if_real_bytes
) {
4214 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4215 } else if (ifp
->if_bytes
) {
4216 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4217 sizeof(xfs_bmbt_rec_t
));
4219 ifp
->if_u1
.if_extents
= NULL
;
4220 ifp
->if_real_bytes
= 0;
4225 * Return a pointer to the extent record for file system block bno.
4227 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
4228 xfs_iext_bno_to_ext(
4229 xfs_ifork_t
*ifp
, /* inode fork pointer */
4230 xfs_fileoff_t bno
, /* block number to search for */
4231 xfs_extnum_t
*idxp
) /* index of target extent */
4233 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
4234 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
4235 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
4236 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4237 int high
; /* upper boundary in search */
4238 xfs_extnum_t idx
= 0; /* index of target extent */
4239 int low
; /* lower boundary in search */
4240 xfs_extnum_t nextents
; /* number of file extents */
4241 xfs_fileoff_t startoff
= 0; /* start offset of extent */
4243 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4244 if (nextents
== 0) {
4249 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4250 /* Find target extent list */
4252 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
4253 base
= erp
->er_extbuf
;
4254 high
= erp
->er_extcount
- 1;
4256 base
= ifp
->if_u1
.if_extents
;
4257 high
= nextents
- 1;
4259 /* Binary search extent records */
4260 while (low
<= high
) {
4261 idx
= (low
+ high
) >> 1;
4263 startoff
= xfs_bmbt_get_startoff(ep
);
4264 blockcount
= xfs_bmbt_get_blockcount(ep
);
4265 if (bno
< startoff
) {
4267 } else if (bno
>= startoff
+ blockcount
) {
4270 /* Convert back to file-based extent index */
4271 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4272 idx
+= erp
->er_extoff
;
4278 /* Convert back to file-based extent index */
4279 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4280 idx
+= erp
->er_extoff
;
4282 if (bno
>= startoff
+ blockcount
) {
4283 if (++idx
== nextents
) {
4286 ep
= xfs_iext_get_ext(ifp
, idx
);
4294 * Return a pointer to the indirection array entry containing the
4295 * extent record for filesystem block bno. Store the index of the
4296 * target irec in *erp_idxp.
4298 xfs_ext_irec_t
* /* pointer to found extent record */
4299 xfs_iext_bno_to_irec(
4300 xfs_ifork_t
*ifp
, /* inode fork pointer */
4301 xfs_fileoff_t bno
, /* block number to search for */
4302 int *erp_idxp
) /* irec index of target ext list */
4304 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4305 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
4306 int erp_idx
; /* indirection array index */
4307 int nlists
; /* number of extent irec's (lists) */
4308 int high
; /* binary search upper limit */
4309 int low
; /* binary search lower limit */
4311 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4312 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4316 while (low
<= high
) {
4317 erp_idx
= (low
+ high
) >> 1;
4318 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4319 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
4320 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
4322 } else if (erp_next
&& bno
>=
4323 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
4329 *erp_idxp
= erp_idx
;
4334 * Return a pointer to the indirection array entry containing the
4335 * extent record at file extent index *idxp. Store the index of the
4336 * target irec in *erp_idxp and store the page index of the target
4337 * extent record in *idxp.
4340 xfs_iext_idx_to_irec(
4341 xfs_ifork_t
*ifp
, /* inode fork pointer */
4342 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4343 int *erp_idxp
, /* pointer to target irec */
4344 int realloc
) /* new bytes were just added */
4346 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4347 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4348 int erp_idx
; /* indirection array index */
4349 int nlists
; /* number of irec's (ex lists) */
4350 int high
; /* binary search upper limit */
4351 int low
; /* binary search lower limit */
4352 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4354 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4355 ASSERT(page_idx
>= 0 && page_idx
<=
4356 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4357 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4362 /* Binary search extent irec's */
4363 while (low
<= high
) {
4364 erp_idx
= (low
+ high
) >> 1;
4365 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4366 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4367 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4368 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4370 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4371 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4374 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4375 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4379 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4382 page_idx
-= erp
->er_extoff
;
4387 *erp_idxp
= erp_idx
;
4392 * Allocate and initialize an indirection array once the space needed
4393 * for incore extents increases above XFS_IEXT_BUFSZ.
4397 xfs_ifork_t
*ifp
) /* inode fork pointer */
4399 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4400 xfs_extnum_t nextents
; /* number of extents in file */
4402 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4403 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4404 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4406 erp
= (xfs_ext_irec_t
*)
4407 kmem_alloc(sizeof(xfs_ext_irec_t
), KM_SLEEP
);
4409 if (nextents
== 0) {
4410 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4411 } else if (!ifp
->if_real_bytes
) {
4412 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4413 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4414 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4416 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4417 erp
->er_extcount
= nextents
;
4420 ifp
->if_flags
|= XFS_IFEXTIREC
;
4421 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4422 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4423 ifp
->if_u1
.if_ext_irec
= erp
;
4429 * Allocate and initialize a new entry in the indirection array.
4433 xfs_ifork_t
*ifp
, /* inode fork pointer */
4434 int erp_idx
) /* index for new irec */
4436 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4437 int i
; /* loop counter */
4438 int nlists
; /* number of irec's (ex lists) */
4440 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4441 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4443 /* Resize indirection array */
4444 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4445 sizeof(xfs_ext_irec_t
));
4447 * Move records down in the array so the
4448 * new page can use erp_idx.
4450 erp
= ifp
->if_u1
.if_ext_irec
;
4451 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4452 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4454 ASSERT(i
== erp_idx
);
4456 /* Initialize new extent record */
4457 erp
= ifp
->if_u1
.if_ext_irec
;
4458 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4459 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4460 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4461 erp
[erp_idx
].er_extcount
= 0;
4462 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4463 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4464 return (&erp
[erp_idx
]);
4468 * Remove a record from the indirection array.
4471 xfs_iext_irec_remove(
4472 xfs_ifork_t
*ifp
, /* inode fork pointer */
4473 int erp_idx
) /* irec index to remove */
4475 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4476 int i
; /* loop counter */
4477 int nlists
; /* number of irec's (ex lists) */
4479 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4480 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4481 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4482 if (erp
->er_extbuf
) {
4483 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4485 kmem_free(erp
->er_extbuf
, XFS_IEXT_BUFSZ
);
4487 /* Compact extent records */
4488 erp
= ifp
->if_u1
.if_ext_irec
;
4489 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4490 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4493 * Manually free the last extent record from the indirection
4494 * array. A call to xfs_iext_realloc_indirect() with a size
4495 * of zero would result in a call to xfs_iext_destroy() which
4496 * would in turn call this function again, creating a nasty
4500 xfs_iext_realloc_indirect(ifp
,
4501 nlists
* sizeof(xfs_ext_irec_t
));
4503 kmem_free(ifp
->if_u1
.if_ext_irec
,
4504 sizeof(xfs_ext_irec_t
));
4506 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4510 * This is called to clean up large amounts of unused memory allocated
4511 * by the indirection array. Before compacting anything though, verify
4512 * that the indirection array is still needed and switch back to the
4513 * linear extent list (or even the inline buffer) if possible. The
4514 * compaction policy is as follows:
4516 * Full Compaction: Extents fit into a single page (or inline buffer)
4517 * Full Compaction: Extents occupy less than 10% of allocated space
4518 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4519 * No Compaction: Extents occupy at least 50% of allocated space
4522 xfs_iext_irec_compact(
4523 xfs_ifork_t
*ifp
) /* inode fork pointer */
4525 xfs_extnum_t nextents
; /* number of extents in file */
4526 int nlists
; /* number of irec's (ex lists) */
4528 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4529 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4530 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4532 if (nextents
== 0) {
4533 xfs_iext_destroy(ifp
);
4534 } else if (nextents
<= XFS_INLINE_EXTS
) {
4535 xfs_iext_indirect_to_direct(ifp
);
4536 xfs_iext_direct_to_inline(ifp
, nextents
);
4537 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4538 xfs_iext_indirect_to_direct(ifp
);
4539 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 3) {
4540 xfs_iext_irec_compact_full(ifp
);
4541 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4542 xfs_iext_irec_compact_pages(ifp
);
4547 * Combine extents from neighboring extent pages.
4550 xfs_iext_irec_compact_pages(
4551 xfs_ifork_t
*ifp
) /* inode fork pointer */
4553 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4554 int erp_idx
= 0; /* indirection array index */
4555 int nlists
; /* number of irec's (ex lists) */
4557 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4558 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4559 while (erp_idx
< nlists
- 1) {
4560 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4562 if (erp_next
->er_extcount
<=
4563 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4564 memmove(&erp
->er_extbuf
[erp
->er_extcount
],
4565 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4566 sizeof(xfs_bmbt_rec_t
));
4567 erp
->er_extcount
+= erp_next
->er_extcount
;
4569 * Free page before removing extent record
4570 * so er_extoffs don't get modified in
4571 * xfs_iext_irec_remove.
4573 kmem_free(erp_next
->er_extbuf
, XFS_IEXT_BUFSZ
);
4574 erp_next
->er_extbuf
= NULL
;
4575 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4576 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4584 * Fully compact the extent records managed by the indirection array.
4587 xfs_iext_irec_compact_full(
4588 xfs_ifork_t
*ifp
) /* inode fork pointer */
4590 xfs_bmbt_rec_host_t
*ep
, *ep_next
; /* extent record pointers */
4591 xfs_ext_irec_t
*erp
, *erp_next
; /* extent irec pointers */
4592 int erp_idx
= 0; /* extent irec index */
4593 int ext_avail
; /* empty entries in ex list */
4594 int ext_diff
; /* number of exts to add */
4595 int nlists
; /* number of irec's (ex lists) */
4597 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4598 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4599 erp
= ifp
->if_u1
.if_ext_irec
;
4600 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4602 ep_next
= erp_next
->er_extbuf
;
4603 while (erp_idx
< nlists
- 1) {
4604 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
4605 ext_diff
= MIN(ext_avail
, erp_next
->er_extcount
);
4606 memcpy(ep
, ep_next
, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4607 erp
->er_extcount
+= ext_diff
;
4608 erp_next
->er_extcount
-= ext_diff
;
4609 /* Remove next page */
4610 if (erp_next
->er_extcount
== 0) {
4612 * Free page before removing extent record
4613 * so er_extoffs don't get modified in
4614 * xfs_iext_irec_remove.
4616 kmem_free(erp_next
->er_extbuf
,
4617 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4618 erp_next
->er_extbuf
= NULL
;
4619 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4620 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4621 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4622 /* Update next page */
4624 /* Move rest of page up to become next new page */
4625 memmove(erp_next
->er_extbuf
, ep_next
,
4626 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4627 ep_next
= erp_next
->er_extbuf
;
4628 memset(&ep_next
[erp_next
->er_extcount
], 0,
4629 (XFS_LINEAR_EXTS
- erp_next
->er_extcount
) *
4630 sizeof(xfs_bmbt_rec_t
));
4632 if (erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4634 if (erp_idx
< nlists
)
4635 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4639 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4641 ep_next
= erp_next
->er_extbuf
;
4646 * This is called to update the er_extoff field in the indirection
4647 * array when extents have been added or removed from one of the
4648 * extent lists. erp_idx contains the irec index to begin updating
4649 * at and ext_diff contains the number of extents that were added
4653 xfs_iext_irec_update_extoffs(
4654 xfs_ifork_t
*ifp
, /* inode fork pointer */
4655 int erp_idx
, /* irec index to update */
4656 int ext_diff
) /* number of new extents */
4658 int i
; /* loop counter */
4659 int nlists
; /* number of irec's (ex lists */
4661 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4662 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4663 for (i
= erp_idx
; i
< nlists
; i
++) {
4664 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;