4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
75 #include <asm/irq_regs.h>
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
100 #define NICE_0_LOAD SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104 * These are the 'tuning knobs' of the scheduler:
106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
107 * Timeslices get refilled after they expire.
109 #define DEF_TIMESLICE (100 * HZ / 1000)
112 * single value that denotes runtime == period, ie unlimited time.
114 #define RUNTIME_INF ((u64)~0ULL)
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
123 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
130 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
132 sg
->__cpu_power
+= val
;
133 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
137 static inline int rt_policy(int policy
)
139 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
144 static inline int task_has_rt_policy(struct task_struct
*p
)
146 return rt_policy(p
->policy
);
150 * This is the priority-queue data structure of the RT scheduling class:
152 struct rt_prio_array
{
153 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
154 struct list_head queue
[MAX_RT_PRIO
];
157 struct rt_bandwidth
{
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock
;
162 struct hrtimer rt_period_timer
;
165 static struct rt_bandwidth def_rt_bandwidth
;
167 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
169 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
171 struct rt_bandwidth
*rt_b
=
172 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
178 now
= hrtimer_cb_get_time(timer
);
179 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
184 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
187 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
191 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
193 rt_b
->rt_period
= ns_to_ktime(period
);
194 rt_b
->rt_runtime
= runtime
;
196 spin_lock_init(&rt_b
->rt_runtime_lock
);
198 hrtimer_init(&rt_b
->rt_period_timer
,
199 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
200 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
201 rt_b
->rt_period_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
204 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
208 if (rt_b
->rt_runtime
== RUNTIME_INF
)
211 if (hrtimer_active(&rt_b
->rt_period_timer
))
214 spin_lock(&rt_b
->rt_runtime_lock
);
216 if (hrtimer_active(&rt_b
->rt_period_timer
))
219 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
220 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
221 hrtimer_start(&rt_b
->rt_period_timer
,
222 rt_b
->rt_period_timer
.expires
,
225 spin_unlock(&rt_b
->rt_runtime_lock
);
228 #ifdef CONFIG_RT_GROUP_SCHED
229 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
231 hrtimer_cancel(&rt_b
->rt_period_timer
);
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
239 static DEFINE_MUTEX(sched_domains_mutex
);
241 #ifdef CONFIG_GROUP_SCHED
243 #include <linux/cgroup.h>
247 static LIST_HEAD(task_groups
);
249 /* task group related information */
251 #ifdef CONFIG_CGROUP_SCHED
252 struct cgroup_subsys_state css
;
255 #ifdef CONFIG_FAIR_GROUP_SCHED
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity
**se
;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq
**cfs_rq
;
260 unsigned long shares
;
263 #ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity
**rt_se
;
265 struct rt_rq
**rt_rq
;
267 struct rt_bandwidth rt_bandwidth
;
271 struct list_head list
;
273 struct task_group
*parent
;
274 struct list_head siblings
;
275 struct list_head children
;
278 #ifdef CONFIG_USER_SCHED
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
285 struct task_group root_task_group
;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 /* Default task group's sched entity on each cpu */
289 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
290 /* Default task group's cfs_rq on each cpu */
291 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
294 #ifdef CONFIG_RT_GROUP_SCHED
295 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
296 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
299 #define root_task_group init_task_group
302 /* task_group_lock serializes add/remove of task groups and also changes to
303 * a task group's cpu shares.
305 static DEFINE_SPINLOCK(task_group_lock
);
307 #ifdef CONFIG_FAIR_GROUP_SCHED
308 #ifdef CONFIG_USER_SCHED
309 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
311 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
316 * (The default weight is 1024 - so there's no practical
317 * limitation from this.)
320 #define MAX_SHARES (ULONG_MAX - 1)
322 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
325 /* Default task group.
326 * Every task in system belong to this group at bootup.
328 struct task_group init_task_group
;
330 /* return group to which a task belongs */
331 static inline struct task_group
*task_group(struct task_struct
*p
)
333 struct task_group
*tg
;
335 #ifdef CONFIG_USER_SCHED
337 #elif defined(CONFIG_CGROUP_SCHED)
338 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
339 struct task_group
, css
);
341 tg
= &init_task_group
;
346 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
347 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
351 p
->se
.parent
= task_group(p
)->se
[cpu
];
354 #ifdef CONFIG_RT_GROUP_SCHED
355 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
356 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
362 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
364 #endif /* CONFIG_GROUP_SCHED */
366 /* CFS-related fields in a runqueue */
368 struct load_weight load
;
369 unsigned long nr_running
;
374 struct rb_root tasks_timeline
;
375 struct rb_node
*rb_leftmost
;
377 struct list_head tasks
;
378 struct list_head
*balance_iterator
;
381 * 'curr' points to currently running entity on this cfs_rq.
382 * It is set to NULL otherwise (i.e when none are currently running).
384 struct sched_entity
*curr
, *next
;
386 unsigned long nr_spread_over
;
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
399 struct list_head leaf_cfs_rq_list
;
400 struct task_group
*tg
; /* group that "owns" this runqueue */
403 unsigned long task_weight
;
404 unsigned long shares
;
406 * We need space to build a sched_domain wide view of the full task
407 * group tree, in order to avoid depending on dynamic memory allocation
408 * during the load balancing we place this in the per cpu task group
409 * hierarchy. This limits the load balancing to one instance per cpu,
410 * but more should not be needed anyway.
412 struct aggregate_struct
{
414 * load = weight(cpus) * f(tg)
416 * Where f(tg) is the recursive weight fraction assigned to
422 * part of the group weight distributed to this span.
424 unsigned long shares
;
427 * The sum of all runqueue weights within this span.
429 unsigned long rq_weight
;
432 * Weight contributed by tasks; this is the part we can
433 * influence by moving tasks around.
435 unsigned long task_weight
;
441 /* Real-Time classes' related field in a runqueue: */
443 struct rt_prio_array active
;
444 unsigned long rt_nr_running
;
445 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
446 int highest_prio
; /* highest queued rt task prio */
449 unsigned long rt_nr_migratory
;
455 /* Nests inside the rq lock: */
456 spinlock_t rt_runtime_lock
;
458 #ifdef CONFIG_RT_GROUP_SCHED
459 unsigned long rt_nr_boosted
;
462 struct list_head leaf_rt_rq_list
;
463 struct task_group
*tg
;
464 struct sched_rt_entity
*rt_se
;
471 * We add the notion of a root-domain which will be used to define per-domain
472 * variables. Each exclusive cpuset essentially defines an island domain by
473 * fully partitioning the member cpus from any other cpuset. Whenever a new
474 * exclusive cpuset is created, we also create and attach a new root-domain
484 * The "RT overload" flag: it gets set if a CPU has more than
485 * one runnable RT task.
492 * By default the system creates a single root-domain with all cpus as
493 * members (mimicking the global state we have today).
495 static struct root_domain def_root_domain
;
500 * This is the main, per-CPU runqueue data structure.
502 * Locking rule: those places that want to lock multiple runqueues
503 * (such as the load balancing or the thread migration code), lock
504 * acquire operations must be ordered by ascending &runqueue.
511 * nr_running and cpu_load should be in the same cacheline because
512 * remote CPUs use both these fields when doing load calculation.
514 unsigned long nr_running
;
515 #define CPU_LOAD_IDX_MAX 5
516 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
517 unsigned char idle_at_tick
;
519 unsigned long last_tick_seen
;
520 unsigned char in_nohz_recently
;
522 /* capture load from *all* tasks on this cpu: */
523 struct load_weight load
;
524 unsigned long nr_load_updates
;
530 #ifdef CONFIG_FAIR_GROUP_SCHED
531 /* list of leaf cfs_rq on this cpu: */
532 struct list_head leaf_cfs_rq_list
;
534 #ifdef CONFIG_RT_GROUP_SCHED
535 struct list_head leaf_rt_rq_list
;
539 * This is part of a global counter where only the total sum
540 * over all CPUs matters. A task can increase this counter on
541 * one CPU and if it got migrated afterwards it may decrease
542 * it on another CPU. Always updated under the runqueue lock:
544 unsigned long nr_uninterruptible
;
546 struct task_struct
*curr
, *idle
;
547 unsigned long next_balance
;
548 struct mm_struct
*prev_mm
;
555 struct root_domain
*rd
;
556 struct sched_domain
*sd
;
558 /* For active balancing */
561 /* cpu of this runqueue: */
564 struct task_struct
*migration_thread
;
565 struct list_head migration_queue
;
568 #ifdef CONFIG_SCHED_HRTICK
569 unsigned long hrtick_flags
;
570 ktime_t hrtick_expire
;
571 struct hrtimer hrtick_timer
;
574 #ifdef CONFIG_SCHEDSTATS
576 struct sched_info rq_sched_info
;
578 /* sys_sched_yield() stats */
579 unsigned int yld_exp_empty
;
580 unsigned int yld_act_empty
;
581 unsigned int yld_both_empty
;
582 unsigned int yld_count
;
584 /* schedule() stats */
585 unsigned int sched_switch
;
586 unsigned int sched_count
;
587 unsigned int sched_goidle
;
589 /* try_to_wake_up() stats */
590 unsigned int ttwu_count
;
591 unsigned int ttwu_local
;
594 unsigned int bkl_count
;
596 struct lock_class_key rq_lock_key
;
599 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
601 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
603 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
606 static inline int cpu_of(struct rq
*rq
)
616 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
617 * See detach_destroy_domains: synchronize_sched for details.
619 * The domain tree of any CPU may only be accessed from within
620 * preempt-disabled sections.
622 #define for_each_domain(cpu, __sd) \
623 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
625 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
626 #define this_rq() (&__get_cpu_var(runqueues))
627 #define task_rq(p) cpu_rq(task_cpu(p))
628 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
630 static inline void update_rq_clock(struct rq
*rq
)
632 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
636 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
638 #ifdef CONFIG_SCHED_DEBUG
639 # define const_debug __read_mostly
641 # define const_debug static const
645 * Debugging: various feature bits
648 #define SCHED_FEAT(name, enabled) \
649 __SCHED_FEAT_##name ,
652 #include "sched_features.h"
657 #define SCHED_FEAT(name, enabled) \
658 (1UL << __SCHED_FEAT_##name) * enabled |
660 const_debug
unsigned int sysctl_sched_features
=
661 #include "sched_features.h"
666 #ifdef CONFIG_SCHED_DEBUG
667 #define SCHED_FEAT(name, enabled) \
670 static __read_mostly
char *sched_feat_names
[] = {
671 #include "sched_features.h"
677 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
679 filp
->private_data
= inode
->i_private
;
684 sched_feat_read(struct file
*filp
, char __user
*ubuf
,
685 size_t cnt
, loff_t
*ppos
)
692 for (i
= 0; sched_feat_names
[i
]; i
++) {
693 len
+= strlen(sched_feat_names
[i
]);
697 buf
= kmalloc(len
+ 2, GFP_KERNEL
);
701 for (i
= 0; sched_feat_names
[i
]; i
++) {
702 if (sysctl_sched_features
& (1UL << i
))
703 r
+= sprintf(buf
+ r
, "%s ", sched_feat_names
[i
]);
705 r
+= sprintf(buf
+ r
, "NO_%s ", sched_feat_names
[i
]);
708 r
+= sprintf(buf
+ r
, "\n");
709 WARN_ON(r
>= len
+ 2);
711 r
= simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
719 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
720 size_t cnt
, loff_t
*ppos
)
730 if (copy_from_user(&buf
, ubuf
, cnt
))
735 if (strncmp(buf
, "NO_", 3) == 0) {
740 for (i
= 0; sched_feat_names
[i
]; i
++) {
741 int len
= strlen(sched_feat_names
[i
]);
743 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
745 sysctl_sched_features
&= ~(1UL << i
);
747 sysctl_sched_features
|= (1UL << i
);
752 if (!sched_feat_names
[i
])
760 static struct file_operations sched_feat_fops
= {
761 .open
= sched_feat_open
,
762 .read
= sched_feat_read
,
763 .write
= sched_feat_write
,
766 static __init
int sched_init_debug(void)
768 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
773 late_initcall(sched_init_debug
);
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
783 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
786 * period over which we measure -rt task cpu usage in us.
789 unsigned int sysctl_sched_rt_period
= 1000000;
791 static __read_mostly
int scheduler_running
;
794 * part of the period that we allow rt tasks to run in us.
797 int sysctl_sched_rt_runtime
= 950000;
799 static inline u64
global_rt_period(void)
801 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
804 static inline u64
global_rt_runtime(void)
806 if (sysctl_sched_rt_period
< 0)
809 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
812 unsigned long long time_sync_thresh
= 100000;
814 static DEFINE_PER_CPU(unsigned long long, time_offset
);
815 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time
);
818 * Global lock which we take every now and then to synchronize
819 * the CPUs time. This method is not warp-safe, but it's good
820 * enough to synchronize slowly diverging time sources and thus
821 * it's good enough for tracing:
823 static DEFINE_SPINLOCK(time_sync_lock
);
824 static unsigned long long prev_global_time
;
826 static unsigned long long __sync_cpu_clock(unsigned long long time
, int cpu
)
829 * We want this inlined, to not get tracer function calls
830 * in this critical section:
832 spin_acquire(&time_sync_lock
.dep_map
, 0, 0, _THIS_IP_
);
833 __raw_spin_lock(&time_sync_lock
.raw_lock
);
835 if (time
< prev_global_time
) {
836 per_cpu(time_offset
, cpu
) += prev_global_time
- time
;
837 time
= prev_global_time
;
839 prev_global_time
= time
;
842 __raw_spin_unlock(&time_sync_lock
.raw_lock
);
843 spin_release(&time_sync_lock
.dep_map
, 1, _THIS_IP_
);
848 static unsigned long long __cpu_clock(int cpu
)
850 unsigned long long now
;
853 * Only call sched_clock() if the scheduler has already been
854 * initialized (some code might call cpu_clock() very early):
856 if (unlikely(!scheduler_running
))
859 now
= sched_clock_cpu(cpu
);
865 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
866 * clock constructed from sched_clock():
868 unsigned long long cpu_clock(int cpu
)
870 unsigned long long prev_cpu_time
, time
, delta_time
;
873 local_irq_save(flags
);
874 prev_cpu_time
= per_cpu(prev_cpu_time
, cpu
);
875 time
= __cpu_clock(cpu
) + per_cpu(time_offset
, cpu
);
876 delta_time
= time
-prev_cpu_time
;
878 if (unlikely(delta_time
> time_sync_thresh
)) {
879 time
= __sync_cpu_clock(time
, cpu
);
880 per_cpu(prev_cpu_time
, cpu
) = time
;
882 local_irq_restore(flags
);
886 EXPORT_SYMBOL_GPL(cpu_clock
);
888 #ifndef prepare_arch_switch
889 # define prepare_arch_switch(next) do { } while (0)
891 #ifndef finish_arch_switch
892 # define finish_arch_switch(prev) do { } while (0)
895 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
897 return rq
->curr
== p
;
900 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
901 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
903 return task_current(rq
, p
);
906 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
910 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
912 #ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq
->lock
.owner
= current
;
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
921 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
923 spin_unlock_irq(&rq
->lock
);
926 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
927 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
932 return task_current(rq
, p
);
936 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
946 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq
->lock
);
949 spin_unlock(&rq
->lock
);
953 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
964 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
968 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
974 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
978 struct rq
*rq
= task_rq(p
);
979 spin_lock(&rq
->lock
);
980 if (likely(rq
== task_rq(p
)))
982 spin_unlock(&rq
->lock
);
987 * task_rq_lock - lock the runqueue a given task resides on and disable
988 * interrupts. Note the ordering: we can safely lookup the task_rq without
989 * explicitly disabling preemption.
991 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
997 local_irq_save(*flags
);
999 spin_lock(&rq
->lock
);
1000 if (likely(rq
== task_rq(p
)))
1002 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1006 static void __task_rq_unlock(struct rq
*rq
)
1007 __releases(rq
->lock
)
1009 spin_unlock(&rq
->lock
);
1012 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
1013 __releases(rq
->lock
)
1015 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1019 * this_rq_lock - lock this runqueue and disable interrupts.
1021 static struct rq
*this_rq_lock(void)
1022 __acquires(rq
->lock
)
1026 local_irq_disable();
1028 spin_lock(&rq
->lock
);
1033 static void __resched_task(struct task_struct
*p
, int tif_bit
);
1035 static inline void resched_task(struct task_struct
*p
)
1037 __resched_task(p
, TIF_NEED_RESCHED
);
1040 #ifdef CONFIG_SCHED_HRTICK
1042 * Use HR-timers to deliver accurate preemption points.
1044 * Its all a bit involved since we cannot program an hrt while holding the
1045 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 static inline void resched_hrt(struct task_struct
*p
)
1053 __resched_task(p
, TIF_HRTICK_RESCHED
);
1056 static inline void resched_rq(struct rq
*rq
)
1058 unsigned long flags
;
1060 spin_lock_irqsave(&rq
->lock
, flags
);
1061 resched_task(rq
->curr
);
1062 spin_unlock_irqrestore(&rq
->lock
, flags
);
1066 HRTICK_SET
, /* re-programm hrtick_timer */
1067 HRTICK_RESET
, /* not a new slice */
1068 HRTICK_BLOCK
, /* stop hrtick operations */
1073 * - enabled by features
1074 * - hrtimer is actually high res
1076 static inline int hrtick_enabled(struct rq
*rq
)
1078 if (!sched_feat(HRTICK
))
1080 if (unlikely(test_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
)))
1082 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1086 * Called to set the hrtick timer state.
1088 * called with rq->lock held and irqs disabled
1090 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
1092 assert_spin_locked(&rq
->lock
);
1095 * preempt at: now + delay
1098 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
1100 * indicate we need to program the timer
1102 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1104 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1107 * New slices are called from the schedule path and don't need a
1108 * forced reschedule.
1111 resched_hrt(rq
->curr
);
1114 static void hrtick_clear(struct rq
*rq
)
1116 if (hrtimer_active(&rq
->hrtick_timer
))
1117 hrtimer_cancel(&rq
->hrtick_timer
);
1121 * Update the timer from the possible pending state.
1123 static void hrtick_set(struct rq
*rq
)
1127 unsigned long flags
;
1129 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1131 spin_lock_irqsave(&rq
->lock
, flags
);
1132 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1133 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1134 time
= rq
->hrtick_expire
;
1135 clear_thread_flag(TIF_HRTICK_RESCHED
);
1136 spin_unlock_irqrestore(&rq
->lock
, flags
);
1139 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
1140 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
1147 * High-resolution timer tick.
1148 * Runs from hardirq context with interrupts disabled.
1150 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1152 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1154 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1156 spin_lock(&rq
->lock
);
1157 update_rq_clock(rq
);
1158 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1159 spin_unlock(&rq
->lock
);
1161 return HRTIMER_NORESTART
;
1164 static void hotplug_hrtick_disable(int cpu
)
1166 struct rq
*rq
= cpu_rq(cpu
);
1167 unsigned long flags
;
1169 spin_lock_irqsave(&rq
->lock
, flags
);
1170 rq
->hrtick_flags
= 0;
1171 __set_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
);
1172 spin_unlock_irqrestore(&rq
->lock
, flags
);
1177 static void hotplug_hrtick_enable(int cpu
)
1179 struct rq
*rq
= cpu_rq(cpu
);
1180 unsigned long flags
;
1182 spin_lock_irqsave(&rq
->lock
, flags
);
1183 __clear_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
);
1184 spin_unlock_irqrestore(&rq
->lock
, flags
);
1188 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1190 int cpu
= (int)(long)hcpu
;
1193 case CPU_UP_CANCELED
:
1194 case CPU_UP_CANCELED_FROZEN
:
1195 case CPU_DOWN_PREPARE
:
1196 case CPU_DOWN_PREPARE_FROZEN
:
1198 case CPU_DEAD_FROZEN
:
1199 hotplug_hrtick_disable(cpu
);
1202 case CPU_UP_PREPARE
:
1203 case CPU_UP_PREPARE_FROZEN
:
1204 case CPU_DOWN_FAILED
:
1205 case CPU_DOWN_FAILED_FROZEN
:
1207 case CPU_ONLINE_FROZEN
:
1208 hotplug_hrtick_enable(cpu
);
1215 static void init_hrtick(void)
1217 hotcpu_notifier(hotplug_hrtick
, 0);
1220 static void init_rq_hrtick(struct rq
*rq
)
1222 rq
->hrtick_flags
= 0;
1223 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1224 rq
->hrtick_timer
.function
= hrtick
;
1225 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1228 void hrtick_resched(void)
1231 unsigned long flags
;
1233 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
1236 local_irq_save(flags
);
1237 rq
= cpu_rq(smp_processor_id());
1239 local_irq_restore(flags
);
1242 static inline void hrtick_clear(struct rq
*rq
)
1246 static inline void hrtick_set(struct rq
*rq
)
1250 static inline void init_rq_hrtick(struct rq
*rq
)
1254 void hrtick_resched(void)
1258 static inline void init_hrtick(void)
1264 * resched_task - mark a task 'to be rescheduled now'.
1266 * On UP this means the setting of the need_resched flag, on SMP it
1267 * might also involve a cross-CPU call to trigger the scheduler on
1272 #ifndef tsk_is_polling
1273 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1276 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1280 assert_spin_locked(&task_rq(p
)->lock
);
1282 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1285 set_tsk_thread_flag(p
, tif_bit
);
1288 if (cpu
== smp_processor_id())
1291 /* NEED_RESCHED must be visible before we test polling */
1293 if (!tsk_is_polling(p
))
1294 smp_send_reschedule(cpu
);
1297 static void resched_cpu(int cpu
)
1299 struct rq
*rq
= cpu_rq(cpu
);
1300 unsigned long flags
;
1302 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1304 resched_task(cpu_curr(cpu
));
1305 spin_unlock_irqrestore(&rq
->lock
, flags
);
1310 * When add_timer_on() enqueues a timer into the timer wheel of an
1311 * idle CPU then this timer might expire before the next timer event
1312 * which is scheduled to wake up that CPU. In case of a completely
1313 * idle system the next event might even be infinite time into the
1314 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1315 * leaves the inner idle loop so the newly added timer is taken into
1316 * account when the CPU goes back to idle and evaluates the timer
1317 * wheel for the next timer event.
1319 void wake_up_idle_cpu(int cpu
)
1321 struct rq
*rq
= cpu_rq(cpu
);
1323 if (cpu
== smp_processor_id())
1327 * This is safe, as this function is called with the timer
1328 * wheel base lock of (cpu) held. When the CPU is on the way
1329 * to idle and has not yet set rq->curr to idle then it will
1330 * be serialized on the timer wheel base lock and take the new
1331 * timer into account automatically.
1333 if (rq
->curr
!= rq
->idle
)
1337 * We can set TIF_RESCHED on the idle task of the other CPU
1338 * lockless. The worst case is that the other CPU runs the
1339 * idle task through an additional NOOP schedule()
1341 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1343 /* NEED_RESCHED must be visible before we test polling */
1345 if (!tsk_is_polling(rq
->idle
))
1346 smp_send_reschedule(cpu
);
1351 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1353 assert_spin_locked(&task_rq(p
)->lock
);
1354 set_tsk_thread_flag(p
, tif_bit
);
1358 #if BITS_PER_LONG == 32
1359 # define WMULT_CONST (~0UL)
1361 # define WMULT_CONST (1UL << 32)
1364 #define WMULT_SHIFT 32
1367 * Shift right and round:
1369 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1372 * delta *= weight / lw
1374 static unsigned long
1375 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1376 struct load_weight
*lw
)
1380 if (!lw
->inv_weight
)
1381 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)/(lw
->weight
+1);
1383 tmp
= (u64
)delta_exec
* weight
;
1385 * Check whether we'd overflow the 64-bit multiplication:
1387 if (unlikely(tmp
> WMULT_CONST
))
1388 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1391 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1393 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1396 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1402 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1409 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1410 * of tasks with abnormal "nice" values across CPUs the contribution that
1411 * each task makes to its run queue's load is weighted according to its
1412 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1413 * scaled version of the new time slice allocation that they receive on time
1417 #define WEIGHT_IDLEPRIO 2
1418 #define WMULT_IDLEPRIO (1 << 31)
1421 * Nice levels are multiplicative, with a gentle 10% change for every
1422 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1423 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1424 * that remained on nice 0.
1426 * The "10% effect" is relative and cumulative: from _any_ nice level,
1427 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1428 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1429 * If a task goes up by ~10% and another task goes down by ~10% then
1430 * the relative distance between them is ~25%.)
1432 static const int prio_to_weight
[40] = {
1433 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1434 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1435 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1436 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1437 /* 0 */ 1024, 820, 655, 526, 423,
1438 /* 5 */ 335, 272, 215, 172, 137,
1439 /* 10 */ 110, 87, 70, 56, 45,
1440 /* 15 */ 36, 29, 23, 18, 15,
1444 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1446 * In cases where the weight does not change often, we can use the
1447 * precalculated inverse to speed up arithmetics by turning divisions
1448 * into multiplications:
1450 static const u32 prio_to_wmult
[40] = {
1451 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1452 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1453 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1454 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1455 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1456 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1457 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1458 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1461 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1464 * runqueue iterator, to support SMP load-balancing between different
1465 * scheduling classes, without having to expose their internal data
1466 * structures to the load-balancing proper:
1468 struct rq_iterator
{
1470 struct task_struct
*(*start
)(void *);
1471 struct task_struct
*(*next
)(void *);
1475 static unsigned long
1476 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1477 unsigned long max_load_move
, struct sched_domain
*sd
,
1478 enum cpu_idle_type idle
, int *all_pinned
,
1479 int *this_best_prio
, struct rq_iterator
*iterator
);
1482 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1483 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1484 struct rq_iterator
*iterator
);
1487 #ifdef CONFIG_CGROUP_CPUACCT
1488 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1490 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1493 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1495 update_load_add(&rq
->load
, load
);
1498 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1500 update_load_sub(&rq
->load
, load
);
1504 static unsigned long source_load(int cpu
, int type
);
1505 static unsigned long target_load(int cpu
, int type
);
1506 static unsigned long cpu_avg_load_per_task(int cpu
);
1507 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1509 #ifdef CONFIG_FAIR_GROUP_SCHED
1512 * Group load balancing.
1514 * We calculate a few balance domain wide aggregate numbers; load and weight.
1515 * Given the pictures below, and assuming each item has equal weight:
1526 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1527 * which equals 1/9-th of the total load.
1530 * The weight of this group on the selected cpus.
1533 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1537 * Part of the rq_weight contributed by tasks; all groups except B would
1541 static inline struct aggregate_struct
*
1542 aggregate(struct task_group
*tg
, struct sched_domain
*sd
)
1544 return &tg
->cfs_rq
[sd
->first_cpu
]->aggregate
;
1547 typedef void (*aggregate_func
)(struct task_group
*, struct sched_domain
*);
1550 * Iterate the full tree, calling @down when first entering a node and @up when
1551 * leaving it for the final time.
1554 void aggregate_walk_tree(aggregate_func down
, aggregate_func up
,
1555 struct sched_domain
*sd
)
1557 struct task_group
*parent
, *child
;
1560 parent
= &root_task_group
;
1562 (*down
)(parent
, sd
);
1563 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1573 parent
= parent
->parent
;
1580 * Calculate the aggregate runqueue weight.
1583 void aggregate_group_weight(struct task_group
*tg
, struct sched_domain
*sd
)
1585 unsigned long rq_weight
= 0;
1586 unsigned long task_weight
= 0;
1589 for_each_cpu_mask(i
, sd
->span
) {
1590 rq_weight
+= tg
->cfs_rq
[i
]->load
.weight
;
1591 task_weight
+= tg
->cfs_rq
[i
]->task_weight
;
1594 aggregate(tg
, sd
)->rq_weight
= rq_weight
;
1595 aggregate(tg
, sd
)->task_weight
= task_weight
;
1599 * Compute the weight of this group on the given cpus.
1602 void aggregate_group_shares(struct task_group
*tg
, struct sched_domain
*sd
)
1604 unsigned long shares
= 0;
1607 for_each_cpu_mask(i
, sd
->span
)
1608 shares
+= tg
->cfs_rq
[i
]->shares
;
1610 if ((!shares
&& aggregate(tg
, sd
)->rq_weight
) || shares
> tg
->shares
)
1611 shares
= tg
->shares
;
1613 aggregate(tg
, sd
)->shares
= shares
;
1617 * Compute the load fraction assigned to this group, relies on the aggregate
1618 * weight and this group's parent's load, i.e. top-down.
1621 void aggregate_group_load(struct task_group
*tg
, struct sched_domain
*sd
)
1629 for_each_cpu_mask(i
, sd
->span
)
1630 load
+= cpu_rq(i
)->load
.weight
;
1633 load
= aggregate(tg
->parent
, sd
)->load
;
1636 * shares is our weight in the parent's rq so
1637 * shares/parent->rq_weight gives our fraction of the load
1639 load
*= aggregate(tg
, sd
)->shares
;
1640 load
/= aggregate(tg
->parent
, sd
)->rq_weight
+ 1;
1643 aggregate(tg
, sd
)->load
= load
;
1646 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1649 * Calculate and set the cpu's group shares.
1652 __update_group_shares_cpu(struct task_group
*tg
, struct sched_domain
*sd
,
1656 unsigned long shares
;
1657 unsigned long rq_weight
;
1662 rq_weight
= tg
->cfs_rq
[tcpu
]->load
.weight
;
1665 * If there are currently no tasks on the cpu pretend there is one of
1666 * average load so that when a new task gets to run here it will not
1667 * get delayed by group starvation.
1671 rq_weight
= NICE_0_LOAD
;
1675 * \Sum shares * rq_weight
1676 * shares = -----------------------
1680 shares
= aggregate(tg
, sd
)->shares
* rq_weight
;
1681 shares
/= aggregate(tg
, sd
)->rq_weight
+ 1;
1684 * record the actual number of shares, not the boosted amount.
1686 tg
->cfs_rq
[tcpu
]->shares
= boost
? 0 : shares
;
1688 if (shares
< MIN_SHARES
)
1689 shares
= MIN_SHARES
;
1690 else if (shares
> MAX_SHARES
)
1691 shares
= MAX_SHARES
;
1693 __set_se_shares(tg
->se
[tcpu
], shares
);
1697 * Re-adjust the weights on the cpu the task came from and on the cpu the
1701 __move_group_shares(struct task_group
*tg
, struct sched_domain
*sd
,
1704 unsigned long shares
;
1706 shares
= tg
->cfs_rq
[scpu
]->shares
+ tg
->cfs_rq
[dcpu
]->shares
;
1708 __update_group_shares_cpu(tg
, sd
, scpu
);
1709 __update_group_shares_cpu(tg
, sd
, dcpu
);
1712 * ensure we never loose shares due to rounding errors in the
1713 * above redistribution.
1715 shares
-= tg
->cfs_rq
[scpu
]->shares
+ tg
->cfs_rq
[dcpu
]->shares
;
1717 tg
->cfs_rq
[dcpu
]->shares
+= shares
;
1721 * Because changing a group's shares changes the weight of the super-group
1722 * we need to walk up the tree and change all shares until we hit the root.
1725 move_group_shares(struct task_group
*tg
, struct sched_domain
*sd
,
1729 __move_group_shares(tg
, sd
, scpu
, dcpu
);
1735 void aggregate_group_set_shares(struct task_group
*tg
, struct sched_domain
*sd
)
1737 unsigned long shares
= aggregate(tg
, sd
)->shares
;
1740 for_each_cpu_mask(i
, sd
->span
) {
1741 struct rq
*rq
= cpu_rq(i
);
1742 unsigned long flags
;
1744 spin_lock_irqsave(&rq
->lock
, flags
);
1745 __update_group_shares_cpu(tg
, sd
, i
);
1746 spin_unlock_irqrestore(&rq
->lock
, flags
);
1749 aggregate_group_shares(tg
, sd
);
1752 * ensure we never loose shares due to rounding errors in the
1753 * above redistribution.
1755 shares
-= aggregate(tg
, sd
)->shares
;
1757 tg
->cfs_rq
[sd
->first_cpu
]->shares
+= shares
;
1758 aggregate(tg
, sd
)->shares
+= shares
;
1763 * Calculate the accumulative weight and recursive load of each task group
1764 * while walking down the tree.
1767 void aggregate_get_down(struct task_group
*tg
, struct sched_domain
*sd
)
1769 aggregate_group_weight(tg
, sd
);
1770 aggregate_group_shares(tg
, sd
);
1771 aggregate_group_load(tg
, sd
);
1775 * Rebalance the cpu shares while walking back up the tree.
1778 void aggregate_get_up(struct task_group
*tg
, struct sched_domain
*sd
)
1780 aggregate_group_set_shares(tg
, sd
);
1783 static DEFINE_PER_CPU(spinlock_t
, aggregate_lock
);
1785 static void __init
init_aggregate(void)
1789 for_each_possible_cpu(i
)
1790 spin_lock_init(&per_cpu(aggregate_lock
, i
));
1793 static int get_aggregate(struct sched_domain
*sd
)
1795 if (!spin_trylock(&per_cpu(aggregate_lock
, sd
->first_cpu
)))
1798 aggregate_walk_tree(aggregate_get_down
, aggregate_get_up
, sd
);
1802 static void put_aggregate(struct sched_domain
*sd
)
1804 spin_unlock(&per_cpu(aggregate_lock
, sd
->first_cpu
));
1807 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1809 cfs_rq
->shares
= shares
;
1814 static inline void init_aggregate(void)
1818 static inline int get_aggregate(struct sched_domain
*sd
)
1823 static inline void put_aggregate(struct sched_domain
*sd
)
1828 #else /* CONFIG_SMP */
1830 #ifdef CONFIG_FAIR_GROUP_SCHED
1831 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1836 #endif /* CONFIG_SMP */
1838 #include "sched_stats.h"
1839 #include "sched_idletask.c"
1840 #include "sched_fair.c"
1841 #include "sched_rt.c"
1842 #ifdef CONFIG_SCHED_DEBUG
1843 # include "sched_debug.c"
1846 #define sched_class_highest (&rt_sched_class)
1848 static void inc_nr_running(struct rq
*rq
)
1853 static void dec_nr_running(struct rq
*rq
)
1858 static void set_load_weight(struct task_struct
*p
)
1860 if (task_has_rt_policy(p
)) {
1861 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1862 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1867 * SCHED_IDLE tasks get minimal weight:
1869 if (p
->policy
== SCHED_IDLE
) {
1870 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1871 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1875 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1876 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1879 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1881 sched_info_queued(p
);
1882 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1886 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1888 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1893 * __normal_prio - return the priority that is based on the static prio
1895 static inline int __normal_prio(struct task_struct
*p
)
1897 return p
->static_prio
;
1901 * Calculate the expected normal priority: i.e. priority
1902 * without taking RT-inheritance into account. Might be
1903 * boosted by interactivity modifiers. Changes upon fork,
1904 * setprio syscalls, and whenever the interactivity
1905 * estimator recalculates.
1907 static inline int normal_prio(struct task_struct
*p
)
1911 if (task_has_rt_policy(p
))
1912 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1914 prio
= __normal_prio(p
);
1919 * Calculate the current priority, i.e. the priority
1920 * taken into account by the scheduler. This value might
1921 * be boosted by RT tasks, or might be boosted by
1922 * interactivity modifiers. Will be RT if the task got
1923 * RT-boosted. If not then it returns p->normal_prio.
1925 static int effective_prio(struct task_struct
*p
)
1927 p
->normal_prio
= normal_prio(p
);
1929 * If we are RT tasks or we were boosted to RT priority,
1930 * keep the priority unchanged. Otherwise, update priority
1931 * to the normal priority:
1933 if (!rt_prio(p
->prio
))
1934 return p
->normal_prio
;
1939 * activate_task - move a task to the runqueue.
1941 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1943 if (task_contributes_to_load(p
))
1944 rq
->nr_uninterruptible
--;
1946 enqueue_task(rq
, p
, wakeup
);
1951 * deactivate_task - remove a task from the runqueue.
1953 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1955 if (task_contributes_to_load(p
))
1956 rq
->nr_uninterruptible
++;
1958 dequeue_task(rq
, p
, sleep
);
1963 * task_curr - is this task currently executing on a CPU?
1964 * @p: the task in question.
1966 inline int task_curr(const struct task_struct
*p
)
1968 return cpu_curr(task_cpu(p
)) == p
;
1971 /* Used instead of source_load when we know the type == 0 */
1972 unsigned long weighted_cpuload(const int cpu
)
1974 return cpu_rq(cpu
)->load
.weight
;
1977 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1979 set_task_rq(p
, cpu
);
1982 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1983 * successfuly executed on another CPU. We must ensure that updates of
1984 * per-task data have been completed by this moment.
1987 task_thread_info(p
)->cpu
= cpu
;
1991 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1992 const struct sched_class
*prev_class
,
1993 int oldprio
, int running
)
1995 if (prev_class
!= p
->sched_class
) {
1996 if (prev_class
->switched_from
)
1997 prev_class
->switched_from(rq
, p
, running
);
1998 p
->sched_class
->switched_to(rq
, p
, running
);
2000 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2006 * Is this task likely cache-hot:
2009 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2014 * Buddy candidates are cache hot:
2016 if (sched_feat(CACHE_HOT_BUDDY
) && (&p
->se
== cfs_rq_of(&p
->se
)->next
))
2019 if (p
->sched_class
!= &fair_sched_class
)
2022 if (sysctl_sched_migration_cost
== -1)
2024 if (sysctl_sched_migration_cost
== 0)
2027 delta
= now
- p
->se
.exec_start
;
2029 return delta
< (s64
)sysctl_sched_migration_cost
;
2033 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2035 int old_cpu
= task_cpu(p
);
2036 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
2037 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
2038 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
2041 clock_offset
= old_rq
->clock
- new_rq
->clock
;
2043 #ifdef CONFIG_SCHEDSTATS
2044 if (p
->se
.wait_start
)
2045 p
->se
.wait_start
-= clock_offset
;
2046 if (p
->se
.sleep_start
)
2047 p
->se
.sleep_start
-= clock_offset
;
2048 if (p
->se
.block_start
)
2049 p
->se
.block_start
-= clock_offset
;
2050 if (old_cpu
!= new_cpu
) {
2051 schedstat_inc(p
, se
.nr_migrations
);
2052 if (task_hot(p
, old_rq
->clock
, NULL
))
2053 schedstat_inc(p
, se
.nr_forced2_migrations
);
2056 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
2057 new_cfsrq
->min_vruntime
;
2059 __set_task_cpu(p
, new_cpu
);
2062 struct migration_req
{
2063 struct list_head list
;
2065 struct task_struct
*task
;
2068 struct completion done
;
2072 * The task's runqueue lock must be held.
2073 * Returns true if you have to wait for migration thread.
2076 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2078 struct rq
*rq
= task_rq(p
);
2081 * If the task is not on a runqueue (and not running), then
2082 * it is sufficient to simply update the task's cpu field.
2084 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
2085 set_task_cpu(p
, dest_cpu
);
2089 init_completion(&req
->done
);
2091 req
->dest_cpu
= dest_cpu
;
2092 list_add(&req
->list
, &rq
->migration_queue
);
2098 * wait_task_inactive - wait for a thread to unschedule.
2100 * The caller must ensure that the task *will* unschedule sometime soon,
2101 * else this function might spin for a *long* time. This function can't
2102 * be called with interrupts off, or it may introduce deadlock with
2103 * smp_call_function() if an IPI is sent by the same process we are
2104 * waiting to become inactive.
2106 void wait_task_inactive(struct task_struct
*p
)
2108 unsigned long flags
;
2114 * We do the initial early heuristics without holding
2115 * any task-queue locks at all. We'll only try to get
2116 * the runqueue lock when things look like they will
2122 * If the task is actively running on another CPU
2123 * still, just relax and busy-wait without holding
2126 * NOTE! Since we don't hold any locks, it's not
2127 * even sure that "rq" stays as the right runqueue!
2128 * But we don't care, since "task_running()" will
2129 * return false if the runqueue has changed and p
2130 * is actually now running somewhere else!
2132 while (task_running(rq
, p
))
2136 * Ok, time to look more closely! We need the rq
2137 * lock now, to be *sure*. If we're wrong, we'll
2138 * just go back and repeat.
2140 rq
= task_rq_lock(p
, &flags
);
2141 running
= task_running(rq
, p
);
2142 on_rq
= p
->se
.on_rq
;
2143 task_rq_unlock(rq
, &flags
);
2146 * Was it really running after all now that we
2147 * checked with the proper locks actually held?
2149 * Oops. Go back and try again..
2151 if (unlikely(running
)) {
2157 * It's not enough that it's not actively running,
2158 * it must be off the runqueue _entirely_, and not
2161 * So if it wa still runnable (but just not actively
2162 * running right now), it's preempted, and we should
2163 * yield - it could be a while.
2165 if (unlikely(on_rq
)) {
2166 schedule_timeout_uninterruptible(1);
2171 * Ahh, all good. It wasn't running, and it wasn't
2172 * runnable, which means that it will never become
2173 * running in the future either. We're all done!
2180 * kick_process - kick a running thread to enter/exit the kernel
2181 * @p: the to-be-kicked thread
2183 * Cause a process which is running on another CPU to enter
2184 * kernel-mode, without any delay. (to get signals handled.)
2186 * NOTE: this function doesnt have to take the runqueue lock,
2187 * because all it wants to ensure is that the remote task enters
2188 * the kernel. If the IPI races and the task has been migrated
2189 * to another CPU then no harm is done and the purpose has been
2192 void kick_process(struct task_struct
*p
)
2198 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2199 smp_send_reschedule(cpu
);
2204 * Return a low guess at the load of a migration-source cpu weighted
2205 * according to the scheduling class and "nice" value.
2207 * We want to under-estimate the load of migration sources, to
2208 * balance conservatively.
2210 static unsigned long source_load(int cpu
, int type
)
2212 struct rq
*rq
= cpu_rq(cpu
);
2213 unsigned long total
= weighted_cpuload(cpu
);
2218 return min(rq
->cpu_load
[type
-1], total
);
2222 * Return a high guess at the load of a migration-target cpu weighted
2223 * according to the scheduling class and "nice" value.
2225 static unsigned long target_load(int cpu
, int type
)
2227 struct rq
*rq
= cpu_rq(cpu
);
2228 unsigned long total
= weighted_cpuload(cpu
);
2233 return max(rq
->cpu_load
[type
-1], total
);
2237 * Return the average load per task on the cpu's run queue
2239 static unsigned long cpu_avg_load_per_task(int cpu
)
2241 struct rq
*rq
= cpu_rq(cpu
);
2242 unsigned long total
= weighted_cpuload(cpu
);
2243 unsigned long n
= rq
->nr_running
;
2245 return n
? total
/ n
: SCHED_LOAD_SCALE
;
2249 * find_idlest_group finds and returns the least busy CPU group within the
2252 static struct sched_group
*
2253 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2255 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2256 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2257 int load_idx
= sd
->forkexec_idx
;
2258 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2261 unsigned long load
, avg_load
;
2265 /* Skip over this group if it has no CPUs allowed */
2266 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
2269 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2271 /* Tally up the load of all CPUs in the group */
2274 for_each_cpu_mask(i
, group
->cpumask
) {
2275 /* Bias balancing toward cpus of our domain */
2277 load
= source_load(i
, load_idx
);
2279 load
= target_load(i
, load_idx
);
2284 /* Adjust by relative CPU power of the group */
2285 avg_load
= sg_div_cpu_power(group
,
2286 avg_load
* SCHED_LOAD_SCALE
);
2289 this_load
= avg_load
;
2291 } else if (avg_load
< min_load
) {
2292 min_load
= avg_load
;
2295 } while (group
= group
->next
, group
!= sd
->groups
);
2297 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2303 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2306 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
2309 unsigned long load
, min_load
= ULONG_MAX
;
2313 /* Traverse only the allowed CPUs */
2314 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
2316 for_each_cpu_mask(i
, *tmp
) {
2317 load
= weighted_cpuload(i
);
2319 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2329 * sched_balance_self: balance the current task (running on cpu) in domains
2330 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2333 * Balance, ie. select the least loaded group.
2335 * Returns the target CPU number, or the same CPU if no balancing is needed.
2337 * preempt must be disabled.
2339 static int sched_balance_self(int cpu
, int flag
)
2341 struct task_struct
*t
= current
;
2342 struct sched_domain
*tmp
, *sd
= NULL
;
2344 for_each_domain(cpu
, tmp
) {
2346 * If power savings logic is enabled for a domain, stop there.
2348 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2350 if (tmp
->flags
& flag
)
2355 cpumask_t span
, tmpmask
;
2356 struct sched_group
*group
;
2357 int new_cpu
, weight
;
2359 if (!(sd
->flags
& flag
)) {
2365 group
= find_idlest_group(sd
, t
, cpu
);
2371 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
2372 if (new_cpu
== -1 || new_cpu
== cpu
) {
2373 /* Now try balancing at a lower domain level of cpu */
2378 /* Now try balancing at a lower domain level of new_cpu */
2381 weight
= cpus_weight(span
);
2382 for_each_domain(cpu
, tmp
) {
2383 if (weight
<= cpus_weight(tmp
->span
))
2385 if (tmp
->flags
& flag
)
2388 /* while loop will break here if sd == NULL */
2394 #endif /* CONFIG_SMP */
2397 * try_to_wake_up - wake up a thread
2398 * @p: the to-be-woken-up thread
2399 * @state: the mask of task states that can be woken
2400 * @sync: do a synchronous wakeup?
2402 * Put it on the run-queue if it's not already there. The "current"
2403 * thread is always on the run-queue (except when the actual
2404 * re-schedule is in progress), and as such you're allowed to do
2405 * the simpler "current->state = TASK_RUNNING" to mark yourself
2406 * runnable without the overhead of this.
2408 * returns failure only if the task is already active.
2410 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2412 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2413 unsigned long flags
;
2417 if (!sched_feat(SYNC_WAKEUPS
))
2421 rq
= task_rq_lock(p
, &flags
);
2422 old_state
= p
->state
;
2423 if (!(old_state
& state
))
2431 this_cpu
= smp_processor_id();
2434 if (unlikely(task_running(rq
, p
)))
2437 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2438 if (cpu
!= orig_cpu
) {
2439 set_task_cpu(p
, cpu
);
2440 task_rq_unlock(rq
, &flags
);
2441 /* might preempt at this point */
2442 rq
= task_rq_lock(p
, &flags
);
2443 old_state
= p
->state
;
2444 if (!(old_state
& state
))
2449 this_cpu
= smp_processor_id();
2453 #ifdef CONFIG_SCHEDSTATS
2454 schedstat_inc(rq
, ttwu_count
);
2455 if (cpu
== this_cpu
)
2456 schedstat_inc(rq
, ttwu_local
);
2458 struct sched_domain
*sd
;
2459 for_each_domain(this_cpu
, sd
) {
2460 if (cpu_isset(cpu
, sd
->span
)) {
2461 schedstat_inc(sd
, ttwu_wake_remote
);
2469 #endif /* CONFIG_SMP */
2470 schedstat_inc(p
, se
.nr_wakeups
);
2472 schedstat_inc(p
, se
.nr_wakeups_sync
);
2473 if (orig_cpu
!= cpu
)
2474 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2475 if (cpu
== this_cpu
)
2476 schedstat_inc(p
, se
.nr_wakeups_local
);
2478 schedstat_inc(p
, se
.nr_wakeups_remote
);
2479 update_rq_clock(rq
);
2480 activate_task(rq
, p
, 1);
2484 check_preempt_curr(rq
, p
);
2486 p
->state
= TASK_RUNNING
;
2488 if (p
->sched_class
->task_wake_up
)
2489 p
->sched_class
->task_wake_up(rq
, p
);
2492 task_rq_unlock(rq
, &flags
);
2497 int wake_up_process(struct task_struct
*p
)
2499 return try_to_wake_up(p
, TASK_ALL
, 0);
2501 EXPORT_SYMBOL(wake_up_process
);
2503 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2505 return try_to_wake_up(p
, state
, 0);
2509 * Perform scheduler related setup for a newly forked process p.
2510 * p is forked by current.
2512 * __sched_fork() is basic setup used by init_idle() too:
2514 static void __sched_fork(struct task_struct
*p
)
2516 p
->se
.exec_start
= 0;
2517 p
->se
.sum_exec_runtime
= 0;
2518 p
->se
.prev_sum_exec_runtime
= 0;
2519 p
->se
.last_wakeup
= 0;
2520 p
->se
.avg_overlap
= 0;
2522 #ifdef CONFIG_SCHEDSTATS
2523 p
->se
.wait_start
= 0;
2524 p
->se
.sum_sleep_runtime
= 0;
2525 p
->se
.sleep_start
= 0;
2526 p
->se
.block_start
= 0;
2527 p
->se
.sleep_max
= 0;
2528 p
->se
.block_max
= 0;
2530 p
->se
.slice_max
= 0;
2534 INIT_LIST_HEAD(&p
->rt
.run_list
);
2536 INIT_LIST_HEAD(&p
->se
.group_node
);
2538 #ifdef CONFIG_PREEMPT_NOTIFIERS
2539 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2543 * We mark the process as running here, but have not actually
2544 * inserted it onto the runqueue yet. This guarantees that
2545 * nobody will actually run it, and a signal or other external
2546 * event cannot wake it up and insert it on the runqueue either.
2548 p
->state
= TASK_RUNNING
;
2552 * fork()/clone()-time setup:
2554 void sched_fork(struct task_struct
*p
, int clone_flags
)
2556 int cpu
= get_cpu();
2561 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2563 set_task_cpu(p
, cpu
);
2566 * Make sure we do not leak PI boosting priority to the child:
2568 p
->prio
= current
->normal_prio
;
2569 if (!rt_prio(p
->prio
))
2570 p
->sched_class
= &fair_sched_class
;
2572 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2573 if (likely(sched_info_on()))
2574 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2576 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2579 #ifdef CONFIG_PREEMPT
2580 /* Want to start with kernel preemption disabled. */
2581 task_thread_info(p
)->preempt_count
= 1;
2587 * wake_up_new_task - wake up a newly created task for the first time.
2589 * This function will do some initial scheduler statistics housekeeping
2590 * that must be done for every newly created context, then puts the task
2591 * on the runqueue and wakes it.
2593 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2595 unsigned long flags
;
2598 rq
= task_rq_lock(p
, &flags
);
2599 BUG_ON(p
->state
!= TASK_RUNNING
);
2600 update_rq_clock(rq
);
2602 p
->prio
= effective_prio(p
);
2604 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2605 activate_task(rq
, p
, 0);
2608 * Let the scheduling class do new task startup
2609 * management (if any):
2611 p
->sched_class
->task_new(rq
, p
);
2614 check_preempt_curr(rq
, p
);
2616 if (p
->sched_class
->task_wake_up
)
2617 p
->sched_class
->task_wake_up(rq
, p
);
2619 task_rq_unlock(rq
, &flags
);
2622 #ifdef CONFIG_PREEMPT_NOTIFIERS
2625 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2626 * @notifier: notifier struct to register
2628 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2630 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2632 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2635 * preempt_notifier_unregister - no longer interested in preemption notifications
2636 * @notifier: notifier struct to unregister
2638 * This is safe to call from within a preemption notifier.
2640 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2642 hlist_del(¬ifier
->link
);
2644 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2646 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2648 struct preempt_notifier
*notifier
;
2649 struct hlist_node
*node
;
2651 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2652 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2656 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2657 struct task_struct
*next
)
2659 struct preempt_notifier
*notifier
;
2660 struct hlist_node
*node
;
2662 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2663 notifier
->ops
->sched_out(notifier
, next
);
2668 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2673 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2674 struct task_struct
*next
)
2681 * prepare_task_switch - prepare to switch tasks
2682 * @rq: the runqueue preparing to switch
2683 * @prev: the current task that is being switched out
2684 * @next: the task we are going to switch to.
2686 * This is called with the rq lock held and interrupts off. It must
2687 * be paired with a subsequent finish_task_switch after the context
2690 * prepare_task_switch sets up locking and calls architecture specific
2694 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2695 struct task_struct
*next
)
2697 fire_sched_out_preempt_notifiers(prev
, next
);
2698 prepare_lock_switch(rq
, next
);
2699 prepare_arch_switch(next
);
2703 * finish_task_switch - clean up after a task-switch
2704 * @rq: runqueue associated with task-switch
2705 * @prev: the thread we just switched away from.
2707 * finish_task_switch must be called after the context switch, paired
2708 * with a prepare_task_switch call before the context switch.
2709 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2710 * and do any other architecture-specific cleanup actions.
2712 * Note that we may have delayed dropping an mm in context_switch(). If
2713 * so, we finish that here outside of the runqueue lock. (Doing it
2714 * with the lock held can cause deadlocks; see schedule() for
2717 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2718 __releases(rq
->lock
)
2720 struct mm_struct
*mm
= rq
->prev_mm
;
2726 * A task struct has one reference for the use as "current".
2727 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2728 * schedule one last time. The schedule call will never return, and
2729 * the scheduled task must drop that reference.
2730 * The test for TASK_DEAD must occur while the runqueue locks are
2731 * still held, otherwise prev could be scheduled on another cpu, die
2732 * there before we look at prev->state, and then the reference would
2734 * Manfred Spraul <manfred@colorfullife.com>
2736 prev_state
= prev
->state
;
2737 finish_arch_switch(prev
);
2738 finish_lock_switch(rq
, prev
);
2740 if (current
->sched_class
->post_schedule
)
2741 current
->sched_class
->post_schedule(rq
);
2744 fire_sched_in_preempt_notifiers(current
);
2747 if (unlikely(prev_state
== TASK_DEAD
)) {
2749 * Remove function-return probe instances associated with this
2750 * task and put them back on the free list.
2752 kprobe_flush_task(prev
);
2753 put_task_struct(prev
);
2758 * schedule_tail - first thing a freshly forked thread must call.
2759 * @prev: the thread we just switched away from.
2761 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2762 __releases(rq
->lock
)
2764 struct rq
*rq
= this_rq();
2766 finish_task_switch(rq
, prev
);
2767 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2768 /* In this case, finish_task_switch does not reenable preemption */
2771 if (current
->set_child_tid
)
2772 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2776 * context_switch - switch to the new MM and the new
2777 * thread's register state.
2780 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2781 struct task_struct
*next
)
2783 struct mm_struct
*mm
, *oldmm
;
2785 prepare_task_switch(rq
, prev
, next
);
2787 oldmm
= prev
->active_mm
;
2789 * For paravirt, this is coupled with an exit in switch_to to
2790 * combine the page table reload and the switch backend into
2793 arch_enter_lazy_cpu_mode();
2795 if (unlikely(!mm
)) {
2796 next
->active_mm
= oldmm
;
2797 atomic_inc(&oldmm
->mm_count
);
2798 enter_lazy_tlb(oldmm
, next
);
2800 switch_mm(oldmm
, mm
, next
);
2802 if (unlikely(!prev
->mm
)) {
2803 prev
->active_mm
= NULL
;
2804 rq
->prev_mm
= oldmm
;
2807 * Since the runqueue lock will be released by the next
2808 * task (which is an invalid locking op but in the case
2809 * of the scheduler it's an obvious special-case), so we
2810 * do an early lockdep release here:
2812 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2813 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2816 /* Here we just switch the register state and the stack. */
2817 switch_to(prev
, next
, prev
);
2821 * this_rq must be evaluated again because prev may have moved
2822 * CPUs since it called schedule(), thus the 'rq' on its stack
2823 * frame will be invalid.
2825 finish_task_switch(this_rq(), prev
);
2829 * nr_running, nr_uninterruptible and nr_context_switches:
2831 * externally visible scheduler statistics: current number of runnable
2832 * threads, current number of uninterruptible-sleeping threads, total
2833 * number of context switches performed since bootup.
2835 unsigned long nr_running(void)
2837 unsigned long i
, sum
= 0;
2839 for_each_online_cpu(i
)
2840 sum
+= cpu_rq(i
)->nr_running
;
2845 unsigned long nr_uninterruptible(void)
2847 unsigned long i
, sum
= 0;
2849 for_each_possible_cpu(i
)
2850 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2853 * Since we read the counters lockless, it might be slightly
2854 * inaccurate. Do not allow it to go below zero though:
2856 if (unlikely((long)sum
< 0))
2862 unsigned long long nr_context_switches(void)
2865 unsigned long long sum
= 0;
2867 for_each_possible_cpu(i
)
2868 sum
+= cpu_rq(i
)->nr_switches
;
2873 unsigned long nr_iowait(void)
2875 unsigned long i
, sum
= 0;
2877 for_each_possible_cpu(i
)
2878 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2883 unsigned long nr_active(void)
2885 unsigned long i
, running
= 0, uninterruptible
= 0;
2887 for_each_online_cpu(i
) {
2888 running
+= cpu_rq(i
)->nr_running
;
2889 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2892 if (unlikely((long)uninterruptible
< 0))
2893 uninterruptible
= 0;
2895 return running
+ uninterruptible
;
2899 * Update rq->cpu_load[] statistics. This function is usually called every
2900 * scheduler tick (TICK_NSEC).
2902 static void update_cpu_load(struct rq
*this_rq
)
2904 unsigned long this_load
= this_rq
->load
.weight
;
2907 this_rq
->nr_load_updates
++;
2909 /* Update our load: */
2910 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2911 unsigned long old_load
, new_load
;
2913 /* scale is effectively 1 << i now, and >> i divides by scale */
2915 old_load
= this_rq
->cpu_load
[i
];
2916 new_load
= this_load
;
2918 * Round up the averaging division if load is increasing. This
2919 * prevents us from getting stuck on 9 if the load is 10, for
2922 if (new_load
> old_load
)
2923 new_load
+= scale
-1;
2924 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2931 * double_rq_lock - safely lock two runqueues
2933 * Note this does not disable interrupts like task_rq_lock,
2934 * you need to do so manually before calling.
2936 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2937 __acquires(rq1
->lock
)
2938 __acquires(rq2
->lock
)
2940 BUG_ON(!irqs_disabled());
2942 spin_lock(&rq1
->lock
);
2943 __acquire(rq2
->lock
); /* Fake it out ;) */
2946 spin_lock(&rq1
->lock
);
2947 spin_lock(&rq2
->lock
);
2949 spin_lock(&rq2
->lock
);
2950 spin_lock(&rq1
->lock
);
2953 update_rq_clock(rq1
);
2954 update_rq_clock(rq2
);
2958 * double_rq_unlock - safely unlock two runqueues
2960 * Note this does not restore interrupts like task_rq_unlock,
2961 * you need to do so manually after calling.
2963 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2964 __releases(rq1
->lock
)
2965 __releases(rq2
->lock
)
2967 spin_unlock(&rq1
->lock
);
2969 spin_unlock(&rq2
->lock
);
2971 __release(rq2
->lock
);
2975 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2977 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2978 __releases(this_rq
->lock
)
2979 __acquires(busiest
->lock
)
2980 __acquires(this_rq
->lock
)
2984 if (unlikely(!irqs_disabled())) {
2985 /* printk() doesn't work good under rq->lock */
2986 spin_unlock(&this_rq
->lock
);
2989 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2990 if (busiest
< this_rq
) {
2991 spin_unlock(&this_rq
->lock
);
2992 spin_lock(&busiest
->lock
);
2993 spin_lock(&this_rq
->lock
);
2996 spin_lock(&busiest
->lock
);
3002 * If dest_cpu is allowed for this process, migrate the task to it.
3003 * This is accomplished by forcing the cpu_allowed mask to only
3004 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3005 * the cpu_allowed mask is restored.
3007 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
3009 struct migration_req req
;
3010 unsigned long flags
;
3013 rq
= task_rq_lock(p
, &flags
);
3014 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
3015 || unlikely(cpu_is_offline(dest_cpu
)))
3018 /* force the process onto the specified CPU */
3019 if (migrate_task(p
, dest_cpu
, &req
)) {
3020 /* Need to wait for migration thread (might exit: take ref). */
3021 struct task_struct
*mt
= rq
->migration_thread
;
3023 get_task_struct(mt
);
3024 task_rq_unlock(rq
, &flags
);
3025 wake_up_process(mt
);
3026 put_task_struct(mt
);
3027 wait_for_completion(&req
.done
);
3032 task_rq_unlock(rq
, &flags
);
3036 * sched_exec - execve() is a valuable balancing opportunity, because at
3037 * this point the task has the smallest effective memory and cache footprint.
3039 void sched_exec(void)
3041 int new_cpu
, this_cpu
= get_cpu();
3042 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
3044 if (new_cpu
!= this_cpu
)
3045 sched_migrate_task(current
, new_cpu
);
3049 * pull_task - move a task from a remote runqueue to the local runqueue.
3050 * Both runqueues must be locked.
3052 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3053 struct rq
*this_rq
, int this_cpu
)
3055 deactivate_task(src_rq
, p
, 0);
3056 set_task_cpu(p
, this_cpu
);
3057 activate_task(this_rq
, p
, 0);
3059 * Note that idle threads have a prio of MAX_PRIO, for this test
3060 * to be always true for them.
3062 check_preempt_curr(this_rq
, p
);
3066 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3069 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3070 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3074 * We do not migrate tasks that are:
3075 * 1) running (obviously), or
3076 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3077 * 3) are cache-hot on their current CPU.
3079 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
3080 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3085 if (task_running(rq
, p
)) {
3086 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3091 * Aggressive migration if:
3092 * 1) task is cache cold, or
3093 * 2) too many balance attempts have failed.
3096 if (!task_hot(p
, rq
->clock
, sd
) ||
3097 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3098 #ifdef CONFIG_SCHEDSTATS
3099 if (task_hot(p
, rq
->clock
, sd
)) {
3100 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3101 schedstat_inc(p
, se
.nr_forced_migrations
);
3107 if (task_hot(p
, rq
->clock
, sd
)) {
3108 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3114 static unsigned long
3115 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3116 unsigned long max_load_move
, struct sched_domain
*sd
,
3117 enum cpu_idle_type idle
, int *all_pinned
,
3118 int *this_best_prio
, struct rq_iterator
*iterator
)
3120 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
3121 struct task_struct
*p
;
3122 long rem_load_move
= max_load_move
;
3124 if (max_load_move
== 0)
3130 * Start the load-balancing iterator:
3132 p
= iterator
->start(iterator
->arg
);
3134 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3137 * To help distribute high priority tasks across CPUs we don't
3138 * skip a task if it will be the highest priority task (i.e. smallest
3139 * prio value) on its new queue regardless of its load weight
3141 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
3142 SCHED_LOAD_SCALE_FUZZ
;
3143 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
3144 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3145 p
= iterator
->next(iterator
->arg
);
3149 pull_task(busiest
, p
, this_rq
, this_cpu
);
3151 rem_load_move
-= p
->se
.load
.weight
;
3154 * We only want to steal up to the prescribed amount of weighted load.
3156 if (rem_load_move
> 0) {
3157 if (p
->prio
< *this_best_prio
)
3158 *this_best_prio
= p
->prio
;
3159 p
= iterator
->next(iterator
->arg
);
3164 * Right now, this is one of only two places pull_task() is called,
3165 * so we can safely collect pull_task() stats here rather than
3166 * inside pull_task().
3168 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3171 *all_pinned
= pinned
;
3173 return max_load_move
- rem_load_move
;
3177 * move_tasks tries to move up to max_load_move weighted load from busiest to
3178 * this_rq, as part of a balancing operation within domain "sd".
3179 * Returns 1 if successful and 0 otherwise.
3181 * Called with both runqueues locked.
3183 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3184 unsigned long max_load_move
,
3185 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3188 const struct sched_class
*class = sched_class_highest
;
3189 unsigned long total_load_moved
= 0;
3190 int this_best_prio
= this_rq
->curr
->prio
;
3194 class->load_balance(this_rq
, this_cpu
, busiest
,
3195 max_load_move
- total_load_moved
,
3196 sd
, idle
, all_pinned
, &this_best_prio
);
3197 class = class->next
;
3198 } while (class && max_load_move
> total_load_moved
);
3200 return total_load_moved
> 0;
3204 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3205 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3206 struct rq_iterator
*iterator
)
3208 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3212 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3213 pull_task(busiest
, p
, this_rq
, this_cpu
);
3215 * Right now, this is only the second place pull_task()
3216 * is called, so we can safely collect pull_task()
3217 * stats here rather than inside pull_task().
3219 schedstat_inc(sd
, lb_gained
[idle
]);
3223 p
= iterator
->next(iterator
->arg
);
3230 * move_one_task tries to move exactly one task from busiest to this_rq, as
3231 * part of active balancing operations within "domain".
3232 * Returns 1 if successful and 0 otherwise.
3234 * Called with both runqueues locked.
3236 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3237 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3239 const struct sched_class
*class;
3241 for (class = sched_class_highest
; class; class = class->next
)
3242 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3249 * find_busiest_group finds and returns the busiest CPU group within the
3250 * domain. It calculates and returns the amount of weighted load which
3251 * should be moved to restore balance via the imbalance parameter.
3253 static struct sched_group
*
3254 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3255 unsigned long *imbalance
, enum cpu_idle_type idle
,
3256 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
3258 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3259 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3260 unsigned long max_pull
;
3261 unsigned long busiest_load_per_task
, busiest_nr_running
;
3262 unsigned long this_load_per_task
, this_nr_running
;
3263 int load_idx
, group_imb
= 0;
3264 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3265 int power_savings_balance
= 1;
3266 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3267 unsigned long min_nr_running
= ULONG_MAX
;
3268 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3271 max_load
= this_load
= total_load
= total_pwr
= 0;
3272 busiest_load_per_task
= busiest_nr_running
= 0;
3273 this_load_per_task
= this_nr_running
= 0;
3274 if (idle
== CPU_NOT_IDLE
)
3275 load_idx
= sd
->busy_idx
;
3276 else if (idle
== CPU_NEWLY_IDLE
)
3277 load_idx
= sd
->newidle_idx
;
3279 load_idx
= sd
->idle_idx
;
3282 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3285 int __group_imb
= 0;
3286 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3287 unsigned long sum_nr_running
, sum_weighted_load
;
3289 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
3292 balance_cpu
= first_cpu(group
->cpumask
);
3294 /* Tally up the load of all CPUs in the group */
3295 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3297 min_cpu_load
= ~0UL;
3299 for_each_cpu_mask(i
, group
->cpumask
) {
3302 if (!cpu_isset(i
, *cpus
))
3307 if (*sd_idle
&& rq
->nr_running
)
3310 /* Bias balancing toward cpus of our domain */
3312 if (idle_cpu(i
) && !first_idle_cpu
) {
3317 load
= target_load(i
, load_idx
);
3319 load
= source_load(i
, load_idx
);
3320 if (load
> max_cpu_load
)
3321 max_cpu_load
= load
;
3322 if (min_cpu_load
> load
)
3323 min_cpu_load
= load
;
3327 sum_nr_running
+= rq
->nr_running
;
3328 sum_weighted_load
+= weighted_cpuload(i
);
3332 * First idle cpu or the first cpu(busiest) in this sched group
3333 * is eligible for doing load balancing at this and above
3334 * domains. In the newly idle case, we will allow all the cpu's
3335 * to do the newly idle load balance.
3337 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3338 balance_cpu
!= this_cpu
&& balance
) {
3343 total_load
+= avg_load
;
3344 total_pwr
+= group
->__cpu_power
;
3346 /* Adjust by relative CPU power of the group */
3347 avg_load
= sg_div_cpu_power(group
,
3348 avg_load
* SCHED_LOAD_SCALE
);
3350 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
3353 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3356 this_load
= avg_load
;
3358 this_nr_running
= sum_nr_running
;
3359 this_load_per_task
= sum_weighted_load
;
3360 } else if (avg_load
> max_load
&&
3361 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3362 max_load
= avg_load
;
3364 busiest_nr_running
= sum_nr_running
;
3365 busiest_load_per_task
= sum_weighted_load
;
3366 group_imb
= __group_imb
;
3369 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3371 * Busy processors will not participate in power savings
3374 if (idle
== CPU_NOT_IDLE
||
3375 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3379 * If the local group is idle or completely loaded
3380 * no need to do power savings balance at this domain
3382 if (local_group
&& (this_nr_running
>= group_capacity
||
3384 power_savings_balance
= 0;
3387 * If a group is already running at full capacity or idle,
3388 * don't include that group in power savings calculations
3390 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3395 * Calculate the group which has the least non-idle load.
3396 * This is the group from where we need to pick up the load
3399 if ((sum_nr_running
< min_nr_running
) ||
3400 (sum_nr_running
== min_nr_running
&&
3401 first_cpu(group
->cpumask
) <
3402 first_cpu(group_min
->cpumask
))) {
3404 min_nr_running
= sum_nr_running
;
3405 min_load_per_task
= sum_weighted_load
/
3410 * Calculate the group which is almost near its
3411 * capacity but still has some space to pick up some load
3412 * from other group and save more power
3414 if (sum_nr_running
<= group_capacity
- 1) {
3415 if (sum_nr_running
> leader_nr_running
||
3416 (sum_nr_running
== leader_nr_running
&&
3417 first_cpu(group
->cpumask
) >
3418 first_cpu(group_leader
->cpumask
))) {
3419 group_leader
= group
;
3420 leader_nr_running
= sum_nr_running
;
3425 group
= group
->next
;
3426 } while (group
!= sd
->groups
);
3428 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3431 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3433 if (this_load
>= avg_load
||
3434 100*max_load
<= sd
->imbalance_pct
*this_load
)
3437 busiest_load_per_task
/= busiest_nr_running
;
3439 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3442 * We're trying to get all the cpus to the average_load, so we don't
3443 * want to push ourselves above the average load, nor do we wish to
3444 * reduce the max loaded cpu below the average load, as either of these
3445 * actions would just result in more rebalancing later, and ping-pong
3446 * tasks around. Thus we look for the minimum possible imbalance.
3447 * Negative imbalances (*we* are more loaded than anyone else) will
3448 * be counted as no imbalance for these purposes -- we can't fix that
3449 * by pulling tasks to us. Be careful of negative numbers as they'll
3450 * appear as very large values with unsigned longs.
3452 if (max_load
<= busiest_load_per_task
)
3456 * In the presence of smp nice balancing, certain scenarios can have
3457 * max load less than avg load(as we skip the groups at or below
3458 * its cpu_power, while calculating max_load..)
3460 if (max_load
< avg_load
) {
3462 goto small_imbalance
;
3465 /* Don't want to pull so many tasks that a group would go idle */
3466 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3468 /* How much load to actually move to equalise the imbalance */
3469 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3470 (avg_load
- this_load
) * this->__cpu_power
)
3474 * if *imbalance is less than the average load per runnable task
3475 * there is no gaurantee that any tasks will be moved so we'll have
3476 * a think about bumping its value to force at least one task to be
3479 if (*imbalance
< busiest_load_per_task
) {
3480 unsigned long tmp
, pwr_now
, pwr_move
;
3484 pwr_move
= pwr_now
= 0;
3486 if (this_nr_running
) {
3487 this_load_per_task
/= this_nr_running
;
3488 if (busiest_load_per_task
> this_load_per_task
)
3491 this_load_per_task
= SCHED_LOAD_SCALE
;
3493 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
3494 busiest_load_per_task
* imbn
) {
3495 *imbalance
= busiest_load_per_task
;
3500 * OK, we don't have enough imbalance to justify moving tasks,
3501 * however we may be able to increase total CPU power used by
3505 pwr_now
+= busiest
->__cpu_power
*
3506 min(busiest_load_per_task
, max_load
);
3507 pwr_now
+= this->__cpu_power
*
3508 min(this_load_per_task
, this_load
);
3509 pwr_now
/= SCHED_LOAD_SCALE
;
3511 /* Amount of load we'd subtract */
3512 tmp
= sg_div_cpu_power(busiest
,
3513 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3515 pwr_move
+= busiest
->__cpu_power
*
3516 min(busiest_load_per_task
, max_load
- tmp
);
3518 /* Amount of load we'd add */
3519 if (max_load
* busiest
->__cpu_power
<
3520 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3521 tmp
= sg_div_cpu_power(this,
3522 max_load
* busiest
->__cpu_power
);
3524 tmp
= sg_div_cpu_power(this,
3525 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3526 pwr_move
+= this->__cpu_power
*
3527 min(this_load_per_task
, this_load
+ tmp
);
3528 pwr_move
/= SCHED_LOAD_SCALE
;
3530 /* Move if we gain throughput */
3531 if (pwr_move
> pwr_now
)
3532 *imbalance
= busiest_load_per_task
;
3538 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3539 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3542 if (this == group_leader
&& group_leader
!= group_min
) {
3543 *imbalance
= min_load_per_task
;
3553 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3556 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3557 unsigned long imbalance
, const cpumask_t
*cpus
)
3559 struct rq
*busiest
= NULL
, *rq
;
3560 unsigned long max_load
= 0;
3563 for_each_cpu_mask(i
, group
->cpumask
) {
3566 if (!cpu_isset(i
, *cpus
))
3570 wl
= weighted_cpuload(i
);
3572 if (rq
->nr_running
== 1 && wl
> imbalance
)
3575 if (wl
> max_load
) {
3585 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3586 * so long as it is large enough.
3588 #define MAX_PINNED_INTERVAL 512
3591 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3592 * tasks if there is an imbalance.
3594 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3595 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3596 int *balance
, cpumask_t
*cpus
)
3598 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3599 struct sched_group
*group
;
3600 unsigned long imbalance
;
3602 unsigned long flags
;
3603 int unlock_aggregate
;
3607 unlock_aggregate
= get_aggregate(sd
);
3610 * When power savings policy is enabled for the parent domain, idle
3611 * sibling can pick up load irrespective of busy siblings. In this case,
3612 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3613 * portraying it as CPU_NOT_IDLE.
3615 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3616 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3619 schedstat_inc(sd
, lb_count
[idle
]);
3622 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3629 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3633 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3635 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3639 BUG_ON(busiest
== this_rq
);
3641 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3644 if (busiest
->nr_running
> 1) {
3646 * Attempt to move tasks. If find_busiest_group has found
3647 * an imbalance but busiest->nr_running <= 1, the group is
3648 * still unbalanced. ld_moved simply stays zero, so it is
3649 * correctly treated as an imbalance.
3651 local_irq_save(flags
);
3652 double_rq_lock(this_rq
, busiest
);
3653 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3654 imbalance
, sd
, idle
, &all_pinned
);
3655 double_rq_unlock(this_rq
, busiest
);
3656 local_irq_restore(flags
);
3659 * some other cpu did the load balance for us.
3661 if (ld_moved
&& this_cpu
!= smp_processor_id())
3662 resched_cpu(this_cpu
);
3664 /* All tasks on this runqueue were pinned by CPU affinity */
3665 if (unlikely(all_pinned
)) {
3666 cpu_clear(cpu_of(busiest
), *cpus
);
3667 if (!cpus_empty(*cpus
))
3674 schedstat_inc(sd
, lb_failed
[idle
]);
3675 sd
->nr_balance_failed
++;
3677 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3679 spin_lock_irqsave(&busiest
->lock
, flags
);
3681 /* don't kick the migration_thread, if the curr
3682 * task on busiest cpu can't be moved to this_cpu
3684 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3685 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3687 goto out_one_pinned
;
3690 if (!busiest
->active_balance
) {
3691 busiest
->active_balance
= 1;
3692 busiest
->push_cpu
= this_cpu
;
3695 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3697 wake_up_process(busiest
->migration_thread
);
3700 * We've kicked active balancing, reset the failure
3703 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3706 sd
->nr_balance_failed
= 0;
3708 if (likely(!active_balance
)) {
3709 /* We were unbalanced, so reset the balancing interval */
3710 sd
->balance_interval
= sd
->min_interval
;
3713 * If we've begun active balancing, start to back off. This
3714 * case may not be covered by the all_pinned logic if there
3715 * is only 1 task on the busy runqueue (because we don't call
3718 if (sd
->balance_interval
< sd
->max_interval
)
3719 sd
->balance_interval
*= 2;
3722 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3723 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3729 schedstat_inc(sd
, lb_balanced
[idle
]);
3731 sd
->nr_balance_failed
= 0;
3734 /* tune up the balancing interval */
3735 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3736 (sd
->balance_interval
< sd
->max_interval
))
3737 sd
->balance_interval
*= 2;
3739 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3740 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3745 if (unlock_aggregate
)
3751 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3752 * tasks if there is an imbalance.
3754 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3755 * this_rq is locked.
3758 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3761 struct sched_group
*group
;
3762 struct rq
*busiest
= NULL
;
3763 unsigned long imbalance
;
3771 * When power savings policy is enabled for the parent domain, idle
3772 * sibling can pick up load irrespective of busy siblings. In this case,
3773 * let the state of idle sibling percolate up as IDLE, instead of
3774 * portraying it as CPU_NOT_IDLE.
3776 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3777 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3780 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3782 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3783 &sd_idle
, cpus
, NULL
);
3785 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3789 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3791 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3795 BUG_ON(busiest
== this_rq
);
3797 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3800 if (busiest
->nr_running
> 1) {
3801 /* Attempt to move tasks */
3802 double_lock_balance(this_rq
, busiest
);
3803 /* this_rq->clock is already updated */
3804 update_rq_clock(busiest
);
3805 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3806 imbalance
, sd
, CPU_NEWLY_IDLE
,
3808 spin_unlock(&busiest
->lock
);
3810 if (unlikely(all_pinned
)) {
3811 cpu_clear(cpu_of(busiest
), *cpus
);
3812 if (!cpus_empty(*cpus
))
3818 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3819 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3820 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3823 sd
->nr_balance_failed
= 0;
3828 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3829 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3830 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3832 sd
->nr_balance_failed
= 0;
3838 * idle_balance is called by schedule() if this_cpu is about to become
3839 * idle. Attempts to pull tasks from other CPUs.
3841 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3843 struct sched_domain
*sd
;
3844 int pulled_task
= -1;
3845 unsigned long next_balance
= jiffies
+ HZ
;
3848 for_each_domain(this_cpu
, sd
) {
3849 unsigned long interval
;
3851 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3854 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3855 /* If we've pulled tasks over stop searching: */
3856 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3859 interval
= msecs_to_jiffies(sd
->balance_interval
);
3860 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3861 next_balance
= sd
->last_balance
+ interval
;
3865 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3867 * We are going idle. next_balance may be set based on
3868 * a busy processor. So reset next_balance.
3870 this_rq
->next_balance
= next_balance
;
3875 * active_load_balance is run by migration threads. It pushes running tasks
3876 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3877 * running on each physical CPU where possible, and avoids physical /
3878 * logical imbalances.
3880 * Called with busiest_rq locked.
3882 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3884 int target_cpu
= busiest_rq
->push_cpu
;
3885 struct sched_domain
*sd
;
3886 struct rq
*target_rq
;
3888 /* Is there any task to move? */
3889 if (busiest_rq
->nr_running
<= 1)
3892 target_rq
= cpu_rq(target_cpu
);
3895 * This condition is "impossible", if it occurs
3896 * we need to fix it. Originally reported by
3897 * Bjorn Helgaas on a 128-cpu setup.
3899 BUG_ON(busiest_rq
== target_rq
);
3901 /* move a task from busiest_rq to target_rq */
3902 double_lock_balance(busiest_rq
, target_rq
);
3903 update_rq_clock(busiest_rq
);
3904 update_rq_clock(target_rq
);
3906 /* Search for an sd spanning us and the target CPU. */
3907 for_each_domain(target_cpu
, sd
) {
3908 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3909 cpu_isset(busiest_cpu
, sd
->span
))
3914 schedstat_inc(sd
, alb_count
);
3916 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3918 schedstat_inc(sd
, alb_pushed
);
3920 schedstat_inc(sd
, alb_failed
);
3922 spin_unlock(&target_rq
->lock
);
3927 atomic_t load_balancer
;
3929 } nohz ____cacheline_aligned
= {
3930 .load_balancer
= ATOMIC_INIT(-1),
3931 .cpu_mask
= CPU_MASK_NONE
,
3935 * This routine will try to nominate the ilb (idle load balancing)
3936 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3937 * load balancing on behalf of all those cpus. If all the cpus in the system
3938 * go into this tickless mode, then there will be no ilb owner (as there is
3939 * no need for one) and all the cpus will sleep till the next wakeup event
3942 * For the ilb owner, tick is not stopped. And this tick will be used
3943 * for idle load balancing. ilb owner will still be part of
3946 * While stopping the tick, this cpu will become the ilb owner if there
3947 * is no other owner. And will be the owner till that cpu becomes busy
3948 * or if all cpus in the system stop their ticks at which point
3949 * there is no need for ilb owner.
3951 * When the ilb owner becomes busy, it nominates another owner, during the
3952 * next busy scheduler_tick()
3954 int select_nohz_load_balancer(int stop_tick
)
3956 int cpu
= smp_processor_id();
3959 cpu_set(cpu
, nohz
.cpu_mask
);
3960 cpu_rq(cpu
)->in_nohz_recently
= 1;
3963 * If we are going offline and still the leader, give up!
3965 if (cpu_is_offline(cpu
) &&
3966 atomic_read(&nohz
.load_balancer
) == cpu
) {
3967 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3972 /* time for ilb owner also to sleep */
3973 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3974 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3975 atomic_set(&nohz
.load_balancer
, -1);
3979 if (atomic_read(&nohz
.load_balancer
) == -1) {
3980 /* make me the ilb owner */
3981 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3983 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3986 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3989 cpu_clear(cpu
, nohz
.cpu_mask
);
3991 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3992 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3999 static DEFINE_SPINLOCK(balancing
);
4002 * It checks each scheduling domain to see if it is due to be balanced,
4003 * and initiates a balancing operation if so.
4005 * Balancing parameters are set up in arch_init_sched_domains.
4007 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4010 struct rq
*rq
= cpu_rq(cpu
);
4011 unsigned long interval
;
4012 struct sched_domain
*sd
;
4013 /* Earliest time when we have to do rebalance again */
4014 unsigned long next_balance
= jiffies
+ 60*HZ
;
4015 int update_next_balance
= 0;
4018 for_each_domain(cpu
, sd
) {
4019 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4022 interval
= sd
->balance_interval
;
4023 if (idle
!= CPU_IDLE
)
4024 interval
*= sd
->busy_factor
;
4026 /* scale ms to jiffies */
4027 interval
= msecs_to_jiffies(interval
);
4028 if (unlikely(!interval
))
4030 if (interval
> HZ
*NR_CPUS
/10)
4031 interval
= HZ
*NR_CPUS
/10;
4034 if (sd
->flags
& SD_SERIALIZE
) {
4035 if (!spin_trylock(&balancing
))
4039 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4040 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
4042 * We've pulled tasks over so either we're no
4043 * longer idle, or one of our SMT siblings is
4046 idle
= CPU_NOT_IDLE
;
4048 sd
->last_balance
= jiffies
;
4050 if (sd
->flags
& SD_SERIALIZE
)
4051 spin_unlock(&balancing
);
4053 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4054 next_balance
= sd
->last_balance
+ interval
;
4055 update_next_balance
= 1;
4059 * Stop the load balance at this level. There is another
4060 * CPU in our sched group which is doing load balancing more
4068 * next_balance will be updated only when there is a need.
4069 * When the cpu is attached to null domain for ex, it will not be
4072 if (likely(update_next_balance
))
4073 rq
->next_balance
= next_balance
;
4077 * run_rebalance_domains is triggered when needed from the scheduler tick.
4078 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4079 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4081 static void run_rebalance_domains(struct softirq_action
*h
)
4083 int this_cpu
= smp_processor_id();
4084 struct rq
*this_rq
= cpu_rq(this_cpu
);
4085 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4086 CPU_IDLE
: CPU_NOT_IDLE
;
4088 rebalance_domains(this_cpu
, idle
);
4092 * If this cpu is the owner for idle load balancing, then do the
4093 * balancing on behalf of the other idle cpus whose ticks are
4096 if (this_rq
->idle_at_tick
&&
4097 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4098 cpumask_t cpus
= nohz
.cpu_mask
;
4102 cpu_clear(this_cpu
, cpus
);
4103 for_each_cpu_mask(balance_cpu
, cpus
) {
4105 * If this cpu gets work to do, stop the load balancing
4106 * work being done for other cpus. Next load
4107 * balancing owner will pick it up.
4112 rebalance_domains(balance_cpu
, CPU_IDLE
);
4114 rq
= cpu_rq(balance_cpu
);
4115 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4116 this_rq
->next_balance
= rq
->next_balance
;
4123 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4125 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4126 * idle load balancing owner or decide to stop the periodic load balancing,
4127 * if the whole system is idle.
4129 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4133 * If we were in the nohz mode recently and busy at the current
4134 * scheduler tick, then check if we need to nominate new idle
4137 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4138 rq
->in_nohz_recently
= 0;
4140 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4141 cpu_clear(cpu
, nohz
.cpu_mask
);
4142 atomic_set(&nohz
.load_balancer
, -1);
4145 if (atomic_read(&nohz
.load_balancer
) == -1) {
4147 * simple selection for now: Nominate the
4148 * first cpu in the nohz list to be the next
4151 * TBD: Traverse the sched domains and nominate
4152 * the nearest cpu in the nohz.cpu_mask.
4154 int ilb
= first_cpu(nohz
.cpu_mask
);
4156 if (ilb
< nr_cpu_ids
)
4162 * If this cpu is idle and doing idle load balancing for all the
4163 * cpus with ticks stopped, is it time for that to stop?
4165 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4166 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4172 * If this cpu is idle and the idle load balancing is done by
4173 * someone else, then no need raise the SCHED_SOFTIRQ
4175 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4176 cpu_isset(cpu
, nohz
.cpu_mask
))
4179 if (time_after_eq(jiffies
, rq
->next_balance
))
4180 raise_softirq(SCHED_SOFTIRQ
);
4183 #else /* CONFIG_SMP */
4186 * on UP we do not need to balance between CPUs:
4188 static inline void idle_balance(int cpu
, struct rq
*rq
)
4194 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4196 EXPORT_PER_CPU_SYMBOL(kstat
);
4199 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4200 * that have not yet been banked in case the task is currently running.
4202 unsigned long long task_sched_runtime(struct task_struct
*p
)
4204 unsigned long flags
;
4208 rq
= task_rq_lock(p
, &flags
);
4209 ns
= p
->se
.sum_exec_runtime
;
4210 if (task_current(rq
, p
)) {
4211 update_rq_clock(rq
);
4212 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4213 if ((s64
)delta_exec
> 0)
4216 task_rq_unlock(rq
, &flags
);
4222 * Account user cpu time to a process.
4223 * @p: the process that the cpu time gets accounted to
4224 * @cputime: the cpu time spent in user space since the last update
4226 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
4228 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4231 p
->utime
= cputime_add(p
->utime
, cputime
);
4233 /* Add user time to cpustat. */
4234 tmp
= cputime_to_cputime64(cputime
);
4235 if (TASK_NICE(p
) > 0)
4236 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4238 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4242 * Account guest cpu time to a process.
4243 * @p: the process that the cpu time gets accounted to
4244 * @cputime: the cpu time spent in virtual machine since the last update
4246 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
4249 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4251 tmp
= cputime_to_cputime64(cputime
);
4253 p
->utime
= cputime_add(p
->utime
, cputime
);
4254 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4256 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4257 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4261 * Account scaled user cpu time to a process.
4262 * @p: the process that the cpu time gets accounted to
4263 * @cputime: the cpu time spent in user space since the last update
4265 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4267 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
4271 * Account system cpu time to a process.
4272 * @p: the process that the cpu time gets accounted to
4273 * @hardirq_offset: the offset to subtract from hardirq_count()
4274 * @cputime: the cpu time spent in kernel space since the last update
4276 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4279 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4280 struct rq
*rq
= this_rq();
4283 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4284 account_guest_time(p
, cputime
);
4288 p
->stime
= cputime_add(p
->stime
, cputime
);
4290 /* Add system time to cpustat. */
4291 tmp
= cputime_to_cputime64(cputime
);
4292 if (hardirq_count() - hardirq_offset
)
4293 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4294 else if (softirq_count())
4295 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4296 else if (p
!= rq
->idle
)
4297 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4298 else if (atomic_read(&rq
->nr_iowait
) > 0)
4299 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4301 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4302 /* Account for system time used */
4303 acct_update_integrals(p
);
4307 * Account scaled system cpu time to a process.
4308 * @p: the process that the cpu time gets accounted to
4309 * @hardirq_offset: the offset to subtract from hardirq_count()
4310 * @cputime: the cpu time spent in kernel space since the last update
4312 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4314 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
4318 * Account for involuntary wait time.
4319 * @p: the process from which the cpu time has been stolen
4320 * @steal: the cpu time spent in involuntary wait
4322 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
4324 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4325 cputime64_t tmp
= cputime_to_cputime64(steal
);
4326 struct rq
*rq
= this_rq();
4328 if (p
== rq
->idle
) {
4329 p
->stime
= cputime_add(p
->stime
, steal
);
4330 if (atomic_read(&rq
->nr_iowait
) > 0)
4331 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4333 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4335 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
4339 * This function gets called by the timer code, with HZ frequency.
4340 * We call it with interrupts disabled.
4342 * It also gets called by the fork code, when changing the parent's
4345 void scheduler_tick(void)
4347 int cpu
= smp_processor_id();
4348 struct rq
*rq
= cpu_rq(cpu
);
4349 struct task_struct
*curr
= rq
->curr
;
4353 spin_lock(&rq
->lock
);
4354 update_rq_clock(rq
);
4355 update_cpu_load(rq
);
4356 curr
->sched_class
->task_tick(rq
, curr
, 0);
4357 spin_unlock(&rq
->lock
);
4360 rq
->idle_at_tick
= idle_cpu(cpu
);
4361 trigger_load_balance(rq
, cpu
);
4365 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4367 void __kprobes
add_preempt_count(int val
)
4372 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4374 preempt_count() += val
;
4376 * Spinlock count overflowing soon?
4378 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4381 EXPORT_SYMBOL(add_preempt_count
);
4383 void __kprobes
sub_preempt_count(int val
)
4388 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4391 * Is the spinlock portion underflowing?
4393 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4394 !(preempt_count() & PREEMPT_MASK
)))
4397 preempt_count() -= val
;
4399 EXPORT_SYMBOL(sub_preempt_count
);
4404 * Print scheduling while atomic bug:
4406 static noinline
void __schedule_bug(struct task_struct
*prev
)
4408 struct pt_regs
*regs
= get_irq_regs();
4410 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4411 prev
->comm
, prev
->pid
, preempt_count());
4413 debug_show_held_locks(prev
);
4414 if (irqs_disabled())
4415 print_irqtrace_events(prev
);
4424 * Various schedule()-time debugging checks and statistics:
4426 static inline void schedule_debug(struct task_struct
*prev
)
4429 * Test if we are atomic. Since do_exit() needs to call into
4430 * schedule() atomically, we ignore that path for now.
4431 * Otherwise, whine if we are scheduling when we should not be.
4433 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
4434 __schedule_bug(prev
);
4436 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4438 schedstat_inc(this_rq(), sched_count
);
4439 #ifdef CONFIG_SCHEDSTATS
4440 if (unlikely(prev
->lock_depth
>= 0)) {
4441 schedstat_inc(this_rq(), bkl_count
);
4442 schedstat_inc(prev
, sched_info
.bkl_count
);
4448 * Pick up the highest-prio task:
4450 static inline struct task_struct
*
4451 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4453 const struct sched_class
*class;
4454 struct task_struct
*p
;
4457 * Optimization: we know that if all tasks are in
4458 * the fair class we can call that function directly:
4460 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4461 p
= fair_sched_class
.pick_next_task(rq
);
4466 class = sched_class_highest
;
4468 p
= class->pick_next_task(rq
);
4472 * Will never be NULL as the idle class always
4473 * returns a non-NULL p:
4475 class = class->next
;
4480 * schedule() is the main scheduler function.
4482 asmlinkage
void __sched
schedule(void)
4484 struct task_struct
*prev
, *next
;
4485 unsigned long *switch_count
;
4491 cpu
= smp_processor_id();
4495 switch_count
= &prev
->nivcsw
;
4497 release_kernel_lock(prev
);
4498 need_resched_nonpreemptible
:
4500 schedule_debug(prev
);
4505 * Do the rq-clock update outside the rq lock:
4507 local_irq_disable();
4508 update_rq_clock(rq
);
4509 spin_lock(&rq
->lock
);
4510 clear_tsk_need_resched(prev
);
4512 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4513 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
4514 signal_pending(prev
))) {
4515 prev
->state
= TASK_RUNNING
;
4517 deactivate_task(rq
, prev
, 1);
4519 switch_count
= &prev
->nvcsw
;
4523 if (prev
->sched_class
->pre_schedule
)
4524 prev
->sched_class
->pre_schedule(rq
, prev
);
4527 if (unlikely(!rq
->nr_running
))
4528 idle_balance(cpu
, rq
);
4530 prev
->sched_class
->put_prev_task(rq
, prev
);
4531 next
= pick_next_task(rq
, prev
);
4533 if (likely(prev
!= next
)) {
4534 sched_info_switch(prev
, next
);
4540 context_switch(rq
, prev
, next
); /* unlocks the rq */
4542 * the context switch might have flipped the stack from under
4543 * us, hence refresh the local variables.
4545 cpu
= smp_processor_id();
4548 spin_unlock_irq(&rq
->lock
);
4552 if (unlikely(reacquire_kernel_lock(current
) < 0))
4553 goto need_resched_nonpreemptible
;
4555 preempt_enable_no_resched();
4556 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4559 EXPORT_SYMBOL(schedule
);
4561 #ifdef CONFIG_PREEMPT
4563 * this is the entry point to schedule() from in-kernel preemption
4564 * off of preempt_enable. Kernel preemptions off return from interrupt
4565 * occur there and call schedule directly.
4567 asmlinkage
void __sched
preempt_schedule(void)
4569 struct thread_info
*ti
= current_thread_info();
4570 struct task_struct
*task
= current
;
4571 int saved_lock_depth
;
4574 * If there is a non-zero preempt_count or interrupts are disabled,
4575 * we do not want to preempt the current task. Just return..
4577 if (likely(ti
->preempt_count
|| irqs_disabled()))
4581 add_preempt_count(PREEMPT_ACTIVE
);
4584 * We keep the big kernel semaphore locked, but we
4585 * clear ->lock_depth so that schedule() doesnt
4586 * auto-release the semaphore:
4588 saved_lock_depth
= task
->lock_depth
;
4589 task
->lock_depth
= -1;
4591 task
->lock_depth
= saved_lock_depth
;
4592 sub_preempt_count(PREEMPT_ACTIVE
);
4595 * Check again in case we missed a preemption opportunity
4596 * between schedule and now.
4599 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4601 EXPORT_SYMBOL(preempt_schedule
);
4604 * this is the entry point to schedule() from kernel preemption
4605 * off of irq context.
4606 * Note, that this is called and return with irqs disabled. This will
4607 * protect us against recursive calling from irq.
4609 asmlinkage
void __sched
preempt_schedule_irq(void)
4611 struct thread_info
*ti
= current_thread_info();
4612 struct task_struct
*task
= current
;
4613 int saved_lock_depth
;
4615 /* Catch callers which need to be fixed */
4616 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4619 add_preempt_count(PREEMPT_ACTIVE
);
4622 * We keep the big kernel semaphore locked, but we
4623 * clear ->lock_depth so that schedule() doesnt
4624 * auto-release the semaphore:
4626 saved_lock_depth
= task
->lock_depth
;
4627 task
->lock_depth
= -1;
4630 local_irq_disable();
4631 task
->lock_depth
= saved_lock_depth
;
4632 sub_preempt_count(PREEMPT_ACTIVE
);
4635 * Check again in case we missed a preemption opportunity
4636 * between schedule and now.
4639 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4642 #endif /* CONFIG_PREEMPT */
4644 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4647 return try_to_wake_up(curr
->private, mode
, sync
);
4649 EXPORT_SYMBOL(default_wake_function
);
4652 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4653 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4654 * number) then we wake all the non-exclusive tasks and one exclusive task.
4656 * There are circumstances in which we can try to wake a task which has already
4657 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4658 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4660 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4661 int nr_exclusive
, int sync
, void *key
)
4663 wait_queue_t
*curr
, *next
;
4665 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4666 unsigned flags
= curr
->flags
;
4668 if (curr
->func(curr
, mode
, sync
, key
) &&
4669 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4675 * __wake_up - wake up threads blocked on a waitqueue.
4677 * @mode: which threads
4678 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4679 * @key: is directly passed to the wakeup function
4681 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4682 int nr_exclusive
, void *key
)
4684 unsigned long flags
;
4686 spin_lock_irqsave(&q
->lock
, flags
);
4687 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4688 spin_unlock_irqrestore(&q
->lock
, flags
);
4690 EXPORT_SYMBOL(__wake_up
);
4693 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4695 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4697 __wake_up_common(q
, mode
, 1, 0, NULL
);
4701 * __wake_up_sync - wake up threads blocked on a waitqueue.
4703 * @mode: which threads
4704 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4706 * The sync wakeup differs that the waker knows that it will schedule
4707 * away soon, so while the target thread will be woken up, it will not
4708 * be migrated to another CPU - ie. the two threads are 'synchronized'
4709 * with each other. This can prevent needless bouncing between CPUs.
4711 * On UP it can prevent extra preemption.
4714 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4716 unsigned long flags
;
4722 if (unlikely(!nr_exclusive
))
4725 spin_lock_irqsave(&q
->lock
, flags
);
4726 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4727 spin_unlock_irqrestore(&q
->lock
, flags
);
4729 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4731 void complete(struct completion
*x
)
4733 unsigned long flags
;
4735 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4737 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4738 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4740 EXPORT_SYMBOL(complete
);
4742 void complete_all(struct completion
*x
)
4744 unsigned long flags
;
4746 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4747 x
->done
+= UINT_MAX
/2;
4748 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4749 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4751 EXPORT_SYMBOL(complete_all
);
4753 static inline long __sched
4754 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4757 DECLARE_WAITQUEUE(wait
, current
);
4759 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4760 __add_wait_queue_tail(&x
->wait
, &wait
);
4762 if ((state
== TASK_INTERRUPTIBLE
&&
4763 signal_pending(current
)) ||
4764 (state
== TASK_KILLABLE
&&
4765 fatal_signal_pending(current
))) {
4766 __remove_wait_queue(&x
->wait
, &wait
);
4767 return -ERESTARTSYS
;
4769 __set_current_state(state
);
4770 spin_unlock_irq(&x
->wait
.lock
);
4771 timeout
= schedule_timeout(timeout
);
4772 spin_lock_irq(&x
->wait
.lock
);
4774 __remove_wait_queue(&x
->wait
, &wait
);
4778 __remove_wait_queue(&x
->wait
, &wait
);
4785 wait_for_common(struct completion
*x
, long timeout
, int state
)
4789 spin_lock_irq(&x
->wait
.lock
);
4790 timeout
= do_wait_for_common(x
, timeout
, state
);
4791 spin_unlock_irq(&x
->wait
.lock
);
4795 void __sched
wait_for_completion(struct completion
*x
)
4797 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4799 EXPORT_SYMBOL(wait_for_completion
);
4801 unsigned long __sched
4802 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4804 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4806 EXPORT_SYMBOL(wait_for_completion_timeout
);
4808 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4810 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4811 if (t
== -ERESTARTSYS
)
4815 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4817 unsigned long __sched
4818 wait_for_completion_interruptible_timeout(struct completion
*x
,
4819 unsigned long timeout
)
4821 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4823 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4825 int __sched
wait_for_completion_killable(struct completion
*x
)
4827 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4828 if (t
== -ERESTARTSYS
)
4832 EXPORT_SYMBOL(wait_for_completion_killable
);
4835 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4837 unsigned long flags
;
4840 init_waitqueue_entry(&wait
, current
);
4842 __set_current_state(state
);
4844 spin_lock_irqsave(&q
->lock
, flags
);
4845 __add_wait_queue(q
, &wait
);
4846 spin_unlock(&q
->lock
);
4847 timeout
= schedule_timeout(timeout
);
4848 spin_lock_irq(&q
->lock
);
4849 __remove_wait_queue(q
, &wait
);
4850 spin_unlock_irqrestore(&q
->lock
, flags
);
4855 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4857 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4859 EXPORT_SYMBOL(interruptible_sleep_on
);
4862 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4864 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4866 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4868 void __sched
sleep_on(wait_queue_head_t
*q
)
4870 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4872 EXPORT_SYMBOL(sleep_on
);
4874 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4876 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4878 EXPORT_SYMBOL(sleep_on_timeout
);
4880 #ifdef CONFIG_RT_MUTEXES
4883 * rt_mutex_setprio - set the current priority of a task
4885 * @prio: prio value (kernel-internal form)
4887 * This function changes the 'effective' priority of a task. It does
4888 * not touch ->normal_prio like __setscheduler().
4890 * Used by the rt_mutex code to implement priority inheritance logic.
4892 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4894 unsigned long flags
;
4895 int oldprio
, on_rq
, running
;
4897 const struct sched_class
*prev_class
= p
->sched_class
;
4899 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4901 rq
= task_rq_lock(p
, &flags
);
4902 update_rq_clock(rq
);
4905 on_rq
= p
->se
.on_rq
;
4906 running
= task_current(rq
, p
);
4908 dequeue_task(rq
, p
, 0);
4910 p
->sched_class
->put_prev_task(rq
, p
);
4913 p
->sched_class
= &rt_sched_class
;
4915 p
->sched_class
= &fair_sched_class
;
4920 p
->sched_class
->set_curr_task(rq
);
4922 enqueue_task(rq
, p
, 0);
4924 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4926 task_rq_unlock(rq
, &flags
);
4931 void set_user_nice(struct task_struct
*p
, long nice
)
4933 int old_prio
, delta
, on_rq
;
4934 unsigned long flags
;
4937 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4940 * We have to be careful, if called from sys_setpriority(),
4941 * the task might be in the middle of scheduling on another CPU.
4943 rq
= task_rq_lock(p
, &flags
);
4944 update_rq_clock(rq
);
4946 * The RT priorities are set via sched_setscheduler(), but we still
4947 * allow the 'normal' nice value to be set - but as expected
4948 * it wont have any effect on scheduling until the task is
4949 * SCHED_FIFO/SCHED_RR:
4951 if (task_has_rt_policy(p
)) {
4952 p
->static_prio
= NICE_TO_PRIO(nice
);
4955 on_rq
= p
->se
.on_rq
;
4957 dequeue_task(rq
, p
, 0);
4959 p
->static_prio
= NICE_TO_PRIO(nice
);
4962 p
->prio
= effective_prio(p
);
4963 delta
= p
->prio
- old_prio
;
4966 enqueue_task(rq
, p
, 0);
4968 * If the task increased its priority or is running and
4969 * lowered its priority, then reschedule its CPU:
4971 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4972 resched_task(rq
->curr
);
4975 task_rq_unlock(rq
, &flags
);
4977 EXPORT_SYMBOL(set_user_nice
);
4980 * can_nice - check if a task can reduce its nice value
4984 int can_nice(const struct task_struct
*p
, const int nice
)
4986 /* convert nice value [19,-20] to rlimit style value [1,40] */
4987 int nice_rlim
= 20 - nice
;
4989 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4990 capable(CAP_SYS_NICE
));
4993 #ifdef __ARCH_WANT_SYS_NICE
4996 * sys_nice - change the priority of the current process.
4997 * @increment: priority increment
4999 * sys_setpriority is a more generic, but much slower function that
5000 * does similar things.
5002 asmlinkage
long sys_nice(int increment
)
5007 * Setpriority might change our priority at the same moment.
5008 * We don't have to worry. Conceptually one call occurs first
5009 * and we have a single winner.
5011 if (increment
< -40)
5016 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5022 if (increment
< 0 && !can_nice(current
, nice
))
5025 retval
= security_task_setnice(current
, nice
);
5029 set_user_nice(current
, nice
);
5036 * task_prio - return the priority value of a given task.
5037 * @p: the task in question.
5039 * This is the priority value as seen by users in /proc.
5040 * RT tasks are offset by -200. Normal tasks are centered
5041 * around 0, value goes from -16 to +15.
5043 int task_prio(const struct task_struct
*p
)
5045 return p
->prio
- MAX_RT_PRIO
;
5049 * task_nice - return the nice value of a given task.
5050 * @p: the task in question.
5052 int task_nice(const struct task_struct
*p
)
5054 return TASK_NICE(p
);
5056 EXPORT_SYMBOL(task_nice
);
5059 * idle_cpu - is a given cpu idle currently?
5060 * @cpu: the processor in question.
5062 int idle_cpu(int cpu
)
5064 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5068 * idle_task - return the idle task for a given cpu.
5069 * @cpu: the processor in question.
5071 struct task_struct
*idle_task(int cpu
)
5073 return cpu_rq(cpu
)->idle
;
5077 * find_process_by_pid - find a process with a matching PID value.
5078 * @pid: the pid in question.
5080 static struct task_struct
*find_process_by_pid(pid_t pid
)
5082 return pid
? find_task_by_vpid(pid
) : current
;
5085 /* Actually do priority change: must hold rq lock. */
5087 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5089 BUG_ON(p
->se
.on_rq
);
5092 switch (p
->policy
) {
5096 p
->sched_class
= &fair_sched_class
;
5100 p
->sched_class
= &rt_sched_class
;
5104 p
->rt_priority
= prio
;
5105 p
->normal_prio
= normal_prio(p
);
5106 /* we are holding p->pi_lock already */
5107 p
->prio
= rt_mutex_getprio(p
);
5112 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5113 * @p: the task in question.
5114 * @policy: new policy.
5115 * @param: structure containing the new RT priority.
5117 * NOTE that the task may be already dead.
5119 int sched_setscheduler(struct task_struct
*p
, int policy
,
5120 struct sched_param
*param
)
5122 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5123 unsigned long flags
;
5124 const struct sched_class
*prev_class
= p
->sched_class
;
5127 /* may grab non-irq protected spin_locks */
5128 BUG_ON(in_interrupt());
5130 /* double check policy once rq lock held */
5132 policy
= oldpolicy
= p
->policy
;
5133 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5134 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5135 policy
!= SCHED_IDLE
)
5138 * Valid priorities for SCHED_FIFO and SCHED_RR are
5139 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5140 * SCHED_BATCH and SCHED_IDLE is 0.
5142 if (param
->sched_priority
< 0 ||
5143 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5144 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5146 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5150 * Allow unprivileged RT tasks to decrease priority:
5152 if (!capable(CAP_SYS_NICE
)) {
5153 if (rt_policy(policy
)) {
5154 unsigned long rlim_rtprio
;
5156 if (!lock_task_sighand(p
, &flags
))
5158 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5159 unlock_task_sighand(p
, &flags
);
5161 /* can't set/change the rt policy */
5162 if (policy
!= p
->policy
&& !rlim_rtprio
)
5165 /* can't increase priority */
5166 if (param
->sched_priority
> p
->rt_priority
&&
5167 param
->sched_priority
> rlim_rtprio
)
5171 * Like positive nice levels, dont allow tasks to
5172 * move out of SCHED_IDLE either:
5174 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5177 /* can't change other user's priorities */
5178 if ((current
->euid
!= p
->euid
) &&
5179 (current
->euid
!= p
->uid
))
5183 #ifdef CONFIG_RT_GROUP_SCHED
5185 * Do not allow realtime tasks into groups that have no runtime
5188 if (rt_policy(policy
) && task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5192 retval
= security_task_setscheduler(p
, policy
, param
);
5196 * make sure no PI-waiters arrive (or leave) while we are
5197 * changing the priority of the task:
5199 spin_lock_irqsave(&p
->pi_lock
, flags
);
5201 * To be able to change p->policy safely, the apropriate
5202 * runqueue lock must be held.
5204 rq
= __task_rq_lock(p
);
5205 /* recheck policy now with rq lock held */
5206 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5207 policy
= oldpolicy
= -1;
5208 __task_rq_unlock(rq
);
5209 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5212 update_rq_clock(rq
);
5213 on_rq
= p
->se
.on_rq
;
5214 running
= task_current(rq
, p
);
5216 deactivate_task(rq
, p
, 0);
5218 p
->sched_class
->put_prev_task(rq
, p
);
5221 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5224 p
->sched_class
->set_curr_task(rq
);
5226 activate_task(rq
, p
, 0);
5228 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5230 __task_rq_unlock(rq
);
5231 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5233 rt_mutex_adjust_pi(p
);
5237 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5240 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5242 struct sched_param lparam
;
5243 struct task_struct
*p
;
5246 if (!param
|| pid
< 0)
5248 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5253 p
= find_process_by_pid(pid
);
5255 retval
= sched_setscheduler(p
, policy
, &lparam
);
5262 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5263 * @pid: the pid in question.
5264 * @policy: new policy.
5265 * @param: structure containing the new RT priority.
5268 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5270 /* negative values for policy are not valid */
5274 return do_sched_setscheduler(pid
, policy
, param
);
5278 * sys_sched_setparam - set/change the RT priority of a thread
5279 * @pid: the pid in question.
5280 * @param: structure containing the new RT priority.
5282 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5284 return do_sched_setscheduler(pid
, -1, param
);
5288 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5289 * @pid: the pid in question.
5291 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5293 struct task_struct
*p
;
5300 read_lock(&tasklist_lock
);
5301 p
= find_process_by_pid(pid
);
5303 retval
= security_task_getscheduler(p
);
5307 read_unlock(&tasklist_lock
);
5312 * sys_sched_getscheduler - get the RT priority of a thread
5313 * @pid: the pid in question.
5314 * @param: structure containing the RT priority.
5316 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5318 struct sched_param lp
;
5319 struct task_struct
*p
;
5322 if (!param
|| pid
< 0)
5325 read_lock(&tasklist_lock
);
5326 p
= find_process_by_pid(pid
);
5331 retval
= security_task_getscheduler(p
);
5335 lp
.sched_priority
= p
->rt_priority
;
5336 read_unlock(&tasklist_lock
);
5339 * This one might sleep, we cannot do it with a spinlock held ...
5341 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5346 read_unlock(&tasklist_lock
);
5350 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
5352 cpumask_t cpus_allowed
;
5353 cpumask_t new_mask
= *in_mask
;
5354 struct task_struct
*p
;
5358 read_lock(&tasklist_lock
);
5360 p
= find_process_by_pid(pid
);
5362 read_unlock(&tasklist_lock
);
5368 * It is not safe to call set_cpus_allowed with the
5369 * tasklist_lock held. We will bump the task_struct's
5370 * usage count and then drop tasklist_lock.
5373 read_unlock(&tasklist_lock
);
5376 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
5377 !capable(CAP_SYS_NICE
))
5380 retval
= security_task_setscheduler(p
, 0, NULL
);
5384 cpuset_cpus_allowed(p
, &cpus_allowed
);
5385 cpus_and(new_mask
, new_mask
, cpus_allowed
);
5387 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
5390 cpuset_cpus_allowed(p
, &cpus_allowed
);
5391 if (!cpus_subset(new_mask
, cpus_allowed
)) {
5393 * We must have raced with a concurrent cpuset
5394 * update. Just reset the cpus_allowed to the
5395 * cpuset's cpus_allowed
5397 new_mask
= cpus_allowed
;
5407 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5408 cpumask_t
*new_mask
)
5410 if (len
< sizeof(cpumask_t
)) {
5411 memset(new_mask
, 0, sizeof(cpumask_t
));
5412 } else if (len
> sizeof(cpumask_t
)) {
5413 len
= sizeof(cpumask_t
);
5415 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5419 * sys_sched_setaffinity - set the cpu affinity of a process
5420 * @pid: pid of the process
5421 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5422 * @user_mask_ptr: user-space pointer to the new cpu mask
5424 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5425 unsigned long __user
*user_mask_ptr
)
5430 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5434 return sched_setaffinity(pid
, &new_mask
);
5438 * Represents all cpu's present in the system
5439 * In systems capable of hotplug, this map could dynamically grow
5440 * as new cpu's are detected in the system via any platform specific
5441 * method, such as ACPI for e.g.
5444 cpumask_t cpu_present_map __read_mostly
;
5445 EXPORT_SYMBOL(cpu_present_map
);
5448 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
5449 EXPORT_SYMBOL(cpu_online_map
);
5451 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
5452 EXPORT_SYMBOL(cpu_possible_map
);
5455 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5457 struct task_struct
*p
;
5461 read_lock(&tasklist_lock
);
5464 p
= find_process_by_pid(pid
);
5468 retval
= security_task_getscheduler(p
);
5472 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5475 read_unlock(&tasklist_lock
);
5482 * sys_sched_getaffinity - get the cpu affinity of a process
5483 * @pid: pid of the process
5484 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5485 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5487 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5488 unsigned long __user
*user_mask_ptr
)
5493 if (len
< sizeof(cpumask_t
))
5496 ret
= sched_getaffinity(pid
, &mask
);
5500 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5503 return sizeof(cpumask_t
);
5507 * sys_sched_yield - yield the current processor to other threads.
5509 * This function yields the current CPU to other tasks. If there are no
5510 * other threads running on this CPU then this function will return.
5512 asmlinkage
long sys_sched_yield(void)
5514 struct rq
*rq
= this_rq_lock();
5516 schedstat_inc(rq
, yld_count
);
5517 current
->sched_class
->yield_task(rq
);
5520 * Since we are going to call schedule() anyway, there's
5521 * no need to preempt or enable interrupts:
5523 __release(rq
->lock
);
5524 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5525 _raw_spin_unlock(&rq
->lock
);
5526 preempt_enable_no_resched();
5533 static void __cond_resched(void)
5535 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5536 __might_sleep(__FILE__
, __LINE__
);
5539 * The BKS might be reacquired before we have dropped
5540 * PREEMPT_ACTIVE, which could trigger a second
5541 * cond_resched() call.
5544 add_preempt_count(PREEMPT_ACTIVE
);
5546 sub_preempt_count(PREEMPT_ACTIVE
);
5547 } while (need_resched());
5550 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5551 int __sched
_cond_resched(void)
5553 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5554 system_state
== SYSTEM_RUNNING
) {
5560 EXPORT_SYMBOL(_cond_resched
);
5564 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5565 * call schedule, and on return reacquire the lock.
5567 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5568 * operations here to prevent schedule() from being called twice (once via
5569 * spin_unlock(), once by hand).
5571 int cond_resched_lock(spinlock_t
*lock
)
5573 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5576 if (spin_needbreak(lock
) || resched
) {
5578 if (resched
&& need_resched())
5587 EXPORT_SYMBOL(cond_resched_lock
);
5589 int __sched
cond_resched_softirq(void)
5591 BUG_ON(!in_softirq());
5593 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5601 EXPORT_SYMBOL(cond_resched_softirq
);
5604 * yield - yield the current processor to other threads.
5606 * This is a shortcut for kernel-space yielding - it marks the
5607 * thread runnable and calls sys_sched_yield().
5609 void __sched
yield(void)
5611 set_current_state(TASK_RUNNING
);
5614 EXPORT_SYMBOL(yield
);
5617 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5618 * that process accounting knows that this is a task in IO wait state.
5620 * But don't do that if it is a deliberate, throttling IO wait (this task
5621 * has set its backing_dev_info: the queue against which it should throttle)
5623 void __sched
io_schedule(void)
5625 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5627 delayacct_blkio_start();
5628 atomic_inc(&rq
->nr_iowait
);
5630 atomic_dec(&rq
->nr_iowait
);
5631 delayacct_blkio_end();
5633 EXPORT_SYMBOL(io_schedule
);
5635 long __sched
io_schedule_timeout(long timeout
)
5637 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5640 delayacct_blkio_start();
5641 atomic_inc(&rq
->nr_iowait
);
5642 ret
= schedule_timeout(timeout
);
5643 atomic_dec(&rq
->nr_iowait
);
5644 delayacct_blkio_end();
5649 * sys_sched_get_priority_max - return maximum RT priority.
5650 * @policy: scheduling class.
5652 * this syscall returns the maximum rt_priority that can be used
5653 * by a given scheduling class.
5655 asmlinkage
long sys_sched_get_priority_max(int policy
)
5662 ret
= MAX_USER_RT_PRIO
-1;
5674 * sys_sched_get_priority_min - return minimum RT priority.
5675 * @policy: scheduling class.
5677 * this syscall returns the minimum rt_priority that can be used
5678 * by a given scheduling class.
5680 asmlinkage
long sys_sched_get_priority_min(int policy
)
5698 * sys_sched_rr_get_interval - return the default timeslice of a process.
5699 * @pid: pid of the process.
5700 * @interval: userspace pointer to the timeslice value.
5702 * this syscall writes the default timeslice value of a given process
5703 * into the user-space timespec buffer. A value of '0' means infinity.
5706 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5708 struct task_struct
*p
;
5709 unsigned int time_slice
;
5717 read_lock(&tasklist_lock
);
5718 p
= find_process_by_pid(pid
);
5722 retval
= security_task_getscheduler(p
);
5727 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5728 * tasks that are on an otherwise idle runqueue:
5731 if (p
->policy
== SCHED_RR
) {
5732 time_slice
= DEF_TIMESLICE
;
5733 } else if (p
->policy
!= SCHED_FIFO
) {
5734 struct sched_entity
*se
= &p
->se
;
5735 unsigned long flags
;
5738 rq
= task_rq_lock(p
, &flags
);
5739 if (rq
->cfs
.load
.weight
)
5740 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5741 task_rq_unlock(rq
, &flags
);
5743 read_unlock(&tasklist_lock
);
5744 jiffies_to_timespec(time_slice
, &t
);
5745 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5749 read_unlock(&tasklist_lock
);
5753 static const char stat_nam
[] = "RSDTtZX";
5755 void sched_show_task(struct task_struct
*p
)
5757 unsigned long free
= 0;
5760 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5761 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5762 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5763 #if BITS_PER_LONG == 32
5764 if (state
== TASK_RUNNING
)
5765 printk(KERN_CONT
" running ");
5767 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5769 if (state
== TASK_RUNNING
)
5770 printk(KERN_CONT
" running task ");
5772 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5774 #ifdef CONFIG_DEBUG_STACK_USAGE
5776 unsigned long *n
= end_of_stack(p
);
5779 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5782 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5783 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5785 show_stack(p
, NULL
);
5788 void show_state_filter(unsigned long state_filter
)
5790 struct task_struct
*g
, *p
;
5792 #if BITS_PER_LONG == 32
5794 " task PC stack pid father\n");
5797 " task PC stack pid father\n");
5799 read_lock(&tasklist_lock
);
5800 do_each_thread(g
, p
) {
5802 * reset the NMI-timeout, listing all files on a slow
5803 * console might take alot of time:
5805 touch_nmi_watchdog();
5806 if (!state_filter
|| (p
->state
& state_filter
))
5808 } while_each_thread(g
, p
);
5810 touch_all_softlockup_watchdogs();
5812 #ifdef CONFIG_SCHED_DEBUG
5813 sysrq_sched_debug_show();
5815 read_unlock(&tasklist_lock
);
5817 * Only show locks if all tasks are dumped:
5819 if (state_filter
== -1)
5820 debug_show_all_locks();
5823 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5825 idle
->sched_class
= &idle_sched_class
;
5829 * init_idle - set up an idle thread for a given CPU
5830 * @idle: task in question
5831 * @cpu: cpu the idle task belongs to
5833 * NOTE: this function does not set the idle thread's NEED_RESCHED
5834 * flag, to make booting more robust.
5836 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5838 struct rq
*rq
= cpu_rq(cpu
);
5839 unsigned long flags
;
5842 idle
->se
.exec_start
= sched_clock();
5844 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5845 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5846 __set_task_cpu(idle
, cpu
);
5848 spin_lock_irqsave(&rq
->lock
, flags
);
5849 rq
->curr
= rq
->idle
= idle
;
5850 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5853 spin_unlock_irqrestore(&rq
->lock
, flags
);
5855 /* Set the preempt count _outside_ the spinlocks! */
5856 task_thread_info(idle
)->preempt_count
= 0;
5859 * The idle tasks have their own, simple scheduling class:
5861 idle
->sched_class
= &idle_sched_class
;
5865 * In a system that switches off the HZ timer nohz_cpu_mask
5866 * indicates which cpus entered this state. This is used
5867 * in the rcu update to wait only for active cpus. For system
5868 * which do not switch off the HZ timer nohz_cpu_mask should
5869 * always be CPU_MASK_NONE.
5871 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5874 * Increase the granularity value when there are more CPUs,
5875 * because with more CPUs the 'effective latency' as visible
5876 * to users decreases. But the relationship is not linear,
5877 * so pick a second-best guess by going with the log2 of the
5880 * This idea comes from the SD scheduler of Con Kolivas:
5882 static inline void sched_init_granularity(void)
5884 unsigned int factor
= 1 + ilog2(num_online_cpus());
5885 const unsigned long limit
= 200000000;
5887 sysctl_sched_min_granularity
*= factor
;
5888 if (sysctl_sched_min_granularity
> limit
)
5889 sysctl_sched_min_granularity
= limit
;
5891 sysctl_sched_latency
*= factor
;
5892 if (sysctl_sched_latency
> limit
)
5893 sysctl_sched_latency
= limit
;
5895 sysctl_sched_wakeup_granularity
*= factor
;
5900 * This is how migration works:
5902 * 1) we queue a struct migration_req structure in the source CPU's
5903 * runqueue and wake up that CPU's migration thread.
5904 * 2) we down() the locked semaphore => thread blocks.
5905 * 3) migration thread wakes up (implicitly it forces the migrated
5906 * thread off the CPU)
5907 * 4) it gets the migration request and checks whether the migrated
5908 * task is still in the wrong runqueue.
5909 * 5) if it's in the wrong runqueue then the migration thread removes
5910 * it and puts it into the right queue.
5911 * 6) migration thread up()s the semaphore.
5912 * 7) we wake up and the migration is done.
5916 * Change a given task's CPU affinity. Migrate the thread to a
5917 * proper CPU and schedule it away if the CPU it's executing on
5918 * is removed from the allowed bitmask.
5920 * NOTE: the caller must have a valid reference to the task, the
5921 * task must not exit() & deallocate itself prematurely. The
5922 * call is not atomic; no spinlocks may be held.
5924 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
5926 struct migration_req req
;
5927 unsigned long flags
;
5931 rq
= task_rq_lock(p
, &flags
);
5932 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
5937 if (p
->sched_class
->set_cpus_allowed
)
5938 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5940 p
->cpus_allowed
= *new_mask
;
5941 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
5944 /* Can the task run on the task's current CPU? If so, we're done */
5945 if (cpu_isset(task_cpu(p
), *new_mask
))
5948 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
5949 /* Need help from migration thread: drop lock and wait. */
5950 task_rq_unlock(rq
, &flags
);
5951 wake_up_process(rq
->migration_thread
);
5952 wait_for_completion(&req
.done
);
5953 tlb_migrate_finish(p
->mm
);
5957 task_rq_unlock(rq
, &flags
);
5961 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5964 * Move (not current) task off this cpu, onto dest cpu. We're doing
5965 * this because either it can't run here any more (set_cpus_allowed()
5966 * away from this CPU, or CPU going down), or because we're
5967 * attempting to rebalance this task on exec (sched_exec).
5969 * So we race with normal scheduler movements, but that's OK, as long
5970 * as the task is no longer on this CPU.
5972 * Returns non-zero if task was successfully migrated.
5974 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5976 struct rq
*rq_dest
, *rq_src
;
5979 if (unlikely(cpu_is_offline(dest_cpu
)))
5982 rq_src
= cpu_rq(src_cpu
);
5983 rq_dest
= cpu_rq(dest_cpu
);
5985 double_rq_lock(rq_src
, rq_dest
);
5986 /* Already moved. */
5987 if (task_cpu(p
) != src_cpu
)
5989 /* Affinity changed (again). */
5990 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5993 on_rq
= p
->se
.on_rq
;
5995 deactivate_task(rq_src
, p
, 0);
5997 set_task_cpu(p
, dest_cpu
);
5999 activate_task(rq_dest
, p
, 0);
6000 check_preempt_curr(rq_dest
, p
);
6004 double_rq_unlock(rq_src
, rq_dest
);
6009 * migration_thread - this is a highprio system thread that performs
6010 * thread migration by bumping thread off CPU then 'pushing' onto
6013 static int migration_thread(void *data
)
6015 int cpu
= (long)data
;
6019 BUG_ON(rq
->migration_thread
!= current
);
6021 set_current_state(TASK_INTERRUPTIBLE
);
6022 while (!kthread_should_stop()) {
6023 struct migration_req
*req
;
6024 struct list_head
*head
;
6026 spin_lock_irq(&rq
->lock
);
6028 if (cpu_is_offline(cpu
)) {
6029 spin_unlock_irq(&rq
->lock
);
6033 if (rq
->active_balance
) {
6034 active_load_balance(rq
, cpu
);
6035 rq
->active_balance
= 0;
6038 head
= &rq
->migration_queue
;
6040 if (list_empty(head
)) {
6041 spin_unlock_irq(&rq
->lock
);
6043 set_current_state(TASK_INTERRUPTIBLE
);
6046 req
= list_entry(head
->next
, struct migration_req
, list
);
6047 list_del_init(head
->next
);
6049 spin_unlock(&rq
->lock
);
6050 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6053 complete(&req
->done
);
6055 __set_current_state(TASK_RUNNING
);
6059 /* Wait for kthread_stop */
6060 set_current_state(TASK_INTERRUPTIBLE
);
6061 while (!kthread_should_stop()) {
6063 set_current_state(TASK_INTERRUPTIBLE
);
6065 __set_current_state(TASK_RUNNING
);
6069 #ifdef CONFIG_HOTPLUG_CPU
6071 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6075 local_irq_disable();
6076 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6082 * Figure out where task on dead CPU should go, use force if necessary.
6083 * NOTE: interrupts should be disabled by the caller
6085 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6087 unsigned long flags
;
6094 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
6095 cpus_and(mask
, mask
, p
->cpus_allowed
);
6096 dest_cpu
= any_online_cpu(mask
);
6098 /* On any allowed CPU? */
6099 if (dest_cpu
>= nr_cpu_ids
)
6100 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6102 /* No more Mr. Nice Guy. */
6103 if (dest_cpu
>= nr_cpu_ids
) {
6104 cpumask_t cpus_allowed
;
6106 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
6108 * Try to stay on the same cpuset, where the
6109 * current cpuset may be a subset of all cpus.
6110 * The cpuset_cpus_allowed_locked() variant of
6111 * cpuset_cpus_allowed() will not block. It must be
6112 * called within calls to cpuset_lock/cpuset_unlock.
6114 rq
= task_rq_lock(p
, &flags
);
6115 p
->cpus_allowed
= cpus_allowed
;
6116 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6117 task_rq_unlock(rq
, &flags
);
6120 * Don't tell them about moving exiting tasks or
6121 * kernel threads (both mm NULL), since they never
6124 if (p
->mm
&& printk_ratelimit()) {
6125 printk(KERN_INFO
"process %d (%s) no "
6126 "longer affine to cpu%d\n",
6127 task_pid_nr(p
), p
->comm
, dead_cpu
);
6130 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
6134 * While a dead CPU has no uninterruptible tasks queued at this point,
6135 * it might still have a nonzero ->nr_uninterruptible counter, because
6136 * for performance reasons the counter is not stricly tracking tasks to
6137 * their home CPUs. So we just add the counter to another CPU's counter,
6138 * to keep the global sum constant after CPU-down:
6140 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6142 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
6143 unsigned long flags
;
6145 local_irq_save(flags
);
6146 double_rq_lock(rq_src
, rq_dest
);
6147 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6148 rq_src
->nr_uninterruptible
= 0;
6149 double_rq_unlock(rq_src
, rq_dest
);
6150 local_irq_restore(flags
);
6153 /* Run through task list and migrate tasks from the dead cpu. */
6154 static void migrate_live_tasks(int src_cpu
)
6156 struct task_struct
*p
, *t
;
6158 read_lock(&tasklist_lock
);
6160 do_each_thread(t
, p
) {
6164 if (task_cpu(p
) == src_cpu
)
6165 move_task_off_dead_cpu(src_cpu
, p
);
6166 } while_each_thread(t
, p
);
6168 read_unlock(&tasklist_lock
);
6172 * Schedules idle task to be the next runnable task on current CPU.
6173 * It does so by boosting its priority to highest possible.
6174 * Used by CPU offline code.
6176 void sched_idle_next(void)
6178 int this_cpu
= smp_processor_id();
6179 struct rq
*rq
= cpu_rq(this_cpu
);
6180 struct task_struct
*p
= rq
->idle
;
6181 unsigned long flags
;
6183 /* cpu has to be offline */
6184 BUG_ON(cpu_online(this_cpu
));
6187 * Strictly not necessary since rest of the CPUs are stopped by now
6188 * and interrupts disabled on the current cpu.
6190 spin_lock_irqsave(&rq
->lock
, flags
);
6192 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6194 update_rq_clock(rq
);
6195 activate_task(rq
, p
, 0);
6197 spin_unlock_irqrestore(&rq
->lock
, flags
);
6201 * Ensures that the idle task is using init_mm right before its cpu goes
6204 void idle_task_exit(void)
6206 struct mm_struct
*mm
= current
->active_mm
;
6208 BUG_ON(cpu_online(smp_processor_id()));
6211 switch_mm(mm
, &init_mm
, current
);
6215 /* called under rq->lock with disabled interrupts */
6216 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6218 struct rq
*rq
= cpu_rq(dead_cpu
);
6220 /* Must be exiting, otherwise would be on tasklist. */
6221 BUG_ON(!p
->exit_state
);
6223 /* Cannot have done final schedule yet: would have vanished. */
6224 BUG_ON(p
->state
== TASK_DEAD
);
6229 * Drop lock around migration; if someone else moves it,
6230 * that's OK. No task can be added to this CPU, so iteration is
6233 spin_unlock_irq(&rq
->lock
);
6234 move_task_off_dead_cpu(dead_cpu
, p
);
6235 spin_lock_irq(&rq
->lock
);
6240 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6241 static void migrate_dead_tasks(unsigned int dead_cpu
)
6243 struct rq
*rq
= cpu_rq(dead_cpu
);
6244 struct task_struct
*next
;
6247 if (!rq
->nr_running
)
6249 update_rq_clock(rq
);
6250 next
= pick_next_task(rq
, rq
->curr
);
6253 migrate_dead(dead_cpu
, next
);
6257 #endif /* CONFIG_HOTPLUG_CPU */
6259 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6261 static struct ctl_table sd_ctl_dir
[] = {
6263 .procname
= "sched_domain",
6269 static struct ctl_table sd_ctl_root
[] = {
6271 .ctl_name
= CTL_KERN
,
6272 .procname
= "kernel",
6274 .child
= sd_ctl_dir
,
6279 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6281 struct ctl_table
*entry
=
6282 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6287 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6289 struct ctl_table
*entry
;
6292 * In the intermediate directories, both the child directory and
6293 * procname are dynamically allocated and could fail but the mode
6294 * will always be set. In the lowest directory the names are
6295 * static strings and all have proc handlers.
6297 for (entry
= *tablep
; entry
->mode
; entry
++) {
6299 sd_free_ctl_entry(&entry
->child
);
6300 if (entry
->proc_handler
== NULL
)
6301 kfree(entry
->procname
);
6309 set_table_entry(struct ctl_table
*entry
,
6310 const char *procname
, void *data
, int maxlen
,
6311 mode_t mode
, proc_handler
*proc_handler
)
6313 entry
->procname
= procname
;
6315 entry
->maxlen
= maxlen
;
6317 entry
->proc_handler
= proc_handler
;
6320 static struct ctl_table
*
6321 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6323 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
6328 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6329 sizeof(long), 0644, proc_doulongvec_minmax
);
6330 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6331 sizeof(long), 0644, proc_doulongvec_minmax
);
6332 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6333 sizeof(int), 0644, proc_dointvec_minmax
);
6334 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6335 sizeof(int), 0644, proc_dointvec_minmax
);
6336 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6337 sizeof(int), 0644, proc_dointvec_minmax
);
6338 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6339 sizeof(int), 0644, proc_dointvec_minmax
);
6340 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6341 sizeof(int), 0644, proc_dointvec_minmax
);
6342 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6343 sizeof(int), 0644, proc_dointvec_minmax
);
6344 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6345 sizeof(int), 0644, proc_dointvec_minmax
);
6346 set_table_entry(&table
[9], "cache_nice_tries",
6347 &sd
->cache_nice_tries
,
6348 sizeof(int), 0644, proc_dointvec_minmax
);
6349 set_table_entry(&table
[10], "flags", &sd
->flags
,
6350 sizeof(int), 0644, proc_dointvec_minmax
);
6351 /* &table[11] is terminator */
6356 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6358 struct ctl_table
*entry
, *table
;
6359 struct sched_domain
*sd
;
6360 int domain_num
= 0, i
;
6363 for_each_domain(cpu
, sd
)
6365 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6370 for_each_domain(cpu
, sd
) {
6371 snprintf(buf
, 32, "domain%d", i
);
6372 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6374 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6381 static struct ctl_table_header
*sd_sysctl_header
;
6382 static void register_sched_domain_sysctl(void)
6384 int i
, cpu_num
= num_online_cpus();
6385 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6388 WARN_ON(sd_ctl_dir
[0].child
);
6389 sd_ctl_dir
[0].child
= entry
;
6394 for_each_online_cpu(i
) {
6395 snprintf(buf
, 32, "cpu%d", i
);
6396 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6398 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6402 WARN_ON(sd_sysctl_header
);
6403 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6406 /* may be called multiple times per register */
6407 static void unregister_sched_domain_sysctl(void)
6409 if (sd_sysctl_header
)
6410 unregister_sysctl_table(sd_sysctl_header
);
6411 sd_sysctl_header
= NULL
;
6412 if (sd_ctl_dir
[0].child
)
6413 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6416 static void register_sched_domain_sysctl(void)
6419 static void unregister_sched_domain_sysctl(void)
6425 * migration_call - callback that gets triggered when a CPU is added.
6426 * Here we can start up the necessary migration thread for the new CPU.
6428 static int __cpuinit
6429 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6431 struct task_struct
*p
;
6432 int cpu
= (long)hcpu
;
6433 unsigned long flags
;
6438 case CPU_UP_PREPARE
:
6439 case CPU_UP_PREPARE_FROZEN
:
6440 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6443 kthread_bind(p
, cpu
);
6444 /* Must be high prio: stop_machine expects to yield to it. */
6445 rq
= task_rq_lock(p
, &flags
);
6446 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6447 task_rq_unlock(rq
, &flags
);
6448 cpu_rq(cpu
)->migration_thread
= p
;
6452 case CPU_ONLINE_FROZEN
:
6453 /* Strictly unnecessary, as first user will wake it. */
6454 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6456 /* Update our root-domain */
6458 spin_lock_irqsave(&rq
->lock
, flags
);
6460 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6461 cpu_set(cpu
, rq
->rd
->online
);
6463 spin_unlock_irqrestore(&rq
->lock
, flags
);
6466 #ifdef CONFIG_HOTPLUG_CPU
6467 case CPU_UP_CANCELED
:
6468 case CPU_UP_CANCELED_FROZEN
:
6469 if (!cpu_rq(cpu
)->migration_thread
)
6471 /* Unbind it from offline cpu so it can run. Fall thru. */
6472 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6473 any_online_cpu(cpu_online_map
));
6474 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6475 cpu_rq(cpu
)->migration_thread
= NULL
;
6479 case CPU_DEAD_FROZEN
:
6480 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6481 migrate_live_tasks(cpu
);
6483 kthread_stop(rq
->migration_thread
);
6484 rq
->migration_thread
= NULL
;
6485 /* Idle task back to normal (off runqueue, low prio) */
6486 spin_lock_irq(&rq
->lock
);
6487 update_rq_clock(rq
);
6488 deactivate_task(rq
, rq
->idle
, 0);
6489 rq
->idle
->static_prio
= MAX_PRIO
;
6490 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6491 rq
->idle
->sched_class
= &idle_sched_class
;
6492 migrate_dead_tasks(cpu
);
6493 spin_unlock_irq(&rq
->lock
);
6495 migrate_nr_uninterruptible(rq
);
6496 BUG_ON(rq
->nr_running
!= 0);
6499 * No need to migrate the tasks: it was best-effort if
6500 * they didn't take sched_hotcpu_mutex. Just wake up
6503 spin_lock_irq(&rq
->lock
);
6504 while (!list_empty(&rq
->migration_queue
)) {
6505 struct migration_req
*req
;
6507 req
= list_entry(rq
->migration_queue
.next
,
6508 struct migration_req
, list
);
6509 list_del_init(&req
->list
);
6510 complete(&req
->done
);
6512 spin_unlock_irq(&rq
->lock
);
6516 case CPU_DYING_FROZEN
:
6517 /* Update our root-domain */
6519 spin_lock_irqsave(&rq
->lock
, flags
);
6521 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6522 cpu_clear(cpu
, rq
->rd
->online
);
6524 spin_unlock_irqrestore(&rq
->lock
, flags
);
6531 /* Register at highest priority so that task migration (migrate_all_tasks)
6532 * happens before everything else.
6534 static struct notifier_block __cpuinitdata migration_notifier
= {
6535 .notifier_call
= migration_call
,
6539 void __init
migration_init(void)
6541 void *cpu
= (void *)(long)smp_processor_id();
6544 /* Start one for the boot CPU: */
6545 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6546 BUG_ON(err
== NOTIFY_BAD
);
6547 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6548 register_cpu_notifier(&migration_notifier
);
6554 #ifdef CONFIG_SCHED_DEBUG
6556 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6557 cpumask_t
*groupmask
)
6559 struct sched_group
*group
= sd
->groups
;
6562 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6563 cpus_clear(*groupmask
);
6565 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6567 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6568 printk("does not load-balance\n");
6570 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6575 printk(KERN_CONT
"span %s\n", str
);
6577 if (!cpu_isset(cpu
, sd
->span
)) {
6578 printk(KERN_ERR
"ERROR: domain->span does not contain "
6581 if (!cpu_isset(cpu
, group
->cpumask
)) {
6582 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6586 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6590 printk(KERN_ERR
"ERROR: group is NULL\n");
6594 if (!group
->__cpu_power
) {
6595 printk(KERN_CONT
"\n");
6596 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6601 if (!cpus_weight(group
->cpumask
)) {
6602 printk(KERN_CONT
"\n");
6603 printk(KERN_ERR
"ERROR: empty group\n");
6607 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6608 printk(KERN_CONT
"\n");
6609 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6613 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6615 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6616 printk(KERN_CONT
" %s", str
);
6618 group
= group
->next
;
6619 } while (group
!= sd
->groups
);
6620 printk(KERN_CONT
"\n");
6622 if (!cpus_equal(sd
->span
, *groupmask
))
6623 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6625 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6626 printk(KERN_ERR
"ERROR: parent span is not a superset "
6627 "of domain->span\n");
6631 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6633 cpumask_t
*groupmask
;
6637 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6641 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6643 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6645 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6650 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6660 # define sched_domain_debug(sd, cpu) do { } while (0)
6663 static int sd_degenerate(struct sched_domain
*sd
)
6665 if (cpus_weight(sd
->span
) == 1)
6668 /* Following flags need at least 2 groups */
6669 if (sd
->flags
& (SD_LOAD_BALANCE
|
6670 SD_BALANCE_NEWIDLE
|
6674 SD_SHARE_PKG_RESOURCES
)) {
6675 if (sd
->groups
!= sd
->groups
->next
)
6679 /* Following flags don't use groups */
6680 if (sd
->flags
& (SD_WAKE_IDLE
|
6689 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6691 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6693 if (sd_degenerate(parent
))
6696 if (!cpus_equal(sd
->span
, parent
->span
))
6699 /* Does parent contain flags not in child? */
6700 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6701 if (cflags
& SD_WAKE_AFFINE
)
6702 pflags
&= ~SD_WAKE_BALANCE
;
6703 /* Flags needing groups don't count if only 1 group in parent */
6704 if (parent
->groups
== parent
->groups
->next
) {
6705 pflags
&= ~(SD_LOAD_BALANCE
|
6706 SD_BALANCE_NEWIDLE
|
6710 SD_SHARE_PKG_RESOURCES
);
6712 if (~cflags
& pflags
)
6718 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6720 unsigned long flags
;
6721 const struct sched_class
*class;
6723 spin_lock_irqsave(&rq
->lock
, flags
);
6726 struct root_domain
*old_rd
= rq
->rd
;
6728 for (class = sched_class_highest
; class; class = class->next
) {
6729 if (class->leave_domain
)
6730 class->leave_domain(rq
);
6733 cpu_clear(rq
->cpu
, old_rd
->span
);
6734 cpu_clear(rq
->cpu
, old_rd
->online
);
6736 if (atomic_dec_and_test(&old_rd
->refcount
))
6740 atomic_inc(&rd
->refcount
);
6743 cpu_set(rq
->cpu
, rd
->span
);
6744 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6745 cpu_set(rq
->cpu
, rd
->online
);
6747 for (class = sched_class_highest
; class; class = class->next
) {
6748 if (class->join_domain
)
6749 class->join_domain(rq
);
6752 spin_unlock_irqrestore(&rq
->lock
, flags
);
6755 static void init_rootdomain(struct root_domain
*rd
)
6757 memset(rd
, 0, sizeof(*rd
));
6759 cpus_clear(rd
->span
);
6760 cpus_clear(rd
->online
);
6763 static void init_defrootdomain(void)
6765 init_rootdomain(&def_root_domain
);
6766 atomic_set(&def_root_domain
.refcount
, 1);
6769 static struct root_domain
*alloc_rootdomain(void)
6771 struct root_domain
*rd
;
6773 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6777 init_rootdomain(rd
);
6783 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6784 * hold the hotplug lock.
6787 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6789 struct rq
*rq
= cpu_rq(cpu
);
6790 struct sched_domain
*tmp
;
6792 /* Remove the sched domains which do not contribute to scheduling. */
6793 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6794 struct sched_domain
*parent
= tmp
->parent
;
6797 if (sd_parent_degenerate(tmp
, parent
)) {
6798 tmp
->parent
= parent
->parent
;
6800 parent
->parent
->child
= tmp
;
6804 if (sd
&& sd_degenerate(sd
)) {
6810 sched_domain_debug(sd
, cpu
);
6812 rq_attach_root(rq
, rd
);
6813 rcu_assign_pointer(rq
->sd
, sd
);
6816 /* cpus with isolated domains */
6817 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6819 /* Setup the mask of cpus configured for isolated domains */
6820 static int __init
isolated_cpu_setup(char *str
)
6822 int ints
[NR_CPUS
], i
;
6824 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6825 cpus_clear(cpu_isolated_map
);
6826 for (i
= 1; i
<= ints
[0]; i
++)
6827 if (ints
[i
] < NR_CPUS
)
6828 cpu_set(ints
[i
], cpu_isolated_map
);
6832 __setup("isolcpus=", isolated_cpu_setup
);
6835 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6836 * to a function which identifies what group(along with sched group) a CPU
6837 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6838 * (due to the fact that we keep track of groups covered with a cpumask_t).
6840 * init_sched_build_groups will build a circular linked list of the groups
6841 * covered by the given span, and will set each group's ->cpumask correctly,
6842 * and ->cpu_power to 0.
6845 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6846 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6847 struct sched_group
**sg
,
6848 cpumask_t
*tmpmask
),
6849 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6851 struct sched_group
*first
= NULL
, *last
= NULL
;
6854 cpus_clear(*covered
);
6856 for_each_cpu_mask(i
, *span
) {
6857 struct sched_group
*sg
;
6858 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6861 if (cpu_isset(i
, *covered
))
6864 cpus_clear(sg
->cpumask
);
6865 sg
->__cpu_power
= 0;
6867 for_each_cpu_mask(j
, *span
) {
6868 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6871 cpu_set(j
, *covered
);
6872 cpu_set(j
, sg
->cpumask
);
6883 #define SD_NODES_PER_DOMAIN 16
6888 * find_next_best_node - find the next node to include in a sched_domain
6889 * @node: node whose sched_domain we're building
6890 * @used_nodes: nodes already in the sched_domain
6892 * Find the next node to include in a given scheduling domain. Simply
6893 * finds the closest node not already in the @used_nodes map.
6895 * Should use nodemask_t.
6897 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6899 int i
, n
, val
, min_val
, best_node
= 0;
6903 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6904 /* Start at @node */
6905 n
= (node
+ i
) % MAX_NUMNODES
;
6907 if (!nr_cpus_node(n
))
6910 /* Skip already used nodes */
6911 if (node_isset(n
, *used_nodes
))
6914 /* Simple min distance search */
6915 val
= node_distance(node
, n
);
6917 if (val
< min_val
) {
6923 node_set(best_node
, *used_nodes
);
6928 * sched_domain_node_span - get a cpumask for a node's sched_domain
6929 * @node: node whose cpumask we're constructing
6930 * @span: resulting cpumask
6932 * Given a node, construct a good cpumask for its sched_domain to span. It
6933 * should be one that prevents unnecessary balancing, but also spreads tasks
6936 static void sched_domain_node_span(int node
, cpumask_t
*span
)
6938 nodemask_t used_nodes
;
6939 node_to_cpumask_ptr(nodemask
, node
);
6943 nodes_clear(used_nodes
);
6945 cpus_or(*span
, *span
, *nodemask
);
6946 node_set(node
, used_nodes
);
6948 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6949 int next_node
= find_next_best_node(node
, &used_nodes
);
6951 node_to_cpumask_ptr_next(nodemask
, next_node
);
6952 cpus_or(*span
, *span
, *nodemask
);
6957 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6960 * SMT sched-domains:
6962 #ifdef CONFIG_SCHED_SMT
6963 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6964 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6967 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6971 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6977 * multi-core sched-domains:
6979 #ifdef CONFIG_SCHED_MC
6980 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6981 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6984 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6986 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6991 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6992 cpus_and(*mask
, *mask
, *cpu_map
);
6993 group
= first_cpu(*mask
);
6995 *sg
= &per_cpu(sched_group_core
, group
);
6998 #elif defined(CONFIG_SCHED_MC)
7000 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7004 *sg
= &per_cpu(sched_group_core
, cpu
);
7009 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
7010 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
7013 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7017 #ifdef CONFIG_SCHED_MC
7018 *mask
= cpu_coregroup_map(cpu
);
7019 cpus_and(*mask
, *mask
, *cpu_map
);
7020 group
= first_cpu(*mask
);
7021 #elif defined(CONFIG_SCHED_SMT)
7022 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7023 cpus_and(*mask
, *mask
, *cpu_map
);
7024 group
= first_cpu(*mask
);
7029 *sg
= &per_cpu(sched_group_phys
, group
);
7035 * The init_sched_build_groups can't handle what we want to do with node
7036 * groups, so roll our own. Now each node has its own list of groups which
7037 * gets dynamically allocated.
7039 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
7040 static struct sched_group
***sched_group_nodes_bycpu
;
7042 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
7043 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
7045 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
7046 struct sched_group
**sg
, cpumask_t
*nodemask
)
7050 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
7051 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7052 group
= first_cpu(*nodemask
);
7055 *sg
= &per_cpu(sched_group_allnodes
, group
);
7059 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7061 struct sched_group
*sg
= group_head
;
7067 for_each_cpu_mask(j
, sg
->cpumask
) {
7068 struct sched_domain
*sd
;
7070 sd
= &per_cpu(phys_domains
, j
);
7071 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
7073 * Only add "power" once for each
7079 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7082 } while (sg
!= group_head
);
7087 /* Free memory allocated for various sched_group structures */
7088 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7092 for_each_cpu_mask(cpu
, *cpu_map
) {
7093 struct sched_group
**sched_group_nodes
7094 = sched_group_nodes_bycpu
[cpu
];
7096 if (!sched_group_nodes
)
7099 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7100 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7102 *nodemask
= node_to_cpumask(i
);
7103 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7104 if (cpus_empty(*nodemask
))
7114 if (oldsg
!= sched_group_nodes
[i
])
7117 kfree(sched_group_nodes
);
7118 sched_group_nodes_bycpu
[cpu
] = NULL
;
7122 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7128 * Initialize sched groups cpu_power.
7130 * cpu_power indicates the capacity of sched group, which is used while
7131 * distributing the load between different sched groups in a sched domain.
7132 * Typically cpu_power for all the groups in a sched domain will be same unless
7133 * there are asymmetries in the topology. If there are asymmetries, group
7134 * having more cpu_power will pickup more load compared to the group having
7137 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7138 * the maximum number of tasks a group can handle in the presence of other idle
7139 * or lightly loaded groups in the same sched domain.
7141 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7143 struct sched_domain
*child
;
7144 struct sched_group
*group
;
7146 WARN_ON(!sd
|| !sd
->groups
);
7148 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
7153 sd
->groups
->__cpu_power
= 0;
7156 * For perf policy, if the groups in child domain share resources
7157 * (for example cores sharing some portions of the cache hierarchy
7158 * or SMT), then set this domain groups cpu_power such that each group
7159 * can handle only one task, when there are other idle groups in the
7160 * same sched domain.
7162 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7164 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7165 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7170 * add cpu_power of each child group to this groups cpu_power
7172 group
= child
->groups
;
7174 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7175 group
= group
->next
;
7176 } while (group
!= child
->groups
);
7180 * Initializers for schedule domains
7181 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7184 #define SD_INIT(sd, type) sd_init_##type(sd)
7185 #define SD_INIT_FUNC(type) \
7186 static noinline void sd_init_##type(struct sched_domain *sd) \
7188 memset(sd, 0, sizeof(*sd)); \
7189 *sd = SD_##type##_INIT; \
7190 sd->level = SD_LV_##type; \
7195 SD_INIT_FUNC(ALLNODES
)
7198 #ifdef CONFIG_SCHED_SMT
7199 SD_INIT_FUNC(SIBLING
)
7201 #ifdef CONFIG_SCHED_MC
7206 * To minimize stack usage kmalloc room for cpumasks and share the
7207 * space as the usage in build_sched_domains() dictates. Used only
7208 * if the amount of space is significant.
7211 cpumask_t tmpmask
; /* make this one first */
7214 cpumask_t this_sibling_map
;
7215 cpumask_t this_core_map
;
7217 cpumask_t send_covered
;
7220 cpumask_t domainspan
;
7222 cpumask_t notcovered
;
7227 #define SCHED_CPUMASK_ALLOC 1
7228 #define SCHED_CPUMASK_FREE(v) kfree(v)
7229 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7231 #define SCHED_CPUMASK_ALLOC 0
7232 #define SCHED_CPUMASK_FREE(v)
7233 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7236 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7237 ((unsigned long)(a) + offsetof(struct allmasks, v))
7239 static int default_relax_domain_level
= -1;
7241 static int __init
setup_relax_domain_level(char *str
)
7243 default_relax_domain_level
= simple_strtoul(str
, NULL
, 0);
7246 __setup("relax_domain_level=", setup_relax_domain_level
);
7248 static void set_domain_attribute(struct sched_domain
*sd
,
7249 struct sched_domain_attr
*attr
)
7253 if (!attr
|| attr
->relax_domain_level
< 0) {
7254 if (default_relax_domain_level
< 0)
7257 request
= default_relax_domain_level
;
7259 request
= attr
->relax_domain_level
;
7260 if (request
< sd
->level
) {
7261 /* turn off idle balance on this domain */
7262 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7264 /* turn on idle balance on this domain */
7265 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7270 * Build sched domains for a given set of cpus and attach the sched domains
7271 * to the individual cpus
7273 static int __build_sched_domains(const cpumask_t
*cpu_map
,
7274 struct sched_domain_attr
*attr
)
7277 struct root_domain
*rd
;
7278 SCHED_CPUMASK_DECLARE(allmasks
);
7281 struct sched_group
**sched_group_nodes
= NULL
;
7282 int sd_allnodes
= 0;
7285 * Allocate the per-node list of sched groups
7287 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
7289 if (!sched_group_nodes
) {
7290 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7295 rd
= alloc_rootdomain();
7297 printk(KERN_WARNING
"Cannot alloc root domain\n");
7299 kfree(sched_group_nodes
);
7304 #if SCHED_CPUMASK_ALLOC
7305 /* get space for all scratch cpumask variables */
7306 allmasks
= kmalloc(sizeof(*allmasks
), GFP_KERNEL
);
7308 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
7311 kfree(sched_group_nodes
);
7316 tmpmask
= (cpumask_t
*)allmasks
;
7320 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
7324 * Set up domains for cpus specified by the cpu_map.
7326 for_each_cpu_mask(i
, *cpu_map
) {
7327 struct sched_domain
*sd
= NULL
, *p
;
7328 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7330 *nodemask
= node_to_cpumask(cpu_to_node(i
));
7331 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7334 if (cpus_weight(*cpu_map
) >
7335 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
7336 sd
= &per_cpu(allnodes_domains
, i
);
7337 SD_INIT(sd
, ALLNODES
);
7338 set_domain_attribute(sd
, attr
);
7339 sd
->span
= *cpu_map
;
7340 sd
->first_cpu
= first_cpu(sd
->span
);
7341 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7347 sd
= &per_cpu(node_domains
, i
);
7349 set_domain_attribute(sd
, attr
);
7350 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
7351 sd
->first_cpu
= first_cpu(sd
->span
);
7355 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7359 sd
= &per_cpu(phys_domains
, i
);
7361 set_domain_attribute(sd
, attr
);
7362 sd
->span
= *nodemask
;
7363 sd
->first_cpu
= first_cpu(sd
->span
);
7367 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7369 #ifdef CONFIG_SCHED_MC
7371 sd
= &per_cpu(core_domains
, i
);
7373 set_domain_attribute(sd
, attr
);
7374 sd
->span
= cpu_coregroup_map(i
);
7375 sd
->first_cpu
= first_cpu(sd
->span
);
7376 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7379 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7382 #ifdef CONFIG_SCHED_SMT
7384 sd
= &per_cpu(cpu_domains
, i
);
7385 SD_INIT(sd
, SIBLING
);
7386 set_domain_attribute(sd
, attr
);
7387 sd
->span
= per_cpu(cpu_sibling_map
, i
);
7388 sd
->first_cpu
= first_cpu(sd
->span
);
7389 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7392 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7396 #ifdef CONFIG_SCHED_SMT
7397 /* Set up CPU (sibling) groups */
7398 for_each_cpu_mask(i
, *cpu_map
) {
7399 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
7400 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7402 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
7403 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
7404 if (i
!= first_cpu(*this_sibling_map
))
7407 init_sched_build_groups(this_sibling_map
, cpu_map
,
7409 send_covered
, tmpmask
);
7413 #ifdef CONFIG_SCHED_MC
7414 /* Set up multi-core groups */
7415 for_each_cpu_mask(i
, *cpu_map
) {
7416 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
7417 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7419 *this_core_map
= cpu_coregroup_map(i
);
7420 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7421 if (i
!= first_cpu(*this_core_map
))
7424 init_sched_build_groups(this_core_map
, cpu_map
,
7426 send_covered
, tmpmask
);
7430 /* Set up physical groups */
7431 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7432 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7433 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7435 *nodemask
= node_to_cpumask(i
);
7436 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7437 if (cpus_empty(*nodemask
))
7440 init_sched_build_groups(nodemask
, cpu_map
,
7442 send_covered
, tmpmask
);
7446 /* Set up node groups */
7448 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7450 init_sched_build_groups(cpu_map
, cpu_map
,
7451 &cpu_to_allnodes_group
,
7452 send_covered
, tmpmask
);
7455 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7456 /* Set up node groups */
7457 struct sched_group
*sg
, *prev
;
7458 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7459 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7460 SCHED_CPUMASK_VAR(covered
, allmasks
);
7463 *nodemask
= node_to_cpumask(i
);
7464 cpus_clear(*covered
);
7466 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7467 if (cpus_empty(*nodemask
)) {
7468 sched_group_nodes
[i
] = NULL
;
7472 sched_domain_node_span(i
, domainspan
);
7473 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7475 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7477 printk(KERN_WARNING
"Can not alloc domain group for "
7481 sched_group_nodes
[i
] = sg
;
7482 for_each_cpu_mask(j
, *nodemask
) {
7483 struct sched_domain
*sd
;
7485 sd
= &per_cpu(node_domains
, j
);
7488 sg
->__cpu_power
= 0;
7489 sg
->cpumask
= *nodemask
;
7491 cpus_or(*covered
, *covered
, *nodemask
);
7494 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
7495 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7496 int n
= (i
+ j
) % MAX_NUMNODES
;
7497 node_to_cpumask_ptr(pnodemask
, n
);
7499 cpus_complement(*notcovered
, *covered
);
7500 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7501 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7502 if (cpus_empty(*tmpmask
))
7505 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7506 if (cpus_empty(*tmpmask
))
7509 sg
= kmalloc_node(sizeof(struct sched_group
),
7513 "Can not alloc domain group for node %d\n", j
);
7516 sg
->__cpu_power
= 0;
7517 sg
->cpumask
= *tmpmask
;
7518 sg
->next
= prev
->next
;
7519 cpus_or(*covered
, *covered
, *tmpmask
);
7526 /* Calculate CPU power for physical packages and nodes */
7527 #ifdef CONFIG_SCHED_SMT
7528 for_each_cpu_mask(i
, *cpu_map
) {
7529 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7531 init_sched_groups_power(i
, sd
);
7534 #ifdef CONFIG_SCHED_MC
7535 for_each_cpu_mask(i
, *cpu_map
) {
7536 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7538 init_sched_groups_power(i
, sd
);
7542 for_each_cpu_mask(i
, *cpu_map
) {
7543 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7545 init_sched_groups_power(i
, sd
);
7549 for (i
= 0; i
< MAX_NUMNODES
; i
++)
7550 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7553 struct sched_group
*sg
;
7555 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7557 init_numa_sched_groups_power(sg
);
7561 /* Attach the domains */
7562 for_each_cpu_mask(i
, *cpu_map
) {
7563 struct sched_domain
*sd
;
7564 #ifdef CONFIG_SCHED_SMT
7565 sd
= &per_cpu(cpu_domains
, i
);
7566 #elif defined(CONFIG_SCHED_MC)
7567 sd
= &per_cpu(core_domains
, i
);
7569 sd
= &per_cpu(phys_domains
, i
);
7571 cpu_attach_domain(sd
, rd
, i
);
7574 SCHED_CPUMASK_FREE((void *)allmasks
);
7579 free_sched_groups(cpu_map
, tmpmask
);
7580 SCHED_CPUMASK_FREE((void *)allmasks
);
7585 static int build_sched_domains(const cpumask_t
*cpu_map
)
7587 return __build_sched_domains(cpu_map
, NULL
);
7590 static cpumask_t
*doms_cur
; /* current sched domains */
7591 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7592 static struct sched_domain_attr
*dattr_cur
; /* attribues of custom domains
7596 * Special case: If a kmalloc of a doms_cur partition (array of
7597 * cpumask_t) fails, then fallback to a single sched domain,
7598 * as determined by the single cpumask_t fallback_doms.
7600 static cpumask_t fallback_doms
;
7602 void __attribute__((weak
)) arch_update_cpu_topology(void)
7607 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7608 * For now this just excludes isolated cpus, but could be used to
7609 * exclude other special cases in the future.
7611 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7615 arch_update_cpu_topology();
7617 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7619 doms_cur
= &fallback_doms
;
7620 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7622 err
= build_sched_domains(doms_cur
);
7623 register_sched_domain_sysctl();
7628 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7631 free_sched_groups(cpu_map
, tmpmask
);
7635 * Detach sched domains from a group of cpus specified in cpu_map
7636 * These cpus will now be attached to the NULL domain
7638 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7643 unregister_sched_domain_sysctl();
7645 for_each_cpu_mask(i
, *cpu_map
)
7646 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7647 synchronize_sched();
7648 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7651 /* handle null as "default" */
7652 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7653 struct sched_domain_attr
*new, int idx_new
)
7655 struct sched_domain_attr tmp
;
7662 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7663 new ? (new + idx_new
) : &tmp
,
7664 sizeof(struct sched_domain_attr
));
7668 * Partition sched domains as specified by the 'ndoms_new'
7669 * cpumasks in the array doms_new[] of cpumasks. This compares
7670 * doms_new[] to the current sched domain partitioning, doms_cur[].
7671 * It destroys each deleted domain and builds each new domain.
7673 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7674 * The masks don't intersect (don't overlap.) We should setup one
7675 * sched domain for each mask. CPUs not in any of the cpumasks will
7676 * not be load balanced. If the same cpumask appears both in the
7677 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7680 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7681 * ownership of it and will kfree it when done with it. If the caller
7682 * failed the kmalloc call, then it can pass in doms_new == NULL,
7683 * and partition_sched_domains() will fallback to the single partition
7686 * Call with hotplug lock held
7688 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
,
7689 struct sched_domain_attr
*dattr_new
)
7693 mutex_lock(&sched_domains_mutex
);
7695 /* always unregister in case we don't destroy any domains */
7696 unregister_sched_domain_sysctl();
7698 if (doms_new
== NULL
) {
7700 doms_new
= &fallback_doms
;
7701 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7705 /* Destroy deleted domains */
7706 for (i
= 0; i
< ndoms_cur
; i
++) {
7707 for (j
= 0; j
< ndoms_new
; j
++) {
7708 if (cpus_equal(doms_cur
[i
], doms_new
[j
])
7709 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7712 /* no match - a current sched domain not in new doms_new[] */
7713 detach_destroy_domains(doms_cur
+ i
);
7718 /* Build new domains */
7719 for (i
= 0; i
< ndoms_new
; i
++) {
7720 for (j
= 0; j
< ndoms_cur
; j
++) {
7721 if (cpus_equal(doms_new
[i
], doms_cur
[j
])
7722 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7725 /* no match - add a new doms_new */
7726 __build_sched_domains(doms_new
+ i
,
7727 dattr_new
? dattr_new
+ i
: NULL
);
7732 /* Remember the new sched domains */
7733 if (doms_cur
!= &fallback_doms
)
7735 kfree(dattr_cur
); /* kfree(NULL) is safe */
7736 doms_cur
= doms_new
;
7737 dattr_cur
= dattr_new
;
7738 ndoms_cur
= ndoms_new
;
7740 register_sched_domain_sysctl();
7742 mutex_unlock(&sched_domains_mutex
);
7745 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7746 int arch_reinit_sched_domains(void)
7751 mutex_lock(&sched_domains_mutex
);
7752 detach_destroy_domains(&cpu_online_map
);
7753 err
= arch_init_sched_domains(&cpu_online_map
);
7754 mutex_unlock(&sched_domains_mutex
);
7760 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7764 if (buf
[0] != '0' && buf
[0] != '1')
7768 sched_smt_power_savings
= (buf
[0] == '1');
7770 sched_mc_power_savings
= (buf
[0] == '1');
7772 ret
= arch_reinit_sched_domains();
7774 return ret
? ret
: count
;
7777 #ifdef CONFIG_SCHED_MC
7778 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
7780 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7782 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
7783 const char *buf
, size_t count
)
7785 return sched_power_savings_store(buf
, count
, 0);
7787 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
7788 sched_mc_power_savings_store
);
7791 #ifdef CONFIG_SCHED_SMT
7792 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
7794 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7796 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7797 const char *buf
, size_t count
)
7799 return sched_power_savings_store(buf
, count
, 1);
7801 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7802 sched_smt_power_savings_store
);
7805 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7809 #ifdef CONFIG_SCHED_SMT
7811 err
= sysfs_create_file(&cls
->kset
.kobj
,
7812 &attr_sched_smt_power_savings
.attr
);
7814 #ifdef CONFIG_SCHED_MC
7815 if (!err
&& mc_capable())
7816 err
= sysfs_create_file(&cls
->kset
.kobj
,
7817 &attr_sched_mc_power_savings
.attr
);
7824 * Force a reinitialization of the sched domains hierarchy. The domains
7825 * and groups cannot be updated in place without racing with the balancing
7826 * code, so we temporarily attach all running cpus to the NULL domain
7827 * which will prevent rebalancing while the sched domains are recalculated.
7829 static int update_sched_domains(struct notifier_block
*nfb
,
7830 unsigned long action
, void *hcpu
)
7833 case CPU_UP_PREPARE
:
7834 case CPU_UP_PREPARE_FROZEN
:
7835 case CPU_DOWN_PREPARE
:
7836 case CPU_DOWN_PREPARE_FROZEN
:
7837 detach_destroy_domains(&cpu_online_map
);
7840 case CPU_UP_CANCELED
:
7841 case CPU_UP_CANCELED_FROZEN
:
7842 case CPU_DOWN_FAILED
:
7843 case CPU_DOWN_FAILED_FROZEN
:
7845 case CPU_ONLINE_FROZEN
:
7847 case CPU_DEAD_FROZEN
:
7849 * Fall through and re-initialise the domains.
7856 /* The hotplug lock is already held by cpu_up/cpu_down */
7857 arch_init_sched_domains(&cpu_online_map
);
7862 void __init
sched_init_smp(void)
7864 cpumask_t non_isolated_cpus
;
7866 #if defined(CONFIG_NUMA)
7867 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7869 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7872 mutex_lock(&sched_domains_mutex
);
7873 arch_init_sched_domains(&cpu_online_map
);
7874 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7875 if (cpus_empty(non_isolated_cpus
))
7876 cpu_set(smp_processor_id(), non_isolated_cpus
);
7877 mutex_unlock(&sched_domains_mutex
);
7879 /* XXX: Theoretical race here - CPU may be hotplugged now */
7880 hotcpu_notifier(update_sched_domains
, 0);
7883 /* Move init over to a non-isolated CPU */
7884 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
7886 sched_init_granularity();
7889 void __init
sched_init_smp(void)
7891 sched_init_granularity();
7893 #endif /* CONFIG_SMP */
7895 int in_sched_functions(unsigned long addr
)
7897 return in_lock_functions(addr
) ||
7898 (addr
>= (unsigned long)__sched_text_start
7899 && addr
< (unsigned long)__sched_text_end
);
7902 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7904 cfs_rq
->tasks_timeline
= RB_ROOT
;
7905 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7906 #ifdef CONFIG_FAIR_GROUP_SCHED
7909 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7912 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7914 struct rt_prio_array
*array
;
7917 array
= &rt_rq
->active
;
7918 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7919 INIT_LIST_HEAD(array
->queue
+ i
);
7920 __clear_bit(i
, array
->bitmap
);
7922 /* delimiter for bitsearch: */
7923 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7925 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7926 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7929 rt_rq
->rt_nr_migratory
= 0;
7930 rt_rq
->overloaded
= 0;
7934 rt_rq
->rt_throttled
= 0;
7935 rt_rq
->rt_runtime
= 0;
7936 spin_lock_init(&rt_rq
->rt_runtime_lock
);
7938 #ifdef CONFIG_RT_GROUP_SCHED
7939 rt_rq
->rt_nr_boosted
= 0;
7944 #ifdef CONFIG_FAIR_GROUP_SCHED
7945 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7946 struct sched_entity
*se
, int cpu
, int add
,
7947 struct sched_entity
*parent
)
7949 struct rq
*rq
= cpu_rq(cpu
);
7950 tg
->cfs_rq
[cpu
] = cfs_rq
;
7951 init_cfs_rq(cfs_rq
, rq
);
7954 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7957 /* se could be NULL for init_task_group */
7962 se
->cfs_rq
= &rq
->cfs
;
7964 se
->cfs_rq
= parent
->my_q
;
7967 se
->load
.weight
= tg
->shares
;
7968 se
->load
.inv_weight
= 0;
7969 se
->parent
= parent
;
7973 #ifdef CONFIG_RT_GROUP_SCHED
7974 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7975 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7976 struct sched_rt_entity
*parent
)
7978 struct rq
*rq
= cpu_rq(cpu
);
7980 tg
->rt_rq
[cpu
] = rt_rq
;
7981 init_rt_rq(rt_rq
, rq
);
7983 rt_rq
->rt_se
= rt_se
;
7984 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7986 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7988 tg
->rt_se
[cpu
] = rt_se
;
7993 rt_se
->rt_rq
= &rq
->rt
;
7995 rt_se
->rt_rq
= parent
->my_q
;
7997 rt_se
->rt_rq
= &rq
->rt
;
7998 rt_se
->my_q
= rt_rq
;
7999 rt_se
->parent
= parent
;
8000 INIT_LIST_HEAD(&rt_se
->run_list
);
8004 void __init
sched_init(void)
8007 unsigned long alloc_size
= 0, ptr
;
8009 #ifdef CONFIG_FAIR_GROUP_SCHED
8010 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8012 #ifdef CONFIG_RT_GROUP_SCHED
8013 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8015 #ifdef CONFIG_USER_SCHED
8019 * As sched_init() is called before page_alloc is setup,
8020 * we use alloc_bootmem().
8023 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8025 #ifdef CONFIG_FAIR_GROUP_SCHED
8026 init_task_group
.se
= (struct sched_entity
**)ptr
;
8027 ptr
+= nr_cpu_ids
* sizeof(void **);
8029 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8030 ptr
+= nr_cpu_ids
* sizeof(void **);
8032 #ifdef CONFIG_USER_SCHED
8033 root_task_group
.se
= (struct sched_entity
**)ptr
;
8034 ptr
+= nr_cpu_ids
* sizeof(void **);
8036 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8037 ptr
+= nr_cpu_ids
* sizeof(void **);
8040 #ifdef CONFIG_RT_GROUP_SCHED
8041 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8042 ptr
+= nr_cpu_ids
* sizeof(void **);
8044 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8045 ptr
+= nr_cpu_ids
* sizeof(void **);
8047 #ifdef CONFIG_USER_SCHED
8048 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8049 ptr
+= nr_cpu_ids
* sizeof(void **);
8051 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8052 ptr
+= nr_cpu_ids
* sizeof(void **);
8059 init_defrootdomain();
8062 init_rt_bandwidth(&def_rt_bandwidth
,
8063 global_rt_period(), global_rt_runtime());
8065 #ifdef CONFIG_RT_GROUP_SCHED
8066 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8067 global_rt_period(), global_rt_runtime());
8068 #ifdef CONFIG_USER_SCHED
8069 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8070 global_rt_period(), RUNTIME_INF
);
8074 #ifdef CONFIG_GROUP_SCHED
8075 list_add(&init_task_group
.list
, &task_groups
);
8076 INIT_LIST_HEAD(&init_task_group
.children
);
8078 #ifdef CONFIG_USER_SCHED
8079 INIT_LIST_HEAD(&root_task_group
.children
);
8080 init_task_group
.parent
= &root_task_group
;
8081 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8085 for_each_possible_cpu(i
) {
8089 spin_lock_init(&rq
->lock
);
8090 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
8092 init_cfs_rq(&rq
->cfs
, rq
);
8093 init_rt_rq(&rq
->rt
, rq
);
8094 #ifdef CONFIG_FAIR_GROUP_SCHED
8095 init_task_group
.shares
= init_task_group_load
;
8096 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8097 #ifdef CONFIG_CGROUP_SCHED
8099 * How much cpu bandwidth does init_task_group get?
8101 * In case of task-groups formed thr' the cgroup filesystem, it
8102 * gets 100% of the cpu resources in the system. This overall
8103 * system cpu resource is divided among the tasks of
8104 * init_task_group and its child task-groups in a fair manner,
8105 * based on each entity's (task or task-group's) weight
8106 * (se->load.weight).
8108 * In other words, if init_task_group has 10 tasks of weight
8109 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8110 * then A0's share of the cpu resource is:
8112 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8114 * We achieve this by letting init_task_group's tasks sit
8115 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8117 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8118 #elif defined CONFIG_USER_SCHED
8119 root_task_group
.shares
= NICE_0_LOAD
;
8120 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8122 * In case of task-groups formed thr' the user id of tasks,
8123 * init_task_group represents tasks belonging to root user.
8124 * Hence it forms a sibling of all subsequent groups formed.
8125 * In this case, init_task_group gets only a fraction of overall
8126 * system cpu resource, based on the weight assigned to root
8127 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8128 * by letting tasks of init_task_group sit in a separate cfs_rq
8129 * (init_cfs_rq) and having one entity represent this group of
8130 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8132 init_tg_cfs_entry(&init_task_group
,
8133 &per_cpu(init_cfs_rq
, i
),
8134 &per_cpu(init_sched_entity
, i
), i
, 1,
8135 root_task_group
.se
[i
]);
8138 #endif /* CONFIG_FAIR_GROUP_SCHED */
8140 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8141 #ifdef CONFIG_RT_GROUP_SCHED
8142 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8143 #ifdef CONFIG_CGROUP_SCHED
8144 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8145 #elif defined CONFIG_USER_SCHED
8146 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8147 init_tg_rt_entry(&init_task_group
,
8148 &per_cpu(init_rt_rq
, i
),
8149 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8150 root_task_group
.rt_se
[i
]);
8154 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8155 rq
->cpu_load
[j
] = 0;
8159 rq
->active_balance
= 0;
8160 rq
->next_balance
= jiffies
;
8163 rq
->migration_thread
= NULL
;
8164 INIT_LIST_HEAD(&rq
->migration_queue
);
8165 rq_attach_root(rq
, &def_root_domain
);
8168 atomic_set(&rq
->nr_iowait
, 0);
8171 set_load_weight(&init_task
);
8173 #ifdef CONFIG_PREEMPT_NOTIFIERS
8174 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8178 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
8181 #ifdef CONFIG_RT_MUTEXES
8182 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8186 * The boot idle thread does lazy MMU switching as well:
8188 atomic_inc(&init_mm
.mm_count
);
8189 enter_lazy_tlb(&init_mm
, current
);
8192 * Make us the idle thread. Technically, schedule() should not be
8193 * called from this thread, however somewhere below it might be,
8194 * but because we are the idle thread, we just pick up running again
8195 * when this runqueue becomes "idle".
8197 init_idle(current
, smp_processor_id());
8199 * During early bootup we pretend to be a normal task:
8201 current
->sched_class
= &fair_sched_class
;
8203 scheduler_running
= 1;
8206 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8207 void __might_sleep(char *file
, int line
)
8210 static unsigned long prev_jiffy
; /* ratelimiting */
8212 if ((in_atomic() || irqs_disabled()) &&
8213 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
8214 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8216 prev_jiffy
= jiffies
;
8217 printk(KERN_ERR
"BUG: sleeping function called from invalid"
8218 " context at %s:%d\n", file
, line
);
8219 printk("in_atomic():%d, irqs_disabled():%d\n",
8220 in_atomic(), irqs_disabled());
8221 debug_show_held_locks(current
);
8222 if (irqs_disabled())
8223 print_irqtrace_events(current
);
8228 EXPORT_SYMBOL(__might_sleep
);
8231 #ifdef CONFIG_MAGIC_SYSRQ
8232 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8236 update_rq_clock(rq
);
8237 on_rq
= p
->se
.on_rq
;
8239 deactivate_task(rq
, p
, 0);
8240 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8242 activate_task(rq
, p
, 0);
8243 resched_task(rq
->curr
);
8247 void normalize_rt_tasks(void)
8249 struct task_struct
*g
, *p
;
8250 unsigned long flags
;
8253 read_lock_irqsave(&tasklist_lock
, flags
);
8254 do_each_thread(g
, p
) {
8256 * Only normalize user tasks:
8261 p
->se
.exec_start
= 0;
8262 #ifdef CONFIG_SCHEDSTATS
8263 p
->se
.wait_start
= 0;
8264 p
->se
.sleep_start
= 0;
8265 p
->se
.block_start
= 0;
8270 * Renice negative nice level userspace
8273 if (TASK_NICE(p
) < 0 && p
->mm
)
8274 set_user_nice(p
, 0);
8278 spin_lock(&p
->pi_lock
);
8279 rq
= __task_rq_lock(p
);
8281 normalize_task(rq
, p
);
8283 __task_rq_unlock(rq
);
8284 spin_unlock(&p
->pi_lock
);
8285 } while_each_thread(g
, p
);
8287 read_unlock_irqrestore(&tasklist_lock
, flags
);
8290 #endif /* CONFIG_MAGIC_SYSRQ */
8294 * These functions are only useful for the IA64 MCA handling.
8296 * They can only be called when the whole system has been
8297 * stopped - every CPU needs to be quiescent, and no scheduling
8298 * activity can take place. Using them for anything else would
8299 * be a serious bug, and as a result, they aren't even visible
8300 * under any other configuration.
8304 * curr_task - return the current task for a given cpu.
8305 * @cpu: the processor in question.
8307 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8309 struct task_struct
*curr_task(int cpu
)
8311 return cpu_curr(cpu
);
8315 * set_curr_task - set the current task for a given cpu.
8316 * @cpu: the processor in question.
8317 * @p: the task pointer to set.
8319 * Description: This function must only be used when non-maskable interrupts
8320 * are serviced on a separate stack. It allows the architecture to switch the
8321 * notion of the current task on a cpu in a non-blocking manner. This function
8322 * must be called with all CPU's synchronized, and interrupts disabled, the
8323 * and caller must save the original value of the current task (see
8324 * curr_task() above) and restore that value before reenabling interrupts and
8325 * re-starting the system.
8327 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8329 void set_curr_task(int cpu
, struct task_struct
*p
)
8336 #ifdef CONFIG_FAIR_GROUP_SCHED
8337 static void free_fair_sched_group(struct task_group
*tg
)
8341 for_each_possible_cpu(i
) {
8343 kfree(tg
->cfs_rq
[i
]);
8353 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8355 struct cfs_rq
*cfs_rq
;
8356 struct sched_entity
*se
, *parent_se
;
8360 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8363 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8367 tg
->shares
= NICE_0_LOAD
;
8369 for_each_possible_cpu(i
) {
8372 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
8373 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8377 se
= kmalloc_node(sizeof(struct sched_entity
),
8378 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8382 parent_se
= parent
? parent
->se
[i
] : NULL
;
8383 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent_se
);
8392 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8394 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8395 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8398 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8400 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8403 static inline void free_fair_sched_group(struct task_group
*tg
)
8408 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8413 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8417 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8422 #ifdef CONFIG_RT_GROUP_SCHED
8423 static void free_rt_sched_group(struct task_group
*tg
)
8427 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8429 for_each_possible_cpu(i
) {
8431 kfree(tg
->rt_rq
[i
]);
8433 kfree(tg
->rt_se
[i
]);
8441 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8443 struct rt_rq
*rt_rq
;
8444 struct sched_rt_entity
*rt_se
, *parent_se
;
8448 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8451 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8455 init_rt_bandwidth(&tg
->rt_bandwidth
,
8456 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8458 for_each_possible_cpu(i
) {
8461 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
8462 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8466 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
8467 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8471 parent_se
= parent
? parent
->rt_se
[i
] : NULL
;
8472 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent_se
);
8481 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8483 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8484 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8487 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8489 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8492 static inline void free_rt_sched_group(struct task_group
*tg
)
8497 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8502 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8506 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8511 #ifdef CONFIG_GROUP_SCHED
8512 static void free_sched_group(struct task_group
*tg
)
8514 free_fair_sched_group(tg
);
8515 free_rt_sched_group(tg
);
8519 /* allocate runqueue etc for a new task group */
8520 struct task_group
*sched_create_group(struct task_group
*parent
)
8522 struct task_group
*tg
;
8523 unsigned long flags
;
8526 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8528 return ERR_PTR(-ENOMEM
);
8530 if (!alloc_fair_sched_group(tg
, parent
))
8533 if (!alloc_rt_sched_group(tg
, parent
))
8536 spin_lock_irqsave(&task_group_lock
, flags
);
8537 for_each_possible_cpu(i
) {
8538 register_fair_sched_group(tg
, i
);
8539 register_rt_sched_group(tg
, i
);
8541 list_add_rcu(&tg
->list
, &task_groups
);
8543 WARN_ON(!parent
); /* root should already exist */
8545 tg
->parent
= parent
;
8546 list_add_rcu(&tg
->siblings
, &parent
->children
);
8547 INIT_LIST_HEAD(&tg
->children
);
8548 spin_unlock_irqrestore(&task_group_lock
, flags
);
8553 free_sched_group(tg
);
8554 return ERR_PTR(-ENOMEM
);
8557 /* rcu callback to free various structures associated with a task group */
8558 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8560 /* now it should be safe to free those cfs_rqs */
8561 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8564 /* Destroy runqueue etc associated with a task group */
8565 void sched_destroy_group(struct task_group
*tg
)
8567 unsigned long flags
;
8570 spin_lock_irqsave(&task_group_lock
, flags
);
8571 for_each_possible_cpu(i
) {
8572 unregister_fair_sched_group(tg
, i
);
8573 unregister_rt_sched_group(tg
, i
);
8575 list_del_rcu(&tg
->list
);
8576 list_del_rcu(&tg
->siblings
);
8577 spin_unlock_irqrestore(&task_group_lock
, flags
);
8579 /* wait for possible concurrent references to cfs_rqs complete */
8580 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8583 /* change task's runqueue when it moves between groups.
8584 * The caller of this function should have put the task in its new group
8585 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8586 * reflect its new group.
8588 void sched_move_task(struct task_struct
*tsk
)
8591 unsigned long flags
;
8594 rq
= task_rq_lock(tsk
, &flags
);
8596 update_rq_clock(rq
);
8598 running
= task_current(rq
, tsk
);
8599 on_rq
= tsk
->se
.on_rq
;
8602 dequeue_task(rq
, tsk
, 0);
8603 if (unlikely(running
))
8604 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8606 set_task_rq(tsk
, task_cpu(tsk
));
8608 #ifdef CONFIG_FAIR_GROUP_SCHED
8609 if (tsk
->sched_class
->moved_group
)
8610 tsk
->sched_class
->moved_group(tsk
);
8613 if (unlikely(running
))
8614 tsk
->sched_class
->set_curr_task(rq
);
8616 enqueue_task(rq
, tsk
, 0);
8618 task_rq_unlock(rq
, &flags
);
8622 #ifdef CONFIG_FAIR_GROUP_SCHED
8623 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8625 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8630 dequeue_entity(cfs_rq
, se
, 0);
8632 se
->load
.weight
= shares
;
8633 se
->load
.inv_weight
= 0;
8636 enqueue_entity(cfs_rq
, se
, 0);
8639 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8641 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8642 struct rq
*rq
= cfs_rq
->rq
;
8643 unsigned long flags
;
8645 spin_lock_irqsave(&rq
->lock
, flags
);
8646 __set_se_shares(se
, shares
);
8647 spin_unlock_irqrestore(&rq
->lock
, flags
);
8650 static DEFINE_MUTEX(shares_mutex
);
8652 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8655 unsigned long flags
;
8658 * We can't change the weight of the root cgroup.
8663 if (shares
< MIN_SHARES
)
8664 shares
= MIN_SHARES
;
8665 else if (shares
> MAX_SHARES
)
8666 shares
= MAX_SHARES
;
8668 mutex_lock(&shares_mutex
);
8669 if (tg
->shares
== shares
)
8672 spin_lock_irqsave(&task_group_lock
, flags
);
8673 for_each_possible_cpu(i
)
8674 unregister_fair_sched_group(tg
, i
);
8675 list_del_rcu(&tg
->siblings
);
8676 spin_unlock_irqrestore(&task_group_lock
, flags
);
8678 /* wait for any ongoing reference to this group to finish */
8679 synchronize_sched();
8682 * Now we are free to modify the group's share on each cpu
8683 * w/o tripping rebalance_share or load_balance_fair.
8685 tg
->shares
= shares
;
8686 for_each_possible_cpu(i
) {
8690 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8691 set_se_shares(tg
->se
[i
], shares
);
8695 * Enable load balance activity on this group, by inserting it back on
8696 * each cpu's rq->leaf_cfs_rq_list.
8698 spin_lock_irqsave(&task_group_lock
, flags
);
8699 for_each_possible_cpu(i
)
8700 register_fair_sched_group(tg
, i
);
8701 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8702 spin_unlock_irqrestore(&task_group_lock
, flags
);
8704 mutex_unlock(&shares_mutex
);
8708 unsigned long sched_group_shares(struct task_group
*tg
)
8714 #ifdef CONFIG_RT_GROUP_SCHED
8716 * Ensure that the real time constraints are schedulable.
8718 static DEFINE_MUTEX(rt_constraints_mutex
);
8720 static unsigned long to_ratio(u64 period
, u64 runtime
)
8722 if (runtime
== RUNTIME_INF
)
8725 return div64_u64(runtime
<< 16, period
);
8728 #ifdef CONFIG_CGROUP_SCHED
8729 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8731 struct task_group
*tgi
, *parent
= tg
->parent
;
8732 unsigned long total
= 0;
8735 if (global_rt_period() < period
)
8738 return to_ratio(period
, runtime
) <
8739 to_ratio(global_rt_period(), global_rt_runtime());
8742 if (ktime_to_ns(parent
->rt_bandwidth
.rt_period
) < period
)
8746 list_for_each_entry_rcu(tgi
, &parent
->children
, siblings
) {
8750 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8751 tgi
->rt_bandwidth
.rt_runtime
);
8755 return total
+ to_ratio(period
, runtime
) <
8756 to_ratio(ktime_to_ns(parent
->rt_bandwidth
.rt_period
),
8757 parent
->rt_bandwidth
.rt_runtime
);
8759 #elif defined CONFIG_USER_SCHED
8760 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8762 struct task_group
*tgi
;
8763 unsigned long total
= 0;
8764 unsigned long global_ratio
=
8765 to_ratio(global_rt_period(), global_rt_runtime());
8768 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
8772 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8773 tgi
->rt_bandwidth
.rt_runtime
);
8777 return total
+ to_ratio(period
, runtime
) < global_ratio
;
8781 /* Must be called with tasklist_lock held */
8782 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8784 struct task_struct
*g
, *p
;
8785 do_each_thread(g
, p
) {
8786 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8788 } while_each_thread(g
, p
);
8792 static int tg_set_bandwidth(struct task_group
*tg
,
8793 u64 rt_period
, u64 rt_runtime
)
8797 mutex_lock(&rt_constraints_mutex
);
8798 read_lock(&tasklist_lock
);
8799 if (rt_runtime
== 0 && tg_has_rt_tasks(tg
)) {
8803 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
8808 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8809 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8810 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8812 for_each_possible_cpu(i
) {
8813 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8815 spin_lock(&rt_rq
->rt_runtime_lock
);
8816 rt_rq
->rt_runtime
= rt_runtime
;
8817 spin_unlock(&rt_rq
->rt_runtime_lock
);
8819 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8821 read_unlock(&tasklist_lock
);
8822 mutex_unlock(&rt_constraints_mutex
);
8827 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8829 u64 rt_runtime
, rt_period
;
8831 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8832 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8833 if (rt_runtime_us
< 0)
8834 rt_runtime
= RUNTIME_INF
;
8836 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8839 long sched_group_rt_runtime(struct task_group
*tg
)
8843 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8846 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8847 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8848 return rt_runtime_us
;
8851 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8853 u64 rt_runtime
, rt_period
;
8855 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8856 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8858 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8861 long sched_group_rt_period(struct task_group
*tg
)
8865 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8866 do_div(rt_period_us
, NSEC_PER_USEC
);
8867 return rt_period_us
;
8870 static int sched_rt_global_constraints(void)
8874 mutex_lock(&rt_constraints_mutex
);
8875 if (!__rt_schedulable(NULL
, 1, 0))
8877 mutex_unlock(&rt_constraints_mutex
);
8882 static int sched_rt_global_constraints(void)
8884 unsigned long flags
;
8887 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8888 for_each_possible_cpu(i
) {
8889 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8891 spin_lock(&rt_rq
->rt_runtime_lock
);
8892 rt_rq
->rt_runtime
= global_rt_runtime();
8893 spin_unlock(&rt_rq
->rt_runtime_lock
);
8895 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8901 int sched_rt_handler(struct ctl_table
*table
, int write
,
8902 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
8906 int old_period
, old_runtime
;
8907 static DEFINE_MUTEX(mutex
);
8910 old_period
= sysctl_sched_rt_period
;
8911 old_runtime
= sysctl_sched_rt_runtime
;
8913 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
8915 if (!ret
&& write
) {
8916 ret
= sched_rt_global_constraints();
8918 sysctl_sched_rt_period
= old_period
;
8919 sysctl_sched_rt_runtime
= old_runtime
;
8921 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8922 def_rt_bandwidth
.rt_period
=
8923 ns_to_ktime(global_rt_period());
8926 mutex_unlock(&mutex
);
8931 #ifdef CONFIG_CGROUP_SCHED
8933 /* return corresponding task_group object of a cgroup */
8934 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8936 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8937 struct task_group
, css
);
8940 static struct cgroup_subsys_state
*
8941 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8943 struct task_group
*tg
, *parent
;
8945 if (!cgrp
->parent
) {
8946 /* This is early initialization for the top cgroup */
8947 init_task_group
.css
.cgroup
= cgrp
;
8948 return &init_task_group
.css
;
8951 parent
= cgroup_tg(cgrp
->parent
);
8952 tg
= sched_create_group(parent
);
8954 return ERR_PTR(-ENOMEM
);
8956 /* Bind the cgroup to task_group object we just created */
8957 tg
->css
.cgroup
= cgrp
;
8963 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8965 struct task_group
*tg
= cgroup_tg(cgrp
);
8967 sched_destroy_group(tg
);
8971 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8972 struct task_struct
*tsk
)
8974 #ifdef CONFIG_RT_GROUP_SCHED
8975 /* Don't accept realtime tasks when there is no way for them to run */
8976 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
8979 /* We don't support RT-tasks being in separate groups */
8980 if (tsk
->sched_class
!= &fair_sched_class
)
8988 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8989 struct cgroup
*old_cont
, struct task_struct
*tsk
)
8991 sched_move_task(tsk
);
8994 #ifdef CONFIG_FAIR_GROUP_SCHED
8995 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8998 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9001 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9003 struct task_group
*tg
= cgroup_tg(cgrp
);
9005 return (u64
) tg
->shares
;
9009 #ifdef CONFIG_RT_GROUP_SCHED
9010 static ssize_t
cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9013 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9016 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9018 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9021 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9024 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9027 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9029 return sched_group_rt_period(cgroup_tg(cgrp
));
9033 static struct cftype cpu_files
[] = {
9034 #ifdef CONFIG_FAIR_GROUP_SCHED
9037 .read_u64
= cpu_shares_read_u64
,
9038 .write_u64
= cpu_shares_write_u64
,
9041 #ifdef CONFIG_RT_GROUP_SCHED
9043 .name
= "rt_runtime_us",
9044 .read_s64
= cpu_rt_runtime_read
,
9045 .write_s64
= cpu_rt_runtime_write
,
9048 .name
= "rt_period_us",
9049 .read_u64
= cpu_rt_period_read_uint
,
9050 .write_u64
= cpu_rt_period_write_uint
,
9055 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9057 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9060 struct cgroup_subsys cpu_cgroup_subsys
= {
9062 .create
= cpu_cgroup_create
,
9063 .destroy
= cpu_cgroup_destroy
,
9064 .can_attach
= cpu_cgroup_can_attach
,
9065 .attach
= cpu_cgroup_attach
,
9066 .populate
= cpu_cgroup_populate
,
9067 .subsys_id
= cpu_cgroup_subsys_id
,
9071 #endif /* CONFIG_CGROUP_SCHED */
9073 #ifdef CONFIG_CGROUP_CPUACCT
9076 * CPU accounting code for task groups.
9078 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9079 * (balbir@in.ibm.com).
9082 /* track cpu usage of a group of tasks */
9084 struct cgroup_subsys_state css
;
9085 /* cpuusage holds pointer to a u64-type object on every cpu */
9089 struct cgroup_subsys cpuacct_subsys
;
9091 /* return cpu accounting group corresponding to this container */
9092 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9094 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9095 struct cpuacct
, css
);
9098 /* return cpu accounting group to which this task belongs */
9099 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9101 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9102 struct cpuacct
, css
);
9105 /* create a new cpu accounting group */
9106 static struct cgroup_subsys_state
*cpuacct_create(
9107 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9109 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9112 return ERR_PTR(-ENOMEM
);
9114 ca
->cpuusage
= alloc_percpu(u64
);
9115 if (!ca
->cpuusage
) {
9117 return ERR_PTR(-ENOMEM
);
9123 /* destroy an existing cpu accounting group */
9125 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9127 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9129 free_percpu(ca
->cpuusage
);
9133 /* return total cpu usage (in nanoseconds) of a group */
9134 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9136 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9137 u64 totalcpuusage
= 0;
9140 for_each_possible_cpu(i
) {
9141 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9144 * Take rq->lock to make 64-bit addition safe on 32-bit
9147 spin_lock_irq(&cpu_rq(i
)->lock
);
9148 totalcpuusage
+= *cpuusage
;
9149 spin_unlock_irq(&cpu_rq(i
)->lock
);
9152 return totalcpuusage
;
9155 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9158 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9167 for_each_possible_cpu(i
) {
9168 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9170 spin_lock_irq(&cpu_rq(i
)->lock
);
9172 spin_unlock_irq(&cpu_rq(i
)->lock
);
9178 static struct cftype files
[] = {
9181 .read_u64
= cpuusage_read
,
9182 .write_u64
= cpuusage_write
,
9186 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9188 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9192 * charge this task's execution time to its accounting group.
9194 * called with rq->lock held.
9196 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9200 if (!cpuacct_subsys
.active
)
9205 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
9207 *cpuusage
+= cputime
;
9211 struct cgroup_subsys cpuacct_subsys
= {
9213 .create
= cpuacct_create
,
9214 .destroy
= cpuacct_destroy
,
9215 .populate
= cpuacct_populate
,
9216 .subsys_id
= cpuacct_subsys_id
,
9218 #endif /* CONFIG_CGROUP_CPUACCT */