perf trace: Switch to using a struct for the aumented_raw_syscalls syscalls map values
[linux/fpc-iii.git] / mm / shmem.c
blob5d07e0b1352f3f2c81081a0eae4fb772566d057c
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42 static struct vfsmount *shm_mnt;
44 #ifdef CONFIG_SHMEM
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
85 #include "internal.h"
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_mutex making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
101 struct shmem_falloc {
102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
112 return totalram_pages / 2;
115 static unsigned long shmem_default_max_inodes(void)
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119 #endif
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp,
126 gfp_t gfp, struct vm_area_struct *vma,
127 struct vm_fault *vmf, vm_fault_t *fault_type);
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130 struct page **pagep, enum sgp_type sgp)
132 return shmem_getpage_gfp(inode, index, pagep, sgp,
133 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
138 return sb->s_fs_info;
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
149 return (flags & VM_NORESERVE) ?
150 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
155 if (!(flags & VM_NORESERVE))
156 vm_unacct_memory(VM_ACCT(size));
159 static inline int shmem_reacct_size(unsigned long flags,
160 loff_t oldsize, loff_t newsize)
162 if (!(flags & VM_NORESERVE)) {
163 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164 return security_vm_enough_memory_mm(current->mm,
165 VM_ACCT(newsize) - VM_ACCT(oldsize));
166 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
169 return 0;
173 * ... whereas tmpfs objects are accounted incrementally as
174 * pages are allocated, in order to allow large sparse files.
175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
178 static inline int shmem_acct_block(unsigned long flags, long pages)
180 if (!(flags & VM_NORESERVE))
181 return 0;
183 return security_vm_enough_memory_mm(current->mm,
184 pages * VM_ACCT(PAGE_SIZE));
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
189 if (flags & VM_NORESERVE)
190 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
195 struct shmem_inode_info *info = SHMEM_I(inode);
196 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
198 if (shmem_acct_block(info->flags, pages))
199 return false;
201 if (sbinfo->max_blocks) {
202 if (percpu_counter_compare(&sbinfo->used_blocks,
203 sbinfo->max_blocks - pages) > 0)
204 goto unacct;
205 percpu_counter_add(&sbinfo->used_blocks, pages);
208 return true;
210 unacct:
211 shmem_unacct_blocks(info->flags, pages);
212 return false;
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 if (sbinfo->max_blocks)
221 percpu_counter_sub(&sbinfo->used_blocks, pages);
222 shmem_unacct_blocks(info->flags, pages);
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
234 bool vma_is_shmem(struct vm_area_struct *vma)
236 return vma->vm_ops == &shmem_vm_ops;
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
242 static int shmem_reserve_inode(struct super_block *sb)
244 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245 if (sbinfo->max_inodes) {
246 spin_lock(&sbinfo->stat_lock);
247 if (!sbinfo->free_inodes) {
248 spin_unlock(&sbinfo->stat_lock);
249 return -ENOSPC;
251 sbinfo->free_inodes--;
252 spin_unlock(&sbinfo->stat_lock);
254 return 0;
257 static void shmem_free_inode(struct super_block *sb)
259 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260 if (sbinfo->max_inodes) {
261 spin_lock(&sbinfo->stat_lock);
262 sbinfo->free_inodes++;
263 spin_unlock(&sbinfo->stat_lock);
268 * shmem_recalc_inode - recalculate the block usage of an inode
269 * @inode: inode to recalc
271 * We have to calculate the free blocks since the mm can drop
272 * undirtied hole pages behind our back.
274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 * It has to be called with the spinlock held.
279 static void shmem_recalc_inode(struct inode *inode)
281 struct shmem_inode_info *info = SHMEM_I(inode);
282 long freed;
284 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285 if (freed > 0) {
286 info->alloced -= freed;
287 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288 shmem_inode_unacct_blocks(inode, freed);
292 bool shmem_charge(struct inode *inode, long pages)
294 struct shmem_inode_info *info = SHMEM_I(inode);
295 unsigned long flags;
297 if (!shmem_inode_acct_block(inode, pages))
298 return false;
300 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
301 inode->i_mapping->nrpages += pages;
303 spin_lock_irqsave(&info->lock, flags);
304 info->alloced += pages;
305 inode->i_blocks += pages * BLOCKS_PER_PAGE;
306 shmem_recalc_inode(inode);
307 spin_unlock_irqrestore(&info->lock, flags);
309 return true;
312 void shmem_uncharge(struct inode *inode, long pages)
314 struct shmem_inode_info *info = SHMEM_I(inode);
315 unsigned long flags;
317 /* nrpages adjustment done by __delete_from_page_cache() or caller */
319 spin_lock_irqsave(&info->lock, flags);
320 info->alloced -= pages;
321 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
322 shmem_recalc_inode(inode);
323 spin_unlock_irqrestore(&info->lock, flags);
325 shmem_inode_unacct_blocks(inode, pages);
329 * Replace item expected in xarray by a new item, while holding xa_lock.
331 static int shmem_replace_entry(struct address_space *mapping,
332 pgoff_t index, void *expected, void *replacement)
334 XA_STATE(xas, &mapping->i_pages, index);
335 void *item;
337 VM_BUG_ON(!expected);
338 VM_BUG_ON(!replacement);
339 item = xas_load(&xas);
340 if (item != expected)
341 return -ENOENT;
342 xas_store(&xas, replacement);
343 return 0;
347 * Sometimes, before we decide whether to proceed or to fail, we must check
348 * that an entry was not already brought back from swap by a racing thread.
350 * Checking page is not enough: by the time a SwapCache page is locked, it
351 * might be reused, and again be SwapCache, using the same swap as before.
353 static bool shmem_confirm_swap(struct address_space *mapping,
354 pgoff_t index, swp_entry_t swap)
356 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
360 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
362 * SHMEM_HUGE_NEVER:
363 * disables huge pages for the mount;
364 * SHMEM_HUGE_ALWAYS:
365 * enables huge pages for the mount;
366 * SHMEM_HUGE_WITHIN_SIZE:
367 * only allocate huge pages if the page will be fully within i_size,
368 * also respect fadvise()/madvise() hints;
369 * SHMEM_HUGE_ADVISE:
370 * only allocate huge pages if requested with fadvise()/madvise();
373 #define SHMEM_HUGE_NEVER 0
374 #define SHMEM_HUGE_ALWAYS 1
375 #define SHMEM_HUGE_WITHIN_SIZE 2
376 #define SHMEM_HUGE_ADVISE 3
379 * Special values.
380 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
382 * SHMEM_HUGE_DENY:
383 * disables huge on shm_mnt and all mounts, for emergency use;
384 * SHMEM_HUGE_FORCE:
385 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
388 #define SHMEM_HUGE_DENY (-1)
389 #define SHMEM_HUGE_FORCE (-2)
391 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
392 /* ifdef here to avoid bloating shmem.o when not necessary */
394 static int shmem_huge __read_mostly;
396 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
397 static int shmem_parse_huge(const char *str)
399 if (!strcmp(str, "never"))
400 return SHMEM_HUGE_NEVER;
401 if (!strcmp(str, "always"))
402 return SHMEM_HUGE_ALWAYS;
403 if (!strcmp(str, "within_size"))
404 return SHMEM_HUGE_WITHIN_SIZE;
405 if (!strcmp(str, "advise"))
406 return SHMEM_HUGE_ADVISE;
407 if (!strcmp(str, "deny"))
408 return SHMEM_HUGE_DENY;
409 if (!strcmp(str, "force"))
410 return SHMEM_HUGE_FORCE;
411 return -EINVAL;
414 static const char *shmem_format_huge(int huge)
416 switch (huge) {
417 case SHMEM_HUGE_NEVER:
418 return "never";
419 case SHMEM_HUGE_ALWAYS:
420 return "always";
421 case SHMEM_HUGE_WITHIN_SIZE:
422 return "within_size";
423 case SHMEM_HUGE_ADVISE:
424 return "advise";
425 case SHMEM_HUGE_DENY:
426 return "deny";
427 case SHMEM_HUGE_FORCE:
428 return "force";
429 default:
430 VM_BUG_ON(1);
431 return "bad_val";
434 #endif
436 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
437 struct shrink_control *sc, unsigned long nr_to_split)
439 LIST_HEAD(list), *pos, *next;
440 LIST_HEAD(to_remove);
441 struct inode *inode;
442 struct shmem_inode_info *info;
443 struct page *page;
444 unsigned long batch = sc ? sc->nr_to_scan : 128;
445 int removed = 0, split = 0;
447 if (list_empty(&sbinfo->shrinklist))
448 return SHRINK_STOP;
450 spin_lock(&sbinfo->shrinklist_lock);
451 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
452 info = list_entry(pos, struct shmem_inode_info, shrinklist);
454 /* pin the inode */
455 inode = igrab(&info->vfs_inode);
457 /* inode is about to be evicted */
458 if (!inode) {
459 list_del_init(&info->shrinklist);
460 removed++;
461 goto next;
464 /* Check if there's anything to gain */
465 if (round_up(inode->i_size, PAGE_SIZE) ==
466 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
467 list_move(&info->shrinklist, &to_remove);
468 removed++;
469 goto next;
472 list_move(&info->shrinklist, &list);
473 next:
474 if (!--batch)
475 break;
477 spin_unlock(&sbinfo->shrinklist_lock);
479 list_for_each_safe(pos, next, &to_remove) {
480 info = list_entry(pos, struct shmem_inode_info, shrinklist);
481 inode = &info->vfs_inode;
482 list_del_init(&info->shrinklist);
483 iput(inode);
486 list_for_each_safe(pos, next, &list) {
487 int ret;
489 info = list_entry(pos, struct shmem_inode_info, shrinklist);
490 inode = &info->vfs_inode;
492 if (nr_to_split && split >= nr_to_split)
493 goto leave;
495 page = find_get_page(inode->i_mapping,
496 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
497 if (!page)
498 goto drop;
500 /* No huge page at the end of the file: nothing to split */
501 if (!PageTransHuge(page)) {
502 put_page(page);
503 goto drop;
507 * Leave the inode on the list if we failed to lock
508 * the page at this time.
510 * Waiting for the lock may lead to deadlock in the
511 * reclaim path.
513 if (!trylock_page(page)) {
514 put_page(page);
515 goto leave;
518 ret = split_huge_page(page);
519 unlock_page(page);
520 put_page(page);
522 /* If split failed leave the inode on the list */
523 if (ret)
524 goto leave;
526 split++;
527 drop:
528 list_del_init(&info->shrinklist);
529 removed++;
530 leave:
531 iput(inode);
534 spin_lock(&sbinfo->shrinklist_lock);
535 list_splice_tail(&list, &sbinfo->shrinklist);
536 sbinfo->shrinklist_len -= removed;
537 spin_unlock(&sbinfo->shrinklist_lock);
539 return split;
542 static long shmem_unused_huge_scan(struct super_block *sb,
543 struct shrink_control *sc)
545 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
547 if (!READ_ONCE(sbinfo->shrinklist_len))
548 return SHRINK_STOP;
550 return shmem_unused_huge_shrink(sbinfo, sc, 0);
553 static long shmem_unused_huge_count(struct super_block *sb,
554 struct shrink_control *sc)
556 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
557 return READ_ONCE(sbinfo->shrinklist_len);
559 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
561 #define shmem_huge SHMEM_HUGE_DENY
563 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
564 struct shrink_control *sc, unsigned long nr_to_split)
566 return 0;
568 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
570 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
572 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
573 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
574 shmem_huge != SHMEM_HUGE_DENY)
575 return true;
576 return false;
580 * Like add_to_page_cache_locked, but error if expected item has gone.
582 static int shmem_add_to_page_cache(struct page *page,
583 struct address_space *mapping,
584 pgoff_t index, void *expected, gfp_t gfp)
586 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
587 unsigned long i = 0;
588 unsigned long nr = 1UL << compound_order(page);
590 VM_BUG_ON_PAGE(PageTail(page), page);
591 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
592 VM_BUG_ON_PAGE(!PageLocked(page), page);
593 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
594 VM_BUG_ON(expected && PageTransHuge(page));
596 page_ref_add(page, nr);
597 page->mapping = mapping;
598 page->index = index;
600 do {
601 void *entry;
602 xas_lock_irq(&xas);
603 entry = xas_find_conflict(&xas);
604 if (entry != expected)
605 xas_set_err(&xas, -EEXIST);
606 xas_create_range(&xas);
607 if (xas_error(&xas))
608 goto unlock;
609 next:
610 xas_store(&xas, page + i);
611 if (++i < nr) {
612 xas_next(&xas);
613 goto next;
615 if (PageTransHuge(page)) {
616 count_vm_event(THP_FILE_ALLOC);
617 __inc_node_page_state(page, NR_SHMEM_THPS);
619 mapping->nrpages += nr;
620 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
621 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
622 unlock:
623 xas_unlock_irq(&xas);
624 } while (xas_nomem(&xas, gfp));
626 if (xas_error(&xas)) {
627 page->mapping = NULL;
628 page_ref_sub(page, nr);
629 return xas_error(&xas);
632 return 0;
636 * Like delete_from_page_cache, but substitutes swap for page.
638 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
640 struct address_space *mapping = page->mapping;
641 int error;
643 VM_BUG_ON_PAGE(PageCompound(page), page);
645 xa_lock_irq(&mapping->i_pages);
646 error = shmem_replace_entry(mapping, page->index, page, radswap);
647 page->mapping = NULL;
648 mapping->nrpages--;
649 __dec_node_page_state(page, NR_FILE_PAGES);
650 __dec_node_page_state(page, NR_SHMEM);
651 xa_unlock_irq(&mapping->i_pages);
652 put_page(page);
653 BUG_ON(error);
657 * Remove swap entry from page cache, free the swap and its page cache.
659 static int shmem_free_swap(struct address_space *mapping,
660 pgoff_t index, void *radswap)
662 void *old;
664 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
665 if (old != radswap)
666 return -ENOENT;
667 free_swap_and_cache(radix_to_swp_entry(radswap));
668 return 0;
672 * Determine (in bytes) how many of the shmem object's pages mapped by the
673 * given offsets are swapped out.
675 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
676 * as long as the inode doesn't go away and racy results are not a problem.
678 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
679 pgoff_t start, pgoff_t end)
681 XA_STATE(xas, &mapping->i_pages, start);
682 struct page *page;
683 unsigned long swapped = 0;
685 rcu_read_lock();
686 xas_for_each(&xas, page, end - 1) {
687 if (xas_retry(&xas, page))
688 continue;
689 if (xa_is_value(page))
690 swapped++;
692 if (need_resched()) {
693 xas_pause(&xas);
694 cond_resched_rcu();
698 rcu_read_unlock();
700 return swapped << PAGE_SHIFT;
704 * Determine (in bytes) how many of the shmem object's pages mapped by the
705 * given vma is swapped out.
707 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
708 * as long as the inode doesn't go away and racy results are not a problem.
710 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
712 struct inode *inode = file_inode(vma->vm_file);
713 struct shmem_inode_info *info = SHMEM_I(inode);
714 struct address_space *mapping = inode->i_mapping;
715 unsigned long swapped;
717 /* Be careful as we don't hold info->lock */
718 swapped = READ_ONCE(info->swapped);
721 * The easier cases are when the shmem object has nothing in swap, or
722 * the vma maps it whole. Then we can simply use the stats that we
723 * already track.
725 if (!swapped)
726 return 0;
728 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
729 return swapped << PAGE_SHIFT;
731 /* Here comes the more involved part */
732 return shmem_partial_swap_usage(mapping,
733 linear_page_index(vma, vma->vm_start),
734 linear_page_index(vma, vma->vm_end));
738 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
740 void shmem_unlock_mapping(struct address_space *mapping)
742 struct pagevec pvec;
743 pgoff_t indices[PAGEVEC_SIZE];
744 pgoff_t index = 0;
746 pagevec_init(&pvec);
748 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
750 while (!mapping_unevictable(mapping)) {
752 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
753 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
755 pvec.nr = find_get_entries(mapping, index,
756 PAGEVEC_SIZE, pvec.pages, indices);
757 if (!pvec.nr)
758 break;
759 index = indices[pvec.nr - 1] + 1;
760 pagevec_remove_exceptionals(&pvec);
761 check_move_unevictable_pages(pvec.pages, pvec.nr);
762 pagevec_release(&pvec);
763 cond_resched();
768 * Remove range of pages and swap entries from page cache, and free them.
769 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
771 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
772 bool unfalloc)
774 struct address_space *mapping = inode->i_mapping;
775 struct shmem_inode_info *info = SHMEM_I(inode);
776 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
777 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
778 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
779 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
780 struct pagevec pvec;
781 pgoff_t indices[PAGEVEC_SIZE];
782 long nr_swaps_freed = 0;
783 pgoff_t index;
784 int i;
786 if (lend == -1)
787 end = -1; /* unsigned, so actually very big */
789 pagevec_init(&pvec);
790 index = start;
791 while (index < end) {
792 pvec.nr = find_get_entries(mapping, index,
793 min(end - index, (pgoff_t)PAGEVEC_SIZE),
794 pvec.pages, indices);
795 if (!pvec.nr)
796 break;
797 for (i = 0; i < pagevec_count(&pvec); i++) {
798 struct page *page = pvec.pages[i];
800 index = indices[i];
801 if (index >= end)
802 break;
804 if (xa_is_value(page)) {
805 if (unfalloc)
806 continue;
807 nr_swaps_freed += !shmem_free_swap(mapping,
808 index, page);
809 continue;
812 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
814 if (!trylock_page(page))
815 continue;
817 if (PageTransTail(page)) {
818 /* Middle of THP: zero out the page */
819 clear_highpage(page);
820 unlock_page(page);
821 continue;
822 } else if (PageTransHuge(page)) {
823 if (index == round_down(end, HPAGE_PMD_NR)) {
825 * Range ends in the middle of THP:
826 * zero out the page
828 clear_highpage(page);
829 unlock_page(page);
830 continue;
832 index += HPAGE_PMD_NR - 1;
833 i += HPAGE_PMD_NR - 1;
836 if (!unfalloc || !PageUptodate(page)) {
837 VM_BUG_ON_PAGE(PageTail(page), page);
838 if (page_mapping(page) == mapping) {
839 VM_BUG_ON_PAGE(PageWriteback(page), page);
840 truncate_inode_page(mapping, page);
843 unlock_page(page);
845 pagevec_remove_exceptionals(&pvec);
846 pagevec_release(&pvec);
847 cond_resched();
848 index++;
851 if (partial_start) {
852 struct page *page = NULL;
853 shmem_getpage(inode, start - 1, &page, SGP_READ);
854 if (page) {
855 unsigned int top = PAGE_SIZE;
856 if (start > end) {
857 top = partial_end;
858 partial_end = 0;
860 zero_user_segment(page, partial_start, top);
861 set_page_dirty(page);
862 unlock_page(page);
863 put_page(page);
866 if (partial_end) {
867 struct page *page = NULL;
868 shmem_getpage(inode, end, &page, SGP_READ);
869 if (page) {
870 zero_user_segment(page, 0, partial_end);
871 set_page_dirty(page);
872 unlock_page(page);
873 put_page(page);
876 if (start >= end)
877 return;
879 index = start;
880 while (index < end) {
881 cond_resched();
883 pvec.nr = find_get_entries(mapping, index,
884 min(end - index, (pgoff_t)PAGEVEC_SIZE),
885 pvec.pages, indices);
886 if (!pvec.nr) {
887 /* If all gone or hole-punch or unfalloc, we're done */
888 if (index == start || end != -1)
889 break;
890 /* But if truncating, restart to make sure all gone */
891 index = start;
892 continue;
894 for (i = 0; i < pagevec_count(&pvec); i++) {
895 struct page *page = pvec.pages[i];
897 index = indices[i];
898 if (index >= end)
899 break;
901 if (xa_is_value(page)) {
902 if (unfalloc)
903 continue;
904 if (shmem_free_swap(mapping, index, page)) {
905 /* Swap was replaced by page: retry */
906 index--;
907 break;
909 nr_swaps_freed++;
910 continue;
913 lock_page(page);
915 if (PageTransTail(page)) {
916 /* Middle of THP: zero out the page */
917 clear_highpage(page);
918 unlock_page(page);
920 * Partial thp truncate due 'start' in middle
921 * of THP: don't need to look on these pages
922 * again on !pvec.nr restart.
924 if (index != round_down(end, HPAGE_PMD_NR))
925 start++;
926 continue;
927 } else if (PageTransHuge(page)) {
928 if (index == round_down(end, HPAGE_PMD_NR)) {
930 * Range ends in the middle of THP:
931 * zero out the page
933 clear_highpage(page);
934 unlock_page(page);
935 continue;
937 index += HPAGE_PMD_NR - 1;
938 i += HPAGE_PMD_NR - 1;
941 if (!unfalloc || !PageUptodate(page)) {
942 VM_BUG_ON_PAGE(PageTail(page), page);
943 if (page_mapping(page) == mapping) {
944 VM_BUG_ON_PAGE(PageWriteback(page), page);
945 truncate_inode_page(mapping, page);
946 } else {
947 /* Page was replaced by swap: retry */
948 unlock_page(page);
949 index--;
950 break;
953 unlock_page(page);
955 pagevec_remove_exceptionals(&pvec);
956 pagevec_release(&pvec);
957 index++;
960 spin_lock_irq(&info->lock);
961 info->swapped -= nr_swaps_freed;
962 shmem_recalc_inode(inode);
963 spin_unlock_irq(&info->lock);
966 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
968 shmem_undo_range(inode, lstart, lend, false);
969 inode->i_ctime = inode->i_mtime = current_time(inode);
971 EXPORT_SYMBOL_GPL(shmem_truncate_range);
973 static int shmem_getattr(const struct path *path, struct kstat *stat,
974 u32 request_mask, unsigned int query_flags)
976 struct inode *inode = path->dentry->d_inode;
977 struct shmem_inode_info *info = SHMEM_I(inode);
978 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
980 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
981 spin_lock_irq(&info->lock);
982 shmem_recalc_inode(inode);
983 spin_unlock_irq(&info->lock);
985 generic_fillattr(inode, stat);
987 if (is_huge_enabled(sb_info))
988 stat->blksize = HPAGE_PMD_SIZE;
990 return 0;
993 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
995 struct inode *inode = d_inode(dentry);
996 struct shmem_inode_info *info = SHMEM_I(inode);
997 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
998 int error;
1000 error = setattr_prepare(dentry, attr);
1001 if (error)
1002 return error;
1004 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1005 loff_t oldsize = inode->i_size;
1006 loff_t newsize = attr->ia_size;
1008 /* protected by i_mutex */
1009 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1010 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1011 return -EPERM;
1013 if (newsize != oldsize) {
1014 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1015 oldsize, newsize);
1016 if (error)
1017 return error;
1018 i_size_write(inode, newsize);
1019 inode->i_ctime = inode->i_mtime = current_time(inode);
1021 if (newsize <= oldsize) {
1022 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1023 if (oldsize > holebegin)
1024 unmap_mapping_range(inode->i_mapping,
1025 holebegin, 0, 1);
1026 if (info->alloced)
1027 shmem_truncate_range(inode,
1028 newsize, (loff_t)-1);
1029 /* unmap again to remove racily COWed private pages */
1030 if (oldsize > holebegin)
1031 unmap_mapping_range(inode->i_mapping,
1032 holebegin, 0, 1);
1035 * Part of the huge page can be beyond i_size: subject
1036 * to shrink under memory pressure.
1038 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1039 spin_lock(&sbinfo->shrinklist_lock);
1041 * _careful to defend against unlocked access to
1042 * ->shrink_list in shmem_unused_huge_shrink()
1044 if (list_empty_careful(&info->shrinklist)) {
1045 list_add_tail(&info->shrinklist,
1046 &sbinfo->shrinklist);
1047 sbinfo->shrinklist_len++;
1049 spin_unlock(&sbinfo->shrinklist_lock);
1054 setattr_copy(inode, attr);
1055 if (attr->ia_valid & ATTR_MODE)
1056 error = posix_acl_chmod(inode, inode->i_mode);
1057 return error;
1060 static void shmem_evict_inode(struct inode *inode)
1062 struct shmem_inode_info *info = SHMEM_I(inode);
1063 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1065 if (inode->i_mapping->a_ops == &shmem_aops) {
1066 shmem_unacct_size(info->flags, inode->i_size);
1067 inode->i_size = 0;
1068 shmem_truncate_range(inode, 0, (loff_t)-1);
1069 if (!list_empty(&info->shrinklist)) {
1070 spin_lock(&sbinfo->shrinklist_lock);
1071 if (!list_empty(&info->shrinklist)) {
1072 list_del_init(&info->shrinklist);
1073 sbinfo->shrinklist_len--;
1075 spin_unlock(&sbinfo->shrinklist_lock);
1077 if (!list_empty(&info->swaplist)) {
1078 mutex_lock(&shmem_swaplist_mutex);
1079 list_del_init(&info->swaplist);
1080 mutex_unlock(&shmem_swaplist_mutex);
1084 simple_xattrs_free(&info->xattrs);
1085 WARN_ON(inode->i_blocks);
1086 shmem_free_inode(inode->i_sb);
1087 clear_inode(inode);
1090 static unsigned long find_swap_entry(struct xarray *xa, void *item)
1092 XA_STATE(xas, xa, 0);
1093 unsigned int checked = 0;
1094 void *entry;
1096 rcu_read_lock();
1097 xas_for_each(&xas, entry, ULONG_MAX) {
1098 if (xas_retry(&xas, entry))
1099 continue;
1100 if (entry == item)
1101 break;
1102 checked++;
1103 if ((checked % XA_CHECK_SCHED) != 0)
1104 continue;
1105 xas_pause(&xas);
1106 cond_resched_rcu();
1108 rcu_read_unlock();
1110 return entry ? xas.xa_index : -1;
1114 * If swap found in inode, free it and move page from swapcache to filecache.
1116 static int shmem_unuse_inode(struct shmem_inode_info *info,
1117 swp_entry_t swap, struct page **pagep)
1119 struct address_space *mapping = info->vfs_inode.i_mapping;
1120 void *radswap;
1121 pgoff_t index;
1122 gfp_t gfp;
1123 int error = 0;
1125 radswap = swp_to_radix_entry(swap);
1126 index = find_swap_entry(&mapping->i_pages, radswap);
1127 if (index == -1)
1128 return -EAGAIN; /* tell shmem_unuse we found nothing */
1131 * Move _head_ to start search for next from here.
1132 * But be careful: shmem_evict_inode checks list_empty without taking
1133 * mutex, and there's an instant in list_move_tail when info->swaplist
1134 * would appear empty, if it were the only one on shmem_swaplist.
1136 if (shmem_swaplist.next != &info->swaplist)
1137 list_move_tail(&shmem_swaplist, &info->swaplist);
1139 gfp = mapping_gfp_mask(mapping);
1140 if (shmem_should_replace_page(*pagep, gfp)) {
1141 mutex_unlock(&shmem_swaplist_mutex);
1142 error = shmem_replace_page(pagep, gfp, info, index);
1143 mutex_lock(&shmem_swaplist_mutex);
1145 * We needed to drop mutex to make that restrictive page
1146 * allocation, but the inode might have been freed while we
1147 * dropped it: although a racing shmem_evict_inode() cannot
1148 * complete without emptying the page cache, our page lock
1149 * on this swapcache page is not enough to prevent that -
1150 * free_swap_and_cache() of our swap entry will only
1151 * trylock_page(), removing swap from page cache whatever.
1153 * We must not proceed to shmem_add_to_page_cache() if the
1154 * inode has been freed, but of course we cannot rely on
1155 * inode or mapping or info to check that. However, we can
1156 * safely check if our swap entry is still in use (and here
1157 * it can't have got reused for another page): if it's still
1158 * in use, then the inode cannot have been freed yet, and we
1159 * can safely proceed (if it's no longer in use, that tells
1160 * nothing about the inode, but we don't need to unuse swap).
1162 if (!page_swapcount(*pagep))
1163 error = -ENOENT;
1167 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1168 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1169 * beneath us (pagelock doesn't help until the page is in pagecache).
1171 if (!error)
1172 error = shmem_add_to_page_cache(*pagep, mapping, index,
1173 radswap, gfp);
1174 if (error != -ENOMEM) {
1176 * Truncation and eviction use free_swap_and_cache(), which
1177 * only does trylock page: if we raced, best clean up here.
1179 delete_from_swap_cache(*pagep);
1180 set_page_dirty(*pagep);
1181 if (!error) {
1182 spin_lock_irq(&info->lock);
1183 info->swapped--;
1184 spin_unlock_irq(&info->lock);
1185 swap_free(swap);
1188 return error;
1192 * Search through swapped inodes to find and replace swap by page.
1194 int shmem_unuse(swp_entry_t swap, struct page *page)
1196 struct list_head *this, *next;
1197 struct shmem_inode_info *info;
1198 struct mem_cgroup *memcg;
1199 int error = 0;
1202 * There's a faint possibility that swap page was replaced before
1203 * caller locked it: caller will come back later with the right page.
1205 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1206 goto out;
1209 * Charge page using GFP_KERNEL while we can wait, before taking
1210 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1211 * Charged back to the user (not to caller) when swap account is used.
1213 error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1214 &memcg, false);
1215 if (error)
1216 goto out;
1217 /* No memory allocation: swap entry occupies the slot for the page */
1218 error = -EAGAIN;
1220 mutex_lock(&shmem_swaplist_mutex);
1221 list_for_each_safe(this, next, &shmem_swaplist) {
1222 info = list_entry(this, struct shmem_inode_info, swaplist);
1223 if (info->swapped)
1224 error = shmem_unuse_inode(info, swap, &page);
1225 else
1226 list_del_init(&info->swaplist);
1227 cond_resched();
1228 if (error != -EAGAIN)
1229 break;
1230 /* found nothing in this: move on to search the next */
1232 mutex_unlock(&shmem_swaplist_mutex);
1234 if (error) {
1235 if (error != -ENOMEM)
1236 error = 0;
1237 mem_cgroup_cancel_charge(page, memcg, false);
1238 } else
1239 mem_cgroup_commit_charge(page, memcg, true, false);
1240 out:
1241 unlock_page(page);
1242 put_page(page);
1243 return error;
1247 * Move the page from the page cache to the swap cache.
1249 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1251 struct shmem_inode_info *info;
1252 struct address_space *mapping;
1253 struct inode *inode;
1254 swp_entry_t swap;
1255 pgoff_t index;
1257 VM_BUG_ON_PAGE(PageCompound(page), page);
1258 BUG_ON(!PageLocked(page));
1259 mapping = page->mapping;
1260 index = page->index;
1261 inode = mapping->host;
1262 info = SHMEM_I(inode);
1263 if (info->flags & VM_LOCKED)
1264 goto redirty;
1265 if (!total_swap_pages)
1266 goto redirty;
1269 * Our capabilities prevent regular writeback or sync from ever calling
1270 * shmem_writepage; but a stacking filesystem might use ->writepage of
1271 * its underlying filesystem, in which case tmpfs should write out to
1272 * swap only in response to memory pressure, and not for the writeback
1273 * threads or sync.
1275 if (!wbc->for_reclaim) {
1276 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1277 goto redirty;
1281 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1282 * value into swapfile.c, the only way we can correctly account for a
1283 * fallocated page arriving here is now to initialize it and write it.
1285 * That's okay for a page already fallocated earlier, but if we have
1286 * not yet completed the fallocation, then (a) we want to keep track
1287 * of this page in case we have to undo it, and (b) it may not be a
1288 * good idea to continue anyway, once we're pushing into swap. So
1289 * reactivate the page, and let shmem_fallocate() quit when too many.
1291 if (!PageUptodate(page)) {
1292 if (inode->i_private) {
1293 struct shmem_falloc *shmem_falloc;
1294 spin_lock(&inode->i_lock);
1295 shmem_falloc = inode->i_private;
1296 if (shmem_falloc &&
1297 !shmem_falloc->waitq &&
1298 index >= shmem_falloc->start &&
1299 index < shmem_falloc->next)
1300 shmem_falloc->nr_unswapped++;
1301 else
1302 shmem_falloc = NULL;
1303 spin_unlock(&inode->i_lock);
1304 if (shmem_falloc)
1305 goto redirty;
1307 clear_highpage(page);
1308 flush_dcache_page(page);
1309 SetPageUptodate(page);
1312 swap = get_swap_page(page);
1313 if (!swap.val)
1314 goto redirty;
1317 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1318 * if it's not already there. Do it now before the page is
1319 * moved to swap cache, when its pagelock no longer protects
1320 * the inode from eviction. But don't unlock the mutex until
1321 * we've incremented swapped, because shmem_unuse_inode() will
1322 * prune a !swapped inode from the swaplist under this mutex.
1324 mutex_lock(&shmem_swaplist_mutex);
1325 if (list_empty(&info->swaplist))
1326 list_add_tail(&info->swaplist, &shmem_swaplist);
1328 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1329 spin_lock_irq(&info->lock);
1330 shmem_recalc_inode(inode);
1331 info->swapped++;
1332 spin_unlock_irq(&info->lock);
1334 swap_shmem_alloc(swap);
1335 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1337 mutex_unlock(&shmem_swaplist_mutex);
1338 BUG_ON(page_mapped(page));
1339 swap_writepage(page, wbc);
1340 return 0;
1343 mutex_unlock(&shmem_swaplist_mutex);
1344 put_swap_page(page, swap);
1345 redirty:
1346 set_page_dirty(page);
1347 if (wbc->for_reclaim)
1348 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1349 unlock_page(page);
1350 return 0;
1353 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1354 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1356 char buffer[64];
1358 if (!mpol || mpol->mode == MPOL_DEFAULT)
1359 return; /* show nothing */
1361 mpol_to_str(buffer, sizeof(buffer), mpol);
1363 seq_printf(seq, ",mpol=%s", buffer);
1366 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1368 struct mempolicy *mpol = NULL;
1369 if (sbinfo->mpol) {
1370 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1371 mpol = sbinfo->mpol;
1372 mpol_get(mpol);
1373 spin_unlock(&sbinfo->stat_lock);
1375 return mpol;
1377 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1378 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1381 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1383 return NULL;
1385 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1386 #ifndef CONFIG_NUMA
1387 #define vm_policy vm_private_data
1388 #endif
1390 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1391 struct shmem_inode_info *info, pgoff_t index)
1393 /* Create a pseudo vma that just contains the policy */
1394 vma_init(vma, NULL);
1395 /* Bias interleave by inode number to distribute better across nodes */
1396 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1397 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1400 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1402 /* Drop reference taken by mpol_shared_policy_lookup() */
1403 mpol_cond_put(vma->vm_policy);
1406 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1407 struct shmem_inode_info *info, pgoff_t index)
1409 struct vm_area_struct pvma;
1410 struct page *page;
1411 struct vm_fault vmf;
1413 shmem_pseudo_vma_init(&pvma, info, index);
1414 vmf.vma = &pvma;
1415 vmf.address = 0;
1416 page = swap_cluster_readahead(swap, gfp, &vmf);
1417 shmem_pseudo_vma_destroy(&pvma);
1419 return page;
1422 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1423 struct shmem_inode_info *info, pgoff_t index)
1425 struct vm_area_struct pvma;
1426 struct address_space *mapping = info->vfs_inode.i_mapping;
1427 pgoff_t hindex;
1428 struct page *page;
1430 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1431 return NULL;
1433 hindex = round_down(index, HPAGE_PMD_NR);
1434 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1435 XA_PRESENT))
1436 return NULL;
1438 shmem_pseudo_vma_init(&pvma, info, hindex);
1439 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1440 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1441 shmem_pseudo_vma_destroy(&pvma);
1442 if (page)
1443 prep_transhuge_page(page);
1444 return page;
1447 static struct page *shmem_alloc_page(gfp_t gfp,
1448 struct shmem_inode_info *info, pgoff_t index)
1450 struct vm_area_struct pvma;
1451 struct page *page;
1453 shmem_pseudo_vma_init(&pvma, info, index);
1454 page = alloc_page_vma(gfp, &pvma, 0);
1455 shmem_pseudo_vma_destroy(&pvma);
1457 return page;
1460 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1461 struct inode *inode,
1462 pgoff_t index, bool huge)
1464 struct shmem_inode_info *info = SHMEM_I(inode);
1465 struct page *page;
1466 int nr;
1467 int err = -ENOSPC;
1469 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1470 huge = false;
1471 nr = huge ? HPAGE_PMD_NR : 1;
1473 if (!shmem_inode_acct_block(inode, nr))
1474 goto failed;
1476 if (huge)
1477 page = shmem_alloc_hugepage(gfp, info, index);
1478 else
1479 page = shmem_alloc_page(gfp, info, index);
1480 if (page) {
1481 __SetPageLocked(page);
1482 __SetPageSwapBacked(page);
1483 return page;
1486 err = -ENOMEM;
1487 shmem_inode_unacct_blocks(inode, nr);
1488 failed:
1489 return ERR_PTR(err);
1493 * When a page is moved from swapcache to shmem filecache (either by the
1494 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1495 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1496 * ignorance of the mapping it belongs to. If that mapping has special
1497 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1498 * we may need to copy to a suitable page before moving to filecache.
1500 * In a future release, this may well be extended to respect cpuset and
1501 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1502 * but for now it is a simple matter of zone.
1504 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1506 return page_zonenum(page) > gfp_zone(gfp);
1509 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1510 struct shmem_inode_info *info, pgoff_t index)
1512 struct page *oldpage, *newpage;
1513 struct address_space *swap_mapping;
1514 swp_entry_t entry;
1515 pgoff_t swap_index;
1516 int error;
1518 oldpage = *pagep;
1519 entry.val = page_private(oldpage);
1520 swap_index = swp_offset(entry);
1521 swap_mapping = page_mapping(oldpage);
1524 * We have arrived here because our zones are constrained, so don't
1525 * limit chance of success by further cpuset and node constraints.
1527 gfp &= ~GFP_CONSTRAINT_MASK;
1528 newpage = shmem_alloc_page(gfp, info, index);
1529 if (!newpage)
1530 return -ENOMEM;
1532 get_page(newpage);
1533 copy_highpage(newpage, oldpage);
1534 flush_dcache_page(newpage);
1536 __SetPageLocked(newpage);
1537 __SetPageSwapBacked(newpage);
1538 SetPageUptodate(newpage);
1539 set_page_private(newpage, entry.val);
1540 SetPageSwapCache(newpage);
1543 * Our caller will very soon move newpage out of swapcache, but it's
1544 * a nice clean interface for us to replace oldpage by newpage there.
1546 xa_lock_irq(&swap_mapping->i_pages);
1547 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1548 if (!error) {
1549 __inc_node_page_state(newpage, NR_FILE_PAGES);
1550 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1552 xa_unlock_irq(&swap_mapping->i_pages);
1554 if (unlikely(error)) {
1556 * Is this possible? I think not, now that our callers check
1557 * both PageSwapCache and page_private after getting page lock;
1558 * but be defensive. Reverse old to newpage for clear and free.
1560 oldpage = newpage;
1561 } else {
1562 mem_cgroup_migrate(oldpage, newpage);
1563 lru_cache_add_anon(newpage);
1564 *pagep = newpage;
1567 ClearPageSwapCache(oldpage);
1568 set_page_private(oldpage, 0);
1570 unlock_page(oldpage);
1571 put_page(oldpage);
1572 put_page(oldpage);
1573 return error;
1577 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1579 * If we allocate a new one we do not mark it dirty. That's up to the
1580 * vm. If we swap it in we mark it dirty since we also free the swap
1581 * entry since a page cannot live in both the swap and page cache.
1583 * fault_mm and fault_type are only supplied by shmem_fault:
1584 * otherwise they are NULL.
1586 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1587 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1588 struct vm_area_struct *vma, struct vm_fault *vmf,
1589 vm_fault_t *fault_type)
1591 struct address_space *mapping = inode->i_mapping;
1592 struct shmem_inode_info *info = SHMEM_I(inode);
1593 struct shmem_sb_info *sbinfo;
1594 struct mm_struct *charge_mm;
1595 struct mem_cgroup *memcg;
1596 struct page *page;
1597 swp_entry_t swap;
1598 enum sgp_type sgp_huge = sgp;
1599 pgoff_t hindex = index;
1600 int error;
1601 int once = 0;
1602 int alloced = 0;
1604 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1605 return -EFBIG;
1606 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1607 sgp = SGP_CACHE;
1608 repeat:
1609 swap.val = 0;
1610 page = find_lock_entry(mapping, index);
1611 if (xa_is_value(page)) {
1612 swap = radix_to_swp_entry(page);
1613 page = NULL;
1616 if (sgp <= SGP_CACHE &&
1617 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1618 error = -EINVAL;
1619 goto unlock;
1622 if (page && sgp == SGP_WRITE)
1623 mark_page_accessed(page);
1625 /* fallocated page? */
1626 if (page && !PageUptodate(page)) {
1627 if (sgp != SGP_READ)
1628 goto clear;
1629 unlock_page(page);
1630 put_page(page);
1631 page = NULL;
1633 if (page || (sgp == SGP_READ && !swap.val)) {
1634 *pagep = page;
1635 return 0;
1639 * Fast cache lookup did not find it:
1640 * bring it back from swap or allocate.
1642 sbinfo = SHMEM_SB(inode->i_sb);
1643 charge_mm = vma ? vma->vm_mm : current->mm;
1645 if (swap.val) {
1646 /* Look it up and read it in.. */
1647 page = lookup_swap_cache(swap, NULL, 0);
1648 if (!page) {
1649 /* Or update major stats only when swapin succeeds?? */
1650 if (fault_type) {
1651 *fault_type |= VM_FAULT_MAJOR;
1652 count_vm_event(PGMAJFAULT);
1653 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1655 /* Here we actually start the io */
1656 page = shmem_swapin(swap, gfp, info, index);
1657 if (!page) {
1658 error = -ENOMEM;
1659 goto failed;
1663 /* We have to do this with page locked to prevent races */
1664 lock_page(page);
1665 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1666 !shmem_confirm_swap(mapping, index, swap)) {
1667 error = -EEXIST; /* try again */
1668 goto unlock;
1670 if (!PageUptodate(page)) {
1671 error = -EIO;
1672 goto failed;
1674 wait_on_page_writeback(page);
1676 if (shmem_should_replace_page(page, gfp)) {
1677 error = shmem_replace_page(&page, gfp, info, index);
1678 if (error)
1679 goto failed;
1682 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1683 false);
1684 if (!error) {
1685 error = shmem_add_to_page_cache(page, mapping, index,
1686 swp_to_radix_entry(swap), gfp);
1688 * We already confirmed swap under page lock, and make
1689 * no memory allocation here, so usually no possibility
1690 * of error; but free_swap_and_cache() only trylocks a
1691 * page, so it is just possible that the entry has been
1692 * truncated or holepunched since swap was confirmed.
1693 * shmem_undo_range() will have done some of the
1694 * unaccounting, now delete_from_swap_cache() will do
1695 * the rest.
1696 * Reset swap.val? No, leave it so "failed" goes back to
1697 * "repeat": reading a hole and writing should succeed.
1699 if (error) {
1700 mem_cgroup_cancel_charge(page, memcg, false);
1701 delete_from_swap_cache(page);
1704 if (error)
1705 goto failed;
1707 mem_cgroup_commit_charge(page, memcg, true, false);
1709 spin_lock_irq(&info->lock);
1710 info->swapped--;
1711 shmem_recalc_inode(inode);
1712 spin_unlock_irq(&info->lock);
1714 if (sgp == SGP_WRITE)
1715 mark_page_accessed(page);
1717 delete_from_swap_cache(page);
1718 set_page_dirty(page);
1719 swap_free(swap);
1721 } else {
1722 if (vma && userfaultfd_missing(vma)) {
1723 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1724 return 0;
1727 /* shmem_symlink() */
1728 if (mapping->a_ops != &shmem_aops)
1729 goto alloc_nohuge;
1730 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1731 goto alloc_nohuge;
1732 if (shmem_huge == SHMEM_HUGE_FORCE)
1733 goto alloc_huge;
1734 switch (sbinfo->huge) {
1735 loff_t i_size;
1736 pgoff_t off;
1737 case SHMEM_HUGE_NEVER:
1738 goto alloc_nohuge;
1739 case SHMEM_HUGE_WITHIN_SIZE:
1740 off = round_up(index, HPAGE_PMD_NR);
1741 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1742 if (i_size >= HPAGE_PMD_SIZE &&
1743 i_size >> PAGE_SHIFT >= off)
1744 goto alloc_huge;
1745 /* fallthrough */
1746 case SHMEM_HUGE_ADVISE:
1747 if (sgp_huge == SGP_HUGE)
1748 goto alloc_huge;
1749 /* TODO: implement fadvise() hints */
1750 goto alloc_nohuge;
1753 alloc_huge:
1754 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1755 if (IS_ERR(page)) {
1756 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1757 index, false);
1759 if (IS_ERR(page)) {
1760 int retry = 5;
1761 error = PTR_ERR(page);
1762 page = NULL;
1763 if (error != -ENOSPC)
1764 goto failed;
1766 * Try to reclaim some spece by splitting a huge page
1767 * beyond i_size on the filesystem.
1769 while (retry--) {
1770 int ret;
1771 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1772 if (ret == SHRINK_STOP)
1773 break;
1774 if (ret)
1775 goto alloc_nohuge;
1777 goto failed;
1780 if (PageTransHuge(page))
1781 hindex = round_down(index, HPAGE_PMD_NR);
1782 else
1783 hindex = index;
1785 if (sgp == SGP_WRITE)
1786 __SetPageReferenced(page);
1788 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1789 PageTransHuge(page));
1790 if (error)
1791 goto unacct;
1792 error = shmem_add_to_page_cache(page, mapping, hindex,
1793 NULL, gfp & GFP_RECLAIM_MASK);
1794 if (error) {
1795 mem_cgroup_cancel_charge(page, memcg,
1796 PageTransHuge(page));
1797 goto unacct;
1799 mem_cgroup_commit_charge(page, memcg, false,
1800 PageTransHuge(page));
1801 lru_cache_add_anon(page);
1803 spin_lock_irq(&info->lock);
1804 info->alloced += 1 << compound_order(page);
1805 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1806 shmem_recalc_inode(inode);
1807 spin_unlock_irq(&info->lock);
1808 alloced = true;
1810 if (PageTransHuge(page) &&
1811 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1812 hindex + HPAGE_PMD_NR - 1) {
1814 * Part of the huge page is beyond i_size: subject
1815 * to shrink under memory pressure.
1817 spin_lock(&sbinfo->shrinklist_lock);
1819 * _careful to defend against unlocked access to
1820 * ->shrink_list in shmem_unused_huge_shrink()
1822 if (list_empty_careful(&info->shrinklist)) {
1823 list_add_tail(&info->shrinklist,
1824 &sbinfo->shrinklist);
1825 sbinfo->shrinklist_len++;
1827 spin_unlock(&sbinfo->shrinklist_lock);
1831 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1833 if (sgp == SGP_FALLOC)
1834 sgp = SGP_WRITE;
1835 clear:
1837 * Let SGP_WRITE caller clear ends if write does not fill page;
1838 * but SGP_FALLOC on a page fallocated earlier must initialize
1839 * it now, lest undo on failure cancel our earlier guarantee.
1841 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1842 struct page *head = compound_head(page);
1843 int i;
1845 for (i = 0; i < (1 << compound_order(head)); i++) {
1846 clear_highpage(head + i);
1847 flush_dcache_page(head + i);
1849 SetPageUptodate(head);
1853 /* Perhaps the file has been truncated since we checked */
1854 if (sgp <= SGP_CACHE &&
1855 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1856 if (alloced) {
1857 ClearPageDirty(page);
1858 delete_from_page_cache(page);
1859 spin_lock_irq(&info->lock);
1860 shmem_recalc_inode(inode);
1861 spin_unlock_irq(&info->lock);
1863 error = -EINVAL;
1864 goto unlock;
1866 *pagep = page + index - hindex;
1867 return 0;
1870 * Error recovery.
1872 unacct:
1873 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1875 if (PageTransHuge(page)) {
1876 unlock_page(page);
1877 put_page(page);
1878 goto alloc_nohuge;
1880 failed:
1881 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1882 error = -EEXIST;
1883 unlock:
1884 if (page) {
1885 unlock_page(page);
1886 put_page(page);
1888 if (error == -ENOSPC && !once++) {
1889 spin_lock_irq(&info->lock);
1890 shmem_recalc_inode(inode);
1891 spin_unlock_irq(&info->lock);
1892 goto repeat;
1894 if (error == -EEXIST)
1895 goto repeat;
1896 return error;
1900 * This is like autoremove_wake_function, but it removes the wait queue
1901 * entry unconditionally - even if something else had already woken the
1902 * target.
1904 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1906 int ret = default_wake_function(wait, mode, sync, key);
1907 list_del_init(&wait->entry);
1908 return ret;
1911 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1913 struct vm_area_struct *vma = vmf->vma;
1914 struct inode *inode = file_inode(vma->vm_file);
1915 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1916 enum sgp_type sgp;
1917 int err;
1918 vm_fault_t ret = VM_FAULT_LOCKED;
1921 * Trinity finds that probing a hole which tmpfs is punching can
1922 * prevent the hole-punch from ever completing: which in turn
1923 * locks writers out with its hold on i_mutex. So refrain from
1924 * faulting pages into the hole while it's being punched. Although
1925 * shmem_undo_range() does remove the additions, it may be unable to
1926 * keep up, as each new page needs its own unmap_mapping_range() call,
1927 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1929 * It does not matter if we sometimes reach this check just before the
1930 * hole-punch begins, so that one fault then races with the punch:
1931 * we just need to make racing faults a rare case.
1933 * The implementation below would be much simpler if we just used a
1934 * standard mutex or completion: but we cannot take i_mutex in fault,
1935 * and bloating every shmem inode for this unlikely case would be sad.
1937 if (unlikely(inode->i_private)) {
1938 struct shmem_falloc *shmem_falloc;
1940 spin_lock(&inode->i_lock);
1941 shmem_falloc = inode->i_private;
1942 if (shmem_falloc &&
1943 shmem_falloc->waitq &&
1944 vmf->pgoff >= shmem_falloc->start &&
1945 vmf->pgoff < shmem_falloc->next) {
1946 wait_queue_head_t *shmem_falloc_waitq;
1947 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1949 ret = VM_FAULT_NOPAGE;
1950 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1951 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1952 /* It's polite to up mmap_sem if we can */
1953 up_read(&vma->vm_mm->mmap_sem);
1954 ret = VM_FAULT_RETRY;
1957 shmem_falloc_waitq = shmem_falloc->waitq;
1958 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1959 TASK_UNINTERRUPTIBLE);
1960 spin_unlock(&inode->i_lock);
1961 schedule();
1964 * shmem_falloc_waitq points into the shmem_fallocate()
1965 * stack of the hole-punching task: shmem_falloc_waitq
1966 * is usually invalid by the time we reach here, but
1967 * finish_wait() does not dereference it in that case;
1968 * though i_lock needed lest racing with wake_up_all().
1970 spin_lock(&inode->i_lock);
1971 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1972 spin_unlock(&inode->i_lock);
1973 return ret;
1975 spin_unlock(&inode->i_lock);
1978 sgp = SGP_CACHE;
1980 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1981 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1982 sgp = SGP_NOHUGE;
1983 else if (vma->vm_flags & VM_HUGEPAGE)
1984 sgp = SGP_HUGE;
1986 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1987 gfp, vma, vmf, &ret);
1988 if (err)
1989 return vmf_error(err);
1990 return ret;
1993 unsigned long shmem_get_unmapped_area(struct file *file,
1994 unsigned long uaddr, unsigned long len,
1995 unsigned long pgoff, unsigned long flags)
1997 unsigned long (*get_area)(struct file *,
1998 unsigned long, unsigned long, unsigned long, unsigned long);
1999 unsigned long addr;
2000 unsigned long offset;
2001 unsigned long inflated_len;
2002 unsigned long inflated_addr;
2003 unsigned long inflated_offset;
2005 if (len > TASK_SIZE)
2006 return -ENOMEM;
2008 get_area = current->mm->get_unmapped_area;
2009 addr = get_area(file, uaddr, len, pgoff, flags);
2011 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2012 return addr;
2013 if (IS_ERR_VALUE(addr))
2014 return addr;
2015 if (addr & ~PAGE_MASK)
2016 return addr;
2017 if (addr > TASK_SIZE - len)
2018 return addr;
2020 if (shmem_huge == SHMEM_HUGE_DENY)
2021 return addr;
2022 if (len < HPAGE_PMD_SIZE)
2023 return addr;
2024 if (flags & MAP_FIXED)
2025 return addr;
2027 * Our priority is to support MAP_SHARED mapped hugely;
2028 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2029 * But if caller specified an address hint, respect that as before.
2031 if (uaddr)
2032 return addr;
2034 if (shmem_huge != SHMEM_HUGE_FORCE) {
2035 struct super_block *sb;
2037 if (file) {
2038 VM_BUG_ON(file->f_op != &shmem_file_operations);
2039 sb = file_inode(file)->i_sb;
2040 } else {
2042 * Called directly from mm/mmap.c, or drivers/char/mem.c
2043 * for "/dev/zero", to create a shared anonymous object.
2045 if (IS_ERR(shm_mnt))
2046 return addr;
2047 sb = shm_mnt->mnt_sb;
2049 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2050 return addr;
2053 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2054 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2055 return addr;
2056 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2057 return addr;
2059 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2060 if (inflated_len > TASK_SIZE)
2061 return addr;
2062 if (inflated_len < len)
2063 return addr;
2065 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2066 if (IS_ERR_VALUE(inflated_addr))
2067 return addr;
2068 if (inflated_addr & ~PAGE_MASK)
2069 return addr;
2071 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2072 inflated_addr += offset - inflated_offset;
2073 if (inflated_offset > offset)
2074 inflated_addr += HPAGE_PMD_SIZE;
2076 if (inflated_addr > TASK_SIZE - len)
2077 return addr;
2078 return inflated_addr;
2081 #ifdef CONFIG_NUMA
2082 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2084 struct inode *inode = file_inode(vma->vm_file);
2085 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2088 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2089 unsigned long addr)
2091 struct inode *inode = file_inode(vma->vm_file);
2092 pgoff_t index;
2094 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2095 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2097 #endif
2099 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2101 struct inode *inode = file_inode(file);
2102 struct shmem_inode_info *info = SHMEM_I(inode);
2103 int retval = -ENOMEM;
2105 spin_lock_irq(&info->lock);
2106 if (lock && !(info->flags & VM_LOCKED)) {
2107 if (!user_shm_lock(inode->i_size, user))
2108 goto out_nomem;
2109 info->flags |= VM_LOCKED;
2110 mapping_set_unevictable(file->f_mapping);
2112 if (!lock && (info->flags & VM_LOCKED) && user) {
2113 user_shm_unlock(inode->i_size, user);
2114 info->flags &= ~VM_LOCKED;
2115 mapping_clear_unevictable(file->f_mapping);
2117 retval = 0;
2119 out_nomem:
2120 spin_unlock_irq(&info->lock);
2121 return retval;
2124 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2126 file_accessed(file);
2127 vma->vm_ops = &shmem_vm_ops;
2128 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2129 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2130 (vma->vm_end & HPAGE_PMD_MASK)) {
2131 khugepaged_enter(vma, vma->vm_flags);
2133 return 0;
2136 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2137 umode_t mode, dev_t dev, unsigned long flags)
2139 struct inode *inode;
2140 struct shmem_inode_info *info;
2141 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2143 if (shmem_reserve_inode(sb))
2144 return NULL;
2146 inode = new_inode(sb);
2147 if (inode) {
2148 inode->i_ino = get_next_ino();
2149 inode_init_owner(inode, dir, mode);
2150 inode->i_blocks = 0;
2151 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2152 inode->i_generation = prandom_u32();
2153 info = SHMEM_I(inode);
2154 memset(info, 0, (char *)inode - (char *)info);
2155 spin_lock_init(&info->lock);
2156 info->seals = F_SEAL_SEAL;
2157 info->flags = flags & VM_NORESERVE;
2158 INIT_LIST_HEAD(&info->shrinklist);
2159 INIT_LIST_HEAD(&info->swaplist);
2160 simple_xattrs_init(&info->xattrs);
2161 cache_no_acl(inode);
2163 switch (mode & S_IFMT) {
2164 default:
2165 inode->i_op = &shmem_special_inode_operations;
2166 init_special_inode(inode, mode, dev);
2167 break;
2168 case S_IFREG:
2169 inode->i_mapping->a_ops = &shmem_aops;
2170 inode->i_op = &shmem_inode_operations;
2171 inode->i_fop = &shmem_file_operations;
2172 mpol_shared_policy_init(&info->policy,
2173 shmem_get_sbmpol(sbinfo));
2174 break;
2175 case S_IFDIR:
2176 inc_nlink(inode);
2177 /* Some things misbehave if size == 0 on a directory */
2178 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2179 inode->i_op = &shmem_dir_inode_operations;
2180 inode->i_fop = &simple_dir_operations;
2181 break;
2182 case S_IFLNK:
2184 * Must not load anything in the rbtree,
2185 * mpol_free_shared_policy will not be called.
2187 mpol_shared_policy_init(&info->policy, NULL);
2188 break;
2191 lockdep_annotate_inode_mutex_key(inode);
2192 } else
2193 shmem_free_inode(sb);
2194 return inode;
2197 bool shmem_mapping(struct address_space *mapping)
2199 return mapping->a_ops == &shmem_aops;
2202 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2203 pmd_t *dst_pmd,
2204 struct vm_area_struct *dst_vma,
2205 unsigned long dst_addr,
2206 unsigned long src_addr,
2207 bool zeropage,
2208 struct page **pagep)
2210 struct inode *inode = file_inode(dst_vma->vm_file);
2211 struct shmem_inode_info *info = SHMEM_I(inode);
2212 struct address_space *mapping = inode->i_mapping;
2213 gfp_t gfp = mapping_gfp_mask(mapping);
2214 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2215 struct mem_cgroup *memcg;
2216 spinlock_t *ptl;
2217 void *page_kaddr;
2218 struct page *page;
2219 pte_t _dst_pte, *dst_pte;
2220 int ret;
2221 pgoff_t offset, max_off;
2223 ret = -ENOMEM;
2224 if (!shmem_inode_acct_block(inode, 1))
2225 goto out;
2227 if (!*pagep) {
2228 page = shmem_alloc_page(gfp, info, pgoff);
2229 if (!page)
2230 goto out_unacct_blocks;
2232 if (!zeropage) { /* mcopy_atomic */
2233 page_kaddr = kmap_atomic(page);
2234 ret = copy_from_user(page_kaddr,
2235 (const void __user *)src_addr,
2236 PAGE_SIZE);
2237 kunmap_atomic(page_kaddr);
2239 /* fallback to copy_from_user outside mmap_sem */
2240 if (unlikely(ret)) {
2241 *pagep = page;
2242 shmem_inode_unacct_blocks(inode, 1);
2243 /* don't free the page */
2244 return -ENOENT;
2246 } else { /* mfill_zeropage_atomic */
2247 clear_highpage(page);
2249 } else {
2250 page = *pagep;
2251 *pagep = NULL;
2254 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2255 __SetPageLocked(page);
2256 __SetPageSwapBacked(page);
2257 __SetPageUptodate(page);
2259 ret = -EFAULT;
2260 offset = linear_page_index(dst_vma, dst_addr);
2261 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2262 if (unlikely(offset >= max_off))
2263 goto out_release;
2265 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2266 if (ret)
2267 goto out_release;
2269 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2270 gfp & GFP_RECLAIM_MASK);
2271 if (ret)
2272 goto out_release_uncharge;
2274 mem_cgroup_commit_charge(page, memcg, false, false);
2276 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2277 if (dst_vma->vm_flags & VM_WRITE)
2278 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2279 else {
2281 * We don't set the pte dirty if the vma has no
2282 * VM_WRITE permission, so mark the page dirty or it
2283 * could be freed from under us. We could do it
2284 * unconditionally before unlock_page(), but doing it
2285 * only if VM_WRITE is not set is faster.
2287 set_page_dirty(page);
2290 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2292 ret = -EFAULT;
2293 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2294 if (unlikely(offset >= max_off))
2295 goto out_release_uncharge_unlock;
2297 ret = -EEXIST;
2298 if (!pte_none(*dst_pte))
2299 goto out_release_uncharge_unlock;
2301 lru_cache_add_anon(page);
2303 spin_lock(&info->lock);
2304 info->alloced++;
2305 inode->i_blocks += BLOCKS_PER_PAGE;
2306 shmem_recalc_inode(inode);
2307 spin_unlock(&info->lock);
2309 inc_mm_counter(dst_mm, mm_counter_file(page));
2310 page_add_file_rmap(page, false);
2311 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2313 /* No need to invalidate - it was non-present before */
2314 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2315 pte_unmap_unlock(dst_pte, ptl);
2316 unlock_page(page);
2317 ret = 0;
2318 out:
2319 return ret;
2320 out_release_uncharge_unlock:
2321 pte_unmap_unlock(dst_pte, ptl);
2322 ClearPageDirty(page);
2323 delete_from_page_cache(page);
2324 out_release_uncharge:
2325 mem_cgroup_cancel_charge(page, memcg, false);
2326 out_release:
2327 unlock_page(page);
2328 put_page(page);
2329 out_unacct_blocks:
2330 shmem_inode_unacct_blocks(inode, 1);
2331 goto out;
2334 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2335 pmd_t *dst_pmd,
2336 struct vm_area_struct *dst_vma,
2337 unsigned long dst_addr,
2338 unsigned long src_addr,
2339 struct page **pagep)
2341 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2342 dst_addr, src_addr, false, pagep);
2345 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2346 pmd_t *dst_pmd,
2347 struct vm_area_struct *dst_vma,
2348 unsigned long dst_addr)
2350 struct page *page = NULL;
2352 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2353 dst_addr, 0, true, &page);
2356 #ifdef CONFIG_TMPFS
2357 static const struct inode_operations shmem_symlink_inode_operations;
2358 static const struct inode_operations shmem_short_symlink_operations;
2360 #ifdef CONFIG_TMPFS_XATTR
2361 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2362 #else
2363 #define shmem_initxattrs NULL
2364 #endif
2366 static int
2367 shmem_write_begin(struct file *file, struct address_space *mapping,
2368 loff_t pos, unsigned len, unsigned flags,
2369 struct page **pagep, void **fsdata)
2371 struct inode *inode = mapping->host;
2372 struct shmem_inode_info *info = SHMEM_I(inode);
2373 pgoff_t index = pos >> PAGE_SHIFT;
2375 /* i_mutex is held by caller */
2376 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2377 if (info->seals & F_SEAL_WRITE)
2378 return -EPERM;
2379 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2380 return -EPERM;
2383 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2386 static int
2387 shmem_write_end(struct file *file, struct address_space *mapping,
2388 loff_t pos, unsigned len, unsigned copied,
2389 struct page *page, void *fsdata)
2391 struct inode *inode = mapping->host;
2393 if (pos + copied > inode->i_size)
2394 i_size_write(inode, pos + copied);
2396 if (!PageUptodate(page)) {
2397 struct page *head = compound_head(page);
2398 if (PageTransCompound(page)) {
2399 int i;
2401 for (i = 0; i < HPAGE_PMD_NR; i++) {
2402 if (head + i == page)
2403 continue;
2404 clear_highpage(head + i);
2405 flush_dcache_page(head + i);
2408 if (copied < PAGE_SIZE) {
2409 unsigned from = pos & (PAGE_SIZE - 1);
2410 zero_user_segments(page, 0, from,
2411 from + copied, PAGE_SIZE);
2413 SetPageUptodate(head);
2415 set_page_dirty(page);
2416 unlock_page(page);
2417 put_page(page);
2419 return copied;
2422 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2424 struct file *file = iocb->ki_filp;
2425 struct inode *inode = file_inode(file);
2426 struct address_space *mapping = inode->i_mapping;
2427 pgoff_t index;
2428 unsigned long offset;
2429 enum sgp_type sgp = SGP_READ;
2430 int error = 0;
2431 ssize_t retval = 0;
2432 loff_t *ppos = &iocb->ki_pos;
2435 * Might this read be for a stacking filesystem? Then when reading
2436 * holes of a sparse file, we actually need to allocate those pages,
2437 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2439 if (!iter_is_iovec(to))
2440 sgp = SGP_CACHE;
2442 index = *ppos >> PAGE_SHIFT;
2443 offset = *ppos & ~PAGE_MASK;
2445 for (;;) {
2446 struct page *page = NULL;
2447 pgoff_t end_index;
2448 unsigned long nr, ret;
2449 loff_t i_size = i_size_read(inode);
2451 end_index = i_size >> PAGE_SHIFT;
2452 if (index > end_index)
2453 break;
2454 if (index == end_index) {
2455 nr = i_size & ~PAGE_MASK;
2456 if (nr <= offset)
2457 break;
2460 error = shmem_getpage(inode, index, &page, sgp);
2461 if (error) {
2462 if (error == -EINVAL)
2463 error = 0;
2464 break;
2466 if (page) {
2467 if (sgp == SGP_CACHE)
2468 set_page_dirty(page);
2469 unlock_page(page);
2473 * We must evaluate after, since reads (unlike writes)
2474 * are called without i_mutex protection against truncate
2476 nr = PAGE_SIZE;
2477 i_size = i_size_read(inode);
2478 end_index = i_size >> PAGE_SHIFT;
2479 if (index == end_index) {
2480 nr = i_size & ~PAGE_MASK;
2481 if (nr <= offset) {
2482 if (page)
2483 put_page(page);
2484 break;
2487 nr -= offset;
2489 if (page) {
2491 * If users can be writing to this page using arbitrary
2492 * virtual addresses, take care about potential aliasing
2493 * before reading the page on the kernel side.
2495 if (mapping_writably_mapped(mapping))
2496 flush_dcache_page(page);
2498 * Mark the page accessed if we read the beginning.
2500 if (!offset)
2501 mark_page_accessed(page);
2502 } else {
2503 page = ZERO_PAGE(0);
2504 get_page(page);
2508 * Ok, we have the page, and it's up-to-date, so
2509 * now we can copy it to user space...
2511 ret = copy_page_to_iter(page, offset, nr, to);
2512 retval += ret;
2513 offset += ret;
2514 index += offset >> PAGE_SHIFT;
2515 offset &= ~PAGE_MASK;
2517 put_page(page);
2518 if (!iov_iter_count(to))
2519 break;
2520 if (ret < nr) {
2521 error = -EFAULT;
2522 break;
2524 cond_resched();
2527 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2528 file_accessed(file);
2529 return retval ? retval : error;
2533 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2535 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2536 pgoff_t index, pgoff_t end, int whence)
2538 struct page *page;
2539 struct pagevec pvec;
2540 pgoff_t indices[PAGEVEC_SIZE];
2541 bool done = false;
2542 int i;
2544 pagevec_init(&pvec);
2545 pvec.nr = 1; /* start small: we may be there already */
2546 while (!done) {
2547 pvec.nr = find_get_entries(mapping, index,
2548 pvec.nr, pvec.pages, indices);
2549 if (!pvec.nr) {
2550 if (whence == SEEK_DATA)
2551 index = end;
2552 break;
2554 for (i = 0; i < pvec.nr; i++, index++) {
2555 if (index < indices[i]) {
2556 if (whence == SEEK_HOLE) {
2557 done = true;
2558 break;
2560 index = indices[i];
2562 page = pvec.pages[i];
2563 if (page && !xa_is_value(page)) {
2564 if (!PageUptodate(page))
2565 page = NULL;
2567 if (index >= end ||
2568 (page && whence == SEEK_DATA) ||
2569 (!page && whence == SEEK_HOLE)) {
2570 done = true;
2571 break;
2574 pagevec_remove_exceptionals(&pvec);
2575 pagevec_release(&pvec);
2576 pvec.nr = PAGEVEC_SIZE;
2577 cond_resched();
2579 return index;
2582 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2584 struct address_space *mapping = file->f_mapping;
2585 struct inode *inode = mapping->host;
2586 pgoff_t start, end;
2587 loff_t new_offset;
2589 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2590 return generic_file_llseek_size(file, offset, whence,
2591 MAX_LFS_FILESIZE, i_size_read(inode));
2592 inode_lock(inode);
2593 /* We're holding i_mutex so we can access i_size directly */
2595 if (offset < 0 || offset >= inode->i_size)
2596 offset = -ENXIO;
2597 else {
2598 start = offset >> PAGE_SHIFT;
2599 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2600 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2601 new_offset <<= PAGE_SHIFT;
2602 if (new_offset > offset) {
2603 if (new_offset < inode->i_size)
2604 offset = new_offset;
2605 else if (whence == SEEK_DATA)
2606 offset = -ENXIO;
2607 else
2608 offset = inode->i_size;
2612 if (offset >= 0)
2613 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2614 inode_unlock(inode);
2615 return offset;
2618 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2619 loff_t len)
2621 struct inode *inode = file_inode(file);
2622 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2623 struct shmem_inode_info *info = SHMEM_I(inode);
2624 struct shmem_falloc shmem_falloc;
2625 pgoff_t start, index, end;
2626 int error;
2628 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2629 return -EOPNOTSUPP;
2631 inode_lock(inode);
2633 if (mode & FALLOC_FL_PUNCH_HOLE) {
2634 struct address_space *mapping = file->f_mapping;
2635 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2636 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2637 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2639 /* protected by i_mutex */
2640 if (info->seals & F_SEAL_WRITE) {
2641 error = -EPERM;
2642 goto out;
2645 shmem_falloc.waitq = &shmem_falloc_waitq;
2646 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2647 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2648 spin_lock(&inode->i_lock);
2649 inode->i_private = &shmem_falloc;
2650 spin_unlock(&inode->i_lock);
2652 if ((u64)unmap_end > (u64)unmap_start)
2653 unmap_mapping_range(mapping, unmap_start,
2654 1 + unmap_end - unmap_start, 0);
2655 shmem_truncate_range(inode, offset, offset + len - 1);
2656 /* No need to unmap again: hole-punching leaves COWed pages */
2658 spin_lock(&inode->i_lock);
2659 inode->i_private = NULL;
2660 wake_up_all(&shmem_falloc_waitq);
2661 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2662 spin_unlock(&inode->i_lock);
2663 error = 0;
2664 goto out;
2667 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2668 error = inode_newsize_ok(inode, offset + len);
2669 if (error)
2670 goto out;
2672 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2673 error = -EPERM;
2674 goto out;
2677 start = offset >> PAGE_SHIFT;
2678 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2679 /* Try to avoid a swapstorm if len is impossible to satisfy */
2680 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2681 error = -ENOSPC;
2682 goto out;
2685 shmem_falloc.waitq = NULL;
2686 shmem_falloc.start = start;
2687 shmem_falloc.next = start;
2688 shmem_falloc.nr_falloced = 0;
2689 shmem_falloc.nr_unswapped = 0;
2690 spin_lock(&inode->i_lock);
2691 inode->i_private = &shmem_falloc;
2692 spin_unlock(&inode->i_lock);
2694 for (index = start; index < end; index++) {
2695 struct page *page;
2698 * Good, the fallocate(2) manpage permits EINTR: we may have
2699 * been interrupted because we are using up too much memory.
2701 if (signal_pending(current))
2702 error = -EINTR;
2703 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2704 error = -ENOMEM;
2705 else
2706 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2707 if (error) {
2708 /* Remove the !PageUptodate pages we added */
2709 if (index > start) {
2710 shmem_undo_range(inode,
2711 (loff_t)start << PAGE_SHIFT,
2712 ((loff_t)index << PAGE_SHIFT) - 1, true);
2714 goto undone;
2718 * Inform shmem_writepage() how far we have reached.
2719 * No need for lock or barrier: we have the page lock.
2721 shmem_falloc.next++;
2722 if (!PageUptodate(page))
2723 shmem_falloc.nr_falloced++;
2726 * If !PageUptodate, leave it that way so that freeable pages
2727 * can be recognized if we need to rollback on error later.
2728 * But set_page_dirty so that memory pressure will swap rather
2729 * than free the pages we are allocating (and SGP_CACHE pages
2730 * might still be clean: we now need to mark those dirty too).
2732 set_page_dirty(page);
2733 unlock_page(page);
2734 put_page(page);
2735 cond_resched();
2738 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2739 i_size_write(inode, offset + len);
2740 inode->i_ctime = current_time(inode);
2741 undone:
2742 spin_lock(&inode->i_lock);
2743 inode->i_private = NULL;
2744 spin_unlock(&inode->i_lock);
2745 out:
2746 inode_unlock(inode);
2747 return error;
2750 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2752 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2754 buf->f_type = TMPFS_MAGIC;
2755 buf->f_bsize = PAGE_SIZE;
2756 buf->f_namelen = NAME_MAX;
2757 if (sbinfo->max_blocks) {
2758 buf->f_blocks = sbinfo->max_blocks;
2759 buf->f_bavail =
2760 buf->f_bfree = sbinfo->max_blocks -
2761 percpu_counter_sum(&sbinfo->used_blocks);
2763 if (sbinfo->max_inodes) {
2764 buf->f_files = sbinfo->max_inodes;
2765 buf->f_ffree = sbinfo->free_inodes;
2767 /* else leave those fields 0 like simple_statfs */
2768 return 0;
2772 * File creation. Allocate an inode, and we're done..
2774 static int
2775 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2777 struct inode *inode;
2778 int error = -ENOSPC;
2780 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2781 if (inode) {
2782 error = simple_acl_create(dir, inode);
2783 if (error)
2784 goto out_iput;
2785 error = security_inode_init_security(inode, dir,
2786 &dentry->d_name,
2787 shmem_initxattrs, NULL);
2788 if (error && error != -EOPNOTSUPP)
2789 goto out_iput;
2791 error = 0;
2792 dir->i_size += BOGO_DIRENT_SIZE;
2793 dir->i_ctime = dir->i_mtime = current_time(dir);
2794 d_instantiate(dentry, inode);
2795 dget(dentry); /* Extra count - pin the dentry in core */
2797 return error;
2798 out_iput:
2799 iput(inode);
2800 return error;
2803 static int
2804 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2806 struct inode *inode;
2807 int error = -ENOSPC;
2809 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2810 if (inode) {
2811 error = security_inode_init_security(inode, dir,
2812 NULL,
2813 shmem_initxattrs, NULL);
2814 if (error && error != -EOPNOTSUPP)
2815 goto out_iput;
2816 error = simple_acl_create(dir, inode);
2817 if (error)
2818 goto out_iput;
2819 d_tmpfile(dentry, inode);
2821 return error;
2822 out_iput:
2823 iput(inode);
2824 return error;
2827 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2829 int error;
2831 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2832 return error;
2833 inc_nlink(dir);
2834 return 0;
2837 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2838 bool excl)
2840 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2844 * Link a file..
2846 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2848 struct inode *inode = d_inode(old_dentry);
2849 int ret;
2852 * No ordinary (disk based) filesystem counts links as inodes;
2853 * but each new link needs a new dentry, pinning lowmem, and
2854 * tmpfs dentries cannot be pruned until they are unlinked.
2856 ret = shmem_reserve_inode(inode->i_sb);
2857 if (ret)
2858 goto out;
2860 dir->i_size += BOGO_DIRENT_SIZE;
2861 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2862 inc_nlink(inode);
2863 ihold(inode); /* New dentry reference */
2864 dget(dentry); /* Extra pinning count for the created dentry */
2865 d_instantiate(dentry, inode);
2866 out:
2867 return ret;
2870 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2872 struct inode *inode = d_inode(dentry);
2874 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2875 shmem_free_inode(inode->i_sb);
2877 dir->i_size -= BOGO_DIRENT_SIZE;
2878 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2879 drop_nlink(inode);
2880 dput(dentry); /* Undo the count from "create" - this does all the work */
2881 return 0;
2884 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2886 if (!simple_empty(dentry))
2887 return -ENOTEMPTY;
2889 drop_nlink(d_inode(dentry));
2890 drop_nlink(dir);
2891 return shmem_unlink(dir, dentry);
2894 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2896 bool old_is_dir = d_is_dir(old_dentry);
2897 bool new_is_dir = d_is_dir(new_dentry);
2899 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2900 if (old_is_dir) {
2901 drop_nlink(old_dir);
2902 inc_nlink(new_dir);
2903 } else {
2904 drop_nlink(new_dir);
2905 inc_nlink(old_dir);
2908 old_dir->i_ctime = old_dir->i_mtime =
2909 new_dir->i_ctime = new_dir->i_mtime =
2910 d_inode(old_dentry)->i_ctime =
2911 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2913 return 0;
2916 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2918 struct dentry *whiteout;
2919 int error;
2921 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2922 if (!whiteout)
2923 return -ENOMEM;
2925 error = shmem_mknod(old_dir, whiteout,
2926 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2927 dput(whiteout);
2928 if (error)
2929 return error;
2932 * Cheat and hash the whiteout while the old dentry is still in
2933 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2935 * d_lookup() will consistently find one of them at this point,
2936 * not sure which one, but that isn't even important.
2938 d_rehash(whiteout);
2939 return 0;
2943 * The VFS layer already does all the dentry stuff for rename,
2944 * we just have to decrement the usage count for the target if
2945 * it exists so that the VFS layer correctly free's it when it
2946 * gets overwritten.
2948 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2950 struct inode *inode = d_inode(old_dentry);
2951 int they_are_dirs = S_ISDIR(inode->i_mode);
2953 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2954 return -EINVAL;
2956 if (flags & RENAME_EXCHANGE)
2957 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2959 if (!simple_empty(new_dentry))
2960 return -ENOTEMPTY;
2962 if (flags & RENAME_WHITEOUT) {
2963 int error;
2965 error = shmem_whiteout(old_dir, old_dentry);
2966 if (error)
2967 return error;
2970 if (d_really_is_positive(new_dentry)) {
2971 (void) shmem_unlink(new_dir, new_dentry);
2972 if (they_are_dirs) {
2973 drop_nlink(d_inode(new_dentry));
2974 drop_nlink(old_dir);
2976 } else if (they_are_dirs) {
2977 drop_nlink(old_dir);
2978 inc_nlink(new_dir);
2981 old_dir->i_size -= BOGO_DIRENT_SIZE;
2982 new_dir->i_size += BOGO_DIRENT_SIZE;
2983 old_dir->i_ctime = old_dir->i_mtime =
2984 new_dir->i_ctime = new_dir->i_mtime =
2985 inode->i_ctime = current_time(old_dir);
2986 return 0;
2989 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2991 int error;
2992 int len;
2993 struct inode *inode;
2994 struct page *page;
2996 len = strlen(symname) + 1;
2997 if (len > PAGE_SIZE)
2998 return -ENAMETOOLONG;
3000 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3001 VM_NORESERVE);
3002 if (!inode)
3003 return -ENOSPC;
3005 error = security_inode_init_security(inode, dir, &dentry->d_name,
3006 shmem_initxattrs, NULL);
3007 if (error) {
3008 if (error != -EOPNOTSUPP) {
3009 iput(inode);
3010 return error;
3012 error = 0;
3015 inode->i_size = len-1;
3016 if (len <= SHORT_SYMLINK_LEN) {
3017 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3018 if (!inode->i_link) {
3019 iput(inode);
3020 return -ENOMEM;
3022 inode->i_op = &shmem_short_symlink_operations;
3023 } else {
3024 inode_nohighmem(inode);
3025 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3026 if (error) {
3027 iput(inode);
3028 return error;
3030 inode->i_mapping->a_ops = &shmem_aops;
3031 inode->i_op = &shmem_symlink_inode_operations;
3032 memcpy(page_address(page), symname, len);
3033 SetPageUptodate(page);
3034 set_page_dirty(page);
3035 unlock_page(page);
3036 put_page(page);
3038 dir->i_size += BOGO_DIRENT_SIZE;
3039 dir->i_ctime = dir->i_mtime = current_time(dir);
3040 d_instantiate(dentry, inode);
3041 dget(dentry);
3042 return 0;
3045 static void shmem_put_link(void *arg)
3047 mark_page_accessed(arg);
3048 put_page(arg);
3051 static const char *shmem_get_link(struct dentry *dentry,
3052 struct inode *inode,
3053 struct delayed_call *done)
3055 struct page *page = NULL;
3056 int error;
3057 if (!dentry) {
3058 page = find_get_page(inode->i_mapping, 0);
3059 if (!page)
3060 return ERR_PTR(-ECHILD);
3061 if (!PageUptodate(page)) {
3062 put_page(page);
3063 return ERR_PTR(-ECHILD);
3065 } else {
3066 error = shmem_getpage(inode, 0, &page, SGP_READ);
3067 if (error)
3068 return ERR_PTR(error);
3069 unlock_page(page);
3071 set_delayed_call(done, shmem_put_link, page);
3072 return page_address(page);
3075 #ifdef CONFIG_TMPFS_XATTR
3077 * Superblocks without xattr inode operations may get some security.* xattr
3078 * support from the LSM "for free". As soon as we have any other xattrs
3079 * like ACLs, we also need to implement the security.* handlers at
3080 * filesystem level, though.
3084 * Callback for security_inode_init_security() for acquiring xattrs.
3086 static int shmem_initxattrs(struct inode *inode,
3087 const struct xattr *xattr_array,
3088 void *fs_info)
3090 struct shmem_inode_info *info = SHMEM_I(inode);
3091 const struct xattr *xattr;
3092 struct simple_xattr *new_xattr;
3093 size_t len;
3095 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3096 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3097 if (!new_xattr)
3098 return -ENOMEM;
3100 len = strlen(xattr->name) + 1;
3101 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3102 GFP_KERNEL);
3103 if (!new_xattr->name) {
3104 kfree(new_xattr);
3105 return -ENOMEM;
3108 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3109 XATTR_SECURITY_PREFIX_LEN);
3110 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3111 xattr->name, len);
3113 simple_xattr_list_add(&info->xattrs, new_xattr);
3116 return 0;
3119 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3120 struct dentry *unused, struct inode *inode,
3121 const char *name, void *buffer, size_t size)
3123 struct shmem_inode_info *info = SHMEM_I(inode);
3125 name = xattr_full_name(handler, name);
3126 return simple_xattr_get(&info->xattrs, name, buffer, size);
3129 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3130 struct dentry *unused, struct inode *inode,
3131 const char *name, const void *value,
3132 size_t size, int flags)
3134 struct shmem_inode_info *info = SHMEM_I(inode);
3136 name = xattr_full_name(handler, name);
3137 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3140 static const struct xattr_handler shmem_security_xattr_handler = {
3141 .prefix = XATTR_SECURITY_PREFIX,
3142 .get = shmem_xattr_handler_get,
3143 .set = shmem_xattr_handler_set,
3146 static const struct xattr_handler shmem_trusted_xattr_handler = {
3147 .prefix = XATTR_TRUSTED_PREFIX,
3148 .get = shmem_xattr_handler_get,
3149 .set = shmem_xattr_handler_set,
3152 static const struct xattr_handler *shmem_xattr_handlers[] = {
3153 #ifdef CONFIG_TMPFS_POSIX_ACL
3154 &posix_acl_access_xattr_handler,
3155 &posix_acl_default_xattr_handler,
3156 #endif
3157 &shmem_security_xattr_handler,
3158 &shmem_trusted_xattr_handler,
3159 NULL
3162 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3164 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3165 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3167 #endif /* CONFIG_TMPFS_XATTR */
3169 static const struct inode_operations shmem_short_symlink_operations = {
3170 .get_link = simple_get_link,
3171 #ifdef CONFIG_TMPFS_XATTR
3172 .listxattr = shmem_listxattr,
3173 #endif
3176 static const struct inode_operations shmem_symlink_inode_operations = {
3177 .get_link = shmem_get_link,
3178 #ifdef CONFIG_TMPFS_XATTR
3179 .listxattr = shmem_listxattr,
3180 #endif
3183 static struct dentry *shmem_get_parent(struct dentry *child)
3185 return ERR_PTR(-ESTALE);
3188 static int shmem_match(struct inode *ino, void *vfh)
3190 __u32 *fh = vfh;
3191 __u64 inum = fh[2];
3192 inum = (inum << 32) | fh[1];
3193 return ino->i_ino == inum && fh[0] == ino->i_generation;
3196 /* Find any alias of inode, but prefer a hashed alias */
3197 static struct dentry *shmem_find_alias(struct inode *inode)
3199 struct dentry *alias = d_find_alias(inode);
3201 return alias ?: d_find_any_alias(inode);
3205 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3206 struct fid *fid, int fh_len, int fh_type)
3208 struct inode *inode;
3209 struct dentry *dentry = NULL;
3210 u64 inum;
3212 if (fh_len < 3)
3213 return NULL;
3215 inum = fid->raw[2];
3216 inum = (inum << 32) | fid->raw[1];
3218 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3219 shmem_match, fid->raw);
3220 if (inode) {
3221 dentry = shmem_find_alias(inode);
3222 iput(inode);
3225 return dentry;
3228 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3229 struct inode *parent)
3231 if (*len < 3) {
3232 *len = 3;
3233 return FILEID_INVALID;
3236 if (inode_unhashed(inode)) {
3237 /* Unfortunately insert_inode_hash is not idempotent,
3238 * so as we hash inodes here rather than at creation
3239 * time, we need a lock to ensure we only try
3240 * to do it once
3242 static DEFINE_SPINLOCK(lock);
3243 spin_lock(&lock);
3244 if (inode_unhashed(inode))
3245 __insert_inode_hash(inode,
3246 inode->i_ino + inode->i_generation);
3247 spin_unlock(&lock);
3250 fh[0] = inode->i_generation;
3251 fh[1] = inode->i_ino;
3252 fh[2] = ((__u64)inode->i_ino) >> 32;
3254 *len = 3;
3255 return 1;
3258 static const struct export_operations shmem_export_ops = {
3259 .get_parent = shmem_get_parent,
3260 .encode_fh = shmem_encode_fh,
3261 .fh_to_dentry = shmem_fh_to_dentry,
3264 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3265 bool remount)
3267 char *this_char, *value, *rest;
3268 struct mempolicy *mpol = NULL;
3269 uid_t uid;
3270 gid_t gid;
3272 while (options != NULL) {
3273 this_char = options;
3274 for (;;) {
3276 * NUL-terminate this option: unfortunately,
3277 * mount options form a comma-separated list,
3278 * but mpol's nodelist may also contain commas.
3280 options = strchr(options, ',');
3281 if (options == NULL)
3282 break;
3283 options++;
3284 if (!isdigit(*options)) {
3285 options[-1] = '\0';
3286 break;
3289 if (!*this_char)
3290 continue;
3291 if ((value = strchr(this_char,'=')) != NULL) {
3292 *value++ = 0;
3293 } else {
3294 pr_err("tmpfs: No value for mount option '%s'\n",
3295 this_char);
3296 goto error;
3299 if (!strcmp(this_char,"size")) {
3300 unsigned long long size;
3301 size = memparse(value,&rest);
3302 if (*rest == '%') {
3303 size <<= PAGE_SHIFT;
3304 size *= totalram_pages;
3305 do_div(size, 100);
3306 rest++;
3308 if (*rest)
3309 goto bad_val;
3310 sbinfo->max_blocks =
3311 DIV_ROUND_UP(size, PAGE_SIZE);
3312 } else if (!strcmp(this_char,"nr_blocks")) {
3313 sbinfo->max_blocks = memparse(value, &rest);
3314 if (*rest)
3315 goto bad_val;
3316 } else if (!strcmp(this_char,"nr_inodes")) {
3317 sbinfo->max_inodes = memparse(value, &rest);
3318 if (*rest)
3319 goto bad_val;
3320 } else if (!strcmp(this_char,"mode")) {
3321 if (remount)
3322 continue;
3323 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3324 if (*rest)
3325 goto bad_val;
3326 } else if (!strcmp(this_char,"uid")) {
3327 if (remount)
3328 continue;
3329 uid = simple_strtoul(value, &rest, 0);
3330 if (*rest)
3331 goto bad_val;
3332 sbinfo->uid = make_kuid(current_user_ns(), uid);
3333 if (!uid_valid(sbinfo->uid))
3334 goto bad_val;
3335 } else if (!strcmp(this_char,"gid")) {
3336 if (remount)
3337 continue;
3338 gid = simple_strtoul(value, &rest, 0);
3339 if (*rest)
3340 goto bad_val;
3341 sbinfo->gid = make_kgid(current_user_ns(), gid);
3342 if (!gid_valid(sbinfo->gid))
3343 goto bad_val;
3344 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3345 } else if (!strcmp(this_char, "huge")) {
3346 int huge;
3347 huge = shmem_parse_huge(value);
3348 if (huge < 0)
3349 goto bad_val;
3350 if (!has_transparent_hugepage() &&
3351 huge != SHMEM_HUGE_NEVER)
3352 goto bad_val;
3353 sbinfo->huge = huge;
3354 #endif
3355 #ifdef CONFIG_NUMA
3356 } else if (!strcmp(this_char,"mpol")) {
3357 mpol_put(mpol);
3358 mpol = NULL;
3359 if (mpol_parse_str(value, &mpol))
3360 goto bad_val;
3361 #endif
3362 } else {
3363 pr_err("tmpfs: Bad mount option %s\n", this_char);
3364 goto error;
3367 sbinfo->mpol = mpol;
3368 return 0;
3370 bad_val:
3371 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3372 value, this_char);
3373 error:
3374 mpol_put(mpol);
3375 return 1;
3379 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3381 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3382 struct shmem_sb_info config = *sbinfo;
3383 unsigned long inodes;
3384 int error = -EINVAL;
3386 config.mpol = NULL;
3387 if (shmem_parse_options(data, &config, true))
3388 return error;
3390 spin_lock(&sbinfo->stat_lock);
3391 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3392 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3393 goto out;
3394 if (config.max_inodes < inodes)
3395 goto out;
3397 * Those tests disallow limited->unlimited while any are in use;
3398 * but we must separately disallow unlimited->limited, because
3399 * in that case we have no record of how much is already in use.
3401 if (config.max_blocks && !sbinfo->max_blocks)
3402 goto out;
3403 if (config.max_inodes && !sbinfo->max_inodes)
3404 goto out;
3406 error = 0;
3407 sbinfo->huge = config.huge;
3408 sbinfo->max_blocks = config.max_blocks;
3409 sbinfo->max_inodes = config.max_inodes;
3410 sbinfo->free_inodes = config.max_inodes - inodes;
3413 * Preserve previous mempolicy unless mpol remount option was specified.
3415 if (config.mpol) {
3416 mpol_put(sbinfo->mpol);
3417 sbinfo->mpol = config.mpol; /* transfers initial ref */
3419 out:
3420 spin_unlock(&sbinfo->stat_lock);
3421 return error;
3424 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3426 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3428 if (sbinfo->max_blocks != shmem_default_max_blocks())
3429 seq_printf(seq, ",size=%luk",
3430 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3431 if (sbinfo->max_inodes != shmem_default_max_inodes())
3432 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3433 if (sbinfo->mode != (0777 | S_ISVTX))
3434 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3435 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3436 seq_printf(seq, ",uid=%u",
3437 from_kuid_munged(&init_user_ns, sbinfo->uid));
3438 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3439 seq_printf(seq, ",gid=%u",
3440 from_kgid_munged(&init_user_ns, sbinfo->gid));
3441 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3442 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3443 if (sbinfo->huge)
3444 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3445 #endif
3446 shmem_show_mpol(seq, sbinfo->mpol);
3447 return 0;
3450 #endif /* CONFIG_TMPFS */
3452 static void shmem_put_super(struct super_block *sb)
3454 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3456 percpu_counter_destroy(&sbinfo->used_blocks);
3457 mpol_put(sbinfo->mpol);
3458 kfree(sbinfo);
3459 sb->s_fs_info = NULL;
3462 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3464 struct inode *inode;
3465 struct shmem_sb_info *sbinfo;
3466 int err = -ENOMEM;
3468 /* Round up to L1_CACHE_BYTES to resist false sharing */
3469 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3470 L1_CACHE_BYTES), GFP_KERNEL);
3471 if (!sbinfo)
3472 return -ENOMEM;
3474 sbinfo->mode = 0777 | S_ISVTX;
3475 sbinfo->uid = current_fsuid();
3476 sbinfo->gid = current_fsgid();
3477 sb->s_fs_info = sbinfo;
3479 #ifdef CONFIG_TMPFS
3481 * Per default we only allow half of the physical ram per
3482 * tmpfs instance, limiting inodes to one per page of lowmem;
3483 * but the internal instance is left unlimited.
3485 if (!(sb->s_flags & SB_KERNMOUNT)) {
3486 sbinfo->max_blocks = shmem_default_max_blocks();
3487 sbinfo->max_inodes = shmem_default_max_inodes();
3488 if (shmem_parse_options(data, sbinfo, false)) {
3489 err = -EINVAL;
3490 goto failed;
3492 } else {
3493 sb->s_flags |= SB_NOUSER;
3495 sb->s_export_op = &shmem_export_ops;
3496 sb->s_flags |= SB_NOSEC;
3497 #else
3498 sb->s_flags |= SB_NOUSER;
3499 #endif
3501 spin_lock_init(&sbinfo->stat_lock);
3502 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3503 goto failed;
3504 sbinfo->free_inodes = sbinfo->max_inodes;
3505 spin_lock_init(&sbinfo->shrinklist_lock);
3506 INIT_LIST_HEAD(&sbinfo->shrinklist);
3508 sb->s_maxbytes = MAX_LFS_FILESIZE;
3509 sb->s_blocksize = PAGE_SIZE;
3510 sb->s_blocksize_bits = PAGE_SHIFT;
3511 sb->s_magic = TMPFS_MAGIC;
3512 sb->s_op = &shmem_ops;
3513 sb->s_time_gran = 1;
3514 #ifdef CONFIG_TMPFS_XATTR
3515 sb->s_xattr = shmem_xattr_handlers;
3516 #endif
3517 #ifdef CONFIG_TMPFS_POSIX_ACL
3518 sb->s_flags |= SB_POSIXACL;
3519 #endif
3520 uuid_gen(&sb->s_uuid);
3522 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3523 if (!inode)
3524 goto failed;
3525 inode->i_uid = sbinfo->uid;
3526 inode->i_gid = sbinfo->gid;
3527 sb->s_root = d_make_root(inode);
3528 if (!sb->s_root)
3529 goto failed;
3530 return 0;
3532 failed:
3533 shmem_put_super(sb);
3534 return err;
3537 static struct kmem_cache *shmem_inode_cachep;
3539 static struct inode *shmem_alloc_inode(struct super_block *sb)
3541 struct shmem_inode_info *info;
3542 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3543 if (!info)
3544 return NULL;
3545 return &info->vfs_inode;
3548 static void shmem_destroy_callback(struct rcu_head *head)
3550 struct inode *inode = container_of(head, struct inode, i_rcu);
3551 if (S_ISLNK(inode->i_mode))
3552 kfree(inode->i_link);
3553 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3556 static void shmem_destroy_inode(struct inode *inode)
3558 if (S_ISREG(inode->i_mode))
3559 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3560 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3563 static void shmem_init_inode(void *foo)
3565 struct shmem_inode_info *info = foo;
3566 inode_init_once(&info->vfs_inode);
3569 static void shmem_init_inodecache(void)
3571 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3572 sizeof(struct shmem_inode_info),
3573 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3576 static void shmem_destroy_inodecache(void)
3578 kmem_cache_destroy(shmem_inode_cachep);
3581 static const struct address_space_operations shmem_aops = {
3582 .writepage = shmem_writepage,
3583 .set_page_dirty = __set_page_dirty_no_writeback,
3584 #ifdef CONFIG_TMPFS
3585 .write_begin = shmem_write_begin,
3586 .write_end = shmem_write_end,
3587 #endif
3588 #ifdef CONFIG_MIGRATION
3589 .migratepage = migrate_page,
3590 #endif
3591 .error_remove_page = generic_error_remove_page,
3594 static const struct file_operations shmem_file_operations = {
3595 .mmap = shmem_mmap,
3596 .get_unmapped_area = shmem_get_unmapped_area,
3597 #ifdef CONFIG_TMPFS
3598 .llseek = shmem_file_llseek,
3599 .read_iter = shmem_file_read_iter,
3600 .write_iter = generic_file_write_iter,
3601 .fsync = noop_fsync,
3602 .splice_read = generic_file_splice_read,
3603 .splice_write = iter_file_splice_write,
3604 .fallocate = shmem_fallocate,
3605 #endif
3608 static const struct inode_operations shmem_inode_operations = {
3609 .getattr = shmem_getattr,
3610 .setattr = shmem_setattr,
3611 #ifdef CONFIG_TMPFS_XATTR
3612 .listxattr = shmem_listxattr,
3613 .set_acl = simple_set_acl,
3614 #endif
3617 static const struct inode_operations shmem_dir_inode_operations = {
3618 #ifdef CONFIG_TMPFS
3619 .create = shmem_create,
3620 .lookup = simple_lookup,
3621 .link = shmem_link,
3622 .unlink = shmem_unlink,
3623 .symlink = shmem_symlink,
3624 .mkdir = shmem_mkdir,
3625 .rmdir = shmem_rmdir,
3626 .mknod = shmem_mknod,
3627 .rename = shmem_rename2,
3628 .tmpfile = shmem_tmpfile,
3629 #endif
3630 #ifdef CONFIG_TMPFS_XATTR
3631 .listxattr = shmem_listxattr,
3632 #endif
3633 #ifdef CONFIG_TMPFS_POSIX_ACL
3634 .setattr = shmem_setattr,
3635 .set_acl = simple_set_acl,
3636 #endif
3639 static const struct inode_operations shmem_special_inode_operations = {
3640 #ifdef CONFIG_TMPFS_XATTR
3641 .listxattr = shmem_listxattr,
3642 #endif
3643 #ifdef CONFIG_TMPFS_POSIX_ACL
3644 .setattr = shmem_setattr,
3645 .set_acl = simple_set_acl,
3646 #endif
3649 static const struct super_operations shmem_ops = {
3650 .alloc_inode = shmem_alloc_inode,
3651 .destroy_inode = shmem_destroy_inode,
3652 #ifdef CONFIG_TMPFS
3653 .statfs = shmem_statfs,
3654 .remount_fs = shmem_remount_fs,
3655 .show_options = shmem_show_options,
3656 #endif
3657 .evict_inode = shmem_evict_inode,
3658 .drop_inode = generic_delete_inode,
3659 .put_super = shmem_put_super,
3660 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3661 .nr_cached_objects = shmem_unused_huge_count,
3662 .free_cached_objects = shmem_unused_huge_scan,
3663 #endif
3666 static const struct vm_operations_struct shmem_vm_ops = {
3667 .fault = shmem_fault,
3668 .map_pages = filemap_map_pages,
3669 #ifdef CONFIG_NUMA
3670 .set_policy = shmem_set_policy,
3671 .get_policy = shmem_get_policy,
3672 #endif
3675 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3676 int flags, const char *dev_name, void *data)
3678 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3681 static struct file_system_type shmem_fs_type = {
3682 .owner = THIS_MODULE,
3683 .name = "tmpfs",
3684 .mount = shmem_mount,
3685 .kill_sb = kill_litter_super,
3686 .fs_flags = FS_USERNS_MOUNT,
3689 int __init shmem_init(void)
3691 int error;
3693 /* If rootfs called this, don't re-init */
3694 if (shmem_inode_cachep)
3695 return 0;
3697 shmem_init_inodecache();
3699 error = register_filesystem(&shmem_fs_type);
3700 if (error) {
3701 pr_err("Could not register tmpfs\n");
3702 goto out2;
3705 shm_mnt = kern_mount(&shmem_fs_type);
3706 if (IS_ERR(shm_mnt)) {
3707 error = PTR_ERR(shm_mnt);
3708 pr_err("Could not kern_mount tmpfs\n");
3709 goto out1;
3712 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3713 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3714 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3715 else
3716 shmem_huge = 0; /* just in case it was patched */
3717 #endif
3718 return 0;
3720 out1:
3721 unregister_filesystem(&shmem_fs_type);
3722 out2:
3723 shmem_destroy_inodecache();
3724 shm_mnt = ERR_PTR(error);
3725 return error;
3728 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3729 static ssize_t shmem_enabled_show(struct kobject *kobj,
3730 struct kobj_attribute *attr, char *buf)
3732 int values[] = {
3733 SHMEM_HUGE_ALWAYS,
3734 SHMEM_HUGE_WITHIN_SIZE,
3735 SHMEM_HUGE_ADVISE,
3736 SHMEM_HUGE_NEVER,
3737 SHMEM_HUGE_DENY,
3738 SHMEM_HUGE_FORCE,
3740 int i, count;
3742 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3743 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3745 count += sprintf(buf + count, fmt,
3746 shmem_format_huge(values[i]));
3748 buf[count - 1] = '\n';
3749 return count;
3752 static ssize_t shmem_enabled_store(struct kobject *kobj,
3753 struct kobj_attribute *attr, const char *buf, size_t count)
3755 char tmp[16];
3756 int huge;
3758 if (count + 1 > sizeof(tmp))
3759 return -EINVAL;
3760 memcpy(tmp, buf, count);
3761 tmp[count] = '\0';
3762 if (count && tmp[count - 1] == '\n')
3763 tmp[count - 1] = '\0';
3765 huge = shmem_parse_huge(tmp);
3766 if (huge == -EINVAL)
3767 return -EINVAL;
3768 if (!has_transparent_hugepage() &&
3769 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3770 return -EINVAL;
3772 shmem_huge = huge;
3773 if (shmem_huge > SHMEM_HUGE_DENY)
3774 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3775 return count;
3778 struct kobj_attribute shmem_enabled_attr =
3779 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3780 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3782 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3783 bool shmem_huge_enabled(struct vm_area_struct *vma)
3785 struct inode *inode = file_inode(vma->vm_file);
3786 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3787 loff_t i_size;
3788 pgoff_t off;
3790 if (shmem_huge == SHMEM_HUGE_FORCE)
3791 return true;
3792 if (shmem_huge == SHMEM_HUGE_DENY)
3793 return false;
3794 switch (sbinfo->huge) {
3795 case SHMEM_HUGE_NEVER:
3796 return false;
3797 case SHMEM_HUGE_ALWAYS:
3798 return true;
3799 case SHMEM_HUGE_WITHIN_SIZE:
3800 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3801 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3802 if (i_size >= HPAGE_PMD_SIZE &&
3803 i_size >> PAGE_SHIFT >= off)
3804 return true;
3805 /* fall through */
3806 case SHMEM_HUGE_ADVISE:
3807 /* TODO: implement fadvise() hints */
3808 return (vma->vm_flags & VM_HUGEPAGE);
3809 default:
3810 VM_BUG_ON(1);
3811 return false;
3814 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3816 #else /* !CONFIG_SHMEM */
3819 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3821 * This is intended for small system where the benefits of the full
3822 * shmem code (swap-backed and resource-limited) are outweighed by
3823 * their complexity. On systems without swap this code should be
3824 * effectively equivalent, but much lighter weight.
3827 static struct file_system_type shmem_fs_type = {
3828 .name = "tmpfs",
3829 .mount = ramfs_mount,
3830 .kill_sb = kill_litter_super,
3831 .fs_flags = FS_USERNS_MOUNT,
3834 int __init shmem_init(void)
3836 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3838 shm_mnt = kern_mount(&shmem_fs_type);
3839 BUG_ON(IS_ERR(shm_mnt));
3841 return 0;
3844 int shmem_unuse(swp_entry_t swap, struct page *page)
3846 return 0;
3849 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3851 return 0;
3854 void shmem_unlock_mapping(struct address_space *mapping)
3858 #ifdef CONFIG_MMU
3859 unsigned long shmem_get_unmapped_area(struct file *file,
3860 unsigned long addr, unsigned long len,
3861 unsigned long pgoff, unsigned long flags)
3863 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3865 #endif
3867 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3869 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3871 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3873 #define shmem_vm_ops generic_file_vm_ops
3874 #define shmem_file_operations ramfs_file_operations
3875 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3876 #define shmem_acct_size(flags, size) 0
3877 #define shmem_unacct_size(flags, size) do {} while (0)
3879 #endif /* CONFIG_SHMEM */
3881 /* common code */
3883 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3884 unsigned long flags, unsigned int i_flags)
3886 struct inode *inode;
3887 struct file *res;
3889 if (IS_ERR(mnt))
3890 return ERR_CAST(mnt);
3892 if (size < 0 || size > MAX_LFS_FILESIZE)
3893 return ERR_PTR(-EINVAL);
3895 if (shmem_acct_size(flags, size))
3896 return ERR_PTR(-ENOMEM);
3898 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3899 flags);
3900 if (unlikely(!inode)) {
3901 shmem_unacct_size(flags, size);
3902 return ERR_PTR(-ENOSPC);
3904 inode->i_flags |= i_flags;
3905 inode->i_size = size;
3906 clear_nlink(inode); /* It is unlinked */
3907 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3908 if (!IS_ERR(res))
3909 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3910 &shmem_file_operations);
3911 if (IS_ERR(res))
3912 iput(inode);
3913 return res;
3917 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3918 * kernel internal. There will be NO LSM permission checks against the
3919 * underlying inode. So users of this interface must do LSM checks at a
3920 * higher layer. The users are the big_key and shm implementations. LSM
3921 * checks are provided at the key or shm level rather than the inode.
3922 * @name: name for dentry (to be seen in /proc/<pid>/maps
3923 * @size: size to be set for the file
3924 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3926 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3928 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3932 * shmem_file_setup - get an unlinked file living in tmpfs
3933 * @name: name for dentry (to be seen in /proc/<pid>/maps
3934 * @size: size to be set for the file
3935 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3937 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3939 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3941 EXPORT_SYMBOL_GPL(shmem_file_setup);
3944 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3945 * @mnt: the tmpfs mount where the file will be created
3946 * @name: name for dentry (to be seen in /proc/<pid>/maps
3947 * @size: size to be set for the file
3948 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3950 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3951 loff_t size, unsigned long flags)
3953 return __shmem_file_setup(mnt, name, size, flags, 0);
3955 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3958 * shmem_zero_setup - setup a shared anonymous mapping
3959 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3961 int shmem_zero_setup(struct vm_area_struct *vma)
3963 struct file *file;
3964 loff_t size = vma->vm_end - vma->vm_start;
3967 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3968 * between XFS directory reading and selinux: since this file is only
3969 * accessible to the user through its mapping, use S_PRIVATE flag to
3970 * bypass file security, in the same way as shmem_kernel_file_setup().
3972 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3973 if (IS_ERR(file))
3974 return PTR_ERR(file);
3976 if (vma->vm_file)
3977 fput(vma->vm_file);
3978 vma->vm_file = file;
3979 vma->vm_ops = &shmem_vm_ops;
3981 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3982 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
3983 (vma->vm_end & HPAGE_PMD_MASK)) {
3984 khugepaged_enter(vma, vma->vm_flags);
3987 return 0;
3991 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3992 * @mapping: the page's address_space
3993 * @index: the page index
3994 * @gfp: the page allocator flags to use if allocating
3996 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3997 * with any new page allocations done using the specified allocation flags.
3998 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3999 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4000 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4002 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4003 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4005 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4006 pgoff_t index, gfp_t gfp)
4008 #ifdef CONFIG_SHMEM
4009 struct inode *inode = mapping->host;
4010 struct page *page;
4011 int error;
4013 BUG_ON(mapping->a_ops != &shmem_aops);
4014 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4015 gfp, NULL, NULL, NULL);
4016 if (error)
4017 page = ERR_PTR(error);
4018 else
4019 unlock_page(page);
4020 return page;
4021 #else
4023 * The tiny !SHMEM case uses ramfs without swap
4025 return read_cache_page_gfp(mapping, index, gfp);
4026 #endif
4028 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);