Merge tag 'staging-3.17-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux/fpc-iii.git] / kernel / kexec.c
blob0b49a0a5810200da0925350e3d55dd1fc70b8638
1 /*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
9 #define pr_fmt(fmt) "kexec: " fmt
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
40 #include <asm/page.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/sections.h>
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
48 /* Per cpu memory for storing cpu states in case of system crash. */
49 note_buf_t __percpu *crash_notes;
51 /* vmcoreinfo stuff */
52 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
53 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
54 size_t vmcoreinfo_size;
55 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
57 /* Flag to indicate we are going to kexec a new kernel */
58 bool kexec_in_progress = false;
61 * Declare these symbols weak so that if architecture provides a purgatory,
62 * these will be overridden.
64 char __weak kexec_purgatory[0];
65 size_t __weak kexec_purgatory_size = 0;
67 static int kexec_calculate_store_digests(struct kimage *image);
69 /* Location of the reserved area for the crash kernel */
70 struct resource crashk_res = {
71 .name = "Crash kernel",
72 .start = 0,
73 .end = 0,
74 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
76 struct resource crashk_low_res = {
77 .name = "Crash kernel",
78 .start = 0,
79 .end = 0,
80 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
83 int kexec_should_crash(struct task_struct *p)
85 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
86 return 1;
87 return 0;
91 * When kexec transitions to the new kernel there is a one-to-one
92 * mapping between physical and virtual addresses. On processors
93 * where you can disable the MMU this is trivial, and easy. For
94 * others it is still a simple predictable page table to setup.
96 * In that environment kexec copies the new kernel to its final
97 * resting place. This means I can only support memory whose
98 * physical address can fit in an unsigned long. In particular
99 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
100 * If the assembly stub has more restrictive requirements
101 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
102 * defined more restrictively in <asm/kexec.h>.
104 * The code for the transition from the current kernel to the
105 * the new kernel is placed in the control_code_buffer, whose size
106 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
107 * page of memory is necessary, but some architectures require more.
108 * Because this memory must be identity mapped in the transition from
109 * virtual to physical addresses it must live in the range
110 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
111 * modifiable.
113 * The assembly stub in the control code buffer is passed a linked list
114 * of descriptor pages detailing the source pages of the new kernel,
115 * and the destination addresses of those source pages. As this data
116 * structure is not used in the context of the current OS, it must
117 * be self-contained.
119 * The code has been made to work with highmem pages and will use a
120 * destination page in its final resting place (if it happens
121 * to allocate it). The end product of this is that most of the
122 * physical address space, and most of RAM can be used.
124 * Future directions include:
125 * - allocating a page table with the control code buffer identity
126 * mapped, to simplify machine_kexec and make kexec_on_panic more
127 * reliable.
131 * KIMAGE_NO_DEST is an impossible destination address..., for
132 * allocating pages whose destination address we do not care about.
134 #define KIMAGE_NO_DEST (-1UL)
136 static int kimage_is_destination_range(struct kimage *image,
137 unsigned long start, unsigned long end);
138 static struct page *kimage_alloc_page(struct kimage *image,
139 gfp_t gfp_mask,
140 unsigned long dest);
142 static int copy_user_segment_list(struct kimage *image,
143 unsigned long nr_segments,
144 struct kexec_segment __user *segments)
146 int ret;
147 size_t segment_bytes;
149 /* Read in the segments */
150 image->nr_segments = nr_segments;
151 segment_bytes = nr_segments * sizeof(*segments);
152 ret = copy_from_user(image->segment, segments, segment_bytes);
153 if (ret)
154 ret = -EFAULT;
156 return ret;
159 static int sanity_check_segment_list(struct kimage *image)
161 int result, i;
162 unsigned long nr_segments = image->nr_segments;
165 * Verify we have good destination addresses. The caller is
166 * responsible for making certain we don't attempt to load
167 * the new image into invalid or reserved areas of RAM. This
168 * just verifies it is an address we can use.
170 * Since the kernel does everything in page size chunks ensure
171 * the destination addresses are page aligned. Too many
172 * special cases crop of when we don't do this. The most
173 * insidious is getting overlapping destination addresses
174 * simply because addresses are changed to page size
175 * granularity.
177 result = -EADDRNOTAVAIL;
178 for (i = 0; i < nr_segments; i++) {
179 unsigned long mstart, mend;
181 mstart = image->segment[i].mem;
182 mend = mstart + image->segment[i].memsz;
183 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
184 return result;
185 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
186 return result;
189 /* Verify our destination addresses do not overlap.
190 * If we alloed overlapping destination addresses
191 * through very weird things can happen with no
192 * easy explanation as one segment stops on another.
194 result = -EINVAL;
195 for (i = 0; i < nr_segments; i++) {
196 unsigned long mstart, mend;
197 unsigned long j;
199 mstart = image->segment[i].mem;
200 mend = mstart + image->segment[i].memsz;
201 for (j = 0; j < i; j++) {
202 unsigned long pstart, pend;
203 pstart = image->segment[j].mem;
204 pend = pstart + image->segment[j].memsz;
205 /* Do the segments overlap ? */
206 if ((mend > pstart) && (mstart < pend))
207 return result;
211 /* Ensure our buffer sizes are strictly less than
212 * our memory sizes. This should always be the case,
213 * and it is easier to check up front than to be surprised
214 * later on.
216 result = -EINVAL;
217 for (i = 0; i < nr_segments; i++) {
218 if (image->segment[i].bufsz > image->segment[i].memsz)
219 return result;
223 * Verify we have good destination addresses. Normally
224 * the caller is responsible for making certain we don't
225 * attempt to load the new image into invalid or reserved
226 * areas of RAM. But crash kernels are preloaded into a
227 * reserved area of ram. We must ensure the addresses
228 * are in the reserved area otherwise preloading the
229 * kernel could corrupt things.
232 if (image->type == KEXEC_TYPE_CRASH) {
233 result = -EADDRNOTAVAIL;
234 for (i = 0; i < nr_segments; i++) {
235 unsigned long mstart, mend;
237 mstart = image->segment[i].mem;
238 mend = mstart + image->segment[i].memsz - 1;
239 /* Ensure we are within the crash kernel limits */
240 if ((mstart < crashk_res.start) ||
241 (mend > crashk_res.end))
242 return result;
246 return 0;
249 static struct kimage *do_kimage_alloc_init(void)
251 struct kimage *image;
253 /* Allocate a controlling structure */
254 image = kzalloc(sizeof(*image), GFP_KERNEL);
255 if (!image)
256 return NULL;
258 image->head = 0;
259 image->entry = &image->head;
260 image->last_entry = &image->head;
261 image->control_page = ~0; /* By default this does not apply */
262 image->type = KEXEC_TYPE_DEFAULT;
264 /* Initialize the list of control pages */
265 INIT_LIST_HEAD(&image->control_pages);
267 /* Initialize the list of destination pages */
268 INIT_LIST_HEAD(&image->dest_pages);
270 /* Initialize the list of unusable pages */
271 INIT_LIST_HEAD(&image->unusable_pages);
273 return image;
276 static void kimage_free_page_list(struct list_head *list);
278 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
279 unsigned long nr_segments,
280 struct kexec_segment __user *segments,
281 unsigned long flags)
283 int ret;
284 struct kimage *image;
285 bool kexec_on_panic = flags & KEXEC_ON_CRASH;
287 if (kexec_on_panic) {
288 /* Verify we have a valid entry point */
289 if ((entry < crashk_res.start) || (entry > crashk_res.end))
290 return -EADDRNOTAVAIL;
293 /* Allocate and initialize a controlling structure */
294 image = do_kimage_alloc_init();
295 if (!image)
296 return -ENOMEM;
298 image->start = entry;
300 ret = copy_user_segment_list(image, nr_segments, segments);
301 if (ret)
302 goto out_free_image;
304 ret = sanity_check_segment_list(image);
305 if (ret)
306 goto out_free_image;
308 /* Enable the special crash kernel control page allocation policy. */
309 if (kexec_on_panic) {
310 image->control_page = crashk_res.start;
311 image->type = KEXEC_TYPE_CRASH;
315 * Find a location for the control code buffer, and add it
316 * the vector of segments so that it's pages will also be
317 * counted as destination pages.
319 ret = -ENOMEM;
320 image->control_code_page = kimage_alloc_control_pages(image,
321 get_order(KEXEC_CONTROL_PAGE_SIZE));
322 if (!image->control_code_page) {
323 pr_err("Could not allocate control_code_buffer\n");
324 goto out_free_image;
327 if (!kexec_on_panic) {
328 image->swap_page = kimage_alloc_control_pages(image, 0);
329 if (!image->swap_page) {
330 pr_err("Could not allocate swap buffer\n");
331 goto out_free_control_pages;
335 *rimage = image;
336 return 0;
337 out_free_control_pages:
338 kimage_free_page_list(&image->control_pages);
339 out_free_image:
340 kfree(image);
341 return ret;
344 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
346 struct fd f = fdget(fd);
347 int ret;
348 struct kstat stat;
349 loff_t pos;
350 ssize_t bytes = 0;
352 if (!f.file)
353 return -EBADF;
355 ret = vfs_getattr(&f.file->f_path, &stat);
356 if (ret)
357 goto out;
359 if (stat.size > INT_MAX) {
360 ret = -EFBIG;
361 goto out;
364 /* Don't hand 0 to vmalloc, it whines. */
365 if (stat.size == 0) {
366 ret = -EINVAL;
367 goto out;
370 *buf = vmalloc(stat.size);
371 if (!*buf) {
372 ret = -ENOMEM;
373 goto out;
376 pos = 0;
377 while (pos < stat.size) {
378 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
379 stat.size - pos);
380 if (bytes < 0) {
381 vfree(*buf);
382 ret = bytes;
383 goto out;
386 if (bytes == 0)
387 break;
388 pos += bytes;
391 if (pos != stat.size) {
392 ret = -EBADF;
393 vfree(*buf);
394 goto out;
397 *buf_len = pos;
398 out:
399 fdput(f);
400 return ret;
403 /* Architectures can provide this probe function */
404 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
405 unsigned long buf_len)
407 return -ENOEXEC;
410 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
412 return ERR_PTR(-ENOEXEC);
415 void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
419 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
420 unsigned long buf_len)
422 return -EKEYREJECTED;
425 /* Apply relocations of type RELA */
426 int __weak
427 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
428 unsigned int relsec)
430 pr_err("RELA relocation unsupported.\n");
431 return -ENOEXEC;
434 /* Apply relocations of type REL */
435 int __weak
436 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
437 unsigned int relsec)
439 pr_err("REL relocation unsupported.\n");
440 return -ENOEXEC;
444 * Free up memory used by kernel, initrd, and comand line. This is temporary
445 * memory allocation which is not needed any more after these buffers have
446 * been loaded into separate segments and have been copied elsewhere.
448 static void kimage_file_post_load_cleanup(struct kimage *image)
450 struct purgatory_info *pi = &image->purgatory_info;
452 vfree(image->kernel_buf);
453 image->kernel_buf = NULL;
455 vfree(image->initrd_buf);
456 image->initrd_buf = NULL;
458 kfree(image->cmdline_buf);
459 image->cmdline_buf = NULL;
461 vfree(pi->purgatory_buf);
462 pi->purgatory_buf = NULL;
464 vfree(pi->sechdrs);
465 pi->sechdrs = NULL;
467 /* See if architecture has anything to cleanup post load */
468 arch_kimage_file_post_load_cleanup(image);
471 * Above call should have called into bootloader to free up
472 * any data stored in kimage->image_loader_data. It should
473 * be ok now to free it up.
475 kfree(image->image_loader_data);
476 image->image_loader_data = NULL;
480 * In file mode list of segments is prepared by kernel. Copy relevant
481 * data from user space, do error checking, prepare segment list
483 static int
484 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
485 const char __user *cmdline_ptr,
486 unsigned long cmdline_len, unsigned flags)
488 int ret = 0;
489 void *ldata;
491 ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
492 &image->kernel_buf_len);
493 if (ret)
494 return ret;
496 /* Call arch image probe handlers */
497 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
498 image->kernel_buf_len);
500 if (ret)
501 goto out;
503 #ifdef CONFIG_KEXEC_VERIFY_SIG
504 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
505 image->kernel_buf_len);
506 if (ret) {
507 pr_debug("kernel signature verification failed.\n");
508 goto out;
510 pr_debug("kernel signature verification successful.\n");
511 #endif
512 /* It is possible that there no initramfs is being loaded */
513 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
514 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
515 &image->initrd_buf_len);
516 if (ret)
517 goto out;
520 if (cmdline_len) {
521 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
522 if (!image->cmdline_buf) {
523 ret = -ENOMEM;
524 goto out;
527 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
528 cmdline_len);
529 if (ret) {
530 ret = -EFAULT;
531 goto out;
534 image->cmdline_buf_len = cmdline_len;
536 /* command line should be a string with last byte null */
537 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
538 ret = -EINVAL;
539 goto out;
543 /* Call arch image load handlers */
544 ldata = arch_kexec_kernel_image_load(image);
546 if (IS_ERR(ldata)) {
547 ret = PTR_ERR(ldata);
548 goto out;
551 image->image_loader_data = ldata;
552 out:
553 /* In case of error, free up all allocated memory in this function */
554 if (ret)
555 kimage_file_post_load_cleanup(image);
556 return ret;
559 static int
560 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
561 int initrd_fd, const char __user *cmdline_ptr,
562 unsigned long cmdline_len, unsigned long flags)
564 int ret;
565 struct kimage *image;
566 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
568 image = do_kimage_alloc_init();
569 if (!image)
570 return -ENOMEM;
572 image->file_mode = 1;
574 if (kexec_on_panic) {
575 /* Enable special crash kernel control page alloc policy. */
576 image->control_page = crashk_res.start;
577 image->type = KEXEC_TYPE_CRASH;
580 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
581 cmdline_ptr, cmdline_len, flags);
582 if (ret)
583 goto out_free_image;
585 ret = sanity_check_segment_list(image);
586 if (ret)
587 goto out_free_post_load_bufs;
589 ret = -ENOMEM;
590 image->control_code_page = kimage_alloc_control_pages(image,
591 get_order(KEXEC_CONTROL_PAGE_SIZE));
592 if (!image->control_code_page) {
593 pr_err("Could not allocate control_code_buffer\n");
594 goto out_free_post_load_bufs;
597 if (!kexec_on_panic) {
598 image->swap_page = kimage_alloc_control_pages(image, 0);
599 if (!image->swap_page) {
600 pr_err(KERN_ERR "Could not allocate swap buffer\n");
601 goto out_free_control_pages;
605 *rimage = image;
606 return 0;
607 out_free_control_pages:
608 kimage_free_page_list(&image->control_pages);
609 out_free_post_load_bufs:
610 kimage_file_post_load_cleanup(image);
611 out_free_image:
612 kfree(image);
613 return ret;
616 static int kimage_is_destination_range(struct kimage *image,
617 unsigned long start,
618 unsigned long end)
620 unsigned long i;
622 for (i = 0; i < image->nr_segments; i++) {
623 unsigned long mstart, mend;
625 mstart = image->segment[i].mem;
626 mend = mstart + image->segment[i].memsz;
627 if ((end > mstart) && (start < mend))
628 return 1;
631 return 0;
634 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
636 struct page *pages;
638 pages = alloc_pages(gfp_mask, order);
639 if (pages) {
640 unsigned int count, i;
641 pages->mapping = NULL;
642 set_page_private(pages, order);
643 count = 1 << order;
644 for (i = 0; i < count; i++)
645 SetPageReserved(pages + i);
648 return pages;
651 static void kimage_free_pages(struct page *page)
653 unsigned int order, count, i;
655 order = page_private(page);
656 count = 1 << order;
657 for (i = 0; i < count; i++)
658 ClearPageReserved(page + i);
659 __free_pages(page, order);
662 static void kimage_free_page_list(struct list_head *list)
664 struct list_head *pos, *next;
666 list_for_each_safe(pos, next, list) {
667 struct page *page;
669 page = list_entry(pos, struct page, lru);
670 list_del(&page->lru);
671 kimage_free_pages(page);
675 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
676 unsigned int order)
678 /* Control pages are special, they are the intermediaries
679 * that are needed while we copy the rest of the pages
680 * to their final resting place. As such they must
681 * not conflict with either the destination addresses
682 * or memory the kernel is already using.
684 * The only case where we really need more than one of
685 * these are for architectures where we cannot disable
686 * the MMU and must instead generate an identity mapped
687 * page table for all of the memory.
689 * At worst this runs in O(N) of the image size.
691 struct list_head extra_pages;
692 struct page *pages;
693 unsigned int count;
695 count = 1 << order;
696 INIT_LIST_HEAD(&extra_pages);
698 /* Loop while I can allocate a page and the page allocated
699 * is a destination page.
701 do {
702 unsigned long pfn, epfn, addr, eaddr;
704 pages = kimage_alloc_pages(GFP_KERNEL, order);
705 if (!pages)
706 break;
707 pfn = page_to_pfn(pages);
708 epfn = pfn + count;
709 addr = pfn << PAGE_SHIFT;
710 eaddr = epfn << PAGE_SHIFT;
711 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
712 kimage_is_destination_range(image, addr, eaddr)) {
713 list_add(&pages->lru, &extra_pages);
714 pages = NULL;
716 } while (!pages);
718 if (pages) {
719 /* Remember the allocated page... */
720 list_add(&pages->lru, &image->control_pages);
722 /* Because the page is already in it's destination
723 * location we will never allocate another page at
724 * that address. Therefore kimage_alloc_pages
725 * will not return it (again) and we don't need
726 * to give it an entry in image->segment[].
729 /* Deal with the destination pages I have inadvertently allocated.
731 * Ideally I would convert multi-page allocations into single
732 * page allocations, and add everything to image->dest_pages.
734 * For now it is simpler to just free the pages.
736 kimage_free_page_list(&extra_pages);
738 return pages;
741 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
742 unsigned int order)
744 /* Control pages are special, they are the intermediaries
745 * that are needed while we copy the rest of the pages
746 * to their final resting place. As such they must
747 * not conflict with either the destination addresses
748 * or memory the kernel is already using.
750 * Control pages are also the only pags we must allocate
751 * when loading a crash kernel. All of the other pages
752 * are specified by the segments and we just memcpy
753 * into them directly.
755 * The only case where we really need more than one of
756 * these are for architectures where we cannot disable
757 * the MMU and must instead generate an identity mapped
758 * page table for all of the memory.
760 * Given the low demand this implements a very simple
761 * allocator that finds the first hole of the appropriate
762 * size in the reserved memory region, and allocates all
763 * of the memory up to and including the hole.
765 unsigned long hole_start, hole_end, size;
766 struct page *pages;
768 pages = NULL;
769 size = (1 << order) << PAGE_SHIFT;
770 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
771 hole_end = hole_start + size - 1;
772 while (hole_end <= crashk_res.end) {
773 unsigned long i;
775 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
776 break;
777 /* See if I overlap any of the segments */
778 for (i = 0; i < image->nr_segments; i++) {
779 unsigned long mstart, mend;
781 mstart = image->segment[i].mem;
782 mend = mstart + image->segment[i].memsz - 1;
783 if ((hole_end >= mstart) && (hole_start <= mend)) {
784 /* Advance the hole to the end of the segment */
785 hole_start = (mend + (size - 1)) & ~(size - 1);
786 hole_end = hole_start + size - 1;
787 break;
790 /* If I don't overlap any segments I have found my hole! */
791 if (i == image->nr_segments) {
792 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
793 break;
796 if (pages)
797 image->control_page = hole_end;
799 return pages;
803 struct page *kimage_alloc_control_pages(struct kimage *image,
804 unsigned int order)
806 struct page *pages = NULL;
808 switch (image->type) {
809 case KEXEC_TYPE_DEFAULT:
810 pages = kimage_alloc_normal_control_pages(image, order);
811 break;
812 case KEXEC_TYPE_CRASH:
813 pages = kimage_alloc_crash_control_pages(image, order);
814 break;
817 return pages;
820 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
822 if (*image->entry != 0)
823 image->entry++;
825 if (image->entry == image->last_entry) {
826 kimage_entry_t *ind_page;
827 struct page *page;
829 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
830 if (!page)
831 return -ENOMEM;
833 ind_page = page_address(page);
834 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
835 image->entry = ind_page;
836 image->last_entry = ind_page +
837 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
839 *image->entry = entry;
840 image->entry++;
841 *image->entry = 0;
843 return 0;
846 static int kimage_set_destination(struct kimage *image,
847 unsigned long destination)
849 int result;
851 destination &= PAGE_MASK;
852 result = kimage_add_entry(image, destination | IND_DESTINATION);
853 if (result == 0)
854 image->destination = destination;
856 return result;
860 static int kimage_add_page(struct kimage *image, unsigned long page)
862 int result;
864 page &= PAGE_MASK;
865 result = kimage_add_entry(image, page | IND_SOURCE);
866 if (result == 0)
867 image->destination += PAGE_SIZE;
869 return result;
873 static void kimage_free_extra_pages(struct kimage *image)
875 /* Walk through and free any extra destination pages I may have */
876 kimage_free_page_list(&image->dest_pages);
878 /* Walk through and free any unusable pages I have cached */
879 kimage_free_page_list(&image->unusable_pages);
882 static void kimage_terminate(struct kimage *image)
884 if (*image->entry != 0)
885 image->entry++;
887 *image->entry = IND_DONE;
890 #define for_each_kimage_entry(image, ptr, entry) \
891 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
892 ptr = (entry & IND_INDIRECTION) ? \
893 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
895 static void kimage_free_entry(kimage_entry_t entry)
897 struct page *page;
899 page = pfn_to_page(entry >> PAGE_SHIFT);
900 kimage_free_pages(page);
903 static void kimage_free(struct kimage *image)
905 kimage_entry_t *ptr, entry;
906 kimage_entry_t ind = 0;
908 if (!image)
909 return;
911 kimage_free_extra_pages(image);
912 for_each_kimage_entry(image, ptr, entry) {
913 if (entry & IND_INDIRECTION) {
914 /* Free the previous indirection page */
915 if (ind & IND_INDIRECTION)
916 kimage_free_entry(ind);
917 /* Save this indirection page until we are
918 * done with it.
920 ind = entry;
921 } else if (entry & IND_SOURCE)
922 kimage_free_entry(entry);
924 /* Free the final indirection page */
925 if (ind & IND_INDIRECTION)
926 kimage_free_entry(ind);
928 /* Handle any machine specific cleanup */
929 machine_kexec_cleanup(image);
931 /* Free the kexec control pages... */
932 kimage_free_page_list(&image->control_pages);
935 * Free up any temporary buffers allocated. This might hit if
936 * error occurred much later after buffer allocation.
938 if (image->file_mode)
939 kimage_file_post_load_cleanup(image);
941 kfree(image);
944 static kimage_entry_t *kimage_dst_used(struct kimage *image,
945 unsigned long page)
947 kimage_entry_t *ptr, entry;
948 unsigned long destination = 0;
950 for_each_kimage_entry(image, ptr, entry) {
951 if (entry & IND_DESTINATION)
952 destination = entry & PAGE_MASK;
953 else if (entry & IND_SOURCE) {
954 if (page == destination)
955 return ptr;
956 destination += PAGE_SIZE;
960 return NULL;
963 static struct page *kimage_alloc_page(struct kimage *image,
964 gfp_t gfp_mask,
965 unsigned long destination)
968 * Here we implement safeguards to ensure that a source page
969 * is not copied to its destination page before the data on
970 * the destination page is no longer useful.
972 * To do this we maintain the invariant that a source page is
973 * either its own destination page, or it is not a
974 * destination page at all.
976 * That is slightly stronger than required, but the proof
977 * that no problems will not occur is trivial, and the
978 * implementation is simply to verify.
980 * When allocating all pages normally this algorithm will run
981 * in O(N) time, but in the worst case it will run in O(N^2)
982 * time. If the runtime is a problem the data structures can
983 * be fixed.
985 struct page *page;
986 unsigned long addr;
989 * Walk through the list of destination pages, and see if I
990 * have a match.
992 list_for_each_entry(page, &image->dest_pages, lru) {
993 addr = page_to_pfn(page) << PAGE_SHIFT;
994 if (addr == destination) {
995 list_del(&page->lru);
996 return page;
999 page = NULL;
1000 while (1) {
1001 kimage_entry_t *old;
1003 /* Allocate a page, if we run out of memory give up */
1004 page = kimage_alloc_pages(gfp_mask, 0);
1005 if (!page)
1006 return NULL;
1007 /* If the page cannot be used file it away */
1008 if (page_to_pfn(page) >
1009 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
1010 list_add(&page->lru, &image->unusable_pages);
1011 continue;
1013 addr = page_to_pfn(page) << PAGE_SHIFT;
1015 /* If it is the destination page we want use it */
1016 if (addr == destination)
1017 break;
1019 /* If the page is not a destination page use it */
1020 if (!kimage_is_destination_range(image, addr,
1021 addr + PAGE_SIZE))
1022 break;
1025 * I know that the page is someones destination page.
1026 * See if there is already a source page for this
1027 * destination page. And if so swap the source pages.
1029 old = kimage_dst_used(image, addr);
1030 if (old) {
1031 /* If so move it */
1032 unsigned long old_addr;
1033 struct page *old_page;
1035 old_addr = *old & PAGE_MASK;
1036 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
1037 copy_highpage(page, old_page);
1038 *old = addr | (*old & ~PAGE_MASK);
1040 /* The old page I have found cannot be a
1041 * destination page, so return it if it's
1042 * gfp_flags honor the ones passed in.
1044 if (!(gfp_mask & __GFP_HIGHMEM) &&
1045 PageHighMem(old_page)) {
1046 kimage_free_pages(old_page);
1047 continue;
1049 addr = old_addr;
1050 page = old_page;
1051 break;
1052 } else {
1053 /* Place the page on the destination list I
1054 * will use it later.
1056 list_add(&page->lru, &image->dest_pages);
1060 return page;
1063 static int kimage_load_normal_segment(struct kimage *image,
1064 struct kexec_segment *segment)
1066 unsigned long maddr;
1067 size_t ubytes, mbytes;
1068 int result;
1069 unsigned char __user *buf = NULL;
1070 unsigned char *kbuf = NULL;
1072 result = 0;
1073 if (image->file_mode)
1074 kbuf = segment->kbuf;
1075 else
1076 buf = segment->buf;
1077 ubytes = segment->bufsz;
1078 mbytes = segment->memsz;
1079 maddr = segment->mem;
1081 result = kimage_set_destination(image, maddr);
1082 if (result < 0)
1083 goto out;
1085 while (mbytes) {
1086 struct page *page;
1087 char *ptr;
1088 size_t uchunk, mchunk;
1090 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
1091 if (!page) {
1092 result = -ENOMEM;
1093 goto out;
1095 result = kimage_add_page(image, page_to_pfn(page)
1096 << PAGE_SHIFT);
1097 if (result < 0)
1098 goto out;
1100 ptr = kmap(page);
1101 /* Start with a clear page */
1102 clear_page(ptr);
1103 ptr += maddr & ~PAGE_MASK;
1104 mchunk = min_t(size_t, mbytes,
1105 PAGE_SIZE - (maddr & ~PAGE_MASK));
1106 uchunk = min(ubytes, mchunk);
1108 /* For file based kexec, source pages are in kernel memory */
1109 if (image->file_mode)
1110 memcpy(ptr, kbuf, uchunk);
1111 else
1112 result = copy_from_user(ptr, buf, uchunk);
1113 kunmap(page);
1114 if (result) {
1115 result = -EFAULT;
1116 goto out;
1118 ubytes -= uchunk;
1119 maddr += mchunk;
1120 if (image->file_mode)
1121 kbuf += mchunk;
1122 else
1123 buf += mchunk;
1124 mbytes -= mchunk;
1126 out:
1127 return result;
1130 static int kimage_load_crash_segment(struct kimage *image,
1131 struct kexec_segment *segment)
1133 /* For crash dumps kernels we simply copy the data from
1134 * user space to it's destination.
1135 * We do things a page at a time for the sake of kmap.
1137 unsigned long maddr;
1138 size_t ubytes, mbytes;
1139 int result;
1140 unsigned char __user *buf = NULL;
1141 unsigned char *kbuf = NULL;
1143 result = 0;
1144 if (image->file_mode)
1145 kbuf = segment->kbuf;
1146 else
1147 buf = segment->buf;
1148 ubytes = segment->bufsz;
1149 mbytes = segment->memsz;
1150 maddr = segment->mem;
1151 while (mbytes) {
1152 struct page *page;
1153 char *ptr;
1154 size_t uchunk, mchunk;
1156 page = pfn_to_page(maddr >> PAGE_SHIFT);
1157 if (!page) {
1158 result = -ENOMEM;
1159 goto out;
1161 ptr = kmap(page);
1162 ptr += maddr & ~PAGE_MASK;
1163 mchunk = min_t(size_t, mbytes,
1164 PAGE_SIZE - (maddr & ~PAGE_MASK));
1165 uchunk = min(ubytes, mchunk);
1166 if (mchunk > uchunk) {
1167 /* Zero the trailing part of the page */
1168 memset(ptr + uchunk, 0, mchunk - uchunk);
1171 /* For file based kexec, source pages are in kernel memory */
1172 if (image->file_mode)
1173 memcpy(ptr, kbuf, uchunk);
1174 else
1175 result = copy_from_user(ptr, buf, uchunk);
1176 kexec_flush_icache_page(page);
1177 kunmap(page);
1178 if (result) {
1179 result = -EFAULT;
1180 goto out;
1182 ubytes -= uchunk;
1183 maddr += mchunk;
1184 if (image->file_mode)
1185 kbuf += mchunk;
1186 else
1187 buf += mchunk;
1188 mbytes -= mchunk;
1190 out:
1191 return result;
1194 static int kimage_load_segment(struct kimage *image,
1195 struct kexec_segment *segment)
1197 int result = -ENOMEM;
1199 switch (image->type) {
1200 case KEXEC_TYPE_DEFAULT:
1201 result = kimage_load_normal_segment(image, segment);
1202 break;
1203 case KEXEC_TYPE_CRASH:
1204 result = kimage_load_crash_segment(image, segment);
1205 break;
1208 return result;
1212 * Exec Kernel system call: for obvious reasons only root may call it.
1214 * This call breaks up into three pieces.
1215 * - A generic part which loads the new kernel from the current
1216 * address space, and very carefully places the data in the
1217 * allocated pages.
1219 * - A generic part that interacts with the kernel and tells all of
1220 * the devices to shut down. Preventing on-going dmas, and placing
1221 * the devices in a consistent state so a later kernel can
1222 * reinitialize them.
1224 * - A machine specific part that includes the syscall number
1225 * and then copies the image to it's final destination. And
1226 * jumps into the image at entry.
1228 * kexec does not sync, or unmount filesystems so if you need
1229 * that to happen you need to do that yourself.
1231 struct kimage *kexec_image;
1232 struct kimage *kexec_crash_image;
1233 int kexec_load_disabled;
1235 static DEFINE_MUTEX(kexec_mutex);
1237 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
1238 struct kexec_segment __user *, segments, unsigned long, flags)
1240 struct kimage **dest_image, *image;
1241 int result;
1243 /* We only trust the superuser with rebooting the system. */
1244 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1245 return -EPERM;
1248 * Verify we have a legal set of flags
1249 * This leaves us room for future extensions.
1251 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
1252 return -EINVAL;
1254 /* Verify we are on the appropriate architecture */
1255 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
1256 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
1257 return -EINVAL;
1259 /* Put an artificial cap on the number
1260 * of segments passed to kexec_load.
1262 if (nr_segments > KEXEC_SEGMENT_MAX)
1263 return -EINVAL;
1265 image = NULL;
1266 result = 0;
1268 /* Because we write directly to the reserved memory
1269 * region when loading crash kernels we need a mutex here to
1270 * prevent multiple crash kernels from attempting to load
1271 * simultaneously, and to prevent a crash kernel from loading
1272 * over the top of a in use crash kernel.
1274 * KISS: always take the mutex.
1276 if (!mutex_trylock(&kexec_mutex))
1277 return -EBUSY;
1279 dest_image = &kexec_image;
1280 if (flags & KEXEC_ON_CRASH)
1281 dest_image = &kexec_crash_image;
1282 if (nr_segments > 0) {
1283 unsigned long i;
1285 /* Loading another kernel to reboot into */
1286 if ((flags & KEXEC_ON_CRASH) == 0)
1287 result = kimage_alloc_init(&image, entry, nr_segments,
1288 segments, flags);
1289 /* Loading another kernel to switch to if this one crashes */
1290 else if (flags & KEXEC_ON_CRASH) {
1291 /* Free any current crash dump kernel before
1292 * we corrupt it.
1294 kimage_free(xchg(&kexec_crash_image, NULL));
1295 result = kimage_alloc_init(&image, entry, nr_segments,
1296 segments, flags);
1297 crash_map_reserved_pages();
1299 if (result)
1300 goto out;
1302 if (flags & KEXEC_PRESERVE_CONTEXT)
1303 image->preserve_context = 1;
1304 result = machine_kexec_prepare(image);
1305 if (result)
1306 goto out;
1308 for (i = 0; i < nr_segments; i++) {
1309 result = kimage_load_segment(image, &image->segment[i]);
1310 if (result)
1311 goto out;
1313 kimage_terminate(image);
1314 if (flags & KEXEC_ON_CRASH)
1315 crash_unmap_reserved_pages();
1317 /* Install the new kernel, and Uninstall the old */
1318 image = xchg(dest_image, image);
1320 out:
1321 mutex_unlock(&kexec_mutex);
1322 kimage_free(image);
1324 return result;
1328 * Add and remove page tables for crashkernel memory
1330 * Provide an empty default implementation here -- architecture
1331 * code may override this
1333 void __weak crash_map_reserved_pages(void)
1336 void __weak crash_unmap_reserved_pages(void)
1339 #ifdef CONFIG_COMPAT
1340 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1341 compat_ulong_t, nr_segments,
1342 struct compat_kexec_segment __user *, segments,
1343 compat_ulong_t, flags)
1345 struct compat_kexec_segment in;
1346 struct kexec_segment out, __user *ksegments;
1347 unsigned long i, result;
1349 /* Don't allow clients that don't understand the native
1350 * architecture to do anything.
1352 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1353 return -EINVAL;
1355 if (nr_segments > KEXEC_SEGMENT_MAX)
1356 return -EINVAL;
1358 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1359 for (i = 0; i < nr_segments; i++) {
1360 result = copy_from_user(&in, &segments[i], sizeof(in));
1361 if (result)
1362 return -EFAULT;
1364 out.buf = compat_ptr(in.buf);
1365 out.bufsz = in.bufsz;
1366 out.mem = in.mem;
1367 out.memsz = in.memsz;
1369 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1370 if (result)
1371 return -EFAULT;
1374 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1376 #endif
1378 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
1379 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
1380 unsigned long, flags)
1382 int ret = 0, i;
1383 struct kimage **dest_image, *image;
1385 /* We only trust the superuser with rebooting the system. */
1386 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1387 return -EPERM;
1389 /* Make sure we have a legal set of flags */
1390 if (flags != (flags & KEXEC_FILE_FLAGS))
1391 return -EINVAL;
1393 image = NULL;
1395 if (!mutex_trylock(&kexec_mutex))
1396 return -EBUSY;
1398 dest_image = &kexec_image;
1399 if (flags & KEXEC_FILE_ON_CRASH)
1400 dest_image = &kexec_crash_image;
1402 if (flags & KEXEC_FILE_UNLOAD)
1403 goto exchange;
1406 * In case of crash, new kernel gets loaded in reserved region. It is
1407 * same memory where old crash kernel might be loaded. Free any
1408 * current crash dump kernel before we corrupt it.
1410 if (flags & KEXEC_FILE_ON_CRASH)
1411 kimage_free(xchg(&kexec_crash_image, NULL));
1413 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
1414 cmdline_len, flags);
1415 if (ret)
1416 goto out;
1418 ret = machine_kexec_prepare(image);
1419 if (ret)
1420 goto out;
1422 ret = kexec_calculate_store_digests(image);
1423 if (ret)
1424 goto out;
1426 for (i = 0; i < image->nr_segments; i++) {
1427 struct kexec_segment *ksegment;
1429 ksegment = &image->segment[i];
1430 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1431 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
1432 ksegment->memsz);
1434 ret = kimage_load_segment(image, &image->segment[i]);
1435 if (ret)
1436 goto out;
1439 kimage_terminate(image);
1442 * Free up any temporary buffers allocated which are not needed
1443 * after image has been loaded
1445 kimage_file_post_load_cleanup(image);
1446 exchange:
1447 image = xchg(dest_image, image);
1448 out:
1449 mutex_unlock(&kexec_mutex);
1450 kimage_free(image);
1451 return ret;
1454 void crash_kexec(struct pt_regs *regs)
1456 /* Take the kexec_mutex here to prevent sys_kexec_load
1457 * running on one cpu from replacing the crash kernel
1458 * we are using after a panic on a different cpu.
1460 * If the crash kernel was not located in a fixed area
1461 * of memory the xchg(&kexec_crash_image) would be
1462 * sufficient. But since I reuse the memory...
1464 if (mutex_trylock(&kexec_mutex)) {
1465 if (kexec_crash_image) {
1466 struct pt_regs fixed_regs;
1468 crash_setup_regs(&fixed_regs, regs);
1469 crash_save_vmcoreinfo();
1470 machine_crash_shutdown(&fixed_regs);
1471 machine_kexec(kexec_crash_image);
1473 mutex_unlock(&kexec_mutex);
1477 size_t crash_get_memory_size(void)
1479 size_t size = 0;
1480 mutex_lock(&kexec_mutex);
1481 if (crashk_res.end != crashk_res.start)
1482 size = resource_size(&crashk_res);
1483 mutex_unlock(&kexec_mutex);
1484 return size;
1487 void __weak crash_free_reserved_phys_range(unsigned long begin,
1488 unsigned long end)
1490 unsigned long addr;
1492 for (addr = begin; addr < end; addr += PAGE_SIZE)
1493 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1496 int crash_shrink_memory(unsigned long new_size)
1498 int ret = 0;
1499 unsigned long start, end;
1500 unsigned long old_size;
1501 struct resource *ram_res;
1503 mutex_lock(&kexec_mutex);
1505 if (kexec_crash_image) {
1506 ret = -ENOENT;
1507 goto unlock;
1509 start = crashk_res.start;
1510 end = crashk_res.end;
1511 old_size = (end == 0) ? 0 : end - start + 1;
1512 if (new_size >= old_size) {
1513 ret = (new_size == old_size) ? 0 : -EINVAL;
1514 goto unlock;
1517 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1518 if (!ram_res) {
1519 ret = -ENOMEM;
1520 goto unlock;
1523 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1524 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1526 crash_map_reserved_pages();
1527 crash_free_reserved_phys_range(end, crashk_res.end);
1529 if ((start == end) && (crashk_res.parent != NULL))
1530 release_resource(&crashk_res);
1532 ram_res->start = end;
1533 ram_res->end = crashk_res.end;
1534 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1535 ram_res->name = "System RAM";
1537 crashk_res.end = end - 1;
1539 insert_resource(&iomem_resource, ram_res);
1540 crash_unmap_reserved_pages();
1542 unlock:
1543 mutex_unlock(&kexec_mutex);
1544 return ret;
1547 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1548 size_t data_len)
1550 struct elf_note note;
1552 note.n_namesz = strlen(name) + 1;
1553 note.n_descsz = data_len;
1554 note.n_type = type;
1555 memcpy(buf, &note, sizeof(note));
1556 buf += (sizeof(note) + 3)/4;
1557 memcpy(buf, name, note.n_namesz);
1558 buf += (note.n_namesz + 3)/4;
1559 memcpy(buf, data, note.n_descsz);
1560 buf += (note.n_descsz + 3)/4;
1562 return buf;
1565 static void final_note(u32 *buf)
1567 struct elf_note note;
1569 note.n_namesz = 0;
1570 note.n_descsz = 0;
1571 note.n_type = 0;
1572 memcpy(buf, &note, sizeof(note));
1575 void crash_save_cpu(struct pt_regs *regs, int cpu)
1577 struct elf_prstatus prstatus;
1578 u32 *buf;
1580 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1581 return;
1583 /* Using ELF notes here is opportunistic.
1584 * I need a well defined structure format
1585 * for the data I pass, and I need tags
1586 * on the data to indicate what information I have
1587 * squirrelled away. ELF notes happen to provide
1588 * all of that, so there is no need to invent something new.
1590 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1591 if (!buf)
1592 return;
1593 memset(&prstatus, 0, sizeof(prstatus));
1594 prstatus.pr_pid = current->pid;
1595 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1596 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1597 &prstatus, sizeof(prstatus));
1598 final_note(buf);
1601 static int __init crash_notes_memory_init(void)
1603 /* Allocate memory for saving cpu registers. */
1604 crash_notes = alloc_percpu(note_buf_t);
1605 if (!crash_notes) {
1606 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1607 return -ENOMEM;
1609 return 0;
1611 subsys_initcall(crash_notes_memory_init);
1615 * parsing the "crashkernel" commandline
1617 * this code is intended to be called from architecture specific code
1622 * This function parses command lines in the format
1624 * crashkernel=ramsize-range:size[,...][@offset]
1626 * The function returns 0 on success and -EINVAL on failure.
1628 static int __init parse_crashkernel_mem(char *cmdline,
1629 unsigned long long system_ram,
1630 unsigned long long *crash_size,
1631 unsigned long long *crash_base)
1633 char *cur = cmdline, *tmp;
1635 /* for each entry of the comma-separated list */
1636 do {
1637 unsigned long long start, end = ULLONG_MAX, size;
1639 /* get the start of the range */
1640 start = memparse(cur, &tmp);
1641 if (cur == tmp) {
1642 pr_warn("crashkernel: Memory value expected\n");
1643 return -EINVAL;
1645 cur = tmp;
1646 if (*cur != '-') {
1647 pr_warn("crashkernel: '-' expected\n");
1648 return -EINVAL;
1650 cur++;
1652 /* if no ':' is here, than we read the end */
1653 if (*cur != ':') {
1654 end = memparse(cur, &tmp);
1655 if (cur == tmp) {
1656 pr_warn("crashkernel: Memory value expected\n");
1657 return -EINVAL;
1659 cur = tmp;
1660 if (end <= start) {
1661 pr_warn("crashkernel: end <= start\n");
1662 return -EINVAL;
1666 if (*cur != ':') {
1667 pr_warn("crashkernel: ':' expected\n");
1668 return -EINVAL;
1670 cur++;
1672 size = memparse(cur, &tmp);
1673 if (cur == tmp) {
1674 pr_warn("Memory value expected\n");
1675 return -EINVAL;
1677 cur = tmp;
1678 if (size >= system_ram) {
1679 pr_warn("crashkernel: invalid size\n");
1680 return -EINVAL;
1683 /* match ? */
1684 if (system_ram >= start && system_ram < end) {
1685 *crash_size = size;
1686 break;
1688 } while (*cur++ == ',');
1690 if (*crash_size > 0) {
1691 while (*cur && *cur != ' ' && *cur != '@')
1692 cur++;
1693 if (*cur == '@') {
1694 cur++;
1695 *crash_base = memparse(cur, &tmp);
1696 if (cur == tmp) {
1697 pr_warn("Memory value expected after '@'\n");
1698 return -EINVAL;
1703 return 0;
1707 * That function parses "simple" (old) crashkernel command lines like
1709 * crashkernel=size[@offset]
1711 * It returns 0 on success and -EINVAL on failure.
1713 static int __init parse_crashkernel_simple(char *cmdline,
1714 unsigned long long *crash_size,
1715 unsigned long long *crash_base)
1717 char *cur = cmdline;
1719 *crash_size = memparse(cmdline, &cur);
1720 if (cmdline == cur) {
1721 pr_warn("crashkernel: memory value expected\n");
1722 return -EINVAL;
1725 if (*cur == '@')
1726 *crash_base = memparse(cur+1, &cur);
1727 else if (*cur != ' ' && *cur != '\0') {
1728 pr_warn("crashkernel: unrecognized char\n");
1729 return -EINVAL;
1732 return 0;
1735 #define SUFFIX_HIGH 0
1736 #define SUFFIX_LOW 1
1737 #define SUFFIX_NULL 2
1738 static __initdata char *suffix_tbl[] = {
1739 [SUFFIX_HIGH] = ",high",
1740 [SUFFIX_LOW] = ",low",
1741 [SUFFIX_NULL] = NULL,
1745 * That function parses "suffix" crashkernel command lines like
1747 * crashkernel=size,[high|low]
1749 * It returns 0 on success and -EINVAL on failure.
1751 static int __init parse_crashkernel_suffix(char *cmdline,
1752 unsigned long long *crash_size,
1753 unsigned long long *crash_base,
1754 const char *suffix)
1756 char *cur = cmdline;
1758 *crash_size = memparse(cmdline, &cur);
1759 if (cmdline == cur) {
1760 pr_warn("crashkernel: memory value expected\n");
1761 return -EINVAL;
1764 /* check with suffix */
1765 if (strncmp(cur, suffix, strlen(suffix))) {
1766 pr_warn("crashkernel: unrecognized char\n");
1767 return -EINVAL;
1769 cur += strlen(suffix);
1770 if (*cur != ' ' && *cur != '\0') {
1771 pr_warn("crashkernel: unrecognized char\n");
1772 return -EINVAL;
1775 return 0;
1778 static __init char *get_last_crashkernel(char *cmdline,
1779 const char *name,
1780 const char *suffix)
1782 char *p = cmdline, *ck_cmdline = NULL;
1784 /* find crashkernel and use the last one if there are more */
1785 p = strstr(p, name);
1786 while (p) {
1787 char *end_p = strchr(p, ' ');
1788 char *q;
1790 if (!end_p)
1791 end_p = p + strlen(p);
1793 if (!suffix) {
1794 int i;
1796 /* skip the one with any known suffix */
1797 for (i = 0; suffix_tbl[i]; i++) {
1798 q = end_p - strlen(suffix_tbl[i]);
1799 if (!strncmp(q, suffix_tbl[i],
1800 strlen(suffix_tbl[i])))
1801 goto next;
1803 ck_cmdline = p;
1804 } else {
1805 q = end_p - strlen(suffix);
1806 if (!strncmp(q, suffix, strlen(suffix)))
1807 ck_cmdline = p;
1809 next:
1810 p = strstr(p+1, name);
1813 if (!ck_cmdline)
1814 return NULL;
1816 return ck_cmdline;
1819 static int __init __parse_crashkernel(char *cmdline,
1820 unsigned long long system_ram,
1821 unsigned long long *crash_size,
1822 unsigned long long *crash_base,
1823 const char *name,
1824 const char *suffix)
1826 char *first_colon, *first_space;
1827 char *ck_cmdline;
1829 BUG_ON(!crash_size || !crash_base);
1830 *crash_size = 0;
1831 *crash_base = 0;
1833 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1835 if (!ck_cmdline)
1836 return -EINVAL;
1838 ck_cmdline += strlen(name);
1840 if (suffix)
1841 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1842 crash_base, suffix);
1844 * if the commandline contains a ':', then that's the extended
1845 * syntax -- if not, it must be the classic syntax
1847 first_colon = strchr(ck_cmdline, ':');
1848 first_space = strchr(ck_cmdline, ' ');
1849 if (first_colon && (!first_space || first_colon < first_space))
1850 return parse_crashkernel_mem(ck_cmdline, system_ram,
1851 crash_size, crash_base);
1853 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1857 * That function is the entry point for command line parsing and should be
1858 * called from the arch-specific code.
1860 int __init parse_crashkernel(char *cmdline,
1861 unsigned long long system_ram,
1862 unsigned long long *crash_size,
1863 unsigned long long *crash_base)
1865 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1866 "crashkernel=", NULL);
1869 int __init parse_crashkernel_high(char *cmdline,
1870 unsigned long long system_ram,
1871 unsigned long long *crash_size,
1872 unsigned long long *crash_base)
1874 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1875 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1878 int __init parse_crashkernel_low(char *cmdline,
1879 unsigned long long system_ram,
1880 unsigned long long *crash_size,
1881 unsigned long long *crash_base)
1883 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1884 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1887 static void update_vmcoreinfo_note(void)
1889 u32 *buf = vmcoreinfo_note;
1891 if (!vmcoreinfo_size)
1892 return;
1893 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1894 vmcoreinfo_size);
1895 final_note(buf);
1898 void crash_save_vmcoreinfo(void)
1900 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1901 update_vmcoreinfo_note();
1904 void vmcoreinfo_append_str(const char *fmt, ...)
1906 va_list args;
1907 char buf[0x50];
1908 size_t r;
1910 va_start(args, fmt);
1911 r = vscnprintf(buf, sizeof(buf), fmt, args);
1912 va_end(args);
1914 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1916 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1918 vmcoreinfo_size += r;
1922 * provide an empty default implementation here -- architecture
1923 * code may override this
1925 void __weak arch_crash_save_vmcoreinfo(void)
1928 unsigned long __weak paddr_vmcoreinfo_note(void)
1930 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1933 static int __init crash_save_vmcoreinfo_init(void)
1935 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1936 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1938 VMCOREINFO_SYMBOL(init_uts_ns);
1939 VMCOREINFO_SYMBOL(node_online_map);
1940 #ifdef CONFIG_MMU
1941 VMCOREINFO_SYMBOL(swapper_pg_dir);
1942 #endif
1943 VMCOREINFO_SYMBOL(_stext);
1944 VMCOREINFO_SYMBOL(vmap_area_list);
1946 #ifndef CONFIG_NEED_MULTIPLE_NODES
1947 VMCOREINFO_SYMBOL(mem_map);
1948 VMCOREINFO_SYMBOL(contig_page_data);
1949 #endif
1950 #ifdef CONFIG_SPARSEMEM
1951 VMCOREINFO_SYMBOL(mem_section);
1952 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1953 VMCOREINFO_STRUCT_SIZE(mem_section);
1954 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1955 #endif
1956 VMCOREINFO_STRUCT_SIZE(page);
1957 VMCOREINFO_STRUCT_SIZE(pglist_data);
1958 VMCOREINFO_STRUCT_SIZE(zone);
1959 VMCOREINFO_STRUCT_SIZE(free_area);
1960 VMCOREINFO_STRUCT_SIZE(list_head);
1961 VMCOREINFO_SIZE(nodemask_t);
1962 VMCOREINFO_OFFSET(page, flags);
1963 VMCOREINFO_OFFSET(page, _count);
1964 VMCOREINFO_OFFSET(page, mapping);
1965 VMCOREINFO_OFFSET(page, lru);
1966 VMCOREINFO_OFFSET(page, _mapcount);
1967 VMCOREINFO_OFFSET(page, private);
1968 VMCOREINFO_OFFSET(pglist_data, node_zones);
1969 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1970 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1971 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1972 #endif
1973 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1974 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1975 VMCOREINFO_OFFSET(pglist_data, node_id);
1976 VMCOREINFO_OFFSET(zone, free_area);
1977 VMCOREINFO_OFFSET(zone, vm_stat);
1978 VMCOREINFO_OFFSET(zone, spanned_pages);
1979 VMCOREINFO_OFFSET(free_area, free_list);
1980 VMCOREINFO_OFFSET(list_head, next);
1981 VMCOREINFO_OFFSET(list_head, prev);
1982 VMCOREINFO_OFFSET(vmap_area, va_start);
1983 VMCOREINFO_OFFSET(vmap_area, list);
1984 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1985 log_buf_kexec_setup();
1986 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1987 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1988 VMCOREINFO_NUMBER(PG_lru);
1989 VMCOREINFO_NUMBER(PG_private);
1990 VMCOREINFO_NUMBER(PG_swapcache);
1991 VMCOREINFO_NUMBER(PG_slab);
1992 #ifdef CONFIG_MEMORY_FAILURE
1993 VMCOREINFO_NUMBER(PG_hwpoison);
1994 #endif
1995 VMCOREINFO_NUMBER(PG_head_mask);
1996 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1997 #ifdef CONFIG_HUGETLBFS
1998 VMCOREINFO_SYMBOL(free_huge_page);
1999 #endif
2001 arch_crash_save_vmcoreinfo();
2002 update_vmcoreinfo_note();
2004 return 0;
2007 subsys_initcall(crash_save_vmcoreinfo_init);
2009 static int __kexec_add_segment(struct kimage *image, char *buf,
2010 unsigned long bufsz, unsigned long mem,
2011 unsigned long memsz)
2013 struct kexec_segment *ksegment;
2015 ksegment = &image->segment[image->nr_segments];
2016 ksegment->kbuf = buf;
2017 ksegment->bufsz = bufsz;
2018 ksegment->mem = mem;
2019 ksegment->memsz = memsz;
2020 image->nr_segments++;
2022 return 0;
2025 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
2026 struct kexec_buf *kbuf)
2028 struct kimage *image = kbuf->image;
2029 unsigned long temp_start, temp_end;
2031 temp_end = min(end, kbuf->buf_max);
2032 temp_start = temp_end - kbuf->memsz;
2034 do {
2035 /* align down start */
2036 temp_start = temp_start & (~(kbuf->buf_align - 1));
2038 if (temp_start < start || temp_start < kbuf->buf_min)
2039 return 0;
2041 temp_end = temp_start + kbuf->memsz - 1;
2044 * Make sure this does not conflict with any of existing
2045 * segments
2047 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2048 temp_start = temp_start - PAGE_SIZE;
2049 continue;
2052 /* We found a suitable memory range */
2053 break;
2054 } while (1);
2056 /* If we are here, we found a suitable memory range */
2057 __kexec_add_segment(image, kbuf->buffer, kbuf->bufsz, temp_start,
2058 kbuf->memsz);
2060 /* Success, stop navigating through remaining System RAM ranges */
2061 return 1;
2064 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
2065 struct kexec_buf *kbuf)
2067 struct kimage *image = kbuf->image;
2068 unsigned long temp_start, temp_end;
2070 temp_start = max(start, kbuf->buf_min);
2072 do {
2073 temp_start = ALIGN(temp_start, kbuf->buf_align);
2074 temp_end = temp_start + kbuf->memsz - 1;
2076 if (temp_end > end || temp_end > kbuf->buf_max)
2077 return 0;
2079 * Make sure this does not conflict with any of existing
2080 * segments
2082 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2083 temp_start = temp_start + PAGE_SIZE;
2084 continue;
2087 /* We found a suitable memory range */
2088 break;
2089 } while (1);
2091 /* If we are here, we found a suitable memory range */
2092 __kexec_add_segment(image, kbuf->buffer, kbuf->bufsz, temp_start,
2093 kbuf->memsz);
2095 /* Success, stop navigating through remaining System RAM ranges */
2096 return 1;
2099 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
2101 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
2102 unsigned long sz = end - start + 1;
2104 /* Returning 0 will take to next memory range */
2105 if (sz < kbuf->memsz)
2106 return 0;
2108 if (end < kbuf->buf_min || start > kbuf->buf_max)
2109 return 0;
2112 * Allocate memory top down with-in ram range. Otherwise bottom up
2113 * allocation.
2115 if (kbuf->top_down)
2116 return locate_mem_hole_top_down(start, end, kbuf);
2117 return locate_mem_hole_bottom_up(start, end, kbuf);
2121 * Helper function for placing a buffer in a kexec segment. This assumes
2122 * that kexec_mutex is held.
2124 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
2125 unsigned long memsz, unsigned long buf_align,
2126 unsigned long buf_min, unsigned long buf_max,
2127 bool top_down, unsigned long *load_addr)
2130 struct kexec_segment *ksegment;
2131 struct kexec_buf buf, *kbuf;
2132 int ret;
2134 /* Currently adding segment this way is allowed only in file mode */
2135 if (!image->file_mode)
2136 return -EINVAL;
2138 if (image->nr_segments >= KEXEC_SEGMENT_MAX)
2139 return -EINVAL;
2142 * Make sure we are not trying to add buffer after allocating
2143 * control pages. All segments need to be placed first before
2144 * any control pages are allocated. As control page allocation
2145 * logic goes through list of segments to make sure there are
2146 * no destination overlaps.
2148 if (!list_empty(&image->control_pages)) {
2149 WARN_ON(1);
2150 return -EINVAL;
2153 memset(&buf, 0, sizeof(struct kexec_buf));
2154 kbuf = &buf;
2155 kbuf->image = image;
2156 kbuf->buffer = buffer;
2157 kbuf->bufsz = bufsz;
2159 kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
2160 kbuf->buf_align = max(buf_align, PAGE_SIZE);
2161 kbuf->buf_min = buf_min;
2162 kbuf->buf_max = buf_max;
2163 kbuf->top_down = top_down;
2165 /* Walk the RAM ranges and allocate a suitable range for the buffer */
2166 if (image->type == KEXEC_TYPE_CRASH)
2167 ret = walk_iomem_res("Crash kernel",
2168 IORESOURCE_MEM | IORESOURCE_BUSY,
2169 crashk_res.start, crashk_res.end, kbuf,
2170 locate_mem_hole_callback);
2171 else
2172 ret = walk_system_ram_res(0, -1, kbuf,
2173 locate_mem_hole_callback);
2174 if (ret != 1) {
2175 /* A suitable memory range could not be found for buffer */
2176 return -EADDRNOTAVAIL;
2179 /* Found a suitable memory range */
2180 ksegment = &image->segment[image->nr_segments - 1];
2181 *load_addr = ksegment->mem;
2182 return 0;
2185 /* Calculate and store the digest of segments */
2186 static int kexec_calculate_store_digests(struct kimage *image)
2188 struct crypto_shash *tfm;
2189 struct shash_desc *desc;
2190 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
2191 size_t desc_size, nullsz;
2192 char *digest;
2193 void *zero_buf;
2194 struct kexec_sha_region *sha_regions;
2195 struct purgatory_info *pi = &image->purgatory_info;
2197 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
2198 zero_buf_sz = PAGE_SIZE;
2200 tfm = crypto_alloc_shash("sha256", 0, 0);
2201 if (IS_ERR(tfm)) {
2202 ret = PTR_ERR(tfm);
2203 goto out;
2206 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
2207 desc = kzalloc(desc_size, GFP_KERNEL);
2208 if (!desc) {
2209 ret = -ENOMEM;
2210 goto out_free_tfm;
2213 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
2214 sha_regions = vzalloc(sha_region_sz);
2215 if (!sha_regions)
2216 goto out_free_desc;
2218 desc->tfm = tfm;
2219 desc->flags = 0;
2221 ret = crypto_shash_init(desc);
2222 if (ret < 0)
2223 goto out_free_sha_regions;
2225 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
2226 if (!digest) {
2227 ret = -ENOMEM;
2228 goto out_free_sha_regions;
2231 for (j = i = 0; i < image->nr_segments; i++) {
2232 struct kexec_segment *ksegment;
2234 ksegment = &image->segment[i];
2236 * Skip purgatory as it will be modified once we put digest
2237 * info in purgatory.
2239 if (ksegment->kbuf == pi->purgatory_buf)
2240 continue;
2242 ret = crypto_shash_update(desc, ksegment->kbuf,
2243 ksegment->bufsz);
2244 if (ret)
2245 break;
2248 * Assume rest of the buffer is filled with zero and
2249 * update digest accordingly.
2251 nullsz = ksegment->memsz - ksegment->bufsz;
2252 while (nullsz) {
2253 unsigned long bytes = nullsz;
2255 if (bytes > zero_buf_sz)
2256 bytes = zero_buf_sz;
2257 ret = crypto_shash_update(desc, zero_buf, bytes);
2258 if (ret)
2259 break;
2260 nullsz -= bytes;
2263 if (ret)
2264 break;
2266 sha_regions[j].start = ksegment->mem;
2267 sha_regions[j].len = ksegment->memsz;
2268 j++;
2271 if (!ret) {
2272 ret = crypto_shash_final(desc, digest);
2273 if (ret)
2274 goto out_free_digest;
2275 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
2276 sha_regions, sha_region_sz, 0);
2277 if (ret)
2278 goto out_free_digest;
2280 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
2281 digest, SHA256_DIGEST_SIZE, 0);
2282 if (ret)
2283 goto out_free_digest;
2286 out_free_digest:
2287 kfree(digest);
2288 out_free_sha_regions:
2289 vfree(sha_regions);
2290 out_free_desc:
2291 kfree(desc);
2292 out_free_tfm:
2293 kfree(tfm);
2294 out:
2295 return ret;
2298 /* Actually load purgatory. Lot of code taken from kexec-tools */
2299 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
2300 unsigned long max, int top_down)
2302 struct purgatory_info *pi = &image->purgatory_info;
2303 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
2304 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
2305 unsigned char *buf_addr, *src;
2306 int i, ret = 0, entry_sidx = -1;
2307 const Elf_Shdr *sechdrs_c;
2308 Elf_Shdr *sechdrs = NULL;
2309 void *purgatory_buf = NULL;
2312 * sechdrs_c points to section headers in purgatory and are read
2313 * only. No modifications allowed.
2315 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
2318 * We can not modify sechdrs_c[] and its fields. It is read only.
2319 * Copy it over to a local copy where one can store some temporary
2320 * data and free it at the end. We need to modify ->sh_addr and
2321 * ->sh_offset fields to keep track of permanent and temporary
2322 * locations of sections.
2324 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2325 if (!sechdrs)
2326 return -ENOMEM;
2328 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2331 * We seem to have multiple copies of sections. First copy is which
2332 * is embedded in kernel in read only section. Some of these sections
2333 * will be copied to a temporary buffer and relocated. And these
2334 * sections will finally be copied to their final destination at
2335 * segment load time.
2337 * Use ->sh_offset to reflect section address in memory. It will
2338 * point to original read only copy if section is not allocatable.
2339 * Otherwise it will point to temporary copy which will be relocated.
2341 * Use ->sh_addr to contain final address of the section where it
2342 * will go during execution time.
2344 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2345 if (sechdrs[i].sh_type == SHT_NOBITS)
2346 continue;
2348 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
2349 sechdrs[i].sh_offset;
2353 * Identify entry point section and make entry relative to section
2354 * start.
2356 entry = pi->ehdr->e_entry;
2357 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2358 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2359 continue;
2361 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
2362 continue;
2364 /* Make entry section relative */
2365 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
2366 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
2367 pi->ehdr->e_entry)) {
2368 entry_sidx = i;
2369 entry -= sechdrs[i].sh_addr;
2370 break;
2374 /* Determine how much memory is needed to load relocatable object. */
2375 buf_align = 1;
2376 bss_align = 1;
2377 buf_sz = 0;
2378 bss_sz = 0;
2380 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2381 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2382 continue;
2384 align = sechdrs[i].sh_addralign;
2385 if (sechdrs[i].sh_type != SHT_NOBITS) {
2386 if (buf_align < align)
2387 buf_align = align;
2388 buf_sz = ALIGN(buf_sz, align);
2389 buf_sz += sechdrs[i].sh_size;
2390 } else {
2391 /* bss section */
2392 if (bss_align < align)
2393 bss_align = align;
2394 bss_sz = ALIGN(bss_sz, align);
2395 bss_sz += sechdrs[i].sh_size;
2399 /* Determine the bss padding required to align bss properly */
2400 bss_pad = 0;
2401 if (buf_sz & (bss_align - 1))
2402 bss_pad = bss_align - (buf_sz & (bss_align - 1));
2404 memsz = buf_sz + bss_pad + bss_sz;
2406 /* Allocate buffer for purgatory */
2407 purgatory_buf = vzalloc(buf_sz);
2408 if (!purgatory_buf) {
2409 ret = -ENOMEM;
2410 goto out;
2413 if (buf_align < bss_align)
2414 buf_align = bss_align;
2416 /* Add buffer to segment list */
2417 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
2418 buf_align, min, max, top_down,
2419 &pi->purgatory_load_addr);
2420 if (ret)
2421 goto out;
2423 /* Load SHF_ALLOC sections */
2424 buf_addr = purgatory_buf;
2425 load_addr = curr_load_addr = pi->purgatory_load_addr;
2426 bss_addr = load_addr + buf_sz + bss_pad;
2428 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2429 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2430 continue;
2432 align = sechdrs[i].sh_addralign;
2433 if (sechdrs[i].sh_type != SHT_NOBITS) {
2434 curr_load_addr = ALIGN(curr_load_addr, align);
2435 offset = curr_load_addr - load_addr;
2436 /* We already modifed ->sh_offset to keep src addr */
2437 src = (char *) sechdrs[i].sh_offset;
2438 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
2440 /* Store load address and source address of section */
2441 sechdrs[i].sh_addr = curr_load_addr;
2444 * This section got copied to temporary buffer. Update
2445 * ->sh_offset accordingly.
2447 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
2449 /* Advance to the next address */
2450 curr_load_addr += sechdrs[i].sh_size;
2451 } else {
2452 bss_addr = ALIGN(bss_addr, align);
2453 sechdrs[i].sh_addr = bss_addr;
2454 bss_addr += sechdrs[i].sh_size;
2458 /* Update entry point based on load address of text section */
2459 if (entry_sidx >= 0)
2460 entry += sechdrs[entry_sidx].sh_addr;
2462 /* Make kernel jump to purgatory after shutdown */
2463 image->start = entry;
2465 /* Used later to get/set symbol values */
2466 pi->sechdrs = sechdrs;
2469 * Used later to identify which section is purgatory and skip it
2470 * from checksumming.
2472 pi->purgatory_buf = purgatory_buf;
2473 return ret;
2474 out:
2475 vfree(sechdrs);
2476 vfree(purgatory_buf);
2477 return ret;
2480 static int kexec_apply_relocations(struct kimage *image)
2482 int i, ret;
2483 struct purgatory_info *pi = &image->purgatory_info;
2484 Elf_Shdr *sechdrs = pi->sechdrs;
2486 /* Apply relocations */
2487 for (i = 0; i < pi->ehdr->e_shnum; i++) {
2488 Elf_Shdr *section, *symtab;
2490 if (sechdrs[i].sh_type != SHT_RELA &&
2491 sechdrs[i].sh_type != SHT_REL)
2492 continue;
2495 * For section of type SHT_RELA/SHT_REL,
2496 * ->sh_link contains section header index of associated
2497 * symbol table. And ->sh_info contains section header
2498 * index of section to which relocations apply.
2500 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
2501 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
2502 return -ENOEXEC;
2504 section = &sechdrs[sechdrs[i].sh_info];
2505 symtab = &sechdrs[sechdrs[i].sh_link];
2507 if (!(section->sh_flags & SHF_ALLOC))
2508 continue;
2511 * symtab->sh_link contain section header index of associated
2512 * string table.
2514 if (symtab->sh_link >= pi->ehdr->e_shnum)
2515 /* Invalid section number? */
2516 continue;
2519 * Respective archicture needs to provide support for applying
2520 * relocations of type SHT_RELA/SHT_REL.
2522 if (sechdrs[i].sh_type == SHT_RELA)
2523 ret = arch_kexec_apply_relocations_add(pi->ehdr,
2524 sechdrs, i);
2525 else if (sechdrs[i].sh_type == SHT_REL)
2526 ret = arch_kexec_apply_relocations(pi->ehdr,
2527 sechdrs, i);
2528 if (ret)
2529 return ret;
2532 return 0;
2535 /* Load relocatable purgatory object and relocate it appropriately */
2536 int kexec_load_purgatory(struct kimage *image, unsigned long min,
2537 unsigned long max, int top_down,
2538 unsigned long *load_addr)
2540 struct purgatory_info *pi = &image->purgatory_info;
2541 int ret;
2543 if (kexec_purgatory_size <= 0)
2544 return -EINVAL;
2546 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
2547 return -ENOEXEC;
2549 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
2551 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
2552 || pi->ehdr->e_type != ET_REL
2553 || !elf_check_arch(pi->ehdr)
2554 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
2555 return -ENOEXEC;
2557 if (pi->ehdr->e_shoff >= kexec_purgatory_size
2558 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
2559 kexec_purgatory_size - pi->ehdr->e_shoff))
2560 return -ENOEXEC;
2562 ret = __kexec_load_purgatory(image, min, max, top_down);
2563 if (ret)
2564 return ret;
2566 ret = kexec_apply_relocations(image);
2567 if (ret)
2568 goto out;
2570 *load_addr = pi->purgatory_load_addr;
2571 return 0;
2572 out:
2573 vfree(pi->sechdrs);
2574 vfree(pi->purgatory_buf);
2575 return ret;
2578 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
2579 const char *name)
2581 Elf_Sym *syms;
2582 Elf_Shdr *sechdrs;
2583 Elf_Ehdr *ehdr;
2584 int i, k;
2585 const char *strtab;
2587 if (!pi->sechdrs || !pi->ehdr)
2588 return NULL;
2590 sechdrs = pi->sechdrs;
2591 ehdr = pi->ehdr;
2593 for (i = 0; i < ehdr->e_shnum; i++) {
2594 if (sechdrs[i].sh_type != SHT_SYMTAB)
2595 continue;
2597 if (sechdrs[i].sh_link >= ehdr->e_shnum)
2598 /* Invalid strtab section number */
2599 continue;
2600 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
2601 syms = (Elf_Sym *)sechdrs[i].sh_offset;
2603 /* Go through symbols for a match */
2604 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
2605 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
2606 continue;
2608 if (strcmp(strtab + syms[k].st_name, name) != 0)
2609 continue;
2611 if (syms[k].st_shndx == SHN_UNDEF ||
2612 syms[k].st_shndx >= ehdr->e_shnum) {
2613 pr_debug("Symbol: %s has bad section index %d.\n",
2614 name, syms[k].st_shndx);
2615 return NULL;
2618 /* Found the symbol we are looking for */
2619 return &syms[k];
2623 return NULL;
2626 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
2628 struct purgatory_info *pi = &image->purgatory_info;
2629 Elf_Sym *sym;
2630 Elf_Shdr *sechdr;
2632 sym = kexec_purgatory_find_symbol(pi, name);
2633 if (!sym)
2634 return ERR_PTR(-EINVAL);
2636 sechdr = &pi->sechdrs[sym->st_shndx];
2639 * Returns the address where symbol will finally be loaded after
2640 * kexec_load_segment()
2642 return (void *)(sechdr->sh_addr + sym->st_value);
2646 * Get or set value of a symbol. If "get_value" is true, symbol value is
2647 * returned in buf otherwise symbol value is set based on value in buf.
2649 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
2650 void *buf, unsigned int size, bool get_value)
2652 Elf_Sym *sym;
2653 Elf_Shdr *sechdrs;
2654 struct purgatory_info *pi = &image->purgatory_info;
2655 char *sym_buf;
2657 sym = kexec_purgatory_find_symbol(pi, name);
2658 if (!sym)
2659 return -EINVAL;
2661 if (sym->st_size != size) {
2662 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2663 name, (unsigned long)sym->st_size, size);
2664 return -EINVAL;
2667 sechdrs = pi->sechdrs;
2669 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2670 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
2671 get_value ? "get" : "set");
2672 return -EINVAL;
2675 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
2676 sym->st_value;
2678 if (get_value)
2679 memcpy((void *)buf, sym_buf, size);
2680 else
2681 memcpy((void *)sym_buf, buf, size);
2683 return 0;
2687 * Move into place and start executing a preloaded standalone
2688 * executable. If nothing was preloaded return an error.
2690 int kernel_kexec(void)
2692 int error = 0;
2694 if (!mutex_trylock(&kexec_mutex))
2695 return -EBUSY;
2696 if (!kexec_image) {
2697 error = -EINVAL;
2698 goto Unlock;
2701 #ifdef CONFIG_KEXEC_JUMP
2702 if (kexec_image->preserve_context) {
2703 lock_system_sleep();
2704 pm_prepare_console();
2705 error = freeze_processes();
2706 if (error) {
2707 error = -EBUSY;
2708 goto Restore_console;
2710 suspend_console();
2711 error = dpm_suspend_start(PMSG_FREEZE);
2712 if (error)
2713 goto Resume_console;
2714 /* At this point, dpm_suspend_start() has been called,
2715 * but *not* dpm_suspend_end(). We *must* call
2716 * dpm_suspend_end() now. Otherwise, drivers for
2717 * some devices (e.g. interrupt controllers) become
2718 * desynchronized with the actual state of the
2719 * hardware at resume time, and evil weirdness ensues.
2721 error = dpm_suspend_end(PMSG_FREEZE);
2722 if (error)
2723 goto Resume_devices;
2724 error = disable_nonboot_cpus();
2725 if (error)
2726 goto Enable_cpus;
2727 local_irq_disable();
2728 error = syscore_suspend();
2729 if (error)
2730 goto Enable_irqs;
2731 } else
2732 #endif
2734 kexec_in_progress = true;
2735 kernel_restart_prepare(NULL);
2736 migrate_to_reboot_cpu();
2739 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2740 * no further code needs to use CPU hotplug (which is true in
2741 * the reboot case). However, the kexec path depends on using
2742 * CPU hotplug again; so re-enable it here.
2744 cpu_hotplug_enable();
2745 pr_emerg("Starting new kernel\n");
2746 machine_shutdown();
2749 machine_kexec(kexec_image);
2751 #ifdef CONFIG_KEXEC_JUMP
2752 if (kexec_image->preserve_context) {
2753 syscore_resume();
2754 Enable_irqs:
2755 local_irq_enable();
2756 Enable_cpus:
2757 enable_nonboot_cpus();
2758 dpm_resume_start(PMSG_RESTORE);
2759 Resume_devices:
2760 dpm_resume_end(PMSG_RESTORE);
2761 Resume_console:
2762 resume_console();
2763 thaw_processes();
2764 Restore_console:
2765 pm_restore_console();
2766 unlock_system_sleep();
2768 #endif
2770 Unlock:
2771 mutex_unlock(&kexec_mutex);
2772 return error;