libnvdimm: Non-Volatile Devices
[linux/fpc-iii.git] / kernel / time / timekeeping.c
blob946acb72179facb1c173e54592b3c1c3637f8abd
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
54 * See @update_fast_timekeeper() below.
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
77 struct timespec64 ts;
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
99 struct timespec64 tmp;
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
122 * These simple flag variables are managed
123 * without locks, which is racy, but ok since
124 * we don't really care about being super
125 * precise about how many events were seen,
126 * just that a problem was observed.
128 static int timekeeping_underflow_seen;
129 static int timekeeping_overflow_seen;
131 /* last_warning is only modified under the timekeeping lock */
132 static long timekeeping_last_warning;
134 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
137 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
138 const char *name = tk->tkr_mono.clock->name;
140 if (offset > max_cycles) {
141 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
142 offset, name, max_cycles);
143 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
144 } else {
145 if (offset > (max_cycles >> 1)) {
146 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
147 offset, name, max_cycles >> 1);
148 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
152 if (timekeeping_underflow_seen) {
153 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
154 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
156 printk_deferred(" Your kernel is probably still fine.\n");
157 timekeeping_last_warning = jiffies;
159 timekeeping_underflow_seen = 0;
162 if (timekeeping_overflow_seen) {
163 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
164 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
165 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
166 printk_deferred(" Your kernel is probably still fine.\n");
167 timekeeping_last_warning = jiffies;
169 timekeeping_overflow_seen = 0;
173 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
175 cycle_t now, last, mask, max, delta;
176 unsigned int seq;
179 * Since we're called holding a seqlock, the data may shift
180 * under us while we're doing the calculation. This can cause
181 * false positives, since we'd note a problem but throw the
182 * results away. So nest another seqlock here to atomically
183 * grab the points we are checking with.
185 do {
186 seq = read_seqcount_begin(&tk_core.seq);
187 now = tkr->read(tkr->clock);
188 last = tkr->cycle_last;
189 mask = tkr->mask;
190 max = tkr->clock->max_cycles;
191 } while (read_seqcount_retry(&tk_core.seq, seq));
193 delta = clocksource_delta(now, last, mask);
196 * Try to catch underflows by checking if we are seeing small
197 * mask-relative negative values.
199 if (unlikely((~delta & mask) < (mask >> 3))) {
200 timekeeping_underflow_seen = 1;
201 delta = 0;
204 /* Cap delta value to the max_cycles values to avoid mult overflows */
205 if (unlikely(delta > max)) {
206 timekeeping_overflow_seen = 1;
207 delta = tkr->clock->max_cycles;
210 return delta;
212 #else
213 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
216 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
218 cycle_t cycle_now, delta;
220 /* read clocksource */
221 cycle_now = tkr->read(tkr->clock);
223 /* calculate the delta since the last update_wall_time */
224 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
226 return delta;
228 #endif
231 * tk_setup_internals - Set up internals to use clocksource clock.
233 * @tk: The target timekeeper to setup.
234 * @clock: Pointer to clocksource.
236 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
237 * pair and interval request.
239 * Unless you're the timekeeping code, you should not be using this!
241 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
243 cycle_t interval;
244 u64 tmp, ntpinterval;
245 struct clocksource *old_clock;
247 old_clock = tk->tkr_mono.clock;
248 tk->tkr_mono.clock = clock;
249 tk->tkr_mono.read = clock->read;
250 tk->tkr_mono.mask = clock->mask;
251 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
253 tk->tkr_raw.clock = clock;
254 tk->tkr_raw.read = clock->read;
255 tk->tkr_raw.mask = clock->mask;
256 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
258 /* Do the ns -> cycle conversion first, using original mult */
259 tmp = NTP_INTERVAL_LENGTH;
260 tmp <<= clock->shift;
261 ntpinterval = tmp;
262 tmp += clock->mult/2;
263 do_div(tmp, clock->mult);
264 if (tmp == 0)
265 tmp = 1;
267 interval = (cycle_t) tmp;
268 tk->cycle_interval = interval;
270 /* Go back from cycles -> shifted ns */
271 tk->xtime_interval = (u64) interval * clock->mult;
272 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
273 tk->raw_interval =
274 ((u64) interval * clock->mult) >> clock->shift;
276 /* if changing clocks, convert xtime_nsec shift units */
277 if (old_clock) {
278 int shift_change = clock->shift - old_clock->shift;
279 if (shift_change < 0)
280 tk->tkr_mono.xtime_nsec >>= -shift_change;
281 else
282 tk->tkr_mono.xtime_nsec <<= shift_change;
284 tk->tkr_raw.xtime_nsec = 0;
286 tk->tkr_mono.shift = clock->shift;
287 tk->tkr_raw.shift = clock->shift;
289 tk->ntp_error = 0;
290 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
291 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
294 * The timekeeper keeps its own mult values for the currently
295 * active clocksource. These value will be adjusted via NTP
296 * to counteract clock drifting.
298 tk->tkr_mono.mult = clock->mult;
299 tk->tkr_raw.mult = clock->mult;
300 tk->ntp_err_mult = 0;
303 /* Timekeeper helper functions. */
305 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
306 static u32 default_arch_gettimeoffset(void) { return 0; }
307 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
308 #else
309 static inline u32 arch_gettimeoffset(void) { return 0; }
310 #endif
312 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
314 cycle_t delta;
315 s64 nsec;
317 delta = timekeeping_get_delta(tkr);
319 nsec = delta * tkr->mult + tkr->xtime_nsec;
320 nsec >>= tkr->shift;
322 /* If arch requires, add in get_arch_timeoffset() */
323 return nsec + arch_gettimeoffset();
327 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
328 * @tkr: Timekeeping readout base from which we take the update
330 * We want to use this from any context including NMI and tracing /
331 * instrumenting the timekeeping code itself.
333 * So we handle this differently than the other timekeeping accessor
334 * functions which retry when the sequence count has changed. The
335 * update side does:
337 * smp_wmb(); <- Ensure that the last base[1] update is visible
338 * tkf->seq++;
339 * smp_wmb(); <- Ensure that the seqcount update is visible
340 * update(tkf->base[0], tkr);
341 * smp_wmb(); <- Ensure that the base[0] update is visible
342 * tkf->seq++;
343 * smp_wmb(); <- Ensure that the seqcount update is visible
344 * update(tkf->base[1], tkr);
346 * The reader side does:
348 * do {
349 * seq = tkf->seq;
350 * smp_rmb();
351 * idx = seq & 0x01;
352 * now = now(tkf->base[idx]);
353 * smp_rmb();
354 * } while (seq != tkf->seq)
356 * As long as we update base[0] readers are forced off to
357 * base[1]. Once base[0] is updated readers are redirected to base[0]
358 * and the base[1] update takes place.
360 * So if a NMI hits the update of base[0] then it will use base[1]
361 * which is still consistent. In the worst case this can result is a
362 * slightly wrong timestamp (a few nanoseconds). See
363 * @ktime_get_mono_fast_ns.
365 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
367 struct tk_read_base *base = tkf->base;
369 /* Force readers off to base[1] */
370 raw_write_seqcount_latch(&tkf->seq);
372 /* Update base[0] */
373 memcpy(base, tkr, sizeof(*base));
375 /* Force readers back to base[0] */
376 raw_write_seqcount_latch(&tkf->seq);
378 /* Update base[1] */
379 memcpy(base + 1, base, sizeof(*base));
383 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
385 * This timestamp is not guaranteed to be monotonic across an update.
386 * The timestamp is calculated by:
388 * now = base_mono + clock_delta * slope
390 * So if the update lowers the slope, readers who are forced to the
391 * not yet updated second array are still using the old steeper slope.
393 * tmono
395 * | o n
396 * | o n
397 * | u
398 * | o
399 * |o
400 * |12345678---> reader order
402 * o = old slope
403 * u = update
404 * n = new slope
406 * So reader 6 will observe time going backwards versus reader 5.
408 * While other CPUs are likely to be able observe that, the only way
409 * for a CPU local observation is when an NMI hits in the middle of
410 * the update. Timestamps taken from that NMI context might be ahead
411 * of the following timestamps. Callers need to be aware of that and
412 * deal with it.
414 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
416 struct tk_read_base *tkr;
417 unsigned int seq;
418 u64 now;
420 do {
421 seq = raw_read_seqcount(&tkf->seq);
422 tkr = tkf->base + (seq & 0x01);
423 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
424 } while (read_seqcount_retry(&tkf->seq, seq));
426 return now;
429 u64 ktime_get_mono_fast_ns(void)
431 return __ktime_get_fast_ns(&tk_fast_mono);
433 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
435 u64 ktime_get_raw_fast_ns(void)
437 return __ktime_get_fast_ns(&tk_fast_raw);
439 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
441 /* Suspend-time cycles value for halted fast timekeeper. */
442 static cycle_t cycles_at_suspend;
444 static cycle_t dummy_clock_read(struct clocksource *cs)
446 return cycles_at_suspend;
450 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
451 * @tk: Timekeeper to snapshot.
453 * It generally is unsafe to access the clocksource after timekeeping has been
454 * suspended, so take a snapshot of the readout base of @tk and use it as the
455 * fast timekeeper's readout base while suspended. It will return the same
456 * number of cycles every time until timekeeping is resumed at which time the
457 * proper readout base for the fast timekeeper will be restored automatically.
459 static void halt_fast_timekeeper(struct timekeeper *tk)
461 static struct tk_read_base tkr_dummy;
462 struct tk_read_base *tkr = &tk->tkr_mono;
464 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
465 cycles_at_suspend = tkr->read(tkr->clock);
466 tkr_dummy.read = dummy_clock_read;
467 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
469 tkr = &tk->tkr_raw;
470 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
471 tkr_dummy.read = dummy_clock_read;
472 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
475 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
477 static inline void update_vsyscall(struct timekeeper *tk)
479 struct timespec xt, wm;
481 xt = timespec64_to_timespec(tk_xtime(tk));
482 wm = timespec64_to_timespec(tk->wall_to_monotonic);
483 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
484 tk->tkr_mono.cycle_last);
487 static inline void old_vsyscall_fixup(struct timekeeper *tk)
489 s64 remainder;
492 * Store only full nanoseconds into xtime_nsec after rounding
493 * it up and add the remainder to the error difference.
494 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
495 * by truncating the remainder in vsyscalls. However, it causes
496 * additional work to be done in timekeeping_adjust(). Once
497 * the vsyscall implementations are converted to use xtime_nsec
498 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
499 * users are removed, this can be killed.
501 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
502 tk->tkr_mono.xtime_nsec -= remainder;
503 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
504 tk->ntp_error += remainder << tk->ntp_error_shift;
505 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
507 #else
508 #define old_vsyscall_fixup(tk)
509 #endif
511 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
513 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
515 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
519 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
521 int pvclock_gtod_register_notifier(struct notifier_block *nb)
523 struct timekeeper *tk = &tk_core.timekeeper;
524 unsigned long flags;
525 int ret;
527 raw_spin_lock_irqsave(&timekeeper_lock, flags);
528 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
529 update_pvclock_gtod(tk, true);
530 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
532 return ret;
534 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
537 * pvclock_gtod_unregister_notifier - unregister a pvclock
538 * timedata update listener
540 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
542 unsigned long flags;
543 int ret;
545 raw_spin_lock_irqsave(&timekeeper_lock, flags);
546 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
547 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
549 return ret;
551 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
554 * Update the ktime_t based scalar nsec members of the timekeeper
556 static inline void tk_update_ktime_data(struct timekeeper *tk)
558 u64 seconds;
559 u32 nsec;
562 * The xtime based monotonic readout is:
563 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564 * The ktime based monotonic readout is:
565 * nsec = base_mono + now();
566 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
568 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
572 /* Update the monotonic raw base */
573 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
576 * The sum of the nanoseconds portions of xtime and
577 * wall_to_monotonic can be greater/equal one second. Take
578 * this into account before updating tk->ktime_sec.
580 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581 if (nsec >= NSEC_PER_SEC)
582 seconds++;
583 tk->ktime_sec = seconds;
586 /* must hold timekeeper_lock */
587 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
589 if (action & TK_CLEAR_NTP) {
590 tk->ntp_error = 0;
591 ntp_clear();
594 tk_update_ktime_data(tk);
596 update_vsyscall(tk);
597 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
599 if (action & TK_MIRROR)
600 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
601 sizeof(tk_core.timekeeper));
603 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
604 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
608 * timekeeping_forward_now - update clock to the current time
610 * Forward the current clock to update its state since the last call to
611 * update_wall_time(). This is useful before significant clock changes,
612 * as it avoids having to deal with this time offset explicitly.
614 static void timekeeping_forward_now(struct timekeeper *tk)
616 struct clocksource *clock = tk->tkr_mono.clock;
617 cycle_t cycle_now, delta;
618 s64 nsec;
620 cycle_now = tk->tkr_mono.read(clock);
621 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
622 tk->tkr_mono.cycle_last = cycle_now;
623 tk->tkr_raw.cycle_last = cycle_now;
625 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
627 /* If arch requires, add in get_arch_timeoffset() */
628 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
630 tk_normalize_xtime(tk);
632 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
633 timespec64_add_ns(&tk->raw_time, nsec);
637 * __getnstimeofday64 - Returns the time of day in a timespec64.
638 * @ts: pointer to the timespec to be set
640 * Updates the time of day in the timespec.
641 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
643 int __getnstimeofday64(struct timespec64 *ts)
645 struct timekeeper *tk = &tk_core.timekeeper;
646 unsigned long seq;
647 s64 nsecs = 0;
649 do {
650 seq = read_seqcount_begin(&tk_core.seq);
652 ts->tv_sec = tk->xtime_sec;
653 nsecs = timekeeping_get_ns(&tk->tkr_mono);
655 } while (read_seqcount_retry(&tk_core.seq, seq));
657 ts->tv_nsec = 0;
658 timespec64_add_ns(ts, nsecs);
661 * Do not bail out early, in case there were callers still using
662 * the value, even in the face of the WARN_ON.
664 if (unlikely(timekeeping_suspended))
665 return -EAGAIN;
666 return 0;
668 EXPORT_SYMBOL(__getnstimeofday64);
671 * getnstimeofday64 - Returns the time of day in a timespec64.
672 * @ts: pointer to the timespec64 to be set
674 * Returns the time of day in a timespec64 (WARN if suspended).
676 void getnstimeofday64(struct timespec64 *ts)
678 WARN_ON(__getnstimeofday64(ts));
680 EXPORT_SYMBOL(getnstimeofday64);
682 ktime_t ktime_get(void)
684 struct timekeeper *tk = &tk_core.timekeeper;
685 unsigned int seq;
686 ktime_t base;
687 s64 nsecs;
689 WARN_ON(timekeeping_suspended);
691 do {
692 seq = read_seqcount_begin(&tk_core.seq);
693 base = tk->tkr_mono.base;
694 nsecs = timekeeping_get_ns(&tk->tkr_mono);
696 } while (read_seqcount_retry(&tk_core.seq, seq));
698 return ktime_add_ns(base, nsecs);
700 EXPORT_SYMBOL_GPL(ktime_get);
702 static ktime_t *offsets[TK_OFFS_MAX] = {
703 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
704 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
705 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
708 ktime_t ktime_get_with_offset(enum tk_offsets offs)
710 struct timekeeper *tk = &tk_core.timekeeper;
711 unsigned int seq;
712 ktime_t base, *offset = offsets[offs];
713 s64 nsecs;
715 WARN_ON(timekeeping_suspended);
717 do {
718 seq = read_seqcount_begin(&tk_core.seq);
719 base = ktime_add(tk->tkr_mono.base, *offset);
720 nsecs = timekeeping_get_ns(&tk->tkr_mono);
722 } while (read_seqcount_retry(&tk_core.seq, seq));
724 return ktime_add_ns(base, nsecs);
727 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
730 * ktime_mono_to_any() - convert mononotic time to any other time
731 * @tmono: time to convert.
732 * @offs: which offset to use
734 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
736 ktime_t *offset = offsets[offs];
737 unsigned long seq;
738 ktime_t tconv;
740 do {
741 seq = read_seqcount_begin(&tk_core.seq);
742 tconv = ktime_add(tmono, *offset);
743 } while (read_seqcount_retry(&tk_core.seq, seq));
745 return tconv;
747 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
750 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
752 ktime_t ktime_get_raw(void)
754 struct timekeeper *tk = &tk_core.timekeeper;
755 unsigned int seq;
756 ktime_t base;
757 s64 nsecs;
759 do {
760 seq = read_seqcount_begin(&tk_core.seq);
761 base = tk->tkr_raw.base;
762 nsecs = timekeeping_get_ns(&tk->tkr_raw);
764 } while (read_seqcount_retry(&tk_core.seq, seq));
766 return ktime_add_ns(base, nsecs);
768 EXPORT_SYMBOL_GPL(ktime_get_raw);
771 * ktime_get_ts64 - get the monotonic clock in timespec64 format
772 * @ts: pointer to timespec variable
774 * The function calculates the monotonic clock from the realtime
775 * clock and the wall_to_monotonic offset and stores the result
776 * in normalized timespec64 format in the variable pointed to by @ts.
778 void ktime_get_ts64(struct timespec64 *ts)
780 struct timekeeper *tk = &tk_core.timekeeper;
781 struct timespec64 tomono;
782 s64 nsec;
783 unsigned int seq;
785 WARN_ON(timekeeping_suspended);
787 do {
788 seq = read_seqcount_begin(&tk_core.seq);
789 ts->tv_sec = tk->xtime_sec;
790 nsec = timekeeping_get_ns(&tk->tkr_mono);
791 tomono = tk->wall_to_monotonic;
793 } while (read_seqcount_retry(&tk_core.seq, seq));
795 ts->tv_sec += tomono.tv_sec;
796 ts->tv_nsec = 0;
797 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
799 EXPORT_SYMBOL_GPL(ktime_get_ts64);
802 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
804 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
805 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
806 * works on both 32 and 64 bit systems. On 32 bit systems the readout
807 * covers ~136 years of uptime which should be enough to prevent
808 * premature wrap arounds.
810 time64_t ktime_get_seconds(void)
812 struct timekeeper *tk = &tk_core.timekeeper;
814 WARN_ON(timekeeping_suspended);
815 return tk->ktime_sec;
817 EXPORT_SYMBOL_GPL(ktime_get_seconds);
820 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
822 * Returns the wall clock seconds since 1970. This replaces the
823 * get_seconds() interface which is not y2038 safe on 32bit systems.
825 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
826 * 32bit systems the access must be protected with the sequence
827 * counter to provide "atomic" access to the 64bit tk->xtime_sec
828 * value.
830 time64_t ktime_get_real_seconds(void)
832 struct timekeeper *tk = &tk_core.timekeeper;
833 time64_t seconds;
834 unsigned int seq;
836 if (IS_ENABLED(CONFIG_64BIT))
837 return tk->xtime_sec;
839 do {
840 seq = read_seqcount_begin(&tk_core.seq);
841 seconds = tk->xtime_sec;
843 } while (read_seqcount_retry(&tk_core.seq, seq));
845 return seconds;
847 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
849 #ifdef CONFIG_NTP_PPS
852 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
853 * @ts_raw: pointer to the timespec to be set to raw monotonic time
854 * @ts_real: pointer to the timespec to be set to the time of day
856 * This function reads both the time of day and raw monotonic time at the
857 * same time atomically and stores the resulting timestamps in timespec
858 * format.
860 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
862 struct timekeeper *tk = &tk_core.timekeeper;
863 unsigned long seq;
864 s64 nsecs_raw, nsecs_real;
866 WARN_ON_ONCE(timekeeping_suspended);
868 do {
869 seq = read_seqcount_begin(&tk_core.seq);
871 *ts_raw = timespec64_to_timespec(tk->raw_time);
872 ts_real->tv_sec = tk->xtime_sec;
873 ts_real->tv_nsec = 0;
875 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
876 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
878 } while (read_seqcount_retry(&tk_core.seq, seq));
880 timespec_add_ns(ts_raw, nsecs_raw);
881 timespec_add_ns(ts_real, nsecs_real);
883 EXPORT_SYMBOL(getnstime_raw_and_real);
885 #endif /* CONFIG_NTP_PPS */
888 * do_gettimeofday - Returns the time of day in a timeval
889 * @tv: pointer to the timeval to be set
891 * NOTE: Users should be converted to using getnstimeofday()
893 void do_gettimeofday(struct timeval *tv)
895 struct timespec64 now;
897 getnstimeofday64(&now);
898 tv->tv_sec = now.tv_sec;
899 tv->tv_usec = now.tv_nsec/1000;
901 EXPORT_SYMBOL(do_gettimeofday);
904 * do_settimeofday64 - Sets the time of day.
905 * @ts: pointer to the timespec64 variable containing the new time
907 * Sets the time of day to the new time and update NTP and notify hrtimers
909 int do_settimeofday64(const struct timespec64 *ts)
911 struct timekeeper *tk = &tk_core.timekeeper;
912 struct timespec64 ts_delta, xt;
913 unsigned long flags;
915 if (!timespec64_valid_strict(ts))
916 return -EINVAL;
918 raw_spin_lock_irqsave(&timekeeper_lock, flags);
919 write_seqcount_begin(&tk_core.seq);
921 timekeeping_forward_now(tk);
923 xt = tk_xtime(tk);
924 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
925 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
927 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
929 tk_set_xtime(tk, ts);
931 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
933 write_seqcount_end(&tk_core.seq);
934 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
936 /* signal hrtimers about time change */
937 clock_was_set();
939 return 0;
941 EXPORT_SYMBOL(do_settimeofday64);
944 * timekeeping_inject_offset - Adds or subtracts from the current time.
945 * @tv: pointer to the timespec variable containing the offset
947 * Adds or subtracts an offset value from the current time.
949 int timekeeping_inject_offset(struct timespec *ts)
951 struct timekeeper *tk = &tk_core.timekeeper;
952 unsigned long flags;
953 struct timespec64 ts64, tmp;
954 int ret = 0;
956 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
957 return -EINVAL;
959 ts64 = timespec_to_timespec64(*ts);
961 raw_spin_lock_irqsave(&timekeeper_lock, flags);
962 write_seqcount_begin(&tk_core.seq);
964 timekeeping_forward_now(tk);
966 /* Make sure the proposed value is valid */
967 tmp = timespec64_add(tk_xtime(tk), ts64);
968 if (!timespec64_valid_strict(&tmp)) {
969 ret = -EINVAL;
970 goto error;
973 tk_xtime_add(tk, &ts64);
974 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
976 error: /* even if we error out, we forwarded the time, so call update */
977 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
979 write_seqcount_end(&tk_core.seq);
980 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
982 /* signal hrtimers about time change */
983 clock_was_set();
985 return ret;
987 EXPORT_SYMBOL(timekeeping_inject_offset);
991 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
994 s32 timekeeping_get_tai_offset(void)
996 struct timekeeper *tk = &tk_core.timekeeper;
997 unsigned int seq;
998 s32 ret;
1000 do {
1001 seq = read_seqcount_begin(&tk_core.seq);
1002 ret = tk->tai_offset;
1003 } while (read_seqcount_retry(&tk_core.seq, seq));
1005 return ret;
1009 * __timekeeping_set_tai_offset - Lock free worker function
1012 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1014 tk->tai_offset = tai_offset;
1015 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1019 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1022 void timekeeping_set_tai_offset(s32 tai_offset)
1024 struct timekeeper *tk = &tk_core.timekeeper;
1025 unsigned long flags;
1027 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1028 write_seqcount_begin(&tk_core.seq);
1029 __timekeeping_set_tai_offset(tk, tai_offset);
1030 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1031 write_seqcount_end(&tk_core.seq);
1032 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1033 clock_was_set();
1037 * change_clocksource - Swaps clocksources if a new one is available
1039 * Accumulates current time interval and initializes new clocksource
1041 static int change_clocksource(void *data)
1043 struct timekeeper *tk = &tk_core.timekeeper;
1044 struct clocksource *new, *old;
1045 unsigned long flags;
1047 new = (struct clocksource *) data;
1049 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1050 write_seqcount_begin(&tk_core.seq);
1052 timekeeping_forward_now(tk);
1054 * If the cs is in module, get a module reference. Succeeds
1055 * for built-in code (owner == NULL) as well.
1057 if (try_module_get(new->owner)) {
1058 if (!new->enable || new->enable(new) == 0) {
1059 old = tk->tkr_mono.clock;
1060 tk_setup_internals(tk, new);
1061 if (old->disable)
1062 old->disable(old);
1063 module_put(old->owner);
1064 } else {
1065 module_put(new->owner);
1068 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1070 write_seqcount_end(&tk_core.seq);
1071 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1073 return 0;
1077 * timekeeping_notify - Install a new clock source
1078 * @clock: pointer to the clock source
1080 * This function is called from clocksource.c after a new, better clock
1081 * source has been registered. The caller holds the clocksource_mutex.
1083 int timekeeping_notify(struct clocksource *clock)
1085 struct timekeeper *tk = &tk_core.timekeeper;
1087 if (tk->tkr_mono.clock == clock)
1088 return 0;
1089 stop_machine(change_clocksource, clock, NULL);
1090 tick_clock_notify();
1091 return tk->tkr_mono.clock == clock ? 0 : -1;
1095 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1096 * @ts: pointer to the timespec64 to be set
1098 * Returns the raw monotonic time (completely un-modified by ntp)
1100 void getrawmonotonic64(struct timespec64 *ts)
1102 struct timekeeper *tk = &tk_core.timekeeper;
1103 struct timespec64 ts64;
1104 unsigned long seq;
1105 s64 nsecs;
1107 do {
1108 seq = read_seqcount_begin(&tk_core.seq);
1109 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1110 ts64 = tk->raw_time;
1112 } while (read_seqcount_retry(&tk_core.seq, seq));
1114 timespec64_add_ns(&ts64, nsecs);
1115 *ts = ts64;
1117 EXPORT_SYMBOL(getrawmonotonic64);
1121 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1123 int timekeeping_valid_for_hres(void)
1125 struct timekeeper *tk = &tk_core.timekeeper;
1126 unsigned long seq;
1127 int ret;
1129 do {
1130 seq = read_seqcount_begin(&tk_core.seq);
1132 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1134 } while (read_seqcount_retry(&tk_core.seq, seq));
1136 return ret;
1140 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1142 u64 timekeeping_max_deferment(void)
1144 struct timekeeper *tk = &tk_core.timekeeper;
1145 unsigned long seq;
1146 u64 ret;
1148 do {
1149 seq = read_seqcount_begin(&tk_core.seq);
1151 ret = tk->tkr_mono.clock->max_idle_ns;
1153 } while (read_seqcount_retry(&tk_core.seq, seq));
1155 return ret;
1159 * read_persistent_clock - Return time from the persistent clock.
1161 * Weak dummy function for arches that do not yet support it.
1162 * Reads the time from the battery backed persistent clock.
1163 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1165 * XXX - Do be sure to remove it once all arches implement it.
1167 void __weak read_persistent_clock(struct timespec *ts)
1169 ts->tv_sec = 0;
1170 ts->tv_nsec = 0;
1173 void __weak read_persistent_clock64(struct timespec64 *ts64)
1175 struct timespec ts;
1177 read_persistent_clock(&ts);
1178 *ts64 = timespec_to_timespec64(ts);
1182 * read_boot_clock - Return time of the system start.
1184 * Weak dummy function for arches that do not yet support it.
1185 * Function to read the exact time the system has been started.
1186 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1188 * XXX - Do be sure to remove it once all arches implement it.
1190 void __weak read_boot_clock(struct timespec *ts)
1192 ts->tv_sec = 0;
1193 ts->tv_nsec = 0;
1196 void __weak read_boot_clock64(struct timespec64 *ts64)
1198 struct timespec ts;
1200 read_boot_clock(&ts);
1201 *ts64 = timespec_to_timespec64(ts);
1204 /* Flag for if timekeeping_resume() has injected sleeptime */
1205 static bool sleeptime_injected;
1207 /* Flag for if there is a persistent clock on this platform */
1208 static bool persistent_clock_exists;
1211 * timekeeping_init - Initializes the clocksource and common timekeeping values
1213 void __init timekeeping_init(void)
1215 struct timekeeper *tk = &tk_core.timekeeper;
1216 struct clocksource *clock;
1217 unsigned long flags;
1218 struct timespec64 now, boot, tmp;
1220 read_persistent_clock64(&now);
1221 if (!timespec64_valid_strict(&now)) {
1222 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1223 " Check your CMOS/BIOS settings.\n");
1224 now.tv_sec = 0;
1225 now.tv_nsec = 0;
1226 } else if (now.tv_sec || now.tv_nsec)
1227 persistent_clock_exists = true;
1229 read_boot_clock64(&boot);
1230 if (!timespec64_valid_strict(&boot)) {
1231 pr_warn("WARNING: Boot clock returned invalid value!\n"
1232 " Check your CMOS/BIOS settings.\n");
1233 boot.tv_sec = 0;
1234 boot.tv_nsec = 0;
1237 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1238 write_seqcount_begin(&tk_core.seq);
1239 ntp_init();
1241 clock = clocksource_default_clock();
1242 if (clock->enable)
1243 clock->enable(clock);
1244 tk_setup_internals(tk, clock);
1246 tk_set_xtime(tk, &now);
1247 tk->raw_time.tv_sec = 0;
1248 tk->raw_time.tv_nsec = 0;
1249 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1250 boot = tk_xtime(tk);
1252 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1253 tk_set_wall_to_mono(tk, tmp);
1255 timekeeping_update(tk, TK_MIRROR);
1257 write_seqcount_end(&tk_core.seq);
1258 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1261 /* time in seconds when suspend began for persistent clock */
1262 static struct timespec64 timekeeping_suspend_time;
1265 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1266 * @delta: pointer to a timespec delta value
1268 * Takes a timespec offset measuring a suspend interval and properly
1269 * adds the sleep offset to the timekeeping variables.
1271 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1272 struct timespec64 *delta)
1274 if (!timespec64_valid_strict(delta)) {
1275 printk_deferred(KERN_WARNING
1276 "__timekeeping_inject_sleeptime: Invalid "
1277 "sleep delta value!\n");
1278 return;
1280 tk_xtime_add(tk, delta);
1281 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1282 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1283 tk_debug_account_sleep_time(delta);
1286 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1288 * We have three kinds of time sources to use for sleep time
1289 * injection, the preference order is:
1290 * 1) non-stop clocksource
1291 * 2) persistent clock (ie: RTC accessible when irqs are off)
1292 * 3) RTC
1294 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1295 * If system has neither 1) nor 2), 3) will be used finally.
1298 * If timekeeping has injected sleeptime via either 1) or 2),
1299 * 3) becomes needless, so in this case we don't need to call
1300 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1301 * means.
1303 bool timekeeping_rtc_skipresume(void)
1305 return sleeptime_injected;
1309 * 1) can be determined whether to use or not only when doing
1310 * timekeeping_resume() which is invoked after rtc_suspend(),
1311 * so we can't skip rtc_suspend() surely if system has 1).
1313 * But if system has 2), 2) will definitely be used, so in this
1314 * case we don't need to call rtc_suspend(), and this is what
1315 * timekeeping_rtc_skipsuspend() means.
1317 bool timekeeping_rtc_skipsuspend(void)
1319 return persistent_clock_exists;
1323 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1324 * @delta: pointer to a timespec64 delta value
1326 * This hook is for architectures that cannot support read_persistent_clock64
1327 * because their RTC/persistent clock is only accessible when irqs are enabled.
1328 * and also don't have an effective nonstop clocksource.
1330 * This function should only be called by rtc_resume(), and allows
1331 * a suspend offset to be injected into the timekeeping values.
1333 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1335 struct timekeeper *tk = &tk_core.timekeeper;
1336 unsigned long flags;
1338 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1339 write_seqcount_begin(&tk_core.seq);
1341 timekeeping_forward_now(tk);
1343 __timekeeping_inject_sleeptime(tk, delta);
1345 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1347 write_seqcount_end(&tk_core.seq);
1348 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1350 /* signal hrtimers about time change */
1351 clock_was_set();
1353 #endif
1356 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1358 void timekeeping_resume(void)
1360 struct timekeeper *tk = &tk_core.timekeeper;
1361 struct clocksource *clock = tk->tkr_mono.clock;
1362 unsigned long flags;
1363 struct timespec64 ts_new, ts_delta;
1364 cycle_t cycle_now, cycle_delta;
1366 sleeptime_injected = false;
1367 read_persistent_clock64(&ts_new);
1369 clockevents_resume();
1370 clocksource_resume();
1372 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1373 write_seqcount_begin(&tk_core.seq);
1376 * After system resumes, we need to calculate the suspended time and
1377 * compensate it for the OS time. There are 3 sources that could be
1378 * used: Nonstop clocksource during suspend, persistent clock and rtc
1379 * device.
1381 * One specific platform may have 1 or 2 or all of them, and the
1382 * preference will be:
1383 * suspend-nonstop clocksource -> persistent clock -> rtc
1384 * The less preferred source will only be tried if there is no better
1385 * usable source. The rtc part is handled separately in rtc core code.
1387 cycle_now = tk->tkr_mono.read(clock);
1388 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1389 cycle_now > tk->tkr_mono.cycle_last) {
1390 u64 num, max = ULLONG_MAX;
1391 u32 mult = clock->mult;
1392 u32 shift = clock->shift;
1393 s64 nsec = 0;
1395 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1396 tk->tkr_mono.mask);
1399 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1400 * suspended time is too long. In that case we need do the
1401 * 64 bits math carefully
1403 do_div(max, mult);
1404 if (cycle_delta > max) {
1405 num = div64_u64(cycle_delta, max);
1406 nsec = (((u64) max * mult) >> shift) * num;
1407 cycle_delta -= num * max;
1409 nsec += ((u64) cycle_delta * mult) >> shift;
1411 ts_delta = ns_to_timespec64(nsec);
1412 sleeptime_injected = true;
1413 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1414 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1415 sleeptime_injected = true;
1418 if (sleeptime_injected)
1419 __timekeeping_inject_sleeptime(tk, &ts_delta);
1421 /* Re-base the last cycle value */
1422 tk->tkr_mono.cycle_last = cycle_now;
1423 tk->tkr_raw.cycle_last = cycle_now;
1425 tk->ntp_error = 0;
1426 timekeeping_suspended = 0;
1427 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1428 write_seqcount_end(&tk_core.seq);
1429 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1431 touch_softlockup_watchdog();
1433 tick_resume();
1434 hrtimers_resume();
1437 int timekeeping_suspend(void)
1439 struct timekeeper *tk = &tk_core.timekeeper;
1440 unsigned long flags;
1441 struct timespec64 delta, delta_delta;
1442 static struct timespec64 old_delta;
1444 read_persistent_clock64(&timekeeping_suspend_time);
1447 * On some systems the persistent_clock can not be detected at
1448 * timekeeping_init by its return value, so if we see a valid
1449 * value returned, update the persistent_clock_exists flag.
1451 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1452 persistent_clock_exists = true;
1454 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1455 write_seqcount_begin(&tk_core.seq);
1456 timekeeping_forward_now(tk);
1457 timekeeping_suspended = 1;
1459 if (persistent_clock_exists) {
1461 * To avoid drift caused by repeated suspend/resumes,
1462 * which each can add ~1 second drift error,
1463 * try to compensate so the difference in system time
1464 * and persistent_clock time stays close to constant.
1466 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1467 delta_delta = timespec64_sub(delta, old_delta);
1468 if (abs(delta_delta.tv_sec) >= 2) {
1470 * if delta_delta is too large, assume time correction
1471 * has occurred and set old_delta to the current delta.
1473 old_delta = delta;
1474 } else {
1475 /* Otherwise try to adjust old_system to compensate */
1476 timekeeping_suspend_time =
1477 timespec64_add(timekeeping_suspend_time, delta_delta);
1481 timekeeping_update(tk, TK_MIRROR);
1482 halt_fast_timekeeper(tk);
1483 write_seqcount_end(&tk_core.seq);
1484 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1486 tick_suspend();
1487 clocksource_suspend();
1488 clockevents_suspend();
1490 return 0;
1493 /* sysfs resume/suspend bits for timekeeping */
1494 static struct syscore_ops timekeeping_syscore_ops = {
1495 .resume = timekeeping_resume,
1496 .suspend = timekeeping_suspend,
1499 static int __init timekeeping_init_ops(void)
1501 register_syscore_ops(&timekeeping_syscore_ops);
1502 return 0;
1504 device_initcall(timekeeping_init_ops);
1507 * Apply a multiplier adjustment to the timekeeper
1509 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1510 s64 offset,
1511 bool negative,
1512 int adj_scale)
1514 s64 interval = tk->cycle_interval;
1515 s32 mult_adj = 1;
1517 if (negative) {
1518 mult_adj = -mult_adj;
1519 interval = -interval;
1520 offset = -offset;
1522 mult_adj <<= adj_scale;
1523 interval <<= adj_scale;
1524 offset <<= adj_scale;
1527 * So the following can be confusing.
1529 * To keep things simple, lets assume mult_adj == 1 for now.
1531 * When mult_adj != 1, remember that the interval and offset values
1532 * have been appropriately scaled so the math is the same.
1534 * The basic idea here is that we're increasing the multiplier
1535 * by one, this causes the xtime_interval to be incremented by
1536 * one cycle_interval. This is because:
1537 * xtime_interval = cycle_interval * mult
1538 * So if mult is being incremented by one:
1539 * xtime_interval = cycle_interval * (mult + 1)
1540 * Its the same as:
1541 * xtime_interval = (cycle_interval * mult) + cycle_interval
1542 * Which can be shortened to:
1543 * xtime_interval += cycle_interval
1545 * So offset stores the non-accumulated cycles. Thus the current
1546 * time (in shifted nanoseconds) is:
1547 * now = (offset * adj) + xtime_nsec
1548 * Now, even though we're adjusting the clock frequency, we have
1549 * to keep time consistent. In other words, we can't jump back
1550 * in time, and we also want to avoid jumping forward in time.
1552 * So given the same offset value, we need the time to be the same
1553 * both before and after the freq adjustment.
1554 * now = (offset * adj_1) + xtime_nsec_1
1555 * now = (offset * adj_2) + xtime_nsec_2
1556 * So:
1557 * (offset * adj_1) + xtime_nsec_1 =
1558 * (offset * adj_2) + xtime_nsec_2
1559 * And we know:
1560 * adj_2 = adj_1 + 1
1561 * So:
1562 * (offset * adj_1) + xtime_nsec_1 =
1563 * (offset * (adj_1+1)) + xtime_nsec_2
1564 * (offset * adj_1) + xtime_nsec_1 =
1565 * (offset * adj_1) + offset + xtime_nsec_2
1566 * Canceling the sides:
1567 * xtime_nsec_1 = offset + xtime_nsec_2
1568 * Which gives us:
1569 * xtime_nsec_2 = xtime_nsec_1 - offset
1570 * Which simplfies to:
1571 * xtime_nsec -= offset
1573 * XXX - TODO: Doc ntp_error calculation.
1575 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1576 /* NTP adjustment caused clocksource mult overflow */
1577 WARN_ON_ONCE(1);
1578 return;
1581 tk->tkr_mono.mult += mult_adj;
1582 tk->xtime_interval += interval;
1583 tk->tkr_mono.xtime_nsec -= offset;
1584 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1588 * Calculate the multiplier adjustment needed to match the frequency
1589 * specified by NTP
1591 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1592 s64 offset)
1594 s64 interval = tk->cycle_interval;
1595 s64 xinterval = tk->xtime_interval;
1596 s64 tick_error;
1597 bool negative;
1598 u32 adj;
1600 /* Remove any current error adj from freq calculation */
1601 if (tk->ntp_err_mult)
1602 xinterval -= tk->cycle_interval;
1604 tk->ntp_tick = ntp_tick_length();
1606 /* Calculate current error per tick */
1607 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1608 tick_error -= (xinterval + tk->xtime_remainder);
1610 /* Don't worry about correcting it if its small */
1611 if (likely((tick_error >= 0) && (tick_error <= interval)))
1612 return;
1614 /* preserve the direction of correction */
1615 negative = (tick_error < 0);
1617 /* Sort out the magnitude of the correction */
1618 tick_error = abs(tick_error);
1619 for (adj = 0; tick_error > interval; adj++)
1620 tick_error >>= 1;
1622 /* scale the corrections */
1623 timekeeping_apply_adjustment(tk, offset, negative, adj);
1627 * Adjust the timekeeper's multiplier to the correct frequency
1628 * and also to reduce the accumulated error value.
1630 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1632 /* Correct for the current frequency error */
1633 timekeeping_freqadjust(tk, offset);
1635 /* Next make a small adjustment to fix any cumulative error */
1636 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1637 tk->ntp_err_mult = 1;
1638 timekeeping_apply_adjustment(tk, offset, 0, 0);
1639 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1640 /* Undo any existing error adjustment */
1641 timekeeping_apply_adjustment(tk, offset, 1, 0);
1642 tk->ntp_err_mult = 0;
1645 if (unlikely(tk->tkr_mono.clock->maxadj &&
1646 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1647 > tk->tkr_mono.clock->maxadj))) {
1648 printk_once(KERN_WARNING
1649 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1650 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1651 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1655 * It may be possible that when we entered this function, xtime_nsec
1656 * was very small. Further, if we're slightly speeding the clocksource
1657 * in the code above, its possible the required corrective factor to
1658 * xtime_nsec could cause it to underflow.
1660 * Now, since we already accumulated the second, cannot simply roll
1661 * the accumulated second back, since the NTP subsystem has been
1662 * notified via second_overflow. So instead we push xtime_nsec forward
1663 * by the amount we underflowed, and add that amount into the error.
1665 * We'll correct this error next time through this function, when
1666 * xtime_nsec is not as small.
1668 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1669 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1670 tk->tkr_mono.xtime_nsec = 0;
1671 tk->ntp_error += neg << tk->ntp_error_shift;
1676 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1678 * Helper function that accumulates a the nsecs greater then a second
1679 * from the xtime_nsec field to the xtime_secs field.
1680 * It also calls into the NTP code to handle leapsecond processing.
1683 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1685 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1686 unsigned int clock_set = 0;
1688 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1689 int leap;
1691 tk->tkr_mono.xtime_nsec -= nsecps;
1692 tk->xtime_sec++;
1694 /* Figure out if its a leap sec and apply if needed */
1695 leap = second_overflow(tk->xtime_sec);
1696 if (unlikely(leap)) {
1697 struct timespec64 ts;
1699 tk->xtime_sec += leap;
1701 ts.tv_sec = leap;
1702 ts.tv_nsec = 0;
1703 tk_set_wall_to_mono(tk,
1704 timespec64_sub(tk->wall_to_monotonic, ts));
1706 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1708 clock_set = TK_CLOCK_WAS_SET;
1711 return clock_set;
1715 * logarithmic_accumulation - shifted accumulation of cycles
1717 * This functions accumulates a shifted interval of cycles into
1718 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1719 * loop.
1721 * Returns the unconsumed cycles.
1723 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1724 u32 shift,
1725 unsigned int *clock_set)
1727 cycle_t interval = tk->cycle_interval << shift;
1728 u64 raw_nsecs;
1730 /* If the offset is smaller then a shifted interval, do nothing */
1731 if (offset < interval)
1732 return offset;
1734 /* Accumulate one shifted interval */
1735 offset -= interval;
1736 tk->tkr_mono.cycle_last += interval;
1737 tk->tkr_raw.cycle_last += interval;
1739 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1740 *clock_set |= accumulate_nsecs_to_secs(tk);
1742 /* Accumulate raw time */
1743 raw_nsecs = (u64)tk->raw_interval << shift;
1744 raw_nsecs += tk->raw_time.tv_nsec;
1745 if (raw_nsecs >= NSEC_PER_SEC) {
1746 u64 raw_secs = raw_nsecs;
1747 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1748 tk->raw_time.tv_sec += raw_secs;
1750 tk->raw_time.tv_nsec = raw_nsecs;
1752 /* Accumulate error between NTP and clock interval */
1753 tk->ntp_error += tk->ntp_tick << shift;
1754 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1755 (tk->ntp_error_shift + shift);
1757 return offset;
1761 * update_wall_time - Uses the current clocksource to increment the wall time
1764 void update_wall_time(void)
1766 struct timekeeper *real_tk = &tk_core.timekeeper;
1767 struct timekeeper *tk = &shadow_timekeeper;
1768 cycle_t offset;
1769 int shift = 0, maxshift;
1770 unsigned int clock_set = 0;
1771 unsigned long flags;
1773 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1775 /* Make sure we're fully resumed: */
1776 if (unlikely(timekeeping_suspended))
1777 goto out;
1779 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1780 offset = real_tk->cycle_interval;
1781 #else
1782 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1783 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1784 #endif
1786 /* Check if there's really nothing to do */
1787 if (offset < real_tk->cycle_interval)
1788 goto out;
1790 /* Do some additional sanity checking */
1791 timekeeping_check_update(real_tk, offset);
1794 * With NO_HZ we may have to accumulate many cycle_intervals
1795 * (think "ticks") worth of time at once. To do this efficiently,
1796 * we calculate the largest doubling multiple of cycle_intervals
1797 * that is smaller than the offset. We then accumulate that
1798 * chunk in one go, and then try to consume the next smaller
1799 * doubled multiple.
1801 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1802 shift = max(0, shift);
1803 /* Bound shift to one less than what overflows tick_length */
1804 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1805 shift = min(shift, maxshift);
1806 while (offset >= tk->cycle_interval) {
1807 offset = logarithmic_accumulation(tk, offset, shift,
1808 &clock_set);
1809 if (offset < tk->cycle_interval<<shift)
1810 shift--;
1813 /* correct the clock when NTP error is too big */
1814 timekeeping_adjust(tk, offset);
1817 * XXX This can be killed once everyone converts
1818 * to the new update_vsyscall.
1820 old_vsyscall_fixup(tk);
1823 * Finally, make sure that after the rounding
1824 * xtime_nsec isn't larger than NSEC_PER_SEC
1826 clock_set |= accumulate_nsecs_to_secs(tk);
1828 write_seqcount_begin(&tk_core.seq);
1830 * Update the real timekeeper.
1832 * We could avoid this memcpy by switching pointers, but that
1833 * requires changes to all other timekeeper usage sites as
1834 * well, i.e. move the timekeeper pointer getter into the
1835 * spinlocked/seqcount protected sections. And we trade this
1836 * memcpy under the tk_core.seq against one before we start
1837 * updating.
1839 memcpy(real_tk, tk, sizeof(*tk));
1840 timekeeping_update(real_tk, clock_set);
1841 write_seqcount_end(&tk_core.seq);
1842 out:
1843 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1844 if (clock_set)
1845 /* Have to call _delayed version, since in irq context*/
1846 clock_was_set_delayed();
1850 * getboottime64 - Return the real time of system boot.
1851 * @ts: pointer to the timespec64 to be set
1853 * Returns the wall-time of boot in a timespec64.
1855 * This is based on the wall_to_monotonic offset and the total suspend
1856 * time. Calls to settimeofday will affect the value returned (which
1857 * basically means that however wrong your real time clock is at boot time,
1858 * you get the right time here).
1860 void getboottime64(struct timespec64 *ts)
1862 struct timekeeper *tk = &tk_core.timekeeper;
1863 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1865 *ts = ktime_to_timespec64(t);
1867 EXPORT_SYMBOL_GPL(getboottime64);
1869 unsigned long get_seconds(void)
1871 struct timekeeper *tk = &tk_core.timekeeper;
1873 return tk->xtime_sec;
1875 EXPORT_SYMBOL(get_seconds);
1877 struct timespec __current_kernel_time(void)
1879 struct timekeeper *tk = &tk_core.timekeeper;
1881 return timespec64_to_timespec(tk_xtime(tk));
1884 struct timespec current_kernel_time(void)
1886 struct timekeeper *tk = &tk_core.timekeeper;
1887 struct timespec64 now;
1888 unsigned long seq;
1890 do {
1891 seq = read_seqcount_begin(&tk_core.seq);
1893 now = tk_xtime(tk);
1894 } while (read_seqcount_retry(&tk_core.seq, seq));
1896 return timespec64_to_timespec(now);
1898 EXPORT_SYMBOL(current_kernel_time);
1900 struct timespec64 get_monotonic_coarse64(void)
1902 struct timekeeper *tk = &tk_core.timekeeper;
1903 struct timespec64 now, mono;
1904 unsigned long seq;
1906 do {
1907 seq = read_seqcount_begin(&tk_core.seq);
1909 now = tk_xtime(tk);
1910 mono = tk->wall_to_monotonic;
1911 } while (read_seqcount_retry(&tk_core.seq, seq));
1913 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1914 now.tv_nsec + mono.tv_nsec);
1916 return now;
1920 * Must hold jiffies_lock
1922 void do_timer(unsigned long ticks)
1924 jiffies_64 += ticks;
1925 calc_global_load(ticks);
1929 * ktime_get_update_offsets_tick - hrtimer helper
1930 * @offs_real: pointer to storage for monotonic -> realtime offset
1931 * @offs_boot: pointer to storage for monotonic -> boottime offset
1932 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1934 * Returns monotonic time at last tick and various offsets
1936 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1937 ktime_t *offs_tai)
1939 struct timekeeper *tk = &tk_core.timekeeper;
1940 unsigned int seq;
1941 ktime_t base;
1942 u64 nsecs;
1944 do {
1945 seq = read_seqcount_begin(&tk_core.seq);
1947 base = tk->tkr_mono.base;
1948 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1950 *offs_real = tk->offs_real;
1951 *offs_boot = tk->offs_boot;
1952 *offs_tai = tk->offs_tai;
1953 } while (read_seqcount_retry(&tk_core.seq, seq));
1955 return ktime_add_ns(base, nsecs);
1958 #ifdef CONFIG_HIGH_RES_TIMERS
1960 * ktime_get_update_offsets_now - hrtimer helper
1961 * @offs_real: pointer to storage for monotonic -> realtime offset
1962 * @offs_boot: pointer to storage for monotonic -> boottime offset
1963 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1965 * Returns current monotonic time and updates the offsets
1966 * Called from hrtimer_interrupt() or retrigger_next_event()
1968 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1969 ktime_t *offs_tai)
1971 struct timekeeper *tk = &tk_core.timekeeper;
1972 unsigned int seq;
1973 ktime_t base;
1974 u64 nsecs;
1976 do {
1977 seq = read_seqcount_begin(&tk_core.seq);
1979 base = tk->tkr_mono.base;
1980 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1982 *offs_real = tk->offs_real;
1983 *offs_boot = tk->offs_boot;
1984 *offs_tai = tk->offs_tai;
1985 } while (read_seqcount_retry(&tk_core.seq, seq));
1987 return ktime_add_ns(base, nsecs);
1989 #endif
1992 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1994 int do_adjtimex(struct timex *txc)
1996 struct timekeeper *tk = &tk_core.timekeeper;
1997 unsigned long flags;
1998 struct timespec64 ts;
1999 s32 orig_tai, tai;
2000 int ret;
2002 /* Validate the data before disabling interrupts */
2003 ret = ntp_validate_timex(txc);
2004 if (ret)
2005 return ret;
2007 if (txc->modes & ADJ_SETOFFSET) {
2008 struct timespec delta;
2009 delta.tv_sec = txc->time.tv_sec;
2010 delta.tv_nsec = txc->time.tv_usec;
2011 if (!(txc->modes & ADJ_NANO))
2012 delta.tv_nsec *= 1000;
2013 ret = timekeeping_inject_offset(&delta);
2014 if (ret)
2015 return ret;
2018 getnstimeofday64(&ts);
2020 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2021 write_seqcount_begin(&tk_core.seq);
2023 orig_tai = tai = tk->tai_offset;
2024 ret = __do_adjtimex(txc, &ts, &tai);
2026 if (tai != orig_tai) {
2027 __timekeeping_set_tai_offset(tk, tai);
2028 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2030 write_seqcount_end(&tk_core.seq);
2031 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2033 if (tai != orig_tai)
2034 clock_was_set();
2036 ntp_notify_cmos_timer();
2038 return ret;
2041 #ifdef CONFIG_NTP_PPS
2043 * hardpps() - Accessor function to NTP __hardpps function
2045 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2047 unsigned long flags;
2049 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2050 write_seqcount_begin(&tk_core.seq);
2052 __hardpps(phase_ts, raw_ts);
2054 write_seqcount_end(&tk_core.seq);
2055 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2057 EXPORT_SYMBOL(hardpps);
2058 #endif
2061 * xtime_update() - advances the timekeeping infrastructure
2062 * @ticks: number of ticks, that have elapsed since the last call.
2064 * Must be called with interrupts disabled.
2066 void xtime_update(unsigned long ticks)
2068 write_seqlock(&jiffies_lock);
2069 do_timer(ticks);
2070 write_sequnlock(&jiffies_lock);
2071 update_wall_time();