libnvdimm: Non-Volatile Devices
[linux/fpc-iii.git] / kernel / time / timer.c
blob2ece3aa5069cade64b8c4982e920a45bea5ba232
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/timer.h>
55 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
57 EXPORT_SYMBOL(jiffies_64);
60 * per-CPU timer vector definitions:
62 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
63 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
64 #define TVN_SIZE (1 << TVN_BITS)
65 #define TVR_SIZE (1 << TVR_BITS)
66 #define TVN_MASK (TVN_SIZE - 1)
67 #define TVR_MASK (TVR_SIZE - 1)
68 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
70 struct tvec {
71 struct list_head vec[TVN_SIZE];
74 struct tvec_root {
75 struct list_head vec[TVR_SIZE];
78 struct tvec_base {
79 spinlock_t lock;
80 struct timer_list *running_timer;
81 unsigned long timer_jiffies;
82 unsigned long next_timer;
83 unsigned long active_timers;
84 unsigned long all_timers;
85 int cpu;
86 struct tvec_root tv1;
87 struct tvec tv2;
88 struct tvec tv3;
89 struct tvec tv4;
90 struct tvec tv5;
91 } ____cacheline_aligned;
94 * __TIMER_INITIALIZER() needs to set ->base to a valid pointer (because we've
95 * made NULL special, hint: lock_timer_base()) and we cannot get a compile time
96 * pointer to per-cpu entries because we don't know where we'll map the section,
97 * even for the boot cpu.
99 * And so we use boot_tvec_bases for boot CPU and per-cpu __tvec_bases for the
100 * rest of them.
102 struct tvec_base boot_tvec_bases;
103 EXPORT_SYMBOL(boot_tvec_bases);
105 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
107 /* Functions below help us manage 'deferrable' flag */
108 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
110 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
113 static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
115 return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
118 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
120 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
123 static inline void
124 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
126 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
128 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
131 static unsigned long round_jiffies_common(unsigned long j, int cpu,
132 bool force_up)
134 int rem;
135 unsigned long original = j;
138 * We don't want all cpus firing their timers at once hitting the
139 * same lock or cachelines, so we skew each extra cpu with an extra
140 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
141 * already did this.
142 * The skew is done by adding 3*cpunr, then round, then subtract this
143 * extra offset again.
145 j += cpu * 3;
147 rem = j % HZ;
150 * If the target jiffie is just after a whole second (which can happen
151 * due to delays of the timer irq, long irq off times etc etc) then
152 * we should round down to the whole second, not up. Use 1/4th second
153 * as cutoff for this rounding as an extreme upper bound for this.
154 * But never round down if @force_up is set.
156 if (rem < HZ/4 && !force_up) /* round down */
157 j = j - rem;
158 else /* round up */
159 j = j - rem + HZ;
161 /* now that we have rounded, subtract the extra skew again */
162 j -= cpu * 3;
165 * Make sure j is still in the future. Otherwise return the
166 * unmodified value.
168 return time_is_after_jiffies(j) ? j : original;
172 * __round_jiffies - function to round jiffies to a full second
173 * @j: the time in (absolute) jiffies that should be rounded
174 * @cpu: the processor number on which the timeout will happen
176 * __round_jiffies() rounds an absolute time in the future (in jiffies)
177 * up or down to (approximately) full seconds. This is useful for timers
178 * for which the exact time they fire does not matter too much, as long as
179 * they fire approximately every X seconds.
181 * By rounding these timers to whole seconds, all such timers will fire
182 * at the same time, rather than at various times spread out. The goal
183 * of this is to have the CPU wake up less, which saves power.
185 * The exact rounding is skewed for each processor to avoid all
186 * processors firing at the exact same time, which could lead
187 * to lock contention or spurious cache line bouncing.
189 * The return value is the rounded version of the @j parameter.
191 unsigned long __round_jiffies(unsigned long j, int cpu)
193 return round_jiffies_common(j, cpu, false);
195 EXPORT_SYMBOL_GPL(__round_jiffies);
198 * __round_jiffies_relative - function to round jiffies to a full second
199 * @j: the time in (relative) jiffies that should be rounded
200 * @cpu: the processor number on which the timeout will happen
202 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
203 * up or down to (approximately) full seconds. This is useful for timers
204 * for which the exact time they fire does not matter too much, as long as
205 * they fire approximately every X seconds.
207 * By rounding these timers to whole seconds, all such timers will fire
208 * at the same time, rather than at various times spread out. The goal
209 * of this is to have the CPU wake up less, which saves power.
211 * The exact rounding is skewed for each processor to avoid all
212 * processors firing at the exact same time, which could lead
213 * to lock contention or spurious cache line bouncing.
215 * The return value is the rounded version of the @j parameter.
217 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
219 unsigned long j0 = jiffies;
221 /* Use j0 because jiffies might change while we run */
222 return round_jiffies_common(j + j0, cpu, false) - j0;
224 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
227 * round_jiffies - function to round jiffies to a full second
228 * @j: the time in (absolute) jiffies that should be rounded
230 * round_jiffies() rounds an absolute time in the future (in jiffies)
231 * up or down to (approximately) full seconds. This is useful for timers
232 * for which the exact time they fire does not matter too much, as long as
233 * they fire approximately every X seconds.
235 * By rounding these timers to whole seconds, all such timers will fire
236 * at the same time, rather than at various times spread out. The goal
237 * of this is to have the CPU wake up less, which saves power.
239 * The return value is the rounded version of the @j parameter.
241 unsigned long round_jiffies(unsigned long j)
243 return round_jiffies_common(j, raw_smp_processor_id(), false);
245 EXPORT_SYMBOL_GPL(round_jiffies);
248 * round_jiffies_relative - function to round jiffies to a full second
249 * @j: the time in (relative) jiffies that should be rounded
251 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
252 * up or down to (approximately) full seconds. This is useful for timers
253 * for which the exact time they fire does not matter too much, as long as
254 * they fire approximately every X seconds.
256 * By rounding these timers to whole seconds, all such timers will fire
257 * at the same time, rather than at various times spread out. The goal
258 * of this is to have the CPU wake up less, which saves power.
260 * The return value is the rounded version of the @j parameter.
262 unsigned long round_jiffies_relative(unsigned long j)
264 return __round_jiffies_relative(j, raw_smp_processor_id());
266 EXPORT_SYMBOL_GPL(round_jiffies_relative);
269 * __round_jiffies_up - function to round jiffies up to a full second
270 * @j: the time in (absolute) jiffies that should be rounded
271 * @cpu: the processor number on which the timeout will happen
273 * This is the same as __round_jiffies() except that it will never
274 * round down. This is useful for timeouts for which the exact time
275 * of firing does not matter too much, as long as they don't fire too
276 * early.
278 unsigned long __round_jiffies_up(unsigned long j, int cpu)
280 return round_jiffies_common(j, cpu, true);
282 EXPORT_SYMBOL_GPL(__round_jiffies_up);
285 * __round_jiffies_up_relative - function to round jiffies up to a full second
286 * @j: the time in (relative) jiffies that should be rounded
287 * @cpu: the processor number on which the timeout will happen
289 * This is the same as __round_jiffies_relative() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
294 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
296 unsigned long j0 = jiffies;
298 /* Use j0 because jiffies might change while we run */
299 return round_jiffies_common(j + j0, cpu, true) - j0;
301 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
304 * round_jiffies_up - function to round jiffies up to a full second
305 * @j: the time in (absolute) jiffies that should be rounded
307 * This is the same as round_jiffies() except that it will never
308 * round down. This is useful for timeouts for which the exact time
309 * of firing does not matter too much, as long as they don't fire too
310 * early.
312 unsigned long round_jiffies_up(unsigned long j)
314 return round_jiffies_common(j, raw_smp_processor_id(), true);
316 EXPORT_SYMBOL_GPL(round_jiffies_up);
319 * round_jiffies_up_relative - function to round jiffies up to a full second
320 * @j: the time in (relative) jiffies that should be rounded
322 * This is the same as round_jiffies_relative() except that it will never
323 * round down. This is useful for timeouts for which the exact time
324 * of firing does not matter too much, as long as they don't fire too
325 * early.
327 unsigned long round_jiffies_up_relative(unsigned long j)
329 return __round_jiffies_up_relative(j, raw_smp_processor_id());
331 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
334 * set_timer_slack - set the allowed slack for a timer
335 * @timer: the timer to be modified
336 * @slack_hz: the amount of time (in jiffies) allowed for rounding
338 * Set the amount of time, in jiffies, that a certain timer has
339 * in terms of slack. By setting this value, the timer subsystem
340 * will schedule the actual timer somewhere between
341 * the time mod_timer() asks for, and that time plus the slack.
343 * By setting the slack to -1, a percentage of the delay is used
344 * instead.
346 void set_timer_slack(struct timer_list *timer, int slack_hz)
348 timer->slack = slack_hz;
350 EXPORT_SYMBOL_GPL(set_timer_slack);
353 * If the list is empty, catch up ->timer_jiffies to the current time.
354 * The caller must hold the tvec_base lock. Returns true if the list
355 * was empty and therefore ->timer_jiffies was updated.
357 static bool catchup_timer_jiffies(struct tvec_base *base)
359 if (!base->all_timers) {
360 base->timer_jiffies = jiffies;
361 return true;
363 return false;
366 static void
367 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
369 unsigned long expires = timer->expires;
370 unsigned long idx = expires - base->timer_jiffies;
371 struct list_head *vec;
373 if (idx < TVR_SIZE) {
374 int i = expires & TVR_MASK;
375 vec = base->tv1.vec + i;
376 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
377 int i = (expires >> TVR_BITS) & TVN_MASK;
378 vec = base->tv2.vec + i;
379 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
380 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
381 vec = base->tv3.vec + i;
382 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
383 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
384 vec = base->tv4.vec + i;
385 } else if ((signed long) idx < 0) {
387 * Can happen if you add a timer with expires == jiffies,
388 * or you set a timer to go off in the past
390 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
391 } else {
392 int i;
393 /* If the timeout is larger than MAX_TVAL (on 64-bit
394 * architectures or with CONFIG_BASE_SMALL=1) then we
395 * use the maximum timeout.
397 if (idx > MAX_TVAL) {
398 idx = MAX_TVAL;
399 expires = idx + base->timer_jiffies;
401 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
402 vec = base->tv5.vec + i;
405 * Timers are FIFO:
407 list_add_tail(&timer->entry, vec);
410 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
412 (void)catchup_timer_jiffies(base);
413 __internal_add_timer(base, timer);
415 * Update base->active_timers and base->next_timer
417 if (!tbase_get_deferrable(timer->base)) {
418 if (!base->active_timers++ ||
419 time_before(timer->expires, base->next_timer))
420 base->next_timer = timer->expires;
422 base->all_timers++;
425 * Check whether the other CPU is in dynticks mode and needs
426 * to be triggered to reevaluate the timer wheel.
427 * We are protected against the other CPU fiddling
428 * with the timer by holding the timer base lock. This also
429 * makes sure that a CPU on the way to stop its tick can not
430 * evaluate the timer wheel.
432 * Spare the IPI for deferrable timers on idle targets though.
433 * The next busy ticks will take care of it. Except full dynticks
434 * require special care against races with idle_cpu(), lets deal
435 * with that later.
437 if (!tbase_get_deferrable(base) || tick_nohz_full_cpu(base->cpu))
438 wake_up_nohz_cpu(base->cpu);
441 #ifdef CONFIG_TIMER_STATS
442 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
444 if (timer->start_site)
445 return;
447 timer->start_site = addr;
448 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
449 timer->start_pid = current->pid;
452 static void timer_stats_account_timer(struct timer_list *timer)
454 unsigned int flag = 0;
456 if (likely(!timer->start_site))
457 return;
458 if (unlikely(tbase_get_deferrable(timer->base)))
459 flag |= TIMER_STATS_FLAG_DEFERRABLE;
461 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
462 timer->function, timer->start_comm, flag);
465 #else
466 static void timer_stats_account_timer(struct timer_list *timer) {}
467 #endif
469 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
471 static struct debug_obj_descr timer_debug_descr;
473 static void *timer_debug_hint(void *addr)
475 return ((struct timer_list *) addr)->function;
479 * fixup_init is called when:
480 * - an active object is initialized
482 static int timer_fixup_init(void *addr, enum debug_obj_state state)
484 struct timer_list *timer = addr;
486 switch (state) {
487 case ODEBUG_STATE_ACTIVE:
488 del_timer_sync(timer);
489 debug_object_init(timer, &timer_debug_descr);
490 return 1;
491 default:
492 return 0;
496 /* Stub timer callback for improperly used timers. */
497 static void stub_timer(unsigned long data)
499 WARN_ON(1);
503 * fixup_activate is called when:
504 * - an active object is activated
505 * - an unknown object is activated (might be a statically initialized object)
507 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
509 struct timer_list *timer = addr;
511 switch (state) {
513 case ODEBUG_STATE_NOTAVAILABLE:
515 * This is not really a fixup. The timer was
516 * statically initialized. We just make sure that it
517 * is tracked in the object tracker.
519 if (timer->entry.next == NULL &&
520 timer->entry.prev == TIMER_ENTRY_STATIC) {
521 debug_object_init(timer, &timer_debug_descr);
522 debug_object_activate(timer, &timer_debug_descr);
523 return 0;
524 } else {
525 setup_timer(timer, stub_timer, 0);
526 return 1;
528 return 0;
530 case ODEBUG_STATE_ACTIVE:
531 WARN_ON(1);
533 default:
534 return 0;
539 * fixup_free is called when:
540 * - an active object is freed
542 static int timer_fixup_free(void *addr, enum debug_obj_state state)
544 struct timer_list *timer = addr;
546 switch (state) {
547 case ODEBUG_STATE_ACTIVE:
548 del_timer_sync(timer);
549 debug_object_free(timer, &timer_debug_descr);
550 return 1;
551 default:
552 return 0;
557 * fixup_assert_init is called when:
558 * - an untracked/uninit-ed object is found
560 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
562 struct timer_list *timer = addr;
564 switch (state) {
565 case ODEBUG_STATE_NOTAVAILABLE:
566 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
568 * This is not really a fixup. The timer was
569 * statically initialized. We just make sure that it
570 * is tracked in the object tracker.
572 debug_object_init(timer, &timer_debug_descr);
573 return 0;
574 } else {
575 setup_timer(timer, stub_timer, 0);
576 return 1;
578 default:
579 return 0;
583 static struct debug_obj_descr timer_debug_descr = {
584 .name = "timer_list",
585 .debug_hint = timer_debug_hint,
586 .fixup_init = timer_fixup_init,
587 .fixup_activate = timer_fixup_activate,
588 .fixup_free = timer_fixup_free,
589 .fixup_assert_init = timer_fixup_assert_init,
592 static inline void debug_timer_init(struct timer_list *timer)
594 debug_object_init(timer, &timer_debug_descr);
597 static inline void debug_timer_activate(struct timer_list *timer)
599 debug_object_activate(timer, &timer_debug_descr);
602 static inline void debug_timer_deactivate(struct timer_list *timer)
604 debug_object_deactivate(timer, &timer_debug_descr);
607 static inline void debug_timer_free(struct timer_list *timer)
609 debug_object_free(timer, &timer_debug_descr);
612 static inline void debug_timer_assert_init(struct timer_list *timer)
614 debug_object_assert_init(timer, &timer_debug_descr);
617 static void do_init_timer(struct timer_list *timer, unsigned int flags,
618 const char *name, struct lock_class_key *key);
620 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
621 const char *name, struct lock_class_key *key)
623 debug_object_init_on_stack(timer, &timer_debug_descr);
624 do_init_timer(timer, flags, name, key);
626 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
628 void destroy_timer_on_stack(struct timer_list *timer)
630 debug_object_free(timer, &timer_debug_descr);
632 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
634 #else
635 static inline void debug_timer_init(struct timer_list *timer) { }
636 static inline void debug_timer_activate(struct timer_list *timer) { }
637 static inline void debug_timer_deactivate(struct timer_list *timer) { }
638 static inline void debug_timer_assert_init(struct timer_list *timer) { }
639 #endif
641 static inline void debug_init(struct timer_list *timer)
643 debug_timer_init(timer);
644 trace_timer_init(timer);
647 static inline void
648 debug_activate(struct timer_list *timer, unsigned long expires)
650 debug_timer_activate(timer);
651 trace_timer_start(timer, expires);
654 static inline void debug_deactivate(struct timer_list *timer)
656 debug_timer_deactivate(timer);
657 trace_timer_cancel(timer);
660 static inline void debug_assert_init(struct timer_list *timer)
662 debug_timer_assert_init(timer);
665 static void do_init_timer(struct timer_list *timer, unsigned int flags,
666 const char *name, struct lock_class_key *key)
668 struct tvec_base *base = raw_cpu_read(tvec_bases);
670 timer->entry.next = NULL;
671 timer->base = (void *)((unsigned long)base | flags);
672 timer->slack = -1;
673 #ifdef CONFIG_TIMER_STATS
674 timer->start_site = NULL;
675 timer->start_pid = -1;
676 memset(timer->start_comm, 0, TASK_COMM_LEN);
677 #endif
678 lockdep_init_map(&timer->lockdep_map, name, key, 0);
682 * init_timer_key - initialize a timer
683 * @timer: the timer to be initialized
684 * @flags: timer flags
685 * @name: name of the timer
686 * @key: lockdep class key of the fake lock used for tracking timer
687 * sync lock dependencies
689 * init_timer_key() must be done to a timer prior calling *any* of the
690 * other timer functions.
692 void init_timer_key(struct timer_list *timer, unsigned int flags,
693 const char *name, struct lock_class_key *key)
695 debug_init(timer);
696 do_init_timer(timer, flags, name, key);
698 EXPORT_SYMBOL(init_timer_key);
700 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
702 struct list_head *entry = &timer->entry;
704 debug_deactivate(timer);
706 __list_del(entry->prev, entry->next);
707 if (clear_pending)
708 entry->next = NULL;
709 entry->prev = LIST_POISON2;
712 static inline void
713 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
715 detach_timer(timer, true);
716 if (!tbase_get_deferrable(timer->base))
717 base->active_timers--;
718 base->all_timers--;
719 (void)catchup_timer_jiffies(base);
722 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
723 bool clear_pending)
725 if (!timer_pending(timer))
726 return 0;
728 detach_timer(timer, clear_pending);
729 if (!tbase_get_deferrable(timer->base)) {
730 base->active_timers--;
731 if (timer->expires == base->next_timer)
732 base->next_timer = base->timer_jiffies;
734 base->all_timers--;
735 (void)catchup_timer_jiffies(base);
736 return 1;
740 * We are using hashed locking: holding per_cpu(tvec_bases).lock
741 * means that all timers which are tied to this base via timer->base are
742 * locked, and the base itself is locked too.
744 * So __run_timers/migrate_timers can safely modify all timers which could
745 * be found on ->tvX lists.
747 * When the timer's base is locked, and the timer removed from list, it is
748 * possible to set timer->base = NULL and drop the lock: the timer remains
749 * locked.
751 static struct tvec_base *lock_timer_base(struct timer_list *timer,
752 unsigned long *flags)
753 __acquires(timer->base->lock)
755 struct tvec_base *base;
757 for (;;) {
758 struct tvec_base *prelock_base = timer->base;
759 base = tbase_get_base(prelock_base);
760 if (likely(base != NULL)) {
761 spin_lock_irqsave(&base->lock, *flags);
762 if (likely(prelock_base == timer->base))
763 return base;
764 /* The timer has migrated to another CPU */
765 spin_unlock_irqrestore(&base->lock, *flags);
767 cpu_relax();
771 static inline int
772 __mod_timer(struct timer_list *timer, unsigned long expires,
773 bool pending_only, int pinned)
775 struct tvec_base *base, *new_base;
776 unsigned long flags;
777 int ret = 0 , cpu;
779 timer_stats_timer_set_start_info(timer);
780 BUG_ON(!timer->function);
782 base = lock_timer_base(timer, &flags);
784 ret = detach_if_pending(timer, base, false);
785 if (!ret && pending_only)
786 goto out_unlock;
788 debug_activate(timer, expires);
790 cpu = get_nohz_timer_target(pinned);
791 new_base = per_cpu(tvec_bases, cpu);
793 if (base != new_base) {
795 * We are trying to schedule the timer on the local CPU.
796 * However we can't change timer's base while it is running,
797 * otherwise del_timer_sync() can't detect that the timer's
798 * handler yet has not finished. This also guarantees that
799 * the timer is serialized wrt itself.
801 if (likely(base->running_timer != timer)) {
802 /* See the comment in lock_timer_base() */
803 timer_set_base(timer, NULL);
804 spin_unlock(&base->lock);
805 base = new_base;
806 spin_lock(&base->lock);
807 timer_set_base(timer, base);
811 timer->expires = expires;
812 internal_add_timer(base, timer);
814 out_unlock:
815 spin_unlock_irqrestore(&base->lock, flags);
817 return ret;
821 * mod_timer_pending - modify a pending timer's timeout
822 * @timer: the pending timer to be modified
823 * @expires: new timeout in jiffies
825 * mod_timer_pending() is the same for pending timers as mod_timer(),
826 * but will not re-activate and modify already deleted timers.
828 * It is useful for unserialized use of timers.
830 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
832 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
834 EXPORT_SYMBOL(mod_timer_pending);
837 * Decide where to put the timer while taking the slack into account
839 * Algorithm:
840 * 1) calculate the maximum (absolute) time
841 * 2) calculate the highest bit where the expires and new max are different
842 * 3) use this bit to make a mask
843 * 4) use the bitmask to round down the maximum time, so that all last
844 * bits are zeros
846 static inline
847 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
849 unsigned long expires_limit, mask;
850 int bit;
852 if (timer->slack >= 0) {
853 expires_limit = expires + timer->slack;
854 } else {
855 long delta = expires - jiffies;
857 if (delta < 256)
858 return expires;
860 expires_limit = expires + delta / 256;
862 mask = expires ^ expires_limit;
863 if (mask == 0)
864 return expires;
866 bit = find_last_bit(&mask, BITS_PER_LONG);
868 mask = (1UL << bit) - 1;
870 expires_limit = expires_limit & ~(mask);
872 return expires_limit;
876 * mod_timer - modify a timer's timeout
877 * @timer: the timer to be modified
878 * @expires: new timeout in jiffies
880 * mod_timer() is a more efficient way to update the expire field of an
881 * active timer (if the timer is inactive it will be activated)
883 * mod_timer(timer, expires) is equivalent to:
885 * del_timer(timer); timer->expires = expires; add_timer(timer);
887 * Note that if there are multiple unserialized concurrent users of the
888 * same timer, then mod_timer() is the only safe way to modify the timeout,
889 * since add_timer() cannot modify an already running timer.
891 * The function returns whether it has modified a pending timer or not.
892 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
893 * active timer returns 1.)
895 int mod_timer(struct timer_list *timer, unsigned long expires)
897 expires = apply_slack(timer, expires);
900 * This is a common optimization triggered by the
901 * networking code - if the timer is re-modified
902 * to be the same thing then just return:
904 if (timer_pending(timer) && timer->expires == expires)
905 return 1;
907 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
909 EXPORT_SYMBOL(mod_timer);
912 * mod_timer_pinned - modify a timer's timeout
913 * @timer: the timer to be modified
914 * @expires: new timeout in jiffies
916 * mod_timer_pinned() is a way to update the expire field of an
917 * active timer (if the timer is inactive it will be activated)
918 * and to ensure that the timer is scheduled on the current CPU.
920 * Note that this does not prevent the timer from being migrated
921 * when the current CPU goes offline. If this is a problem for
922 * you, use CPU-hotplug notifiers to handle it correctly, for
923 * example, cancelling the timer when the corresponding CPU goes
924 * offline.
926 * mod_timer_pinned(timer, expires) is equivalent to:
928 * del_timer(timer); timer->expires = expires; add_timer(timer);
930 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
932 if (timer->expires == expires && timer_pending(timer))
933 return 1;
935 return __mod_timer(timer, expires, false, TIMER_PINNED);
937 EXPORT_SYMBOL(mod_timer_pinned);
940 * add_timer - start a timer
941 * @timer: the timer to be added
943 * The kernel will do a ->function(->data) callback from the
944 * timer interrupt at the ->expires point in the future. The
945 * current time is 'jiffies'.
947 * The timer's ->expires, ->function (and if the handler uses it, ->data)
948 * fields must be set prior calling this function.
950 * Timers with an ->expires field in the past will be executed in the next
951 * timer tick.
953 void add_timer(struct timer_list *timer)
955 BUG_ON(timer_pending(timer));
956 mod_timer(timer, timer->expires);
958 EXPORT_SYMBOL(add_timer);
961 * add_timer_on - start a timer on a particular CPU
962 * @timer: the timer to be added
963 * @cpu: the CPU to start it on
965 * This is not very scalable on SMP. Double adds are not possible.
967 void add_timer_on(struct timer_list *timer, int cpu)
969 struct tvec_base *base = per_cpu(tvec_bases, cpu);
970 unsigned long flags;
972 timer_stats_timer_set_start_info(timer);
973 BUG_ON(timer_pending(timer) || !timer->function);
974 spin_lock_irqsave(&base->lock, flags);
975 timer_set_base(timer, base);
976 debug_activate(timer, timer->expires);
977 internal_add_timer(base, timer);
978 spin_unlock_irqrestore(&base->lock, flags);
980 EXPORT_SYMBOL_GPL(add_timer_on);
983 * del_timer - deactive a timer.
984 * @timer: the timer to be deactivated
986 * del_timer() deactivates a timer - this works on both active and inactive
987 * timers.
989 * The function returns whether it has deactivated a pending timer or not.
990 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
991 * active timer returns 1.)
993 int del_timer(struct timer_list *timer)
995 struct tvec_base *base;
996 unsigned long flags;
997 int ret = 0;
999 debug_assert_init(timer);
1001 timer_stats_timer_clear_start_info(timer);
1002 if (timer_pending(timer)) {
1003 base = lock_timer_base(timer, &flags);
1004 ret = detach_if_pending(timer, base, true);
1005 spin_unlock_irqrestore(&base->lock, flags);
1008 return ret;
1010 EXPORT_SYMBOL(del_timer);
1013 * try_to_del_timer_sync - Try to deactivate a timer
1014 * @timer: timer do del
1016 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1017 * exit the timer is not queued and the handler is not running on any CPU.
1019 int try_to_del_timer_sync(struct timer_list *timer)
1021 struct tvec_base *base;
1022 unsigned long flags;
1023 int ret = -1;
1025 debug_assert_init(timer);
1027 base = lock_timer_base(timer, &flags);
1029 if (base->running_timer != timer) {
1030 timer_stats_timer_clear_start_info(timer);
1031 ret = detach_if_pending(timer, base, true);
1033 spin_unlock_irqrestore(&base->lock, flags);
1035 return ret;
1037 EXPORT_SYMBOL(try_to_del_timer_sync);
1039 #ifdef CONFIG_SMP
1040 static DEFINE_PER_CPU(struct tvec_base, __tvec_bases);
1043 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1044 * @timer: the timer to be deactivated
1046 * This function only differs from del_timer() on SMP: besides deactivating
1047 * the timer it also makes sure the handler has finished executing on other
1048 * CPUs.
1050 * Synchronization rules: Callers must prevent restarting of the timer,
1051 * otherwise this function is meaningless. It must not be called from
1052 * interrupt contexts unless the timer is an irqsafe one. The caller must
1053 * not hold locks which would prevent completion of the timer's
1054 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1055 * timer is not queued and the handler is not running on any CPU.
1057 * Note: For !irqsafe timers, you must not hold locks that are held in
1058 * interrupt context while calling this function. Even if the lock has
1059 * nothing to do with the timer in question. Here's why:
1061 * CPU0 CPU1
1062 * ---- ----
1063 * <SOFTIRQ>
1064 * call_timer_fn();
1065 * base->running_timer = mytimer;
1066 * spin_lock_irq(somelock);
1067 * <IRQ>
1068 * spin_lock(somelock);
1069 * del_timer_sync(mytimer);
1070 * while (base->running_timer == mytimer);
1072 * Now del_timer_sync() will never return and never release somelock.
1073 * The interrupt on the other CPU is waiting to grab somelock but
1074 * it has interrupted the softirq that CPU0 is waiting to finish.
1076 * The function returns whether it has deactivated a pending timer or not.
1078 int del_timer_sync(struct timer_list *timer)
1080 #ifdef CONFIG_LOCKDEP
1081 unsigned long flags;
1084 * If lockdep gives a backtrace here, please reference
1085 * the synchronization rules above.
1087 local_irq_save(flags);
1088 lock_map_acquire(&timer->lockdep_map);
1089 lock_map_release(&timer->lockdep_map);
1090 local_irq_restore(flags);
1091 #endif
1093 * don't use it in hardirq context, because it
1094 * could lead to deadlock.
1096 WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
1097 for (;;) {
1098 int ret = try_to_del_timer_sync(timer);
1099 if (ret >= 0)
1100 return ret;
1101 cpu_relax();
1104 EXPORT_SYMBOL(del_timer_sync);
1105 #endif
1107 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1109 /* cascade all the timers from tv up one level */
1110 struct timer_list *timer, *tmp;
1111 struct list_head tv_list;
1113 list_replace_init(tv->vec + index, &tv_list);
1116 * We are removing _all_ timers from the list, so we
1117 * don't have to detach them individually.
1119 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1120 BUG_ON(tbase_get_base(timer->base) != base);
1121 /* No accounting, while moving them */
1122 __internal_add_timer(base, timer);
1125 return index;
1128 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1129 unsigned long data)
1131 int count = preempt_count();
1133 #ifdef CONFIG_LOCKDEP
1135 * It is permissible to free the timer from inside the
1136 * function that is called from it, this we need to take into
1137 * account for lockdep too. To avoid bogus "held lock freed"
1138 * warnings as well as problems when looking into
1139 * timer->lockdep_map, make a copy and use that here.
1141 struct lockdep_map lockdep_map;
1143 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1144 #endif
1146 * Couple the lock chain with the lock chain at
1147 * del_timer_sync() by acquiring the lock_map around the fn()
1148 * call here and in del_timer_sync().
1150 lock_map_acquire(&lockdep_map);
1152 trace_timer_expire_entry(timer);
1153 fn(data);
1154 trace_timer_expire_exit(timer);
1156 lock_map_release(&lockdep_map);
1158 if (count != preempt_count()) {
1159 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1160 fn, count, preempt_count());
1162 * Restore the preempt count. That gives us a decent
1163 * chance to survive and extract information. If the
1164 * callback kept a lock held, bad luck, but not worse
1165 * than the BUG() we had.
1167 preempt_count_set(count);
1171 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1174 * __run_timers - run all expired timers (if any) on this CPU.
1175 * @base: the timer vector to be processed.
1177 * This function cascades all vectors and executes all expired timer
1178 * vectors.
1180 static inline void __run_timers(struct tvec_base *base)
1182 struct timer_list *timer;
1184 spin_lock_irq(&base->lock);
1185 if (catchup_timer_jiffies(base)) {
1186 spin_unlock_irq(&base->lock);
1187 return;
1189 while (time_after_eq(jiffies, base->timer_jiffies)) {
1190 struct list_head work_list;
1191 struct list_head *head = &work_list;
1192 int index = base->timer_jiffies & TVR_MASK;
1195 * Cascade timers:
1197 if (!index &&
1198 (!cascade(base, &base->tv2, INDEX(0))) &&
1199 (!cascade(base, &base->tv3, INDEX(1))) &&
1200 !cascade(base, &base->tv4, INDEX(2)))
1201 cascade(base, &base->tv5, INDEX(3));
1202 ++base->timer_jiffies;
1203 list_replace_init(base->tv1.vec + index, head);
1204 while (!list_empty(head)) {
1205 void (*fn)(unsigned long);
1206 unsigned long data;
1207 bool irqsafe;
1209 timer = list_first_entry(head, struct timer_list,entry);
1210 fn = timer->function;
1211 data = timer->data;
1212 irqsafe = tbase_get_irqsafe(timer->base);
1214 timer_stats_account_timer(timer);
1216 base->running_timer = timer;
1217 detach_expired_timer(timer, base);
1219 if (irqsafe) {
1220 spin_unlock(&base->lock);
1221 call_timer_fn(timer, fn, data);
1222 spin_lock(&base->lock);
1223 } else {
1224 spin_unlock_irq(&base->lock);
1225 call_timer_fn(timer, fn, data);
1226 spin_lock_irq(&base->lock);
1230 base->running_timer = NULL;
1231 spin_unlock_irq(&base->lock);
1234 #ifdef CONFIG_NO_HZ_COMMON
1236 * Find out when the next timer event is due to happen. This
1237 * is used on S/390 to stop all activity when a CPU is idle.
1238 * This function needs to be called with interrupts disabled.
1240 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1242 unsigned long timer_jiffies = base->timer_jiffies;
1243 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1244 int index, slot, array, found = 0;
1245 struct timer_list *nte;
1246 struct tvec *varray[4];
1248 /* Look for timer events in tv1. */
1249 index = slot = timer_jiffies & TVR_MASK;
1250 do {
1251 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1252 if (tbase_get_deferrable(nte->base))
1253 continue;
1255 found = 1;
1256 expires = nte->expires;
1257 /* Look at the cascade bucket(s)? */
1258 if (!index || slot < index)
1259 goto cascade;
1260 return expires;
1262 slot = (slot + 1) & TVR_MASK;
1263 } while (slot != index);
1265 cascade:
1266 /* Calculate the next cascade event */
1267 if (index)
1268 timer_jiffies += TVR_SIZE - index;
1269 timer_jiffies >>= TVR_BITS;
1271 /* Check tv2-tv5. */
1272 varray[0] = &base->tv2;
1273 varray[1] = &base->tv3;
1274 varray[2] = &base->tv4;
1275 varray[3] = &base->tv5;
1277 for (array = 0; array < 4; array++) {
1278 struct tvec *varp = varray[array];
1280 index = slot = timer_jiffies & TVN_MASK;
1281 do {
1282 list_for_each_entry(nte, varp->vec + slot, entry) {
1283 if (tbase_get_deferrable(nte->base))
1284 continue;
1286 found = 1;
1287 if (time_before(nte->expires, expires))
1288 expires = nte->expires;
1291 * Do we still search for the first timer or are
1292 * we looking up the cascade buckets ?
1294 if (found) {
1295 /* Look at the cascade bucket(s)? */
1296 if (!index || slot < index)
1297 break;
1298 return expires;
1300 slot = (slot + 1) & TVN_MASK;
1301 } while (slot != index);
1303 if (index)
1304 timer_jiffies += TVN_SIZE - index;
1305 timer_jiffies >>= TVN_BITS;
1307 return expires;
1311 * Check, if the next hrtimer event is before the next timer wheel
1312 * event:
1314 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1315 unsigned long expires)
1317 ktime_t hr_delta = hrtimer_get_next_event();
1318 struct timespec tsdelta;
1319 unsigned long delta;
1321 if (hr_delta.tv64 == KTIME_MAX)
1322 return expires;
1325 * Expired timer available, let it expire in the next tick
1327 if (hr_delta.tv64 <= 0)
1328 return now + 1;
1330 tsdelta = ktime_to_timespec(hr_delta);
1331 delta = timespec_to_jiffies(&tsdelta);
1334 * Limit the delta to the max value, which is checked in
1335 * tick_nohz_stop_sched_tick():
1337 if (delta > NEXT_TIMER_MAX_DELTA)
1338 delta = NEXT_TIMER_MAX_DELTA;
1341 * Take rounding errors in to account and make sure, that it
1342 * expires in the next tick. Otherwise we go into an endless
1343 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1344 * the timer softirq
1346 if (delta < 1)
1347 delta = 1;
1348 now += delta;
1349 if (time_before(now, expires))
1350 return now;
1351 return expires;
1355 * get_next_timer_interrupt - return the jiffy of the next pending timer
1356 * @now: current time (in jiffies)
1358 unsigned long get_next_timer_interrupt(unsigned long now)
1360 struct tvec_base *base = __this_cpu_read(tvec_bases);
1361 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1364 * Pretend that there is no timer pending if the cpu is offline.
1365 * Possible pending timers will be migrated later to an active cpu.
1367 if (cpu_is_offline(smp_processor_id()))
1368 return expires;
1370 spin_lock(&base->lock);
1371 if (base->active_timers) {
1372 if (time_before_eq(base->next_timer, base->timer_jiffies))
1373 base->next_timer = __next_timer_interrupt(base);
1374 expires = base->next_timer;
1376 spin_unlock(&base->lock);
1378 if (time_before_eq(expires, now))
1379 return now;
1381 return cmp_next_hrtimer_event(now, expires);
1383 #endif
1386 * Called from the timer interrupt handler to charge one tick to the current
1387 * process. user_tick is 1 if the tick is user time, 0 for system.
1389 void update_process_times(int user_tick)
1391 struct task_struct *p = current;
1393 /* Note: this timer irq context must be accounted for as well. */
1394 account_process_tick(p, user_tick);
1395 run_local_timers();
1396 rcu_check_callbacks(user_tick);
1397 #ifdef CONFIG_IRQ_WORK
1398 if (in_irq())
1399 irq_work_tick();
1400 #endif
1401 scheduler_tick();
1402 run_posix_cpu_timers(p);
1406 * This function runs timers and the timer-tq in bottom half context.
1408 static void run_timer_softirq(struct softirq_action *h)
1410 struct tvec_base *base = __this_cpu_read(tvec_bases);
1412 hrtimer_run_pending();
1414 if (time_after_eq(jiffies, base->timer_jiffies))
1415 __run_timers(base);
1419 * Called by the local, per-CPU timer interrupt on SMP.
1421 void run_local_timers(void)
1423 hrtimer_run_queues();
1424 raise_softirq(TIMER_SOFTIRQ);
1427 #ifdef __ARCH_WANT_SYS_ALARM
1430 * For backwards compatibility? This can be done in libc so Alpha
1431 * and all newer ports shouldn't need it.
1433 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1435 return alarm_setitimer(seconds);
1438 #endif
1440 static void process_timeout(unsigned long __data)
1442 wake_up_process((struct task_struct *)__data);
1446 * schedule_timeout - sleep until timeout
1447 * @timeout: timeout value in jiffies
1449 * Make the current task sleep until @timeout jiffies have
1450 * elapsed. The routine will return immediately unless
1451 * the current task state has been set (see set_current_state()).
1453 * You can set the task state as follows -
1455 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1456 * pass before the routine returns. The routine will return 0
1458 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1459 * delivered to the current task. In this case the remaining time
1460 * in jiffies will be returned, or 0 if the timer expired in time
1462 * The current task state is guaranteed to be TASK_RUNNING when this
1463 * routine returns.
1465 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1466 * the CPU away without a bound on the timeout. In this case the return
1467 * value will be %MAX_SCHEDULE_TIMEOUT.
1469 * In all cases the return value is guaranteed to be non-negative.
1471 signed long __sched schedule_timeout(signed long timeout)
1473 struct timer_list timer;
1474 unsigned long expire;
1476 switch (timeout)
1478 case MAX_SCHEDULE_TIMEOUT:
1480 * These two special cases are useful to be comfortable
1481 * in the caller. Nothing more. We could take
1482 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1483 * but I' d like to return a valid offset (>=0) to allow
1484 * the caller to do everything it want with the retval.
1486 schedule();
1487 goto out;
1488 default:
1490 * Another bit of PARANOID. Note that the retval will be
1491 * 0 since no piece of kernel is supposed to do a check
1492 * for a negative retval of schedule_timeout() (since it
1493 * should never happens anyway). You just have the printk()
1494 * that will tell you if something is gone wrong and where.
1496 if (timeout < 0) {
1497 printk(KERN_ERR "schedule_timeout: wrong timeout "
1498 "value %lx\n", timeout);
1499 dump_stack();
1500 current->state = TASK_RUNNING;
1501 goto out;
1505 expire = timeout + jiffies;
1507 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1508 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1509 schedule();
1510 del_singleshot_timer_sync(&timer);
1512 /* Remove the timer from the object tracker */
1513 destroy_timer_on_stack(&timer);
1515 timeout = expire - jiffies;
1517 out:
1518 return timeout < 0 ? 0 : timeout;
1520 EXPORT_SYMBOL(schedule_timeout);
1523 * We can use __set_current_state() here because schedule_timeout() calls
1524 * schedule() unconditionally.
1526 signed long __sched schedule_timeout_interruptible(signed long timeout)
1528 __set_current_state(TASK_INTERRUPTIBLE);
1529 return schedule_timeout(timeout);
1531 EXPORT_SYMBOL(schedule_timeout_interruptible);
1533 signed long __sched schedule_timeout_killable(signed long timeout)
1535 __set_current_state(TASK_KILLABLE);
1536 return schedule_timeout(timeout);
1538 EXPORT_SYMBOL(schedule_timeout_killable);
1540 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1542 __set_current_state(TASK_UNINTERRUPTIBLE);
1543 return schedule_timeout(timeout);
1545 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1547 #ifdef CONFIG_HOTPLUG_CPU
1548 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1550 struct timer_list *timer;
1552 while (!list_empty(head)) {
1553 timer = list_first_entry(head, struct timer_list, entry);
1554 /* We ignore the accounting on the dying cpu */
1555 detach_timer(timer, false);
1556 timer_set_base(timer, new_base);
1557 internal_add_timer(new_base, timer);
1561 static void migrate_timers(int cpu)
1563 struct tvec_base *old_base;
1564 struct tvec_base *new_base;
1565 int i;
1567 BUG_ON(cpu_online(cpu));
1568 old_base = per_cpu(tvec_bases, cpu);
1569 new_base = get_cpu_var(tvec_bases);
1571 * The caller is globally serialized and nobody else
1572 * takes two locks at once, deadlock is not possible.
1574 spin_lock_irq(&new_base->lock);
1575 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1577 BUG_ON(old_base->running_timer);
1579 for (i = 0; i < TVR_SIZE; i++)
1580 migrate_timer_list(new_base, old_base->tv1.vec + i);
1581 for (i = 0; i < TVN_SIZE; i++) {
1582 migrate_timer_list(new_base, old_base->tv2.vec + i);
1583 migrate_timer_list(new_base, old_base->tv3.vec + i);
1584 migrate_timer_list(new_base, old_base->tv4.vec + i);
1585 migrate_timer_list(new_base, old_base->tv5.vec + i);
1588 old_base->active_timers = 0;
1589 old_base->all_timers = 0;
1591 spin_unlock(&old_base->lock);
1592 spin_unlock_irq(&new_base->lock);
1593 put_cpu_var(tvec_bases);
1596 static int timer_cpu_notify(struct notifier_block *self,
1597 unsigned long action, void *hcpu)
1599 switch (action) {
1600 case CPU_DEAD:
1601 case CPU_DEAD_FROZEN:
1602 migrate_timers((long)hcpu);
1603 break;
1604 default:
1605 break;
1608 return NOTIFY_OK;
1611 static inline void timer_register_cpu_notifier(void)
1613 cpu_notifier(timer_cpu_notify, 0);
1615 #else
1616 static inline void timer_register_cpu_notifier(void) { }
1617 #endif /* CONFIG_HOTPLUG_CPU */
1619 static void __init init_timer_cpu(struct tvec_base *base, int cpu)
1621 int j;
1623 BUG_ON(base != tbase_get_base(base));
1625 base->cpu = cpu;
1626 per_cpu(tvec_bases, cpu) = base;
1627 spin_lock_init(&base->lock);
1629 for (j = 0; j < TVN_SIZE; j++) {
1630 INIT_LIST_HEAD(base->tv5.vec + j);
1631 INIT_LIST_HEAD(base->tv4.vec + j);
1632 INIT_LIST_HEAD(base->tv3.vec + j);
1633 INIT_LIST_HEAD(base->tv2.vec + j);
1635 for (j = 0; j < TVR_SIZE; j++)
1636 INIT_LIST_HEAD(base->tv1.vec + j);
1638 base->timer_jiffies = jiffies;
1639 base->next_timer = base->timer_jiffies;
1642 static void __init init_timer_cpus(void)
1644 struct tvec_base *base;
1645 int local_cpu = smp_processor_id();
1646 int cpu;
1648 for_each_possible_cpu(cpu) {
1649 if (cpu == local_cpu)
1650 base = &boot_tvec_bases;
1651 #ifdef CONFIG_SMP
1652 else
1653 base = per_cpu_ptr(&__tvec_bases, cpu);
1654 #endif
1656 init_timer_cpu(base, cpu);
1660 void __init init_timers(void)
1662 /* ensure there are enough low bits for flags in timer->base pointer */
1663 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
1665 init_timer_cpus();
1666 init_timer_stats();
1667 timer_register_cpu_notifier();
1668 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1672 * msleep - sleep safely even with waitqueue interruptions
1673 * @msecs: Time in milliseconds to sleep for
1675 void msleep(unsigned int msecs)
1677 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1679 while (timeout)
1680 timeout = schedule_timeout_uninterruptible(timeout);
1683 EXPORT_SYMBOL(msleep);
1686 * msleep_interruptible - sleep waiting for signals
1687 * @msecs: Time in milliseconds to sleep for
1689 unsigned long msleep_interruptible(unsigned int msecs)
1691 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1693 while (timeout && !signal_pending(current))
1694 timeout = schedule_timeout_interruptible(timeout);
1695 return jiffies_to_msecs(timeout);
1698 EXPORT_SYMBOL(msleep_interruptible);
1700 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1702 ktime_t kmin;
1703 unsigned long delta;
1705 kmin = ktime_set(0, min * NSEC_PER_USEC);
1706 delta = (max - min) * NSEC_PER_USEC;
1707 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1711 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1712 * @min: Minimum time in usecs to sleep
1713 * @max: Maximum time in usecs to sleep
1715 void usleep_range(unsigned long min, unsigned long max)
1717 __set_current_state(TASK_UNINTERRUPTIBLE);
1718 do_usleep_range(min, max);
1720 EXPORT_SYMBOL(usleep_range);