2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 .level = { &sname##_state.node[0] }, \
94 .rda = &sname##_data, \
96 .gp_state = RCU_GP_IDLE, \
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
101 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
109 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
110 RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
112 static struct rcu_state
*const rcu_state_p
;
113 LIST_HEAD(rcu_struct_flavors
);
115 /* Dump rcu_node combining tree at boot to verify correct setup. */
116 static bool dump_tree
;
117 module_param(dump_tree
, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact
;
120 module_param(rcu_fanout_exact
, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
123 module_param(rcu_fanout_leaf
, int, 0444);
124 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
125 /* Number of rcu_nodes at specified level. */
126 int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
127 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
128 /* panic() on RCU Stall sysctl. */
129 int sysctl_panic_on_rcu_stall __read_mostly
;
132 * The rcu_scheduler_active variable is initialized to the value
133 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
134 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
135 * RCU can assume that there is but one task, allowing RCU to (for example)
136 * optimize synchronize_rcu() to a simple barrier(). When this variable
137 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
138 * to detect real grace periods. This variable is also used to suppress
139 * boot-time false positives from lockdep-RCU error checking. Finally, it
140 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
141 * is fully initialized, including all of its kthreads having been spawned.
143 int rcu_scheduler_active __read_mostly
;
144 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
147 * The rcu_scheduler_fully_active variable transitions from zero to one
148 * during the early_initcall() processing, which is after the scheduler
149 * is capable of creating new tasks. So RCU processing (for example,
150 * creating tasks for RCU priority boosting) must be delayed until after
151 * rcu_scheduler_fully_active transitions from zero to one. We also
152 * currently delay invocation of any RCU callbacks until after this point.
154 * It might later prove better for people registering RCU callbacks during
155 * early boot to take responsibility for these callbacks, but one step at
158 static int rcu_scheduler_fully_active __read_mostly
;
160 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
161 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
162 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
163 static void invoke_rcu_core(void);
164 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
165 static void rcu_report_exp_rdp(struct rcu_state
*rsp
,
166 struct rcu_data
*rdp
, bool wake
);
167 static void sync_sched_exp_online_cleanup(int cpu
);
169 /* rcuc/rcub kthread realtime priority */
170 #ifdef CONFIG_RCU_KTHREAD_PRIO
171 static int kthread_prio
= CONFIG_RCU_KTHREAD_PRIO
;
172 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
174 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
175 module_param(kthread_prio
, int, 0644);
177 /* Delay in jiffies for grace-period initialization delays, debug only. */
179 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
180 static int gp_preinit_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY
;
181 module_param(gp_preinit_delay
, int, 0644);
182 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183 static const int gp_preinit_delay
;
184 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
186 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
187 static int gp_init_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
;
188 module_param(gp_init_delay
, int, 0644);
189 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190 static const int gp_init_delay
;
191 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
193 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
194 static int gp_cleanup_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY
;
195 module_param(gp_cleanup_delay
, int, 0644);
196 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197 static const int gp_cleanup_delay
;
198 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
201 * Number of grace periods between delays, normalized by the duration of
202 * the delay. The longer the the delay, the more the grace periods between
203 * each delay. The reason for this normalization is that it means that,
204 * for non-zero delays, the overall slowdown of grace periods is constant
205 * regardless of the duration of the delay. This arrangement balances
206 * the need for long delays to increase some race probabilities with the
207 * need for fast grace periods to increase other race probabilities.
209 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
212 * Track the rcutorture test sequence number and the update version
213 * number within a given test. The rcutorture_testseq is incremented
214 * on every rcutorture module load and unload, so has an odd value
215 * when a test is running. The rcutorture_vernum is set to zero
216 * when rcutorture starts and is incremented on each rcutorture update.
217 * These variables enable correlating rcutorture output with the
218 * RCU tracing information.
220 unsigned long rcutorture_testseq
;
221 unsigned long rcutorture_vernum
;
224 * Compute the mask of online CPUs for the specified rcu_node structure.
225 * This will not be stable unless the rcu_node structure's ->lock is
226 * held, but the bit corresponding to the current CPU will be stable
229 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
231 return READ_ONCE(rnp
->qsmaskinitnext
);
235 * Return true if an RCU grace period is in progress. The READ_ONCE()s
236 * permit this function to be invoked without holding the root rcu_node
237 * structure's ->lock, but of course results can be subject to change.
239 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
241 return READ_ONCE(rsp
->completed
) != READ_ONCE(rsp
->gpnum
);
245 * Note a quiescent state. Because we do not need to know
246 * how many quiescent states passed, just if there was at least
247 * one since the start of the grace period, this just sets a flag.
248 * The caller must have disabled preemption.
250 void rcu_sched_qs(void)
252 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.s
))
254 trace_rcu_grace_period(TPS("rcu_sched"),
255 __this_cpu_read(rcu_sched_data
.gpnum
),
257 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.norm
, false);
258 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
260 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, false);
261 rcu_report_exp_rdp(&rcu_sched_state
,
262 this_cpu_ptr(&rcu_sched_data
), true);
267 if (__this_cpu_read(rcu_bh_data
.cpu_no_qs
.s
)) {
268 trace_rcu_grace_period(TPS("rcu_bh"),
269 __this_cpu_read(rcu_bh_data
.gpnum
),
271 __this_cpu_write(rcu_bh_data
.cpu_no_qs
.b
.norm
, false);
276 * Steal a bit from the bottom of ->dynticks for idle entry/exit
277 * control. Initially this is for TLB flushing.
279 #define RCU_DYNTICK_CTRL_MASK 0x1
280 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
281 #ifndef rcu_eqs_special_exit
282 #define rcu_eqs_special_exit() do { } while (0)
285 static DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
286 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
287 .dynticks
= ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR
),
288 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
289 .dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
,
290 .dynticks_idle
= ATOMIC_INIT(1),
291 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
295 * Record entry into an extended quiescent state. This is only to be
296 * called when not already in an extended quiescent state.
298 static void rcu_dynticks_eqs_enter(void)
300 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
304 * CPUs seeing atomic_add_return() must see prior RCU read-side
305 * critical sections, and we also must force ordering with the
308 seq
= atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdtp
->dynticks
);
309 /* Better be in an extended quiescent state! */
310 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
311 (seq
& RCU_DYNTICK_CTRL_CTR
));
312 /* Better not have special action (TLB flush) pending! */
313 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
314 (seq
& RCU_DYNTICK_CTRL_MASK
));
318 * Record exit from an extended quiescent state. This is only to be
319 * called from an extended quiescent state.
321 static void rcu_dynticks_eqs_exit(void)
323 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
327 * CPUs seeing atomic_add_return() must see prior idle sojourns,
328 * and we also must force ordering with the next RCU read-side
331 seq
= atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdtp
->dynticks
);
332 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
333 !(seq
& RCU_DYNTICK_CTRL_CTR
));
334 if (seq
& RCU_DYNTICK_CTRL_MASK
) {
335 atomic_andnot(RCU_DYNTICK_CTRL_MASK
, &rdtp
->dynticks
);
336 smp_mb__after_atomic(); /* _exit after clearing mask. */
337 /* Prefer duplicate flushes to losing a flush. */
338 rcu_eqs_special_exit();
343 * Reset the current CPU's ->dynticks counter to indicate that the
344 * newly onlined CPU is no longer in an extended quiescent state.
345 * This will either leave the counter unchanged, or increment it
346 * to the next non-quiescent value.
348 * The non-atomic test/increment sequence works because the upper bits
349 * of the ->dynticks counter are manipulated only by the corresponding CPU,
350 * or when the corresponding CPU is offline.
352 static void rcu_dynticks_eqs_online(void)
354 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
356 if (atomic_read(&rdtp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
)
358 atomic_add(RCU_DYNTICK_CTRL_CTR
, &rdtp
->dynticks
);
362 * Is the current CPU in an extended quiescent state?
364 * No ordering, as we are sampling CPU-local information.
366 bool rcu_dynticks_curr_cpu_in_eqs(void)
368 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
370 return !(atomic_read(&rdtp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
);
374 * Snapshot the ->dynticks counter with full ordering so as to allow
375 * stable comparison of this counter with past and future snapshots.
377 int rcu_dynticks_snap(struct rcu_dynticks
*rdtp
)
379 int snap
= atomic_add_return(0, &rdtp
->dynticks
);
381 return snap
& ~RCU_DYNTICK_CTRL_MASK
;
385 * Return true if the snapshot returned from rcu_dynticks_snap()
386 * indicates that RCU is in an extended quiescent state.
388 static bool rcu_dynticks_in_eqs(int snap
)
390 return !(snap
& RCU_DYNTICK_CTRL_CTR
);
394 * Return true if the CPU corresponding to the specified rcu_dynticks
395 * structure has spent some time in an extended quiescent state since
396 * rcu_dynticks_snap() returned the specified snapshot.
398 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks
*rdtp
, int snap
)
400 return snap
!= rcu_dynticks_snap(rdtp
);
404 * Do a double-increment of the ->dynticks counter to emulate a
405 * momentary idle-CPU quiescent state.
407 static void rcu_dynticks_momentary_idle(void)
409 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
410 int special
= atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR
,
413 /* It is illegal to call this from idle state. */
414 WARN_ON_ONCE(!(special
& RCU_DYNTICK_CTRL_CTR
));
418 * Set the special (bottom) bit of the specified CPU so that it
419 * will take special action (such as flushing its TLB) on the
420 * next exit from an extended quiescent state. Returns true if
421 * the bit was successfully set, or false if the CPU was not in
422 * an extended quiescent state.
424 bool rcu_eqs_special_set(int cpu
)
428 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
431 old
= atomic_read(&rdtp
->dynticks
);
432 if (old
& RCU_DYNTICK_CTRL_CTR
)
434 new = old
| RCU_DYNTICK_CTRL_MASK
;
435 } while (atomic_cmpxchg(&rdtp
->dynticks
, old
, new) != old
);
440 * Let the RCU core know that this CPU has gone through the scheduler,
441 * which is a quiescent state. This is called when the need for a
442 * quiescent state is urgent, so we burn an atomic operation and full
443 * memory barriers to let the RCU core know about it, regardless of what
444 * this CPU might (or might not) do in the near future.
446 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
448 * The caller must have disabled interrupts.
450 static void rcu_momentary_dyntick_idle(void)
452 raw_cpu_write(rcu_dynticks
.rcu_need_heavy_qs
, false);
453 rcu_dynticks_momentary_idle();
457 * Note a context switch. This is a quiescent state for RCU-sched,
458 * and requires special handling for preemptible RCU.
459 * The caller must have disabled interrupts.
461 void rcu_note_context_switch(bool preempt
)
463 barrier(); /* Avoid RCU read-side critical sections leaking down. */
464 trace_rcu_utilization(TPS("Start context switch"));
466 rcu_preempt_note_context_switch();
467 /* Load rcu_urgent_qs before other flags. */
468 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
)))
470 this_cpu_write(rcu_dynticks
.rcu_urgent_qs
, false);
471 if (unlikely(raw_cpu_read(rcu_dynticks
.rcu_need_heavy_qs
)))
472 rcu_momentary_dyntick_idle();
473 this_cpu_inc(rcu_dynticks
.rcu_qs_ctr
);
475 rcu_note_voluntary_context_switch_lite(current
);
477 trace_rcu_utilization(TPS("End context switch"));
478 barrier(); /* Avoid RCU read-side critical sections leaking up. */
480 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
483 * Register a quiescent state for all RCU flavors. If there is an
484 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
485 * dyntick-idle quiescent state visible to other CPUs (but only for those
486 * RCU flavors in desperate need of a quiescent state, which will normally
487 * be none of them). Either way, do a lightweight quiescent state for
490 * The barrier() calls are redundant in the common case when this is
491 * called externally, but just in case this is called from within this
495 void rcu_all_qs(void)
499 if (!raw_cpu_read(rcu_dynticks
.rcu_urgent_qs
))
502 /* Load rcu_urgent_qs before other flags. */
503 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
))) {
507 this_cpu_write(rcu_dynticks
.rcu_urgent_qs
, false);
508 barrier(); /* Avoid RCU read-side critical sections leaking down. */
509 if (unlikely(raw_cpu_read(rcu_dynticks
.rcu_need_heavy_qs
))) {
510 local_irq_save(flags
);
511 rcu_momentary_dyntick_idle();
512 local_irq_restore(flags
);
514 if (unlikely(raw_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
)))
516 this_cpu_inc(rcu_dynticks
.rcu_qs_ctr
);
517 barrier(); /* Avoid RCU read-side critical sections leaking up. */
520 EXPORT_SYMBOL_GPL(rcu_all_qs
);
522 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
523 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
524 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
526 module_param(blimit
, long, 0444);
527 module_param(qhimark
, long, 0444);
528 module_param(qlowmark
, long, 0444);
530 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
531 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
532 static bool rcu_kick_kthreads
;
534 module_param(jiffies_till_first_fqs
, ulong
, 0644);
535 module_param(jiffies_till_next_fqs
, ulong
, 0644);
536 module_param(rcu_kick_kthreads
, bool, 0644);
539 * How long the grace period must be before we start recruiting
540 * quiescent-state help from rcu_note_context_switch().
542 static ulong jiffies_till_sched_qs
= HZ
/ 20;
543 module_param(jiffies_till_sched_qs
, ulong
, 0644);
545 static bool rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
546 struct rcu_data
*rdp
);
547 static void force_qs_rnp(struct rcu_state
*rsp
,
548 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
549 unsigned long *maxj
),
550 bool *isidle
, unsigned long *maxj
);
551 static void force_quiescent_state(struct rcu_state
*rsp
);
552 static int rcu_pending(void);
555 * Return the number of RCU batches started thus far for debug & stats.
557 unsigned long rcu_batches_started(void)
559 return rcu_state_p
->gpnum
;
561 EXPORT_SYMBOL_GPL(rcu_batches_started
);
564 * Return the number of RCU-sched batches started thus far for debug & stats.
566 unsigned long rcu_batches_started_sched(void)
568 return rcu_sched_state
.gpnum
;
570 EXPORT_SYMBOL_GPL(rcu_batches_started_sched
);
573 * Return the number of RCU BH batches started thus far for debug & stats.
575 unsigned long rcu_batches_started_bh(void)
577 return rcu_bh_state
.gpnum
;
579 EXPORT_SYMBOL_GPL(rcu_batches_started_bh
);
582 * Return the number of RCU batches completed thus far for debug & stats.
584 unsigned long rcu_batches_completed(void)
586 return rcu_state_p
->completed
;
588 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
591 * Return the number of RCU-sched batches completed thus far for debug & stats.
593 unsigned long rcu_batches_completed_sched(void)
595 return rcu_sched_state
.completed
;
597 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
600 * Return the number of RCU BH batches completed thus far for debug & stats.
602 unsigned long rcu_batches_completed_bh(void)
604 return rcu_bh_state
.completed
;
606 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
609 * Return the number of RCU expedited batches completed thus far for
610 * debug & stats. Odd numbers mean that a batch is in progress, even
611 * numbers mean idle. The value returned will thus be roughly double
612 * the cumulative batches since boot.
614 unsigned long rcu_exp_batches_completed(void)
616 return rcu_state_p
->expedited_sequence
;
618 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed
);
621 * Return the number of RCU-sched expedited batches completed thus far
622 * for debug & stats. Similar to rcu_exp_batches_completed().
624 unsigned long rcu_exp_batches_completed_sched(void)
626 return rcu_sched_state
.expedited_sequence
;
628 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched
);
631 * Force a quiescent state.
633 void rcu_force_quiescent_state(void)
635 force_quiescent_state(rcu_state_p
);
637 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
640 * Force a quiescent state for RCU BH.
642 void rcu_bh_force_quiescent_state(void)
644 force_quiescent_state(&rcu_bh_state
);
646 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
649 * Force a quiescent state for RCU-sched.
651 void rcu_sched_force_quiescent_state(void)
653 force_quiescent_state(&rcu_sched_state
);
655 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
658 * Show the state of the grace-period kthreads.
660 void show_rcu_gp_kthreads(void)
662 struct rcu_state
*rsp
;
664 for_each_rcu_flavor(rsp
) {
665 pr_info("%s: wait state: %d ->state: %#lx\n",
666 rsp
->name
, rsp
->gp_state
, rsp
->gp_kthread
->state
);
667 /* sched_show_task(rsp->gp_kthread); */
670 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads
);
673 * Record the number of times rcutorture tests have been initiated and
674 * terminated. This information allows the debugfs tracing stats to be
675 * correlated to the rcutorture messages, even when the rcutorture module
676 * is being repeatedly loaded and unloaded. In other words, we cannot
677 * store this state in rcutorture itself.
679 void rcutorture_record_test_transition(void)
681 rcutorture_testseq
++;
682 rcutorture_vernum
= 0;
684 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
687 * Send along grace-period-related data for rcutorture diagnostics.
689 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
690 unsigned long *gpnum
, unsigned long *completed
)
692 struct rcu_state
*rsp
= NULL
;
701 case RCU_SCHED_FLAVOR
:
702 rsp
= &rcu_sched_state
;
708 *flags
= READ_ONCE(rsp
->gp_flags
);
709 *gpnum
= READ_ONCE(rsp
->gpnum
);
710 *completed
= READ_ONCE(rsp
->completed
);
717 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
720 * Record the number of writer passes through the current rcutorture test.
721 * This is also used to correlate debugfs tracing stats with the rcutorture
724 void rcutorture_record_progress(unsigned long vernum
)
728 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
731 * Return the root node of the specified rcu_state structure.
733 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
735 return &rsp
->node
[0];
739 * Is there any need for future grace periods?
740 * Interrupts must be disabled. If the caller does not hold the root
741 * rnp_node structure's ->lock, the results are advisory only.
743 static int rcu_future_needs_gp(struct rcu_state
*rsp
)
745 struct rcu_node
*rnp
= rcu_get_root(rsp
);
746 int idx
= (READ_ONCE(rnp
->completed
) + 1) & 0x1;
747 int *fp
= &rnp
->need_future_gp
[idx
];
749 return READ_ONCE(*fp
);
753 * Does the current CPU require a not-yet-started grace period?
754 * The caller must have disabled interrupts to prevent races with
755 * normal callback registry.
758 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
760 if (rcu_gp_in_progress(rsp
))
761 return false; /* No, a grace period is already in progress. */
762 if (rcu_future_needs_gp(rsp
))
763 return true; /* Yes, a no-CBs CPU needs one. */
764 if (!rcu_segcblist_is_enabled(&rdp
->cblist
))
765 return false; /* No, this is a no-CBs (or offline) CPU. */
766 if (!rcu_segcblist_restempty(&rdp
->cblist
, RCU_NEXT_READY_TAIL
))
767 return true; /* Yes, CPU has newly registered callbacks. */
768 if (rcu_segcblist_future_gp_needed(&rdp
->cblist
,
769 READ_ONCE(rsp
->completed
)))
770 return true; /* Yes, CBs for future grace period. */
771 return false; /* No grace period needed. */
775 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
777 * If the new value of the ->dynticks_nesting counter now is zero,
778 * we really have entered idle, and must do the appropriate accounting.
779 * The caller must have disabled interrupts.
781 static void rcu_eqs_enter_common(long long oldval
, bool user
)
783 struct rcu_state
*rsp
;
784 struct rcu_data
*rdp
;
785 RCU_TRACE(struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);)
787 trace_rcu_dyntick(TPS("Start"), oldval
, rdtp
->dynticks_nesting
);
788 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
789 !user
&& !is_idle_task(current
)) {
790 struct task_struct
*idle __maybe_unused
=
791 idle_task(smp_processor_id());
793 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval
, 0);
794 rcu_ftrace_dump(DUMP_ORIG
);
795 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
796 current
->pid
, current
->comm
,
797 idle
->pid
, idle
->comm
); /* must be idle task! */
799 for_each_rcu_flavor(rsp
) {
800 rdp
= this_cpu_ptr(rsp
->rda
);
801 do_nocb_deferred_wakeup(rdp
);
803 rcu_prepare_for_idle();
804 rcu_dynticks_eqs_enter();
805 rcu_dynticks_task_enter();
808 * It is illegal to enter an extended quiescent state while
809 * in an RCU read-side critical section.
811 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map
),
812 "Illegal idle entry in RCU read-side critical section.");
813 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
),
814 "Illegal idle entry in RCU-bh read-side critical section.");
815 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map
),
816 "Illegal idle entry in RCU-sched read-side critical section.");
820 * Enter an RCU extended quiescent state, which can be either the
821 * idle loop or adaptive-tickless usermode execution.
823 static void rcu_eqs_enter(bool user
)
826 struct rcu_dynticks
*rdtp
;
828 rdtp
= this_cpu_ptr(&rcu_dynticks
);
829 oldval
= rdtp
->dynticks_nesting
;
830 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
831 (oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
832 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
) {
833 rdtp
->dynticks_nesting
= 0;
834 rcu_eqs_enter_common(oldval
, user
);
836 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
841 * rcu_idle_enter - inform RCU that current CPU is entering idle
843 * Enter idle mode, in other words, -leave- the mode in which RCU
844 * read-side critical sections can occur. (Though RCU read-side
845 * critical sections can occur in irq handlers in idle, a possibility
846 * handled by irq_enter() and irq_exit().)
848 * We crowbar the ->dynticks_nesting field to zero to allow for
849 * the possibility of usermode upcalls having messed up our count
850 * of interrupt nesting level during the prior busy period.
852 void rcu_idle_enter(void)
856 local_irq_save(flags
);
857 rcu_eqs_enter(false);
858 rcu_sysidle_enter(0);
859 local_irq_restore(flags
);
861 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
863 #ifdef CONFIG_NO_HZ_FULL
865 * rcu_user_enter - inform RCU that we are resuming userspace.
867 * Enter RCU idle mode right before resuming userspace. No use of RCU
868 * is permitted between this call and rcu_user_exit(). This way the
869 * CPU doesn't need to maintain the tick for RCU maintenance purposes
870 * when the CPU runs in userspace.
872 void rcu_user_enter(void)
876 #endif /* CONFIG_NO_HZ_FULL */
879 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
881 * Exit from an interrupt handler, which might possibly result in entering
882 * idle mode, in other words, leaving the mode in which read-side critical
883 * sections can occur. The caller must have disabled interrupts.
885 * This code assumes that the idle loop never does anything that might
886 * result in unbalanced calls to irq_enter() and irq_exit(). If your
887 * architecture violates this assumption, RCU will give you what you
888 * deserve, good and hard. But very infrequently and irreproducibly.
890 * Use things like work queues to work around this limitation.
892 * You have been warned.
894 void rcu_irq_exit(void)
897 struct rcu_dynticks
*rdtp
;
899 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
900 rdtp
= this_cpu_ptr(&rcu_dynticks
);
901 oldval
= rdtp
->dynticks_nesting
;
902 rdtp
->dynticks_nesting
--;
903 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
904 rdtp
->dynticks_nesting
< 0);
905 if (rdtp
->dynticks_nesting
)
906 trace_rcu_dyntick(TPS("--="), oldval
, rdtp
->dynticks_nesting
);
908 rcu_eqs_enter_common(oldval
, true);
909 rcu_sysidle_enter(1);
913 * Wrapper for rcu_irq_exit() where interrupts are enabled.
915 void rcu_irq_exit_irqson(void)
919 local_irq_save(flags
);
921 local_irq_restore(flags
);
925 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
927 * If the new value of the ->dynticks_nesting counter was previously zero,
928 * we really have exited idle, and must do the appropriate accounting.
929 * The caller must have disabled interrupts.
931 static void rcu_eqs_exit_common(long long oldval
, int user
)
933 RCU_TRACE(struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);)
935 rcu_dynticks_task_exit();
936 rcu_dynticks_eqs_exit();
937 rcu_cleanup_after_idle();
938 trace_rcu_dyntick(TPS("End"), oldval
, rdtp
->dynticks_nesting
);
939 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
940 !user
&& !is_idle_task(current
)) {
941 struct task_struct
*idle __maybe_unused
=
942 idle_task(smp_processor_id());
944 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
945 oldval
, rdtp
->dynticks_nesting
);
946 rcu_ftrace_dump(DUMP_ORIG
);
947 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
948 current
->pid
, current
->comm
,
949 idle
->pid
, idle
->comm
); /* must be idle task! */
954 * Exit an RCU extended quiescent state, which can be either the
955 * idle loop or adaptive-tickless usermode execution.
957 static void rcu_eqs_exit(bool user
)
959 struct rcu_dynticks
*rdtp
;
962 rdtp
= this_cpu_ptr(&rcu_dynticks
);
963 oldval
= rdtp
->dynticks_nesting
;
964 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
965 if (oldval
& DYNTICK_TASK_NEST_MASK
) {
966 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
968 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
969 rcu_eqs_exit_common(oldval
, user
);
974 * rcu_idle_exit - inform RCU that current CPU is leaving idle
976 * Exit idle mode, in other words, -enter- the mode in which RCU
977 * read-side critical sections can occur.
979 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
980 * allow for the possibility of usermode upcalls messing up our count
981 * of interrupt nesting level during the busy period that is just
984 void rcu_idle_exit(void)
988 local_irq_save(flags
);
991 local_irq_restore(flags
);
993 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
995 #ifdef CONFIG_NO_HZ_FULL
997 * rcu_user_exit - inform RCU that we are exiting userspace.
999 * Exit RCU idle mode while entering the kernel because it can
1000 * run a RCU read side critical section anytime.
1002 void rcu_user_exit(void)
1006 #endif /* CONFIG_NO_HZ_FULL */
1009 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1011 * Enter an interrupt handler, which might possibly result in exiting
1012 * idle mode, in other words, entering the mode in which read-side critical
1013 * sections can occur. The caller must have disabled interrupts.
1015 * Note that the Linux kernel is fully capable of entering an interrupt
1016 * handler that it never exits, for example when doing upcalls to
1017 * user mode! This code assumes that the idle loop never does upcalls to
1018 * user mode. If your architecture does do upcalls from the idle loop (or
1019 * does anything else that results in unbalanced calls to the irq_enter()
1020 * and irq_exit() functions), RCU will give you what you deserve, good
1021 * and hard. But very infrequently and irreproducibly.
1023 * Use things like work queues to work around this limitation.
1025 * You have been warned.
1027 void rcu_irq_enter(void)
1029 struct rcu_dynticks
*rdtp
;
1032 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1033 rdtp
= this_cpu_ptr(&rcu_dynticks
);
1034 oldval
= rdtp
->dynticks_nesting
;
1035 rdtp
->dynticks_nesting
++;
1036 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
1037 rdtp
->dynticks_nesting
== 0);
1039 trace_rcu_dyntick(TPS("++="), oldval
, rdtp
->dynticks_nesting
);
1041 rcu_eqs_exit_common(oldval
, true);
1042 rcu_sysidle_exit(1);
1046 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1048 void rcu_irq_enter_irqson(void)
1050 unsigned long flags
;
1052 local_irq_save(flags
);
1054 local_irq_restore(flags
);
1058 * rcu_nmi_enter - inform RCU of entry to NMI context
1060 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1061 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1062 * that the CPU is active. This implementation permits nested NMIs, as
1063 * long as the nesting level does not overflow an int. (You will probably
1064 * run out of stack space first.)
1066 void rcu_nmi_enter(void)
1068 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1071 /* Complain about underflow. */
1072 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
< 0);
1075 * If idle from RCU viewpoint, atomically increment ->dynticks
1076 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1077 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1078 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1079 * to be in the outermost NMI handler that interrupted an RCU-idle
1080 * period (observation due to Andy Lutomirski).
1082 if (rcu_dynticks_curr_cpu_in_eqs()) {
1083 rcu_dynticks_eqs_exit();
1086 rdtp
->dynticks_nmi_nesting
+= incby
;
1091 * rcu_nmi_exit - inform RCU of exit from NMI context
1093 * If we are returning from the outermost NMI handler that interrupted an
1094 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1095 * to let the RCU grace-period handling know that the CPU is back to
1098 void rcu_nmi_exit(void)
1100 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1103 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1104 * (We are exiting an NMI handler, so RCU better be paying attention
1107 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
<= 0);
1108 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1111 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1112 * leave it in non-RCU-idle state.
1114 if (rdtp
->dynticks_nmi_nesting
!= 1) {
1115 rdtp
->dynticks_nmi_nesting
-= 2;
1119 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1120 rdtp
->dynticks_nmi_nesting
= 0;
1121 rcu_dynticks_eqs_enter();
1125 * __rcu_is_watching - are RCU read-side critical sections safe?
1127 * Return true if RCU is watching the running CPU, which means that
1128 * this CPU can safely enter RCU read-side critical sections. Unlike
1129 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1130 * least disabled preemption.
1132 bool notrace
__rcu_is_watching(void)
1134 return !rcu_dynticks_curr_cpu_in_eqs();
1138 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1140 * If the current CPU is in its idle loop and is neither in an interrupt
1141 * or NMI handler, return true.
1143 bool notrace
rcu_is_watching(void)
1147 preempt_disable_notrace();
1148 ret
= __rcu_is_watching();
1149 preempt_enable_notrace();
1152 EXPORT_SYMBOL_GPL(rcu_is_watching
);
1155 * If a holdout task is actually running, request an urgent quiescent
1156 * state from its CPU. This is unsynchronized, so migrations can cause
1157 * the request to go to the wrong CPU. Which is OK, all that will happen
1158 * is that the CPU's next context switch will be a bit slower and next
1159 * time around this task will generate another request.
1161 void rcu_request_urgent_qs_task(struct task_struct
*t
)
1168 return; /* This task is not running on that CPU. */
1169 smp_store_release(per_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
, cpu
), true);
1172 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1175 * Is the current CPU online? Disable preemption to avoid false positives
1176 * that could otherwise happen due to the current CPU number being sampled,
1177 * this task being preempted, its old CPU being taken offline, resuming
1178 * on some other CPU, then determining that its old CPU is now offline.
1179 * It is OK to use RCU on an offline processor during initial boot, hence
1180 * the check for rcu_scheduler_fully_active. Note also that it is OK
1181 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1182 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1183 * offline to continue to use RCU for one jiffy after marking itself
1184 * offline in the cpu_online_mask. This leniency is necessary given the
1185 * non-atomic nature of the online and offline processing, for example,
1186 * the fact that a CPU enters the scheduler after completing the teardown
1189 * This is also why RCU internally marks CPUs online during in the
1190 * preparation phase and offline after the CPU has been taken down.
1192 * Disable checking if in an NMI handler because we cannot safely report
1193 * errors from NMI handlers anyway.
1195 bool rcu_lockdep_current_cpu_online(void)
1197 struct rcu_data
*rdp
;
1198 struct rcu_node
*rnp
;
1204 rdp
= this_cpu_ptr(&rcu_sched_data
);
1206 ret
= (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) ||
1207 !rcu_scheduler_fully_active
;
1211 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
1213 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1216 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1218 * If the current CPU is idle or running at a first-level (not nested)
1219 * interrupt from idle, return true. The caller must have at least
1220 * disabled preemption.
1222 static int rcu_is_cpu_rrupt_from_idle(void)
1224 return __this_cpu_read(rcu_dynticks
.dynticks_nesting
) <= 1;
1228 * Snapshot the specified CPU's dynticks counter so that we can later
1229 * credit them with an implicit quiescent state. Return 1 if this CPU
1230 * is in dynticks idle mode, which is an extended quiescent state.
1232 static int dyntick_save_progress_counter(struct rcu_data
*rdp
,
1233 bool *isidle
, unsigned long *maxj
)
1235 rdp
->dynticks_snap
= rcu_dynticks_snap(rdp
->dynticks
);
1236 rcu_sysidle_check_cpu(rdp
, isidle
, maxj
);
1237 if (rcu_dynticks_in_eqs(rdp
->dynticks_snap
)) {
1238 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1239 if (ULONG_CMP_LT(READ_ONCE(rdp
->gpnum
) + ULONG_MAX
/ 4,
1240 rdp
->mynode
->gpnum
))
1241 WRITE_ONCE(rdp
->gpwrap
, true);
1248 * Return true if the specified CPU has passed through a quiescent
1249 * state by virtue of being in or having passed through an dynticks
1250 * idle state since the last call to dyntick_save_progress_counter()
1251 * for this same CPU, or by virtue of having been offline.
1253 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
,
1254 bool *isidle
, unsigned long *maxj
)
1259 unsigned long rjtsc
;
1260 struct rcu_node
*rnp
;
1263 * If the CPU passed through or entered a dynticks idle phase with
1264 * no active irq/NMI handlers, then we can safely pretend that the CPU
1265 * already acknowledged the request to pass through a quiescent
1266 * state. Either way, that CPU cannot possibly be in an RCU
1267 * read-side critical section that started before the beginning
1268 * of the current RCU grace period.
1270 if (rcu_dynticks_in_eqs_since(rdp
->dynticks
, rdp
->dynticks_snap
)) {
1271 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1272 rdp
->dynticks_fqs
++;
1276 /* Compute and saturate jiffies_till_sched_qs. */
1277 jtsq
= jiffies_till_sched_qs
;
1278 rjtsc
= rcu_jiffies_till_stall_check();
1279 if (jtsq
> rjtsc
/ 2) {
1280 WRITE_ONCE(jiffies_till_sched_qs
, rjtsc
);
1282 } else if (jtsq
< 1) {
1283 WRITE_ONCE(jiffies_till_sched_qs
, 1);
1288 * Has this CPU encountered a cond_resched_rcu_qs() since the
1289 * beginning of the grace period? For this to be the case,
1290 * the CPU has to have noticed the current grace period. This
1291 * might not be the case for nohz_full CPUs looping in the kernel.
1294 ruqp
= per_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
, rdp
->cpu
);
1295 if (time_after(jiffies
, rdp
->rsp
->gp_start
+ jtsq
) &&
1296 READ_ONCE(rdp
->rcu_qs_ctr_snap
) != per_cpu(rcu_dynticks
.rcu_qs_ctr
, rdp
->cpu
) &&
1297 READ_ONCE(rdp
->gpnum
) == rnp
->gpnum
&& !rdp
->gpwrap
) {
1298 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("rqc"));
1301 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1302 smp_store_release(ruqp
, true);
1305 /* Check for the CPU being offline. */
1306 if (!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
))) {
1307 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("ofl"));
1313 * A CPU running for an extended time within the kernel can
1314 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1315 * even context-switching back and forth between a pair of
1316 * in-kernel CPU-bound tasks cannot advance grace periods.
1317 * So if the grace period is old enough, make the CPU pay attention.
1318 * Note that the unsynchronized assignments to the per-CPU
1319 * rcu_need_heavy_qs variable are safe. Yes, setting of
1320 * bits can be lost, but they will be set again on the next
1321 * force-quiescent-state pass. So lost bit sets do not result
1322 * in incorrect behavior, merely in a grace period lasting
1323 * a few jiffies longer than it might otherwise. Because
1324 * there are at most four threads involved, and because the
1325 * updates are only once every few jiffies, the probability of
1326 * lossage (and thus of slight grace-period extension) is
1329 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1330 * is set too high, we override with half of the RCU CPU stall
1333 rnhqp
= &per_cpu(rcu_dynticks
.rcu_need_heavy_qs
, rdp
->cpu
);
1334 if (!READ_ONCE(*rnhqp
) &&
1335 (time_after(jiffies
, rdp
->rsp
->gp_start
+ jtsq
) ||
1336 time_after(jiffies
, rdp
->rsp
->jiffies_resched
))) {
1337 WRITE_ONCE(*rnhqp
, true);
1338 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1339 smp_store_release(ruqp
, true);
1340 rdp
->rsp
->jiffies_resched
+= 5; /* Re-enable beating. */
1344 * If more than halfway to RCU CPU stall-warning time, do
1345 * a resched_cpu() to try to loosen things up a bit.
1347 if (jiffies
- rdp
->rsp
->gp_start
> rcu_jiffies_till_stall_check() / 2)
1348 resched_cpu(rdp
->cpu
);
1353 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
1355 unsigned long j
= jiffies
;
1359 smp_wmb(); /* Record start time before stall time. */
1360 j1
= rcu_jiffies_till_stall_check();
1361 WRITE_ONCE(rsp
->jiffies_stall
, j
+ j1
);
1362 rsp
->jiffies_resched
= j
+ j1
/ 2;
1363 rsp
->n_force_qs_gpstart
= READ_ONCE(rsp
->n_force_qs
);
1367 * Convert a ->gp_state value to a character string.
1369 static const char *gp_state_getname(short gs
)
1371 if (gs
< 0 || gs
>= ARRAY_SIZE(gp_state_names
))
1373 return gp_state_names
[gs
];
1377 * Complain about starvation of grace-period kthread.
1379 static void rcu_check_gp_kthread_starvation(struct rcu_state
*rsp
)
1385 gpa
= READ_ONCE(rsp
->gp_activity
);
1386 if (j
- gpa
> 2 * HZ
) {
1387 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1389 rsp
->gpnum
, rsp
->completed
,
1391 gp_state_getname(rsp
->gp_state
), rsp
->gp_state
,
1392 rsp
->gp_kthread
? rsp
->gp_kthread
->state
: ~0);
1393 if (rsp
->gp_kthread
) {
1394 sched_show_task(rsp
->gp_kthread
);
1395 wake_up_process(rsp
->gp_kthread
);
1401 * Dump stacks of all tasks running on stalled CPUs. First try using
1402 * NMIs, but fall back to manual remote stack tracing on architectures
1403 * that don't support NMI-based stack dumps. The NMI-triggered stack
1404 * traces are more accurate because they are printed by the target CPU.
1406 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
1409 unsigned long flags
;
1410 struct rcu_node
*rnp
;
1412 rcu_for_each_leaf_node(rsp
, rnp
) {
1413 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1414 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1415 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
))
1416 if (!trigger_single_cpu_backtrace(cpu
))
1418 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1423 * If too much time has passed in the current grace period, and if
1424 * so configured, go kick the relevant kthreads.
1426 static void rcu_stall_kick_kthreads(struct rcu_state
*rsp
)
1430 if (!rcu_kick_kthreads
)
1432 j
= READ_ONCE(rsp
->jiffies_kick_kthreads
);
1433 if (time_after(jiffies
, j
) && rsp
->gp_kthread
&&
1434 (rcu_gp_in_progress(rsp
) || READ_ONCE(rsp
->gp_flags
))) {
1435 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp
->name
);
1436 rcu_ftrace_dump(DUMP_ALL
);
1437 wake_up_process(rsp
->gp_kthread
);
1438 WRITE_ONCE(rsp
->jiffies_kick_kthreads
, j
+ HZ
);
1442 static inline void panic_on_rcu_stall(void)
1444 if (sysctl_panic_on_rcu_stall
)
1445 panic("RCU Stall\n");
1448 static void print_other_cpu_stall(struct rcu_state
*rsp
, unsigned long gpnum
)
1452 unsigned long flags
;
1456 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1459 /* Kick and suppress, if so configured. */
1460 rcu_stall_kick_kthreads(rsp
);
1461 if (rcu_cpu_stall_suppress
)
1464 /* Only let one CPU complain about others per time interval. */
1466 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1467 delta
= jiffies
- READ_ONCE(rsp
->jiffies_stall
);
1468 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
1469 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1472 WRITE_ONCE(rsp
->jiffies_stall
,
1473 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1474 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1477 * OK, time to rat on our buddy...
1478 * See Documentation/RCU/stallwarn.txt for info on how to debug
1479 * RCU CPU stall warnings.
1481 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1483 print_cpu_stall_info_begin();
1484 rcu_for_each_leaf_node(rsp
, rnp
) {
1485 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1486 ndetected
+= rcu_print_task_stall(rnp
);
1487 if (rnp
->qsmask
!= 0) {
1488 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1489 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
)) {
1490 print_cpu_stall_info(rsp
, cpu
);
1494 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1497 print_cpu_stall_info_end();
1498 for_each_possible_cpu(cpu
)
1499 totqlen
+= rcu_segcblist_n_cbs(&per_cpu_ptr(rsp
->rda
,
1501 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1502 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
1503 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1505 rcu_dump_cpu_stacks(rsp
);
1507 /* Complain about tasks blocking the grace period. */
1508 rcu_print_detail_task_stall(rsp
);
1510 if (READ_ONCE(rsp
->gpnum
) != gpnum
||
1511 READ_ONCE(rsp
->completed
) == gpnum
) {
1512 pr_err("INFO: Stall ended before state dump start\n");
1515 gpa
= READ_ONCE(rsp
->gp_activity
);
1516 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1517 rsp
->name
, j
- gpa
, j
, gpa
,
1518 jiffies_till_next_fqs
,
1519 rcu_get_root(rsp
)->qsmask
);
1520 /* In this case, the current CPU might be at fault. */
1521 sched_show_task(current
);
1525 rcu_check_gp_kthread_starvation(rsp
);
1527 panic_on_rcu_stall();
1529 force_quiescent_state(rsp
); /* Kick them all. */
1532 static void print_cpu_stall(struct rcu_state
*rsp
)
1535 unsigned long flags
;
1536 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1539 /* Kick and suppress, if so configured. */
1540 rcu_stall_kick_kthreads(rsp
);
1541 if (rcu_cpu_stall_suppress
)
1545 * OK, time to rat on ourselves...
1546 * See Documentation/RCU/stallwarn.txt for info on how to debug
1547 * RCU CPU stall warnings.
1549 pr_err("INFO: %s self-detected stall on CPU", rsp
->name
);
1550 print_cpu_stall_info_begin();
1551 print_cpu_stall_info(rsp
, smp_processor_id());
1552 print_cpu_stall_info_end();
1553 for_each_possible_cpu(cpu
)
1554 totqlen
+= rcu_segcblist_n_cbs(&per_cpu_ptr(rsp
->rda
,
1556 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1557 jiffies
- rsp
->gp_start
,
1558 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1560 rcu_check_gp_kthread_starvation(rsp
);
1562 rcu_dump_cpu_stacks(rsp
);
1564 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1565 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rsp
->jiffies_stall
)))
1566 WRITE_ONCE(rsp
->jiffies_stall
,
1567 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1568 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1570 panic_on_rcu_stall();
1573 * Attempt to revive the RCU machinery by forcing a context switch.
1575 * A context switch would normally allow the RCU state machine to make
1576 * progress and it could be we're stuck in kernel space without context
1577 * switches for an entirely unreasonable amount of time.
1579 resched_cpu(smp_processor_id());
1582 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1584 unsigned long completed
;
1585 unsigned long gpnum
;
1589 struct rcu_node
*rnp
;
1591 if ((rcu_cpu_stall_suppress
&& !rcu_kick_kthreads
) ||
1592 !rcu_gp_in_progress(rsp
))
1594 rcu_stall_kick_kthreads(rsp
);
1598 * Lots of memory barriers to reject false positives.
1600 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1601 * then rsp->gp_start, and finally rsp->completed. These values
1602 * are updated in the opposite order with memory barriers (or
1603 * equivalent) during grace-period initialization and cleanup.
1604 * Now, a false positive can occur if we get an new value of
1605 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1606 * the memory barriers, the only way that this can happen is if one
1607 * grace period ends and another starts between these two fetches.
1608 * Detect this by comparing rsp->completed with the previous fetch
1611 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1612 * and rsp->gp_start suffice to forestall false positives.
1614 gpnum
= READ_ONCE(rsp
->gpnum
);
1615 smp_rmb(); /* Pick up ->gpnum first... */
1616 js
= READ_ONCE(rsp
->jiffies_stall
);
1617 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1618 gps
= READ_ONCE(rsp
->gp_start
);
1619 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1620 completed
= READ_ONCE(rsp
->completed
);
1621 if (ULONG_CMP_GE(completed
, gpnum
) ||
1622 ULONG_CMP_LT(j
, js
) ||
1623 ULONG_CMP_GE(gps
, js
))
1624 return; /* No stall or GP completed since entering function. */
1626 if (rcu_gp_in_progress(rsp
) &&
1627 (READ_ONCE(rnp
->qsmask
) & rdp
->grpmask
)) {
1629 /* We haven't checked in, so go dump stack. */
1630 print_cpu_stall(rsp
);
1632 } else if (rcu_gp_in_progress(rsp
) &&
1633 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
1635 /* They had a few time units to dump stack, so complain. */
1636 print_other_cpu_stall(rsp
, gpnum
);
1641 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1643 * Set the stall-warning timeout way off into the future, thus preventing
1644 * any RCU CPU stall-warning messages from appearing in the current set of
1645 * RCU grace periods.
1647 * The caller must disable hard irqs.
1649 void rcu_cpu_stall_reset(void)
1651 struct rcu_state
*rsp
;
1653 for_each_rcu_flavor(rsp
)
1654 WRITE_ONCE(rsp
->jiffies_stall
, jiffies
+ ULONG_MAX
/ 2);
1658 * Determine the value that ->completed will have at the end of the
1659 * next subsequent grace period. This is used to tag callbacks so that
1660 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1661 * been dyntick-idle for an extended period with callbacks under the
1662 * influence of RCU_FAST_NO_HZ.
1664 * The caller must hold rnp->lock with interrupts disabled.
1666 static unsigned long rcu_cbs_completed(struct rcu_state
*rsp
,
1667 struct rcu_node
*rnp
)
1670 * If RCU is idle, we just wait for the next grace period.
1671 * But we can only be sure that RCU is idle if we are looking
1672 * at the root rcu_node structure -- otherwise, a new grace
1673 * period might have started, but just not yet gotten around
1674 * to initializing the current non-root rcu_node structure.
1676 if (rcu_get_root(rsp
) == rnp
&& rnp
->gpnum
== rnp
->completed
)
1677 return rnp
->completed
+ 1;
1680 * Otherwise, wait for a possible partial grace period and
1681 * then the subsequent full grace period.
1683 return rnp
->completed
+ 2;
1687 * Trace-event helper function for rcu_start_future_gp() and
1688 * rcu_nocb_wait_gp().
1690 static void trace_rcu_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1691 unsigned long c
, const char *s
)
1693 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gpnum
,
1694 rnp
->completed
, c
, rnp
->level
,
1695 rnp
->grplo
, rnp
->grphi
, s
);
1699 * Start some future grace period, as needed to handle newly arrived
1700 * callbacks. The required future grace periods are recorded in each
1701 * rcu_node structure's ->need_future_gp field. Returns true if there
1702 * is reason to awaken the grace-period kthread.
1704 * The caller must hold the specified rcu_node structure's ->lock.
1706 static bool __maybe_unused
1707 rcu_start_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1708 unsigned long *c_out
)
1712 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
1715 * Pick up grace-period number for new callbacks. If this
1716 * grace period is already marked as needed, return to the caller.
1718 c
= rcu_cbs_completed(rdp
->rsp
, rnp
);
1719 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startleaf"));
1720 if (rnp
->need_future_gp
[c
& 0x1]) {
1721 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartleaf"));
1726 * If either this rcu_node structure or the root rcu_node structure
1727 * believe that a grace period is in progress, then we must wait
1728 * for the one following, which is in "c". Because our request
1729 * will be noticed at the end of the current grace period, we don't
1730 * need to explicitly start one. We only do the lockless check
1731 * of rnp_root's fields if the current rcu_node structure thinks
1732 * there is no grace period in flight, and because we hold rnp->lock,
1733 * the only possible change is when rnp_root's two fields are
1734 * equal, in which case rnp_root->gpnum might be concurrently
1735 * incremented. But that is OK, as it will just result in our
1736 * doing some extra useless work.
1738 if (rnp
->gpnum
!= rnp
->completed
||
1739 READ_ONCE(rnp_root
->gpnum
) != READ_ONCE(rnp_root
->completed
)) {
1740 rnp
->need_future_gp
[c
& 0x1]++;
1741 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleaf"));
1746 * There might be no grace period in progress. If we don't already
1747 * hold it, acquire the root rcu_node structure's lock in order to
1748 * start one (if needed).
1750 if (rnp
!= rnp_root
)
1751 raw_spin_lock_rcu_node(rnp_root
);
1754 * Get a new grace-period number. If there really is no grace
1755 * period in progress, it will be smaller than the one we obtained
1756 * earlier. Adjust callbacks as needed.
1758 c
= rcu_cbs_completed(rdp
->rsp
, rnp_root
);
1759 if (!rcu_is_nocb_cpu(rdp
->cpu
))
1760 (void)rcu_segcblist_accelerate(&rdp
->cblist
, c
);
1763 * If the needed for the required grace period is already
1764 * recorded, trace and leave.
1766 if (rnp_root
->need_future_gp
[c
& 0x1]) {
1767 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartedroot"));
1771 /* Record the need for the future grace period. */
1772 rnp_root
->need_future_gp
[c
& 0x1]++;
1774 /* If a grace period is not already in progress, start one. */
1775 if (rnp_root
->gpnum
!= rnp_root
->completed
) {
1776 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleafroot"));
1778 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedroot"));
1779 ret
= rcu_start_gp_advanced(rdp
->rsp
, rnp_root
, rdp
);
1782 if (rnp
!= rnp_root
)
1783 raw_spin_unlock_rcu_node(rnp_root
);
1791 * Clean up any old requests for the just-ended grace period. Also return
1792 * whether any additional grace periods have been requested. Also invoke
1793 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1794 * waiting for this grace period to complete.
1796 static int rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1798 int c
= rnp
->completed
;
1800 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1802 rnp
->need_future_gp
[c
& 0x1] = 0;
1803 needmore
= rnp
->need_future_gp
[(c
+ 1) & 0x1];
1804 trace_rcu_future_gp(rnp
, rdp
, c
,
1805 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1810 * Awaken the grace-period kthread for the specified flavor of RCU.
1811 * Don't do a self-awaken, and don't bother awakening when there is
1812 * nothing for the grace-period kthread to do (as in several CPUs
1813 * raced to awaken, and we lost), and finally don't try to awaken
1814 * a kthread that has not yet been created.
1816 static void rcu_gp_kthread_wake(struct rcu_state
*rsp
)
1818 if (current
== rsp
->gp_kthread
||
1819 !READ_ONCE(rsp
->gp_flags
) ||
1822 swake_up(&rsp
->gp_wq
);
1826 * If there is room, assign a ->completed number to any callbacks on
1827 * this CPU that have not already been assigned. Also accelerate any
1828 * callbacks that were previously assigned a ->completed number that has
1829 * since proven to be too conservative, which can happen if callbacks get
1830 * assigned a ->completed number while RCU is idle, but with reference to
1831 * a non-root rcu_node structure. This function is idempotent, so it does
1832 * not hurt to call it repeatedly. Returns an flag saying that we should
1833 * awaken the RCU grace-period kthread.
1835 * The caller must hold rnp->lock with interrupts disabled.
1837 static bool rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1838 struct rcu_data
*rdp
)
1842 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1843 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1847 * Callbacks are often registered with incomplete grace-period
1848 * information. Something about the fact that getting exact
1849 * information requires acquiring a global lock... RCU therefore
1850 * makes a conservative estimate of the grace period number at which
1851 * a given callback will become ready to invoke. The following
1852 * code checks this estimate and improves it when possible, thus
1853 * accelerating callback invocation to an earlier grace-period
1856 if (rcu_segcblist_accelerate(&rdp
->cblist
, rcu_cbs_completed(rsp
, rnp
)))
1857 ret
= rcu_start_future_gp(rnp
, rdp
, NULL
);
1859 /* Trace depending on how much we were able to accelerate. */
1860 if (rcu_segcblist_restempty(&rdp
->cblist
, RCU_WAIT_TAIL
))
1861 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccWaitCB"));
1863 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccReadyCB"));
1868 * Move any callbacks whose grace period has completed to the
1869 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1870 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1871 * sublist. This function is idempotent, so it does not hurt to
1872 * invoke it repeatedly. As long as it is not invoked -too- often...
1873 * Returns true if the RCU grace-period kthread needs to be awakened.
1875 * The caller must hold rnp->lock with interrupts disabled.
1877 static bool rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1878 struct rcu_data
*rdp
)
1880 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1881 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1885 * Find all callbacks whose ->completed numbers indicate that they
1886 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1888 rcu_segcblist_advance(&rdp
->cblist
, rnp
->completed
);
1890 /* Classify any remaining callbacks. */
1891 return rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1895 * Update CPU-local rcu_data state to record the beginnings and ends of
1896 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1897 * structure corresponding to the current CPU, and must have irqs disabled.
1898 * Returns true if the grace-period kthread needs to be awakened.
1900 static bool __note_gp_changes(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1901 struct rcu_data
*rdp
)
1906 /* Handle the ends of any preceding grace periods first. */
1907 if (rdp
->completed
== rnp
->completed
&&
1908 !unlikely(READ_ONCE(rdp
->gpwrap
))) {
1910 /* No grace period end, so just accelerate recent callbacks. */
1911 ret
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1915 /* Advance callbacks. */
1916 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
);
1918 /* Remember that we saw this grace-period completion. */
1919 rdp
->completed
= rnp
->completed
;
1920 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuend"));
1923 if (rdp
->gpnum
!= rnp
->gpnum
|| unlikely(READ_ONCE(rdp
->gpwrap
))) {
1925 * If the current grace period is waiting for this CPU,
1926 * set up to detect a quiescent state, otherwise don't
1927 * go looking for one.
1929 rdp
->gpnum
= rnp
->gpnum
;
1930 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpustart"));
1931 need_gp
= !!(rnp
->qsmask
& rdp
->grpmask
);
1932 rdp
->cpu_no_qs
.b
.norm
= need_gp
;
1933 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_dynticks
.rcu_qs_ctr
);
1934 rdp
->core_needs_qs
= need_gp
;
1935 zero_cpu_stall_ticks(rdp
);
1936 WRITE_ONCE(rdp
->gpwrap
, false);
1941 static void note_gp_changes(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1943 unsigned long flags
;
1945 struct rcu_node
*rnp
;
1947 local_irq_save(flags
);
1949 if ((rdp
->gpnum
== READ_ONCE(rnp
->gpnum
) &&
1950 rdp
->completed
== READ_ONCE(rnp
->completed
) &&
1951 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1952 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1953 local_irq_restore(flags
);
1956 needwake
= __note_gp_changes(rsp
, rnp
, rdp
);
1957 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1959 rcu_gp_kthread_wake(rsp
);
1962 static void rcu_gp_slow(struct rcu_state
*rsp
, int delay
)
1965 !(rsp
->gpnum
% (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1966 schedule_timeout_uninterruptible(delay
);
1970 * Initialize a new grace period. Return false if no grace period required.
1972 static bool rcu_gp_init(struct rcu_state
*rsp
)
1974 unsigned long oldmask
;
1975 struct rcu_data
*rdp
;
1976 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1978 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1979 raw_spin_lock_irq_rcu_node(rnp
);
1980 if (!READ_ONCE(rsp
->gp_flags
)) {
1981 /* Spurious wakeup, tell caller to go back to sleep. */
1982 raw_spin_unlock_irq_rcu_node(rnp
);
1985 WRITE_ONCE(rsp
->gp_flags
, 0); /* Clear all flags: New grace period. */
1987 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp
))) {
1989 * Grace period already in progress, don't start another.
1990 * Not supposed to be able to happen.
1992 raw_spin_unlock_irq_rcu_node(rnp
);
1996 /* Advance to a new grace period and initialize state. */
1997 record_gp_stall_check_time(rsp
);
1998 /* Record GP times before starting GP, hence smp_store_release(). */
1999 smp_store_release(&rsp
->gpnum
, rsp
->gpnum
+ 1);
2000 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, TPS("start"));
2001 raw_spin_unlock_irq_rcu_node(rnp
);
2004 * Apply per-leaf buffered online and offline operations to the
2005 * rcu_node tree. Note that this new grace period need not wait
2006 * for subsequent online CPUs, and that quiescent-state forcing
2007 * will handle subsequent offline CPUs.
2009 rcu_for_each_leaf_node(rsp
, rnp
) {
2010 rcu_gp_slow(rsp
, gp_preinit_delay
);
2011 raw_spin_lock_irq_rcu_node(rnp
);
2012 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
2013 !rnp
->wait_blkd_tasks
) {
2014 /* Nothing to do on this leaf rcu_node structure. */
2015 raw_spin_unlock_irq_rcu_node(rnp
);
2019 /* Record old state, apply changes to ->qsmaskinit field. */
2020 oldmask
= rnp
->qsmaskinit
;
2021 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
2023 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2024 if (!oldmask
!= !rnp
->qsmaskinit
) {
2025 if (!oldmask
) /* First online CPU for this rcu_node. */
2026 rcu_init_new_rnp(rnp
);
2027 else if (rcu_preempt_has_tasks(rnp
)) /* blocked tasks */
2028 rnp
->wait_blkd_tasks
= true;
2029 else /* Last offline CPU and can propagate. */
2030 rcu_cleanup_dead_rnp(rnp
);
2034 * If all waited-on tasks from prior grace period are
2035 * done, and if all this rcu_node structure's CPUs are
2036 * still offline, propagate up the rcu_node tree and
2037 * clear ->wait_blkd_tasks. Otherwise, if one of this
2038 * rcu_node structure's CPUs has since come back online,
2039 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2040 * checks for this, so just call it unconditionally).
2042 if (rnp
->wait_blkd_tasks
&&
2043 (!rcu_preempt_has_tasks(rnp
) ||
2045 rnp
->wait_blkd_tasks
= false;
2046 rcu_cleanup_dead_rnp(rnp
);
2049 raw_spin_unlock_irq_rcu_node(rnp
);
2053 * Set the quiescent-state-needed bits in all the rcu_node
2054 * structures for all currently online CPUs in breadth-first order,
2055 * starting from the root rcu_node structure, relying on the layout
2056 * of the tree within the rsp->node[] array. Note that other CPUs
2057 * will access only the leaves of the hierarchy, thus seeing that no
2058 * grace period is in progress, at least until the corresponding
2059 * leaf node has been initialized.
2061 * The grace period cannot complete until the initialization
2062 * process finishes, because this kthread handles both.
2064 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2065 rcu_gp_slow(rsp
, gp_init_delay
);
2066 raw_spin_lock_irq_rcu_node(rnp
);
2067 rdp
= this_cpu_ptr(rsp
->rda
);
2068 rcu_preempt_check_blocked_tasks(rnp
);
2069 rnp
->qsmask
= rnp
->qsmaskinit
;
2070 WRITE_ONCE(rnp
->gpnum
, rsp
->gpnum
);
2071 if (WARN_ON_ONCE(rnp
->completed
!= rsp
->completed
))
2072 WRITE_ONCE(rnp
->completed
, rsp
->completed
);
2073 if (rnp
== rdp
->mynode
)
2074 (void)__note_gp_changes(rsp
, rnp
, rdp
);
2075 rcu_preempt_boost_start_gp(rnp
);
2076 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
2077 rnp
->level
, rnp
->grplo
,
2078 rnp
->grphi
, rnp
->qsmask
);
2079 raw_spin_unlock_irq_rcu_node(rnp
);
2080 cond_resched_rcu_qs();
2081 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2088 * Helper function for wait_event_interruptible_timeout() wakeup
2089 * at force-quiescent-state time.
2091 static bool rcu_gp_fqs_check_wake(struct rcu_state
*rsp
, int *gfp
)
2093 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2095 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2096 *gfp
= READ_ONCE(rsp
->gp_flags
);
2097 if (*gfp
& RCU_GP_FLAG_FQS
)
2100 /* The current grace period has completed. */
2101 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
2108 * Do one round of quiescent-state forcing.
2110 static void rcu_gp_fqs(struct rcu_state
*rsp
, bool first_time
)
2112 bool isidle
= false;
2114 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2116 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2119 /* Collect dyntick-idle snapshots. */
2120 if (is_sysidle_rcu_state(rsp
)) {
2122 maxj
= jiffies
- ULONG_MAX
/ 4;
2124 force_qs_rnp(rsp
, dyntick_save_progress_counter
,
2126 rcu_sysidle_report_gp(rsp
, isidle
, maxj
);
2128 /* Handle dyntick-idle and offline CPUs. */
2130 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
, &isidle
, &maxj
);
2132 /* Clear flag to prevent immediate re-entry. */
2133 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2134 raw_spin_lock_irq_rcu_node(rnp
);
2135 WRITE_ONCE(rsp
->gp_flags
,
2136 READ_ONCE(rsp
->gp_flags
) & ~RCU_GP_FLAG_FQS
);
2137 raw_spin_unlock_irq_rcu_node(rnp
);
2142 * Clean up after the old grace period.
2144 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
2146 unsigned long gp_duration
;
2147 bool needgp
= false;
2149 struct rcu_data
*rdp
;
2150 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2151 struct swait_queue_head
*sq
;
2153 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2154 raw_spin_lock_irq_rcu_node(rnp
);
2155 gp_duration
= jiffies
- rsp
->gp_start
;
2156 if (gp_duration
> rsp
->gp_max
)
2157 rsp
->gp_max
= gp_duration
;
2160 * We know the grace period is complete, but to everyone else
2161 * it appears to still be ongoing. But it is also the case
2162 * that to everyone else it looks like there is nothing that
2163 * they can do to advance the grace period. It is therefore
2164 * safe for us to drop the lock in order to mark the grace
2165 * period as completed in all of the rcu_node structures.
2167 raw_spin_unlock_irq_rcu_node(rnp
);
2170 * Propagate new ->completed value to rcu_node structures so
2171 * that other CPUs don't have to wait until the start of the next
2172 * grace period to process their callbacks. This also avoids
2173 * some nasty RCU grace-period initialization races by forcing
2174 * the end of the current grace period to be completely recorded in
2175 * all of the rcu_node structures before the beginning of the next
2176 * grace period is recorded in any of the rcu_node structures.
2178 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2179 raw_spin_lock_irq_rcu_node(rnp
);
2180 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
2181 WARN_ON_ONCE(rnp
->qsmask
);
2182 WRITE_ONCE(rnp
->completed
, rsp
->gpnum
);
2183 rdp
= this_cpu_ptr(rsp
->rda
);
2184 if (rnp
== rdp
->mynode
)
2185 needgp
= __note_gp_changes(rsp
, rnp
, rdp
) || needgp
;
2186 /* smp_mb() provided by prior unlock-lock pair. */
2187 nocb
+= rcu_future_gp_cleanup(rsp
, rnp
);
2188 sq
= rcu_nocb_gp_get(rnp
);
2189 raw_spin_unlock_irq_rcu_node(rnp
);
2190 rcu_nocb_gp_cleanup(sq
);
2191 cond_resched_rcu_qs();
2192 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2193 rcu_gp_slow(rsp
, gp_cleanup_delay
);
2195 rnp
= rcu_get_root(rsp
);
2196 raw_spin_lock_irq_rcu_node(rnp
); /* Order GP before ->completed update. */
2197 rcu_nocb_gp_set(rnp
, nocb
);
2199 /* Declare grace period done. */
2200 WRITE_ONCE(rsp
->completed
, rsp
->gpnum
);
2201 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, TPS("end"));
2202 rsp
->gp_state
= RCU_GP_IDLE
;
2203 rdp
= this_cpu_ptr(rsp
->rda
);
2204 /* Advance CBs to reduce false positives below. */
2205 needgp
= rcu_advance_cbs(rsp
, rnp
, rdp
) || needgp
;
2206 if (needgp
|| cpu_needs_another_gp(rsp
, rdp
)) {
2207 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2208 trace_rcu_grace_period(rsp
->name
,
2209 READ_ONCE(rsp
->gpnum
),
2212 raw_spin_unlock_irq_rcu_node(rnp
);
2216 * Body of kthread that handles grace periods.
2218 static int __noreturn
rcu_gp_kthread(void *arg
)
2224 struct rcu_state
*rsp
= arg
;
2225 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2227 rcu_bind_gp_kthread();
2230 /* Handle grace-period start. */
2232 trace_rcu_grace_period(rsp
->name
,
2233 READ_ONCE(rsp
->gpnum
),
2235 rsp
->gp_state
= RCU_GP_WAIT_GPS
;
2236 swait_event_interruptible(rsp
->gp_wq
,
2237 READ_ONCE(rsp
->gp_flags
) &
2239 rsp
->gp_state
= RCU_GP_DONE_GPS
;
2240 /* Locking provides needed memory barrier. */
2241 if (rcu_gp_init(rsp
))
2243 cond_resched_rcu_qs();
2244 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2245 WARN_ON(signal_pending(current
));
2246 trace_rcu_grace_period(rsp
->name
,
2247 READ_ONCE(rsp
->gpnum
),
2251 /* Handle quiescent-state forcing. */
2252 first_gp_fqs
= true;
2253 j
= jiffies_till_first_fqs
;
2256 jiffies_till_first_fqs
= HZ
;
2261 rsp
->jiffies_force_qs
= jiffies
+ j
;
2262 WRITE_ONCE(rsp
->jiffies_kick_kthreads
,
2265 trace_rcu_grace_period(rsp
->name
,
2266 READ_ONCE(rsp
->gpnum
),
2268 rsp
->gp_state
= RCU_GP_WAIT_FQS
;
2269 ret
= swait_event_interruptible_timeout(rsp
->gp_wq
,
2270 rcu_gp_fqs_check_wake(rsp
, &gf
), j
);
2271 rsp
->gp_state
= RCU_GP_DOING_FQS
;
2272 /* Locking provides needed memory barriers. */
2273 /* If grace period done, leave loop. */
2274 if (!READ_ONCE(rnp
->qsmask
) &&
2275 !rcu_preempt_blocked_readers_cgp(rnp
))
2277 /* If time for quiescent-state forcing, do it. */
2278 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_force_qs
) ||
2279 (gf
& RCU_GP_FLAG_FQS
)) {
2280 trace_rcu_grace_period(rsp
->name
,
2281 READ_ONCE(rsp
->gpnum
),
2283 rcu_gp_fqs(rsp
, first_gp_fqs
);
2284 first_gp_fqs
= false;
2285 trace_rcu_grace_period(rsp
->name
,
2286 READ_ONCE(rsp
->gpnum
),
2288 cond_resched_rcu_qs();
2289 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2290 ret
= 0; /* Force full wait till next FQS. */
2291 j
= jiffies_till_next_fqs
;
2294 jiffies_till_next_fqs
= HZ
;
2297 jiffies_till_next_fqs
= 1;
2300 /* Deal with stray signal. */
2301 cond_resched_rcu_qs();
2302 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2303 WARN_ON(signal_pending(current
));
2304 trace_rcu_grace_period(rsp
->name
,
2305 READ_ONCE(rsp
->gpnum
),
2307 ret
= 1; /* Keep old FQS timing. */
2309 if (time_after(jiffies
, rsp
->jiffies_force_qs
))
2312 j
= rsp
->jiffies_force_qs
- j
;
2316 /* Handle grace-period end. */
2317 rsp
->gp_state
= RCU_GP_CLEANUP
;
2318 rcu_gp_cleanup(rsp
);
2319 rsp
->gp_state
= RCU_GP_CLEANED
;
2324 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2325 * in preparation for detecting the next grace period. The caller must hold
2326 * the root node's ->lock and hard irqs must be disabled.
2328 * Note that it is legal for a dying CPU (which is marked as offline) to
2329 * invoke this function. This can happen when the dying CPU reports its
2332 * Returns true if the grace-period kthread must be awakened.
2335 rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
2336 struct rcu_data
*rdp
)
2338 if (!rsp
->gp_kthread
|| !cpu_needs_another_gp(rsp
, rdp
)) {
2340 * Either we have not yet spawned the grace-period
2341 * task, this CPU does not need another grace period,
2342 * or a grace period is already in progress.
2343 * Either way, don't start a new grace period.
2347 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2348 trace_rcu_grace_period(rsp
->name
, READ_ONCE(rsp
->gpnum
),
2352 * We can't do wakeups while holding the rnp->lock, as that
2353 * could cause possible deadlocks with the rq->lock. Defer
2354 * the wakeup to our caller.
2360 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2361 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2362 * is invoked indirectly from rcu_advance_cbs(), which would result in
2363 * endless recursion -- or would do so if it wasn't for the self-deadlock
2364 * that is encountered beforehand.
2366 * Returns true if the grace-period kthread needs to be awakened.
2368 static bool rcu_start_gp(struct rcu_state
*rsp
)
2370 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
2371 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2375 * If there is no grace period in progress right now, any
2376 * callbacks we have up to this point will be satisfied by the
2377 * next grace period. Also, advancing the callbacks reduces the
2378 * probability of false positives from cpu_needs_another_gp()
2379 * resulting in pointless grace periods. So, advance callbacks
2380 * then start the grace period!
2382 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
) || ret
;
2383 ret
= rcu_start_gp_advanced(rsp
, rnp
, rdp
) || ret
;
2388 * Report a full set of quiescent states to the specified rcu_state data
2389 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2390 * kthread if another grace period is required. Whether we wake
2391 * the grace-period kthread or it awakens itself for the next round
2392 * of quiescent-state forcing, that kthread will clean up after the
2393 * just-completed grace period. Note that the caller must hold rnp->lock,
2394 * which is released before return.
2396 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
2397 __releases(rcu_get_root(rsp
)->lock
)
2399 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
2400 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2401 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
2402 rcu_gp_kthread_wake(rsp
);
2406 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2407 * Allows quiescent states for a group of CPUs to be reported at one go
2408 * to the specified rcu_node structure, though all the CPUs in the group
2409 * must be represented by the same rcu_node structure (which need not be a
2410 * leaf rcu_node structure, though it often will be). The gps parameter
2411 * is the grace-period snapshot, which means that the quiescent states
2412 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2413 * must be held upon entry, and it is released before return.
2416 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
2417 struct rcu_node
*rnp
, unsigned long gps
, unsigned long flags
)
2418 __releases(rnp
->lock
)
2420 unsigned long oldmask
= 0;
2421 struct rcu_node
*rnp_c
;
2423 /* Walk up the rcu_node hierarchy. */
2425 if (!(rnp
->qsmask
& mask
) || rnp
->gpnum
!= gps
) {
2428 * Our bit has already been cleared, or the
2429 * relevant grace period is already over, so done.
2431 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2434 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2435 rnp
->qsmask
&= ~mask
;
2436 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
2437 mask
, rnp
->qsmask
, rnp
->level
,
2438 rnp
->grplo
, rnp
->grphi
,
2440 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2442 /* Other bits still set at this level, so done. */
2443 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2446 mask
= rnp
->grpmask
;
2447 if (rnp
->parent
== NULL
) {
2449 /* No more levels. Exit loop holding root lock. */
2453 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2456 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2457 oldmask
= rnp_c
->qsmask
;
2461 * Get here if we are the last CPU to pass through a quiescent
2462 * state for this grace period. Invoke rcu_report_qs_rsp()
2463 * to clean up and start the next grace period if one is needed.
2465 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
2469 * Record a quiescent state for all tasks that were previously queued
2470 * on the specified rcu_node structure and that were blocking the current
2471 * RCU grace period. The caller must hold the specified rnp->lock with
2472 * irqs disabled, and this lock is released upon return, but irqs remain
2475 static void rcu_report_unblock_qs_rnp(struct rcu_state
*rsp
,
2476 struct rcu_node
*rnp
, unsigned long flags
)
2477 __releases(rnp
->lock
)
2481 struct rcu_node
*rnp_p
;
2483 if (rcu_state_p
== &rcu_sched_state
|| rsp
!= rcu_state_p
||
2484 rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2485 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2486 return; /* Still need more quiescent states! */
2489 rnp_p
= rnp
->parent
;
2490 if (rnp_p
== NULL
) {
2492 * Only one rcu_node structure in the tree, so don't
2493 * try to report up to its nonexistent parent!
2495 rcu_report_qs_rsp(rsp
, flags
);
2499 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2501 mask
= rnp
->grpmask
;
2502 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2503 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
2504 rcu_report_qs_rnp(mask
, rsp
, rnp_p
, gps
, flags
);
2508 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2509 * structure. This must be called from the specified CPU.
2512 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2514 unsigned long flags
;
2517 struct rcu_node
*rnp
;
2520 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2521 if (rdp
->cpu_no_qs
.b
.norm
|| rdp
->gpnum
!= rnp
->gpnum
||
2522 rnp
->completed
== rnp
->gpnum
|| rdp
->gpwrap
) {
2525 * The grace period in which this quiescent state was
2526 * recorded has ended, so don't report it upwards.
2527 * We will instead need a new quiescent state that lies
2528 * within the current grace period.
2530 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2531 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_dynticks
.rcu_qs_ctr
);
2532 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2535 mask
= rdp
->grpmask
;
2536 if ((rnp
->qsmask
& mask
) == 0) {
2537 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2539 rdp
->core_needs_qs
= false;
2542 * This GP can't end until cpu checks in, so all of our
2543 * callbacks can be processed during the next GP.
2545 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
2547 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2548 /* ^^^ Released rnp->lock */
2550 rcu_gp_kthread_wake(rsp
);
2555 * Check to see if there is a new grace period of which this CPU
2556 * is not yet aware, and if so, set up local rcu_data state for it.
2557 * Otherwise, see if this CPU has just passed through its first
2558 * quiescent state for this grace period, and record that fact if so.
2561 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2563 /* Check for grace-period ends and beginnings. */
2564 note_gp_changes(rsp
, rdp
);
2567 * Does this CPU still need to do its part for current grace period?
2568 * If no, return and let the other CPUs do their part as well.
2570 if (!rdp
->core_needs_qs
)
2574 * Was there a quiescent state since the beginning of the grace
2575 * period? If no, then exit and wait for the next call.
2577 if (rdp
->cpu_no_qs
.b
.norm
)
2581 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2584 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
2588 * Send the specified CPU's RCU callbacks to the orphanage. The
2589 * specified CPU must be offline, and the caller must hold the
2593 rcu_send_cbs_to_orphanage(int cpu
, struct rcu_state
*rsp
,
2594 struct rcu_node
*rnp
, struct rcu_data
*rdp
)
2596 /* No-CBs CPUs do not have orphanable callbacks. */
2597 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) || rcu_is_nocb_cpu(rdp
->cpu
))
2601 * Orphan the callbacks. First adjust the counts. This is safe
2602 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2603 * cannot be running now. Thus no memory barrier is required.
2605 rdp
->n_cbs_orphaned
+= rcu_segcblist_n_cbs(&rdp
->cblist
);
2606 rcu_segcblist_extract_count(&rdp
->cblist
, &rsp
->orphan_done
);
2609 * Next, move those callbacks still needing a grace period to
2610 * the orphanage, where some other CPU will pick them up.
2611 * Some of the callbacks might have gone partway through a grace
2612 * period, but that is too bad. They get to start over because we
2613 * cannot assume that grace periods are synchronized across CPUs.
2615 rcu_segcblist_extract_pend_cbs(&rdp
->cblist
, &rsp
->orphan_pend
);
2618 * Then move the ready-to-invoke callbacks to the orphanage,
2619 * where some other CPU will pick them up. These will not be
2620 * required to pass though another grace period: They are done.
2622 rcu_segcblist_extract_done_cbs(&rdp
->cblist
, &rsp
->orphan_done
);
2624 /* Finally, disallow further callbacks on this CPU. */
2625 rcu_segcblist_disable(&rdp
->cblist
);
2629 * Adopt the RCU callbacks from the specified rcu_state structure's
2630 * orphanage. The caller must hold the ->orphan_lock.
2632 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
, unsigned long flags
)
2634 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2636 /* No-CBs CPUs are handled specially. */
2637 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2638 rcu_nocb_adopt_orphan_cbs(rsp
, rdp
, flags
))
2641 /* Do the accounting first. */
2642 rdp
->n_cbs_adopted
+= rcu_cblist_n_cbs(&rsp
->orphan_done
);
2643 if (rcu_cblist_n_lazy_cbs(&rsp
->orphan_done
) !=
2644 rcu_cblist_n_cbs(&rsp
->orphan_done
))
2645 rcu_idle_count_callbacks_posted();
2646 rcu_segcblist_insert_count(&rdp
->cblist
, &rsp
->orphan_done
);
2649 * We do not need a memory barrier here because the only way we
2650 * can get here if there is an rcu_barrier() in flight is if
2651 * we are the task doing the rcu_barrier().
2654 /* First adopt the ready-to-invoke callbacks, then the done ones. */
2655 rcu_segcblist_insert_done_cbs(&rdp
->cblist
, &rsp
->orphan_done
);
2656 WARN_ON_ONCE(!rcu_cblist_empty(&rsp
->orphan_done
));
2657 rcu_segcblist_insert_pend_cbs(&rdp
->cblist
, &rsp
->orphan_pend
);
2658 WARN_ON_ONCE(!rcu_cblist_empty(&rsp
->orphan_pend
));
2659 WARN_ON_ONCE(rcu_segcblist_empty(&rdp
->cblist
) !=
2660 !rcu_segcblist_n_cbs(&rdp
->cblist
));
2664 * Trace the fact that this CPU is going offline.
2666 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
2668 RCU_TRACE(unsigned long mask
;)
2669 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);)
2670 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
;)
2672 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2675 RCU_TRACE(mask
= rdp
->grpmask
;)
2676 trace_rcu_grace_period(rsp
->name
,
2677 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
2682 * All CPUs for the specified rcu_node structure have gone offline,
2683 * and all tasks that were preempted within an RCU read-side critical
2684 * section while running on one of those CPUs have since exited their RCU
2685 * read-side critical section. Some other CPU is reporting this fact with
2686 * the specified rcu_node structure's ->lock held and interrupts disabled.
2687 * This function therefore goes up the tree of rcu_node structures,
2688 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2689 * the leaf rcu_node structure's ->qsmaskinit field has already been
2692 * This function does check that the specified rcu_node structure has
2693 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2694 * prematurely. That said, invoking it after the fact will cost you
2695 * a needless lock acquisition. So once it has done its work, don't
2698 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2701 struct rcu_node
*rnp
= rnp_leaf
;
2703 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2704 rnp
->qsmaskinit
|| rcu_preempt_has_tasks(rnp
))
2707 mask
= rnp
->grpmask
;
2711 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2712 rnp
->qsmaskinit
&= ~mask
;
2713 rnp
->qsmask
&= ~mask
;
2714 if (rnp
->qsmaskinit
) {
2715 raw_spin_unlock_rcu_node(rnp
);
2716 /* irqs remain disabled. */
2719 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2724 * The CPU has been completely removed, and some other CPU is reporting
2725 * this fact from process context. Do the remainder of the cleanup,
2726 * including orphaning the outgoing CPU's RCU callbacks, and also
2727 * adopting them. There can only be one CPU hotplug operation at a time,
2728 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2730 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
2732 unsigned long flags
;
2733 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2734 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2736 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2739 /* Adjust any no-longer-needed kthreads. */
2740 rcu_boost_kthread_setaffinity(rnp
, -1);
2742 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2743 raw_spin_lock_irqsave(&rsp
->orphan_lock
, flags
);
2744 rcu_send_cbs_to_orphanage(cpu
, rsp
, rnp
, rdp
);
2745 rcu_adopt_orphan_cbs(rsp
, flags
);
2746 raw_spin_unlock_irqrestore(&rsp
->orphan_lock
, flags
);
2748 WARN_ONCE(rcu_segcblist_n_cbs(&rdp
->cblist
) != 0 ||
2749 !rcu_segcblist_empty(&rdp
->cblist
),
2750 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2751 cpu
, rcu_segcblist_n_cbs(&rdp
->cblist
),
2752 rcu_segcblist_first_cb(&rdp
->cblist
));
2756 * Invoke any RCU callbacks that have made it to the end of their grace
2757 * period. Thottle as specified by rdp->blimit.
2759 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2761 unsigned long flags
;
2762 struct rcu_head
*rhp
;
2763 struct rcu_cblist rcl
= RCU_CBLIST_INITIALIZER(rcl
);
2766 /* If no callbacks are ready, just return. */
2767 if (!rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
2768 trace_rcu_batch_start(rsp
->name
,
2769 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2770 rcu_segcblist_n_cbs(&rdp
->cblist
), 0);
2771 trace_rcu_batch_end(rsp
->name
, 0,
2772 !rcu_segcblist_empty(&rdp
->cblist
),
2773 need_resched(), is_idle_task(current
),
2774 rcu_is_callbacks_kthread());
2779 * Extract the list of ready callbacks, disabling to prevent
2780 * races with call_rcu() from interrupt handlers. Leave the
2781 * callback counts, as rcu_barrier() needs to be conservative.
2783 local_irq_save(flags
);
2784 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2786 trace_rcu_batch_start(rsp
->name
, rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2787 rcu_segcblist_n_cbs(&rdp
->cblist
), bl
);
2788 rcu_segcblist_extract_done_cbs(&rdp
->cblist
, &rcl
);
2789 local_irq_restore(flags
);
2791 /* Invoke callbacks. */
2792 rhp
= rcu_cblist_dequeue(&rcl
);
2793 for (; rhp
; rhp
= rcu_cblist_dequeue(&rcl
)) {
2794 debug_rcu_head_unqueue(rhp
);
2795 if (__rcu_reclaim(rsp
->name
, rhp
))
2796 rcu_cblist_dequeued_lazy(&rcl
);
2798 * Stop only if limit reached and CPU has something to do.
2799 * Note: The rcl structure counts down from zero.
2801 if (-rcu_cblist_n_cbs(&rcl
) >= bl
&&
2803 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2807 local_irq_save(flags
);
2808 count
= -rcu_cblist_n_cbs(&rcl
);
2809 trace_rcu_batch_end(rsp
->name
, count
, !rcu_cblist_empty(&rcl
),
2810 need_resched(), is_idle_task(current
),
2811 rcu_is_callbacks_kthread());
2813 /* Update counts and requeue any remaining callbacks. */
2814 rcu_segcblist_insert_done_cbs(&rdp
->cblist
, &rcl
);
2815 smp_mb(); /* List handling before counting for rcu_barrier(). */
2816 rdp
->n_cbs_invoked
+= count
;
2817 rcu_segcblist_insert_count(&rdp
->cblist
, &rcl
);
2819 /* Reinstate batch limit if we have worked down the excess. */
2820 count
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2821 if (rdp
->blimit
== LONG_MAX
&& count
<= qlowmark
)
2822 rdp
->blimit
= blimit
;
2824 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2825 if (count
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2826 rdp
->qlen_last_fqs_check
= 0;
2827 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2828 } else if (count
< rdp
->qlen_last_fqs_check
- qhimark
)
2829 rdp
->qlen_last_fqs_check
= count
;
2830 WARN_ON_ONCE(rcu_segcblist_empty(&rdp
->cblist
) != (count
== 0));
2832 local_irq_restore(flags
);
2834 /* Re-invoke RCU core processing if there are callbacks remaining. */
2835 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
2840 * Check to see if this CPU is in a non-context-switch quiescent state
2841 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2842 * Also schedule RCU core processing.
2844 * This function must be called from hardirq context. It is normally
2845 * invoked from the scheduling-clock interrupt.
2847 void rcu_check_callbacks(int user
)
2849 trace_rcu_utilization(TPS("Start scheduler-tick"));
2850 increment_cpu_stall_ticks();
2851 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2854 * Get here if this CPU took its interrupt from user
2855 * mode or from the idle loop, and if this is not a
2856 * nested interrupt. In this case, the CPU is in
2857 * a quiescent state, so note it.
2859 * No memory barrier is required here because both
2860 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2861 * variables that other CPUs neither access nor modify,
2862 * at least not while the corresponding CPU is online.
2868 } else if (!in_softirq()) {
2871 * Get here if this CPU did not take its interrupt from
2872 * softirq, in other words, if it is not interrupting
2873 * a rcu_bh read-side critical section. This is an _bh
2874 * critical section, so note it.
2879 rcu_preempt_check_callbacks();
2883 rcu_note_voluntary_context_switch(current
);
2884 trace_rcu_utilization(TPS("End scheduler-tick"));
2888 * Scan the leaf rcu_node structures, processing dyntick state for any that
2889 * have not yet encountered a quiescent state, using the function specified.
2890 * Also initiate boosting for any threads blocked on the root rcu_node.
2892 * The caller must have suppressed start of new grace periods.
2894 static void force_qs_rnp(struct rcu_state
*rsp
,
2895 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
2896 unsigned long *maxj
),
2897 bool *isidle
, unsigned long *maxj
)
2900 unsigned long flags
;
2902 struct rcu_node
*rnp
;
2904 rcu_for_each_leaf_node(rsp
, rnp
) {
2905 cond_resched_rcu_qs();
2907 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2908 if (rnp
->qsmask
== 0) {
2909 if (rcu_state_p
== &rcu_sched_state
||
2910 rsp
!= rcu_state_p
||
2911 rcu_preempt_blocked_readers_cgp(rnp
)) {
2913 * No point in scanning bits because they
2914 * are all zero. But we might need to
2915 * priority-boost blocked readers.
2917 rcu_initiate_boost(rnp
, flags
);
2918 /* rcu_initiate_boost() releases rnp->lock */
2922 (rnp
->parent
->qsmask
& rnp
->grpmask
)) {
2924 * Race between grace-period
2925 * initialization and task exiting RCU
2926 * read-side critical section: Report.
2928 rcu_report_unblock_qs_rnp(rsp
, rnp
, flags
);
2929 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2933 for_each_leaf_node_possible_cpu(rnp
, cpu
) {
2934 unsigned long bit
= leaf_node_cpu_bit(rnp
, cpu
);
2935 if ((rnp
->qsmask
& bit
) != 0) {
2936 if (f(per_cpu_ptr(rsp
->rda
, cpu
), isidle
, maxj
))
2941 /* Idle/offline CPUs, report (releases rnp->lock. */
2942 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2944 /* Nothing to do here, so just drop the lock. */
2945 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2951 * Force quiescent states on reluctant CPUs, and also detect which
2952 * CPUs are in dyntick-idle mode.
2954 static void force_quiescent_state(struct rcu_state
*rsp
)
2956 unsigned long flags
;
2958 struct rcu_node
*rnp
;
2959 struct rcu_node
*rnp_old
= NULL
;
2961 /* Funnel through hierarchy to reduce memory contention. */
2962 rnp
= __this_cpu_read(rsp
->rda
->mynode
);
2963 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2964 ret
= (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2965 !raw_spin_trylock(&rnp
->fqslock
);
2966 if (rnp_old
!= NULL
)
2967 raw_spin_unlock(&rnp_old
->fqslock
);
2969 rsp
->n_force_qs_lh
++;
2974 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2976 /* Reached the root of the rcu_node tree, acquire lock. */
2977 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2978 raw_spin_unlock(&rnp_old
->fqslock
);
2979 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2980 rsp
->n_force_qs_lh
++;
2981 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2982 return; /* Someone beat us to it. */
2984 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2985 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2986 rcu_gp_kthread_wake(rsp
);
2990 * This does the RCU core processing work for the specified rcu_state
2991 * and rcu_data structures. This may be called only from the CPU to
2992 * whom the rdp belongs.
2995 __rcu_process_callbacks(struct rcu_state
*rsp
)
2997 unsigned long flags
;
2999 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
3001 WARN_ON_ONCE(rdp
->beenonline
== 0);
3003 /* Update RCU state based on any recent quiescent states. */
3004 rcu_check_quiescent_state(rsp
, rdp
);
3006 /* Does this CPU require a not-yet-started grace period? */
3007 local_irq_save(flags
);
3008 if (cpu_needs_another_gp(rsp
, rdp
)) {
3009 raw_spin_lock_rcu_node(rcu_get_root(rsp
)); /* irqs disabled. */
3010 needwake
= rcu_start_gp(rsp
);
3011 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
3013 rcu_gp_kthread_wake(rsp
);
3015 local_irq_restore(flags
);
3018 /* If there are callbacks ready, invoke them. */
3019 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
3020 invoke_rcu_callbacks(rsp
, rdp
);
3022 /* Do any needed deferred wakeups of rcuo kthreads. */
3023 do_nocb_deferred_wakeup(rdp
);
3027 * Do RCU core processing for the current CPU.
3029 static __latent_entropy
void rcu_process_callbacks(struct softirq_action
*unused
)
3031 struct rcu_state
*rsp
;
3033 if (cpu_is_offline(smp_processor_id()))
3035 trace_rcu_utilization(TPS("Start RCU core"));
3036 for_each_rcu_flavor(rsp
)
3037 __rcu_process_callbacks(rsp
);
3038 trace_rcu_utilization(TPS("End RCU core"));
3042 * Schedule RCU callback invocation. If the specified type of RCU
3043 * does not support RCU priority boosting, just do a direct call,
3044 * otherwise wake up the per-CPU kernel kthread. Note that because we
3045 * are running on the current CPU with softirqs disabled, the
3046 * rcu_cpu_kthread_task cannot disappear out from under us.
3048 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3050 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active
)))
3052 if (likely(!rsp
->boost
)) {
3053 rcu_do_batch(rsp
, rdp
);
3056 invoke_rcu_callbacks_kthread();
3059 static void invoke_rcu_core(void)
3061 if (cpu_online(smp_processor_id()))
3062 raise_softirq(RCU_SOFTIRQ
);
3066 * Handle any core-RCU processing required by a call_rcu() invocation.
3068 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
3069 struct rcu_head
*head
, unsigned long flags
)
3074 * If called from an extended quiescent state, invoke the RCU
3075 * core in order to force a re-evaluation of RCU's idleness.
3077 if (!rcu_is_watching())
3080 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3081 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
3085 * Force the grace period if too many callbacks or too long waiting.
3086 * Enforce hysteresis, and don't invoke force_quiescent_state()
3087 * if some other CPU has recently done so. Also, don't bother
3088 * invoking force_quiescent_state() if the newly enqueued callback
3089 * is the only one waiting for a grace period to complete.
3091 if (unlikely(rcu_segcblist_n_cbs(&rdp
->cblist
) >
3092 rdp
->qlen_last_fqs_check
+ qhimark
)) {
3094 /* Are we ignoring a completed grace period? */
3095 note_gp_changes(rsp
, rdp
);
3097 /* Start a new grace period if one not already started. */
3098 if (!rcu_gp_in_progress(rsp
)) {
3099 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
3101 raw_spin_lock_rcu_node(rnp_root
);
3102 needwake
= rcu_start_gp(rsp
);
3103 raw_spin_unlock_rcu_node(rnp_root
);
3105 rcu_gp_kthread_wake(rsp
);
3107 /* Give the grace period a kick. */
3108 rdp
->blimit
= LONG_MAX
;
3109 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
3110 rcu_segcblist_first_pend_cb(&rdp
->cblist
) != head
)
3111 force_quiescent_state(rsp
);
3112 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3113 rdp
->qlen_last_fqs_check
= rcu_segcblist_n_cbs(&rdp
->cblist
);
3119 * RCU callback function to leak a callback.
3121 static void rcu_leak_callback(struct rcu_head
*rhp
)
3126 * Helper function for call_rcu() and friends. The cpu argument will
3127 * normally be -1, indicating "currently running CPU". It may specify
3128 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3129 * is expected to specify a CPU.
3132 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
,
3133 struct rcu_state
*rsp
, int cpu
, bool lazy
)
3135 unsigned long flags
;
3136 struct rcu_data
*rdp
;
3138 /* Misaligned rcu_head! */
3139 WARN_ON_ONCE((unsigned long)head
& (sizeof(void *) - 1));
3141 if (debug_rcu_head_queue(head
)) {
3142 /* Probable double call_rcu(), so leak the callback. */
3143 WRITE_ONCE(head
->func
, rcu_leak_callback
);
3144 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3149 local_irq_save(flags
);
3150 rdp
= this_cpu_ptr(rsp
->rda
);
3152 /* Add the callback to our list. */
3153 if (unlikely(!rcu_segcblist_is_enabled(&rdp
->cblist
)) || cpu
!= -1) {
3157 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3158 if (likely(rdp
->mynode
)) {
3159 /* Post-boot, so this should be for a no-CBs CPU. */
3160 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
3161 WARN_ON_ONCE(offline
);
3162 /* Offline CPU, _call_rcu() illegal, leak callback. */
3163 local_irq_restore(flags
);
3167 * Very early boot, before rcu_init(). Initialize if needed
3168 * and then drop through to queue the callback.
3171 WARN_ON_ONCE(!rcu_is_watching());
3172 if (rcu_segcblist_empty(&rdp
->cblist
))
3173 rcu_segcblist_init(&rdp
->cblist
);
3175 rcu_segcblist_enqueue(&rdp
->cblist
, head
, lazy
);
3177 rcu_idle_count_callbacks_posted();
3179 if (__is_kfree_rcu_offset((unsigned long)func
))
3180 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
3181 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
3182 rcu_segcblist_n_cbs(&rdp
->cblist
));
3184 trace_rcu_callback(rsp
->name
, head
,
3185 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
3186 rcu_segcblist_n_cbs(&rdp
->cblist
));
3188 /* Go handle any RCU core processing required. */
3189 __call_rcu_core(rsp
, rdp
, head
, flags
);
3190 local_irq_restore(flags
);
3194 * Queue an RCU-sched callback for invocation after a grace period.
3196 void call_rcu_sched(struct rcu_head
*head
, rcu_callback_t func
)
3198 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
3200 EXPORT_SYMBOL_GPL(call_rcu_sched
);
3203 * Queue an RCU callback for invocation after a quicker grace period.
3205 void call_rcu_bh(struct rcu_head
*head
, rcu_callback_t func
)
3207 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
3209 EXPORT_SYMBOL_GPL(call_rcu_bh
);
3212 * Queue an RCU callback for lazy invocation after a grace period.
3213 * This will likely be later named something like "call_rcu_lazy()",
3214 * but this change will require some way of tagging the lazy RCU
3215 * callbacks in the list of pending callbacks. Until then, this
3216 * function may only be called from __kfree_rcu().
3218 void kfree_call_rcu(struct rcu_head
*head
,
3219 rcu_callback_t func
)
3221 __call_rcu(head
, func
, rcu_state_p
, -1, 1);
3223 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
3226 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3227 * any blocking grace-period wait automatically implies a grace period
3228 * if there is only one CPU online at any point time during execution
3229 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3230 * occasionally incorrectly indicate that there are multiple CPUs online
3231 * when there was in fact only one the whole time, as this just adds
3232 * some overhead: RCU still operates correctly.
3234 static inline int rcu_blocking_is_gp(void)
3238 might_sleep(); /* Check for RCU read-side critical section. */
3240 ret
= num_online_cpus() <= 1;
3246 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3248 * Control will return to the caller some time after a full rcu-sched
3249 * grace period has elapsed, in other words after all currently executing
3250 * rcu-sched read-side critical sections have completed. These read-side
3251 * critical sections are delimited by rcu_read_lock_sched() and
3252 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3253 * local_irq_disable(), and so on may be used in place of
3254 * rcu_read_lock_sched().
3256 * This means that all preempt_disable code sequences, including NMI and
3257 * non-threaded hardware-interrupt handlers, in progress on entry will
3258 * have completed before this primitive returns. However, this does not
3259 * guarantee that softirq handlers will have completed, since in some
3260 * kernels, these handlers can run in process context, and can block.
3262 * Note that this guarantee implies further memory-ordering guarantees.
3263 * On systems with more than one CPU, when synchronize_sched() returns,
3264 * each CPU is guaranteed to have executed a full memory barrier since the
3265 * end of its last RCU-sched read-side critical section whose beginning
3266 * preceded the call to synchronize_sched(). In addition, each CPU having
3267 * an RCU read-side critical section that extends beyond the return from
3268 * synchronize_sched() is guaranteed to have executed a full memory barrier
3269 * after the beginning of synchronize_sched() and before the beginning of
3270 * that RCU read-side critical section. Note that these guarantees include
3271 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3272 * that are executing in the kernel.
3274 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3275 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3276 * to have executed a full memory barrier during the execution of
3277 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3278 * again only if the system has more than one CPU).
3280 * This primitive provides the guarantees made by the (now removed)
3281 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3282 * guarantees that rcu_read_lock() sections will have completed.
3283 * In "classic RCU", these two guarantees happen to be one and
3284 * the same, but can differ in realtime RCU implementations.
3286 void synchronize_sched(void)
3288 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3289 lock_is_held(&rcu_lock_map
) ||
3290 lock_is_held(&rcu_sched_lock_map
),
3291 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3292 if (rcu_blocking_is_gp())
3294 if (rcu_gp_is_expedited())
3295 synchronize_sched_expedited();
3297 wait_rcu_gp(call_rcu_sched
);
3299 EXPORT_SYMBOL_GPL(synchronize_sched
);
3302 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3304 * Control will return to the caller some time after a full rcu_bh grace
3305 * period has elapsed, in other words after all currently executing rcu_bh
3306 * read-side critical sections have completed. RCU read-side critical
3307 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3308 * and may be nested.
3310 * See the description of synchronize_sched() for more detailed information
3311 * on memory ordering guarantees.
3313 void synchronize_rcu_bh(void)
3315 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3316 lock_is_held(&rcu_lock_map
) ||
3317 lock_is_held(&rcu_sched_lock_map
),
3318 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3319 if (rcu_blocking_is_gp())
3321 if (rcu_gp_is_expedited())
3322 synchronize_rcu_bh_expedited();
3324 wait_rcu_gp(call_rcu_bh
);
3326 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
3329 * get_state_synchronize_rcu - Snapshot current RCU state
3331 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3332 * to determine whether or not a full grace period has elapsed in the
3335 unsigned long get_state_synchronize_rcu(void)
3338 * Any prior manipulation of RCU-protected data must happen
3339 * before the load from ->gpnum.
3344 * Make sure this load happens before the purportedly
3345 * time-consuming work between get_state_synchronize_rcu()
3346 * and cond_synchronize_rcu().
3348 return smp_load_acquire(&rcu_state_p
->gpnum
);
3350 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
3353 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3355 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3357 * If a full RCU grace period has elapsed since the earlier call to
3358 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3359 * synchronize_rcu() to wait for a full grace period.
3361 * Yes, this function does not take counter wrap into account. But
3362 * counter wrap is harmless. If the counter wraps, we have waited for
3363 * more than 2 billion grace periods (and way more on a 64-bit system!),
3364 * so waiting for one additional grace period should be just fine.
3366 void cond_synchronize_rcu(unsigned long oldstate
)
3368 unsigned long newstate
;
3371 * Ensure that this load happens before any RCU-destructive
3372 * actions the caller might carry out after we return.
3374 newstate
= smp_load_acquire(&rcu_state_p
->completed
);
3375 if (ULONG_CMP_GE(oldstate
, newstate
))
3378 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
3381 * get_state_synchronize_sched - Snapshot current RCU-sched state
3383 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3384 * to determine whether or not a full grace period has elapsed in the
3387 unsigned long get_state_synchronize_sched(void)
3390 * Any prior manipulation of RCU-protected data must happen
3391 * before the load from ->gpnum.
3396 * Make sure this load happens before the purportedly
3397 * time-consuming work between get_state_synchronize_sched()
3398 * and cond_synchronize_sched().
3400 return smp_load_acquire(&rcu_sched_state
.gpnum
);
3402 EXPORT_SYMBOL_GPL(get_state_synchronize_sched
);
3405 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3407 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3409 * If a full RCU-sched grace period has elapsed since the earlier call to
3410 * get_state_synchronize_sched(), just return. Otherwise, invoke
3411 * synchronize_sched() to wait for a full grace period.
3413 * Yes, this function does not take counter wrap into account. But
3414 * counter wrap is harmless. If the counter wraps, we have waited for
3415 * more than 2 billion grace periods (and way more on a 64-bit system!),
3416 * so waiting for one additional grace period should be just fine.
3418 void cond_synchronize_sched(unsigned long oldstate
)
3420 unsigned long newstate
;
3423 * Ensure that this load happens before any RCU-destructive
3424 * actions the caller might carry out after we return.
3426 newstate
= smp_load_acquire(&rcu_sched_state
.completed
);
3427 if (ULONG_CMP_GE(oldstate
, newstate
))
3428 synchronize_sched();
3430 EXPORT_SYMBOL_GPL(cond_synchronize_sched
);
3433 * Check to see if there is any immediate RCU-related work to be done
3434 * by the current CPU, for the specified type of RCU, returning 1 if so.
3435 * The checks are in order of increasing expense: checks that can be
3436 * carried out against CPU-local state are performed first. However,
3437 * we must check for CPU stalls first, else we might not get a chance.
3439 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3441 struct rcu_node
*rnp
= rdp
->mynode
;
3443 rdp
->n_rcu_pending
++;
3445 /* Check for CPU stalls, if enabled. */
3446 check_cpu_stall(rsp
, rdp
);
3448 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3449 if (rcu_nohz_full_cpu(rsp
))
3452 /* Is the RCU core waiting for a quiescent state from this CPU? */
3453 if (rcu_scheduler_fully_active
&&
3454 rdp
->core_needs_qs
&& rdp
->cpu_no_qs
.b
.norm
&&
3455 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_dynticks
.rcu_qs_ctr
)) {
3456 rdp
->n_rp_core_needs_qs
++;
3457 } else if (rdp
->core_needs_qs
&& !rdp
->cpu_no_qs
.b
.norm
) {
3458 rdp
->n_rp_report_qs
++;
3462 /* Does this CPU have callbacks ready to invoke? */
3463 if (rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
3464 rdp
->n_rp_cb_ready
++;
3468 /* Has RCU gone idle with this CPU needing another grace period? */
3469 if (cpu_needs_another_gp(rsp
, rdp
)) {
3470 rdp
->n_rp_cpu_needs_gp
++;
3474 /* Has another RCU grace period completed? */
3475 if (READ_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
3476 rdp
->n_rp_gp_completed
++;
3480 /* Has a new RCU grace period started? */
3481 if (READ_ONCE(rnp
->gpnum
) != rdp
->gpnum
||
3482 unlikely(READ_ONCE(rdp
->gpwrap
))) { /* outside lock */
3483 rdp
->n_rp_gp_started
++;
3487 /* Does this CPU need a deferred NOCB wakeup? */
3488 if (rcu_nocb_need_deferred_wakeup(rdp
)) {
3489 rdp
->n_rp_nocb_defer_wakeup
++;
3494 rdp
->n_rp_need_nothing
++;
3499 * Check to see if there is any immediate RCU-related work to be done
3500 * by the current CPU, returning 1 if so. This function is part of the
3501 * RCU implementation; it is -not- an exported member of the RCU API.
3503 static int rcu_pending(void)
3505 struct rcu_state
*rsp
;
3507 for_each_rcu_flavor(rsp
)
3508 if (__rcu_pending(rsp
, this_cpu_ptr(rsp
->rda
)))
3514 * Return true if the specified CPU has any callback. If all_lazy is
3515 * non-NULL, store an indication of whether all callbacks are lazy.
3516 * (If there are no callbacks, all of them are deemed to be lazy.)
3518 static bool __maybe_unused
rcu_cpu_has_callbacks(bool *all_lazy
)
3522 struct rcu_data
*rdp
;
3523 struct rcu_state
*rsp
;
3525 for_each_rcu_flavor(rsp
) {
3526 rdp
= this_cpu_ptr(rsp
->rda
);
3527 if (rcu_segcblist_empty(&rdp
->cblist
))
3530 if (rcu_segcblist_n_nonlazy_cbs(&rdp
->cblist
) || !all_lazy
) {
3541 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3542 * the compiler is expected to optimize this away.
3544 static void _rcu_barrier_trace(struct rcu_state
*rsp
, const char *s
,
3545 int cpu
, unsigned long done
)
3547 trace_rcu_barrier(rsp
->name
, s
, cpu
,
3548 atomic_read(&rsp
->barrier_cpu_count
), done
);
3552 * RCU callback function for _rcu_barrier(). If we are last, wake
3553 * up the task executing _rcu_barrier().
3555 static void rcu_barrier_callback(struct rcu_head
*rhp
)
3557 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
3558 struct rcu_state
*rsp
= rdp
->rsp
;
3560 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
3561 _rcu_barrier_trace(rsp
, "LastCB", -1, rsp
->barrier_sequence
);
3562 complete(&rsp
->barrier_completion
);
3564 _rcu_barrier_trace(rsp
, "CB", -1, rsp
->barrier_sequence
);
3569 * Called with preemption disabled, and from cross-cpu IRQ context.
3571 static void rcu_barrier_func(void *type
)
3573 struct rcu_state
*rsp
= type
;
3574 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
3576 _rcu_barrier_trace(rsp
, "IRQ", -1, rsp
->barrier_sequence
);
3577 atomic_inc(&rsp
->barrier_cpu_count
);
3578 rsp
->call(&rdp
->barrier_head
, rcu_barrier_callback
);
3582 * Orchestrate the specified type of RCU barrier, waiting for all
3583 * RCU callbacks of the specified type to complete.
3585 static void _rcu_barrier(struct rcu_state
*rsp
)
3588 struct rcu_data
*rdp
;
3589 unsigned long s
= rcu_seq_snap(&rsp
->barrier_sequence
);
3591 _rcu_barrier_trace(rsp
, "Begin", -1, s
);
3593 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3594 mutex_lock(&rsp
->barrier_mutex
);
3596 /* Did someone else do our work for us? */
3597 if (rcu_seq_done(&rsp
->barrier_sequence
, s
)) {
3598 _rcu_barrier_trace(rsp
, "EarlyExit", -1, rsp
->barrier_sequence
);
3599 smp_mb(); /* caller's subsequent code after above check. */
3600 mutex_unlock(&rsp
->barrier_mutex
);
3604 /* Mark the start of the barrier operation. */
3605 rcu_seq_start(&rsp
->barrier_sequence
);
3606 _rcu_barrier_trace(rsp
, "Inc1", -1, rsp
->barrier_sequence
);
3609 * Initialize the count to one rather than to zero in order to
3610 * avoid a too-soon return to zero in case of a short grace period
3611 * (or preemption of this task). Exclude CPU-hotplug operations
3612 * to ensure that no offline CPU has callbacks queued.
3614 init_completion(&rsp
->barrier_completion
);
3615 atomic_set(&rsp
->barrier_cpu_count
, 1);
3619 * Force each CPU with callbacks to register a new callback.
3620 * When that callback is invoked, we will know that all of the
3621 * corresponding CPU's preceding callbacks have been invoked.
3623 for_each_possible_cpu(cpu
) {
3624 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
3626 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3627 if (rcu_is_nocb_cpu(cpu
)) {
3628 if (!rcu_nocb_cpu_needs_barrier(rsp
, cpu
)) {
3629 _rcu_barrier_trace(rsp
, "OfflineNoCB", cpu
,
3630 rsp
->barrier_sequence
);
3632 _rcu_barrier_trace(rsp
, "OnlineNoCB", cpu
,
3633 rsp
->barrier_sequence
);
3634 smp_mb__before_atomic();
3635 atomic_inc(&rsp
->barrier_cpu_count
);
3636 __call_rcu(&rdp
->barrier_head
,
3637 rcu_barrier_callback
, rsp
, cpu
, 0);
3639 } else if (rcu_segcblist_n_cbs(&rdp
->cblist
)) {
3640 _rcu_barrier_trace(rsp
, "OnlineQ", cpu
,
3641 rsp
->barrier_sequence
);
3642 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
3644 _rcu_barrier_trace(rsp
, "OnlineNQ", cpu
,
3645 rsp
->barrier_sequence
);
3651 * Now that we have an rcu_barrier_callback() callback on each
3652 * CPU, and thus each counted, remove the initial count.
3654 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
3655 complete(&rsp
->barrier_completion
);
3657 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3658 wait_for_completion(&rsp
->barrier_completion
);
3660 /* Mark the end of the barrier operation. */
3661 _rcu_barrier_trace(rsp
, "Inc2", -1, rsp
->barrier_sequence
);
3662 rcu_seq_end(&rsp
->barrier_sequence
);
3664 /* Other rcu_barrier() invocations can now safely proceed. */
3665 mutex_unlock(&rsp
->barrier_mutex
);
3669 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3671 void rcu_barrier_bh(void)
3673 _rcu_barrier(&rcu_bh_state
);
3675 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
3678 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3680 void rcu_barrier_sched(void)
3682 _rcu_barrier(&rcu_sched_state
);
3684 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
3687 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3688 * first CPU in a given leaf rcu_node structure coming online. The caller
3689 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3692 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
3695 struct rcu_node
*rnp
= rnp_leaf
;
3698 mask
= rnp
->grpmask
;
3702 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
3703 rnp
->qsmaskinit
|= mask
;
3704 raw_spin_unlock_rcu_node(rnp
); /* Interrupts remain disabled. */
3709 * Do boot-time initialization of a CPU's per-CPU RCU data.
3712 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3714 unsigned long flags
;
3715 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3716 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3718 /* Set up local state, ensuring consistent view of global state. */
3719 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3720 rdp
->grpmask
= leaf_node_cpu_bit(rdp
->mynode
, cpu
);
3721 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
3722 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
3723 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp
->dynticks
)));
3726 rcu_boot_init_nocb_percpu_data(rdp
);
3727 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3731 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3732 * offline event can be happening at a given time. Note also that we
3733 * can accept some slop in the rsp->completed access due to the fact
3734 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3737 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3739 unsigned long flags
;
3740 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3741 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3743 /* Set up local state, ensuring consistent view of global state. */
3744 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3745 rdp
->qlen_last_fqs_check
= 0;
3746 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3747 rdp
->blimit
= blimit
;
3748 if (rcu_segcblist_empty(&rdp
->cblist
) && /* No early-boot CBs? */
3749 !init_nocb_callback_list(rdp
))
3750 rcu_segcblist_init(&rdp
->cblist
); /* Re-enable callbacks. */
3751 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
3752 rcu_sysidle_init_percpu_data(rdp
->dynticks
);
3753 rcu_dynticks_eqs_online();
3754 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
3757 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3758 * propagation up the rcu_node tree will happen at the beginning
3759 * of the next grace period.
3762 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
3763 if (!rdp
->beenonline
)
3764 WRITE_ONCE(rsp
->ncpus
, READ_ONCE(rsp
->ncpus
) + 1);
3765 rdp
->beenonline
= true; /* We have now been online. */
3766 rdp
->gpnum
= rnp
->completed
; /* Make CPU later note any new GP. */
3767 rdp
->completed
= rnp
->completed
;
3768 rdp
->cpu_no_qs
.b
.norm
= true;
3769 rdp
->rcu_qs_ctr_snap
= per_cpu(rcu_dynticks
.rcu_qs_ctr
, cpu
);
3770 rdp
->core_needs_qs
= false;
3771 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuonl"));
3772 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3775 int rcutree_prepare_cpu(unsigned int cpu
)
3777 struct rcu_state
*rsp
;
3779 for_each_rcu_flavor(rsp
)
3780 rcu_init_percpu_data(cpu
, rsp
);
3782 rcu_prepare_kthreads(cpu
);
3783 rcu_spawn_all_nocb_kthreads(cpu
);
3788 static void rcutree_affinity_setting(unsigned int cpu
, int outgoing
)
3790 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
3792 rcu_boost_kthread_setaffinity(rdp
->mynode
, outgoing
);
3795 int rcutree_online_cpu(unsigned int cpu
)
3797 sync_sched_exp_online_cleanup(cpu
);
3798 rcutree_affinity_setting(cpu
, -1);
3799 if (IS_ENABLED(CONFIG_TREE_SRCU
))
3800 srcu_online_cpu(cpu
);
3804 int rcutree_offline_cpu(unsigned int cpu
)
3806 rcutree_affinity_setting(cpu
, cpu
);
3807 if (IS_ENABLED(CONFIG_TREE_SRCU
))
3808 srcu_offline_cpu(cpu
);
3813 int rcutree_dying_cpu(unsigned int cpu
)
3815 struct rcu_state
*rsp
;
3817 for_each_rcu_flavor(rsp
)
3818 rcu_cleanup_dying_cpu(rsp
);
3822 int rcutree_dead_cpu(unsigned int cpu
)
3824 struct rcu_state
*rsp
;
3826 for_each_rcu_flavor(rsp
) {
3827 rcu_cleanup_dead_cpu(cpu
, rsp
);
3828 do_nocb_deferred_wakeup(per_cpu_ptr(rsp
->rda
, cpu
));
3834 * Mark the specified CPU as being online so that subsequent grace periods
3835 * (both expedited and normal) will wait on it. Note that this means that
3836 * incoming CPUs are not allowed to use RCU read-side critical sections
3837 * until this function is called. Failing to observe this restriction
3838 * will result in lockdep splats.
3840 void rcu_cpu_starting(unsigned int cpu
)
3842 unsigned long flags
;
3844 struct rcu_data
*rdp
;
3845 struct rcu_node
*rnp
;
3846 struct rcu_state
*rsp
;
3848 for_each_rcu_flavor(rsp
) {
3849 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3851 mask
= rdp
->grpmask
;
3852 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3853 rnp
->qsmaskinitnext
|= mask
;
3854 rnp
->expmaskinitnext
|= mask
;
3855 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3859 #ifdef CONFIG_HOTPLUG_CPU
3861 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3862 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3864 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3865 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3868 static void rcu_cleanup_dying_idle_cpu(int cpu
, struct rcu_state
*rsp
)
3870 unsigned long flags
;
3872 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3873 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
3875 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3876 mask
= rdp
->grpmask
;
3877 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
3878 rnp
->qsmaskinitnext
&= ~mask
;
3879 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3882 void rcu_report_dead(unsigned int cpu
)
3884 struct rcu_state
*rsp
;
3886 /* QS for any half-done expedited RCU-sched GP. */
3888 rcu_report_exp_rdp(&rcu_sched_state
,
3889 this_cpu_ptr(rcu_sched_state
.rda
), true);
3891 for_each_rcu_flavor(rsp
)
3892 rcu_cleanup_dying_idle_cpu(cpu
, rsp
);
3896 static int rcu_pm_notify(struct notifier_block
*self
,
3897 unsigned long action
, void *hcpu
)
3900 case PM_HIBERNATION_PREPARE
:
3901 case PM_SUSPEND_PREPARE
:
3902 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3905 case PM_POST_HIBERNATION
:
3906 case PM_POST_SUSPEND
:
3907 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3908 rcu_unexpedite_gp();
3917 * Spawn the kthreads that handle each RCU flavor's grace periods.
3919 static int __init
rcu_spawn_gp_kthread(void)
3921 unsigned long flags
;
3922 int kthread_prio_in
= kthread_prio
;
3923 struct rcu_node
*rnp
;
3924 struct rcu_state
*rsp
;
3925 struct sched_param sp
;
3926 struct task_struct
*t
;
3928 /* Force priority into range. */
3929 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
3931 else if (kthread_prio
< 0)
3933 else if (kthread_prio
> 99)
3935 if (kthread_prio
!= kthread_prio_in
)
3936 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3937 kthread_prio
, kthread_prio_in
);
3939 rcu_scheduler_fully_active
= 1;
3940 for_each_rcu_flavor(rsp
) {
3941 t
= kthread_create(rcu_gp_kthread
, rsp
, "%s", rsp
->name
);
3943 rnp
= rcu_get_root(rsp
);
3944 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3945 rsp
->gp_kthread
= t
;
3947 sp
.sched_priority
= kthread_prio
;
3948 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
3950 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3953 rcu_spawn_nocb_kthreads();
3954 rcu_spawn_boost_kthreads();
3957 early_initcall(rcu_spawn_gp_kthread
);
3960 * This function is invoked towards the end of the scheduler's
3961 * initialization process. Before this is called, the idle task might
3962 * contain synchronous grace-period primitives (during which time, this idle
3963 * task is booting the system, and such primitives are no-ops). After this
3964 * function is called, any synchronous grace-period primitives are run as
3965 * expedited, with the requesting task driving the grace period forward.
3966 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3967 * runtime RCU functionality.
3969 void rcu_scheduler_starting(void)
3971 WARN_ON(num_online_cpus() != 1);
3972 WARN_ON(nr_context_switches() > 0);
3973 rcu_test_sync_prims();
3974 rcu_scheduler_active
= RCU_SCHEDULER_INIT
;
3975 rcu_test_sync_prims();
3979 * Helper function for rcu_init() that initializes one rcu_state structure.
3981 static void __init
rcu_init_one(struct rcu_state
*rsp
)
3983 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
3984 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
3985 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
3986 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
3988 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
3992 struct rcu_node
*rnp
;
3994 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
3996 /* Silence gcc 4.8 false positive about array index out of range. */
3997 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
3998 panic("rcu_init_one: rcu_num_lvls out of range");
4000 /* Initialize the level-tracking arrays. */
4002 for (i
= 1; i
< rcu_num_lvls
; i
++)
4003 rsp
->level
[i
] = rsp
->level
[i
- 1] + num_rcu_lvl
[i
- 1];
4004 rcu_init_levelspread(levelspread
, num_rcu_lvl
);
4006 /* Initialize the elements themselves, starting from the leaves. */
4008 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4009 cpustride
*= levelspread
[i
];
4010 rnp
= rsp
->level
[i
];
4011 for (j
= 0; j
< num_rcu_lvl
[i
]; j
++, rnp
++) {
4012 raw_spin_lock_init(&ACCESS_PRIVATE(rnp
, lock
));
4013 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp
, lock
),
4014 &rcu_node_class
[i
], buf
[i
]);
4015 raw_spin_lock_init(&rnp
->fqslock
);
4016 lockdep_set_class_and_name(&rnp
->fqslock
,
4017 &rcu_fqs_class
[i
], fqs
[i
]);
4018 rnp
->gpnum
= rsp
->gpnum
;
4019 rnp
->completed
= rsp
->completed
;
4021 rnp
->qsmaskinit
= 0;
4022 rnp
->grplo
= j
* cpustride
;
4023 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
4024 if (rnp
->grphi
>= nr_cpu_ids
)
4025 rnp
->grphi
= nr_cpu_ids
- 1;
4031 rnp
->grpnum
= j
% levelspread
[i
- 1];
4032 rnp
->grpmask
= 1UL << rnp
->grpnum
;
4033 rnp
->parent
= rsp
->level
[i
- 1] +
4034 j
/ levelspread
[i
- 1];
4037 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
4038 rcu_init_one_nocb(rnp
);
4039 init_waitqueue_head(&rnp
->exp_wq
[0]);
4040 init_waitqueue_head(&rnp
->exp_wq
[1]);
4041 init_waitqueue_head(&rnp
->exp_wq
[2]);
4042 init_waitqueue_head(&rnp
->exp_wq
[3]);
4043 spin_lock_init(&rnp
->exp_lock
);
4047 init_swait_queue_head(&rsp
->gp_wq
);
4048 init_swait_queue_head(&rsp
->expedited_wq
);
4049 rnp
= rsp
->level
[rcu_num_lvls
- 1];
4050 for_each_possible_cpu(i
) {
4051 while (i
> rnp
->grphi
)
4053 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
4054 rcu_boot_init_percpu_data(i
, rsp
);
4056 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
4060 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4061 * replace the definitions in tree.h because those are needed to size
4062 * the ->node array in the rcu_state structure.
4064 static void __init
rcu_init_geometry(void)
4068 int rcu_capacity
[RCU_NUM_LVLS
];
4071 * Initialize any unspecified boot parameters.
4072 * The default values of jiffies_till_first_fqs and
4073 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4074 * value, which is a function of HZ, then adding one for each
4075 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4077 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
4078 if (jiffies_till_first_fqs
== ULONG_MAX
)
4079 jiffies_till_first_fqs
= d
;
4080 if (jiffies_till_next_fqs
== ULONG_MAX
)
4081 jiffies_till_next_fqs
= d
;
4083 /* If the compile-time values are accurate, just leave. */
4084 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
4085 nr_cpu_ids
== NR_CPUS
)
4087 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4088 rcu_fanout_leaf
, nr_cpu_ids
);
4091 * The boot-time rcu_fanout_leaf parameter must be at least two
4092 * and cannot exceed the number of bits in the rcu_node masks.
4093 * Complain and fall back to the compile-time values if this
4094 * limit is exceeded.
4096 if (rcu_fanout_leaf
< 2 ||
4097 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
4098 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4104 * Compute number of nodes that can be handled an rcu_node tree
4105 * with the given number of levels.
4107 rcu_capacity
[0] = rcu_fanout_leaf
;
4108 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
4109 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
4112 * The tree must be able to accommodate the configured number of CPUs.
4113 * If this limit is exceeded, fall back to the compile-time values.
4115 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
4116 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4121 /* Calculate the number of levels in the tree. */
4122 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
4124 rcu_num_lvls
= i
+ 1;
4126 /* Calculate the number of rcu_nodes at each level of the tree. */
4127 for (i
= 0; i
< rcu_num_lvls
; i
++) {
4128 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
4129 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
4132 /* Calculate the total number of rcu_node structures. */
4134 for (i
= 0; i
< rcu_num_lvls
; i
++)
4135 rcu_num_nodes
+= num_rcu_lvl
[i
];
4139 * Dump out the structure of the rcu_node combining tree associated
4140 * with the rcu_state structure referenced by rsp.
4142 static void __init
rcu_dump_rcu_node_tree(struct rcu_state
*rsp
)
4145 struct rcu_node
*rnp
;
4147 pr_info("rcu_node tree layout dump\n");
4149 rcu_for_each_node_breadth_first(rsp
, rnp
) {
4150 if (rnp
->level
!= level
) {
4155 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
4160 void __init
rcu_init(void)
4164 rcu_early_boot_tests();
4166 rcu_bootup_announce();
4167 rcu_init_geometry();
4168 rcu_init_one(&rcu_bh_state
);
4169 rcu_init_one(&rcu_sched_state
);
4171 rcu_dump_rcu_node_tree(&rcu_sched_state
);
4172 __rcu_init_preempt();
4173 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
4176 * We don't need protection against CPU-hotplug here because
4177 * this is called early in boot, before either interrupts
4178 * or the scheduler are operational.
4180 pm_notifier(rcu_pm_notify
, 0);
4181 for_each_online_cpu(cpu
) {
4182 rcutree_prepare_cpu(cpu
);
4183 rcu_cpu_starting(cpu
);
4184 if (IS_ENABLED(CONFIG_TREE_SRCU
))
4185 srcu_online_cpu(cpu
);
4189 #include "tree_exp.h"
4190 #include "tree_plugin.h"