rcu: Make non-preemptive schedule be Tasks RCU quiescent state
[linux/fpc-iii.git] / kernel / rcu / tree.c
blob891d97109e09e79f22081d11fd8b1db29fb72137
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
61 #include "tree.h"
62 #include "rcu.h"
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 .level = { &sname##_state.node[0] }, \
94 .rda = &sname##_data, \
95 .call = cr, \
96 .gp_state = RCU_GP_IDLE, \
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
101 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
104 .abbr = sabbr, \
105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
109 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112 static struct rcu_state *const rcu_state_p;
113 LIST_HEAD(rcu_struct_flavors);
115 /* Dump rcu_node combining tree at boot to verify correct setup. */
116 static bool dump_tree;
117 module_param(dump_tree, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact;
120 module_param(rcu_fanout_exact, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123 module_param(rcu_fanout_leaf, int, 0444);
124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 /* Number of rcu_nodes at specified level. */
126 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 /* panic() on RCU Stall sysctl. */
129 int sysctl_panic_on_rcu_stall __read_mostly;
132 * The rcu_scheduler_active variable is initialized to the value
133 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
134 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
135 * RCU can assume that there is but one task, allowing RCU to (for example)
136 * optimize synchronize_rcu() to a simple barrier(). When this variable
137 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
138 * to detect real grace periods. This variable is also used to suppress
139 * boot-time false positives from lockdep-RCU error checking. Finally, it
140 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
141 * is fully initialized, including all of its kthreads having been spawned.
143 int rcu_scheduler_active __read_mostly;
144 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
147 * The rcu_scheduler_fully_active variable transitions from zero to one
148 * during the early_initcall() processing, which is after the scheduler
149 * is capable of creating new tasks. So RCU processing (for example,
150 * creating tasks for RCU priority boosting) must be delayed until after
151 * rcu_scheduler_fully_active transitions from zero to one. We also
152 * currently delay invocation of any RCU callbacks until after this point.
154 * It might later prove better for people registering RCU callbacks during
155 * early boot to take responsibility for these callbacks, but one step at
156 * a time.
158 static int rcu_scheduler_fully_active __read_mostly;
160 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163 static void invoke_rcu_core(void);
164 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
165 static void rcu_report_exp_rdp(struct rcu_state *rsp,
166 struct rcu_data *rdp, bool wake);
167 static void sync_sched_exp_online_cleanup(int cpu);
169 /* rcuc/rcub kthread realtime priority */
170 #ifdef CONFIG_RCU_KTHREAD_PRIO
171 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
172 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
174 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
175 module_param(kthread_prio, int, 0644);
177 /* Delay in jiffies for grace-period initialization delays, debug only. */
179 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
180 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
181 module_param(gp_preinit_delay, int, 0644);
182 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183 static const int gp_preinit_delay;
184 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
186 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
187 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
188 module_param(gp_init_delay, int, 0644);
189 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190 static const int gp_init_delay;
191 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
193 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
194 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
195 module_param(gp_cleanup_delay, int, 0644);
196 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197 static const int gp_cleanup_delay;
198 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
201 * Number of grace periods between delays, normalized by the duration of
202 * the delay. The longer the the delay, the more the grace periods between
203 * each delay. The reason for this normalization is that it means that,
204 * for non-zero delays, the overall slowdown of grace periods is constant
205 * regardless of the duration of the delay. This arrangement balances
206 * the need for long delays to increase some race probabilities with the
207 * need for fast grace periods to increase other race probabilities.
209 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
212 * Track the rcutorture test sequence number and the update version
213 * number within a given test. The rcutorture_testseq is incremented
214 * on every rcutorture module load and unload, so has an odd value
215 * when a test is running. The rcutorture_vernum is set to zero
216 * when rcutorture starts and is incremented on each rcutorture update.
217 * These variables enable correlating rcutorture output with the
218 * RCU tracing information.
220 unsigned long rcutorture_testseq;
221 unsigned long rcutorture_vernum;
224 * Compute the mask of online CPUs for the specified rcu_node structure.
225 * This will not be stable unless the rcu_node structure's ->lock is
226 * held, but the bit corresponding to the current CPU will be stable
227 * in most contexts.
229 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
231 return READ_ONCE(rnp->qsmaskinitnext);
235 * Return true if an RCU grace period is in progress. The READ_ONCE()s
236 * permit this function to be invoked without holding the root rcu_node
237 * structure's ->lock, but of course results can be subject to change.
239 static int rcu_gp_in_progress(struct rcu_state *rsp)
241 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
245 * Note a quiescent state. Because we do not need to know
246 * how many quiescent states passed, just if there was at least
247 * one since the start of the grace period, this just sets a flag.
248 * The caller must have disabled preemption.
250 void rcu_sched_qs(void)
252 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
253 return;
254 trace_rcu_grace_period(TPS("rcu_sched"),
255 __this_cpu_read(rcu_sched_data.gpnum),
256 TPS("cpuqs"));
257 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
258 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
259 return;
260 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
261 rcu_report_exp_rdp(&rcu_sched_state,
262 this_cpu_ptr(&rcu_sched_data), true);
265 void rcu_bh_qs(void)
267 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
268 trace_rcu_grace_period(TPS("rcu_bh"),
269 __this_cpu_read(rcu_bh_data.gpnum),
270 TPS("cpuqs"));
271 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
276 * Steal a bit from the bottom of ->dynticks for idle entry/exit
277 * control. Initially this is for TLB flushing.
279 #define RCU_DYNTICK_CTRL_MASK 0x1
280 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
281 #ifndef rcu_eqs_special_exit
282 #define rcu_eqs_special_exit() do { } while (0)
283 #endif
285 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
286 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
287 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
288 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
289 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
290 .dynticks_idle = ATOMIC_INIT(1),
291 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
295 * Record entry into an extended quiescent state. This is only to be
296 * called when not already in an extended quiescent state.
298 static void rcu_dynticks_eqs_enter(void)
300 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
301 int seq;
304 * CPUs seeing atomic_add_return() must see prior RCU read-side
305 * critical sections, and we also must force ordering with the
306 * next idle sojourn.
308 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
309 /* Better be in an extended quiescent state! */
310 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
311 (seq & RCU_DYNTICK_CTRL_CTR));
312 /* Better not have special action (TLB flush) pending! */
313 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
314 (seq & RCU_DYNTICK_CTRL_MASK));
318 * Record exit from an extended quiescent state. This is only to be
319 * called from an extended quiescent state.
321 static void rcu_dynticks_eqs_exit(void)
323 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
324 int seq;
327 * CPUs seeing atomic_add_return() must see prior idle sojourns,
328 * and we also must force ordering with the next RCU read-side
329 * critical section.
331 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
332 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
333 !(seq & RCU_DYNTICK_CTRL_CTR));
334 if (seq & RCU_DYNTICK_CTRL_MASK) {
335 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
336 smp_mb__after_atomic(); /* _exit after clearing mask. */
337 /* Prefer duplicate flushes to losing a flush. */
338 rcu_eqs_special_exit();
343 * Reset the current CPU's ->dynticks counter to indicate that the
344 * newly onlined CPU is no longer in an extended quiescent state.
345 * This will either leave the counter unchanged, or increment it
346 * to the next non-quiescent value.
348 * The non-atomic test/increment sequence works because the upper bits
349 * of the ->dynticks counter are manipulated only by the corresponding CPU,
350 * or when the corresponding CPU is offline.
352 static void rcu_dynticks_eqs_online(void)
354 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
356 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
357 return;
358 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
362 * Is the current CPU in an extended quiescent state?
364 * No ordering, as we are sampling CPU-local information.
366 bool rcu_dynticks_curr_cpu_in_eqs(void)
368 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
370 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
374 * Snapshot the ->dynticks counter with full ordering so as to allow
375 * stable comparison of this counter with past and future snapshots.
377 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
379 int snap = atomic_add_return(0, &rdtp->dynticks);
381 return snap & ~RCU_DYNTICK_CTRL_MASK;
385 * Return true if the snapshot returned from rcu_dynticks_snap()
386 * indicates that RCU is in an extended quiescent state.
388 static bool rcu_dynticks_in_eqs(int snap)
390 return !(snap & RCU_DYNTICK_CTRL_CTR);
394 * Return true if the CPU corresponding to the specified rcu_dynticks
395 * structure has spent some time in an extended quiescent state since
396 * rcu_dynticks_snap() returned the specified snapshot.
398 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
400 return snap != rcu_dynticks_snap(rdtp);
404 * Do a double-increment of the ->dynticks counter to emulate a
405 * momentary idle-CPU quiescent state.
407 static void rcu_dynticks_momentary_idle(void)
409 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
410 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
411 &rdtp->dynticks);
413 /* It is illegal to call this from idle state. */
414 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
418 * Set the special (bottom) bit of the specified CPU so that it
419 * will take special action (such as flushing its TLB) on the
420 * next exit from an extended quiescent state. Returns true if
421 * the bit was successfully set, or false if the CPU was not in
422 * an extended quiescent state.
424 bool rcu_eqs_special_set(int cpu)
426 int old;
427 int new;
428 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
430 do {
431 old = atomic_read(&rdtp->dynticks);
432 if (old & RCU_DYNTICK_CTRL_CTR)
433 return false;
434 new = old | RCU_DYNTICK_CTRL_MASK;
435 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
436 return true;
440 * Let the RCU core know that this CPU has gone through the scheduler,
441 * which is a quiescent state. This is called when the need for a
442 * quiescent state is urgent, so we burn an atomic operation and full
443 * memory barriers to let the RCU core know about it, regardless of what
444 * this CPU might (or might not) do in the near future.
446 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
448 * The caller must have disabled interrupts.
450 static void rcu_momentary_dyntick_idle(void)
452 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
453 rcu_dynticks_momentary_idle();
457 * Note a context switch. This is a quiescent state for RCU-sched,
458 * and requires special handling for preemptible RCU.
459 * The caller must have disabled interrupts.
461 void rcu_note_context_switch(bool preempt)
463 barrier(); /* Avoid RCU read-side critical sections leaking down. */
464 trace_rcu_utilization(TPS("Start context switch"));
465 rcu_sched_qs();
466 rcu_preempt_note_context_switch();
467 /* Load rcu_urgent_qs before other flags. */
468 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
469 goto out;
470 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
471 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
472 rcu_momentary_dyntick_idle();
473 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
474 if (!preempt)
475 rcu_note_voluntary_context_switch_lite(current);
476 out:
477 trace_rcu_utilization(TPS("End context switch"));
478 barrier(); /* Avoid RCU read-side critical sections leaking up. */
480 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
483 * Register a quiescent state for all RCU flavors. If there is an
484 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
485 * dyntick-idle quiescent state visible to other CPUs (but only for those
486 * RCU flavors in desperate need of a quiescent state, which will normally
487 * be none of them). Either way, do a lightweight quiescent state for
488 * all RCU flavors.
490 * The barrier() calls are redundant in the common case when this is
491 * called externally, but just in case this is called from within this
492 * file.
495 void rcu_all_qs(void)
497 unsigned long flags;
499 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
500 return;
501 preempt_disable();
502 /* Load rcu_urgent_qs before other flags. */
503 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
504 preempt_enable();
505 return;
507 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
508 barrier(); /* Avoid RCU read-side critical sections leaking down. */
509 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
510 local_irq_save(flags);
511 rcu_momentary_dyntick_idle();
512 local_irq_restore(flags);
514 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
515 rcu_sched_qs();
516 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
517 barrier(); /* Avoid RCU read-side critical sections leaking up. */
518 preempt_enable();
520 EXPORT_SYMBOL_GPL(rcu_all_qs);
522 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
523 static long qhimark = 10000; /* If this many pending, ignore blimit. */
524 static long qlowmark = 100; /* Once only this many pending, use blimit. */
526 module_param(blimit, long, 0444);
527 module_param(qhimark, long, 0444);
528 module_param(qlowmark, long, 0444);
530 static ulong jiffies_till_first_fqs = ULONG_MAX;
531 static ulong jiffies_till_next_fqs = ULONG_MAX;
532 static bool rcu_kick_kthreads;
534 module_param(jiffies_till_first_fqs, ulong, 0644);
535 module_param(jiffies_till_next_fqs, ulong, 0644);
536 module_param(rcu_kick_kthreads, bool, 0644);
539 * How long the grace period must be before we start recruiting
540 * quiescent-state help from rcu_note_context_switch().
542 static ulong jiffies_till_sched_qs = HZ / 20;
543 module_param(jiffies_till_sched_qs, ulong, 0644);
545 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
546 struct rcu_data *rdp);
547 static void force_qs_rnp(struct rcu_state *rsp,
548 int (*f)(struct rcu_data *rsp, bool *isidle,
549 unsigned long *maxj),
550 bool *isidle, unsigned long *maxj);
551 static void force_quiescent_state(struct rcu_state *rsp);
552 static int rcu_pending(void);
555 * Return the number of RCU batches started thus far for debug & stats.
557 unsigned long rcu_batches_started(void)
559 return rcu_state_p->gpnum;
561 EXPORT_SYMBOL_GPL(rcu_batches_started);
564 * Return the number of RCU-sched batches started thus far for debug & stats.
566 unsigned long rcu_batches_started_sched(void)
568 return rcu_sched_state.gpnum;
570 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
573 * Return the number of RCU BH batches started thus far for debug & stats.
575 unsigned long rcu_batches_started_bh(void)
577 return rcu_bh_state.gpnum;
579 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
582 * Return the number of RCU batches completed thus far for debug & stats.
584 unsigned long rcu_batches_completed(void)
586 return rcu_state_p->completed;
588 EXPORT_SYMBOL_GPL(rcu_batches_completed);
591 * Return the number of RCU-sched batches completed thus far for debug & stats.
593 unsigned long rcu_batches_completed_sched(void)
595 return rcu_sched_state.completed;
597 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
600 * Return the number of RCU BH batches completed thus far for debug & stats.
602 unsigned long rcu_batches_completed_bh(void)
604 return rcu_bh_state.completed;
606 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
609 * Return the number of RCU expedited batches completed thus far for
610 * debug & stats. Odd numbers mean that a batch is in progress, even
611 * numbers mean idle. The value returned will thus be roughly double
612 * the cumulative batches since boot.
614 unsigned long rcu_exp_batches_completed(void)
616 return rcu_state_p->expedited_sequence;
618 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
621 * Return the number of RCU-sched expedited batches completed thus far
622 * for debug & stats. Similar to rcu_exp_batches_completed().
624 unsigned long rcu_exp_batches_completed_sched(void)
626 return rcu_sched_state.expedited_sequence;
628 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
631 * Force a quiescent state.
633 void rcu_force_quiescent_state(void)
635 force_quiescent_state(rcu_state_p);
637 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
640 * Force a quiescent state for RCU BH.
642 void rcu_bh_force_quiescent_state(void)
644 force_quiescent_state(&rcu_bh_state);
646 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
649 * Force a quiescent state for RCU-sched.
651 void rcu_sched_force_quiescent_state(void)
653 force_quiescent_state(&rcu_sched_state);
655 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
658 * Show the state of the grace-period kthreads.
660 void show_rcu_gp_kthreads(void)
662 struct rcu_state *rsp;
664 for_each_rcu_flavor(rsp) {
665 pr_info("%s: wait state: %d ->state: %#lx\n",
666 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
667 /* sched_show_task(rsp->gp_kthread); */
670 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
673 * Record the number of times rcutorture tests have been initiated and
674 * terminated. This information allows the debugfs tracing stats to be
675 * correlated to the rcutorture messages, even when the rcutorture module
676 * is being repeatedly loaded and unloaded. In other words, we cannot
677 * store this state in rcutorture itself.
679 void rcutorture_record_test_transition(void)
681 rcutorture_testseq++;
682 rcutorture_vernum = 0;
684 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
687 * Send along grace-period-related data for rcutorture diagnostics.
689 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
690 unsigned long *gpnum, unsigned long *completed)
692 struct rcu_state *rsp = NULL;
694 switch (test_type) {
695 case RCU_FLAVOR:
696 rsp = rcu_state_p;
697 break;
698 case RCU_BH_FLAVOR:
699 rsp = &rcu_bh_state;
700 break;
701 case RCU_SCHED_FLAVOR:
702 rsp = &rcu_sched_state;
703 break;
704 default:
705 break;
707 if (rsp != NULL) {
708 *flags = READ_ONCE(rsp->gp_flags);
709 *gpnum = READ_ONCE(rsp->gpnum);
710 *completed = READ_ONCE(rsp->completed);
711 return;
713 *flags = 0;
714 *gpnum = 0;
715 *completed = 0;
717 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
720 * Record the number of writer passes through the current rcutorture test.
721 * This is also used to correlate debugfs tracing stats with the rcutorture
722 * messages.
724 void rcutorture_record_progress(unsigned long vernum)
726 rcutorture_vernum++;
728 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
731 * Return the root node of the specified rcu_state structure.
733 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
735 return &rsp->node[0];
739 * Is there any need for future grace periods?
740 * Interrupts must be disabled. If the caller does not hold the root
741 * rnp_node structure's ->lock, the results are advisory only.
743 static int rcu_future_needs_gp(struct rcu_state *rsp)
745 struct rcu_node *rnp = rcu_get_root(rsp);
746 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
747 int *fp = &rnp->need_future_gp[idx];
749 return READ_ONCE(*fp);
753 * Does the current CPU require a not-yet-started grace period?
754 * The caller must have disabled interrupts to prevent races with
755 * normal callback registry.
757 static bool
758 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
760 if (rcu_gp_in_progress(rsp))
761 return false; /* No, a grace period is already in progress. */
762 if (rcu_future_needs_gp(rsp))
763 return true; /* Yes, a no-CBs CPU needs one. */
764 if (!rcu_segcblist_is_enabled(&rdp->cblist))
765 return false; /* No, this is a no-CBs (or offline) CPU. */
766 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
767 return true; /* Yes, CPU has newly registered callbacks. */
768 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
769 READ_ONCE(rsp->completed)))
770 return true; /* Yes, CBs for future grace period. */
771 return false; /* No grace period needed. */
775 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
777 * If the new value of the ->dynticks_nesting counter now is zero,
778 * we really have entered idle, and must do the appropriate accounting.
779 * The caller must have disabled interrupts.
781 static void rcu_eqs_enter_common(long long oldval, bool user)
783 struct rcu_state *rsp;
784 struct rcu_data *rdp;
785 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
787 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
788 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
789 !user && !is_idle_task(current)) {
790 struct task_struct *idle __maybe_unused =
791 idle_task(smp_processor_id());
793 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
794 rcu_ftrace_dump(DUMP_ORIG);
795 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
796 current->pid, current->comm,
797 idle->pid, idle->comm); /* must be idle task! */
799 for_each_rcu_flavor(rsp) {
800 rdp = this_cpu_ptr(rsp->rda);
801 do_nocb_deferred_wakeup(rdp);
803 rcu_prepare_for_idle();
804 rcu_dynticks_eqs_enter();
805 rcu_dynticks_task_enter();
808 * It is illegal to enter an extended quiescent state while
809 * in an RCU read-side critical section.
811 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
812 "Illegal idle entry in RCU read-side critical section.");
813 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
814 "Illegal idle entry in RCU-bh read-side critical section.");
815 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
816 "Illegal idle entry in RCU-sched read-side critical section.");
820 * Enter an RCU extended quiescent state, which can be either the
821 * idle loop or adaptive-tickless usermode execution.
823 static void rcu_eqs_enter(bool user)
825 long long oldval;
826 struct rcu_dynticks *rdtp;
828 rdtp = this_cpu_ptr(&rcu_dynticks);
829 oldval = rdtp->dynticks_nesting;
830 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
831 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
832 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
833 rdtp->dynticks_nesting = 0;
834 rcu_eqs_enter_common(oldval, user);
835 } else {
836 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
841 * rcu_idle_enter - inform RCU that current CPU is entering idle
843 * Enter idle mode, in other words, -leave- the mode in which RCU
844 * read-side critical sections can occur. (Though RCU read-side
845 * critical sections can occur in irq handlers in idle, a possibility
846 * handled by irq_enter() and irq_exit().)
848 * We crowbar the ->dynticks_nesting field to zero to allow for
849 * the possibility of usermode upcalls having messed up our count
850 * of interrupt nesting level during the prior busy period.
852 void rcu_idle_enter(void)
854 unsigned long flags;
856 local_irq_save(flags);
857 rcu_eqs_enter(false);
858 rcu_sysidle_enter(0);
859 local_irq_restore(flags);
861 EXPORT_SYMBOL_GPL(rcu_idle_enter);
863 #ifdef CONFIG_NO_HZ_FULL
865 * rcu_user_enter - inform RCU that we are resuming userspace.
867 * Enter RCU idle mode right before resuming userspace. No use of RCU
868 * is permitted between this call and rcu_user_exit(). This way the
869 * CPU doesn't need to maintain the tick for RCU maintenance purposes
870 * when the CPU runs in userspace.
872 void rcu_user_enter(void)
874 rcu_eqs_enter(1);
876 #endif /* CONFIG_NO_HZ_FULL */
879 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
881 * Exit from an interrupt handler, which might possibly result in entering
882 * idle mode, in other words, leaving the mode in which read-side critical
883 * sections can occur. The caller must have disabled interrupts.
885 * This code assumes that the idle loop never does anything that might
886 * result in unbalanced calls to irq_enter() and irq_exit(). If your
887 * architecture violates this assumption, RCU will give you what you
888 * deserve, good and hard. But very infrequently and irreproducibly.
890 * Use things like work queues to work around this limitation.
892 * You have been warned.
894 void rcu_irq_exit(void)
896 long long oldval;
897 struct rcu_dynticks *rdtp;
899 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
900 rdtp = this_cpu_ptr(&rcu_dynticks);
901 oldval = rdtp->dynticks_nesting;
902 rdtp->dynticks_nesting--;
903 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
904 rdtp->dynticks_nesting < 0);
905 if (rdtp->dynticks_nesting)
906 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
907 else
908 rcu_eqs_enter_common(oldval, true);
909 rcu_sysidle_enter(1);
913 * Wrapper for rcu_irq_exit() where interrupts are enabled.
915 void rcu_irq_exit_irqson(void)
917 unsigned long flags;
919 local_irq_save(flags);
920 rcu_irq_exit();
921 local_irq_restore(flags);
925 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
927 * If the new value of the ->dynticks_nesting counter was previously zero,
928 * we really have exited idle, and must do the appropriate accounting.
929 * The caller must have disabled interrupts.
931 static void rcu_eqs_exit_common(long long oldval, int user)
933 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
935 rcu_dynticks_task_exit();
936 rcu_dynticks_eqs_exit();
937 rcu_cleanup_after_idle();
938 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
939 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
940 !user && !is_idle_task(current)) {
941 struct task_struct *idle __maybe_unused =
942 idle_task(smp_processor_id());
944 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
945 oldval, rdtp->dynticks_nesting);
946 rcu_ftrace_dump(DUMP_ORIG);
947 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
948 current->pid, current->comm,
949 idle->pid, idle->comm); /* must be idle task! */
954 * Exit an RCU extended quiescent state, which can be either the
955 * idle loop or adaptive-tickless usermode execution.
957 static void rcu_eqs_exit(bool user)
959 struct rcu_dynticks *rdtp;
960 long long oldval;
962 rdtp = this_cpu_ptr(&rcu_dynticks);
963 oldval = rdtp->dynticks_nesting;
964 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
965 if (oldval & DYNTICK_TASK_NEST_MASK) {
966 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
967 } else {
968 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
969 rcu_eqs_exit_common(oldval, user);
974 * rcu_idle_exit - inform RCU that current CPU is leaving idle
976 * Exit idle mode, in other words, -enter- the mode in which RCU
977 * read-side critical sections can occur.
979 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
980 * allow for the possibility of usermode upcalls messing up our count
981 * of interrupt nesting level during the busy period that is just
982 * now starting.
984 void rcu_idle_exit(void)
986 unsigned long flags;
988 local_irq_save(flags);
989 rcu_eqs_exit(false);
990 rcu_sysidle_exit(0);
991 local_irq_restore(flags);
993 EXPORT_SYMBOL_GPL(rcu_idle_exit);
995 #ifdef CONFIG_NO_HZ_FULL
997 * rcu_user_exit - inform RCU that we are exiting userspace.
999 * Exit RCU idle mode while entering the kernel because it can
1000 * run a RCU read side critical section anytime.
1002 void rcu_user_exit(void)
1004 rcu_eqs_exit(1);
1006 #endif /* CONFIG_NO_HZ_FULL */
1009 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1011 * Enter an interrupt handler, which might possibly result in exiting
1012 * idle mode, in other words, entering the mode in which read-side critical
1013 * sections can occur. The caller must have disabled interrupts.
1015 * Note that the Linux kernel is fully capable of entering an interrupt
1016 * handler that it never exits, for example when doing upcalls to
1017 * user mode! This code assumes that the idle loop never does upcalls to
1018 * user mode. If your architecture does do upcalls from the idle loop (or
1019 * does anything else that results in unbalanced calls to the irq_enter()
1020 * and irq_exit() functions), RCU will give you what you deserve, good
1021 * and hard. But very infrequently and irreproducibly.
1023 * Use things like work queues to work around this limitation.
1025 * You have been warned.
1027 void rcu_irq_enter(void)
1029 struct rcu_dynticks *rdtp;
1030 long long oldval;
1032 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1033 rdtp = this_cpu_ptr(&rcu_dynticks);
1034 oldval = rdtp->dynticks_nesting;
1035 rdtp->dynticks_nesting++;
1036 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1037 rdtp->dynticks_nesting == 0);
1038 if (oldval)
1039 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1040 else
1041 rcu_eqs_exit_common(oldval, true);
1042 rcu_sysidle_exit(1);
1046 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1048 void rcu_irq_enter_irqson(void)
1050 unsigned long flags;
1052 local_irq_save(flags);
1053 rcu_irq_enter();
1054 local_irq_restore(flags);
1058 * rcu_nmi_enter - inform RCU of entry to NMI context
1060 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1061 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1062 * that the CPU is active. This implementation permits nested NMIs, as
1063 * long as the nesting level does not overflow an int. (You will probably
1064 * run out of stack space first.)
1066 void rcu_nmi_enter(void)
1068 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1069 int incby = 2;
1071 /* Complain about underflow. */
1072 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1075 * If idle from RCU viewpoint, atomically increment ->dynticks
1076 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1077 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1078 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1079 * to be in the outermost NMI handler that interrupted an RCU-idle
1080 * period (observation due to Andy Lutomirski).
1082 if (rcu_dynticks_curr_cpu_in_eqs()) {
1083 rcu_dynticks_eqs_exit();
1084 incby = 1;
1086 rdtp->dynticks_nmi_nesting += incby;
1087 barrier();
1091 * rcu_nmi_exit - inform RCU of exit from NMI context
1093 * If we are returning from the outermost NMI handler that interrupted an
1094 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1095 * to let the RCU grace-period handling know that the CPU is back to
1096 * being RCU-idle.
1098 void rcu_nmi_exit(void)
1100 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1103 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1104 * (We are exiting an NMI handler, so RCU better be paying attention
1105 * to us!)
1107 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1108 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1111 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1112 * leave it in non-RCU-idle state.
1114 if (rdtp->dynticks_nmi_nesting != 1) {
1115 rdtp->dynticks_nmi_nesting -= 2;
1116 return;
1119 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1120 rdtp->dynticks_nmi_nesting = 0;
1121 rcu_dynticks_eqs_enter();
1125 * __rcu_is_watching - are RCU read-side critical sections safe?
1127 * Return true if RCU is watching the running CPU, which means that
1128 * this CPU can safely enter RCU read-side critical sections. Unlike
1129 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1130 * least disabled preemption.
1132 bool notrace __rcu_is_watching(void)
1134 return !rcu_dynticks_curr_cpu_in_eqs();
1138 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1140 * If the current CPU is in its idle loop and is neither in an interrupt
1141 * or NMI handler, return true.
1143 bool notrace rcu_is_watching(void)
1145 bool ret;
1147 preempt_disable_notrace();
1148 ret = __rcu_is_watching();
1149 preempt_enable_notrace();
1150 return ret;
1152 EXPORT_SYMBOL_GPL(rcu_is_watching);
1155 * If a holdout task is actually running, request an urgent quiescent
1156 * state from its CPU. This is unsynchronized, so migrations can cause
1157 * the request to go to the wrong CPU. Which is OK, all that will happen
1158 * is that the CPU's next context switch will be a bit slower and next
1159 * time around this task will generate another request.
1161 void rcu_request_urgent_qs_task(struct task_struct *t)
1163 int cpu;
1165 barrier();
1166 cpu = task_cpu(t);
1167 if (!task_curr(t))
1168 return; /* This task is not running on that CPU. */
1169 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1172 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1175 * Is the current CPU online? Disable preemption to avoid false positives
1176 * that could otherwise happen due to the current CPU number being sampled,
1177 * this task being preempted, its old CPU being taken offline, resuming
1178 * on some other CPU, then determining that its old CPU is now offline.
1179 * It is OK to use RCU on an offline processor during initial boot, hence
1180 * the check for rcu_scheduler_fully_active. Note also that it is OK
1181 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1182 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1183 * offline to continue to use RCU for one jiffy after marking itself
1184 * offline in the cpu_online_mask. This leniency is necessary given the
1185 * non-atomic nature of the online and offline processing, for example,
1186 * the fact that a CPU enters the scheduler after completing the teardown
1187 * of the CPU.
1189 * This is also why RCU internally marks CPUs online during in the
1190 * preparation phase and offline after the CPU has been taken down.
1192 * Disable checking if in an NMI handler because we cannot safely report
1193 * errors from NMI handlers anyway.
1195 bool rcu_lockdep_current_cpu_online(void)
1197 struct rcu_data *rdp;
1198 struct rcu_node *rnp;
1199 bool ret;
1201 if (in_nmi())
1202 return true;
1203 preempt_disable();
1204 rdp = this_cpu_ptr(&rcu_sched_data);
1205 rnp = rdp->mynode;
1206 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1207 !rcu_scheduler_fully_active;
1208 preempt_enable();
1209 return ret;
1211 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1213 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1216 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1218 * If the current CPU is idle or running at a first-level (not nested)
1219 * interrupt from idle, return true. The caller must have at least
1220 * disabled preemption.
1222 static int rcu_is_cpu_rrupt_from_idle(void)
1224 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1228 * Snapshot the specified CPU's dynticks counter so that we can later
1229 * credit them with an implicit quiescent state. Return 1 if this CPU
1230 * is in dynticks idle mode, which is an extended quiescent state.
1232 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1233 bool *isidle, unsigned long *maxj)
1235 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1236 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1237 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1238 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1239 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1240 rdp->mynode->gpnum))
1241 WRITE_ONCE(rdp->gpwrap, true);
1242 return 1;
1244 return 0;
1248 * Return true if the specified CPU has passed through a quiescent
1249 * state by virtue of being in or having passed through an dynticks
1250 * idle state since the last call to dyntick_save_progress_counter()
1251 * for this same CPU, or by virtue of having been offline.
1253 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1254 bool *isidle, unsigned long *maxj)
1256 unsigned long jtsq;
1257 bool *rnhqp;
1258 bool *ruqp;
1259 unsigned long rjtsc;
1260 struct rcu_node *rnp;
1263 * If the CPU passed through or entered a dynticks idle phase with
1264 * no active irq/NMI handlers, then we can safely pretend that the CPU
1265 * already acknowledged the request to pass through a quiescent
1266 * state. Either way, that CPU cannot possibly be in an RCU
1267 * read-side critical section that started before the beginning
1268 * of the current RCU grace period.
1270 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1271 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1272 rdp->dynticks_fqs++;
1273 return 1;
1276 /* Compute and saturate jiffies_till_sched_qs. */
1277 jtsq = jiffies_till_sched_qs;
1278 rjtsc = rcu_jiffies_till_stall_check();
1279 if (jtsq > rjtsc / 2) {
1280 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1281 jtsq = rjtsc / 2;
1282 } else if (jtsq < 1) {
1283 WRITE_ONCE(jiffies_till_sched_qs, 1);
1284 jtsq = 1;
1288 * Has this CPU encountered a cond_resched_rcu_qs() since the
1289 * beginning of the grace period? For this to be the case,
1290 * the CPU has to have noticed the current grace period. This
1291 * might not be the case for nohz_full CPUs looping in the kernel.
1293 rnp = rdp->mynode;
1294 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1295 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1296 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1297 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1298 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1299 return 1;
1300 } else {
1301 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1302 smp_store_release(ruqp, true);
1305 /* Check for the CPU being offline. */
1306 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1307 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1308 rdp->offline_fqs++;
1309 return 1;
1313 * A CPU running for an extended time within the kernel can
1314 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1315 * even context-switching back and forth between a pair of
1316 * in-kernel CPU-bound tasks cannot advance grace periods.
1317 * So if the grace period is old enough, make the CPU pay attention.
1318 * Note that the unsynchronized assignments to the per-CPU
1319 * rcu_need_heavy_qs variable are safe. Yes, setting of
1320 * bits can be lost, but they will be set again on the next
1321 * force-quiescent-state pass. So lost bit sets do not result
1322 * in incorrect behavior, merely in a grace period lasting
1323 * a few jiffies longer than it might otherwise. Because
1324 * there are at most four threads involved, and because the
1325 * updates are only once every few jiffies, the probability of
1326 * lossage (and thus of slight grace-period extension) is
1327 * quite low.
1329 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1330 * is set too high, we override with half of the RCU CPU stall
1331 * warning delay.
1333 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1334 if (!READ_ONCE(*rnhqp) &&
1335 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1336 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1337 WRITE_ONCE(*rnhqp, true);
1338 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1339 smp_store_release(ruqp, true);
1340 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1344 * If more than halfway to RCU CPU stall-warning time, do
1345 * a resched_cpu() to try to loosen things up a bit.
1347 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1348 resched_cpu(rdp->cpu);
1350 return 0;
1353 static void record_gp_stall_check_time(struct rcu_state *rsp)
1355 unsigned long j = jiffies;
1356 unsigned long j1;
1358 rsp->gp_start = j;
1359 smp_wmb(); /* Record start time before stall time. */
1360 j1 = rcu_jiffies_till_stall_check();
1361 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1362 rsp->jiffies_resched = j + j1 / 2;
1363 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1367 * Convert a ->gp_state value to a character string.
1369 static const char *gp_state_getname(short gs)
1371 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1372 return "???";
1373 return gp_state_names[gs];
1377 * Complain about starvation of grace-period kthread.
1379 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1381 unsigned long gpa;
1382 unsigned long j;
1384 j = jiffies;
1385 gpa = READ_ONCE(rsp->gp_activity);
1386 if (j - gpa > 2 * HZ) {
1387 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1388 rsp->name, j - gpa,
1389 rsp->gpnum, rsp->completed,
1390 rsp->gp_flags,
1391 gp_state_getname(rsp->gp_state), rsp->gp_state,
1392 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1393 if (rsp->gp_kthread) {
1394 sched_show_task(rsp->gp_kthread);
1395 wake_up_process(rsp->gp_kthread);
1401 * Dump stacks of all tasks running on stalled CPUs. First try using
1402 * NMIs, but fall back to manual remote stack tracing on architectures
1403 * that don't support NMI-based stack dumps. The NMI-triggered stack
1404 * traces are more accurate because they are printed by the target CPU.
1406 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1408 int cpu;
1409 unsigned long flags;
1410 struct rcu_node *rnp;
1412 rcu_for_each_leaf_node(rsp, rnp) {
1413 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1414 for_each_leaf_node_possible_cpu(rnp, cpu)
1415 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1416 if (!trigger_single_cpu_backtrace(cpu))
1417 dump_cpu_task(cpu);
1418 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1423 * If too much time has passed in the current grace period, and if
1424 * so configured, go kick the relevant kthreads.
1426 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1428 unsigned long j;
1430 if (!rcu_kick_kthreads)
1431 return;
1432 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1433 if (time_after(jiffies, j) && rsp->gp_kthread &&
1434 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1435 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1436 rcu_ftrace_dump(DUMP_ALL);
1437 wake_up_process(rsp->gp_kthread);
1438 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1442 static inline void panic_on_rcu_stall(void)
1444 if (sysctl_panic_on_rcu_stall)
1445 panic("RCU Stall\n");
1448 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1450 int cpu;
1451 long delta;
1452 unsigned long flags;
1453 unsigned long gpa;
1454 unsigned long j;
1455 int ndetected = 0;
1456 struct rcu_node *rnp = rcu_get_root(rsp);
1457 long totqlen = 0;
1459 /* Kick and suppress, if so configured. */
1460 rcu_stall_kick_kthreads(rsp);
1461 if (rcu_cpu_stall_suppress)
1462 return;
1464 /* Only let one CPU complain about others per time interval. */
1466 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1467 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1468 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1469 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1470 return;
1472 WRITE_ONCE(rsp->jiffies_stall,
1473 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1474 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1477 * OK, time to rat on our buddy...
1478 * See Documentation/RCU/stallwarn.txt for info on how to debug
1479 * RCU CPU stall warnings.
1481 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1482 rsp->name);
1483 print_cpu_stall_info_begin();
1484 rcu_for_each_leaf_node(rsp, rnp) {
1485 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1486 ndetected += rcu_print_task_stall(rnp);
1487 if (rnp->qsmask != 0) {
1488 for_each_leaf_node_possible_cpu(rnp, cpu)
1489 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1490 print_cpu_stall_info(rsp, cpu);
1491 ndetected++;
1494 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1497 print_cpu_stall_info_end();
1498 for_each_possible_cpu(cpu)
1499 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1500 cpu)->cblist);
1501 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1502 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1503 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1504 if (ndetected) {
1505 rcu_dump_cpu_stacks(rsp);
1507 /* Complain about tasks blocking the grace period. */
1508 rcu_print_detail_task_stall(rsp);
1509 } else {
1510 if (READ_ONCE(rsp->gpnum) != gpnum ||
1511 READ_ONCE(rsp->completed) == gpnum) {
1512 pr_err("INFO: Stall ended before state dump start\n");
1513 } else {
1514 j = jiffies;
1515 gpa = READ_ONCE(rsp->gp_activity);
1516 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1517 rsp->name, j - gpa, j, gpa,
1518 jiffies_till_next_fqs,
1519 rcu_get_root(rsp)->qsmask);
1520 /* In this case, the current CPU might be at fault. */
1521 sched_show_task(current);
1525 rcu_check_gp_kthread_starvation(rsp);
1527 panic_on_rcu_stall();
1529 force_quiescent_state(rsp); /* Kick them all. */
1532 static void print_cpu_stall(struct rcu_state *rsp)
1534 int cpu;
1535 unsigned long flags;
1536 struct rcu_node *rnp = rcu_get_root(rsp);
1537 long totqlen = 0;
1539 /* Kick and suppress, if so configured. */
1540 rcu_stall_kick_kthreads(rsp);
1541 if (rcu_cpu_stall_suppress)
1542 return;
1545 * OK, time to rat on ourselves...
1546 * See Documentation/RCU/stallwarn.txt for info on how to debug
1547 * RCU CPU stall warnings.
1549 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1550 print_cpu_stall_info_begin();
1551 print_cpu_stall_info(rsp, smp_processor_id());
1552 print_cpu_stall_info_end();
1553 for_each_possible_cpu(cpu)
1554 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1555 cpu)->cblist);
1556 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1557 jiffies - rsp->gp_start,
1558 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1560 rcu_check_gp_kthread_starvation(rsp);
1562 rcu_dump_cpu_stacks(rsp);
1564 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1565 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1566 WRITE_ONCE(rsp->jiffies_stall,
1567 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1568 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1570 panic_on_rcu_stall();
1573 * Attempt to revive the RCU machinery by forcing a context switch.
1575 * A context switch would normally allow the RCU state machine to make
1576 * progress and it could be we're stuck in kernel space without context
1577 * switches for an entirely unreasonable amount of time.
1579 resched_cpu(smp_processor_id());
1582 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1584 unsigned long completed;
1585 unsigned long gpnum;
1586 unsigned long gps;
1587 unsigned long j;
1588 unsigned long js;
1589 struct rcu_node *rnp;
1591 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1592 !rcu_gp_in_progress(rsp))
1593 return;
1594 rcu_stall_kick_kthreads(rsp);
1595 j = jiffies;
1598 * Lots of memory barriers to reject false positives.
1600 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1601 * then rsp->gp_start, and finally rsp->completed. These values
1602 * are updated in the opposite order with memory barriers (or
1603 * equivalent) during grace-period initialization and cleanup.
1604 * Now, a false positive can occur if we get an new value of
1605 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1606 * the memory barriers, the only way that this can happen is if one
1607 * grace period ends and another starts between these two fetches.
1608 * Detect this by comparing rsp->completed with the previous fetch
1609 * from rsp->gpnum.
1611 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1612 * and rsp->gp_start suffice to forestall false positives.
1614 gpnum = READ_ONCE(rsp->gpnum);
1615 smp_rmb(); /* Pick up ->gpnum first... */
1616 js = READ_ONCE(rsp->jiffies_stall);
1617 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1618 gps = READ_ONCE(rsp->gp_start);
1619 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1620 completed = READ_ONCE(rsp->completed);
1621 if (ULONG_CMP_GE(completed, gpnum) ||
1622 ULONG_CMP_LT(j, js) ||
1623 ULONG_CMP_GE(gps, js))
1624 return; /* No stall or GP completed since entering function. */
1625 rnp = rdp->mynode;
1626 if (rcu_gp_in_progress(rsp) &&
1627 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1629 /* We haven't checked in, so go dump stack. */
1630 print_cpu_stall(rsp);
1632 } else if (rcu_gp_in_progress(rsp) &&
1633 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1635 /* They had a few time units to dump stack, so complain. */
1636 print_other_cpu_stall(rsp, gpnum);
1641 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1643 * Set the stall-warning timeout way off into the future, thus preventing
1644 * any RCU CPU stall-warning messages from appearing in the current set of
1645 * RCU grace periods.
1647 * The caller must disable hard irqs.
1649 void rcu_cpu_stall_reset(void)
1651 struct rcu_state *rsp;
1653 for_each_rcu_flavor(rsp)
1654 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1658 * Determine the value that ->completed will have at the end of the
1659 * next subsequent grace period. This is used to tag callbacks so that
1660 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1661 * been dyntick-idle for an extended period with callbacks under the
1662 * influence of RCU_FAST_NO_HZ.
1664 * The caller must hold rnp->lock with interrupts disabled.
1666 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1667 struct rcu_node *rnp)
1670 * If RCU is idle, we just wait for the next grace period.
1671 * But we can only be sure that RCU is idle if we are looking
1672 * at the root rcu_node structure -- otherwise, a new grace
1673 * period might have started, but just not yet gotten around
1674 * to initializing the current non-root rcu_node structure.
1676 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1677 return rnp->completed + 1;
1680 * Otherwise, wait for a possible partial grace period and
1681 * then the subsequent full grace period.
1683 return rnp->completed + 2;
1687 * Trace-event helper function for rcu_start_future_gp() and
1688 * rcu_nocb_wait_gp().
1690 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1691 unsigned long c, const char *s)
1693 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1694 rnp->completed, c, rnp->level,
1695 rnp->grplo, rnp->grphi, s);
1699 * Start some future grace period, as needed to handle newly arrived
1700 * callbacks. The required future grace periods are recorded in each
1701 * rcu_node structure's ->need_future_gp field. Returns true if there
1702 * is reason to awaken the grace-period kthread.
1704 * The caller must hold the specified rcu_node structure's ->lock.
1706 static bool __maybe_unused
1707 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1708 unsigned long *c_out)
1710 unsigned long c;
1711 bool ret = false;
1712 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1715 * Pick up grace-period number for new callbacks. If this
1716 * grace period is already marked as needed, return to the caller.
1718 c = rcu_cbs_completed(rdp->rsp, rnp);
1719 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1720 if (rnp->need_future_gp[c & 0x1]) {
1721 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1722 goto out;
1726 * If either this rcu_node structure or the root rcu_node structure
1727 * believe that a grace period is in progress, then we must wait
1728 * for the one following, which is in "c". Because our request
1729 * will be noticed at the end of the current grace period, we don't
1730 * need to explicitly start one. We only do the lockless check
1731 * of rnp_root's fields if the current rcu_node structure thinks
1732 * there is no grace period in flight, and because we hold rnp->lock,
1733 * the only possible change is when rnp_root's two fields are
1734 * equal, in which case rnp_root->gpnum might be concurrently
1735 * incremented. But that is OK, as it will just result in our
1736 * doing some extra useless work.
1738 if (rnp->gpnum != rnp->completed ||
1739 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1740 rnp->need_future_gp[c & 0x1]++;
1741 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1742 goto out;
1746 * There might be no grace period in progress. If we don't already
1747 * hold it, acquire the root rcu_node structure's lock in order to
1748 * start one (if needed).
1750 if (rnp != rnp_root)
1751 raw_spin_lock_rcu_node(rnp_root);
1754 * Get a new grace-period number. If there really is no grace
1755 * period in progress, it will be smaller than the one we obtained
1756 * earlier. Adjust callbacks as needed.
1758 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1759 if (!rcu_is_nocb_cpu(rdp->cpu))
1760 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1763 * If the needed for the required grace period is already
1764 * recorded, trace and leave.
1766 if (rnp_root->need_future_gp[c & 0x1]) {
1767 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1768 goto unlock_out;
1771 /* Record the need for the future grace period. */
1772 rnp_root->need_future_gp[c & 0x1]++;
1774 /* If a grace period is not already in progress, start one. */
1775 if (rnp_root->gpnum != rnp_root->completed) {
1776 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1777 } else {
1778 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1779 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1781 unlock_out:
1782 if (rnp != rnp_root)
1783 raw_spin_unlock_rcu_node(rnp_root);
1784 out:
1785 if (c_out != NULL)
1786 *c_out = c;
1787 return ret;
1791 * Clean up any old requests for the just-ended grace period. Also return
1792 * whether any additional grace periods have been requested. Also invoke
1793 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1794 * waiting for this grace period to complete.
1796 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1798 int c = rnp->completed;
1799 int needmore;
1800 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1802 rnp->need_future_gp[c & 0x1] = 0;
1803 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1804 trace_rcu_future_gp(rnp, rdp, c,
1805 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1806 return needmore;
1810 * Awaken the grace-period kthread for the specified flavor of RCU.
1811 * Don't do a self-awaken, and don't bother awakening when there is
1812 * nothing for the grace-period kthread to do (as in several CPUs
1813 * raced to awaken, and we lost), and finally don't try to awaken
1814 * a kthread that has not yet been created.
1816 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1818 if (current == rsp->gp_kthread ||
1819 !READ_ONCE(rsp->gp_flags) ||
1820 !rsp->gp_kthread)
1821 return;
1822 swake_up(&rsp->gp_wq);
1826 * If there is room, assign a ->completed number to any callbacks on
1827 * this CPU that have not already been assigned. Also accelerate any
1828 * callbacks that were previously assigned a ->completed number that has
1829 * since proven to be too conservative, which can happen if callbacks get
1830 * assigned a ->completed number while RCU is idle, but with reference to
1831 * a non-root rcu_node structure. This function is idempotent, so it does
1832 * not hurt to call it repeatedly. Returns an flag saying that we should
1833 * awaken the RCU grace-period kthread.
1835 * The caller must hold rnp->lock with interrupts disabled.
1837 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1838 struct rcu_data *rdp)
1840 bool ret = false;
1842 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1843 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1844 return false;
1847 * Callbacks are often registered with incomplete grace-period
1848 * information. Something about the fact that getting exact
1849 * information requires acquiring a global lock... RCU therefore
1850 * makes a conservative estimate of the grace period number at which
1851 * a given callback will become ready to invoke. The following
1852 * code checks this estimate and improves it when possible, thus
1853 * accelerating callback invocation to an earlier grace-period
1854 * number.
1856 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1857 ret = rcu_start_future_gp(rnp, rdp, NULL);
1859 /* Trace depending on how much we were able to accelerate. */
1860 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1861 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1862 else
1863 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1864 return ret;
1868 * Move any callbacks whose grace period has completed to the
1869 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1870 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1871 * sublist. This function is idempotent, so it does not hurt to
1872 * invoke it repeatedly. As long as it is not invoked -too- often...
1873 * Returns true if the RCU grace-period kthread needs to be awakened.
1875 * The caller must hold rnp->lock with interrupts disabled.
1877 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1878 struct rcu_data *rdp)
1880 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1881 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1882 return false;
1885 * Find all callbacks whose ->completed numbers indicate that they
1886 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1888 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1890 /* Classify any remaining callbacks. */
1891 return rcu_accelerate_cbs(rsp, rnp, rdp);
1895 * Update CPU-local rcu_data state to record the beginnings and ends of
1896 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1897 * structure corresponding to the current CPU, and must have irqs disabled.
1898 * Returns true if the grace-period kthread needs to be awakened.
1900 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1901 struct rcu_data *rdp)
1903 bool ret;
1904 bool need_gp;
1906 /* Handle the ends of any preceding grace periods first. */
1907 if (rdp->completed == rnp->completed &&
1908 !unlikely(READ_ONCE(rdp->gpwrap))) {
1910 /* No grace period end, so just accelerate recent callbacks. */
1911 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1913 } else {
1915 /* Advance callbacks. */
1916 ret = rcu_advance_cbs(rsp, rnp, rdp);
1918 /* Remember that we saw this grace-period completion. */
1919 rdp->completed = rnp->completed;
1920 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1923 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1925 * If the current grace period is waiting for this CPU,
1926 * set up to detect a quiescent state, otherwise don't
1927 * go looking for one.
1929 rdp->gpnum = rnp->gpnum;
1930 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1931 need_gp = !!(rnp->qsmask & rdp->grpmask);
1932 rdp->cpu_no_qs.b.norm = need_gp;
1933 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1934 rdp->core_needs_qs = need_gp;
1935 zero_cpu_stall_ticks(rdp);
1936 WRITE_ONCE(rdp->gpwrap, false);
1938 return ret;
1941 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1943 unsigned long flags;
1944 bool needwake;
1945 struct rcu_node *rnp;
1947 local_irq_save(flags);
1948 rnp = rdp->mynode;
1949 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1950 rdp->completed == READ_ONCE(rnp->completed) &&
1951 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1952 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1953 local_irq_restore(flags);
1954 return;
1956 needwake = __note_gp_changes(rsp, rnp, rdp);
1957 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1958 if (needwake)
1959 rcu_gp_kthread_wake(rsp);
1962 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1964 if (delay > 0 &&
1965 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1966 schedule_timeout_uninterruptible(delay);
1970 * Initialize a new grace period. Return false if no grace period required.
1972 static bool rcu_gp_init(struct rcu_state *rsp)
1974 unsigned long oldmask;
1975 struct rcu_data *rdp;
1976 struct rcu_node *rnp = rcu_get_root(rsp);
1978 WRITE_ONCE(rsp->gp_activity, jiffies);
1979 raw_spin_lock_irq_rcu_node(rnp);
1980 if (!READ_ONCE(rsp->gp_flags)) {
1981 /* Spurious wakeup, tell caller to go back to sleep. */
1982 raw_spin_unlock_irq_rcu_node(rnp);
1983 return false;
1985 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1987 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1989 * Grace period already in progress, don't start another.
1990 * Not supposed to be able to happen.
1992 raw_spin_unlock_irq_rcu_node(rnp);
1993 return false;
1996 /* Advance to a new grace period and initialize state. */
1997 record_gp_stall_check_time(rsp);
1998 /* Record GP times before starting GP, hence smp_store_release(). */
1999 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2000 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
2001 raw_spin_unlock_irq_rcu_node(rnp);
2004 * Apply per-leaf buffered online and offline operations to the
2005 * rcu_node tree. Note that this new grace period need not wait
2006 * for subsequent online CPUs, and that quiescent-state forcing
2007 * will handle subsequent offline CPUs.
2009 rcu_for_each_leaf_node(rsp, rnp) {
2010 rcu_gp_slow(rsp, gp_preinit_delay);
2011 raw_spin_lock_irq_rcu_node(rnp);
2012 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2013 !rnp->wait_blkd_tasks) {
2014 /* Nothing to do on this leaf rcu_node structure. */
2015 raw_spin_unlock_irq_rcu_node(rnp);
2016 continue;
2019 /* Record old state, apply changes to ->qsmaskinit field. */
2020 oldmask = rnp->qsmaskinit;
2021 rnp->qsmaskinit = rnp->qsmaskinitnext;
2023 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2024 if (!oldmask != !rnp->qsmaskinit) {
2025 if (!oldmask) /* First online CPU for this rcu_node. */
2026 rcu_init_new_rnp(rnp);
2027 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2028 rnp->wait_blkd_tasks = true;
2029 else /* Last offline CPU and can propagate. */
2030 rcu_cleanup_dead_rnp(rnp);
2034 * If all waited-on tasks from prior grace period are
2035 * done, and if all this rcu_node structure's CPUs are
2036 * still offline, propagate up the rcu_node tree and
2037 * clear ->wait_blkd_tasks. Otherwise, if one of this
2038 * rcu_node structure's CPUs has since come back online,
2039 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2040 * checks for this, so just call it unconditionally).
2042 if (rnp->wait_blkd_tasks &&
2043 (!rcu_preempt_has_tasks(rnp) ||
2044 rnp->qsmaskinit)) {
2045 rnp->wait_blkd_tasks = false;
2046 rcu_cleanup_dead_rnp(rnp);
2049 raw_spin_unlock_irq_rcu_node(rnp);
2053 * Set the quiescent-state-needed bits in all the rcu_node
2054 * structures for all currently online CPUs in breadth-first order,
2055 * starting from the root rcu_node structure, relying on the layout
2056 * of the tree within the rsp->node[] array. Note that other CPUs
2057 * will access only the leaves of the hierarchy, thus seeing that no
2058 * grace period is in progress, at least until the corresponding
2059 * leaf node has been initialized.
2061 * The grace period cannot complete until the initialization
2062 * process finishes, because this kthread handles both.
2064 rcu_for_each_node_breadth_first(rsp, rnp) {
2065 rcu_gp_slow(rsp, gp_init_delay);
2066 raw_spin_lock_irq_rcu_node(rnp);
2067 rdp = this_cpu_ptr(rsp->rda);
2068 rcu_preempt_check_blocked_tasks(rnp);
2069 rnp->qsmask = rnp->qsmaskinit;
2070 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2071 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2072 WRITE_ONCE(rnp->completed, rsp->completed);
2073 if (rnp == rdp->mynode)
2074 (void)__note_gp_changes(rsp, rnp, rdp);
2075 rcu_preempt_boost_start_gp(rnp);
2076 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2077 rnp->level, rnp->grplo,
2078 rnp->grphi, rnp->qsmask);
2079 raw_spin_unlock_irq_rcu_node(rnp);
2080 cond_resched_rcu_qs();
2081 WRITE_ONCE(rsp->gp_activity, jiffies);
2084 return true;
2088 * Helper function for wait_event_interruptible_timeout() wakeup
2089 * at force-quiescent-state time.
2091 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2093 struct rcu_node *rnp = rcu_get_root(rsp);
2095 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2096 *gfp = READ_ONCE(rsp->gp_flags);
2097 if (*gfp & RCU_GP_FLAG_FQS)
2098 return true;
2100 /* The current grace period has completed. */
2101 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2102 return true;
2104 return false;
2108 * Do one round of quiescent-state forcing.
2110 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2112 bool isidle = false;
2113 unsigned long maxj;
2114 struct rcu_node *rnp = rcu_get_root(rsp);
2116 WRITE_ONCE(rsp->gp_activity, jiffies);
2117 rsp->n_force_qs++;
2118 if (first_time) {
2119 /* Collect dyntick-idle snapshots. */
2120 if (is_sysidle_rcu_state(rsp)) {
2121 isidle = true;
2122 maxj = jiffies - ULONG_MAX / 4;
2124 force_qs_rnp(rsp, dyntick_save_progress_counter,
2125 &isidle, &maxj);
2126 rcu_sysidle_report_gp(rsp, isidle, maxj);
2127 } else {
2128 /* Handle dyntick-idle and offline CPUs. */
2129 isidle = true;
2130 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2132 /* Clear flag to prevent immediate re-entry. */
2133 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2134 raw_spin_lock_irq_rcu_node(rnp);
2135 WRITE_ONCE(rsp->gp_flags,
2136 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2137 raw_spin_unlock_irq_rcu_node(rnp);
2142 * Clean up after the old grace period.
2144 static void rcu_gp_cleanup(struct rcu_state *rsp)
2146 unsigned long gp_duration;
2147 bool needgp = false;
2148 int nocb = 0;
2149 struct rcu_data *rdp;
2150 struct rcu_node *rnp = rcu_get_root(rsp);
2151 struct swait_queue_head *sq;
2153 WRITE_ONCE(rsp->gp_activity, jiffies);
2154 raw_spin_lock_irq_rcu_node(rnp);
2155 gp_duration = jiffies - rsp->gp_start;
2156 if (gp_duration > rsp->gp_max)
2157 rsp->gp_max = gp_duration;
2160 * We know the grace period is complete, but to everyone else
2161 * it appears to still be ongoing. But it is also the case
2162 * that to everyone else it looks like there is nothing that
2163 * they can do to advance the grace period. It is therefore
2164 * safe for us to drop the lock in order to mark the grace
2165 * period as completed in all of the rcu_node structures.
2167 raw_spin_unlock_irq_rcu_node(rnp);
2170 * Propagate new ->completed value to rcu_node structures so
2171 * that other CPUs don't have to wait until the start of the next
2172 * grace period to process their callbacks. This also avoids
2173 * some nasty RCU grace-period initialization races by forcing
2174 * the end of the current grace period to be completely recorded in
2175 * all of the rcu_node structures before the beginning of the next
2176 * grace period is recorded in any of the rcu_node structures.
2178 rcu_for_each_node_breadth_first(rsp, rnp) {
2179 raw_spin_lock_irq_rcu_node(rnp);
2180 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2181 WARN_ON_ONCE(rnp->qsmask);
2182 WRITE_ONCE(rnp->completed, rsp->gpnum);
2183 rdp = this_cpu_ptr(rsp->rda);
2184 if (rnp == rdp->mynode)
2185 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2186 /* smp_mb() provided by prior unlock-lock pair. */
2187 nocb += rcu_future_gp_cleanup(rsp, rnp);
2188 sq = rcu_nocb_gp_get(rnp);
2189 raw_spin_unlock_irq_rcu_node(rnp);
2190 rcu_nocb_gp_cleanup(sq);
2191 cond_resched_rcu_qs();
2192 WRITE_ONCE(rsp->gp_activity, jiffies);
2193 rcu_gp_slow(rsp, gp_cleanup_delay);
2195 rnp = rcu_get_root(rsp);
2196 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2197 rcu_nocb_gp_set(rnp, nocb);
2199 /* Declare grace period done. */
2200 WRITE_ONCE(rsp->completed, rsp->gpnum);
2201 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2202 rsp->gp_state = RCU_GP_IDLE;
2203 rdp = this_cpu_ptr(rsp->rda);
2204 /* Advance CBs to reduce false positives below. */
2205 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2206 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2207 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2208 trace_rcu_grace_period(rsp->name,
2209 READ_ONCE(rsp->gpnum),
2210 TPS("newreq"));
2212 raw_spin_unlock_irq_rcu_node(rnp);
2216 * Body of kthread that handles grace periods.
2218 static int __noreturn rcu_gp_kthread(void *arg)
2220 bool first_gp_fqs;
2221 int gf;
2222 unsigned long j;
2223 int ret;
2224 struct rcu_state *rsp = arg;
2225 struct rcu_node *rnp = rcu_get_root(rsp);
2227 rcu_bind_gp_kthread();
2228 for (;;) {
2230 /* Handle grace-period start. */
2231 for (;;) {
2232 trace_rcu_grace_period(rsp->name,
2233 READ_ONCE(rsp->gpnum),
2234 TPS("reqwait"));
2235 rsp->gp_state = RCU_GP_WAIT_GPS;
2236 swait_event_interruptible(rsp->gp_wq,
2237 READ_ONCE(rsp->gp_flags) &
2238 RCU_GP_FLAG_INIT);
2239 rsp->gp_state = RCU_GP_DONE_GPS;
2240 /* Locking provides needed memory barrier. */
2241 if (rcu_gp_init(rsp))
2242 break;
2243 cond_resched_rcu_qs();
2244 WRITE_ONCE(rsp->gp_activity, jiffies);
2245 WARN_ON(signal_pending(current));
2246 trace_rcu_grace_period(rsp->name,
2247 READ_ONCE(rsp->gpnum),
2248 TPS("reqwaitsig"));
2251 /* Handle quiescent-state forcing. */
2252 first_gp_fqs = true;
2253 j = jiffies_till_first_fqs;
2254 if (j > HZ) {
2255 j = HZ;
2256 jiffies_till_first_fqs = HZ;
2258 ret = 0;
2259 for (;;) {
2260 if (!ret) {
2261 rsp->jiffies_force_qs = jiffies + j;
2262 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2263 jiffies + 3 * j);
2265 trace_rcu_grace_period(rsp->name,
2266 READ_ONCE(rsp->gpnum),
2267 TPS("fqswait"));
2268 rsp->gp_state = RCU_GP_WAIT_FQS;
2269 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2270 rcu_gp_fqs_check_wake(rsp, &gf), j);
2271 rsp->gp_state = RCU_GP_DOING_FQS;
2272 /* Locking provides needed memory barriers. */
2273 /* If grace period done, leave loop. */
2274 if (!READ_ONCE(rnp->qsmask) &&
2275 !rcu_preempt_blocked_readers_cgp(rnp))
2276 break;
2277 /* If time for quiescent-state forcing, do it. */
2278 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2279 (gf & RCU_GP_FLAG_FQS)) {
2280 trace_rcu_grace_period(rsp->name,
2281 READ_ONCE(rsp->gpnum),
2282 TPS("fqsstart"));
2283 rcu_gp_fqs(rsp, first_gp_fqs);
2284 first_gp_fqs = false;
2285 trace_rcu_grace_period(rsp->name,
2286 READ_ONCE(rsp->gpnum),
2287 TPS("fqsend"));
2288 cond_resched_rcu_qs();
2289 WRITE_ONCE(rsp->gp_activity, jiffies);
2290 ret = 0; /* Force full wait till next FQS. */
2291 j = jiffies_till_next_fqs;
2292 if (j > HZ) {
2293 j = HZ;
2294 jiffies_till_next_fqs = HZ;
2295 } else if (j < 1) {
2296 j = 1;
2297 jiffies_till_next_fqs = 1;
2299 } else {
2300 /* Deal with stray signal. */
2301 cond_resched_rcu_qs();
2302 WRITE_ONCE(rsp->gp_activity, jiffies);
2303 WARN_ON(signal_pending(current));
2304 trace_rcu_grace_period(rsp->name,
2305 READ_ONCE(rsp->gpnum),
2306 TPS("fqswaitsig"));
2307 ret = 1; /* Keep old FQS timing. */
2308 j = jiffies;
2309 if (time_after(jiffies, rsp->jiffies_force_qs))
2310 j = 1;
2311 else
2312 j = rsp->jiffies_force_qs - j;
2316 /* Handle grace-period end. */
2317 rsp->gp_state = RCU_GP_CLEANUP;
2318 rcu_gp_cleanup(rsp);
2319 rsp->gp_state = RCU_GP_CLEANED;
2324 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2325 * in preparation for detecting the next grace period. The caller must hold
2326 * the root node's ->lock and hard irqs must be disabled.
2328 * Note that it is legal for a dying CPU (which is marked as offline) to
2329 * invoke this function. This can happen when the dying CPU reports its
2330 * quiescent state.
2332 * Returns true if the grace-period kthread must be awakened.
2334 static bool
2335 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2336 struct rcu_data *rdp)
2338 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2340 * Either we have not yet spawned the grace-period
2341 * task, this CPU does not need another grace period,
2342 * or a grace period is already in progress.
2343 * Either way, don't start a new grace period.
2345 return false;
2347 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2348 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2349 TPS("newreq"));
2352 * We can't do wakeups while holding the rnp->lock, as that
2353 * could cause possible deadlocks with the rq->lock. Defer
2354 * the wakeup to our caller.
2356 return true;
2360 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2361 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2362 * is invoked indirectly from rcu_advance_cbs(), which would result in
2363 * endless recursion -- or would do so if it wasn't for the self-deadlock
2364 * that is encountered beforehand.
2366 * Returns true if the grace-period kthread needs to be awakened.
2368 static bool rcu_start_gp(struct rcu_state *rsp)
2370 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2371 struct rcu_node *rnp = rcu_get_root(rsp);
2372 bool ret = false;
2375 * If there is no grace period in progress right now, any
2376 * callbacks we have up to this point will be satisfied by the
2377 * next grace period. Also, advancing the callbacks reduces the
2378 * probability of false positives from cpu_needs_another_gp()
2379 * resulting in pointless grace periods. So, advance callbacks
2380 * then start the grace period!
2382 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2383 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2384 return ret;
2388 * Report a full set of quiescent states to the specified rcu_state data
2389 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2390 * kthread if another grace period is required. Whether we wake
2391 * the grace-period kthread or it awakens itself for the next round
2392 * of quiescent-state forcing, that kthread will clean up after the
2393 * just-completed grace period. Note that the caller must hold rnp->lock,
2394 * which is released before return.
2396 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2397 __releases(rcu_get_root(rsp)->lock)
2399 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2400 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2401 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2402 rcu_gp_kthread_wake(rsp);
2406 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2407 * Allows quiescent states for a group of CPUs to be reported at one go
2408 * to the specified rcu_node structure, though all the CPUs in the group
2409 * must be represented by the same rcu_node structure (which need not be a
2410 * leaf rcu_node structure, though it often will be). The gps parameter
2411 * is the grace-period snapshot, which means that the quiescent states
2412 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2413 * must be held upon entry, and it is released before return.
2415 static void
2416 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2417 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2418 __releases(rnp->lock)
2420 unsigned long oldmask = 0;
2421 struct rcu_node *rnp_c;
2423 /* Walk up the rcu_node hierarchy. */
2424 for (;;) {
2425 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2428 * Our bit has already been cleared, or the
2429 * relevant grace period is already over, so done.
2431 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2432 return;
2434 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2435 rnp->qsmask &= ~mask;
2436 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2437 mask, rnp->qsmask, rnp->level,
2438 rnp->grplo, rnp->grphi,
2439 !!rnp->gp_tasks);
2440 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2442 /* Other bits still set at this level, so done. */
2443 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2444 return;
2446 mask = rnp->grpmask;
2447 if (rnp->parent == NULL) {
2449 /* No more levels. Exit loop holding root lock. */
2451 break;
2453 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2454 rnp_c = rnp;
2455 rnp = rnp->parent;
2456 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2457 oldmask = rnp_c->qsmask;
2461 * Get here if we are the last CPU to pass through a quiescent
2462 * state for this grace period. Invoke rcu_report_qs_rsp()
2463 * to clean up and start the next grace period if one is needed.
2465 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2469 * Record a quiescent state for all tasks that were previously queued
2470 * on the specified rcu_node structure and that were blocking the current
2471 * RCU grace period. The caller must hold the specified rnp->lock with
2472 * irqs disabled, and this lock is released upon return, but irqs remain
2473 * disabled.
2475 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2476 struct rcu_node *rnp, unsigned long flags)
2477 __releases(rnp->lock)
2479 unsigned long gps;
2480 unsigned long mask;
2481 struct rcu_node *rnp_p;
2483 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2484 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2485 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2486 return; /* Still need more quiescent states! */
2489 rnp_p = rnp->parent;
2490 if (rnp_p == NULL) {
2492 * Only one rcu_node structure in the tree, so don't
2493 * try to report up to its nonexistent parent!
2495 rcu_report_qs_rsp(rsp, flags);
2496 return;
2499 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2500 gps = rnp->gpnum;
2501 mask = rnp->grpmask;
2502 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2503 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2504 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2508 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2509 * structure. This must be called from the specified CPU.
2511 static void
2512 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2514 unsigned long flags;
2515 unsigned long mask;
2516 bool needwake;
2517 struct rcu_node *rnp;
2519 rnp = rdp->mynode;
2520 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2521 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2522 rnp->completed == rnp->gpnum || rdp->gpwrap) {
2525 * The grace period in which this quiescent state was
2526 * recorded has ended, so don't report it upwards.
2527 * We will instead need a new quiescent state that lies
2528 * within the current grace period.
2530 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2531 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2532 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2533 return;
2535 mask = rdp->grpmask;
2536 if ((rnp->qsmask & mask) == 0) {
2537 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2538 } else {
2539 rdp->core_needs_qs = false;
2542 * This GP can't end until cpu checks in, so all of our
2543 * callbacks can be processed during the next GP.
2545 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2547 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2548 /* ^^^ Released rnp->lock */
2549 if (needwake)
2550 rcu_gp_kthread_wake(rsp);
2555 * Check to see if there is a new grace period of which this CPU
2556 * is not yet aware, and if so, set up local rcu_data state for it.
2557 * Otherwise, see if this CPU has just passed through its first
2558 * quiescent state for this grace period, and record that fact if so.
2560 static void
2561 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2563 /* Check for grace-period ends and beginnings. */
2564 note_gp_changes(rsp, rdp);
2567 * Does this CPU still need to do its part for current grace period?
2568 * If no, return and let the other CPUs do their part as well.
2570 if (!rdp->core_needs_qs)
2571 return;
2574 * Was there a quiescent state since the beginning of the grace
2575 * period? If no, then exit and wait for the next call.
2577 if (rdp->cpu_no_qs.b.norm)
2578 return;
2581 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2582 * judge of that).
2584 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2588 * Send the specified CPU's RCU callbacks to the orphanage. The
2589 * specified CPU must be offline, and the caller must hold the
2590 * ->orphan_lock.
2592 static void
2593 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2594 struct rcu_node *rnp, struct rcu_data *rdp)
2596 /* No-CBs CPUs do not have orphanable callbacks. */
2597 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2598 return;
2601 * Orphan the callbacks. First adjust the counts. This is safe
2602 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2603 * cannot be running now. Thus no memory barrier is required.
2605 rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2606 rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2609 * Next, move those callbacks still needing a grace period to
2610 * the orphanage, where some other CPU will pick them up.
2611 * Some of the callbacks might have gone partway through a grace
2612 * period, but that is too bad. They get to start over because we
2613 * cannot assume that grace periods are synchronized across CPUs.
2615 rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2618 * Then move the ready-to-invoke callbacks to the orphanage,
2619 * where some other CPU will pick them up. These will not be
2620 * required to pass though another grace period: They are done.
2622 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2624 /* Finally, disallow further callbacks on this CPU. */
2625 rcu_segcblist_disable(&rdp->cblist);
2629 * Adopt the RCU callbacks from the specified rcu_state structure's
2630 * orphanage. The caller must hold the ->orphan_lock.
2632 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2634 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2636 /* No-CBs CPUs are handled specially. */
2637 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2638 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2639 return;
2641 /* Do the accounting first. */
2642 rdp->n_cbs_adopted += rcu_cblist_n_cbs(&rsp->orphan_done);
2643 if (rcu_cblist_n_lazy_cbs(&rsp->orphan_done) !=
2644 rcu_cblist_n_cbs(&rsp->orphan_done))
2645 rcu_idle_count_callbacks_posted();
2646 rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2649 * We do not need a memory barrier here because the only way we
2650 * can get here if there is an rcu_barrier() in flight is if
2651 * we are the task doing the rcu_barrier().
2654 /* First adopt the ready-to-invoke callbacks, then the done ones. */
2655 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
2656 WARN_ON_ONCE(!rcu_cblist_empty(&rsp->orphan_done));
2657 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2658 WARN_ON_ONCE(!rcu_cblist_empty(&rsp->orphan_pend));
2659 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2660 !rcu_segcblist_n_cbs(&rdp->cblist));
2664 * Trace the fact that this CPU is going offline.
2666 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2668 RCU_TRACE(unsigned long mask;)
2669 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2670 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2672 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2673 return;
2675 RCU_TRACE(mask = rdp->grpmask;)
2676 trace_rcu_grace_period(rsp->name,
2677 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2678 TPS("cpuofl"));
2682 * All CPUs for the specified rcu_node structure have gone offline,
2683 * and all tasks that were preempted within an RCU read-side critical
2684 * section while running on one of those CPUs have since exited their RCU
2685 * read-side critical section. Some other CPU is reporting this fact with
2686 * the specified rcu_node structure's ->lock held and interrupts disabled.
2687 * This function therefore goes up the tree of rcu_node structures,
2688 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2689 * the leaf rcu_node structure's ->qsmaskinit field has already been
2690 * updated
2692 * This function does check that the specified rcu_node structure has
2693 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2694 * prematurely. That said, invoking it after the fact will cost you
2695 * a needless lock acquisition. So once it has done its work, don't
2696 * invoke it again.
2698 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2700 long mask;
2701 struct rcu_node *rnp = rnp_leaf;
2703 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2704 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2705 return;
2706 for (;;) {
2707 mask = rnp->grpmask;
2708 rnp = rnp->parent;
2709 if (!rnp)
2710 break;
2711 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2712 rnp->qsmaskinit &= ~mask;
2713 rnp->qsmask &= ~mask;
2714 if (rnp->qsmaskinit) {
2715 raw_spin_unlock_rcu_node(rnp);
2716 /* irqs remain disabled. */
2717 return;
2719 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2724 * The CPU has been completely removed, and some other CPU is reporting
2725 * this fact from process context. Do the remainder of the cleanup,
2726 * including orphaning the outgoing CPU's RCU callbacks, and also
2727 * adopting them. There can only be one CPU hotplug operation at a time,
2728 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2730 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2732 unsigned long flags;
2733 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2734 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2736 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2737 return;
2739 /* Adjust any no-longer-needed kthreads. */
2740 rcu_boost_kthread_setaffinity(rnp, -1);
2742 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2743 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2744 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2745 rcu_adopt_orphan_cbs(rsp, flags);
2746 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2748 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2749 !rcu_segcblist_empty(&rdp->cblist),
2750 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2751 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2752 rcu_segcblist_first_cb(&rdp->cblist));
2756 * Invoke any RCU callbacks that have made it to the end of their grace
2757 * period. Thottle as specified by rdp->blimit.
2759 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2761 unsigned long flags;
2762 struct rcu_head *rhp;
2763 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2764 long bl, count;
2766 /* If no callbacks are ready, just return. */
2767 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2768 trace_rcu_batch_start(rsp->name,
2769 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2770 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2771 trace_rcu_batch_end(rsp->name, 0,
2772 !rcu_segcblist_empty(&rdp->cblist),
2773 need_resched(), is_idle_task(current),
2774 rcu_is_callbacks_kthread());
2775 return;
2779 * Extract the list of ready callbacks, disabling to prevent
2780 * races with call_rcu() from interrupt handlers. Leave the
2781 * callback counts, as rcu_barrier() needs to be conservative.
2783 local_irq_save(flags);
2784 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2785 bl = rdp->blimit;
2786 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2787 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2788 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2789 local_irq_restore(flags);
2791 /* Invoke callbacks. */
2792 rhp = rcu_cblist_dequeue(&rcl);
2793 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2794 debug_rcu_head_unqueue(rhp);
2795 if (__rcu_reclaim(rsp->name, rhp))
2796 rcu_cblist_dequeued_lazy(&rcl);
2798 * Stop only if limit reached and CPU has something to do.
2799 * Note: The rcl structure counts down from zero.
2801 if (-rcu_cblist_n_cbs(&rcl) >= bl &&
2802 (need_resched() ||
2803 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2804 break;
2807 local_irq_save(flags);
2808 count = -rcu_cblist_n_cbs(&rcl);
2809 trace_rcu_batch_end(rsp->name, count, !rcu_cblist_empty(&rcl),
2810 need_resched(), is_idle_task(current),
2811 rcu_is_callbacks_kthread());
2813 /* Update counts and requeue any remaining callbacks. */
2814 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2815 smp_mb(); /* List handling before counting for rcu_barrier(). */
2816 rdp->n_cbs_invoked += count;
2817 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2819 /* Reinstate batch limit if we have worked down the excess. */
2820 count = rcu_segcblist_n_cbs(&rdp->cblist);
2821 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2822 rdp->blimit = blimit;
2824 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2825 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2826 rdp->qlen_last_fqs_check = 0;
2827 rdp->n_force_qs_snap = rsp->n_force_qs;
2828 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2829 rdp->qlen_last_fqs_check = count;
2830 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2832 local_irq_restore(flags);
2834 /* Re-invoke RCU core processing if there are callbacks remaining. */
2835 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2836 invoke_rcu_core();
2840 * Check to see if this CPU is in a non-context-switch quiescent state
2841 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2842 * Also schedule RCU core processing.
2844 * This function must be called from hardirq context. It is normally
2845 * invoked from the scheduling-clock interrupt.
2847 void rcu_check_callbacks(int user)
2849 trace_rcu_utilization(TPS("Start scheduler-tick"));
2850 increment_cpu_stall_ticks();
2851 if (user || rcu_is_cpu_rrupt_from_idle()) {
2854 * Get here if this CPU took its interrupt from user
2855 * mode or from the idle loop, and if this is not a
2856 * nested interrupt. In this case, the CPU is in
2857 * a quiescent state, so note it.
2859 * No memory barrier is required here because both
2860 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2861 * variables that other CPUs neither access nor modify,
2862 * at least not while the corresponding CPU is online.
2865 rcu_sched_qs();
2866 rcu_bh_qs();
2868 } else if (!in_softirq()) {
2871 * Get here if this CPU did not take its interrupt from
2872 * softirq, in other words, if it is not interrupting
2873 * a rcu_bh read-side critical section. This is an _bh
2874 * critical section, so note it.
2877 rcu_bh_qs();
2879 rcu_preempt_check_callbacks();
2880 if (rcu_pending())
2881 invoke_rcu_core();
2882 if (user)
2883 rcu_note_voluntary_context_switch(current);
2884 trace_rcu_utilization(TPS("End scheduler-tick"));
2888 * Scan the leaf rcu_node structures, processing dyntick state for any that
2889 * have not yet encountered a quiescent state, using the function specified.
2890 * Also initiate boosting for any threads blocked on the root rcu_node.
2892 * The caller must have suppressed start of new grace periods.
2894 static void force_qs_rnp(struct rcu_state *rsp,
2895 int (*f)(struct rcu_data *rsp, bool *isidle,
2896 unsigned long *maxj),
2897 bool *isidle, unsigned long *maxj)
2899 int cpu;
2900 unsigned long flags;
2901 unsigned long mask;
2902 struct rcu_node *rnp;
2904 rcu_for_each_leaf_node(rsp, rnp) {
2905 cond_resched_rcu_qs();
2906 mask = 0;
2907 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2908 if (rnp->qsmask == 0) {
2909 if (rcu_state_p == &rcu_sched_state ||
2910 rsp != rcu_state_p ||
2911 rcu_preempt_blocked_readers_cgp(rnp)) {
2913 * No point in scanning bits because they
2914 * are all zero. But we might need to
2915 * priority-boost blocked readers.
2917 rcu_initiate_boost(rnp, flags);
2918 /* rcu_initiate_boost() releases rnp->lock */
2919 continue;
2921 if (rnp->parent &&
2922 (rnp->parent->qsmask & rnp->grpmask)) {
2924 * Race between grace-period
2925 * initialization and task exiting RCU
2926 * read-side critical section: Report.
2928 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2929 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2930 continue;
2933 for_each_leaf_node_possible_cpu(rnp, cpu) {
2934 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2935 if ((rnp->qsmask & bit) != 0) {
2936 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2937 mask |= bit;
2940 if (mask != 0) {
2941 /* Idle/offline CPUs, report (releases rnp->lock. */
2942 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2943 } else {
2944 /* Nothing to do here, so just drop the lock. */
2945 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2951 * Force quiescent states on reluctant CPUs, and also detect which
2952 * CPUs are in dyntick-idle mode.
2954 static void force_quiescent_state(struct rcu_state *rsp)
2956 unsigned long flags;
2957 bool ret;
2958 struct rcu_node *rnp;
2959 struct rcu_node *rnp_old = NULL;
2961 /* Funnel through hierarchy to reduce memory contention. */
2962 rnp = __this_cpu_read(rsp->rda->mynode);
2963 for (; rnp != NULL; rnp = rnp->parent) {
2964 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2965 !raw_spin_trylock(&rnp->fqslock);
2966 if (rnp_old != NULL)
2967 raw_spin_unlock(&rnp_old->fqslock);
2968 if (ret) {
2969 rsp->n_force_qs_lh++;
2970 return;
2972 rnp_old = rnp;
2974 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2976 /* Reached the root of the rcu_node tree, acquire lock. */
2977 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2978 raw_spin_unlock(&rnp_old->fqslock);
2979 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2980 rsp->n_force_qs_lh++;
2981 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2982 return; /* Someone beat us to it. */
2984 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2985 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2986 rcu_gp_kthread_wake(rsp);
2990 * This does the RCU core processing work for the specified rcu_state
2991 * and rcu_data structures. This may be called only from the CPU to
2992 * whom the rdp belongs.
2994 static void
2995 __rcu_process_callbacks(struct rcu_state *rsp)
2997 unsigned long flags;
2998 bool needwake;
2999 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3001 WARN_ON_ONCE(rdp->beenonline == 0);
3003 /* Update RCU state based on any recent quiescent states. */
3004 rcu_check_quiescent_state(rsp, rdp);
3006 /* Does this CPU require a not-yet-started grace period? */
3007 local_irq_save(flags);
3008 if (cpu_needs_another_gp(rsp, rdp)) {
3009 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3010 needwake = rcu_start_gp(rsp);
3011 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3012 if (needwake)
3013 rcu_gp_kthread_wake(rsp);
3014 } else {
3015 local_irq_restore(flags);
3018 /* If there are callbacks ready, invoke them. */
3019 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3020 invoke_rcu_callbacks(rsp, rdp);
3022 /* Do any needed deferred wakeups of rcuo kthreads. */
3023 do_nocb_deferred_wakeup(rdp);
3027 * Do RCU core processing for the current CPU.
3029 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3031 struct rcu_state *rsp;
3033 if (cpu_is_offline(smp_processor_id()))
3034 return;
3035 trace_rcu_utilization(TPS("Start RCU core"));
3036 for_each_rcu_flavor(rsp)
3037 __rcu_process_callbacks(rsp);
3038 trace_rcu_utilization(TPS("End RCU core"));
3042 * Schedule RCU callback invocation. If the specified type of RCU
3043 * does not support RCU priority boosting, just do a direct call,
3044 * otherwise wake up the per-CPU kernel kthread. Note that because we
3045 * are running on the current CPU with softirqs disabled, the
3046 * rcu_cpu_kthread_task cannot disappear out from under us.
3048 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3050 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3051 return;
3052 if (likely(!rsp->boost)) {
3053 rcu_do_batch(rsp, rdp);
3054 return;
3056 invoke_rcu_callbacks_kthread();
3059 static void invoke_rcu_core(void)
3061 if (cpu_online(smp_processor_id()))
3062 raise_softirq(RCU_SOFTIRQ);
3066 * Handle any core-RCU processing required by a call_rcu() invocation.
3068 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3069 struct rcu_head *head, unsigned long flags)
3071 bool needwake;
3074 * If called from an extended quiescent state, invoke the RCU
3075 * core in order to force a re-evaluation of RCU's idleness.
3077 if (!rcu_is_watching())
3078 invoke_rcu_core();
3080 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3081 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3082 return;
3085 * Force the grace period if too many callbacks or too long waiting.
3086 * Enforce hysteresis, and don't invoke force_quiescent_state()
3087 * if some other CPU has recently done so. Also, don't bother
3088 * invoking force_quiescent_state() if the newly enqueued callback
3089 * is the only one waiting for a grace period to complete.
3091 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3092 rdp->qlen_last_fqs_check + qhimark)) {
3094 /* Are we ignoring a completed grace period? */
3095 note_gp_changes(rsp, rdp);
3097 /* Start a new grace period if one not already started. */
3098 if (!rcu_gp_in_progress(rsp)) {
3099 struct rcu_node *rnp_root = rcu_get_root(rsp);
3101 raw_spin_lock_rcu_node(rnp_root);
3102 needwake = rcu_start_gp(rsp);
3103 raw_spin_unlock_rcu_node(rnp_root);
3104 if (needwake)
3105 rcu_gp_kthread_wake(rsp);
3106 } else {
3107 /* Give the grace period a kick. */
3108 rdp->blimit = LONG_MAX;
3109 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3110 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3111 force_quiescent_state(rsp);
3112 rdp->n_force_qs_snap = rsp->n_force_qs;
3113 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3119 * RCU callback function to leak a callback.
3121 static void rcu_leak_callback(struct rcu_head *rhp)
3126 * Helper function for call_rcu() and friends. The cpu argument will
3127 * normally be -1, indicating "currently running CPU". It may specify
3128 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3129 * is expected to specify a CPU.
3131 static void
3132 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3133 struct rcu_state *rsp, int cpu, bool lazy)
3135 unsigned long flags;
3136 struct rcu_data *rdp;
3138 /* Misaligned rcu_head! */
3139 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3141 if (debug_rcu_head_queue(head)) {
3142 /* Probable double call_rcu(), so leak the callback. */
3143 WRITE_ONCE(head->func, rcu_leak_callback);
3144 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3145 return;
3147 head->func = func;
3148 head->next = NULL;
3149 local_irq_save(flags);
3150 rdp = this_cpu_ptr(rsp->rda);
3152 /* Add the callback to our list. */
3153 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3154 int offline;
3156 if (cpu != -1)
3157 rdp = per_cpu_ptr(rsp->rda, cpu);
3158 if (likely(rdp->mynode)) {
3159 /* Post-boot, so this should be for a no-CBs CPU. */
3160 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3161 WARN_ON_ONCE(offline);
3162 /* Offline CPU, _call_rcu() illegal, leak callback. */
3163 local_irq_restore(flags);
3164 return;
3167 * Very early boot, before rcu_init(). Initialize if needed
3168 * and then drop through to queue the callback.
3170 BUG_ON(cpu != -1);
3171 WARN_ON_ONCE(!rcu_is_watching());
3172 if (rcu_segcblist_empty(&rdp->cblist))
3173 rcu_segcblist_init(&rdp->cblist);
3175 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3176 if (!lazy)
3177 rcu_idle_count_callbacks_posted();
3179 if (__is_kfree_rcu_offset((unsigned long)func))
3180 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3181 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3182 rcu_segcblist_n_cbs(&rdp->cblist));
3183 else
3184 trace_rcu_callback(rsp->name, head,
3185 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3186 rcu_segcblist_n_cbs(&rdp->cblist));
3188 /* Go handle any RCU core processing required. */
3189 __call_rcu_core(rsp, rdp, head, flags);
3190 local_irq_restore(flags);
3194 * Queue an RCU-sched callback for invocation after a grace period.
3196 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3198 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3200 EXPORT_SYMBOL_GPL(call_rcu_sched);
3203 * Queue an RCU callback for invocation after a quicker grace period.
3205 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3207 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3209 EXPORT_SYMBOL_GPL(call_rcu_bh);
3212 * Queue an RCU callback for lazy invocation after a grace period.
3213 * This will likely be later named something like "call_rcu_lazy()",
3214 * but this change will require some way of tagging the lazy RCU
3215 * callbacks in the list of pending callbacks. Until then, this
3216 * function may only be called from __kfree_rcu().
3218 void kfree_call_rcu(struct rcu_head *head,
3219 rcu_callback_t func)
3221 __call_rcu(head, func, rcu_state_p, -1, 1);
3223 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3226 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3227 * any blocking grace-period wait automatically implies a grace period
3228 * if there is only one CPU online at any point time during execution
3229 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3230 * occasionally incorrectly indicate that there are multiple CPUs online
3231 * when there was in fact only one the whole time, as this just adds
3232 * some overhead: RCU still operates correctly.
3234 static inline int rcu_blocking_is_gp(void)
3236 int ret;
3238 might_sleep(); /* Check for RCU read-side critical section. */
3239 preempt_disable();
3240 ret = num_online_cpus() <= 1;
3241 preempt_enable();
3242 return ret;
3246 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3248 * Control will return to the caller some time after a full rcu-sched
3249 * grace period has elapsed, in other words after all currently executing
3250 * rcu-sched read-side critical sections have completed. These read-side
3251 * critical sections are delimited by rcu_read_lock_sched() and
3252 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3253 * local_irq_disable(), and so on may be used in place of
3254 * rcu_read_lock_sched().
3256 * This means that all preempt_disable code sequences, including NMI and
3257 * non-threaded hardware-interrupt handlers, in progress on entry will
3258 * have completed before this primitive returns. However, this does not
3259 * guarantee that softirq handlers will have completed, since in some
3260 * kernels, these handlers can run in process context, and can block.
3262 * Note that this guarantee implies further memory-ordering guarantees.
3263 * On systems with more than one CPU, when synchronize_sched() returns,
3264 * each CPU is guaranteed to have executed a full memory barrier since the
3265 * end of its last RCU-sched read-side critical section whose beginning
3266 * preceded the call to synchronize_sched(). In addition, each CPU having
3267 * an RCU read-side critical section that extends beyond the return from
3268 * synchronize_sched() is guaranteed to have executed a full memory barrier
3269 * after the beginning of synchronize_sched() and before the beginning of
3270 * that RCU read-side critical section. Note that these guarantees include
3271 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3272 * that are executing in the kernel.
3274 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3275 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3276 * to have executed a full memory barrier during the execution of
3277 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3278 * again only if the system has more than one CPU).
3280 * This primitive provides the guarantees made by the (now removed)
3281 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3282 * guarantees that rcu_read_lock() sections will have completed.
3283 * In "classic RCU", these two guarantees happen to be one and
3284 * the same, but can differ in realtime RCU implementations.
3286 void synchronize_sched(void)
3288 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3289 lock_is_held(&rcu_lock_map) ||
3290 lock_is_held(&rcu_sched_lock_map),
3291 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3292 if (rcu_blocking_is_gp())
3293 return;
3294 if (rcu_gp_is_expedited())
3295 synchronize_sched_expedited();
3296 else
3297 wait_rcu_gp(call_rcu_sched);
3299 EXPORT_SYMBOL_GPL(synchronize_sched);
3302 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3304 * Control will return to the caller some time after a full rcu_bh grace
3305 * period has elapsed, in other words after all currently executing rcu_bh
3306 * read-side critical sections have completed. RCU read-side critical
3307 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3308 * and may be nested.
3310 * See the description of synchronize_sched() for more detailed information
3311 * on memory ordering guarantees.
3313 void synchronize_rcu_bh(void)
3315 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3316 lock_is_held(&rcu_lock_map) ||
3317 lock_is_held(&rcu_sched_lock_map),
3318 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3319 if (rcu_blocking_is_gp())
3320 return;
3321 if (rcu_gp_is_expedited())
3322 synchronize_rcu_bh_expedited();
3323 else
3324 wait_rcu_gp(call_rcu_bh);
3326 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3329 * get_state_synchronize_rcu - Snapshot current RCU state
3331 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3332 * to determine whether or not a full grace period has elapsed in the
3333 * meantime.
3335 unsigned long get_state_synchronize_rcu(void)
3338 * Any prior manipulation of RCU-protected data must happen
3339 * before the load from ->gpnum.
3341 smp_mb(); /* ^^^ */
3344 * Make sure this load happens before the purportedly
3345 * time-consuming work between get_state_synchronize_rcu()
3346 * and cond_synchronize_rcu().
3348 return smp_load_acquire(&rcu_state_p->gpnum);
3350 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3353 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3355 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3357 * If a full RCU grace period has elapsed since the earlier call to
3358 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3359 * synchronize_rcu() to wait for a full grace period.
3361 * Yes, this function does not take counter wrap into account. But
3362 * counter wrap is harmless. If the counter wraps, we have waited for
3363 * more than 2 billion grace periods (and way more on a 64-bit system!),
3364 * so waiting for one additional grace period should be just fine.
3366 void cond_synchronize_rcu(unsigned long oldstate)
3368 unsigned long newstate;
3371 * Ensure that this load happens before any RCU-destructive
3372 * actions the caller might carry out after we return.
3374 newstate = smp_load_acquire(&rcu_state_p->completed);
3375 if (ULONG_CMP_GE(oldstate, newstate))
3376 synchronize_rcu();
3378 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3381 * get_state_synchronize_sched - Snapshot current RCU-sched state
3383 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3384 * to determine whether or not a full grace period has elapsed in the
3385 * meantime.
3387 unsigned long get_state_synchronize_sched(void)
3390 * Any prior manipulation of RCU-protected data must happen
3391 * before the load from ->gpnum.
3393 smp_mb(); /* ^^^ */
3396 * Make sure this load happens before the purportedly
3397 * time-consuming work between get_state_synchronize_sched()
3398 * and cond_synchronize_sched().
3400 return smp_load_acquire(&rcu_sched_state.gpnum);
3402 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3405 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3407 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3409 * If a full RCU-sched grace period has elapsed since the earlier call to
3410 * get_state_synchronize_sched(), just return. Otherwise, invoke
3411 * synchronize_sched() to wait for a full grace period.
3413 * Yes, this function does not take counter wrap into account. But
3414 * counter wrap is harmless. If the counter wraps, we have waited for
3415 * more than 2 billion grace periods (and way more on a 64-bit system!),
3416 * so waiting for one additional grace period should be just fine.
3418 void cond_synchronize_sched(unsigned long oldstate)
3420 unsigned long newstate;
3423 * Ensure that this load happens before any RCU-destructive
3424 * actions the caller might carry out after we return.
3426 newstate = smp_load_acquire(&rcu_sched_state.completed);
3427 if (ULONG_CMP_GE(oldstate, newstate))
3428 synchronize_sched();
3430 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3433 * Check to see if there is any immediate RCU-related work to be done
3434 * by the current CPU, for the specified type of RCU, returning 1 if so.
3435 * The checks are in order of increasing expense: checks that can be
3436 * carried out against CPU-local state are performed first. However,
3437 * we must check for CPU stalls first, else we might not get a chance.
3439 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3441 struct rcu_node *rnp = rdp->mynode;
3443 rdp->n_rcu_pending++;
3445 /* Check for CPU stalls, if enabled. */
3446 check_cpu_stall(rsp, rdp);
3448 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3449 if (rcu_nohz_full_cpu(rsp))
3450 return 0;
3452 /* Is the RCU core waiting for a quiescent state from this CPU? */
3453 if (rcu_scheduler_fully_active &&
3454 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3455 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3456 rdp->n_rp_core_needs_qs++;
3457 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3458 rdp->n_rp_report_qs++;
3459 return 1;
3462 /* Does this CPU have callbacks ready to invoke? */
3463 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3464 rdp->n_rp_cb_ready++;
3465 return 1;
3468 /* Has RCU gone idle with this CPU needing another grace period? */
3469 if (cpu_needs_another_gp(rsp, rdp)) {
3470 rdp->n_rp_cpu_needs_gp++;
3471 return 1;
3474 /* Has another RCU grace period completed? */
3475 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3476 rdp->n_rp_gp_completed++;
3477 return 1;
3480 /* Has a new RCU grace period started? */
3481 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3482 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3483 rdp->n_rp_gp_started++;
3484 return 1;
3487 /* Does this CPU need a deferred NOCB wakeup? */
3488 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3489 rdp->n_rp_nocb_defer_wakeup++;
3490 return 1;
3493 /* nothing to do */
3494 rdp->n_rp_need_nothing++;
3495 return 0;
3499 * Check to see if there is any immediate RCU-related work to be done
3500 * by the current CPU, returning 1 if so. This function is part of the
3501 * RCU implementation; it is -not- an exported member of the RCU API.
3503 static int rcu_pending(void)
3505 struct rcu_state *rsp;
3507 for_each_rcu_flavor(rsp)
3508 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3509 return 1;
3510 return 0;
3514 * Return true if the specified CPU has any callback. If all_lazy is
3515 * non-NULL, store an indication of whether all callbacks are lazy.
3516 * (If there are no callbacks, all of them are deemed to be lazy.)
3518 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3520 bool al = true;
3521 bool hc = false;
3522 struct rcu_data *rdp;
3523 struct rcu_state *rsp;
3525 for_each_rcu_flavor(rsp) {
3526 rdp = this_cpu_ptr(rsp->rda);
3527 if (rcu_segcblist_empty(&rdp->cblist))
3528 continue;
3529 hc = true;
3530 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3531 al = false;
3532 break;
3535 if (all_lazy)
3536 *all_lazy = al;
3537 return hc;
3541 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3542 * the compiler is expected to optimize this away.
3544 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3545 int cpu, unsigned long done)
3547 trace_rcu_barrier(rsp->name, s, cpu,
3548 atomic_read(&rsp->barrier_cpu_count), done);
3552 * RCU callback function for _rcu_barrier(). If we are last, wake
3553 * up the task executing _rcu_barrier().
3555 static void rcu_barrier_callback(struct rcu_head *rhp)
3557 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3558 struct rcu_state *rsp = rdp->rsp;
3560 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3561 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3562 complete(&rsp->barrier_completion);
3563 } else {
3564 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3569 * Called with preemption disabled, and from cross-cpu IRQ context.
3571 static void rcu_barrier_func(void *type)
3573 struct rcu_state *rsp = type;
3574 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3576 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3577 atomic_inc(&rsp->barrier_cpu_count);
3578 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3582 * Orchestrate the specified type of RCU barrier, waiting for all
3583 * RCU callbacks of the specified type to complete.
3585 static void _rcu_barrier(struct rcu_state *rsp)
3587 int cpu;
3588 struct rcu_data *rdp;
3589 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3591 _rcu_barrier_trace(rsp, "Begin", -1, s);
3593 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3594 mutex_lock(&rsp->barrier_mutex);
3596 /* Did someone else do our work for us? */
3597 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3598 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3599 smp_mb(); /* caller's subsequent code after above check. */
3600 mutex_unlock(&rsp->barrier_mutex);
3601 return;
3604 /* Mark the start of the barrier operation. */
3605 rcu_seq_start(&rsp->barrier_sequence);
3606 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3609 * Initialize the count to one rather than to zero in order to
3610 * avoid a too-soon return to zero in case of a short grace period
3611 * (or preemption of this task). Exclude CPU-hotplug operations
3612 * to ensure that no offline CPU has callbacks queued.
3614 init_completion(&rsp->barrier_completion);
3615 atomic_set(&rsp->barrier_cpu_count, 1);
3616 get_online_cpus();
3619 * Force each CPU with callbacks to register a new callback.
3620 * When that callback is invoked, we will know that all of the
3621 * corresponding CPU's preceding callbacks have been invoked.
3623 for_each_possible_cpu(cpu) {
3624 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3625 continue;
3626 rdp = per_cpu_ptr(rsp->rda, cpu);
3627 if (rcu_is_nocb_cpu(cpu)) {
3628 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3629 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3630 rsp->barrier_sequence);
3631 } else {
3632 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3633 rsp->barrier_sequence);
3634 smp_mb__before_atomic();
3635 atomic_inc(&rsp->barrier_cpu_count);
3636 __call_rcu(&rdp->barrier_head,
3637 rcu_barrier_callback, rsp, cpu, 0);
3639 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3640 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3641 rsp->barrier_sequence);
3642 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3643 } else {
3644 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3645 rsp->barrier_sequence);
3648 put_online_cpus();
3651 * Now that we have an rcu_barrier_callback() callback on each
3652 * CPU, and thus each counted, remove the initial count.
3654 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3655 complete(&rsp->barrier_completion);
3657 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3658 wait_for_completion(&rsp->barrier_completion);
3660 /* Mark the end of the barrier operation. */
3661 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3662 rcu_seq_end(&rsp->barrier_sequence);
3664 /* Other rcu_barrier() invocations can now safely proceed. */
3665 mutex_unlock(&rsp->barrier_mutex);
3669 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3671 void rcu_barrier_bh(void)
3673 _rcu_barrier(&rcu_bh_state);
3675 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3678 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3680 void rcu_barrier_sched(void)
3682 _rcu_barrier(&rcu_sched_state);
3684 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3687 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3688 * first CPU in a given leaf rcu_node structure coming online. The caller
3689 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3690 * disabled.
3692 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3694 long mask;
3695 struct rcu_node *rnp = rnp_leaf;
3697 for (;;) {
3698 mask = rnp->grpmask;
3699 rnp = rnp->parent;
3700 if (rnp == NULL)
3701 return;
3702 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3703 rnp->qsmaskinit |= mask;
3704 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3709 * Do boot-time initialization of a CPU's per-CPU RCU data.
3711 static void __init
3712 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3714 unsigned long flags;
3715 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3716 struct rcu_node *rnp = rcu_get_root(rsp);
3718 /* Set up local state, ensuring consistent view of global state. */
3719 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3720 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3721 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3722 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3723 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3724 rdp->cpu = cpu;
3725 rdp->rsp = rsp;
3726 rcu_boot_init_nocb_percpu_data(rdp);
3727 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3731 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3732 * offline event can be happening at a given time. Note also that we
3733 * can accept some slop in the rsp->completed access due to the fact
3734 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3736 static void
3737 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3739 unsigned long flags;
3740 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3741 struct rcu_node *rnp = rcu_get_root(rsp);
3743 /* Set up local state, ensuring consistent view of global state. */
3744 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3745 rdp->qlen_last_fqs_check = 0;
3746 rdp->n_force_qs_snap = rsp->n_force_qs;
3747 rdp->blimit = blimit;
3748 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3749 !init_nocb_callback_list(rdp))
3750 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3751 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3752 rcu_sysidle_init_percpu_data(rdp->dynticks);
3753 rcu_dynticks_eqs_online();
3754 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3757 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3758 * propagation up the rcu_node tree will happen at the beginning
3759 * of the next grace period.
3761 rnp = rdp->mynode;
3762 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3763 if (!rdp->beenonline)
3764 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3765 rdp->beenonline = true; /* We have now been online. */
3766 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3767 rdp->completed = rnp->completed;
3768 rdp->cpu_no_qs.b.norm = true;
3769 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3770 rdp->core_needs_qs = false;
3771 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3772 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3775 int rcutree_prepare_cpu(unsigned int cpu)
3777 struct rcu_state *rsp;
3779 for_each_rcu_flavor(rsp)
3780 rcu_init_percpu_data(cpu, rsp);
3782 rcu_prepare_kthreads(cpu);
3783 rcu_spawn_all_nocb_kthreads(cpu);
3785 return 0;
3788 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3790 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3792 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3795 int rcutree_online_cpu(unsigned int cpu)
3797 sync_sched_exp_online_cleanup(cpu);
3798 rcutree_affinity_setting(cpu, -1);
3799 if (IS_ENABLED(CONFIG_TREE_SRCU))
3800 srcu_online_cpu(cpu);
3801 return 0;
3804 int rcutree_offline_cpu(unsigned int cpu)
3806 rcutree_affinity_setting(cpu, cpu);
3807 if (IS_ENABLED(CONFIG_TREE_SRCU))
3808 srcu_offline_cpu(cpu);
3809 return 0;
3813 int rcutree_dying_cpu(unsigned int cpu)
3815 struct rcu_state *rsp;
3817 for_each_rcu_flavor(rsp)
3818 rcu_cleanup_dying_cpu(rsp);
3819 return 0;
3822 int rcutree_dead_cpu(unsigned int cpu)
3824 struct rcu_state *rsp;
3826 for_each_rcu_flavor(rsp) {
3827 rcu_cleanup_dead_cpu(cpu, rsp);
3828 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3830 return 0;
3834 * Mark the specified CPU as being online so that subsequent grace periods
3835 * (both expedited and normal) will wait on it. Note that this means that
3836 * incoming CPUs are not allowed to use RCU read-side critical sections
3837 * until this function is called. Failing to observe this restriction
3838 * will result in lockdep splats.
3840 void rcu_cpu_starting(unsigned int cpu)
3842 unsigned long flags;
3843 unsigned long mask;
3844 struct rcu_data *rdp;
3845 struct rcu_node *rnp;
3846 struct rcu_state *rsp;
3848 for_each_rcu_flavor(rsp) {
3849 rdp = per_cpu_ptr(rsp->rda, cpu);
3850 rnp = rdp->mynode;
3851 mask = rdp->grpmask;
3852 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3853 rnp->qsmaskinitnext |= mask;
3854 rnp->expmaskinitnext |= mask;
3855 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3859 #ifdef CONFIG_HOTPLUG_CPU
3861 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3862 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3863 * bit masks.
3864 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3865 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3866 * bit masks.
3868 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3870 unsigned long flags;
3871 unsigned long mask;
3872 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3873 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3875 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3876 mask = rdp->grpmask;
3877 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3878 rnp->qsmaskinitnext &= ~mask;
3879 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3882 void rcu_report_dead(unsigned int cpu)
3884 struct rcu_state *rsp;
3886 /* QS for any half-done expedited RCU-sched GP. */
3887 preempt_disable();
3888 rcu_report_exp_rdp(&rcu_sched_state,
3889 this_cpu_ptr(rcu_sched_state.rda), true);
3890 preempt_enable();
3891 for_each_rcu_flavor(rsp)
3892 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3894 #endif
3896 static int rcu_pm_notify(struct notifier_block *self,
3897 unsigned long action, void *hcpu)
3899 switch (action) {
3900 case PM_HIBERNATION_PREPARE:
3901 case PM_SUSPEND_PREPARE:
3902 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3903 rcu_expedite_gp();
3904 break;
3905 case PM_POST_HIBERNATION:
3906 case PM_POST_SUSPEND:
3907 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3908 rcu_unexpedite_gp();
3909 break;
3910 default:
3911 break;
3913 return NOTIFY_OK;
3917 * Spawn the kthreads that handle each RCU flavor's grace periods.
3919 static int __init rcu_spawn_gp_kthread(void)
3921 unsigned long flags;
3922 int kthread_prio_in = kthread_prio;
3923 struct rcu_node *rnp;
3924 struct rcu_state *rsp;
3925 struct sched_param sp;
3926 struct task_struct *t;
3928 /* Force priority into range. */
3929 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3930 kthread_prio = 1;
3931 else if (kthread_prio < 0)
3932 kthread_prio = 0;
3933 else if (kthread_prio > 99)
3934 kthread_prio = 99;
3935 if (kthread_prio != kthread_prio_in)
3936 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3937 kthread_prio, kthread_prio_in);
3939 rcu_scheduler_fully_active = 1;
3940 for_each_rcu_flavor(rsp) {
3941 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3942 BUG_ON(IS_ERR(t));
3943 rnp = rcu_get_root(rsp);
3944 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3945 rsp->gp_kthread = t;
3946 if (kthread_prio) {
3947 sp.sched_priority = kthread_prio;
3948 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3950 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3951 wake_up_process(t);
3953 rcu_spawn_nocb_kthreads();
3954 rcu_spawn_boost_kthreads();
3955 return 0;
3957 early_initcall(rcu_spawn_gp_kthread);
3960 * This function is invoked towards the end of the scheduler's
3961 * initialization process. Before this is called, the idle task might
3962 * contain synchronous grace-period primitives (during which time, this idle
3963 * task is booting the system, and such primitives are no-ops). After this
3964 * function is called, any synchronous grace-period primitives are run as
3965 * expedited, with the requesting task driving the grace period forward.
3966 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3967 * runtime RCU functionality.
3969 void rcu_scheduler_starting(void)
3971 WARN_ON(num_online_cpus() != 1);
3972 WARN_ON(nr_context_switches() > 0);
3973 rcu_test_sync_prims();
3974 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3975 rcu_test_sync_prims();
3979 * Helper function for rcu_init() that initializes one rcu_state structure.
3981 static void __init rcu_init_one(struct rcu_state *rsp)
3983 static const char * const buf[] = RCU_NODE_NAME_INIT;
3984 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3985 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3986 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3988 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3989 int cpustride = 1;
3990 int i;
3991 int j;
3992 struct rcu_node *rnp;
3994 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3996 /* Silence gcc 4.8 false positive about array index out of range. */
3997 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3998 panic("rcu_init_one: rcu_num_lvls out of range");
4000 /* Initialize the level-tracking arrays. */
4002 for (i = 1; i < rcu_num_lvls; i++)
4003 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4004 rcu_init_levelspread(levelspread, num_rcu_lvl);
4006 /* Initialize the elements themselves, starting from the leaves. */
4008 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4009 cpustride *= levelspread[i];
4010 rnp = rsp->level[i];
4011 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4012 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4013 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4014 &rcu_node_class[i], buf[i]);
4015 raw_spin_lock_init(&rnp->fqslock);
4016 lockdep_set_class_and_name(&rnp->fqslock,
4017 &rcu_fqs_class[i], fqs[i]);
4018 rnp->gpnum = rsp->gpnum;
4019 rnp->completed = rsp->completed;
4020 rnp->qsmask = 0;
4021 rnp->qsmaskinit = 0;
4022 rnp->grplo = j * cpustride;
4023 rnp->grphi = (j + 1) * cpustride - 1;
4024 if (rnp->grphi >= nr_cpu_ids)
4025 rnp->grphi = nr_cpu_ids - 1;
4026 if (i == 0) {
4027 rnp->grpnum = 0;
4028 rnp->grpmask = 0;
4029 rnp->parent = NULL;
4030 } else {
4031 rnp->grpnum = j % levelspread[i - 1];
4032 rnp->grpmask = 1UL << rnp->grpnum;
4033 rnp->parent = rsp->level[i - 1] +
4034 j / levelspread[i - 1];
4036 rnp->level = i;
4037 INIT_LIST_HEAD(&rnp->blkd_tasks);
4038 rcu_init_one_nocb(rnp);
4039 init_waitqueue_head(&rnp->exp_wq[0]);
4040 init_waitqueue_head(&rnp->exp_wq[1]);
4041 init_waitqueue_head(&rnp->exp_wq[2]);
4042 init_waitqueue_head(&rnp->exp_wq[3]);
4043 spin_lock_init(&rnp->exp_lock);
4047 init_swait_queue_head(&rsp->gp_wq);
4048 init_swait_queue_head(&rsp->expedited_wq);
4049 rnp = rsp->level[rcu_num_lvls - 1];
4050 for_each_possible_cpu(i) {
4051 while (i > rnp->grphi)
4052 rnp++;
4053 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4054 rcu_boot_init_percpu_data(i, rsp);
4056 list_add(&rsp->flavors, &rcu_struct_flavors);
4060 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4061 * replace the definitions in tree.h because those are needed to size
4062 * the ->node array in the rcu_state structure.
4064 static void __init rcu_init_geometry(void)
4066 ulong d;
4067 int i;
4068 int rcu_capacity[RCU_NUM_LVLS];
4071 * Initialize any unspecified boot parameters.
4072 * The default values of jiffies_till_first_fqs and
4073 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4074 * value, which is a function of HZ, then adding one for each
4075 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4077 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4078 if (jiffies_till_first_fqs == ULONG_MAX)
4079 jiffies_till_first_fqs = d;
4080 if (jiffies_till_next_fqs == ULONG_MAX)
4081 jiffies_till_next_fqs = d;
4083 /* If the compile-time values are accurate, just leave. */
4084 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4085 nr_cpu_ids == NR_CPUS)
4086 return;
4087 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4088 rcu_fanout_leaf, nr_cpu_ids);
4091 * The boot-time rcu_fanout_leaf parameter must be at least two
4092 * and cannot exceed the number of bits in the rcu_node masks.
4093 * Complain and fall back to the compile-time values if this
4094 * limit is exceeded.
4096 if (rcu_fanout_leaf < 2 ||
4097 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4098 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4099 WARN_ON(1);
4100 return;
4104 * Compute number of nodes that can be handled an rcu_node tree
4105 * with the given number of levels.
4107 rcu_capacity[0] = rcu_fanout_leaf;
4108 for (i = 1; i < RCU_NUM_LVLS; i++)
4109 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4112 * The tree must be able to accommodate the configured number of CPUs.
4113 * If this limit is exceeded, fall back to the compile-time values.
4115 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4116 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4117 WARN_ON(1);
4118 return;
4121 /* Calculate the number of levels in the tree. */
4122 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4124 rcu_num_lvls = i + 1;
4126 /* Calculate the number of rcu_nodes at each level of the tree. */
4127 for (i = 0; i < rcu_num_lvls; i++) {
4128 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4129 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4132 /* Calculate the total number of rcu_node structures. */
4133 rcu_num_nodes = 0;
4134 for (i = 0; i < rcu_num_lvls; i++)
4135 rcu_num_nodes += num_rcu_lvl[i];
4139 * Dump out the structure of the rcu_node combining tree associated
4140 * with the rcu_state structure referenced by rsp.
4142 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4144 int level = 0;
4145 struct rcu_node *rnp;
4147 pr_info("rcu_node tree layout dump\n");
4148 pr_info(" ");
4149 rcu_for_each_node_breadth_first(rsp, rnp) {
4150 if (rnp->level != level) {
4151 pr_cont("\n");
4152 pr_info(" ");
4153 level = rnp->level;
4155 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4157 pr_cont("\n");
4160 void __init rcu_init(void)
4162 int cpu;
4164 rcu_early_boot_tests();
4166 rcu_bootup_announce();
4167 rcu_init_geometry();
4168 rcu_init_one(&rcu_bh_state);
4169 rcu_init_one(&rcu_sched_state);
4170 if (dump_tree)
4171 rcu_dump_rcu_node_tree(&rcu_sched_state);
4172 __rcu_init_preempt();
4173 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4176 * We don't need protection against CPU-hotplug here because
4177 * this is called early in boot, before either interrupts
4178 * or the scheduler are operational.
4180 pm_notifier(rcu_pm_notify, 0);
4181 for_each_online_cpu(cpu) {
4182 rcutree_prepare_cpu(cpu);
4183 rcu_cpu_starting(cpu);
4184 if (IS_ENABLED(CONFIG_TREE_SRCU))
4185 srcu_online_cpu(cpu);
4189 #include "tree_exp.h"
4190 #include "tree_plugin.h"