Merge the right tty-fixes branch
[linux/fpc-iii.git] / mm / slub.c
blob4996fc7195528ba931dda8c042da44b2501b083e
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
151 * Set of flags that will prevent slab merging
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
157 SLAB_CACHE_DMA | SLAB_NOTRACK)
159 #ifndef ARCH_KMALLOC_MINALIGN
160 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
161 #endif
163 #ifndef ARCH_SLAB_MINALIGN
164 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
165 #endif
167 #define OO_SHIFT 16
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000 /* Poison object */
173 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
175 static int kmem_size = sizeof(struct kmem_cache);
177 #ifdef CONFIG_SMP
178 static struct notifier_block slab_notifier;
179 #endif
181 static enum {
182 DOWN, /* No slab functionality available */
183 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
184 UP, /* Everything works but does not show up in sysfs */
185 SYSFS /* Sysfs up */
186 } slab_state = DOWN;
188 /* A list of all slab caches on the system */
189 static DECLARE_RWSEM(slub_lock);
190 static LIST_HEAD(slab_caches);
193 * Tracking user of a slab.
195 struct track {
196 unsigned long addr; /* Called from address */
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
204 #ifdef CONFIG_SLUB_DEBUG
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
215 kfree(s);
218 #endif
220 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
222 #ifdef CONFIG_SLUB_STATS
223 c->stat[si]++;
224 #endif
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
231 int slab_is_available(void)
233 return slab_state >= UP;
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238 #ifdef CONFIG_NUMA
239 return s->node[node];
240 #else
241 return &s->local_node;
242 #endif
245 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
247 #ifdef CONFIG_SMP
248 return s->cpu_slab[cpu];
249 #else
250 return &s->cpu_slab;
251 #endif
254 /* Verify that a pointer has an address that is valid within a slab page */
255 static inline int check_valid_pointer(struct kmem_cache *s,
256 struct page *page, const void *object)
258 void *base;
260 if (!object)
261 return 1;
263 base = page_address(page);
264 if (object < base || object >= base + page->objects * s->size ||
265 (object - base) % s->size) {
266 return 0;
269 return 1;
273 * Slow version of get and set free pointer.
275 * This version requires touching the cache lines of kmem_cache which
276 * we avoid to do in the fast alloc free paths. There we obtain the offset
277 * from the page struct.
279 static inline void *get_freepointer(struct kmem_cache *s, void *object)
281 return *(void **)(object + s->offset);
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
286 *(void **)(object + s->offset) = fp;
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 __p += (__s)->size)
294 /* Scan freelist */
295 #define for_each_free_object(__p, __s, __free) \
296 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
298 /* Determine object index from a given position */
299 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
301 return (p - addr) / s->size;
304 static inline struct kmem_cache_order_objects oo_make(int order,
305 unsigned long size)
307 struct kmem_cache_order_objects x = {
308 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
311 return x;
314 static inline int oo_order(struct kmem_cache_order_objects x)
316 return x.x >> OO_SHIFT;
319 static inline int oo_objects(struct kmem_cache_order_objects x)
321 return x.x & OO_MASK;
324 #ifdef CONFIG_SLUB_DEBUG
326 * Debug settings:
328 #ifdef CONFIG_SLUB_DEBUG_ON
329 static int slub_debug = DEBUG_DEFAULT_FLAGS;
330 #else
331 static int slub_debug;
332 #endif
334 static char *slub_debug_slabs;
335 static int disable_higher_order_debug;
338 * Object debugging
340 static void print_section(char *text, u8 *addr, unsigned int length)
342 int i, offset;
343 int newline = 1;
344 char ascii[17];
346 ascii[16] = 0;
348 for (i = 0; i < length; i++) {
349 if (newline) {
350 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
351 newline = 0;
353 printk(KERN_CONT " %02x", addr[i]);
354 offset = i % 16;
355 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
356 if (offset == 15) {
357 printk(KERN_CONT " %s\n", ascii);
358 newline = 1;
361 if (!newline) {
362 i %= 16;
363 while (i < 16) {
364 printk(KERN_CONT " ");
365 ascii[i] = ' ';
366 i++;
368 printk(KERN_CONT " %s\n", ascii);
372 static struct track *get_track(struct kmem_cache *s, void *object,
373 enum track_item alloc)
375 struct track *p;
377 if (s->offset)
378 p = object + s->offset + sizeof(void *);
379 else
380 p = object + s->inuse;
382 return p + alloc;
385 static void set_track(struct kmem_cache *s, void *object,
386 enum track_item alloc, unsigned long addr)
388 struct track *p = get_track(s, object, alloc);
390 if (addr) {
391 p->addr = addr;
392 p->cpu = smp_processor_id();
393 p->pid = current->pid;
394 p->when = jiffies;
395 } else
396 memset(p, 0, sizeof(struct track));
399 static void init_tracking(struct kmem_cache *s, void *object)
401 if (!(s->flags & SLAB_STORE_USER))
402 return;
404 set_track(s, object, TRACK_FREE, 0UL);
405 set_track(s, object, TRACK_ALLOC, 0UL);
408 static void print_track(const char *s, struct track *t)
410 if (!t->addr)
411 return;
413 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
414 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
417 static void print_tracking(struct kmem_cache *s, void *object)
419 if (!(s->flags & SLAB_STORE_USER))
420 return;
422 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
423 print_track("Freed", get_track(s, object, TRACK_FREE));
426 static void print_page_info(struct page *page)
428 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
429 page, page->objects, page->inuse, page->freelist, page->flags);
433 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
435 va_list args;
436 char buf[100];
438 va_start(args, fmt);
439 vsnprintf(buf, sizeof(buf), fmt, args);
440 va_end(args);
441 printk(KERN_ERR "========================================"
442 "=====================================\n");
443 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
444 printk(KERN_ERR "----------------------------------------"
445 "-------------------------------------\n\n");
448 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
450 va_list args;
451 char buf[100];
453 va_start(args, fmt);
454 vsnprintf(buf, sizeof(buf), fmt, args);
455 va_end(args);
456 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
459 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
461 unsigned int off; /* Offset of last byte */
462 u8 *addr = page_address(page);
464 print_tracking(s, p);
466 print_page_info(page);
468 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
469 p, p - addr, get_freepointer(s, p));
471 if (p > addr + 16)
472 print_section("Bytes b4", p - 16, 16);
474 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
476 if (s->flags & SLAB_RED_ZONE)
477 print_section("Redzone", p + s->objsize,
478 s->inuse - s->objsize);
480 if (s->offset)
481 off = s->offset + sizeof(void *);
482 else
483 off = s->inuse;
485 if (s->flags & SLAB_STORE_USER)
486 off += 2 * sizeof(struct track);
488 if (off != s->size)
489 /* Beginning of the filler is the free pointer */
490 print_section("Padding", p + off, s->size - off);
492 dump_stack();
495 static void object_err(struct kmem_cache *s, struct page *page,
496 u8 *object, char *reason)
498 slab_bug(s, "%s", reason);
499 print_trailer(s, page, object);
502 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
504 va_list args;
505 char buf[100];
507 va_start(args, fmt);
508 vsnprintf(buf, sizeof(buf), fmt, args);
509 va_end(args);
510 slab_bug(s, "%s", buf);
511 print_page_info(page);
512 dump_stack();
515 static void init_object(struct kmem_cache *s, void *object, int active)
517 u8 *p = object;
519 if (s->flags & __OBJECT_POISON) {
520 memset(p, POISON_FREE, s->objsize - 1);
521 p[s->objsize - 1] = POISON_END;
524 if (s->flags & SLAB_RED_ZONE)
525 memset(p + s->objsize,
526 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
527 s->inuse - s->objsize);
530 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
532 while (bytes) {
533 if (*start != (u8)value)
534 return start;
535 start++;
536 bytes--;
538 return NULL;
541 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
542 void *from, void *to)
544 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
545 memset(from, data, to - from);
548 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
549 u8 *object, char *what,
550 u8 *start, unsigned int value, unsigned int bytes)
552 u8 *fault;
553 u8 *end;
555 fault = check_bytes(start, value, bytes);
556 if (!fault)
557 return 1;
559 end = start + bytes;
560 while (end > fault && end[-1] == value)
561 end--;
563 slab_bug(s, "%s overwritten", what);
564 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
565 fault, end - 1, fault[0], value);
566 print_trailer(s, page, object);
568 restore_bytes(s, what, value, fault, end);
569 return 0;
573 * Object layout:
575 * object address
576 * Bytes of the object to be managed.
577 * If the freepointer may overlay the object then the free
578 * pointer is the first word of the object.
580 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
581 * 0xa5 (POISON_END)
583 * object + s->objsize
584 * Padding to reach word boundary. This is also used for Redzoning.
585 * Padding is extended by another word if Redzoning is enabled and
586 * objsize == inuse.
588 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
589 * 0xcc (RED_ACTIVE) for objects in use.
591 * object + s->inuse
592 * Meta data starts here.
594 * A. Free pointer (if we cannot overwrite object on free)
595 * B. Tracking data for SLAB_STORE_USER
596 * C. Padding to reach required alignment boundary or at mininum
597 * one word if debugging is on to be able to detect writes
598 * before the word boundary.
600 * Padding is done using 0x5a (POISON_INUSE)
602 * object + s->size
603 * Nothing is used beyond s->size.
605 * If slabcaches are merged then the objsize and inuse boundaries are mostly
606 * ignored. And therefore no slab options that rely on these boundaries
607 * may be used with merged slabcaches.
610 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
612 unsigned long off = s->inuse; /* The end of info */
614 if (s->offset)
615 /* Freepointer is placed after the object. */
616 off += sizeof(void *);
618 if (s->flags & SLAB_STORE_USER)
619 /* We also have user information there */
620 off += 2 * sizeof(struct track);
622 if (s->size == off)
623 return 1;
625 return check_bytes_and_report(s, page, p, "Object padding",
626 p + off, POISON_INUSE, s->size - off);
629 /* Check the pad bytes at the end of a slab page */
630 static int slab_pad_check(struct kmem_cache *s, struct page *page)
632 u8 *start;
633 u8 *fault;
634 u8 *end;
635 int length;
636 int remainder;
638 if (!(s->flags & SLAB_POISON))
639 return 1;
641 start = page_address(page);
642 length = (PAGE_SIZE << compound_order(page));
643 end = start + length;
644 remainder = length % s->size;
645 if (!remainder)
646 return 1;
648 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
649 if (!fault)
650 return 1;
651 while (end > fault && end[-1] == POISON_INUSE)
652 end--;
654 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
655 print_section("Padding", end - remainder, remainder);
657 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
658 return 0;
661 static int check_object(struct kmem_cache *s, struct page *page,
662 void *object, int active)
664 u8 *p = object;
665 u8 *endobject = object + s->objsize;
667 if (s->flags & SLAB_RED_ZONE) {
668 unsigned int red =
669 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
671 if (!check_bytes_and_report(s, page, object, "Redzone",
672 endobject, red, s->inuse - s->objsize))
673 return 0;
674 } else {
675 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
676 check_bytes_and_report(s, page, p, "Alignment padding",
677 endobject, POISON_INUSE, s->inuse - s->objsize);
681 if (s->flags & SLAB_POISON) {
682 if (!active && (s->flags & __OBJECT_POISON) &&
683 (!check_bytes_and_report(s, page, p, "Poison", p,
684 POISON_FREE, s->objsize - 1) ||
685 !check_bytes_and_report(s, page, p, "Poison",
686 p + s->objsize - 1, POISON_END, 1)))
687 return 0;
689 * check_pad_bytes cleans up on its own.
691 check_pad_bytes(s, page, p);
694 if (!s->offset && active)
696 * Object and freepointer overlap. Cannot check
697 * freepointer while object is allocated.
699 return 1;
701 /* Check free pointer validity */
702 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
703 object_err(s, page, p, "Freepointer corrupt");
705 * No choice but to zap it and thus lose the remainder
706 * of the free objects in this slab. May cause
707 * another error because the object count is now wrong.
709 set_freepointer(s, p, NULL);
710 return 0;
712 return 1;
715 static int check_slab(struct kmem_cache *s, struct page *page)
717 int maxobj;
719 VM_BUG_ON(!irqs_disabled());
721 if (!PageSlab(page)) {
722 slab_err(s, page, "Not a valid slab page");
723 return 0;
726 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
727 if (page->objects > maxobj) {
728 slab_err(s, page, "objects %u > max %u",
729 s->name, page->objects, maxobj);
730 return 0;
732 if (page->inuse > page->objects) {
733 slab_err(s, page, "inuse %u > max %u",
734 s->name, page->inuse, page->objects);
735 return 0;
737 /* Slab_pad_check fixes things up after itself */
738 slab_pad_check(s, page);
739 return 1;
743 * Determine if a certain object on a page is on the freelist. Must hold the
744 * slab lock to guarantee that the chains are in a consistent state.
746 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
748 int nr = 0;
749 void *fp = page->freelist;
750 void *object = NULL;
751 unsigned long max_objects;
753 while (fp && nr <= page->objects) {
754 if (fp == search)
755 return 1;
756 if (!check_valid_pointer(s, page, fp)) {
757 if (object) {
758 object_err(s, page, object,
759 "Freechain corrupt");
760 set_freepointer(s, object, NULL);
761 break;
762 } else {
763 slab_err(s, page, "Freepointer corrupt");
764 page->freelist = NULL;
765 page->inuse = page->objects;
766 slab_fix(s, "Freelist cleared");
767 return 0;
769 break;
771 object = fp;
772 fp = get_freepointer(s, object);
773 nr++;
776 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
777 if (max_objects > MAX_OBJS_PER_PAGE)
778 max_objects = MAX_OBJS_PER_PAGE;
780 if (page->objects != max_objects) {
781 slab_err(s, page, "Wrong number of objects. Found %d but "
782 "should be %d", page->objects, max_objects);
783 page->objects = max_objects;
784 slab_fix(s, "Number of objects adjusted.");
786 if (page->inuse != page->objects - nr) {
787 slab_err(s, page, "Wrong object count. Counter is %d but "
788 "counted were %d", page->inuse, page->objects - nr);
789 page->inuse = page->objects - nr;
790 slab_fix(s, "Object count adjusted.");
792 return search == NULL;
795 static void trace(struct kmem_cache *s, struct page *page, void *object,
796 int alloc)
798 if (s->flags & SLAB_TRACE) {
799 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
800 s->name,
801 alloc ? "alloc" : "free",
802 object, page->inuse,
803 page->freelist);
805 if (!alloc)
806 print_section("Object", (void *)object, s->objsize);
808 dump_stack();
813 * Tracking of fully allocated slabs for debugging purposes.
815 static void add_full(struct kmem_cache_node *n, struct page *page)
817 spin_lock(&n->list_lock);
818 list_add(&page->lru, &n->full);
819 spin_unlock(&n->list_lock);
822 static void remove_full(struct kmem_cache *s, struct page *page)
824 struct kmem_cache_node *n;
826 if (!(s->flags & SLAB_STORE_USER))
827 return;
829 n = get_node(s, page_to_nid(page));
831 spin_lock(&n->list_lock);
832 list_del(&page->lru);
833 spin_unlock(&n->list_lock);
836 /* Tracking of the number of slabs for debugging purposes */
837 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
839 struct kmem_cache_node *n = get_node(s, node);
841 return atomic_long_read(&n->nr_slabs);
844 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
846 return atomic_long_read(&n->nr_slabs);
849 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
851 struct kmem_cache_node *n = get_node(s, node);
854 * May be called early in order to allocate a slab for the
855 * kmem_cache_node structure. Solve the chicken-egg
856 * dilemma by deferring the increment of the count during
857 * bootstrap (see early_kmem_cache_node_alloc).
859 if (!NUMA_BUILD || n) {
860 atomic_long_inc(&n->nr_slabs);
861 atomic_long_add(objects, &n->total_objects);
864 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
866 struct kmem_cache_node *n = get_node(s, node);
868 atomic_long_dec(&n->nr_slabs);
869 atomic_long_sub(objects, &n->total_objects);
872 /* Object debug checks for alloc/free paths */
873 static void setup_object_debug(struct kmem_cache *s, struct page *page,
874 void *object)
876 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
877 return;
879 init_object(s, object, 0);
880 init_tracking(s, object);
883 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
884 void *object, unsigned long addr)
886 if (!check_slab(s, page))
887 goto bad;
889 if (!on_freelist(s, page, object)) {
890 object_err(s, page, object, "Object already allocated");
891 goto bad;
894 if (!check_valid_pointer(s, page, object)) {
895 object_err(s, page, object, "Freelist Pointer check fails");
896 goto bad;
899 if (!check_object(s, page, object, 0))
900 goto bad;
902 /* Success perform special debug activities for allocs */
903 if (s->flags & SLAB_STORE_USER)
904 set_track(s, object, TRACK_ALLOC, addr);
905 trace(s, page, object, 1);
906 init_object(s, object, 1);
907 return 1;
909 bad:
910 if (PageSlab(page)) {
912 * If this is a slab page then lets do the best we can
913 * to avoid issues in the future. Marking all objects
914 * as used avoids touching the remaining objects.
916 slab_fix(s, "Marking all objects used");
917 page->inuse = page->objects;
918 page->freelist = NULL;
920 return 0;
923 static int free_debug_processing(struct kmem_cache *s, struct page *page,
924 void *object, unsigned long addr)
926 if (!check_slab(s, page))
927 goto fail;
929 if (!check_valid_pointer(s, page, object)) {
930 slab_err(s, page, "Invalid object pointer 0x%p", object);
931 goto fail;
934 if (on_freelist(s, page, object)) {
935 object_err(s, page, object, "Object already free");
936 goto fail;
939 if (!check_object(s, page, object, 1))
940 return 0;
942 if (unlikely(s != page->slab)) {
943 if (!PageSlab(page)) {
944 slab_err(s, page, "Attempt to free object(0x%p) "
945 "outside of slab", object);
946 } else if (!page->slab) {
947 printk(KERN_ERR
948 "SLUB <none>: no slab for object 0x%p.\n",
949 object);
950 dump_stack();
951 } else
952 object_err(s, page, object,
953 "page slab pointer corrupt.");
954 goto fail;
957 /* Special debug activities for freeing objects */
958 if (!PageSlubFrozen(page) && !page->freelist)
959 remove_full(s, page);
960 if (s->flags & SLAB_STORE_USER)
961 set_track(s, object, TRACK_FREE, addr);
962 trace(s, page, object, 0);
963 init_object(s, object, 0);
964 return 1;
966 fail:
967 slab_fix(s, "Object at 0x%p not freed", object);
968 return 0;
971 static int __init setup_slub_debug(char *str)
973 slub_debug = DEBUG_DEFAULT_FLAGS;
974 if (*str++ != '=' || !*str)
976 * No options specified. Switch on full debugging.
978 goto out;
980 if (*str == ',')
982 * No options but restriction on slabs. This means full
983 * debugging for slabs matching a pattern.
985 goto check_slabs;
987 if (tolower(*str) == 'o') {
989 * Avoid enabling debugging on caches if its minimum order
990 * would increase as a result.
992 disable_higher_order_debug = 1;
993 goto out;
996 slub_debug = 0;
997 if (*str == '-')
999 * Switch off all debugging measures.
1001 goto out;
1004 * Determine which debug features should be switched on
1006 for (; *str && *str != ','; str++) {
1007 switch (tolower(*str)) {
1008 case 'f':
1009 slub_debug |= SLAB_DEBUG_FREE;
1010 break;
1011 case 'z':
1012 slub_debug |= SLAB_RED_ZONE;
1013 break;
1014 case 'p':
1015 slub_debug |= SLAB_POISON;
1016 break;
1017 case 'u':
1018 slub_debug |= SLAB_STORE_USER;
1019 break;
1020 case 't':
1021 slub_debug |= SLAB_TRACE;
1022 break;
1023 default:
1024 printk(KERN_ERR "slub_debug option '%c' "
1025 "unknown. skipped\n", *str);
1029 check_slabs:
1030 if (*str == ',')
1031 slub_debug_slabs = str + 1;
1032 out:
1033 return 1;
1036 __setup("slub_debug", setup_slub_debug);
1038 static unsigned long kmem_cache_flags(unsigned long objsize,
1039 unsigned long flags, const char *name,
1040 void (*ctor)(void *))
1043 * Enable debugging if selected on the kernel commandline.
1045 if (slub_debug && (!slub_debug_slabs ||
1046 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1047 flags |= slub_debug;
1049 return flags;
1051 #else
1052 static inline void setup_object_debug(struct kmem_cache *s,
1053 struct page *page, void *object) {}
1055 static inline int alloc_debug_processing(struct kmem_cache *s,
1056 struct page *page, void *object, unsigned long addr) { return 0; }
1058 static inline int free_debug_processing(struct kmem_cache *s,
1059 struct page *page, void *object, unsigned long addr) { return 0; }
1061 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1062 { return 1; }
1063 static inline int check_object(struct kmem_cache *s, struct page *page,
1064 void *object, int active) { return 1; }
1065 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1066 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1067 unsigned long flags, const char *name,
1068 void (*ctor)(void *))
1070 return flags;
1072 #define slub_debug 0
1074 #define disable_higher_order_debug 0
1076 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1077 { return 0; }
1078 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1079 { return 0; }
1080 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1081 int objects) {}
1082 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1083 int objects) {}
1084 #endif
1087 * Slab allocation and freeing
1089 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1090 struct kmem_cache_order_objects oo)
1092 int order = oo_order(oo);
1094 flags |= __GFP_NOTRACK;
1096 if (node == -1)
1097 return alloc_pages(flags, order);
1098 else
1099 return alloc_pages_node(node, flags, order);
1102 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1104 struct page *page;
1105 struct kmem_cache_order_objects oo = s->oo;
1106 gfp_t alloc_gfp;
1108 flags |= s->allocflags;
1111 * Let the initial higher-order allocation fail under memory pressure
1112 * so we fall-back to the minimum order allocation.
1114 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1116 page = alloc_slab_page(alloc_gfp, node, oo);
1117 if (unlikely(!page)) {
1118 oo = s->min;
1120 * Allocation may have failed due to fragmentation.
1121 * Try a lower order alloc if possible
1123 page = alloc_slab_page(flags, node, oo);
1124 if (!page)
1125 return NULL;
1127 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1130 if (kmemcheck_enabled
1131 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1132 int pages = 1 << oo_order(oo);
1134 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1137 * Objects from caches that have a constructor don't get
1138 * cleared when they're allocated, so we need to do it here.
1140 if (s->ctor)
1141 kmemcheck_mark_uninitialized_pages(page, pages);
1142 else
1143 kmemcheck_mark_unallocated_pages(page, pages);
1146 page->objects = oo_objects(oo);
1147 mod_zone_page_state(page_zone(page),
1148 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1149 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1150 1 << oo_order(oo));
1152 return page;
1155 static void setup_object(struct kmem_cache *s, struct page *page,
1156 void *object)
1158 setup_object_debug(s, page, object);
1159 if (unlikely(s->ctor))
1160 s->ctor(object);
1163 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1165 struct page *page;
1166 void *start;
1167 void *last;
1168 void *p;
1170 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1172 page = allocate_slab(s,
1173 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1174 if (!page)
1175 goto out;
1177 inc_slabs_node(s, page_to_nid(page), page->objects);
1178 page->slab = s;
1179 page->flags |= 1 << PG_slab;
1180 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1181 SLAB_STORE_USER | SLAB_TRACE))
1182 __SetPageSlubDebug(page);
1184 start = page_address(page);
1186 if (unlikely(s->flags & SLAB_POISON))
1187 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1189 last = start;
1190 for_each_object(p, s, start, page->objects) {
1191 setup_object(s, page, last);
1192 set_freepointer(s, last, p);
1193 last = p;
1195 setup_object(s, page, last);
1196 set_freepointer(s, last, NULL);
1198 page->freelist = start;
1199 page->inuse = 0;
1200 out:
1201 return page;
1204 static void __free_slab(struct kmem_cache *s, struct page *page)
1206 int order = compound_order(page);
1207 int pages = 1 << order;
1209 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1210 void *p;
1212 slab_pad_check(s, page);
1213 for_each_object(p, s, page_address(page),
1214 page->objects)
1215 check_object(s, page, p, 0);
1216 __ClearPageSlubDebug(page);
1219 kmemcheck_free_shadow(page, compound_order(page));
1221 mod_zone_page_state(page_zone(page),
1222 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1223 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1224 -pages);
1226 __ClearPageSlab(page);
1227 reset_page_mapcount(page);
1228 if (current->reclaim_state)
1229 current->reclaim_state->reclaimed_slab += pages;
1230 __free_pages(page, order);
1233 static void rcu_free_slab(struct rcu_head *h)
1235 struct page *page;
1237 page = container_of((struct list_head *)h, struct page, lru);
1238 __free_slab(page->slab, page);
1241 static void free_slab(struct kmem_cache *s, struct page *page)
1243 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1245 * RCU free overloads the RCU head over the LRU
1247 struct rcu_head *head = (void *)&page->lru;
1249 call_rcu(head, rcu_free_slab);
1250 } else
1251 __free_slab(s, page);
1254 static void discard_slab(struct kmem_cache *s, struct page *page)
1256 dec_slabs_node(s, page_to_nid(page), page->objects);
1257 free_slab(s, page);
1261 * Per slab locking using the pagelock
1263 static __always_inline void slab_lock(struct page *page)
1265 bit_spin_lock(PG_locked, &page->flags);
1268 static __always_inline void slab_unlock(struct page *page)
1270 __bit_spin_unlock(PG_locked, &page->flags);
1273 static __always_inline int slab_trylock(struct page *page)
1275 int rc = 1;
1277 rc = bit_spin_trylock(PG_locked, &page->flags);
1278 return rc;
1282 * Management of partially allocated slabs
1284 static void add_partial(struct kmem_cache_node *n,
1285 struct page *page, int tail)
1287 spin_lock(&n->list_lock);
1288 n->nr_partial++;
1289 if (tail)
1290 list_add_tail(&page->lru, &n->partial);
1291 else
1292 list_add(&page->lru, &n->partial);
1293 spin_unlock(&n->list_lock);
1296 static void remove_partial(struct kmem_cache *s, struct page *page)
1298 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1300 spin_lock(&n->list_lock);
1301 list_del(&page->lru);
1302 n->nr_partial--;
1303 spin_unlock(&n->list_lock);
1307 * Lock slab and remove from the partial list.
1309 * Must hold list_lock.
1311 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1312 struct page *page)
1314 if (slab_trylock(page)) {
1315 list_del(&page->lru);
1316 n->nr_partial--;
1317 __SetPageSlubFrozen(page);
1318 return 1;
1320 return 0;
1324 * Try to allocate a partial slab from a specific node.
1326 static struct page *get_partial_node(struct kmem_cache_node *n)
1328 struct page *page;
1331 * Racy check. If we mistakenly see no partial slabs then we
1332 * just allocate an empty slab. If we mistakenly try to get a
1333 * partial slab and there is none available then get_partials()
1334 * will return NULL.
1336 if (!n || !n->nr_partial)
1337 return NULL;
1339 spin_lock(&n->list_lock);
1340 list_for_each_entry(page, &n->partial, lru)
1341 if (lock_and_freeze_slab(n, page))
1342 goto out;
1343 page = NULL;
1344 out:
1345 spin_unlock(&n->list_lock);
1346 return page;
1350 * Get a page from somewhere. Search in increasing NUMA distances.
1352 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1354 #ifdef CONFIG_NUMA
1355 struct zonelist *zonelist;
1356 struct zoneref *z;
1357 struct zone *zone;
1358 enum zone_type high_zoneidx = gfp_zone(flags);
1359 struct page *page;
1362 * The defrag ratio allows a configuration of the tradeoffs between
1363 * inter node defragmentation and node local allocations. A lower
1364 * defrag_ratio increases the tendency to do local allocations
1365 * instead of attempting to obtain partial slabs from other nodes.
1367 * If the defrag_ratio is set to 0 then kmalloc() always
1368 * returns node local objects. If the ratio is higher then kmalloc()
1369 * may return off node objects because partial slabs are obtained
1370 * from other nodes and filled up.
1372 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1373 * defrag_ratio = 1000) then every (well almost) allocation will
1374 * first attempt to defrag slab caches on other nodes. This means
1375 * scanning over all nodes to look for partial slabs which may be
1376 * expensive if we do it every time we are trying to find a slab
1377 * with available objects.
1379 if (!s->remote_node_defrag_ratio ||
1380 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1381 return NULL;
1383 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1384 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1385 struct kmem_cache_node *n;
1387 n = get_node(s, zone_to_nid(zone));
1389 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1390 n->nr_partial > s->min_partial) {
1391 page = get_partial_node(n);
1392 if (page)
1393 return page;
1396 #endif
1397 return NULL;
1401 * Get a partial page, lock it and return it.
1403 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1405 struct page *page;
1406 int searchnode = (node == -1) ? numa_node_id() : node;
1408 page = get_partial_node(get_node(s, searchnode));
1409 if (page || (flags & __GFP_THISNODE))
1410 return page;
1412 return get_any_partial(s, flags);
1416 * Move a page back to the lists.
1418 * Must be called with the slab lock held.
1420 * On exit the slab lock will have been dropped.
1422 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1424 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1425 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1427 __ClearPageSlubFrozen(page);
1428 if (page->inuse) {
1430 if (page->freelist) {
1431 add_partial(n, page, tail);
1432 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1433 } else {
1434 stat(c, DEACTIVATE_FULL);
1435 if (SLABDEBUG && PageSlubDebug(page) &&
1436 (s->flags & SLAB_STORE_USER))
1437 add_full(n, page);
1439 slab_unlock(page);
1440 } else {
1441 stat(c, DEACTIVATE_EMPTY);
1442 if (n->nr_partial < s->min_partial) {
1444 * Adding an empty slab to the partial slabs in order
1445 * to avoid page allocator overhead. This slab needs
1446 * to come after the other slabs with objects in
1447 * so that the others get filled first. That way the
1448 * size of the partial list stays small.
1450 * kmem_cache_shrink can reclaim any empty slabs from
1451 * the partial list.
1453 add_partial(n, page, 1);
1454 slab_unlock(page);
1455 } else {
1456 slab_unlock(page);
1457 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1458 discard_slab(s, page);
1464 * Remove the cpu slab
1466 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1468 struct page *page = c->page;
1469 int tail = 1;
1471 if (page->freelist)
1472 stat(c, DEACTIVATE_REMOTE_FREES);
1474 * Merge cpu freelist into slab freelist. Typically we get here
1475 * because both freelists are empty. So this is unlikely
1476 * to occur.
1478 while (unlikely(c->freelist)) {
1479 void **object;
1481 tail = 0; /* Hot objects. Put the slab first */
1483 /* Retrieve object from cpu_freelist */
1484 object = c->freelist;
1485 c->freelist = c->freelist[c->offset];
1487 /* And put onto the regular freelist */
1488 object[c->offset] = page->freelist;
1489 page->freelist = object;
1490 page->inuse--;
1492 c->page = NULL;
1493 unfreeze_slab(s, page, tail);
1496 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1498 stat(c, CPUSLAB_FLUSH);
1499 slab_lock(c->page);
1500 deactivate_slab(s, c);
1504 * Flush cpu slab.
1506 * Called from IPI handler with interrupts disabled.
1508 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1510 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1512 if (likely(c && c->page))
1513 flush_slab(s, c);
1516 static void flush_cpu_slab(void *d)
1518 struct kmem_cache *s = d;
1520 __flush_cpu_slab(s, smp_processor_id());
1523 static void flush_all(struct kmem_cache *s)
1525 on_each_cpu(flush_cpu_slab, s, 1);
1529 * Check if the objects in a per cpu structure fit numa
1530 * locality expectations.
1532 static inline int node_match(struct kmem_cache_cpu *c, int node)
1534 #ifdef CONFIG_NUMA
1535 if (node != -1 && c->node != node)
1536 return 0;
1537 #endif
1538 return 1;
1541 static int count_free(struct page *page)
1543 return page->objects - page->inuse;
1546 static unsigned long count_partial(struct kmem_cache_node *n,
1547 int (*get_count)(struct page *))
1549 unsigned long flags;
1550 unsigned long x = 0;
1551 struct page *page;
1553 spin_lock_irqsave(&n->list_lock, flags);
1554 list_for_each_entry(page, &n->partial, lru)
1555 x += get_count(page);
1556 spin_unlock_irqrestore(&n->list_lock, flags);
1557 return x;
1560 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1562 #ifdef CONFIG_SLUB_DEBUG
1563 return atomic_long_read(&n->total_objects);
1564 #else
1565 return 0;
1566 #endif
1569 static noinline void
1570 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1572 int node;
1574 printk(KERN_WARNING
1575 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1576 nid, gfpflags);
1577 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1578 "default order: %d, min order: %d\n", s->name, s->objsize,
1579 s->size, oo_order(s->oo), oo_order(s->min));
1581 if (oo_order(s->min) > get_order(s->objsize))
1582 printk(KERN_WARNING " %s debugging increased min order, use "
1583 "slub_debug=O to disable.\n", s->name);
1585 for_each_online_node(node) {
1586 struct kmem_cache_node *n = get_node(s, node);
1587 unsigned long nr_slabs;
1588 unsigned long nr_objs;
1589 unsigned long nr_free;
1591 if (!n)
1592 continue;
1594 nr_free = count_partial(n, count_free);
1595 nr_slabs = node_nr_slabs(n);
1596 nr_objs = node_nr_objs(n);
1598 printk(KERN_WARNING
1599 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1600 node, nr_slabs, nr_objs, nr_free);
1605 * Slow path. The lockless freelist is empty or we need to perform
1606 * debugging duties.
1608 * Interrupts are disabled.
1610 * Processing is still very fast if new objects have been freed to the
1611 * regular freelist. In that case we simply take over the regular freelist
1612 * as the lockless freelist and zap the regular freelist.
1614 * If that is not working then we fall back to the partial lists. We take the
1615 * first element of the freelist as the object to allocate now and move the
1616 * rest of the freelist to the lockless freelist.
1618 * And if we were unable to get a new slab from the partial slab lists then
1619 * we need to allocate a new slab. This is the slowest path since it involves
1620 * a call to the page allocator and the setup of a new slab.
1622 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1623 unsigned long addr, struct kmem_cache_cpu *c)
1625 void **object;
1626 struct page *new;
1628 /* We handle __GFP_ZERO in the caller */
1629 gfpflags &= ~__GFP_ZERO;
1631 if (!c->page)
1632 goto new_slab;
1634 slab_lock(c->page);
1635 if (unlikely(!node_match(c, node)))
1636 goto another_slab;
1638 stat(c, ALLOC_REFILL);
1640 load_freelist:
1641 object = c->page->freelist;
1642 if (unlikely(!object))
1643 goto another_slab;
1644 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1645 goto debug;
1647 c->freelist = object[c->offset];
1648 c->page->inuse = c->page->objects;
1649 c->page->freelist = NULL;
1650 c->node = page_to_nid(c->page);
1651 unlock_out:
1652 slab_unlock(c->page);
1653 stat(c, ALLOC_SLOWPATH);
1654 return object;
1656 another_slab:
1657 deactivate_slab(s, c);
1659 new_slab:
1660 new = get_partial(s, gfpflags, node);
1661 if (new) {
1662 c->page = new;
1663 stat(c, ALLOC_FROM_PARTIAL);
1664 goto load_freelist;
1667 if (gfpflags & __GFP_WAIT)
1668 local_irq_enable();
1670 new = new_slab(s, gfpflags, node);
1672 if (gfpflags & __GFP_WAIT)
1673 local_irq_disable();
1675 if (new) {
1676 c = get_cpu_slab(s, smp_processor_id());
1677 stat(c, ALLOC_SLAB);
1678 if (c->page)
1679 flush_slab(s, c);
1680 slab_lock(new);
1681 __SetPageSlubFrozen(new);
1682 c->page = new;
1683 goto load_freelist;
1685 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1686 slab_out_of_memory(s, gfpflags, node);
1687 return NULL;
1688 debug:
1689 if (!alloc_debug_processing(s, c->page, object, addr))
1690 goto another_slab;
1692 c->page->inuse++;
1693 c->page->freelist = object[c->offset];
1694 c->node = -1;
1695 goto unlock_out;
1699 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1700 * have the fastpath folded into their functions. So no function call
1701 * overhead for requests that can be satisfied on the fastpath.
1703 * The fastpath works by first checking if the lockless freelist can be used.
1704 * If not then __slab_alloc is called for slow processing.
1706 * Otherwise we can simply pick the next object from the lockless free list.
1708 static __always_inline void *slab_alloc(struct kmem_cache *s,
1709 gfp_t gfpflags, int node, unsigned long addr)
1711 void **object;
1712 struct kmem_cache_cpu *c;
1713 unsigned long flags;
1714 unsigned int objsize;
1716 gfpflags &= gfp_allowed_mask;
1718 lockdep_trace_alloc(gfpflags);
1719 might_sleep_if(gfpflags & __GFP_WAIT);
1721 if (should_failslab(s->objsize, gfpflags))
1722 return NULL;
1724 local_irq_save(flags);
1725 c = get_cpu_slab(s, smp_processor_id());
1726 objsize = c->objsize;
1727 if (unlikely(!c->freelist || !node_match(c, node)))
1729 object = __slab_alloc(s, gfpflags, node, addr, c);
1731 else {
1732 object = c->freelist;
1733 c->freelist = object[c->offset];
1734 stat(c, ALLOC_FASTPATH);
1736 local_irq_restore(flags);
1738 if (unlikely((gfpflags & __GFP_ZERO) && object))
1739 memset(object, 0, objsize);
1741 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
1742 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1744 return object;
1747 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1749 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1751 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1753 return ret;
1755 EXPORT_SYMBOL(kmem_cache_alloc);
1757 #ifdef CONFIG_KMEMTRACE
1758 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1760 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1762 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1763 #endif
1765 #ifdef CONFIG_NUMA
1766 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1768 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1770 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1771 s->objsize, s->size, gfpflags, node);
1773 return ret;
1775 EXPORT_SYMBOL(kmem_cache_alloc_node);
1776 #endif
1778 #ifdef CONFIG_KMEMTRACE
1779 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1780 gfp_t gfpflags,
1781 int node)
1783 return slab_alloc(s, gfpflags, node, _RET_IP_);
1785 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1786 #endif
1789 * Slow patch handling. This may still be called frequently since objects
1790 * have a longer lifetime than the cpu slabs in most processing loads.
1792 * So we still attempt to reduce cache line usage. Just take the slab
1793 * lock and free the item. If there is no additional partial page
1794 * handling required then we can return immediately.
1796 static void __slab_free(struct kmem_cache *s, struct page *page,
1797 void *x, unsigned long addr, unsigned int offset)
1799 void *prior;
1800 void **object = (void *)x;
1801 struct kmem_cache_cpu *c;
1803 c = get_cpu_slab(s, raw_smp_processor_id());
1804 stat(c, FREE_SLOWPATH);
1805 slab_lock(page);
1807 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1808 goto debug;
1810 checks_ok:
1811 prior = object[offset] = page->freelist;
1812 page->freelist = object;
1813 page->inuse--;
1815 if (unlikely(PageSlubFrozen(page))) {
1816 stat(c, FREE_FROZEN);
1817 goto out_unlock;
1820 if (unlikely(!page->inuse))
1821 goto slab_empty;
1824 * Objects left in the slab. If it was not on the partial list before
1825 * then add it.
1827 if (unlikely(!prior)) {
1828 add_partial(get_node(s, page_to_nid(page)), page, 1);
1829 stat(c, FREE_ADD_PARTIAL);
1832 out_unlock:
1833 slab_unlock(page);
1834 return;
1836 slab_empty:
1837 if (prior) {
1839 * Slab still on the partial list.
1841 remove_partial(s, page);
1842 stat(c, FREE_REMOVE_PARTIAL);
1844 slab_unlock(page);
1845 stat(c, FREE_SLAB);
1846 discard_slab(s, page);
1847 return;
1849 debug:
1850 if (!free_debug_processing(s, page, x, addr))
1851 goto out_unlock;
1852 goto checks_ok;
1856 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1857 * can perform fastpath freeing without additional function calls.
1859 * The fastpath is only possible if we are freeing to the current cpu slab
1860 * of this processor. This typically the case if we have just allocated
1861 * the item before.
1863 * If fastpath is not possible then fall back to __slab_free where we deal
1864 * with all sorts of special processing.
1866 static __always_inline void slab_free(struct kmem_cache *s,
1867 struct page *page, void *x, unsigned long addr)
1869 void **object = (void *)x;
1870 struct kmem_cache_cpu *c;
1871 unsigned long flags;
1873 kmemleak_free_recursive(x, s->flags);
1874 local_irq_save(flags);
1875 c = get_cpu_slab(s, smp_processor_id());
1876 kmemcheck_slab_free(s, object, c->objsize);
1877 debug_check_no_locks_freed(object, c->objsize);
1878 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1879 debug_check_no_obj_freed(object, c->objsize);
1880 if (likely(page == c->page && c->node >= 0)) {
1881 object[c->offset] = c->freelist;
1882 c->freelist = object;
1883 stat(c, FREE_FASTPATH);
1884 } else
1885 __slab_free(s, page, x, addr, c->offset);
1887 local_irq_restore(flags);
1890 void kmem_cache_free(struct kmem_cache *s, void *x)
1892 struct page *page;
1894 page = virt_to_head_page(x);
1896 slab_free(s, page, x, _RET_IP_);
1898 trace_kmem_cache_free(_RET_IP_, x);
1900 EXPORT_SYMBOL(kmem_cache_free);
1902 /* Figure out on which slab page the object resides */
1903 static struct page *get_object_page(const void *x)
1905 struct page *page = virt_to_head_page(x);
1907 if (!PageSlab(page))
1908 return NULL;
1910 return page;
1914 * Object placement in a slab is made very easy because we always start at
1915 * offset 0. If we tune the size of the object to the alignment then we can
1916 * get the required alignment by putting one properly sized object after
1917 * another.
1919 * Notice that the allocation order determines the sizes of the per cpu
1920 * caches. Each processor has always one slab available for allocations.
1921 * Increasing the allocation order reduces the number of times that slabs
1922 * must be moved on and off the partial lists and is therefore a factor in
1923 * locking overhead.
1927 * Mininum / Maximum order of slab pages. This influences locking overhead
1928 * and slab fragmentation. A higher order reduces the number of partial slabs
1929 * and increases the number of allocations possible without having to
1930 * take the list_lock.
1932 static int slub_min_order;
1933 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1934 static int slub_min_objects;
1937 * Merge control. If this is set then no merging of slab caches will occur.
1938 * (Could be removed. This was introduced to pacify the merge skeptics.)
1940 static int slub_nomerge;
1943 * Calculate the order of allocation given an slab object size.
1945 * The order of allocation has significant impact on performance and other
1946 * system components. Generally order 0 allocations should be preferred since
1947 * order 0 does not cause fragmentation in the page allocator. Larger objects
1948 * be problematic to put into order 0 slabs because there may be too much
1949 * unused space left. We go to a higher order if more than 1/16th of the slab
1950 * would be wasted.
1952 * In order to reach satisfactory performance we must ensure that a minimum
1953 * number of objects is in one slab. Otherwise we may generate too much
1954 * activity on the partial lists which requires taking the list_lock. This is
1955 * less a concern for large slabs though which are rarely used.
1957 * slub_max_order specifies the order where we begin to stop considering the
1958 * number of objects in a slab as critical. If we reach slub_max_order then
1959 * we try to keep the page order as low as possible. So we accept more waste
1960 * of space in favor of a small page order.
1962 * Higher order allocations also allow the placement of more objects in a
1963 * slab and thereby reduce object handling overhead. If the user has
1964 * requested a higher mininum order then we start with that one instead of
1965 * the smallest order which will fit the object.
1967 static inline int slab_order(int size, int min_objects,
1968 int max_order, int fract_leftover)
1970 int order;
1971 int rem;
1972 int min_order = slub_min_order;
1974 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1975 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1977 for (order = max(min_order,
1978 fls(min_objects * size - 1) - PAGE_SHIFT);
1979 order <= max_order; order++) {
1981 unsigned long slab_size = PAGE_SIZE << order;
1983 if (slab_size < min_objects * size)
1984 continue;
1986 rem = slab_size % size;
1988 if (rem <= slab_size / fract_leftover)
1989 break;
1993 return order;
1996 static inline int calculate_order(int size)
1998 int order;
1999 int min_objects;
2000 int fraction;
2001 int max_objects;
2004 * Attempt to find best configuration for a slab. This
2005 * works by first attempting to generate a layout with
2006 * the best configuration and backing off gradually.
2008 * First we reduce the acceptable waste in a slab. Then
2009 * we reduce the minimum objects required in a slab.
2011 min_objects = slub_min_objects;
2012 if (!min_objects)
2013 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2014 max_objects = (PAGE_SIZE << slub_max_order)/size;
2015 min_objects = min(min_objects, max_objects);
2017 while (min_objects > 1) {
2018 fraction = 16;
2019 while (fraction >= 4) {
2020 order = slab_order(size, min_objects,
2021 slub_max_order, fraction);
2022 if (order <= slub_max_order)
2023 return order;
2024 fraction /= 2;
2026 min_objects--;
2030 * We were unable to place multiple objects in a slab. Now
2031 * lets see if we can place a single object there.
2033 order = slab_order(size, 1, slub_max_order, 1);
2034 if (order <= slub_max_order)
2035 return order;
2038 * Doh this slab cannot be placed using slub_max_order.
2040 order = slab_order(size, 1, MAX_ORDER, 1);
2041 if (order < MAX_ORDER)
2042 return order;
2043 return -ENOSYS;
2047 * Figure out what the alignment of the objects will be.
2049 static unsigned long calculate_alignment(unsigned long flags,
2050 unsigned long align, unsigned long size)
2053 * If the user wants hardware cache aligned objects then follow that
2054 * suggestion if the object is sufficiently large.
2056 * The hardware cache alignment cannot override the specified
2057 * alignment though. If that is greater then use it.
2059 if (flags & SLAB_HWCACHE_ALIGN) {
2060 unsigned long ralign = cache_line_size();
2061 while (size <= ralign / 2)
2062 ralign /= 2;
2063 align = max(align, ralign);
2066 if (align < ARCH_SLAB_MINALIGN)
2067 align = ARCH_SLAB_MINALIGN;
2069 return ALIGN(align, sizeof(void *));
2072 static void init_kmem_cache_cpu(struct kmem_cache *s,
2073 struct kmem_cache_cpu *c)
2075 c->page = NULL;
2076 c->freelist = NULL;
2077 c->node = 0;
2078 c->offset = s->offset / sizeof(void *);
2079 c->objsize = s->objsize;
2080 #ifdef CONFIG_SLUB_STATS
2081 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2082 #endif
2085 static void
2086 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2088 n->nr_partial = 0;
2089 spin_lock_init(&n->list_lock);
2090 INIT_LIST_HEAD(&n->partial);
2091 #ifdef CONFIG_SLUB_DEBUG
2092 atomic_long_set(&n->nr_slabs, 0);
2093 atomic_long_set(&n->total_objects, 0);
2094 INIT_LIST_HEAD(&n->full);
2095 #endif
2098 #ifdef CONFIG_SMP
2100 * Per cpu array for per cpu structures.
2102 * The per cpu array places all kmem_cache_cpu structures from one processor
2103 * close together meaning that it becomes possible that multiple per cpu
2104 * structures are contained in one cacheline. This may be particularly
2105 * beneficial for the kmalloc caches.
2107 * A desktop system typically has around 60-80 slabs. With 100 here we are
2108 * likely able to get per cpu structures for all caches from the array defined
2109 * here. We must be able to cover all kmalloc caches during bootstrap.
2111 * If the per cpu array is exhausted then fall back to kmalloc
2112 * of individual cachelines. No sharing is possible then.
2114 #define NR_KMEM_CACHE_CPU 100
2116 static DEFINE_PER_CPU(struct kmem_cache_cpu [NR_KMEM_CACHE_CPU],
2117 kmem_cache_cpu);
2119 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2120 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2122 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2123 int cpu, gfp_t flags)
2125 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2127 if (c)
2128 per_cpu(kmem_cache_cpu_free, cpu) =
2129 (void *)c->freelist;
2130 else {
2131 /* Table overflow: So allocate ourselves */
2132 c = kmalloc_node(
2133 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2134 flags, cpu_to_node(cpu));
2135 if (!c)
2136 return NULL;
2139 init_kmem_cache_cpu(s, c);
2140 return c;
2143 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2145 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2146 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2147 kfree(c);
2148 return;
2150 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2151 per_cpu(kmem_cache_cpu_free, cpu) = c;
2154 static void free_kmem_cache_cpus(struct kmem_cache *s)
2156 int cpu;
2158 for_each_online_cpu(cpu) {
2159 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2161 if (c) {
2162 s->cpu_slab[cpu] = NULL;
2163 free_kmem_cache_cpu(c, cpu);
2168 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2170 int cpu;
2172 for_each_online_cpu(cpu) {
2173 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2175 if (c)
2176 continue;
2178 c = alloc_kmem_cache_cpu(s, cpu, flags);
2179 if (!c) {
2180 free_kmem_cache_cpus(s);
2181 return 0;
2183 s->cpu_slab[cpu] = c;
2185 return 1;
2189 * Initialize the per cpu array.
2191 static void init_alloc_cpu_cpu(int cpu)
2193 int i;
2195 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2196 return;
2198 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2199 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2201 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2204 static void __init init_alloc_cpu(void)
2206 int cpu;
2208 for_each_online_cpu(cpu)
2209 init_alloc_cpu_cpu(cpu);
2212 #else
2213 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2214 static inline void init_alloc_cpu(void) {}
2216 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2218 init_kmem_cache_cpu(s, &s->cpu_slab);
2219 return 1;
2221 #endif
2223 #ifdef CONFIG_NUMA
2225 * No kmalloc_node yet so do it by hand. We know that this is the first
2226 * slab on the node for this slabcache. There are no concurrent accesses
2227 * possible.
2229 * Note that this function only works on the kmalloc_node_cache
2230 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2231 * memory on a fresh node that has no slab structures yet.
2233 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2235 struct page *page;
2236 struct kmem_cache_node *n;
2237 unsigned long flags;
2239 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2241 page = new_slab(kmalloc_caches, gfpflags, node);
2243 BUG_ON(!page);
2244 if (page_to_nid(page) != node) {
2245 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2246 "node %d\n", node);
2247 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2248 "in order to be able to continue\n");
2251 n = page->freelist;
2252 BUG_ON(!n);
2253 page->freelist = get_freepointer(kmalloc_caches, n);
2254 page->inuse++;
2255 kmalloc_caches->node[node] = n;
2256 #ifdef CONFIG_SLUB_DEBUG
2257 init_object(kmalloc_caches, n, 1);
2258 init_tracking(kmalloc_caches, n);
2259 #endif
2260 init_kmem_cache_node(n, kmalloc_caches);
2261 inc_slabs_node(kmalloc_caches, node, page->objects);
2264 * lockdep requires consistent irq usage for each lock
2265 * so even though there cannot be a race this early in
2266 * the boot sequence, we still disable irqs.
2268 local_irq_save(flags);
2269 add_partial(n, page, 0);
2270 local_irq_restore(flags);
2273 static void free_kmem_cache_nodes(struct kmem_cache *s)
2275 int node;
2277 for_each_node_state(node, N_NORMAL_MEMORY) {
2278 struct kmem_cache_node *n = s->node[node];
2279 if (n && n != &s->local_node)
2280 kmem_cache_free(kmalloc_caches, n);
2281 s->node[node] = NULL;
2285 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2287 int node;
2288 int local_node;
2290 if (slab_state >= UP)
2291 local_node = page_to_nid(virt_to_page(s));
2292 else
2293 local_node = 0;
2295 for_each_node_state(node, N_NORMAL_MEMORY) {
2296 struct kmem_cache_node *n;
2298 if (local_node == node)
2299 n = &s->local_node;
2300 else {
2301 if (slab_state == DOWN) {
2302 early_kmem_cache_node_alloc(gfpflags, node);
2303 continue;
2305 n = kmem_cache_alloc_node(kmalloc_caches,
2306 gfpflags, node);
2308 if (!n) {
2309 free_kmem_cache_nodes(s);
2310 return 0;
2314 s->node[node] = n;
2315 init_kmem_cache_node(n, s);
2317 return 1;
2319 #else
2320 static void free_kmem_cache_nodes(struct kmem_cache *s)
2324 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2326 init_kmem_cache_node(&s->local_node, s);
2327 return 1;
2329 #endif
2331 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2333 if (min < MIN_PARTIAL)
2334 min = MIN_PARTIAL;
2335 else if (min > MAX_PARTIAL)
2336 min = MAX_PARTIAL;
2337 s->min_partial = min;
2341 * calculate_sizes() determines the order and the distribution of data within
2342 * a slab object.
2344 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2346 unsigned long flags = s->flags;
2347 unsigned long size = s->objsize;
2348 unsigned long align = s->align;
2349 int order;
2352 * Round up object size to the next word boundary. We can only
2353 * place the free pointer at word boundaries and this determines
2354 * the possible location of the free pointer.
2356 size = ALIGN(size, sizeof(void *));
2358 #ifdef CONFIG_SLUB_DEBUG
2360 * Determine if we can poison the object itself. If the user of
2361 * the slab may touch the object after free or before allocation
2362 * then we should never poison the object itself.
2364 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2365 !s->ctor)
2366 s->flags |= __OBJECT_POISON;
2367 else
2368 s->flags &= ~__OBJECT_POISON;
2372 * If we are Redzoning then check if there is some space between the
2373 * end of the object and the free pointer. If not then add an
2374 * additional word to have some bytes to store Redzone information.
2376 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2377 size += sizeof(void *);
2378 #endif
2381 * With that we have determined the number of bytes in actual use
2382 * by the object. This is the potential offset to the free pointer.
2384 s->inuse = size;
2386 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2387 s->ctor)) {
2389 * Relocate free pointer after the object if it is not
2390 * permitted to overwrite the first word of the object on
2391 * kmem_cache_free.
2393 * This is the case if we do RCU, have a constructor or
2394 * destructor or are poisoning the objects.
2396 s->offset = size;
2397 size += sizeof(void *);
2400 #ifdef CONFIG_SLUB_DEBUG
2401 if (flags & SLAB_STORE_USER)
2403 * Need to store information about allocs and frees after
2404 * the object.
2406 size += 2 * sizeof(struct track);
2408 if (flags & SLAB_RED_ZONE)
2410 * Add some empty padding so that we can catch
2411 * overwrites from earlier objects rather than let
2412 * tracking information or the free pointer be
2413 * corrupted if a user writes before the start
2414 * of the object.
2416 size += sizeof(void *);
2417 #endif
2420 * Determine the alignment based on various parameters that the
2421 * user specified and the dynamic determination of cache line size
2422 * on bootup.
2424 align = calculate_alignment(flags, align, s->objsize);
2425 s->align = align;
2428 * SLUB stores one object immediately after another beginning from
2429 * offset 0. In order to align the objects we have to simply size
2430 * each object to conform to the alignment.
2432 size = ALIGN(size, align);
2433 s->size = size;
2434 if (forced_order >= 0)
2435 order = forced_order;
2436 else
2437 order = calculate_order(size);
2439 if (order < 0)
2440 return 0;
2442 s->allocflags = 0;
2443 if (order)
2444 s->allocflags |= __GFP_COMP;
2446 if (s->flags & SLAB_CACHE_DMA)
2447 s->allocflags |= SLUB_DMA;
2449 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2450 s->allocflags |= __GFP_RECLAIMABLE;
2453 * Determine the number of objects per slab
2455 s->oo = oo_make(order, size);
2456 s->min = oo_make(get_order(size), size);
2457 if (oo_objects(s->oo) > oo_objects(s->max))
2458 s->max = s->oo;
2460 return !!oo_objects(s->oo);
2464 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2465 const char *name, size_t size,
2466 size_t align, unsigned long flags,
2467 void (*ctor)(void *))
2469 memset(s, 0, kmem_size);
2470 s->name = name;
2471 s->ctor = ctor;
2472 s->objsize = size;
2473 s->align = align;
2474 s->flags = kmem_cache_flags(size, flags, name, ctor);
2476 if (!calculate_sizes(s, -1))
2477 goto error;
2478 if (disable_higher_order_debug) {
2480 * Disable debugging flags that store metadata if the min slab
2481 * order increased.
2483 if (get_order(s->size) > get_order(s->objsize)) {
2484 s->flags &= ~DEBUG_METADATA_FLAGS;
2485 s->offset = 0;
2486 if (!calculate_sizes(s, -1))
2487 goto error;
2492 * The larger the object size is, the more pages we want on the partial
2493 * list to avoid pounding the page allocator excessively.
2495 set_min_partial(s, ilog2(s->size));
2496 s->refcount = 1;
2497 #ifdef CONFIG_NUMA
2498 s->remote_node_defrag_ratio = 1000;
2499 #endif
2500 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2501 goto error;
2503 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2504 return 1;
2505 free_kmem_cache_nodes(s);
2506 error:
2507 if (flags & SLAB_PANIC)
2508 panic("Cannot create slab %s size=%lu realsize=%u "
2509 "order=%u offset=%u flags=%lx\n",
2510 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2511 s->offset, flags);
2512 return 0;
2516 * Check if a given pointer is valid
2518 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2520 struct page *page;
2522 page = get_object_page(object);
2524 if (!page || s != page->slab)
2525 /* No slab or wrong slab */
2526 return 0;
2528 if (!check_valid_pointer(s, page, object))
2529 return 0;
2532 * We could also check if the object is on the slabs freelist.
2533 * But this would be too expensive and it seems that the main
2534 * purpose of kmem_ptr_valid() is to check if the object belongs
2535 * to a certain slab.
2537 return 1;
2539 EXPORT_SYMBOL(kmem_ptr_validate);
2542 * Determine the size of a slab object
2544 unsigned int kmem_cache_size(struct kmem_cache *s)
2546 return s->objsize;
2548 EXPORT_SYMBOL(kmem_cache_size);
2550 const char *kmem_cache_name(struct kmem_cache *s)
2552 return s->name;
2554 EXPORT_SYMBOL(kmem_cache_name);
2556 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2557 const char *text)
2559 #ifdef CONFIG_SLUB_DEBUG
2560 void *addr = page_address(page);
2561 void *p;
2562 DECLARE_BITMAP(map, page->objects);
2564 bitmap_zero(map, page->objects);
2565 slab_err(s, page, "%s", text);
2566 slab_lock(page);
2567 for_each_free_object(p, s, page->freelist)
2568 set_bit(slab_index(p, s, addr), map);
2570 for_each_object(p, s, addr, page->objects) {
2572 if (!test_bit(slab_index(p, s, addr), map)) {
2573 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2574 p, p - addr);
2575 print_tracking(s, p);
2578 slab_unlock(page);
2579 #endif
2583 * Attempt to free all partial slabs on a node.
2585 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2587 unsigned long flags;
2588 struct page *page, *h;
2590 spin_lock_irqsave(&n->list_lock, flags);
2591 list_for_each_entry_safe(page, h, &n->partial, lru) {
2592 if (!page->inuse) {
2593 list_del(&page->lru);
2594 discard_slab(s, page);
2595 n->nr_partial--;
2596 } else {
2597 list_slab_objects(s, page,
2598 "Objects remaining on kmem_cache_close()");
2601 spin_unlock_irqrestore(&n->list_lock, flags);
2605 * Release all resources used by a slab cache.
2607 static inline int kmem_cache_close(struct kmem_cache *s)
2609 int node;
2611 flush_all(s);
2613 /* Attempt to free all objects */
2614 free_kmem_cache_cpus(s);
2615 for_each_node_state(node, N_NORMAL_MEMORY) {
2616 struct kmem_cache_node *n = get_node(s, node);
2618 free_partial(s, n);
2619 if (n->nr_partial || slabs_node(s, node))
2620 return 1;
2622 free_kmem_cache_nodes(s);
2623 return 0;
2627 * Close a cache and release the kmem_cache structure
2628 * (must be used for caches created using kmem_cache_create)
2630 void kmem_cache_destroy(struct kmem_cache *s)
2632 down_write(&slub_lock);
2633 s->refcount--;
2634 if (!s->refcount) {
2635 list_del(&s->list);
2636 up_write(&slub_lock);
2637 if (kmem_cache_close(s)) {
2638 printk(KERN_ERR "SLUB %s: %s called for cache that "
2639 "still has objects.\n", s->name, __func__);
2640 dump_stack();
2642 if (s->flags & SLAB_DESTROY_BY_RCU)
2643 rcu_barrier();
2644 sysfs_slab_remove(s);
2645 } else
2646 up_write(&slub_lock);
2648 EXPORT_SYMBOL(kmem_cache_destroy);
2650 /********************************************************************
2651 * Kmalloc subsystem
2652 *******************************************************************/
2654 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2655 EXPORT_SYMBOL(kmalloc_caches);
2657 static int __init setup_slub_min_order(char *str)
2659 get_option(&str, &slub_min_order);
2661 return 1;
2664 __setup("slub_min_order=", setup_slub_min_order);
2666 static int __init setup_slub_max_order(char *str)
2668 get_option(&str, &slub_max_order);
2669 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2671 return 1;
2674 __setup("slub_max_order=", setup_slub_max_order);
2676 static int __init setup_slub_min_objects(char *str)
2678 get_option(&str, &slub_min_objects);
2680 return 1;
2683 __setup("slub_min_objects=", setup_slub_min_objects);
2685 static int __init setup_slub_nomerge(char *str)
2687 slub_nomerge = 1;
2688 return 1;
2691 __setup("slub_nomerge", setup_slub_nomerge);
2693 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2694 const char *name, int size, gfp_t gfp_flags)
2696 unsigned int flags = 0;
2698 if (gfp_flags & SLUB_DMA)
2699 flags = SLAB_CACHE_DMA;
2702 * This function is called with IRQs disabled during early-boot on
2703 * single CPU so there's no need to take slub_lock here.
2705 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2706 flags, NULL))
2707 goto panic;
2709 list_add(&s->list, &slab_caches);
2711 if (sysfs_slab_add(s))
2712 goto panic;
2713 return s;
2715 panic:
2716 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2719 #ifdef CONFIG_ZONE_DMA
2720 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2722 static void sysfs_add_func(struct work_struct *w)
2724 struct kmem_cache *s;
2726 down_write(&slub_lock);
2727 list_for_each_entry(s, &slab_caches, list) {
2728 if (s->flags & __SYSFS_ADD_DEFERRED) {
2729 s->flags &= ~__SYSFS_ADD_DEFERRED;
2730 sysfs_slab_add(s);
2733 up_write(&slub_lock);
2736 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2738 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2740 struct kmem_cache *s;
2741 char *text;
2742 size_t realsize;
2743 unsigned long slabflags;
2745 s = kmalloc_caches_dma[index];
2746 if (s)
2747 return s;
2749 /* Dynamically create dma cache */
2750 if (flags & __GFP_WAIT)
2751 down_write(&slub_lock);
2752 else {
2753 if (!down_write_trylock(&slub_lock))
2754 goto out;
2757 if (kmalloc_caches_dma[index])
2758 goto unlock_out;
2760 realsize = kmalloc_caches[index].objsize;
2761 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2762 (unsigned int)realsize);
2763 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2766 * Must defer sysfs creation to a workqueue because we don't know
2767 * what context we are called from. Before sysfs comes up, we don't
2768 * need to do anything because our sysfs initcall will start by
2769 * adding all existing slabs to sysfs.
2771 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2772 if (slab_state >= SYSFS)
2773 slabflags |= __SYSFS_ADD_DEFERRED;
2775 if (!s || !text || !kmem_cache_open(s, flags, text,
2776 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2777 kfree(s);
2778 kfree(text);
2779 goto unlock_out;
2782 list_add(&s->list, &slab_caches);
2783 kmalloc_caches_dma[index] = s;
2785 if (slab_state >= SYSFS)
2786 schedule_work(&sysfs_add_work);
2788 unlock_out:
2789 up_write(&slub_lock);
2790 out:
2791 return kmalloc_caches_dma[index];
2793 #endif
2796 * Conversion table for small slabs sizes / 8 to the index in the
2797 * kmalloc array. This is necessary for slabs < 192 since we have non power
2798 * of two cache sizes there. The size of larger slabs can be determined using
2799 * fls.
2801 static s8 size_index[24] = {
2802 3, /* 8 */
2803 4, /* 16 */
2804 5, /* 24 */
2805 5, /* 32 */
2806 6, /* 40 */
2807 6, /* 48 */
2808 6, /* 56 */
2809 6, /* 64 */
2810 1, /* 72 */
2811 1, /* 80 */
2812 1, /* 88 */
2813 1, /* 96 */
2814 7, /* 104 */
2815 7, /* 112 */
2816 7, /* 120 */
2817 7, /* 128 */
2818 2, /* 136 */
2819 2, /* 144 */
2820 2, /* 152 */
2821 2, /* 160 */
2822 2, /* 168 */
2823 2, /* 176 */
2824 2, /* 184 */
2825 2 /* 192 */
2828 static inline int size_index_elem(size_t bytes)
2830 return (bytes - 1) / 8;
2833 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2835 int index;
2837 if (size <= 192) {
2838 if (!size)
2839 return ZERO_SIZE_PTR;
2841 index = size_index[size_index_elem(size)];
2842 } else
2843 index = fls(size - 1);
2845 #ifdef CONFIG_ZONE_DMA
2846 if (unlikely((flags & SLUB_DMA)))
2847 return dma_kmalloc_cache(index, flags);
2849 #endif
2850 return &kmalloc_caches[index];
2853 void *__kmalloc(size_t size, gfp_t flags)
2855 struct kmem_cache *s;
2856 void *ret;
2858 if (unlikely(size > SLUB_MAX_SIZE))
2859 return kmalloc_large(size, flags);
2861 s = get_slab(size, flags);
2863 if (unlikely(ZERO_OR_NULL_PTR(s)))
2864 return s;
2866 ret = slab_alloc(s, flags, -1, _RET_IP_);
2868 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2870 return ret;
2872 EXPORT_SYMBOL(__kmalloc);
2874 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2876 struct page *page;
2877 void *ptr = NULL;
2879 flags |= __GFP_COMP | __GFP_NOTRACK;
2880 page = alloc_pages_node(node, flags, get_order(size));
2881 if (page)
2882 ptr = page_address(page);
2884 kmemleak_alloc(ptr, size, 1, flags);
2885 return ptr;
2888 #ifdef CONFIG_NUMA
2889 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2891 struct kmem_cache *s;
2892 void *ret;
2894 if (unlikely(size > SLUB_MAX_SIZE)) {
2895 ret = kmalloc_large_node(size, flags, node);
2897 trace_kmalloc_node(_RET_IP_, ret,
2898 size, PAGE_SIZE << get_order(size),
2899 flags, node);
2901 return ret;
2904 s = get_slab(size, flags);
2906 if (unlikely(ZERO_OR_NULL_PTR(s)))
2907 return s;
2909 ret = slab_alloc(s, flags, node, _RET_IP_);
2911 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2913 return ret;
2915 EXPORT_SYMBOL(__kmalloc_node);
2916 #endif
2918 size_t ksize(const void *object)
2920 struct page *page;
2921 struct kmem_cache *s;
2923 if (unlikely(object == ZERO_SIZE_PTR))
2924 return 0;
2926 page = virt_to_head_page(object);
2928 if (unlikely(!PageSlab(page))) {
2929 WARN_ON(!PageCompound(page));
2930 return PAGE_SIZE << compound_order(page);
2932 s = page->slab;
2934 #ifdef CONFIG_SLUB_DEBUG
2936 * Debugging requires use of the padding between object
2937 * and whatever may come after it.
2939 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2940 return s->objsize;
2942 #endif
2944 * If we have the need to store the freelist pointer
2945 * back there or track user information then we can
2946 * only use the space before that information.
2948 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2949 return s->inuse;
2951 * Else we can use all the padding etc for the allocation
2953 return s->size;
2955 EXPORT_SYMBOL(ksize);
2957 void kfree(const void *x)
2959 struct page *page;
2960 void *object = (void *)x;
2962 trace_kfree(_RET_IP_, x);
2964 if (unlikely(ZERO_OR_NULL_PTR(x)))
2965 return;
2967 page = virt_to_head_page(x);
2968 if (unlikely(!PageSlab(page))) {
2969 BUG_ON(!PageCompound(page));
2970 kmemleak_free(x);
2971 put_page(page);
2972 return;
2974 slab_free(page->slab, page, object, _RET_IP_);
2976 EXPORT_SYMBOL(kfree);
2979 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2980 * the remaining slabs by the number of items in use. The slabs with the
2981 * most items in use come first. New allocations will then fill those up
2982 * and thus they can be removed from the partial lists.
2984 * The slabs with the least items are placed last. This results in them
2985 * being allocated from last increasing the chance that the last objects
2986 * are freed in them.
2988 int kmem_cache_shrink(struct kmem_cache *s)
2990 int node;
2991 int i;
2992 struct kmem_cache_node *n;
2993 struct page *page;
2994 struct page *t;
2995 int objects = oo_objects(s->max);
2996 struct list_head *slabs_by_inuse =
2997 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2998 unsigned long flags;
3000 if (!slabs_by_inuse)
3001 return -ENOMEM;
3003 flush_all(s);
3004 for_each_node_state(node, N_NORMAL_MEMORY) {
3005 n = get_node(s, node);
3007 if (!n->nr_partial)
3008 continue;
3010 for (i = 0; i < objects; i++)
3011 INIT_LIST_HEAD(slabs_by_inuse + i);
3013 spin_lock_irqsave(&n->list_lock, flags);
3016 * Build lists indexed by the items in use in each slab.
3018 * Note that concurrent frees may occur while we hold the
3019 * list_lock. page->inuse here is the upper limit.
3021 list_for_each_entry_safe(page, t, &n->partial, lru) {
3022 if (!page->inuse && slab_trylock(page)) {
3024 * Must hold slab lock here because slab_free
3025 * may have freed the last object and be
3026 * waiting to release the slab.
3028 list_del(&page->lru);
3029 n->nr_partial--;
3030 slab_unlock(page);
3031 discard_slab(s, page);
3032 } else {
3033 list_move(&page->lru,
3034 slabs_by_inuse + page->inuse);
3039 * Rebuild the partial list with the slabs filled up most
3040 * first and the least used slabs at the end.
3042 for (i = objects - 1; i >= 0; i--)
3043 list_splice(slabs_by_inuse + i, n->partial.prev);
3045 spin_unlock_irqrestore(&n->list_lock, flags);
3048 kfree(slabs_by_inuse);
3049 return 0;
3051 EXPORT_SYMBOL(kmem_cache_shrink);
3053 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3054 static int slab_mem_going_offline_callback(void *arg)
3056 struct kmem_cache *s;
3058 down_read(&slub_lock);
3059 list_for_each_entry(s, &slab_caches, list)
3060 kmem_cache_shrink(s);
3061 up_read(&slub_lock);
3063 return 0;
3066 static void slab_mem_offline_callback(void *arg)
3068 struct kmem_cache_node *n;
3069 struct kmem_cache *s;
3070 struct memory_notify *marg = arg;
3071 int offline_node;
3073 offline_node = marg->status_change_nid;
3076 * If the node still has available memory. we need kmem_cache_node
3077 * for it yet.
3079 if (offline_node < 0)
3080 return;
3082 down_read(&slub_lock);
3083 list_for_each_entry(s, &slab_caches, list) {
3084 n = get_node(s, offline_node);
3085 if (n) {
3087 * if n->nr_slabs > 0, slabs still exist on the node
3088 * that is going down. We were unable to free them,
3089 * and offline_pages() function shoudn't call this
3090 * callback. So, we must fail.
3092 BUG_ON(slabs_node(s, offline_node));
3094 s->node[offline_node] = NULL;
3095 kmem_cache_free(kmalloc_caches, n);
3098 up_read(&slub_lock);
3101 static int slab_mem_going_online_callback(void *arg)
3103 struct kmem_cache_node *n;
3104 struct kmem_cache *s;
3105 struct memory_notify *marg = arg;
3106 int nid = marg->status_change_nid;
3107 int ret = 0;
3110 * If the node's memory is already available, then kmem_cache_node is
3111 * already created. Nothing to do.
3113 if (nid < 0)
3114 return 0;
3117 * We are bringing a node online. No memory is available yet. We must
3118 * allocate a kmem_cache_node structure in order to bring the node
3119 * online.
3121 down_read(&slub_lock);
3122 list_for_each_entry(s, &slab_caches, list) {
3124 * XXX: kmem_cache_alloc_node will fallback to other nodes
3125 * since memory is not yet available from the node that
3126 * is brought up.
3128 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3129 if (!n) {
3130 ret = -ENOMEM;
3131 goto out;
3133 init_kmem_cache_node(n, s);
3134 s->node[nid] = n;
3136 out:
3137 up_read(&slub_lock);
3138 return ret;
3141 static int slab_memory_callback(struct notifier_block *self,
3142 unsigned long action, void *arg)
3144 int ret = 0;
3146 switch (action) {
3147 case MEM_GOING_ONLINE:
3148 ret = slab_mem_going_online_callback(arg);
3149 break;
3150 case MEM_GOING_OFFLINE:
3151 ret = slab_mem_going_offline_callback(arg);
3152 break;
3153 case MEM_OFFLINE:
3154 case MEM_CANCEL_ONLINE:
3155 slab_mem_offline_callback(arg);
3156 break;
3157 case MEM_ONLINE:
3158 case MEM_CANCEL_OFFLINE:
3159 break;
3161 if (ret)
3162 ret = notifier_from_errno(ret);
3163 else
3164 ret = NOTIFY_OK;
3165 return ret;
3168 #endif /* CONFIG_MEMORY_HOTPLUG */
3170 /********************************************************************
3171 * Basic setup of slabs
3172 *******************************************************************/
3174 void __init kmem_cache_init(void)
3176 int i;
3177 int caches = 0;
3179 init_alloc_cpu();
3181 #ifdef CONFIG_NUMA
3183 * Must first have the slab cache available for the allocations of the
3184 * struct kmem_cache_node's. There is special bootstrap code in
3185 * kmem_cache_open for slab_state == DOWN.
3187 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3188 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3189 kmalloc_caches[0].refcount = -1;
3190 caches++;
3192 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3193 #endif
3195 /* Able to allocate the per node structures */
3196 slab_state = PARTIAL;
3198 /* Caches that are not of the two-to-the-power-of size */
3199 if (KMALLOC_MIN_SIZE <= 32) {
3200 create_kmalloc_cache(&kmalloc_caches[1],
3201 "kmalloc-96", 96, GFP_NOWAIT);
3202 caches++;
3204 if (KMALLOC_MIN_SIZE <= 64) {
3205 create_kmalloc_cache(&kmalloc_caches[2],
3206 "kmalloc-192", 192, GFP_NOWAIT);
3207 caches++;
3210 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3211 create_kmalloc_cache(&kmalloc_caches[i],
3212 "kmalloc", 1 << i, GFP_NOWAIT);
3213 caches++;
3218 * Patch up the size_index table if we have strange large alignment
3219 * requirements for the kmalloc array. This is only the case for
3220 * MIPS it seems. The standard arches will not generate any code here.
3222 * Largest permitted alignment is 256 bytes due to the way we
3223 * handle the index determination for the smaller caches.
3225 * Make sure that nothing crazy happens if someone starts tinkering
3226 * around with ARCH_KMALLOC_MINALIGN
3228 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3229 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3231 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3232 int elem = size_index_elem(i);
3233 if (elem >= ARRAY_SIZE(size_index))
3234 break;
3235 size_index[elem] = KMALLOC_SHIFT_LOW;
3238 if (KMALLOC_MIN_SIZE == 64) {
3240 * The 96 byte size cache is not used if the alignment
3241 * is 64 byte.
3243 for (i = 64 + 8; i <= 96; i += 8)
3244 size_index[size_index_elem(i)] = 7;
3245 } else if (KMALLOC_MIN_SIZE == 128) {
3247 * The 192 byte sized cache is not used if the alignment
3248 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3249 * instead.
3251 for (i = 128 + 8; i <= 192; i += 8)
3252 size_index[size_index_elem(i)] = 8;
3255 slab_state = UP;
3257 /* Provide the correct kmalloc names now that the caches are up */
3258 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3259 kmalloc_caches[i]. name =
3260 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3262 #ifdef CONFIG_SMP
3263 register_cpu_notifier(&slab_notifier);
3264 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3265 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3266 #else
3267 kmem_size = sizeof(struct kmem_cache);
3268 #endif
3270 printk(KERN_INFO
3271 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3272 " CPUs=%d, Nodes=%d\n",
3273 caches, cache_line_size(),
3274 slub_min_order, slub_max_order, slub_min_objects,
3275 nr_cpu_ids, nr_node_ids);
3278 void __init kmem_cache_init_late(void)
3283 * Find a mergeable slab cache
3285 static int slab_unmergeable(struct kmem_cache *s)
3287 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3288 return 1;
3290 if (s->ctor)
3291 return 1;
3294 * We may have set a slab to be unmergeable during bootstrap.
3296 if (s->refcount < 0)
3297 return 1;
3299 return 0;
3302 static struct kmem_cache *find_mergeable(size_t size,
3303 size_t align, unsigned long flags, const char *name,
3304 void (*ctor)(void *))
3306 struct kmem_cache *s;
3308 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3309 return NULL;
3311 if (ctor)
3312 return NULL;
3314 size = ALIGN(size, sizeof(void *));
3315 align = calculate_alignment(flags, align, size);
3316 size = ALIGN(size, align);
3317 flags = kmem_cache_flags(size, flags, name, NULL);
3319 list_for_each_entry(s, &slab_caches, list) {
3320 if (slab_unmergeable(s))
3321 continue;
3323 if (size > s->size)
3324 continue;
3326 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3327 continue;
3329 * Check if alignment is compatible.
3330 * Courtesy of Adrian Drzewiecki
3332 if ((s->size & ~(align - 1)) != s->size)
3333 continue;
3335 if (s->size - size >= sizeof(void *))
3336 continue;
3338 return s;
3340 return NULL;
3343 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3344 size_t align, unsigned long flags, void (*ctor)(void *))
3346 struct kmem_cache *s;
3348 if (WARN_ON(!name))
3349 return NULL;
3351 down_write(&slub_lock);
3352 s = find_mergeable(size, align, flags, name, ctor);
3353 if (s) {
3354 int cpu;
3356 s->refcount++;
3358 * Adjust the object sizes so that we clear
3359 * the complete object on kzalloc.
3361 s->objsize = max(s->objsize, (int)size);
3364 * And then we need to update the object size in the
3365 * per cpu structures
3367 for_each_online_cpu(cpu)
3368 get_cpu_slab(s, cpu)->objsize = s->objsize;
3370 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3371 up_write(&slub_lock);
3373 if (sysfs_slab_alias(s, name)) {
3374 down_write(&slub_lock);
3375 s->refcount--;
3376 up_write(&slub_lock);
3377 goto err;
3379 return s;
3382 s = kmalloc(kmem_size, GFP_KERNEL);
3383 if (s) {
3384 if (kmem_cache_open(s, GFP_KERNEL, name,
3385 size, align, flags, ctor)) {
3386 list_add(&s->list, &slab_caches);
3387 up_write(&slub_lock);
3388 if (sysfs_slab_add(s)) {
3389 down_write(&slub_lock);
3390 list_del(&s->list);
3391 up_write(&slub_lock);
3392 kfree(s);
3393 goto err;
3395 return s;
3397 kfree(s);
3399 up_write(&slub_lock);
3401 err:
3402 if (flags & SLAB_PANIC)
3403 panic("Cannot create slabcache %s\n", name);
3404 else
3405 s = NULL;
3406 return s;
3408 EXPORT_SYMBOL(kmem_cache_create);
3410 #ifdef CONFIG_SMP
3412 * Use the cpu notifier to insure that the cpu slabs are flushed when
3413 * necessary.
3415 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3416 unsigned long action, void *hcpu)
3418 long cpu = (long)hcpu;
3419 struct kmem_cache *s;
3420 unsigned long flags;
3422 switch (action) {
3423 case CPU_UP_PREPARE:
3424 case CPU_UP_PREPARE_FROZEN:
3425 init_alloc_cpu_cpu(cpu);
3426 down_read(&slub_lock);
3427 list_for_each_entry(s, &slab_caches, list)
3428 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3429 GFP_KERNEL);
3430 up_read(&slub_lock);
3431 break;
3433 case CPU_UP_CANCELED:
3434 case CPU_UP_CANCELED_FROZEN:
3435 case CPU_DEAD:
3436 case CPU_DEAD_FROZEN:
3437 down_read(&slub_lock);
3438 list_for_each_entry(s, &slab_caches, list) {
3439 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3441 local_irq_save(flags);
3442 __flush_cpu_slab(s, cpu);
3443 local_irq_restore(flags);
3444 free_kmem_cache_cpu(c, cpu);
3445 s->cpu_slab[cpu] = NULL;
3447 up_read(&slub_lock);
3448 break;
3449 default:
3450 break;
3452 return NOTIFY_OK;
3455 static struct notifier_block __cpuinitdata slab_notifier = {
3456 .notifier_call = slab_cpuup_callback
3459 #endif
3461 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3463 struct kmem_cache *s;
3464 void *ret;
3466 if (unlikely(size > SLUB_MAX_SIZE))
3467 return kmalloc_large(size, gfpflags);
3469 s = get_slab(size, gfpflags);
3471 if (unlikely(ZERO_OR_NULL_PTR(s)))
3472 return s;
3474 ret = slab_alloc(s, gfpflags, -1, caller);
3476 /* Honor the call site pointer we recieved. */
3477 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3479 return ret;
3482 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3483 int node, unsigned long caller)
3485 struct kmem_cache *s;
3486 void *ret;
3488 if (unlikely(size > SLUB_MAX_SIZE))
3489 return kmalloc_large_node(size, gfpflags, node);
3491 s = get_slab(size, gfpflags);
3493 if (unlikely(ZERO_OR_NULL_PTR(s)))
3494 return s;
3496 ret = slab_alloc(s, gfpflags, node, caller);
3498 /* Honor the call site pointer we recieved. */
3499 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3501 return ret;
3504 #ifdef CONFIG_SLUB_DEBUG
3505 static int count_inuse(struct page *page)
3507 return page->inuse;
3510 static int count_total(struct page *page)
3512 return page->objects;
3515 static int validate_slab(struct kmem_cache *s, struct page *page,
3516 unsigned long *map)
3518 void *p;
3519 void *addr = page_address(page);
3521 if (!check_slab(s, page) ||
3522 !on_freelist(s, page, NULL))
3523 return 0;
3525 /* Now we know that a valid freelist exists */
3526 bitmap_zero(map, page->objects);
3528 for_each_free_object(p, s, page->freelist) {
3529 set_bit(slab_index(p, s, addr), map);
3530 if (!check_object(s, page, p, 0))
3531 return 0;
3534 for_each_object(p, s, addr, page->objects)
3535 if (!test_bit(slab_index(p, s, addr), map))
3536 if (!check_object(s, page, p, 1))
3537 return 0;
3538 return 1;
3541 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3542 unsigned long *map)
3544 if (slab_trylock(page)) {
3545 validate_slab(s, page, map);
3546 slab_unlock(page);
3547 } else
3548 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3549 s->name, page);
3551 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3552 if (!PageSlubDebug(page))
3553 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3554 "on slab 0x%p\n", s->name, page);
3555 } else {
3556 if (PageSlubDebug(page))
3557 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3558 "slab 0x%p\n", s->name, page);
3562 static int validate_slab_node(struct kmem_cache *s,
3563 struct kmem_cache_node *n, unsigned long *map)
3565 unsigned long count = 0;
3566 struct page *page;
3567 unsigned long flags;
3569 spin_lock_irqsave(&n->list_lock, flags);
3571 list_for_each_entry(page, &n->partial, lru) {
3572 validate_slab_slab(s, page, map);
3573 count++;
3575 if (count != n->nr_partial)
3576 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3577 "counter=%ld\n", s->name, count, n->nr_partial);
3579 if (!(s->flags & SLAB_STORE_USER))
3580 goto out;
3582 list_for_each_entry(page, &n->full, lru) {
3583 validate_slab_slab(s, page, map);
3584 count++;
3586 if (count != atomic_long_read(&n->nr_slabs))
3587 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3588 "counter=%ld\n", s->name, count,
3589 atomic_long_read(&n->nr_slabs));
3591 out:
3592 spin_unlock_irqrestore(&n->list_lock, flags);
3593 return count;
3596 static long validate_slab_cache(struct kmem_cache *s)
3598 int node;
3599 unsigned long count = 0;
3600 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3601 sizeof(unsigned long), GFP_KERNEL);
3603 if (!map)
3604 return -ENOMEM;
3606 flush_all(s);
3607 for_each_node_state(node, N_NORMAL_MEMORY) {
3608 struct kmem_cache_node *n = get_node(s, node);
3610 count += validate_slab_node(s, n, map);
3612 kfree(map);
3613 return count;
3616 #ifdef SLUB_RESILIENCY_TEST
3617 static void resiliency_test(void)
3619 u8 *p;
3621 printk(KERN_ERR "SLUB resiliency testing\n");
3622 printk(KERN_ERR "-----------------------\n");
3623 printk(KERN_ERR "A. Corruption after allocation\n");
3625 p = kzalloc(16, GFP_KERNEL);
3626 p[16] = 0x12;
3627 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3628 " 0x12->0x%p\n\n", p + 16);
3630 validate_slab_cache(kmalloc_caches + 4);
3632 /* Hmmm... The next two are dangerous */
3633 p = kzalloc(32, GFP_KERNEL);
3634 p[32 + sizeof(void *)] = 0x34;
3635 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3636 " 0x34 -> -0x%p\n", p);
3637 printk(KERN_ERR
3638 "If allocated object is overwritten then not detectable\n\n");
3640 validate_slab_cache(kmalloc_caches + 5);
3641 p = kzalloc(64, GFP_KERNEL);
3642 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3643 *p = 0x56;
3644 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3646 printk(KERN_ERR
3647 "If allocated object is overwritten then not detectable\n\n");
3648 validate_slab_cache(kmalloc_caches + 6);
3650 printk(KERN_ERR "\nB. Corruption after free\n");
3651 p = kzalloc(128, GFP_KERNEL);
3652 kfree(p);
3653 *p = 0x78;
3654 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3655 validate_slab_cache(kmalloc_caches + 7);
3657 p = kzalloc(256, GFP_KERNEL);
3658 kfree(p);
3659 p[50] = 0x9a;
3660 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3662 validate_slab_cache(kmalloc_caches + 8);
3664 p = kzalloc(512, GFP_KERNEL);
3665 kfree(p);
3666 p[512] = 0xab;
3667 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3668 validate_slab_cache(kmalloc_caches + 9);
3670 #else
3671 static void resiliency_test(void) {};
3672 #endif
3675 * Generate lists of code addresses where slabcache objects are allocated
3676 * and freed.
3679 struct location {
3680 unsigned long count;
3681 unsigned long addr;
3682 long long sum_time;
3683 long min_time;
3684 long max_time;
3685 long min_pid;
3686 long max_pid;
3687 DECLARE_BITMAP(cpus, NR_CPUS);
3688 nodemask_t nodes;
3691 struct loc_track {
3692 unsigned long max;
3693 unsigned long count;
3694 struct location *loc;
3697 static void free_loc_track(struct loc_track *t)
3699 if (t->max)
3700 free_pages((unsigned long)t->loc,
3701 get_order(sizeof(struct location) * t->max));
3704 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3706 struct location *l;
3707 int order;
3709 order = get_order(sizeof(struct location) * max);
3711 l = (void *)__get_free_pages(flags, order);
3712 if (!l)
3713 return 0;
3715 if (t->count) {
3716 memcpy(l, t->loc, sizeof(struct location) * t->count);
3717 free_loc_track(t);
3719 t->max = max;
3720 t->loc = l;
3721 return 1;
3724 static int add_location(struct loc_track *t, struct kmem_cache *s,
3725 const struct track *track)
3727 long start, end, pos;
3728 struct location *l;
3729 unsigned long caddr;
3730 unsigned long age = jiffies - track->when;
3732 start = -1;
3733 end = t->count;
3735 for ( ; ; ) {
3736 pos = start + (end - start + 1) / 2;
3739 * There is nothing at "end". If we end up there
3740 * we need to add something to before end.
3742 if (pos == end)
3743 break;
3745 caddr = t->loc[pos].addr;
3746 if (track->addr == caddr) {
3748 l = &t->loc[pos];
3749 l->count++;
3750 if (track->when) {
3751 l->sum_time += age;
3752 if (age < l->min_time)
3753 l->min_time = age;
3754 if (age > l->max_time)
3755 l->max_time = age;
3757 if (track->pid < l->min_pid)
3758 l->min_pid = track->pid;
3759 if (track->pid > l->max_pid)
3760 l->max_pid = track->pid;
3762 cpumask_set_cpu(track->cpu,
3763 to_cpumask(l->cpus));
3765 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3766 return 1;
3769 if (track->addr < caddr)
3770 end = pos;
3771 else
3772 start = pos;
3776 * Not found. Insert new tracking element.
3778 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3779 return 0;
3781 l = t->loc + pos;
3782 if (pos < t->count)
3783 memmove(l + 1, l,
3784 (t->count - pos) * sizeof(struct location));
3785 t->count++;
3786 l->count = 1;
3787 l->addr = track->addr;
3788 l->sum_time = age;
3789 l->min_time = age;
3790 l->max_time = age;
3791 l->min_pid = track->pid;
3792 l->max_pid = track->pid;
3793 cpumask_clear(to_cpumask(l->cpus));
3794 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3795 nodes_clear(l->nodes);
3796 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3797 return 1;
3800 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3801 struct page *page, enum track_item alloc)
3803 void *addr = page_address(page);
3804 DECLARE_BITMAP(map, page->objects);
3805 void *p;
3807 bitmap_zero(map, page->objects);
3808 for_each_free_object(p, s, page->freelist)
3809 set_bit(slab_index(p, s, addr), map);
3811 for_each_object(p, s, addr, page->objects)
3812 if (!test_bit(slab_index(p, s, addr), map))
3813 add_location(t, s, get_track(s, p, alloc));
3816 static int list_locations(struct kmem_cache *s, char *buf,
3817 enum track_item alloc)
3819 int len = 0;
3820 unsigned long i;
3821 struct loc_track t = { 0, 0, NULL };
3822 int node;
3824 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3825 GFP_TEMPORARY))
3826 return sprintf(buf, "Out of memory\n");
3828 /* Push back cpu slabs */
3829 flush_all(s);
3831 for_each_node_state(node, N_NORMAL_MEMORY) {
3832 struct kmem_cache_node *n = get_node(s, node);
3833 unsigned long flags;
3834 struct page *page;
3836 if (!atomic_long_read(&n->nr_slabs))
3837 continue;
3839 spin_lock_irqsave(&n->list_lock, flags);
3840 list_for_each_entry(page, &n->partial, lru)
3841 process_slab(&t, s, page, alloc);
3842 list_for_each_entry(page, &n->full, lru)
3843 process_slab(&t, s, page, alloc);
3844 spin_unlock_irqrestore(&n->list_lock, flags);
3847 for (i = 0; i < t.count; i++) {
3848 struct location *l = &t.loc[i];
3850 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3851 break;
3852 len += sprintf(buf + len, "%7ld ", l->count);
3854 if (l->addr)
3855 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3856 else
3857 len += sprintf(buf + len, "<not-available>");
3859 if (l->sum_time != l->min_time) {
3860 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3861 l->min_time,
3862 (long)div_u64(l->sum_time, l->count),
3863 l->max_time);
3864 } else
3865 len += sprintf(buf + len, " age=%ld",
3866 l->min_time);
3868 if (l->min_pid != l->max_pid)
3869 len += sprintf(buf + len, " pid=%ld-%ld",
3870 l->min_pid, l->max_pid);
3871 else
3872 len += sprintf(buf + len, " pid=%ld",
3873 l->min_pid);
3875 if (num_online_cpus() > 1 &&
3876 !cpumask_empty(to_cpumask(l->cpus)) &&
3877 len < PAGE_SIZE - 60) {
3878 len += sprintf(buf + len, " cpus=");
3879 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3880 to_cpumask(l->cpus));
3883 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3884 len < PAGE_SIZE - 60) {
3885 len += sprintf(buf + len, " nodes=");
3886 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3887 l->nodes);
3890 len += sprintf(buf + len, "\n");
3893 free_loc_track(&t);
3894 if (!t.count)
3895 len += sprintf(buf, "No data\n");
3896 return len;
3899 enum slab_stat_type {
3900 SL_ALL, /* All slabs */
3901 SL_PARTIAL, /* Only partially allocated slabs */
3902 SL_CPU, /* Only slabs used for cpu caches */
3903 SL_OBJECTS, /* Determine allocated objects not slabs */
3904 SL_TOTAL /* Determine object capacity not slabs */
3907 #define SO_ALL (1 << SL_ALL)
3908 #define SO_PARTIAL (1 << SL_PARTIAL)
3909 #define SO_CPU (1 << SL_CPU)
3910 #define SO_OBJECTS (1 << SL_OBJECTS)
3911 #define SO_TOTAL (1 << SL_TOTAL)
3913 static ssize_t show_slab_objects(struct kmem_cache *s,
3914 char *buf, unsigned long flags)
3916 unsigned long total = 0;
3917 int node;
3918 int x;
3919 unsigned long *nodes;
3920 unsigned long *per_cpu;
3922 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3923 if (!nodes)
3924 return -ENOMEM;
3925 per_cpu = nodes + nr_node_ids;
3927 if (flags & SO_CPU) {
3928 int cpu;
3930 for_each_possible_cpu(cpu) {
3931 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3933 if (!c || c->node < 0)
3934 continue;
3936 if (c->page) {
3937 if (flags & SO_TOTAL)
3938 x = c->page->objects;
3939 else if (flags & SO_OBJECTS)
3940 x = c->page->inuse;
3941 else
3942 x = 1;
3944 total += x;
3945 nodes[c->node] += x;
3947 per_cpu[c->node]++;
3951 if (flags & SO_ALL) {
3952 for_each_node_state(node, N_NORMAL_MEMORY) {
3953 struct kmem_cache_node *n = get_node(s, node);
3955 if (flags & SO_TOTAL)
3956 x = atomic_long_read(&n->total_objects);
3957 else if (flags & SO_OBJECTS)
3958 x = atomic_long_read(&n->total_objects) -
3959 count_partial(n, count_free);
3961 else
3962 x = atomic_long_read(&n->nr_slabs);
3963 total += x;
3964 nodes[node] += x;
3967 } else if (flags & SO_PARTIAL) {
3968 for_each_node_state(node, N_NORMAL_MEMORY) {
3969 struct kmem_cache_node *n = get_node(s, node);
3971 if (flags & SO_TOTAL)
3972 x = count_partial(n, count_total);
3973 else if (flags & SO_OBJECTS)
3974 x = count_partial(n, count_inuse);
3975 else
3976 x = n->nr_partial;
3977 total += x;
3978 nodes[node] += x;
3981 x = sprintf(buf, "%lu", total);
3982 #ifdef CONFIG_NUMA
3983 for_each_node_state(node, N_NORMAL_MEMORY)
3984 if (nodes[node])
3985 x += sprintf(buf + x, " N%d=%lu",
3986 node, nodes[node]);
3987 #endif
3988 kfree(nodes);
3989 return x + sprintf(buf + x, "\n");
3992 static int any_slab_objects(struct kmem_cache *s)
3994 int node;
3996 for_each_online_node(node) {
3997 struct kmem_cache_node *n = get_node(s, node);
3999 if (!n)
4000 continue;
4002 if (atomic_long_read(&n->total_objects))
4003 return 1;
4005 return 0;
4008 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4009 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4011 struct slab_attribute {
4012 struct attribute attr;
4013 ssize_t (*show)(struct kmem_cache *s, char *buf);
4014 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4017 #define SLAB_ATTR_RO(_name) \
4018 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4020 #define SLAB_ATTR(_name) \
4021 static struct slab_attribute _name##_attr = \
4022 __ATTR(_name, 0644, _name##_show, _name##_store)
4024 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4026 return sprintf(buf, "%d\n", s->size);
4028 SLAB_ATTR_RO(slab_size);
4030 static ssize_t align_show(struct kmem_cache *s, char *buf)
4032 return sprintf(buf, "%d\n", s->align);
4034 SLAB_ATTR_RO(align);
4036 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4038 return sprintf(buf, "%d\n", s->objsize);
4040 SLAB_ATTR_RO(object_size);
4042 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4044 return sprintf(buf, "%d\n", oo_objects(s->oo));
4046 SLAB_ATTR_RO(objs_per_slab);
4048 static ssize_t order_store(struct kmem_cache *s,
4049 const char *buf, size_t length)
4051 unsigned long order;
4052 int err;
4054 err = strict_strtoul(buf, 10, &order);
4055 if (err)
4056 return err;
4058 if (order > slub_max_order || order < slub_min_order)
4059 return -EINVAL;
4061 calculate_sizes(s, order);
4062 return length;
4065 static ssize_t order_show(struct kmem_cache *s, char *buf)
4067 return sprintf(buf, "%d\n", oo_order(s->oo));
4069 SLAB_ATTR(order);
4071 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4073 return sprintf(buf, "%lu\n", s->min_partial);
4076 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4077 size_t length)
4079 unsigned long min;
4080 int err;
4082 err = strict_strtoul(buf, 10, &min);
4083 if (err)
4084 return err;
4086 set_min_partial(s, min);
4087 return length;
4089 SLAB_ATTR(min_partial);
4091 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4093 if (s->ctor) {
4094 int n = sprint_symbol(buf, (unsigned long)s->ctor);
4096 return n + sprintf(buf + n, "\n");
4098 return 0;
4100 SLAB_ATTR_RO(ctor);
4102 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4104 return sprintf(buf, "%d\n", s->refcount - 1);
4106 SLAB_ATTR_RO(aliases);
4108 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4110 return show_slab_objects(s, buf, SO_ALL);
4112 SLAB_ATTR_RO(slabs);
4114 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4116 return show_slab_objects(s, buf, SO_PARTIAL);
4118 SLAB_ATTR_RO(partial);
4120 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4122 return show_slab_objects(s, buf, SO_CPU);
4124 SLAB_ATTR_RO(cpu_slabs);
4126 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4128 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4130 SLAB_ATTR_RO(objects);
4132 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4134 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4136 SLAB_ATTR_RO(objects_partial);
4138 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4140 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4142 SLAB_ATTR_RO(total_objects);
4144 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4146 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4149 static ssize_t sanity_checks_store(struct kmem_cache *s,
4150 const char *buf, size_t length)
4152 s->flags &= ~SLAB_DEBUG_FREE;
4153 if (buf[0] == '1')
4154 s->flags |= SLAB_DEBUG_FREE;
4155 return length;
4157 SLAB_ATTR(sanity_checks);
4159 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4161 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4164 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4165 size_t length)
4167 s->flags &= ~SLAB_TRACE;
4168 if (buf[0] == '1')
4169 s->flags |= SLAB_TRACE;
4170 return length;
4172 SLAB_ATTR(trace);
4174 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4176 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4179 static ssize_t reclaim_account_store(struct kmem_cache *s,
4180 const char *buf, size_t length)
4182 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4183 if (buf[0] == '1')
4184 s->flags |= SLAB_RECLAIM_ACCOUNT;
4185 return length;
4187 SLAB_ATTR(reclaim_account);
4189 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4191 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4193 SLAB_ATTR_RO(hwcache_align);
4195 #ifdef CONFIG_ZONE_DMA
4196 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4198 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4200 SLAB_ATTR_RO(cache_dma);
4201 #endif
4203 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4205 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4207 SLAB_ATTR_RO(destroy_by_rcu);
4209 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4211 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4214 static ssize_t red_zone_store(struct kmem_cache *s,
4215 const char *buf, size_t length)
4217 if (any_slab_objects(s))
4218 return -EBUSY;
4220 s->flags &= ~SLAB_RED_ZONE;
4221 if (buf[0] == '1')
4222 s->flags |= SLAB_RED_ZONE;
4223 calculate_sizes(s, -1);
4224 return length;
4226 SLAB_ATTR(red_zone);
4228 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4230 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4233 static ssize_t poison_store(struct kmem_cache *s,
4234 const char *buf, size_t length)
4236 if (any_slab_objects(s))
4237 return -EBUSY;
4239 s->flags &= ~SLAB_POISON;
4240 if (buf[0] == '1')
4241 s->flags |= SLAB_POISON;
4242 calculate_sizes(s, -1);
4243 return length;
4245 SLAB_ATTR(poison);
4247 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4249 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4252 static ssize_t store_user_store(struct kmem_cache *s,
4253 const char *buf, size_t length)
4255 if (any_slab_objects(s))
4256 return -EBUSY;
4258 s->flags &= ~SLAB_STORE_USER;
4259 if (buf[0] == '1')
4260 s->flags |= SLAB_STORE_USER;
4261 calculate_sizes(s, -1);
4262 return length;
4264 SLAB_ATTR(store_user);
4266 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4268 return 0;
4271 static ssize_t validate_store(struct kmem_cache *s,
4272 const char *buf, size_t length)
4274 int ret = -EINVAL;
4276 if (buf[0] == '1') {
4277 ret = validate_slab_cache(s);
4278 if (ret >= 0)
4279 ret = length;
4281 return ret;
4283 SLAB_ATTR(validate);
4285 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4287 return 0;
4290 static ssize_t shrink_store(struct kmem_cache *s,
4291 const char *buf, size_t length)
4293 if (buf[0] == '1') {
4294 int rc = kmem_cache_shrink(s);
4296 if (rc)
4297 return rc;
4298 } else
4299 return -EINVAL;
4300 return length;
4302 SLAB_ATTR(shrink);
4304 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4306 if (!(s->flags & SLAB_STORE_USER))
4307 return -ENOSYS;
4308 return list_locations(s, buf, TRACK_ALLOC);
4310 SLAB_ATTR_RO(alloc_calls);
4312 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4314 if (!(s->flags & SLAB_STORE_USER))
4315 return -ENOSYS;
4316 return list_locations(s, buf, TRACK_FREE);
4318 SLAB_ATTR_RO(free_calls);
4320 #ifdef CONFIG_NUMA
4321 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4323 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4326 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4327 const char *buf, size_t length)
4329 unsigned long ratio;
4330 int err;
4332 err = strict_strtoul(buf, 10, &ratio);
4333 if (err)
4334 return err;
4336 if (ratio <= 100)
4337 s->remote_node_defrag_ratio = ratio * 10;
4339 return length;
4341 SLAB_ATTR(remote_node_defrag_ratio);
4342 #endif
4344 #ifdef CONFIG_SLUB_STATS
4345 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4347 unsigned long sum = 0;
4348 int cpu;
4349 int len;
4350 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4352 if (!data)
4353 return -ENOMEM;
4355 for_each_online_cpu(cpu) {
4356 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4358 data[cpu] = x;
4359 sum += x;
4362 len = sprintf(buf, "%lu", sum);
4364 #ifdef CONFIG_SMP
4365 for_each_online_cpu(cpu) {
4366 if (data[cpu] && len < PAGE_SIZE - 20)
4367 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4369 #endif
4370 kfree(data);
4371 return len + sprintf(buf + len, "\n");
4374 #define STAT_ATTR(si, text) \
4375 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4377 return show_stat(s, buf, si); \
4379 SLAB_ATTR_RO(text); \
4381 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4382 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4383 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4384 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4385 STAT_ATTR(FREE_FROZEN, free_frozen);
4386 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4387 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4388 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4389 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4390 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4391 STAT_ATTR(FREE_SLAB, free_slab);
4392 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4393 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4394 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4395 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4396 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4397 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4398 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4399 #endif
4401 static struct attribute *slab_attrs[] = {
4402 &slab_size_attr.attr,
4403 &object_size_attr.attr,
4404 &objs_per_slab_attr.attr,
4405 &order_attr.attr,
4406 &min_partial_attr.attr,
4407 &objects_attr.attr,
4408 &objects_partial_attr.attr,
4409 &total_objects_attr.attr,
4410 &slabs_attr.attr,
4411 &partial_attr.attr,
4412 &cpu_slabs_attr.attr,
4413 &ctor_attr.attr,
4414 &aliases_attr.attr,
4415 &align_attr.attr,
4416 &sanity_checks_attr.attr,
4417 &trace_attr.attr,
4418 &hwcache_align_attr.attr,
4419 &reclaim_account_attr.attr,
4420 &destroy_by_rcu_attr.attr,
4421 &red_zone_attr.attr,
4422 &poison_attr.attr,
4423 &store_user_attr.attr,
4424 &validate_attr.attr,
4425 &shrink_attr.attr,
4426 &alloc_calls_attr.attr,
4427 &free_calls_attr.attr,
4428 #ifdef CONFIG_ZONE_DMA
4429 &cache_dma_attr.attr,
4430 #endif
4431 #ifdef CONFIG_NUMA
4432 &remote_node_defrag_ratio_attr.attr,
4433 #endif
4434 #ifdef CONFIG_SLUB_STATS
4435 &alloc_fastpath_attr.attr,
4436 &alloc_slowpath_attr.attr,
4437 &free_fastpath_attr.attr,
4438 &free_slowpath_attr.attr,
4439 &free_frozen_attr.attr,
4440 &free_add_partial_attr.attr,
4441 &free_remove_partial_attr.attr,
4442 &alloc_from_partial_attr.attr,
4443 &alloc_slab_attr.attr,
4444 &alloc_refill_attr.attr,
4445 &free_slab_attr.attr,
4446 &cpuslab_flush_attr.attr,
4447 &deactivate_full_attr.attr,
4448 &deactivate_empty_attr.attr,
4449 &deactivate_to_head_attr.attr,
4450 &deactivate_to_tail_attr.attr,
4451 &deactivate_remote_frees_attr.attr,
4452 &order_fallback_attr.attr,
4453 #endif
4454 NULL
4457 static struct attribute_group slab_attr_group = {
4458 .attrs = slab_attrs,
4461 static ssize_t slab_attr_show(struct kobject *kobj,
4462 struct attribute *attr,
4463 char *buf)
4465 struct slab_attribute *attribute;
4466 struct kmem_cache *s;
4467 int err;
4469 attribute = to_slab_attr(attr);
4470 s = to_slab(kobj);
4472 if (!attribute->show)
4473 return -EIO;
4475 err = attribute->show(s, buf);
4477 return err;
4480 static ssize_t slab_attr_store(struct kobject *kobj,
4481 struct attribute *attr,
4482 const char *buf, size_t len)
4484 struct slab_attribute *attribute;
4485 struct kmem_cache *s;
4486 int err;
4488 attribute = to_slab_attr(attr);
4489 s = to_slab(kobj);
4491 if (!attribute->store)
4492 return -EIO;
4494 err = attribute->store(s, buf, len);
4496 return err;
4499 static void kmem_cache_release(struct kobject *kobj)
4501 struct kmem_cache *s = to_slab(kobj);
4503 kfree(s);
4506 static struct sysfs_ops slab_sysfs_ops = {
4507 .show = slab_attr_show,
4508 .store = slab_attr_store,
4511 static struct kobj_type slab_ktype = {
4512 .sysfs_ops = &slab_sysfs_ops,
4513 .release = kmem_cache_release
4516 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4518 struct kobj_type *ktype = get_ktype(kobj);
4520 if (ktype == &slab_ktype)
4521 return 1;
4522 return 0;
4525 static struct kset_uevent_ops slab_uevent_ops = {
4526 .filter = uevent_filter,
4529 static struct kset *slab_kset;
4531 #define ID_STR_LENGTH 64
4533 /* Create a unique string id for a slab cache:
4535 * Format :[flags-]size
4537 static char *create_unique_id(struct kmem_cache *s)
4539 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4540 char *p = name;
4542 BUG_ON(!name);
4544 *p++ = ':';
4546 * First flags affecting slabcache operations. We will only
4547 * get here for aliasable slabs so we do not need to support
4548 * too many flags. The flags here must cover all flags that
4549 * are matched during merging to guarantee that the id is
4550 * unique.
4552 if (s->flags & SLAB_CACHE_DMA)
4553 *p++ = 'd';
4554 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4555 *p++ = 'a';
4556 if (s->flags & SLAB_DEBUG_FREE)
4557 *p++ = 'F';
4558 if (!(s->flags & SLAB_NOTRACK))
4559 *p++ = 't';
4560 if (p != name + 1)
4561 *p++ = '-';
4562 p += sprintf(p, "%07d", s->size);
4563 BUG_ON(p > name + ID_STR_LENGTH - 1);
4564 return name;
4567 static int sysfs_slab_add(struct kmem_cache *s)
4569 int err;
4570 const char *name;
4571 int unmergeable;
4573 if (slab_state < SYSFS)
4574 /* Defer until later */
4575 return 0;
4577 unmergeable = slab_unmergeable(s);
4578 if (unmergeable) {
4580 * Slabcache can never be merged so we can use the name proper.
4581 * This is typically the case for debug situations. In that
4582 * case we can catch duplicate names easily.
4584 sysfs_remove_link(&slab_kset->kobj, s->name);
4585 name = s->name;
4586 } else {
4588 * Create a unique name for the slab as a target
4589 * for the symlinks.
4591 name = create_unique_id(s);
4594 s->kobj.kset = slab_kset;
4595 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4596 if (err) {
4597 kobject_put(&s->kobj);
4598 return err;
4601 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4602 if (err) {
4603 kobject_del(&s->kobj);
4604 kobject_put(&s->kobj);
4605 return err;
4607 kobject_uevent(&s->kobj, KOBJ_ADD);
4608 if (!unmergeable) {
4609 /* Setup first alias */
4610 sysfs_slab_alias(s, s->name);
4611 kfree(name);
4613 return 0;
4616 static void sysfs_slab_remove(struct kmem_cache *s)
4618 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4619 kobject_del(&s->kobj);
4620 kobject_put(&s->kobj);
4624 * Need to buffer aliases during bootup until sysfs becomes
4625 * available lest we lose that information.
4627 struct saved_alias {
4628 struct kmem_cache *s;
4629 const char *name;
4630 struct saved_alias *next;
4633 static struct saved_alias *alias_list;
4635 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4637 struct saved_alias *al;
4639 if (slab_state == SYSFS) {
4641 * If we have a leftover link then remove it.
4643 sysfs_remove_link(&slab_kset->kobj, name);
4644 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4647 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4648 if (!al)
4649 return -ENOMEM;
4651 al->s = s;
4652 al->name = name;
4653 al->next = alias_list;
4654 alias_list = al;
4655 return 0;
4658 static int __init slab_sysfs_init(void)
4660 struct kmem_cache *s;
4661 int err;
4663 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4664 if (!slab_kset) {
4665 printk(KERN_ERR "Cannot register slab subsystem.\n");
4666 return -ENOSYS;
4669 slab_state = SYSFS;
4671 list_for_each_entry(s, &slab_caches, list) {
4672 err = sysfs_slab_add(s);
4673 if (err)
4674 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4675 " to sysfs\n", s->name);
4678 while (alias_list) {
4679 struct saved_alias *al = alias_list;
4681 alias_list = alias_list->next;
4682 err = sysfs_slab_alias(al->s, al->name);
4683 if (err)
4684 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4685 " %s to sysfs\n", s->name);
4686 kfree(al);
4689 resiliency_test();
4690 return 0;
4693 __initcall(slab_sysfs_init);
4694 #endif
4697 * The /proc/slabinfo ABI
4699 #ifdef CONFIG_SLABINFO
4700 static void print_slabinfo_header(struct seq_file *m)
4702 seq_puts(m, "slabinfo - version: 2.1\n");
4703 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4704 "<objperslab> <pagesperslab>");
4705 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4706 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4707 seq_putc(m, '\n');
4710 static void *s_start(struct seq_file *m, loff_t *pos)
4712 loff_t n = *pos;
4714 down_read(&slub_lock);
4715 if (!n)
4716 print_slabinfo_header(m);
4718 return seq_list_start(&slab_caches, *pos);
4721 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4723 return seq_list_next(p, &slab_caches, pos);
4726 static void s_stop(struct seq_file *m, void *p)
4728 up_read(&slub_lock);
4731 static int s_show(struct seq_file *m, void *p)
4733 unsigned long nr_partials = 0;
4734 unsigned long nr_slabs = 0;
4735 unsigned long nr_inuse = 0;
4736 unsigned long nr_objs = 0;
4737 unsigned long nr_free = 0;
4738 struct kmem_cache *s;
4739 int node;
4741 s = list_entry(p, struct kmem_cache, list);
4743 for_each_online_node(node) {
4744 struct kmem_cache_node *n = get_node(s, node);
4746 if (!n)
4747 continue;
4749 nr_partials += n->nr_partial;
4750 nr_slabs += atomic_long_read(&n->nr_slabs);
4751 nr_objs += atomic_long_read(&n->total_objects);
4752 nr_free += count_partial(n, count_free);
4755 nr_inuse = nr_objs - nr_free;
4757 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4758 nr_objs, s->size, oo_objects(s->oo),
4759 (1 << oo_order(s->oo)));
4760 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4761 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4762 0UL);
4763 seq_putc(m, '\n');
4764 return 0;
4767 static const struct seq_operations slabinfo_op = {
4768 .start = s_start,
4769 .next = s_next,
4770 .stop = s_stop,
4771 .show = s_show,
4774 static int slabinfo_open(struct inode *inode, struct file *file)
4776 return seq_open(file, &slabinfo_op);
4779 static const struct file_operations proc_slabinfo_operations = {
4780 .open = slabinfo_open,
4781 .read = seq_read,
4782 .llseek = seq_lseek,
4783 .release = seq_release,
4786 static int __init slab_proc_init(void)
4788 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4789 return 0;
4791 module_init(slab_proc_init);
4792 #endif /* CONFIG_SLABINFO */