Merge branch 'v6v7' into devel
[linux/fpc-iii.git] / arch / arm / include / asm / bitops.h
blobaf54ed102f5ff3e82a544dd3730c9bd6a5246505
1 /*
2 * Copyright 1995, Russell King.
3 * Various bits and pieces copyrights include:
4 * Linus Torvalds (test_bit).
5 * Big endian support: Copyright 2001, Nicolas Pitre
6 * reworked by rmk.
8 * bit 0 is the LSB of an "unsigned long" quantity.
10 * Please note that the code in this file should never be included
11 * from user space. Many of these are not implemented in assembler
12 * since they would be too costly. Also, they require privileged
13 * instructions (which are not available from user mode) to ensure
14 * that they are atomic.
17 #ifndef __ASM_ARM_BITOPS_H
18 #define __ASM_ARM_BITOPS_H
20 #ifdef __KERNEL__
22 #ifndef _LINUX_BITOPS_H
23 #error only <linux/bitops.h> can be included directly
24 #endif
26 #include <linux/compiler.h>
27 #include <asm/system.h>
29 #define smp_mb__before_clear_bit() mb()
30 #define smp_mb__after_clear_bit() mb()
33 * These functions are the basis of our bit ops.
35 * First, the atomic bitops. These use native endian.
37 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
39 unsigned long flags;
40 unsigned long mask = 1UL << (bit & 31);
42 p += bit >> 5;
44 raw_local_irq_save(flags);
45 *p |= mask;
46 raw_local_irq_restore(flags);
49 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
51 unsigned long flags;
52 unsigned long mask = 1UL << (bit & 31);
54 p += bit >> 5;
56 raw_local_irq_save(flags);
57 *p &= ~mask;
58 raw_local_irq_restore(flags);
61 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
63 unsigned long flags;
64 unsigned long mask = 1UL << (bit & 31);
66 p += bit >> 5;
68 raw_local_irq_save(flags);
69 *p ^= mask;
70 raw_local_irq_restore(flags);
73 static inline int
74 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
76 unsigned long flags;
77 unsigned int res;
78 unsigned long mask = 1UL << (bit & 31);
80 p += bit >> 5;
82 raw_local_irq_save(flags);
83 res = *p;
84 *p = res | mask;
85 raw_local_irq_restore(flags);
87 return (res & mask) != 0;
90 static inline int
91 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
93 unsigned long flags;
94 unsigned int res;
95 unsigned long mask = 1UL << (bit & 31);
97 p += bit >> 5;
99 raw_local_irq_save(flags);
100 res = *p;
101 *p = res & ~mask;
102 raw_local_irq_restore(flags);
104 return (res & mask) != 0;
107 static inline int
108 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
110 unsigned long flags;
111 unsigned int res;
112 unsigned long mask = 1UL << (bit & 31);
114 p += bit >> 5;
116 raw_local_irq_save(flags);
117 res = *p;
118 *p = res ^ mask;
119 raw_local_irq_restore(flags);
121 return (res & mask) != 0;
124 #include <asm-generic/bitops/non-atomic.h>
127 * A note about Endian-ness.
128 * -------------------------
130 * When the ARM is put into big endian mode via CR15, the processor
131 * merely swaps the order of bytes within words, thus:
133 * ------------ physical data bus bits -----------
134 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
135 * little byte 3 byte 2 byte 1 byte 0
136 * big byte 0 byte 1 byte 2 byte 3
138 * This means that reading a 32-bit word at address 0 returns the same
139 * value irrespective of the endian mode bit.
141 * Peripheral devices should be connected with the data bus reversed in
142 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
143 * available from http://www.arm.com/.
145 * The following assumes that the data bus connectivity for big endian
146 * mode has been followed.
148 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
152 * Native endian assembly bitops. nr = 0 -> word 0 bit 0.
154 extern void _set_bit(int nr, volatile unsigned long * p);
155 extern void _clear_bit(int nr, volatile unsigned long * p);
156 extern void _change_bit(int nr, volatile unsigned long * p);
157 extern int _test_and_set_bit(int nr, volatile unsigned long * p);
158 extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
159 extern int _test_and_change_bit(int nr, volatile unsigned long * p);
162 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
164 extern int _find_first_zero_bit_le(const void * p, unsigned size);
165 extern int _find_next_zero_bit_le(const void * p, int size, int offset);
166 extern int _find_first_bit_le(const unsigned long *p, unsigned size);
167 extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
170 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
172 extern int _find_first_zero_bit_be(const void * p, unsigned size);
173 extern int _find_next_zero_bit_be(const void * p, int size, int offset);
174 extern int _find_first_bit_be(const unsigned long *p, unsigned size);
175 extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
177 #ifndef CONFIG_SMP
179 * The __* form of bitops are non-atomic and may be reordered.
181 #define ATOMIC_BITOP(name,nr,p) \
182 (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
183 #else
184 #define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
185 #endif
188 * Native endian atomic definitions.
190 #define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
191 #define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
192 #define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
193 #define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
194 #define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
195 #define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
197 #ifndef __ARMEB__
199 * These are the little endian, atomic definitions.
201 #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
202 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
203 #define find_first_bit(p,sz) _find_first_bit_le(p,sz)
204 #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
206 #define WORD_BITOFF_TO_LE(x) ((x))
208 #else
210 * These are the big endian, atomic definitions.
212 #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
213 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
214 #define find_first_bit(p,sz) _find_first_bit_be(p,sz)
215 #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
217 #define WORD_BITOFF_TO_LE(x) ((x) ^ 0x18)
219 #endif
221 #if __LINUX_ARM_ARCH__ < 5
223 #include <asm-generic/bitops/ffz.h>
224 #include <asm-generic/bitops/__fls.h>
225 #include <asm-generic/bitops/__ffs.h>
226 #include <asm-generic/bitops/fls.h>
227 #include <asm-generic/bitops/ffs.h>
229 #else
231 static inline int constant_fls(int x)
233 int r = 32;
235 if (!x)
236 return 0;
237 if (!(x & 0xffff0000u)) {
238 x <<= 16;
239 r -= 16;
241 if (!(x & 0xff000000u)) {
242 x <<= 8;
243 r -= 8;
245 if (!(x & 0xf0000000u)) {
246 x <<= 4;
247 r -= 4;
249 if (!(x & 0xc0000000u)) {
250 x <<= 2;
251 r -= 2;
253 if (!(x & 0x80000000u)) {
254 x <<= 1;
255 r -= 1;
257 return r;
261 * On ARMv5 and above those functions can be implemented around
262 * the clz instruction for much better code efficiency.
265 static inline int fls(int x)
267 int ret;
269 if (__builtin_constant_p(x))
270 return constant_fls(x);
272 asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
273 ret = 32 - ret;
274 return ret;
277 #define __fls(x) (fls(x) - 1)
278 #define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
279 #define __ffs(x) (ffs(x) - 1)
280 #define ffz(x) __ffs( ~(x) )
282 #endif
284 #include <asm-generic/bitops/fls64.h>
286 #include <asm-generic/bitops/sched.h>
287 #include <asm-generic/bitops/hweight.h>
288 #include <asm-generic/bitops/lock.h>
291 * Ext2 is defined to use little-endian byte ordering.
292 * These do not need to be atomic.
294 #define ext2_set_bit(nr,p) \
295 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
296 #define ext2_set_bit_atomic(lock,nr,p) \
297 test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
298 #define ext2_clear_bit(nr,p) \
299 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
300 #define ext2_clear_bit_atomic(lock,nr,p) \
301 test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
302 #define ext2_test_bit(nr,p) \
303 test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
304 #define ext2_find_first_zero_bit(p,sz) \
305 _find_first_zero_bit_le(p,sz)
306 #define ext2_find_next_zero_bit(p,sz,off) \
307 _find_next_zero_bit_le(p,sz,off)
308 #define ext2_find_next_bit(p, sz, off) \
309 _find_next_bit_le(p, sz, off)
312 * Minix is defined to use little-endian byte ordering.
313 * These do not need to be atomic.
315 #define minix_set_bit(nr,p) \
316 __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
317 #define minix_test_bit(nr,p) \
318 test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
319 #define minix_test_and_set_bit(nr,p) \
320 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
321 #define minix_test_and_clear_bit(nr,p) \
322 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
323 #define minix_find_first_zero_bit(p,sz) \
324 _find_first_zero_bit_le(p,sz)
326 #endif /* __KERNEL__ */
328 #endif /* _ARM_BITOPS_H */