Merge branch 'v6v7' into devel
[linux/fpc-iii.git] / arch / arm / include / asm / dma-mapping.h
blob4fff837363edd93249a0884d11f0fabc2ec6db30
1 #ifndef ASMARM_DMA_MAPPING_H
2 #define ASMARM_DMA_MAPPING_H
4 #ifdef __KERNEL__
6 #include <linux/mm_types.h>
7 #include <linux/scatterlist.h>
8 #include <linux/dma-debug.h>
10 #include <asm-generic/dma-coherent.h>
11 #include <asm/memory.h>
13 #ifdef __arch_page_to_dma
14 #error Please update to __arch_pfn_to_dma
15 #endif
18 * dma_to_pfn/pfn_to_dma/dma_to_virt/virt_to_dma are architecture private
19 * functions used internally by the DMA-mapping API to provide DMA
20 * addresses. They must not be used by drivers.
22 #ifndef __arch_pfn_to_dma
23 static inline dma_addr_t pfn_to_dma(struct device *dev, unsigned long pfn)
25 return (dma_addr_t)__pfn_to_bus(pfn);
28 static inline unsigned long dma_to_pfn(struct device *dev, dma_addr_t addr)
30 return __bus_to_pfn(addr);
33 static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
35 return (void *)__bus_to_virt(addr);
38 static inline dma_addr_t virt_to_dma(struct device *dev, void *addr)
40 return (dma_addr_t)__virt_to_bus((unsigned long)(addr));
42 #else
43 static inline dma_addr_t pfn_to_dma(struct device *dev, unsigned long pfn)
45 return __arch_pfn_to_dma(dev, pfn);
48 static inline unsigned long dma_to_pfn(struct device *dev, dma_addr_t addr)
50 return __arch_dma_to_pfn(dev, addr);
53 static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
55 return __arch_dma_to_virt(dev, addr);
58 static inline dma_addr_t virt_to_dma(struct device *dev, void *addr)
60 return __arch_virt_to_dma(dev, addr);
62 #endif
65 * The DMA API is built upon the notion of "buffer ownership". A buffer
66 * is either exclusively owned by the CPU (and therefore may be accessed
67 * by it) or exclusively owned by the DMA device. These helper functions
68 * represent the transitions between these two ownership states.
70 * Note, however, that on later ARMs, this notion does not work due to
71 * speculative prefetches. We model our approach on the assumption that
72 * the CPU does do speculative prefetches, which means we clean caches
73 * before transfers and delay cache invalidation until transfer completion.
75 * Private support functions: these are not part of the API and are
76 * liable to change. Drivers must not use these.
78 static inline void __dma_single_cpu_to_dev(const void *kaddr, size_t size,
79 enum dma_data_direction dir)
81 extern void ___dma_single_cpu_to_dev(const void *, size_t,
82 enum dma_data_direction);
84 if (!arch_is_coherent())
85 ___dma_single_cpu_to_dev(kaddr, size, dir);
88 static inline void __dma_single_dev_to_cpu(const void *kaddr, size_t size,
89 enum dma_data_direction dir)
91 extern void ___dma_single_dev_to_cpu(const void *, size_t,
92 enum dma_data_direction);
94 if (!arch_is_coherent())
95 ___dma_single_dev_to_cpu(kaddr, size, dir);
98 static inline void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
99 size_t size, enum dma_data_direction dir)
101 extern void ___dma_page_cpu_to_dev(struct page *, unsigned long,
102 size_t, enum dma_data_direction);
104 if (!arch_is_coherent())
105 ___dma_page_cpu_to_dev(page, off, size, dir);
108 static inline void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
109 size_t size, enum dma_data_direction dir)
111 extern void ___dma_page_dev_to_cpu(struct page *, unsigned long,
112 size_t, enum dma_data_direction);
114 if (!arch_is_coherent())
115 ___dma_page_dev_to_cpu(page, off, size, dir);
119 * Return whether the given device DMA address mask can be supported
120 * properly. For example, if your device can only drive the low 24-bits
121 * during bus mastering, then you would pass 0x00ffffff as the mask
122 * to this function.
124 * FIXME: This should really be a platform specific issue - we should
125 * return false if GFP_DMA allocations may not satisfy the supplied 'mask'.
127 static inline int dma_supported(struct device *dev, u64 mask)
129 if (mask < ISA_DMA_THRESHOLD)
130 return 0;
131 return 1;
134 static inline int dma_set_mask(struct device *dev, u64 dma_mask)
136 #ifdef CONFIG_DMABOUNCE
137 if (dev->archdata.dmabounce) {
138 if (dma_mask >= ISA_DMA_THRESHOLD)
139 return 0;
140 else
141 return -EIO;
143 #endif
144 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
145 return -EIO;
147 *dev->dma_mask = dma_mask;
149 return 0;
153 * DMA errors are defined by all-bits-set in the DMA address.
155 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
157 return dma_addr == ~0;
161 * Dummy noncoherent implementation. We don't provide a dma_cache_sync
162 * function so drivers using this API are highlighted with build warnings.
164 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
165 dma_addr_t *handle, gfp_t gfp)
167 return NULL;
170 static inline void dma_free_noncoherent(struct device *dev, size_t size,
171 void *cpu_addr, dma_addr_t handle)
176 * dma_alloc_coherent - allocate consistent memory for DMA
177 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
178 * @size: required memory size
179 * @handle: bus-specific DMA address
181 * Allocate some uncached, unbuffered memory for a device for
182 * performing DMA. This function allocates pages, and will
183 * return the CPU-viewed address, and sets @handle to be the
184 * device-viewed address.
186 extern void *dma_alloc_coherent(struct device *, size_t, dma_addr_t *, gfp_t);
189 * dma_free_coherent - free memory allocated by dma_alloc_coherent
190 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
191 * @size: size of memory originally requested in dma_alloc_coherent
192 * @cpu_addr: CPU-view address returned from dma_alloc_coherent
193 * @handle: device-view address returned from dma_alloc_coherent
195 * Free (and unmap) a DMA buffer previously allocated by
196 * dma_alloc_coherent().
198 * References to memory and mappings associated with cpu_addr/handle
199 * during and after this call executing are illegal.
201 extern void dma_free_coherent(struct device *, size_t, void *, dma_addr_t);
204 * dma_mmap_coherent - map a coherent DMA allocation into user space
205 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
206 * @vma: vm_area_struct describing requested user mapping
207 * @cpu_addr: kernel CPU-view address returned from dma_alloc_coherent
208 * @handle: device-view address returned from dma_alloc_coherent
209 * @size: size of memory originally requested in dma_alloc_coherent
211 * Map a coherent DMA buffer previously allocated by dma_alloc_coherent
212 * into user space. The coherent DMA buffer must not be freed by the
213 * driver until the user space mapping has been released.
215 int dma_mmap_coherent(struct device *, struct vm_area_struct *,
216 void *, dma_addr_t, size_t);
220 * dma_alloc_writecombine - allocate writecombining memory for DMA
221 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
222 * @size: required memory size
223 * @handle: bus-specific DMA address
225 * Allocate some uncached, buffered memory for a device for
226 * performing DMA. This function allocates pages, and will
227 * return the CPU-viewed address, and sets @handle to be the
228 * device-viewed address.
230 extern void *dma_alloc_writecombine(struct device *, size_t, dma_addr_t *,
231 gfp_t);
233 #define dma_free_writecombine(dev,size,cpu_addr,handle) \
234 dma_free_coherent(dev,size,cpu_addr,handle)
236 int dma_mmap_writecombine(struct device *, struct vm_area_struct *,
237 void *, dma_addr_t, size_t);
240 #ifdef CONFIG_DMABOUNCE
242 * For SA-1111, IXP425, and ADI systems the dma-mapping functions are "magic"
243 * and utilize bounce buffers as needed to work around limited DMA windows.
245 * On the SA-1111, a bug limits DMA to only certain regions of RAM.
246 * On the IXP425, the PCI inbound window is 64MB (256MB total RAM)
247 * On some ADI engineering systems, PCI inbound window is 32MB (12MB total RAM)
249 * The following are helper functions used by the dmabounce subystem
254 * dmabounce_register_dev
256 * @dev: valid struct device pointer
257 * @small_buf_size: size of buffers to use with small buffer pool
258 * @large_buf_size: size of buffers to use with large buffer pool (can be 0)
260 * This function should be called by low-level platform code to register
261 * a device as requireing DMA buffer bouncing. The function will allocate
262 * appropriate DMA pools for the device.
265 extern int dmabounce_register_dev(struct device *, unsigned long,
266 unsigned long);
269 * dmabounce_unregister_dev
271 * @dev: valid struct device pointer
273 * This function should be called by low-level platform code when device
274 * that was previously registered with dmabounce_register_dev is removed
275 * from the system.
278 extern void dmabounce_unregister_dev(struct device *);
281 * dma_needs_bounce
283 * @dev: valid struct device pointer
284 * @dma_handle: dma_handle of unbounced buffer
285 * @size: size of region being mapped
287 * Platforms that utilize the dmabounce mechanism must implement
288 * this function.
290 * The dmabounce routines call this function whenever a dma-mapping
291 * is requested to determine whether a given buffer needs to be bounced
292 * or not. The function must return 0 if the buffer is OK for
293 * DMA access and 1 if the buffer needs to be bounced.
296 extern int dma_needs_bounce(struct device*, dma_addr_t, size_t);
299 * The DMA API, implemented by dmabounce.c. See below for descriptions.
301 extern dma_addr_t __dma_map_single(struct device *, void *, size_t,
302 enum dma_data_direction);
303 extern void __dma_unmap_single(struct device *, dma_addr_t, size_t,
304 enum dma_data_direction);
305 extern dma_addr_t __dma_map_page(struct device *, struct page *,
306 unsigned long, size_t, enum dma_data_direction);
307 extern void __dma_unmap_page(struct device *, dma_addr_t, size_t,
308 enum dma_data_direction);
311 * Private functions
313 int dmabounce_sync_for_cpu(struct device *, dma_addr_t, unsigned long,
314 size_t, enum dma_data_direction);
315 int dmabounce_sync_for_device(struct device *, dma_addr_t, unsigned long,
316 size_t, enum dma_data_direction);
317 #else
318 static inline int dmabounce_sync_for_cpu(struct device *d, dma_addr_t addr,
319 unsigned long offset, size_t size, enum dma_data_direction dir)
321 return 1;
324 static inline int dmabounce_sync_for_device(struct device *d, dma_addr_t addr,
325 unsigned long offset, size_t size, enum dma_data_direction dir)
327 return 1;
331 static inline dma_addr_t __dma_map_single(struct device *dev, void *cpu_addr,
332 size_t size, enum dma_data_direction dir)
334 __dma_single_cpu_to_dev(cpu_addr, size, dir);
335 return virt_to_dma(dev, cpu_addr);
338 static inline dma_addr_t __dma_map_page(struct device *dev, struct page *page,
339 unsigned long offset, size_t size, enum dma_data_direction dir)
341 __dma_page_cpu_to_dev(page, offset, size, dir);
342 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
345 static inline void __dma_unmap_single(struct device *dev, dma_addr_t handle,
346 size_t size, enum dma_data_direction dir)
348 __dma_single_dev_to_cpu(dma_to_virt(dev, handle), size, dir);
351 static inline void __dma_unmap_page(struct device *dev, dma_addr_t handle,
352 size_t size, enum dma_data_direction dir)
354 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
355 handle & ~PAGE_MASK, size, dir);
357 #endif /* CONFIG_DMABOUNCE */
360 * dma_map_single - map a single buffer for streaming DMA
361 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
362 * @cpu_addr: CPU direct mapped address of buffer
363 * @size: size of buffer to map
364 * @dir: DMA transfer direction
366 * Ensure that any data held in the cache is appropriately discarded
367 * or written back.
369 * The device owns this memory once this call has completed. The CPU
370 * can regain ownership by calling dma_unmap_single() or
371 * dma_sync_single_for_cpu().
373 static inline dma_addr_t dma_map_single(struct device *dev, void *cpu_addr,
374 size_t size, enum dma_data_direction dir)
376 dma_addr_t addr;
378 BUG_ON(!valid_dma_direction(dir));
380 addr = __dma_map_single(dev, cpu_addr, size, dir);
381 debug_dma_map_page(dev, virt_to_page(cpu_addr),
382 (unsigned long)cpu_addr & ~PAGE_MASK, size,
383 dir, addr, true);
385 return addr;
389 * dma_map_page - map a portion of a page for streaming DMA
390 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
391 * @page: page that buffer resides in
392 * @offset: offset into page for start of buffer
393 * @size: size of buffer to map
394 * @dir: DMA transfer direction
396 * Ensure that any data held in the cache is appropriately discarded
397 * or written back.
399 * The device owns this memory once this call has completed. The CPU
400 * can regain ownership by calling dma_unmap_page().
402 static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
403 unsigned long offset, size_t size, enum dma_data_direction dir)
405 dma_addr_t addr;
407 BUG_ON(!valid_dma_direction(dir));
409 addr = __dma_map_page(dev, page, offset, size, dir);
410 debug_dma_map_page(dev, page, offset, size, dir, addr, false);
412 return addr;
416 * dma_unmap_single - unmap a single buffer previously mapped
417 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
418 * @handle: DMA address of buffer
419 * @size: size of buffer (same as passed to dma_map_single)
420 * @dir: DMA transfer direction (same as passed to dma_map_single)
422 * Unmap a single streaming mode DMA translation. The handle and size
423 * must match what was provided in the previous dma_map_single() call.
424 * All other usages are undefined.
426 * After this call, reads by the CPU to the buffer are guaranteed to see
427 * whatever the device wrote there.
429 static inline void dma_unmap_single(struct device *dev, dma_addr_t handle,
430 size_t size, enum dma_data_direction dir)
432 debug_dma_unmap_page(dev, handle, size, dir, true);
433 __dma_unmap_single(dev, handle, size, dir);
437 * dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
438 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
439 * @handle: DMA address of buffer
440 * @size: size of buffer (same as passed to dma_map_page)
441 * @dir: DMA transfer direction (same as passed to dma_map_page)
443 * Unmap a page streaming mode DMA translation. The handle and size
444 * must match what was provided in the previous dma_map_page() call.
445 * All other usages are undefined.
447 * After this call, reads by the CPU to the buffer are guaranteed to see
448 * whatever the device wrote there.
450 static inline void dma_unmap_page(struct device *dev, dma_addr_t handle,
451 size_t size, enum dma_data_direction dir)
453 debug_dma_unmap_page(dev, handle, size, dir, false);
454 __dma_unmap_page(dev, handle, size, dir);
458 * dma_sync_single_range_for_cpu
459 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
460 * @handle: DMA address of buffer
461 * @offset: offset of region to start sync
462 * @size: size of region to sync
463 * @dir: DMA transfer direction (same as passed to dma_map_single)
465 * Make physical memory consistent for a single streaming mode DMA
466 * translation after a transfer.
468 * If you perform a dma_map_single() but wish to interrogate the
469 * buffer using the cpu, yet do not wish to teardown the PCI dma
470 * mapping, you must call this function before doing so. At the
471 * next point you give the PCI dma address back to the card, you
472 * must first the perform a dma_sync_for_device, and then the
473 * device again owns the buffer.
475 static inline void dma_sync_single_range_for_cpu(struct device *dev,
476 dma_addr_t handle, unsigned long offset, size_t size,
477 enum dma_data_direction dir)
479 BUG_ON(!valid_dma_direction(dir));
481 debug_dma_sync_single_for_cpu(dev, handle + offset, size, dir);
483 if (!dmabounce_sync_for_cpu(dev, handle, offset, size, dir))
484 return;
486 __dma_single_dev_to_cpu(dma_to_virt(dev, handle) + offset, size, dir);
489 static inline void dma_sync_single_range_for_device(struct device *dev,
490 dma_addr_t handle, unsigned long offset, size_t size,
491 enum dma_data_direction dir)
493 BUG_ON(!valid_dma_direction(dir));
495 debug_dma_sync_single_for_device(dev, handle + offset, size, dir);
497 if (!dmabounce_sync_for_device(dev, handle, offset, size, dir))
498 return;
500 __dma_single_cpu_to_dev(dma_to_virt(dev, handle) + offset, size, dir);
503 static inline void dma_sync_single_for_cpu(struct device *dev,
504 dma_addr_t handle, size_t size, enum dma_data_direction dir)
506 dma_sync_single_range_for_cpu(dev, handle, 0, size, dir);
509 static inline void dma_sync_single_for_device(struct device *dev,
510 dma_addr_t handle, size_t size, enum dma_data_direction dir)
512 dma_sync_single_range_for_device(dev, handle, 0, size, dir);
516 * The scatter list versions of the above methods.
518 extern int dma_map_sg(struct device *, struct scatterlist *, int,
519 enum dma_data_direction);
520 extern void dma_unmap_sg(struct device *, struct scatterlist *, int,
521 enum dma_data_direction);
522 extern void dma_sync_sg_for_cpu(struct device *, struct scatterlist *, int,
523 enum dma_data_direction);
524 extern void dma_sync_sg_for_device(struct device *, struct scatterlist *, int,
525 enum dma_data_direction);
528 #endif /* __KERNEL__ */
529 #endif