2 * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3 * multifunction chip. Currently works with the Omnivision OV7670
6 * The data sheet for this device can be found at:
7 * http://www.marvell.com/products/pc_connectivity/88alp01/
9 * Copyright 2006 One Laptop Per Child Association, Inc.
10 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
12 * Written by Jonathan Corbet, corbet@lwn.net.
14 * v4l2_device/v4l2_subdev conversion by:
15 * Copyright (C) 2009 Hans Verkuil <hverkuil@xs4all.nl>
17 * Note: this conversion is untested! Please contact the linux-media
18 * mailinglist if you can test this, together with the test results.
20 * This file may be distributed under the terms of the GNU General
21 * Public License, version 2.
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
28 #include <linux/dmi.h>
30 #include <linux/pci.h>
31 #include <linux/i2c.h>
32 #include <linux/interrupt.h>
33 #include <linux/spinlock.h>
34 #include <linux/videodev2.h>
35 #include <linux/slab.h>
36 #include <media/v4l2-device.h>
37 #include <media/v4l2-ioctl.h>
38 #include <media/v4l2-chip-ident.h>
39 #include <linux/device.h>
40 #include <linux/wait.h>
41 #include <linux/list.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/delay.h>
44 #include <linux/jiffies.h>
45 #include <linux/vmalloc.h>
47 #include <asm/uaccess.h>
51 #include "cafe_ccic-regs.h"
53 #define CAFE_VERSION 0x000002
59 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
60 MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
61 MODULE_LICENSE("GPL");
62 MODULE_SUPPORTED_DEVICE("Video");
65 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
66 * we must have physically contiguous buffers to bring frames into.
67 * These parameters control how many buffers we use, whether we
68 * allocate them at load time (better chance of success, but nails down
69 * memory) or when somebody tries to use the camera (riskier), and,
70 * for load-time allocation, how big they should be.
72 * The controller can cycle through three buffers. We could use
73 * more by flipping pointers around, but it probably makes little
77 #define MAX_DMA_BUFS 3
78 static int alloc_bufs_at_read
;
79 module_param(alloc_bufs_at_read
, bool, 0444);
80 MODULE_PARM_DESC(alloc_bufs_at_read
,
81 "Non-zero value causes DMA buffers to be allocated when the "
82 "video capture device is read, rather than at module load "
83 "time. This saves memory, but decreases the chances of "
84 "successfully getting those buffers.");
86 static int n_dma_bufs
= 3;
87 module_param(n_dma_bufs
, uint
, 0644);
88 MODULE_PARM_DESC(n_dma_bufs
,
89 "The number of DMA buffers to allocate. Can be either two "
90 "(saves memory, makes timing tighter) or three.");
92 static int dma_buf_size
= VGA_WIDTH
* VGA_HEIGHT
* 2; /* Worst case */
93 module_param(dma_buf_size
, uint
, 0444);
94 MODULE_PARM_DESC(dma_buf_size
,
95 "The size of the allocated DMA buffers. If actual operating "
96 "parameters require larger buffers, an attempt to reallocate "
99 static int min_buffers
= 1;
100 module_param(min_buffers
, uint
, 0644);
101 MODULE_PARM_DESC(min_buffers
,
102 "The minimum number of streaming I/O buffers we are willing "
105 static int max_buffers
= 10;
106 module_param(max_buffers
, uint
, 0644);
107 MODULE_PARM_DESC(max_buffers
,
108 "The maximum number of streaming I/O buffers an application "
109 "will be allowed to allocate. These buffers are big and live "
110 "in vmalloc space.");
113 module_param(flip
, bool, 0444);
114 MODULE_PARM_DESC(flip
,
115 "If set, the sensor will be instructed to flip the image "
120 S_NOTREADY
, /* Not yet initialized */
121 S_IDLE
, /* Just hanging around */
122 S_FLAKED
, /* Some sort of problem */
123 S_SINGLEREAD
, /* In read() */
124 S_SPECREAD
, /* Speculative read (for future read()) */
125 S_STREAMING
/* Streaming data */
129 * Tracking of streaming I/O buffers.
131 struct cafe_sio_buffer
{
132 struct list_head list
;
133 struct v4l2_buffer v4lbuf
;
134 char *buffer
; /* Where it lives in kernel space */
136 struct cafe_camera
*cam
;
140 * A description of one of our devices.
141 * Locking: controlled by s_mutex. Certain fields, however, require
142 * the dev_lock spinlock; they are marked as such by comments.
143 * dev_lock is also required for access to device registers.
147 struct v4l2_device v4l2_dev
;
148 enum cafe_state state
;
149 unsigned long flags
; /* Buffer status, mainly (dev_lock) */
150 int users
; /* How many open FDs */
151 struct file
*owner
; /* Who has data access (v4l2) */
154 * Subsystem structures.
156 struct pci_dev
*pdev
;
157 struct video_device vdev
;
158 struct i2c_adapter i2c_adapter
;
159 struct v4l2_subdev
*sensor
;
160 unsigned short sensor_addr
;
162 unsigned char __iomem
*regs
;
163 struct list_head dev_list
; /* link to other devices */
166 unsigned int nbufs
; /* How many are alloc'd */
167 int next_buf
; /* Next to consume (dev_lock) */
168 unsigned int dma_buf_size
; /* allocated size */
169 void *dma_bufs
[MAX_DMA_BUFS
]; /* Internal buffer addresses */
170 dma_addr_t dma_handles
[MAX_DMA_BUFS
]; /* Buffer bus addresses */
171 unsigned int specframes
; /* Unconsumed spec frames (dev_lock) */
172 unsigned int sequence
; /* Frame sequence number */
173 unsigned int buf_seq
[MAX_DMA_BUFS
]; /* Sequence for individual buffers */
175 /* Streaming buffers */
176 unsigned int n_sbufs
; /* How many we have */
177 struct cafe_sio_buffer
*sb_bufs
; /* The array of housekeeping structs */
178 struct list_head sb_avail
; /* Available for data (we own) (dev_lock) */
179 struct list_head sb_full
; /* With data (user space owns) (dev_lock) */
180 struct tasklet_struct s_tasklet
;
182 /* Current operating parameters */
183 u32 sensor_type
; /* Currently ov7670 only */
184 struct v4l2_pix_format pix_format
;
185 enum v4l2_mbus_pixelcode mbus_code
;
188 struct mutex s_mutex
; /* Access to this structure */
189 spinlock_t dev_lock
; /* Access to device */
192 wait_queue_head_t smbus_wait
; /* Waiting on i2c events */
193 wait_queue_head_t iowait
; /* Waiting on frame data */
197 * Status flags. Always manipulated with bit operations.
199 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
200 #define CF_BUF1_VALID 1
201 #define CF_BUF2_VALID 2
202 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
203 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
205 #define sensor_call(cam, o, f, args...) \
206 v4l2_subdev_call(cam->sensor, o, f, ##args)
208 static inline struct cafe_camera
*to_cam(struct v4l2_device
*dev
)
210 return container_of(dev
, struct cafe_camera
, v4l2_dev
);
213 static struct cafe_format_struct
{
216 int bpp
; /* Bytes per pixel */
217 enum v4l2_mbus_pixelcode mbus_code
;
220 .desc
= "YUYV 4:2:2",
221 .pixelformat
= V4L2_PIX_FMT_YUYV
,
222 .mbus_code
= V4L2_MBUS_FMT_YUYV8_2X8
,
227 .pixelformat
= V4L2_PIX_FMT_RGB444
,
228 .mbus_code
= V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE
,
233 .pixelformat
= V4L2_PIX_FMT_RGB565
,
234 .mbus_code
= V4L2_MBUS_FMT_RGB565_2X8_LE
,
238 .desc
= "Raw RGB Bayer",
239 .pixelformat
= V4L2_PIX_FMT_SBGGR8
,
240 .mbus_code
= V4L2_MBUS_FMT_SBGGR8_1X8
,
244 #define N_CAFE_FMTS ARRAY_SIZE(cafe_formats)
246 static struct cafe_format_struct
*cafe_find_format(u32 pixelformat
)
250 for (i
= 0; i
< N_CAFE_FMTS
; i
++)
251 if (cafe_formats
[i
].pixelformat
== pixelformat
)
252 return cafe_formats
+ i
;
253 /* Not found? Then return the first format. */
258 * Start over with DMA buffers - dev_lock needed.
260 static void cafe_reset_buffers(struct cafe_camera
*cam
)
265 for (i
= 0; i
< cam
->nbufs
; i
++)
266 clear_bit(i
, &cam
->flags
);
270 static inline int cafe_needs_config(struct cafe_camera
*cam
)
272 return test_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
275 static void cafe_set_config_needed(struct cafe_camera
*cam
, int needed
)
278 set_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
280 clear_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
287 * Debugging and related.
289 #define cam_err(cam, fmt, arg...) \
290 dev_err(&(cam)->pdev->dev, fmt, ##arg);
291 #define cam_warn(cam, fmt, arg...) \
292 dev_warn(&(cam)->pdev->dev, fmt, ##arg);
293 #define cam_dbg(cam, fmt, arg...) \
294 dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
297 /* ---------------------------------------------------------------------*/
300 * Device register I/O
302 static inline void cafe_reg_write(struct cafe_camera
*cam
, unsigned int reg
,
305 iowrite32(val
, cam
->regs
+ reg
);
308 static inline unsigned int cafe_reg_read(struct cafe_camera
*cam
,
311 return ioread32(cam
->regs
+ reg
);
315 static inline void cafe_reg_write_mask(struct cafe_camera
*cam
, unsigned int reg
,
316 unsigned int val
, unsigned int mask
)
318 unsigned int v
= cafe_reg_read(cam
, reg
);
320 v
= (v
& ~mask
) | (val
& mask
);
321 cafe_reg_write(cam
, reg
, v
);
324 static inline void cafe_reg_clear_bit(struct cafe_camera
*cam
,
325 unsigned int reg
, unsigned int val
)
327 cafe_reg_write_mask(cam
, reg
, 0, val
);
330 static inline void cafe_reg_set_bit(struct cafe_camera
*cam
,
331 unsigned int reg
, unsigned int val
)
333 cafe_reg_write_mask(cam
, reg
, val
, val
);
338 /* -------------------------------------------------------------------- */
340 * The I2C/SMBUS interface to the camera itself starts here. The
341 * controller handles SMBUS itself, presenting a relatively simple register
342 * interface; all we have to do is to tell it where to route the data.
344 #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
346 static int cafe_smbus_write_done(struct cafe_camera
*cam
)
352 * We must delay after the interrupt, or the controller gets confused
353 * and never does give us good status. Fortunately, we don't do this
357 spin_lock_irqsave(&cam
->dev_lock
, flags
);
358 c1
= cafe_reg_read(cam
, REG_TWSIC1
);
359 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
360 return (c1
& (TWSIC1_WSTAT
|TWSIC1_ERROR
)) != TWSIC1_WSTAT
;
363 static int cafe_smbus_write_data(struct cafe_camera
*cam
,
364 u16 addr
, u8 command
, u8 value
)
369 spin_lock_irqsave(&cam
->dev_lock
, flags
);
370 rval
= TWSIC0_EN
| ((addr
<< TWSIC0_SID_SHIFT
) & TWSIC0_SID
);
371 rval
|= TWSIC0_OVMAGIC
; /* Make OV sensors work */
373 * Marvell sez set clkdiv to all 1's for now.
375 rval
|= TWSIC0_CLKDIV
;
376 cafe_reg_write(cam
, REG_TWSIC0
, rval
);
377 (void) cafe_reg_read(cam
, REG_TWSIC1
); /* force write */
378 rval
= value
| ((command
<< TWSIC1_ADDR_SHIFT
) & TWSIC1_ADDR
);
379 cafe_reg_write(cam
, REG_TWSIC1
, rval
);
380 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
382 /* Unfortunately, reading TWSIC1 too soon after sending a command
383 * causes the device to die.
384 * Use a busy-wait because we often send a large quantity of small
385 * commands at-once; using msleep() would cause a lot of context
386 * switches which take longer than 2ms, resulting in a noticable
387 * boot-time and capture-start delays.
392 * Another sad fact is that sometimes, commands silently complete but
393 * cafe_smbus_write_done() never becomes aware of this.
394 * This happens at random and appears to possible occur with any
396 * We don't understand why this is. We work around this issue
397 * with the timeout in the wait below, assuming that all commands
398 * complete within the timeout.
400 wait_event_timeout(cam
->smbus_wait
, cafe_smbus_write_done(cam
),
403 spin_lock_irqsave(&cam
->dev_lock
, flags
);
404 rval
= cafe_reg_read(cam
, REG_TWSIC1
);
405 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
407 if (rval
& TWSIC1_WSTAT
) {
408 cam_err(cam
, "SMBUS write (%02x/%02x/%02x) timed out\n", addr
,
412 if (rval
& TWSIC1_ERROR
) {
413 cam_err(cam
, "SMBUS write (%02x/%02x/%02x) error\n", addr
,
422 static int cafe_smbus_read_done(struct cafe_camera
*cam
)
428 * We must delay after the interrupt, or the controller gets confused
429 * and never does give us good status. Fortunately, we don't do this
433 spin_lock_irqsave(&cam
->dev_lock
, flags
);
434 c1
= cafe_reg_read(cam
, REG_TWSIC1
);
435 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
436 return c1
& (TWSIC1_RVALID
|TWSIC1_ERROR
);
441 static int cafe_smbus_read_data(struct cafe_camera
*cam
,
442 u16 addr
, u8 command
, u8
*value
)
447 spin_lock_irqsave(&cam
->dev_lock
, flags
);
448 rval
= TWSIC0_EN
| ((addr
<< TWSIC0_SID_SHIFT
) & TWSIC0_SID
);
449 rval
|= TWSIC0_OVMAGIC
; /* Make OV sensors work */
451 * Marvel sez set clkdiv to all 1's for now.
453 rval
|= TWSIC0_CLKDIV
;
454 cafe_reg_write(cam
, REG_TWSIC0
, rval
);
455 (void) cafe_reg_read(cam
, REG_TWSIC1
); /* force write */
456 rval
= TWSIC1_READ
| ((command
<< TWSIC1_ADDR_SHIFT
) & TWSIC1_ADDR
);
457 cafe_reg_write(cam
, REG_TWSIC1
, rval
);
458 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
460 wait_event_timeout(cam
->smbus_wait
,
461 cafe_smbus_read_done(cam
), CAFE_SMBUS_TIMEOUT
);
462 spin_lock_irqsave(&cam
->dev_lock
, flags
);
463 rval
= cafe_reg_read(cam
, REG_TWSIC1
);
464 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
466 if (rval
& TWSIC1_ERROR
) {
467 cam_err(cam
, "SMBUS read (%02x/%02x) error\n", addr
, command
);
470 if (! (rval
& TWSIC1_RVALID
)) {
471 cam_err(cam
, "SMBUS read (%02x/%02x) timed out\n", addr
,
475 *value
= rval
& 0xff;
480 * Perform a transfer over SMBUS. This thing is called under
481 * the i2c bus lock, so we shouldn't race with ourselves...
483 static int cafe_smbus_xfer(struct i2c_adapter
*adapter
, u16 addr
,
484 unsigned short flags
, char rw
, u8 command
,
485 int size
, union i2c_smbus_data
*data
)
487 struct v4l2_device
*v4l2_dev
= i2c_get_adapdata(adapter
);
488 struct cafe_camera
*cam
= to_cam(v4l2_dev
);
492 * This interface would appear to only do byte data ops. OK
493 * it can do word too, but the cam chip has no use for that.
495 if (size
!= I2C_SMBUS_BYTE_DATA
) {
496 cam_err(cam
, "funky xfer size %d\n", size
);
500 if (rw
== I2C_SMBUS_WRITE
)
501 ret
= cafe_smbus_write_data(cam
, addr
, command
, data
->byte
);
502 else if (rw
== I2C_SMBUS_READ
)
503 ret
= cafe_smbus_read_data(cam
, addr
, command
, &data
->byte
);
508 static void cafe_smbus_enable_irq(struct cafe_camera
*cam
)
512 spin_lock_irqsave(&cam
->dev_lock
, flags
);
513 cafe_reg_set_bit(cam
, REG_IRQMASK
, TWSIIRQS
);
514 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
517 static u32
cafe_smbus_func(struct i2c_adapter
*adapter
)
519 return I2C_FUNC_SMBUS_READ_BYTE_DATA
|
520 I2C_FUNC_SMBUS_WRITE_BYTE_DATA
;
523 static struct i2c_algorithm cafe_smbus_algo
= {
524 .smbus_xfer
= cafe_smbus_xfer
,
525 .functionality
= cafe_smbus_func
528 /* Somebody is on the bus */
529 static void cafe_ctlr_stop_dma(struct cafe_camera
*cam
);
530 static void cafe_ctlr_power_down(struct cafe_camera
*cam
);
532 static int cafe_smbus_setup(struct cafe_camera
*cam
)
534 struct i2c_adapter
*adap
= &cam
->i2c_adapter
;
537 cafe_smbus_enable_irq(cam
);
538 adap
->owner
= THIS_MODULE
;
539 adap
->algo
= &cafe_smbus_algo
;
540 strcpy(adap
->name
, "cafe_ccic");
541 adap
->dev
.parent
= &cam
->pdev
->dev
;
542 i2c_set_adapdata(adap
, &cam
->v4l2_dev
);
543 ret
= i2c_add_adapter(adap
);
545 printk(KERN_ERR
"Unable to register cafe i2c adapter\n");
549 static void cafe_smbus_shutdown(struct cafe_camera
*cam
)
551 i2c_del_adapter(&cam
->i2c_adapter
);
555 /* ------------------------------------------------------------------- */
557 * Deal with the controller.
561 * Do everything we think we need to have the interface operating
562 * according to the desired format.
564 static void cafe_ctlr_dma(struct cafe_camera
*cam
)
567 * Store the first two Y buffers (we aren't supporting
568 * planar formats for now, so no UV bufs). Then either
569 * set the third if it exists, or tell the controller
572 cafe_reg_write(cam
, REG_Y0BAR
, cam
->dma_handles
[0]);
573 cafe_reg_write(cam
, REG_Y1BAR
, cam
->dma_handles
[1]);
574 if (cam
->nbufs
> 2) {
575 cafe_reg_write(cam
, REG_Y2BAR
, cam
->dma_handles
[2]);
576 cafe_reg_clear_bit(cam
, REG_CTRL1
, C1_TWOBUFS
);
579 cafe_reg_set_bit(cam
, REG_CTRL1
, C1_TWOBUFS
);
580 cafe_reg_write(cam
, REG_UBAR
, 0); /* 32 bits only for now */
583 static void cafe_ctlr_image(struct cafe_camera
*cam
)
586 struct v4l2_pix_format
*fmt
= &cam
->pix_format
;
588 imgsz
= ((fmt
->height
<< IMGSZ_V_SHIFT
) & IMGSZ_V_MASK
) |
589 (fmt
->bytesperline
& IMGSZ_H_MASK
);
590 cafe_reg_write(cam
, REG_IMGSIZE
, imgsz
);
591 cafe_reg_write(cam
, REG_IMGOFFSET
, 0);
592 /* YPITCH just drops the last two bits */
593 cafe_reg_write_mask(cam
, REG_IMGPITCH
, fmt
->bytesperline
,
596 * Tell the controller about the image format we are using.
598 switch (cam
->pix_format
.pixelformat
) {
599 case V4L2_PIX_FMT_YUYV
:
600 cafe_reg_write_mask(cam
, REG_CTRL0
,
601 C0_DF_YUV
|C0_YUV_PACKED
|C0_YUVE_YUYV
,
605 case V4L2_PIX_FMT_RGB444
:
606 cafe_reg_write_mask(cam
, REG_CTRL0
,
607 C0_DF_RGB
|C0_RGBF_444
|C0_RGB4_XRGB
,
612 case V4L2_PIX_FMT_RGB565
:
613 cafe_reg_write_mask(cam
, REG_CTRL0
,
614 C0_DF_RGB
|C0_RGBF_565
|C0_RGB5_BGGR
,
619 cam_err(cam
, "Unknown format %x\n", cam
->pix_format
.pixelformat
);
623 * Make sure it knows we want to use hsync/vsync.
625 cafe_reg_write_mask(cam
, REG_CTRL0
, C0_SIF_HVSYNC
,
631 * Configure the controller for operation; caller holds the
634 static int cafe_ctlr_configure(struct cafe_camera
*cam
)
638 spin_lock_irqsave(&cam
->dev_lock
, flags
);
640 cafe_ctlr_image(cam
);
641 cafe_set_config_needed(cam
, 0);
642 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
646 static void cafe_ctlr_irq_enable(struct cafe_camera
*cam
)
649 * Clear any pending interrupts, since we do not
650 * expect to have I/O active prior to enabling.
652 cafe_reg_write(cam
, REG_IRQSTAT
, FRAMEIRQS
);
653 cafe_reg_set_bit(cam
, REG_IRQMASK
, FRAMEIRQS
);
656 static void cafe_ctlr_irq_disable(struct cafe_camera
*cam
)
658 cafe_reg_clear_bit(cam
, REG_IRQMASK
, FRAMEIRQS
);
662 * Make the controller start grabbing images. Everything must
663 * be set up before doing this.
665 static void cafe_ctlr_start(struct cafe_camera
*cam
)
667 /* set_bit performs a read, so no other barrier should be
669 cafe_reg_set_bit(cam
, REG_CTRL0
, C0_ENABLE
);
672 static void cafe_ctlr_stop(struct cafe_camera
*cam
)
674 cafe_reg_clear_bit(cam
, REG_CTRL0
, C0_ENABLE
);
677 static void cafe_ctlr_init(struct cafe_camera
*cam
)
681 spin_lock_irqsave(&cam
->dev_lock
, flags
);
683 * Added magic to bring up the hardware on the B-Test board
685 cafe_reg_write(cam
, 0x3038, 0x8);
686 cafe_reg_write(cam
, 0x315c, 0x80008);
688 * Go through the dance needed to wake the device up.
689 * Note that these registers are global and shared
690 * with the NAND and SD devices. Interaction between the
691 * three still needs to be examined.
693 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_SRS
|GCSR_MRS
); /* Needed? */
694 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_SRC
|GCSR_MRC
);
695 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_SRC
|GCSR_MRS
);
697 * Here we must wait a bit for the controller to come around.
699 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
701 spin_lock_irqsave(&cam
->dev_lock
, flags
);
703 cafe_reg_write(cam
, REG_GL_CSR
, GCSR_CCIC_EN
|GCSR_SRC
|GCSR_MRC
);
704 cafe_reg_set_bit(cam
, REG_GL_IMASK
, GIMSK_CCIC_EN
);
706 * Make sure it's not powered down.
708 cafe_reg_clear_bit(cam
, REG_CTRL1
, C1_PWRDWN
);
710 * Turn off the enable bit. It sure should be off anyway,
711 * but it's good to be sure.
713 cafe_reg_clear_bit(cam
, REG_CTRL0
, C0_ENABLE
);
715 * Mask all interrupts.
717 cafe_reg_write(cam
, REG_IRQMASK
, 0);
719 * Clock the sensor appropriately. Controller clock should
720 * be 48MHz, sensor "typical" value is half that.
722 cafe_reg_write_mask(cam
, REG_CLKCTRL
, 2, CLK_DIV_MASK
);
723 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
728 * Stop the controller, and don't return until we're really sure that no
729 * further DMA is going on.
731 static void cafe_ctlr_stop_dma(struct cafe_camera
*cam
)
736 * Theory: stop the camera controller (whether it is operating
737 * or not). Delay briefly just in case we race with the SOF
738 * interrupt, then wait until no DMA is active.
740 spin_lock_irqsave(&cam
->dev_lock
, flags
);
742 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
744 wait_event_timeout(cam
->iowait
,
745 !test_bit(CF_DMA_ACTIVE
, &cam
->flags
), HZ
);
746 if (test_bit(CF_DMA_ACTIVE
, &cam
->flags
))
747 cam_err(cam
, "Timeout waiting for DMA to end\n");
748 /* This would be bad news - what now? */
749 spin_lock_irqsave(&cam
->dev_lock
, flags
);
751 cafe_ctlr_irq_disable(cam
);
752 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
758 static void cafe_ctlr_power_up(struct cafe_camera
*cam
)
762 spin_lock_irqsave(&cam
->dev_lock
, flags
);
763 cafe_reg_clear_bit(cam
, REG_CTRL1
, C1_PWRDWN
);
765 * Part one of the sensor dance: turn the global
768 cafe_reg_write(cam
, REG_GL_FCR
, GFCR_GPIO_ON
);
769 cafe_reg_write(cam
, REG_GL_GPIOR
, GGPIO_OUT
|GGPIO_VAL
);
771 * Put the sensor into operational mode (assumes OLPC-style
772 * wiring). Control 0 is reset - set to 1 to operate.
773 * Control 1 is power down, set to 0 to operate.
775 cafe_reg_write(cam
, REG_GPR
, GPR_C1EN
|GPR_C0EN
); /* pwr up, reset */
776 /* mdelay(1); */ /* Marvell says 1ms will do it */
777 cafe_reg_write(cam
, REG_GPR
, GPR_C1EN
|GPR_C0EN
|GPR_C0
);
778 /* mdelay(1); */ /* Enough? */
779 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
780 msleep(5); /* Just to be sure */
783 static void cafe_ctlr_power_down(struct cafe_camera
*cam
)
787 spin_lock_irqsave(&cam
->dev_lock
, flags
);
788 cafe_reg_write(cam
, REG_GPR
, GPR_C1EN
|GPR_C0EN
|GPR_C1
);
789 cafe_reg_write(cam
, REG_GL_FCR
, GFCR_GPIO_ON
);
790 cafe_reg_write(cam
, REG_GL_GPIOR
, GGPIO_OUT
);
791 cafe_reg_set_bit(cam
, REG_CTRL1
, C1_PWRDWN
);
792 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
795 /* -------------------------------------------------------------------- */
797 * Communications with the sensor.
800 static int __cafe_cam_reset(struct cafe_camera
*cam
)
802 return sensor_call(cam
, core
, reset
, 0);
806 * We have found the sensor on the i2c. Let's try to have a
809 static int cafe_cam_init(struct cafe_camera
*cam
)
811 struct v4l2_dbg_chip_ident chip
;
814 mutex_lock(&cam
->s_mutex
);
815 if (cam
->state
!= S_NOTREADY
)
816 cam_warn(cam
, "Cam init with device in funky state %d",
818 ret
= __cafe_cam_reset(cam
);
821 chip
.ident
= V4L2_IDENT_NONE
;
822 chip
.match
.type
= V4L2_CHIP_MATCH_I2C_ADDR
;
823 chip
.match
.addr
= cam
->sensor_addr
;
824 ret
= sensor_call(cam
, core
, g_chip_ident
, &chip
);
827 cam
->sensor_type
= chip
.ident
;
828 if (cam
->sensor_type
!= V4L2_IDENT_OV7670
) {
829 cam_err(cam
, "Unsupported sensor type 0x%x", cam
->sensor_type
);
833 /* Get/set parameters? */
837 cafe_ctlr_power_down(cam
);
838 mutex_unlock(&cam
->s_mutex
);
843 * Configure the sensor to match the parameters we have. Caller should
846 static int cafe_cam_set_flip(struct cafe_camera
*cam
)
848 struct v4l2_control ctrl
;
850 memset(&ctrl
, 0, sizeof(ctrl
));
851 ctrl
.id
= V4L2_CID_VFLIP
;
853 return sensor_call(cam
, core
, s_ctrl
, &ctrl
);
857 static int cafe_cam_configure(struct cafe_camera
*cam
)
859 struct v4l2_mbus_framefmt mbus_fmt
;
862 v4l2_fill_mbus_format(&mbus_fmt
, &cam
->pix_format
, cam
->mbus_code
);
863 ret
= sensor_call(cam
, core
, init
, 0);
865 ret
= sensor_call(cam
, video
, s_mbus_fmt
, &mbus_fmt
);
867 * OV7670 does weird things if flip is set *before* format...
869 ret
+= cafe_cam_set_flip(cam
);
873 /* -------------------------------------------------------------------- */
875 * DMA buffer management. These functions need s_mutex held.
878 /* FIXME: this is inefficient as hell, since dma_alloc_coherent just
879 * does a get_free_pages() call, and we waste a good chunk of an orderN
880 * allocation. Should try to allocate the whole set in one chunk.
882 static int cafe_alloc_dma_bufs(struct cafe_camera
*cam
, int loadtime
)
886 cafe_set_config_needed(cam
, 1);
888 cam
->dma_buf_size
= dma_buf_size
;
890 cam
->dma_buf_size
= cam
->pix_format
.sizeimage
;
895 for (i
= 0; i
< n_dma_bufs
; i
++) {
896 cam
->dma_bufs
[i
] = dma_alloc_coherent(&cam
->pdev
->dev
,
897 cam
->dma_buf_size
, cam
->dma_handles
+ i
,
899 if (cam
->dma_bufs
[i
] == NULL
) {
900 cam_warn(cam
, "Failed to allocate DMA buffer\n");
903 /* For debug, remove eventually */
904 memset(cam
->dma_bufs
[i
], 0xcc, cam
->dma_buf_size
);
908 switch (cam
->nbufs
) {
910 dma_free_coherent(&cam
->pdev
->dev
, cam
->dma_buf_size
,
911 cam
->dma_bufs
[0], cam
->dma_handles
[0]);
914 cam_err(cam
, "Insufficient DMA buffers, cannot operate\n");
919 cam_warn(cam
, "Will limp along with only 2 buffers\n");
925 static void cafe_free_dma_bufs(struct cafe_camera
*cam
)
929 for (i
= 0; i
< cam
->nbufs
; i
++) {
930 dma_free_coherent(&cam
->pdev
->dev
, cam
->dma_buf_size
,
931 cam
->dma_bufs
[i
], cam
->dma_handles
[i
]);
932 cam
->dma_bufs
[i
] = NULL
;
941 /* ----------------------------------------------------------------------- */
943 * Here starts the V4L2 interface code.
947 * Read an image from the device.
949 static ssize_t
cafe_deliver_buffer(struct cafe_camera
*cam
,
950 char __user
*buffer
, size_t len
, loff_t
*pos
)
955 spin_lock_irqsave(&cam
->dev_lock
, flags
);
956 if (cam
->next_buf
< 0) {
957 cam_err(cam
, "deliver_buffer: No next buffer\n");
958 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
961 bufno
= cam
->next_buf
;
962 clear_bit(bufno
, &cam
->flags
);
963 if (++(cam
->next_buf
) >= cam
->nbufs
)
965 if (! test_bit(cam
->next_buf
, &cam
->flags
))
968 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
970 if (len
> cam
->pix_format
.sizeimage
)
971 len
= cam
->pix_format
.sizeimage
;
972 if (copy_to_user(buffer
, cam
->dma_bufs
[bufno
], len
))
979 * Get everything ready, and start grabbing frames.
981 static int cafe_read_setup(struct cafe_camera
*cam
, enum cafe_state state
)
987 * Configuration. If we still don't have DMA buffers,
988 * make one last, desperate attempt.
991 if (cafe_alloc_dma_bufs(cam
, 0))
994 if (cafe_needs_config(cam
)) {
995 cafe_cam_configure(cam
);
996 ret
= cafe_ctlr_configure(cam
);
1004 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1005 cafe_reset_buffers(cam
);
1006 cafe_ctlr_irq_enable(cam
);
1008 cafe_ctlr_start(cam
);
1009 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1014 static ssize_t
cafe_v4l_read(struct file
*filp
,
1015 char __user
*buffer
, size_t len
, loff_t
*pos
)
1017 struct cafe_camera
*cam
= filp
->private_data
;
1021 * Perhaps we're in speculative read mode and already
1024 mutex_lock(&cam
->s_mutex
);
1025 if (cam
->state
== S_SPECREAD
) {
1026 if (cam
->next_buf
>= 0) {
1027 ret
= cafe_deliver_buffer(cam
, buffer
, len
, pos
);
1031 } else if (cam
->state
== S_FLAKED
|| cam
->state
== S_NOTREADY
) {
1034 } else if (cam
->state
!= S_IDLE
) {
1040 * v4l2: multiple processes can open the device, but only
1041 * one gets to grab data from it.
1043 if (cam
->owner
&& cam
->owner
!= filp
) {
1050 * Do setup if need be.
1052 if (cam
->state
!= S_SPECREAD
) {
1053 ret
= cafe_read_setup(cam
, S_SINGLEREAD
);
1058 * Wait for something to happen. This should probably
1059 * be interruptible (FIXME).
1061 wait_event_timeout(cam
->iowait
, cam
->next_buf
>= 0, HZ
);
1062 if (cam
->next_buf
< 0) {
1063 cam_err(cam
, "read() operation timed out\n");
1064 cafe_ctlr_stop_dma(cam
);
1069 * Give them their data and we should be done.
1071 ret
= cafe_deliver_buffer(cam
, buffer
, len
, pos
);
1074 mutex_unlock(&cam
->s_mutex
);
1086 * Streaming I/O support.
1091 static int cafe_vidioc_streamon(struct file
*filp
, void *priv
,
1092 enum v4l2_buf_type type
)
1094 struct cafe_camera
*cam
= filp
->private_data
;
1097 if (type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1099 mutex_lock(&cam
->s_mutex
);
1100 if (cam
->state
!= S_IDLE
|| cam
->n_sbufs
== 0)
1104 ret
= cafe_read_setup(cam
, S_STREAMING
);
1107 mutex_unlock(&cam
->s_mutex
);
1113 static int cafe_vidioc_streamoff(struct file
*filp
, void *priv
,
1114 enum v4l2_buf_type type
)
1116 struct cafe_camera
*cam
= filp
->private_data
;
1119 if (type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1121 mutex_lock(&cam
->s_mutex
);
1122 if (cam
->state
!= S_STREAMING
)
1125 cafe_ctlr_stop_dma(cam
);
1129 mutex_unlock(&cam
->s_mutex
);
1136 static int cafe_setup_siobuf(struct cafe_camera
*cam
, int index
)
1138 struct cafe_sio_buffer
*buf
= cam
->sb_bufs
+ index
;
1140 INIT_LIST_HEAD(&buf
->list
);
1141 buf
->v4lbuf
.length
= PAGE_ALIGN(cam
->pix_format
.sizeimage
);
1142 buf
->buffer
= vmalloc_user(buf
->v4lbuf
.length
);
1143 if (buf
->buffer
== NULL
)
1148 buf
->v4lbuf
.index
= index
;
1149 buf
->v4lbuf
.type
= V4L2_BUF_TYPE_VIDEO_CAPTURE
;
1150 buf
->v4lbuf
.field
= V4L2_FIELD_NONE
;
1151 buf
->v4lbuf
.memory
= V4L2_MEMORY_MMAP
;
1153 * Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg
1154 * just uses the length times the index, but the spec warns
1155 * against doing just that - vma merging problems. So we
1156 * leave a gap between each pair of buffers.
1158 buf
->v4lbuf
.m
.offset
= 2*index
*buf
->v4lbuf
.length
;
1162 static int cafe_free_sio_buffers(struct cafe_camera
*cam
)
1167 * If any buffers are mapped, we cannot free them at all.
1169 for (i
= 0; i
< cam
->n_sbufs
; i
++)
1170 if (cam
->sb_bufs
[i
].mapcount
> 0)
1175 for (i
= 0; i
< cam
->n_sbufs
; i
++)
1176 vfree(cam
->sb_bufs
[i
].buffer
);
1178 kfree(cam
->sb_bufs
);
1179 cam
->sb_bufs
= NULL
;
1180 INIT_LIST_HEAD(&cam
->sb_avail
);
1181 INIT_LIST_HEAD(&cam
->sb_full
);
1187 static int cafe_vidioc_reqbufs(struct file
*filp
, void *priv
,
1188 struct v4l2_requestbuffers
*req
)
1190 struct cafe_camera
*cam
= filp
->private_data
;
1191 int ret
= 0; /* Silence warning */
1194 * Make sure it's something we can do. User pointers could be
1195 * implemented without great pain, but that's not been done yet.
1197 if (req
->memory
!= V4L2_MEMORY_MMAP
)
1200 * If they ask for zero buffers, they really want us to stop streaming
1201 * (if it's happening) and free everything. Should we check owner?
1203 mutex_lock(&cam
->s_mutex
);
1204 if (req
->count
== 0) {
1205 if (cam
->state
== S_STREAMING
)
1206 cafe_ctlr_stop_dma(cam
);
1207 ret
= cafe_free_sio_buffers (cam
);
1211 * Device needs to be idle and working. We *could* try to do the
1212 * right thing in S_SPECREAD by shutting things down, but it
1213 * probably doesn't matter.
1215 if (cam
->state
!= S_IDLE
|| (cam
->owner
&& cam
->owner
!= filp
)) {
1221 if (req
->count
< min_buffers
)
1222 req
->count
= min_buffers
;
1223 else if (req
->count
> max_buffers
)
1224 req
->count
= max_buffers
;
1225 if (cam
->n_sbufs
> 0) {
1226 ret
= cafe_free_sio_buffers(cam
);
1231 cam
->sb_bufs
= kzalloc(req
->count
*sizeof(struct cafe_sio_buffer
),
1233 if (cam
->sb_bufs
== NULL
) {
1237 for (cam
->n_sbufs
= 0; cam
->n_sbufs
< req
->count
; (cam
->n_sbufs
++)) {
1238 ret
= cafe_setup_siobuf(cam
, cam
->n_sbufs
);
1243 if (cam
->n_sbufs
== 0) /* no luck at all - ret already set */
1244 kfree(cam
->sb_bufs
);
1245 req
->count
= cam
->n_sbufs
; /* In case of partial success */
1248 mutex_unlock(&cam
->s_mutex
);
1253 static int cafe_vidioc_querybuf(struct file
*filp
, void *priv
,
1254 struct v4l2_buffer
*buf
)
1256 struct cafe_camera
*cam
= filp
->private_data
;
1259 mutex_lock(&cam
->s_mutex
);
1260 if (buf
->index
>= cam
->n_sbufs
)
1262 *buf
= cam
->sb_bufs
[buf
->index
].v4lbuf
;
1265 mutex_unlock(&cam
->s_mutex
);
1269 static int cafe_vidioc_qbuf(struct file
*filp
, void *priv
,
1270 struct v4l2_buffer
*buf
)
1272 struct cafe_camera
*cam
= filp
->private_data
;
1273 struct cafe_sio_buffer
*sbuf
;
1275 unsigned long flags
;
1277 mutex_lock(&cam
->s_mutex
);
1278 if (buf
->index
>= cam
->n_sbufs
)
1280 sbuf
= cam
->sb_bufs
+ buf
->index
;
1281 if (sbuf
->v4lbuf
.flags
& V4L2_BUF_FLAG_QUEUED
) {
1282 ret
= 0; /* Already queued?? */
1285 if (sbuf
->v4lbuf
.flags
& V4L2_BUF_FLAG_DONE
) {
1286 /* Spec doesn't say anything, seems appropriate tho */
1290 sbuf
->v4lbuf
.flags
|= V4L2_BUF_FLAG_QUEUED
;
1291 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1292 list_add(&sbuf
->list
, &cam
->sb_avail
);
1293 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1296 mutex_unlock(&cam
->s_mutex
);
1300 static int cafe_vidioc_dqbuf(struct file
*filp
, void *priv
,
1301 struct v4l2_buffer
*buf
)
1303 struct cafe_camera
*cam
= filp
->private_data
;
1304 struct cafe_sio_buffer
*sbuf
;
1306 unsigned long flags
;
1308 mutex_lock(&cam
->s_mutex
);
1309 if (cam
->state
!= S_STREAMING
)
1311 if (list_empty(&cam
->sb_full
) && filp
->f_flags
& O_NONBLOCK
) {
1316 while (list_empty(&cam
->sb_full
) && cam
->state
== S_STREAMING
) {
1317 mutex_unlock(&cam
->s_mutex
);
1318 if (wait_event_interruptible(cam
->iowait
,
1319 !list_empty(&cam
->sb_full
))) {
1323 mutex_lock(&cam
->s_mutex
);
1326 if (cam
->state
!= S_STREAMING
)
1329 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1330 /* Should probably recheck !list_empty() here */
1331 sbuf
= list_entry(cam
->sb_full
.next
,
1332 struct cafe_sio_buffer
, list
);
1333 list_del_init(&sbuf
->list
);
1334 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1335 sbuf
->v4lbuf
.flags
&= ~V4L2_BUF_FLAG_DONE
;
1336 *buf
= sbuf
->v4lbuf
;
1341 mutex_unlock(&cam
->s_mutex
);
1348 static void cafe_v4l_vm_open(struct vm_area_struct
*vma
)
1350 struct cafe_sio_buffer
*sbuf
= vma
->vm_private_data
;
1352 * Locking: done under mmap_sem, so we don't need to
1353 * go back to the camera lock here.
1359 static void cafe_v4l_vm_close(struct vm_area_struct
*vma
)
1361 struct cafe_sio_buffer
*sbuf
= vma
->vm_private_data
;
1363 mutex_lock(&sbuf
->cam
->s_mutex
);
1365 /* Docs say we should stop I/O too... */
1366 if (sbuf
->mapcount
== 0)
1367 sbuf
->v4lbuf
.flags
&= ~V4L2_BUF_FLAG_MAPPED
;
1368 mutex_unlock(&sbuf
->cam
->s_mutex
);
1371 static const struct vm_operations_struct cafe_v4l_vm_ops
= {
1372 .open
= cafe_v4l_vm_open
,
1373 .close
= cafe_v4l_vm_close
1377 static int cafe_v4l_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1379 struct cafe_camera
*cam
= filp
->private_data
;
1380 unsigned long offset
= vma
->vm_pgoff
<< PAGE_SHIFT
;
1383 struct cafe_sio_buffer
*sbuf
= NULL
;
1385 if (! (vma
->vm_flags
& VM_WRITE
) || ! (vma
->vm_flags
& VM_SHARED
))
1388 * Find the buffer they are looking for.
1390 mutex_lock(&cam
->s_mutex
);
1391 for (i
= 0; i
< cam
->n_sbufs
; i
++)
1392 if (cam
->sb_bufs
[i
].v4lbuf
.m
.offset
== offset
) {
1393 sbuf
= cam
->sb_bufs
+ i
;
1399 ret
= remap_vmalloc_range(vma
, sbuf
->buffer
, 0);
1402 vma
->vm_flags
|= VM_DONTEXPAND
;
1403 vma
->vm_private_data
= sbuf
;
1404 vma
->vm_ops
= &cafe_v4l_vm_ops
;
1405 sbuf
->v4lbuf
.flags
|= V4L2_BUF_FLAG_MAPPED
;
1406 cafe_v4l_vm_open(vma
);
1409 mutex_unlock(&cam
->s_mutex
);
1415 static int cafe_v4l_open(struct file
*filp
)
1417 struct cafe_camera
*cam
= video_drvdata(filp
);
1419 filp
->private_data
= cam
;
1421 mutex_lock(&cam
->s_mutex
);
1422 if (cam
->users
== 0) {
1423 cafe_ctlr_power_up(cam
);
1424 __cafe_cam_reset(cam
);
1425 cafe_set_config_needed(cam
, 1);
1426 /* FIXME make sure this is complete */
1429 mutex_unlock(&cam
->s_mutex
);
1434 static int cafe_v4l_release(struct file
*filp
)
1436 struct cafe_camera
*cam
= filp
->private_data
;
1438 mutex_lock(&cam
->s_mutex
);
1440 if (filp
== cam
->owner
) {
1441 cafe_ctlr_stop_dma(cam
);
1442 cafe_free_sio_buffers(cam
);
1445 if (cam
->users
== 0) {
1446 cafe_ctlr_power_down(cam
);
1447 if (alloc_bufs_at_read
)
1448 cafe_free_dma_bufs(cam
);
1450 mutex_unlock(&cam
->s_mutex
);
1456 static unsigned int cafe_v4l_poll(struct file
*filp
,
1457 struct poll_table_struct
*pt
)
1459 struct cafe_camera
*cam
= filp
->private_data
;
1461 poll_wait(filp
, &cam
->iowait
, pt
);
1462 if (cam
->next_buf
>= 0)
1463 return POLLIN
| POLLRDNORM
;
1469 static int cafe_vidioc_queryctrl(struct file
*filp
, void *priv
,
1470 struct v4l2_queryctrl
*qc
)
1472 struct cafe_camera
*cam
= priv
;
1475 mutex_lock(&cam
->s_mutex
);
1476 ret
= sensor_call(cam
, core
, queryctrl
, qc
);
1477 mutex_unlock(&cam
->s_mutex
);
1482 static int cafe_vidioc_g_ctrl(struct file
*filp
, void *priv
,
1483 struct v4l2_control
*ctrl
)
1485 struct cafe_camera
*cam
= priv
;
1488 mutex_lock(&cam
->s_mutex
);
1489 ret
= sensor_call(cam
, core
, g_ctrl
, ctrl
);
1490 mutex_unlock(&cam
->s_mutex
);
1495 static int cafe_vidioc_s_ctrl(struct file
*filp
, void *priv
,
1496 struct v4l2_control
*ctrl
)
1498 struct cafe_camera
*cam
= priv
;
1501 mutex_lock(&cam
->s_mutex
);
1502 ret
= sensor_call(cam
, core
, s_ctrl
, ctrl
);
1503 mutex_unlock(&cam
->s_mutex
);
1511 static int cafe_vidioc_querycap(struct file
*file
, void *priv
,
1512 struct v4l2_capability
*cap
)
1514 strcpy(cap
->driver
, "cafe_ccic");
1515 strcpy(cap
->card
, "cafe_ccic");
1516 cap
->version
= CAFE_VERSION
;
1517 cap
->capabilities
= V4L2_CAP_VIDEO_CAPTURE
|
1518 V4L2_CAP_READWRITE
| V4L2_CAP_STREAMING
;
1524 * The default format we use until somebody says otherwise.
1526 static const struct v4l2_pix_format cafe_def_pix_format
= {
1528 .height
= VGA_HEIGHT
,
1529 .pixelformat
= V4L2_PIX_FMT_YUYV
,
1530 .field
= V4L2_FIELD_NONE
,
1531 .bytesperline
= VGA_WIDTH
*2,
1532 .sizeimage
= VGA_WIDTH
*VGA_HEIGHT
*2,
1535 static const enum v4l2_mbus_pixelcode cafe_def_mbus_code
=
1536 V4L2_MBUS_FMT_YUYV8_2X8
;
1538 static int cafe_vidioc_enum_fmt_vid_cap(struct file
*filp
,
1539 void *priv
, struct v4l2_fmtdesc
*fmt
)
1541 if (fmt
->index
>= N_CAFE_FMTS
)
1543 strlcpy(fmt
->description
, cafe_formats
[fmt
->index
].desc
,
1544 sizeof(fmt
->description
));
1545 fmt
->pixelformat
= cafe_formats
[fmt
->index
].pixelformat
;
1549 static int cafe_vidioc_try_fmt_vid_cap(struct file
*filp
, void *priv
,
1550 struct v4l2_format
*fmt
)
1552 struct cafe_camera
*cam
= priv
;
1553 struct cafe_format_struct
*f
;
1554 struct v4l2_pix_format
*pix
= &fmt
->fmt
.pix
;
1555 struct v4l2_mbus_framefmt mbus_fmt
;
1558 f
= cafe_find_format(pix
->pixelformat
);
1559 pix
->pixelformat
= f
->pixelformat
;
1560 v4l2_fill_mbus_format(&mbus_fmt
, pix
, f
->mbus_code
);
1561 mutex_lock(&cam
->s_mutex
);
1562 ret
= sensor_call(cam
, video
, try_mbus_fmt
, &mbus_fmt
);
1563 mutex_unlock(&cam
->s_mutex
);
1564 v4l2_fill_pix_format(pix
, &mbus_fmt
);
1565 pix
->bytesperline
= pix
->width
* f
->bpp
;
1566 pix
->sizeimage
= pix
->height
* pix
->bytesperline
;
1570 static int cafe_vidioc_s_fmt_vid_cap(struct file
*filp
, void *priv
,
1571 struct v4l2_format
*fmt
)
1573 struct cafe_camera
*cam
= priv
;
1574 struct cafe_format_struct
*f
;
1578 * Can't do anything if the device is not idle
1579 * Also can't if there are streaming buffers in place.
1581 if (cam
->state
!= S_IDLE
|| cam
->n_sbufs
> 0)
1584 f
= cafe_find_format(fmt
->fmt
.pix
.pixelformat
);
1587 * See if the formatting works in principle.
1589 ret
= cafe_vidioc_try_fmt_vid_cap(filp
, priv
, fmt
);
1593 * Now we start to change things for real, so let's do it
1596 mutex_lock(&cam
->s_mutex
);
1597 cam
->pix_format
= fmt
->fmt
.pix
;
1598 cam
->mbus_code
= f
->mbus_code
;
1601 * Make sure we have appropriate DMA buffers.
1604 if (cam
->nbufs
> 0 && cam
->dma_buf_size
< cam
->pix_format
.sizeimage
)
1605 cafe_free_dma_bufs(cam
);
1606 if (cam
->nbufs
== 0) {
1607 if (cafe_alloc_dma_bufs(cam
, 0))
1611 * It looks like this might work, so let's program the sensor.
1613 ret
= cafe_cam_configure(cam
);
1615 ret
= cafe_ctlr_configure(cam
);
1617 mutex_unlock(&cam
->s_mutex
);
1622 * Return our stored notion of how the camera is/should be configured.
1623 * The V4l2 spec wants us to be smarter, and actually get this from
1624 * the camera (and not mess with it at open time). Someday.
1626 static int cafe_vidioc_g_fmt_vid_cap(struct file
*filp
, void *priv
,
1627 struct v4l2_format
*f
)
1629 struct cafe_camera
*cam
= priv
;
1631 f
->fmt
.pix
= cam
->pix_format
;
1636 * We only have one input - the sensor - so minimize the nonsense here.
1638 static int cafe_vidioc_enum_input(struct file
*filp
, void *priv
,
1639 struct v4l2_input
*input
)
1641 if (input
->index
!= 0)
1644 input
->type
= V4L2_INPUT_TYPE_CAMERA
;
1645 input
->std
= V4L2_STD_ALL
; /* Not sure what should go here */
1646 strcpy(input
->name
, "Camera");
1650 static int cafe_vidioc_g_input(struct file
*filp
, void *priv
, unsigned int *i
)
1656 static int cafe_vidioc_s_input(struct file
*filp
, void *priv
, unsigned int i
)
1664 static int cafe_vidioc_s_std(struct file
*filp
, void *priv
, v4l2_std_id
*a
)
1670 * G/S_PARM. Most of this is done by the sensor, but we are
1671 * the level which controls the number of read buffers.
1673 static int cafe_vidioc_g_parm(struct file
*filp
, void *priv
,
1674 struct v4l2_streamparm
*parms
)
1676 struct cafe_camera
*cam
= priv
;
1679 mutex_lock(&cam
->s_mutex
);
1680 ret
= sensor_call(cam
, video
, g_parm
, parms
);
1681 mutex_unlock(&cam
->s_mutex
);
1682 parms
->parm
.capture
.readbuffers
= n_dma_bufs
;
1686 static int cafe_vidioc_s_parm(struct file
*filp
, void *priv
,
1687 struct v4l2_streamparm
*parms
)
1689 struct cafe_camera
*cam
= priv
;
1692 mutex_lock(&cam
->s_mutex
);
1693 ret
= sensor_call(cam
, video
, s_parm
, parms
);
1694 mutex_unlock(&cam
->s_mutex
);
1695 parms
->parm
.capture
.readbuffers
= n_dma_bufs
;
1699 static int cafe_vidioc_g_chip_ident(struct file
*file
, void *priv
,
1700 struct v4l2_dbg_chip_ident
*chip
)
1702 struct cafe_camera
*cam
= priv
;
1704 chip
->ident
= V4L2_IDENT_NONE
;
1706 if (v4l2_chip_match_host(&chip
->match
)) {
1707 chip
->ident
= V4L2_IDENT_CAFE
;
1710 return sensor_call(cam
, core
, g_chip_ident
, chip
);
1713 static int cafe_vidioc_enum_framesizes(struct file
*filp
, void *priv
,
1714 struct v4l2_frmsizeenum
*sizes
)
1716 struct cafe_camera
*cam
= priv
;
1719 mutex_lock(&cam
->s_mutex
);
1720 ret
= sensor_call(cam
, video
, enum_framesizes
, sizes
);
1721 mutex_unlock(&cam
->s_mutex
);
1725 static int cafe_vidioc_enum_frameintervals(struct file
*filp
, void *priv
,
1726 struct v4l2_frmivalenum
*interval
)
1728 struct cafe_camera
*cam
= priv
;
1731 mutex_lock(&cam
->s_mutex
);
1732 ret
= sensor_call(cam
, video
, enum_frameintervals
, interval
);
1733 mutex_unlock(&cam
->s_mutex
);
1737 #ifdef CONFIG_VIDEO_ADV_DEBUG
1738 static int cafe_vidioc_g_register(struct file
*file
, void *priv
,
1739 struct v4l2_dbg_register
*reg
)
1741 struct cafe_camera
*cam
= priv
;
1743 if (v4l2_chip_match_host(®
->match
)) {
1744 reg
->val
= cafe_reg_read(cam
, reg
->reg
);
1748 return sensor_call(cam
, core
, g_register
, reg
);
1751 static int cafe_vidioc_s_register(struct file
*file
, void *priv
,
1752 struct v4l2_dbg_register
*reg
)
1754 struct cafe_camera
*cam
= priv
;
1756 if (v4l2_chip_match_host(®
->match
)) {
1757 cafe_reg_write(cam
, reg
->reg
, reg
->val
);
1760 return sensor_call(cam
, core
, s_register
, reg
);
1765 * This template device holds all of those v4l2 methods; we
1766 * clone it for specific real devices.
1769 static const struct v4l2_file_operations cafe_v4l_fops
= {
1770 .owner
= THIS_MODULE
,
1771 .open
= cafe_v4l_open
,
1772 .release
= cafe_v4l_release
,
1773 .read
= cafe_v4l_read
,
1774 .poll
= cafe_v4l_poll
,
1775 .mmap
= cafe_v4l_mmap
,
1776 .unlocked_ioctl
= video_ioctl2
,
1779 static const struct v4l2_ioctl_ops cafe_v4l_ioctl_ops
= {
1780 .vidioc_querycap
= cafe_vidioc_querycap
,
1781 .vidioc_enum_fmt_vid_cap
= cafe_vidioc_enum_fmt_vid_cap
,
1782 .vidioc_try_fmt_vid_cap
= cafe_vidioc_try_fmt_vid_cap
,
1783 .vidioc_s_fmt_vid_cap
= cafe_vidioc_s_fmt_vid_cap
,
1784 .vidioc_g_fmt_vid_cap
= cafe_vidioc_g_fmt_vid_cap
,
1785 .vidioc_enum_input
= cafe_vidioc_enum_input
,
1786 .vidioc_g_input
= cafe_vidioc_g_input
,
1787 .vidioc_s_input
= cafe_vidioc_s_input
,
1788 .vidioc_s_std
= cafe_vidioc_s_std
,
1789 .vidioc_reqbufs
= cafe_vidioc_reqbufs
,
1790 .vidioc_querybuf
= cafe_vidioc_querybuf
,
1791 .vidioc_qbuf
= cafe_vidioc_qbuf
,
1792 .vidioc_dqbuf
= cafe_vidioc_dqbuf
,
1793 .vidioc_streamon
= cafe_vidioc_streamon
,
1794 .vidioc_streamoff
= cafe_vidioc_streamoff
,
1795 .vidioc_queryctrl
= cafe_vidioc_queryctrl
,
1796 .vidioc_g_ctrl
= cafe_vidioc_g_ctrl
,
1797 .vidioc_s_ctrl
= cafe_vidioc_s_ctrl
,
1798 .vidioc_g_parm
= cafe_vidioc_g_parm
,
1799 .vidioc_s_parm
= cafe_vidioc_s_parm
,
1800 .vidioc_enum_framesizes
= cafe_vidioc_enum_framesizes
,
1801 .vidioc_enum_frameintervals
= cafe_vidioc_enum_frameintervals
,
1802 .vidioc_g_chip_ident
= cafe_vidioc_g_chip_ident
,
1803 #ifdef CONFIG_VIDEO_ADV_DEBUG
1804 .vidioc_g_register
= cafe_vidioc_g_register
,
1805 .vidioc_s_register
= cafe_vidioc_s_register
,
1809 static struct video_device cafe_v4l_template
= {
1811 .tvnorms
= V4L2_STD_NTSC_M
,
1812 .current_norm
= V4L2_STD_NTSC_M
, /* make mplayer happy */
1814 .fops
= &cafe_v4l_fops
,
1815 .ioctl_ops
= &cafe_v4l_ioctl_ops
,
1816 .release
= video_device_release_empty
,
1820 /* ---------------------------------------------------------------------- */
1822 * Interrupt handler stuff
1827 static void cafe_frame_tasklet(unsigned long data
)
1829 struct cafe_camera
*cam
= (struct cafe_camera
*) data
;
1831 unsigned long flags
;
1832 struct cafe_sio_buffer
*sbuf
;
1834 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1835 for (i
= 0; i
< cam
->nbufs
; i
++) {
1836 int bufno
= cam
->next_buf
;
1837 if (bufno
< 0) { /* "will never happen" */
1838 cam_err(cam
, "No valid bufs in tasklet!\n");
1841 if (++(cam
->next_buf
) >= cam
->nbufs
)
1843 if (! test_bit(bufno
, &cam
->flags
))
1845 if (list_empty(&cam
->sb_avail
))
1846 break; /* Leave it valid, hope for better later */
1847 clear_bit(bufno
, &cam
->flags
);
1848 sbuf
= list_entry(cam
->sb_avail
.next
,
1849 struct cafe_sio_buffer
, list
);
1851 * Drop the lock during the big copy. This *should* be safe...
1853 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1854 memcpy(sbuf
->buffer
, cam
->dma_bufs
[bufno
],
1855 cam
->pix_format
.sizeimage
);
1856 sbuf
->v4lbuf
.bytesused
= cam
->pix_format
.sizeimage
;
1857 sbuf
->v4lbuf
.sequence
= cam
->buf_seq
[bufno
];
1858 sbuf
->v4lbuf
.flags
&= ~V4L2_BUF_FLAG_QUEUED
;
1859 sbuf
->v4lbuf
.flags
|= V4L2_BUF_FLAG_DONE
;
1860 spin_lock_irqsave(&cam
->dev_lock
, flags
);
1861 list_move_tail(&sbuf
->list
, &cam
->sb_full
);
1863 if (! list_empty(&cam
->sb_full
))
1864 wake_up(&cam
->iowait
);
1865 spin_unlock_irqrestore(&cam
->dev_lock
, flags
);
1870 static void cafe_frame_complete(struct cafe_camera
*cam
, int frame
)
1873 * Basic frame housekeeping.
1875 if (test_bit(frame
, &cam
->flags
) && printk_ratelimit())
1876 cam_err(cam
, "Frame overrun on %d, frames lost\n", frame
);
1877 set_bit(frame
, &cam
->flags
);
1878 clear_bit(CF_DMA_ACTIVE
, &cam
->flags
);
1879 if (cam
->next_buf
< 0)
1880 cam
->next_buf
= frame
;
1881 cam
->buf_seq
[frame
] = ++(cam
->sequence
);
1883 switch (cam
->state
) {
1885 * If in single read mode, try going speculative.
1888 cam
->state
= S_SPECREAD
;
1889 cam
->specframes
= 0;
1890 wake_up(&cam
->iowait
);
1894 * If we are already doing speculative reads, and nobody is
1895 * reading them, just stop.
1898 if (++(cam
->specframes
) >= cam
->nbufs
) {
1899 cafe_ctlr_stop(cam
);
1900 cafe_ctlr_irq_disable(cam
);
1901 cam
->state
= S_IDLE
;
1903 wake_up(&cam
->iowait
);
1906 * For the streaming case, we defer the real work to the
1909 * FIXME: if the application is not consuming the buffers,
1910 * we should eventually put things on hold and restart in
1914 tasklet_schedule(&cam
->s_tasklet
);
1918 cam_err(cam
, "Frame interrupt in non-operational state\n");
1926 static void cafe_frame_irq(struct cafe_camera
*cam
, unsigned int irqs
)
1930 cafe_reg_write(cam
, REG_IRQSTAT
, FRAMEIRQS
); /* Clear'em all */
1932 * Handle any frame completions. There really should
1933 * not be more than one of these, or we have fallen
1936 for (frame
= 0; frame
< cam
->nbufs
; frame
++)
1937 if (irqs
& (IRQ_EOF0
<< frame
))
1938 cafe_frame_complete(cam
, frame
);
1940 * If a frame starts, note that we have DMA active. This
1941 * code assumes that we won't get multiple frame interrupts
1942 * at once; may want to rethink that.
1944 if (irqs
& (IRQ_SOF0
| IRQ_SOF1
| IRQ_SOF2
))
1945 set_bit(CF_DMA_ACTIVE
, &cam
->flags
);
1950 static irqreturn_t
cafe_irq(int irq
, void *data
)
1952 struct cafe_camera
*cam
= data
;
1955 spin_lock(&cam
->dev_lock
);
1956 irqs
= cafe_reg_read(cam
, REG_IRQSTAT
);
1957 if ((irqs
& ALLIRQS
) == 0) {
1958 spin_unlock(&cam
->dev_lock
);
1961 if (irqs
& FRAMEIRQS
)
1962 cafe_frame_irq(cam
, irqs
);
1963 if (irqs
& TWSIIRQS
) {
1964 cafe_reg_write(cam
, REG_IRQSTAT
, TWSIIRQS
);
1965 wake_up(&cam
->smbus_wait
);
1967 spin_unlock(&cam
->dev_lock
);
1972 /* -------------------------------------------------------------------------- */
1974 * PCI interface stuff.
1977 static const struct dmi_system_id olpc_xo1_dmi
[] = {
1980 DMI_MATCH(DMI_SYS_VENDOR
, "OLPC"),
1981 DMI_MATCH(DMI_PRODUCT_NAME
, "XO"),
1982 DMI_MATCH(DMI_PRODUCT_VERSION
, "1"),
1988 static int cafe_pci_probe(struct pci_dev
*pdev
,
1989 const struct pci_device_id
*id
)
1992 struct cafe_camera
*cam
;
1993 struct ov7670_config sensor_cfg
= {
1994 /* This controller only does SMBUS */
1998 * Exclude QCIF mode, because it only captures a tiny portion
2004 struct i2c_board_info ov7670_info
= {
2007 .platform_data
= &sensor_cfg
,
2011 * Start putting together one of our big camera structures.
2014 cam
= kzalloc(sizeof(struct cafe_camera
), GFP_KERNEL
);
2017 ret
= v4l2_device_register(&pdev
->dev
, &cam
->v4l2_dev
);
2021 mutex_init(&cam
->s_mutex
);
2022 spin_lock_init(&cam
->dev_lock
);
2023 cam
->state
= S_NOTREADY
;
2024 cafe_set_config_needed(cam
, 1);
2025 init_waitqueue_head(&cam
->smbus_wait
);
2026 init_waitqueue_head(&cam
->iowait
);
2028 cam
->pix_format
= cafe_def_pix_format
;
2029 cam
->mbus_code
= cafe_def_mbus_code
;
2030 INIT_LIST_HEAD(&cam
->dev_list
);
2031 INIT_LIST_HEAD(&cam
->sb_avail
);
2032 INIT_LIST_HEAD(&cam
->sb_full
);
2033 tasklet_init(&cam
->s_tasklet
, cafe_frame_tasklet
, (unsigned long) cam
);
2035 * Get set up on the PCI bus.
2037 ret
= pci_enable_device(pdev
);
2040 pci_set_master(pdev
);
2043 cam
->regs
= pci_iomap(pdev
, 0, 0);
2045 printk(KERN_ERR
"Unable to ioremap cafe-ccic regs\n");
2048 ret
= request_irq(pdev
->irq
, cafe_irq
, IRQF_SHARED
, "cafe-ccic", cam
);
2052 * Initialize the controller and leave it powered up. It will
2053 * stay that way until the sensor driver shows up.
2055 cafe_ctlr_init(cam
);
2056 cafe_ctlr_power_up(cam
);
2058 * Set up I2C/SMBUS communications. We have to drop the mutex here
2059 * because the sensor could attach in this call chain, leading to
2060 * unsightly deadlocks.
2062 ret
= cafe_smbus_setup(cam
);
2066 /* Apply XO-1 clock speed */
2067 if (dmi_check_system(olpc_xo1_dmi
))
2068 sensor_cfg
.clock_speed
= 45;
2070 cam
->sensor_addr
= ov7670_info
.addr
;
2071 cam
->sensor
= v4l2_i2c_new_subdev_board(&cam
->v4l2_dev
, &cam
->i2c_adapter
,
2072 &ov7670_info
, NULL
);
2073 if (cam
->sensor
== NULL
) {
2078 ret
= cafe_cam_init(cam
);
2083 * Get the v4l2 setup done.
2085 mutex_lock(&cam
->s_mutex
);
2086 cam
->vdev
= cafe_v4l_template
;
2087 cam
->vdev
.debug
= 0;
2088 /* cam->vdev.debug = V4L2_DEBUG_IOCTL_ARG;*/
2089 cam
->vdev
.v4l2_dev
= &cam
->v4l2_dev
;
2090 ret
= video_register_device(&cam
->vdev
, VFL_TYPE_GRABBER
, -1);
2093 video_set_drvdata(&cam
->vdev
, cam
);
2096 * If so requested, try to get our DMA buffers now.
2098 if (!alloc_bufs_at_read
) {
2099 if (cafe_alloc_dma_bufs(cam
, 1))
2100 cam_warn(cam
, "Unable to alloc DMA buffers at load"
2101 " will try again later.");
2104 mutex_unlock(&cam
->s_mutex
);
2108 mutex_unlock(&cam
->s_mutex
);
2110 cafe_smbus_shutdown(cam
);
2112 cafe_ctlr_power_down(cam
);
2113 free_irq(pdev
->irq
, cam
);
2115 pci_iounmap(pdev
, cam
->regs
);
2117 v4l2_device_unregister(&cam
->v4l2_dev
);
2126 * Shut down an initialized device
2128 static void cafe_shutdown(struct cafe_camera
*cam
)
2130 /* FIXME: Make sure we take care of everything here */
2131 if (cam
->n_sbufs
> 0)
2132 /* What if they are still mapped? Shouldn't be, but... */
2133 cafe_free_sio_buffers(cam
);
2134 cafe_ctlr_stop_dma(cam
);
2135 cafe_ctlr_power_down(cam
);
2136 cafe_smbus_shutdown(cam
);
2137 cafe_free_dma_bufs(cam
);
2138 free_irq(cam
->pdev
->irq
, cam
);
2139 pci_iounmap(cam
->pdev
, cam
->regs
);
2140 video_unregister_device(&cam
->vdev
);
2144 static void cafe_pci_remove(struct pci_dev
*pdev
)
2146 struct v4l2_device
*v4l2_dev
= dev_get_drvdata(&pdev
->dev
);
2147 struct cafe_camera
*cam
= to_cam(v4l2_dev
);
2150 printk(KERN_WARNING
"pci_remove on unknown pdev %p\n", pdev
);
2153 mutex_lock(&cam
->s_mutex
);
2155 cam_warn(cam
, "Removing a device with users!\n");
2157 v4l2_device_unregister(&cam
->v4l2_dev
);
2159 /* No unlock - it no longer exists */
2165 * Basic power management.
2167 static int cafe_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2169 struct v4l2_device
*v4l2_dev
= dev_get_drvdata(&pdev
->dev
);
2170 struct cafe_camera
*cam
= to_cam(v4l2_dev
);
2172 enum cafe_state cstate
;
2174 ret
= pci_save_state(pdev
);
2177 cstate
= cam
->state
; /* HACK - stop_dma sets to idle */
2178 cafe_ctlr_stop_dma(cam
);
2179 cafe_ctlr_power_down(cam
);
2180 pci_disable_device(pdev
);
2181 cam
->state
= cstate
;
2186 static int cafe_pci_resume(struct pci_dev
*pdev
)
2188 struct v4l2_device
*v4l2_dev
= dev_get_drvdata(&pdev
->dev
);
2189 struct cafe_camera
*cam
= to_cam(v4l2_dev
);
2192 pci_restore_state(pdev
);
2193 ret
= pci_enable_device(pdev
);
2196 cam_warn(cam
, "Unable to re-enable device on resume!\n");
2199 cafe_ctlr_init(cam
);
2201 mutex_lock(&cam
->s_mutex
);
2202 if (cam
->users
> 0) {
2203 cafe_ctlr_power_up(cam
);
2204 __cafe_cam_reset(cam
);
2206 cafe_ctlr_power_down(cam
);
2208 mutex_unlock(&cam
->s_mutex
);
2210 set_bit(CF_CONFIG_NEEDED
, &cam
->flags
);
2211 if (cam
->state
== S_SPECREAD
)
2212 cam
->state
= S_IDLE
; /* Don't bother restarting */
2213 else if (cam
->state
== S_SINGLEREAD
|| cam
->state
== S_STREAMING
)
2214 ret
= cafe_read_setup(cam
, cam
->state
);
2218 #endif /* CONFIG_PM */
2221 static struct pci_device_id cafe_ids
[] = {
2222 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
,
2223 PCI_DEVICE_ID_MARVELL_88ALP01_CCIC
) },
2227 MODULE_DEVICE_TABLE(pci
, cafe_ids
);
2229 static struct pci_driver cafe_pci_driver
= {
2230 .name
= "cafe1000-ccic",
2231 .id_table
= cafe_ids
,
2232 .probe
= cafe_pci_probe
,
2233 .remove
= cafe_pci_remove
,
2235 .suspend
= cafe_pci_suspend
,
2236 .resume
= cafe_pci_resume
,
2243 static int __init
cafe_init(void)
2247 printk(KERN_NOTICE
"Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
2249 ret
= pci_register_driver(&cafe_pci_driver
);
2251 printk(KERN_ERR
"Unable to register cafe_ccic driver\n");
2261 static void __exit
cafe_exit(void)
2263 pci_unregister_driver(&cafe_pci_driver
);
2266 module_init(cafe_init
);
2267 module_exit(cafe_exit
);