Merge branch 'v6v7' into devel
[linux/fpc-iii.git] / drivers / media / video / cafe_ccic.c
blob55ffd60ffa7ff05b99099108937d61e8eafdeb00
1 /*
2 * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3 * multifunction chip. Currently works with the Omnivision OV7670
4 * sensor.
6 * The data sheet for this device can be found at:
7 * http://www.marvell.com/products/pc_connectivity/88alp01/
9 * Copyright 2006 One Laptop Per Child Association, Inc.
10 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
12 * Written by Jonathan Corbet, corbet@lwn.net.
14 * v4l2_device/v4l2_subdev conversion by:
15 * Copyright (C) 2009 Hans Verkuil <hverkuil@xs4all.nl>
17 * Note: this conversion is untested! Please contact the linux-media
18 * mailinglist if you can test this, together with the test results.
20 * This file may be distributed under the terms of the GNU General
21 * Public License, version 2.
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/fs.h>
28 #include <linux/dmi.h>
29 #include <linux/mm.h>
30 #include <linux/pci.h>
31 #include <linux/i2c.h>
32 #include <linux/interrupt.h>
33 #include <linux/spinlock.h>
34 #include <linux/videodev2.h>
35 #include <linux/slab.h>
36 #include <media/v4l2-device.h>
37 #include <media/v4l2-ioctl.h>
38 #include <media/v4l2-chip-ident.h>
39 #include <linux/device.h>
40 #include <linux/wait.h>
41 #include <linux/list.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/delay.h>
44 #include <linux/jiffies.h>
45 #include <linux/vmalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
50 #include "ov7670.h"
51 #include "cafe_ccic-regs.h"
53 #define CAFE_VERSION 0x000002
57 * Parameters.
59 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
60 MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
61 MODULE_LICENSE("GPL");
62 MODULE_SUPPORTED_DEVICE("Video");
65 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
66 * we must have physically contiguous buffers to bring frames into.
67 * These parameters control how many buffers we use, whether we
68 * allocate them at load time (better chance of success, but nails down
69 * memory) or when somebody tries to use the camera (riskier), and,
70 * for load-time allocation, how big they should be.
72 * The controller can cycle through three buffers. We could use
73 * more by flipping pointers around, but it probably makes little
74 * sense.
77 #define MAX_DMA_BUFS 3
78 static int alloc_bufs_at_read;
79 module_param(alloc_bufs_at_read, bool, 0444);
80 MODULE_PARM_DESC(alloc_bufs_at_read,
81 "Non-zero value causes DMA buffers to be allocated when the "
82 "video capture device is read, rather than at module load "
83 "time. This saves memory, but decreases the chances of "
84 "successfully getting those buffers.");
86 static int n_dma_bufs = 3;
87 module_param(n_dma_bufs, uint, 0644);
88 MODULE_PARM_DESC(n_dma_bufs,
89 "The number of DMA buffers to allocate. Can be either two "
90 "(saves memory, makes timing tighter) or three.");
92 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
93 module_param(dma_buf_size, uint, 0444);
94 MODULE_PARM_DESC(dma_buf_size,
95 "The size of the allocated DMA buffers. If actual operating "
96 "parameters require larger buffers, an attempt to reallocate "
97 "will be made.");
99 static int min_buffers = 1;
100 module_param(min_buffers, uint, 0644);
101 MODULE_PARM_DESC(min_buffers,
102 "The minimum number of streaming I/O buffers we are willing "
103 "to work with.");
105 static int max_buffers = 10;
106 module_param(max_buffers, uint, 0644);
107 MODULE_PARM_DESC(max_buffers,
108 "The maximum number of streaming I/O buffers an application "
109 "will be allowed to allocate. These buffers are big and live "
110 "in vmalloc space.");
112 static int flip;
113 module_param(flip, bool, 0444);
114 MODULE_PARM_DESC(flip,
115 "If set, the sensor will be instructed to flip the image "
116 "vertically.");
119 enum cafe_state {
120 S_NOTREADY, /* Not yet initialized */
121 S_IDLE, /* Just hanging around */
122 S_FLAKED, /* Some sort of problem */
123 S_SINGLEREAD, /* In read() */
124 S_SPECREAD, /* Speculative read (for future read()) */
125 S_STREAMING /* Streaming data */
129 * Tracking of streaming I/O buffers.
131 struct cafe_sio_buffer {
132 struct list_head list;
133 struct v4l2_buffer v4lbuf;
134 char *buffer; /* Where it lives in kernel space */
135 int mapcount;
136 struct cafe_camera *cam;
140 * A description of one of our devices.
141 * Locking: controlled by s_mutex. Certain fields, however, require
142 * the dev_lock spinlock; they are marked as such by comments.
143 * dev_lock is also required for access to device registers.
145 struct cafe_camera
147 struct v4l2_device v4l2_dev;
148 enum cafe_state state;
149 unsigned long flags; /* Buffer status, mainly (dev_lock) */
150 int users; /* How many open FDs */
151 struct file *owner; /* Who has data access (v4l2) */
154 * Subsystem structures.
156 struct pci_dev *pdev;
157 struct video_device vdev;
158 struct i2c_adapter i2c_adapter;
159 struct v4l2_subdev *sensor;
160 unsigned short sensor_addr;
162 unsigned char __iomem *regs;
163 struct list_head dev_list; /* link to other devices */
165 /* DMA buffers */
166 unsigned int nbufs; /* How many are alloc'd */
167 int next_buf; /* Next to consume (dev_lock) */
168 unsigned int dma_buf_size; /* allocated size */
169 void *dma_bufs[MAX_DMA_BUFS]; /* Internal buffer addresses */
170 dma_addr_t dma_handles[MAX_DMA_BUFS]; /* Buffer bus addresses */
171 unsigned int specframes; /* Unconsumed spec frames (dev_lock) */
172 unsigned int sequence; /* Frame sequence number */
173 unsigned int buf_seq[MAX_DMA_BUFS]; /* Sequence for individual buffers */
175 /* Streaming buffers */
176 unsigned int n_sbufs; /* How many we have */
177 struct cafe_sio_buffer *sb_bufs; /* The array of housekeeping structs */
178 struct list_head sb_avail; /* Available for data (we own) (dev_lock) */
179 struct list_head sb_full; /* With data (user space owns) (dev_lock) */
180 struct tasklet_struct s_tasklet;
182 /* Current operating parameters */
183 u32 sensor_type; /* Currently ov7670 only */
184 struct v4l2_pix_format pix_format;
185 enum v4l2_mbus_pixelcode mbus_code;
187 /* Locks */
188 struct mutex s_mutex; /* Access to this structure */
189 spinlock_t dev_lock; /* Access to device */
191 /* Misc */
192 wait_queue_head_t smbus_wait; /* Waiting on i2c events */
193 wait_queue_head_t iowait; /* Waiting on frame data */
197 * Status flags. Always manipulated with bit operations.
199 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
200 #define CF_BUF1_VALID 1
201 #define CF_BUF2_VALID 2
202 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
203 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
205 #define sensor_call(cam, o, f, args...) \
206 v4l2_subdev_call(cam->sensor, o, f, ##args)
208 static inline struct cafe_camera *to_cam(struct v4l2_device *dev)
210 return container_of(dev, struct cafe_camera, v4l2_dev);
213 static struct cafe_format_struct {
214 __u8 *desc;
215 __u32 pixelformat;
216 int bpp; /* Bytes per pixel */
217 enum v4l2_mbus_pixelcode mbus_code;
218 } cafe_formats[] = {
220 .desc = "YUYV 4:2:2",
221 .pixelformat = V4L2_PIX_FMT_YUYV,
222 .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
223 .bpp = 2,
226 .desc = "RGB 444",
227 .pixelformat = V4L2_PIX_FMT_RGB444,
228 .mbus_code = V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
229 .bpp = 2,
232 .desc = "RGB 565",
233 .pixelformat = V4L2_PIX_FMT_RGB565,
234 .mbus_code = V4L2_MBUS_FMT_RGB565_2X8_LE,
235 .bpp = 2,
238 .desc = "Raw RGB Bayer",
239 .pixelformat = V4L2_PIX_FMT_SBGGR8,
240 .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
241 .bpp = 1
244 #define N_CAFE_FMTS ARRAY_SIZE(cafe_formats)
246 static struct cafe_format_struct *cafe_find_format(u32 pixelformat)
248 unsigned i;
250 for (i = 0; i < N_CAFE_FMTS; i++)
251 if (cafe_formats[i].pixelformat == pixelformat)
252 return cafe_formats + i;
253 /* Not found? Then return the first format. */
254 return cafe_formats;
258 * Start over with DMA buffers - dev_lock needed.
260 static void cafe_reset_buffers(struct cafe_camera *cam)
262 int i;
264 cam->next_buf = -1;
265 for (i = 0; i < cam->nbufs; i++)
266 clear_bit(i, &cam->flags);
267 cam->specframes = 0;
270 static inline int cafe_needs_config(struct cafe_camera *cam)
272 return test_bit(CF_CONFIG_NEEDED, &cam->flags);
275 static void cafe_set_config_needed(struct cafe_camera *cam, int needed)
277 if (needed)
278 set_bit(CF_CONFIG_NEEDED, &cam->flags);
279 else
280 clear_bit(CF_CONFIG_NEEDED, &cam->flags);
287 * Debugging and related.
289 #define cam_err(cam, fmt, arg...) \
290 dev_err(&(cam)->pdev->dev, fmt, ##arg);
291 #define cam_warn(cam, fmt, arg...) \
292 dev_warn(&(cam)->pdev->dev, fmt, ##arg);
293 #define cam_dbg(cam, fmt, arg...) \
294 dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
297 /* ---------------------------------------------------------------------*/
300 * Device register I/O
302 static inline void cafe_reg_write(struct cafe_camera *cam, unsigned int reg,
303 unsigned int val)
305 iowrite32(val, cam->regs + reg);
308 static inline unsigned int cafe_reg_read(struct cafe_camera *cam,
309 unsigned int reg)
311 return ioread32(cam->regs + reg);
315 static inline void cafe_reg_write_mask(struct cafe_camera *cam, unsigned int reg,
316 unsigned int val, unsigned int mask)
318 unsigned int v = cafe_reg_read(cam, reg);
320 v = (v & ~mask) | (val & mask);
321 cafe_reg_write(cam, reg, v);
324 static inline void cafe_reg_clear_bit(struct cafe_camera *cam,
325 unsigned int reg, unsigned int val)
327 cafe_reg_write_mask(cam, reg, 0, val);
330 static inline void cafe_reg_set_bit(struct cafe_camera *cam,
331 unsigned int reg, unsigned int val)
333 cafe_reg_write_mask(cam, reg, val, val);
338 /* -------------------------------------------------------------------- */
340 * The I2C/SMBUS interface to the camera itself starts here. The
341 * controller handles SMBUS itself, presenting a relatively simple register
342 * interface; all we have to do is to tell it where to route the data.
344 #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
346 static int cafe_smbus_write_done(struct cafe_camera *cam)
348 unsigned long flags;
349 int c1;
352 * We must delay after the interrupt, or the controller gets confused
353 * and never does give us good status. Fortunately, we don't do this
354 * often.
356 udelay(20);
357 spin_lock_irqsave(&cam->dev_lock, flags);
358 c1 = cafe_reg_read(cam, REG_TWSIC1);
359 spin_unlock_irqrestore(&cam->dev_lock, flags);
360 return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
363 static int cafe_smbus_write_data(struct cafe_camera *cam,
364 u16 addr, u8 command, u8 value)
366 unsigned int rval;
367 unsigned long flags;
369 spin_lock_irqsave(&cam->dev_lock, flags);
370 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
371 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
373 * Marvell sez set clkdiv to all 1's for now.
375 rval |= TWSIC0_CLKDIV;
376 cafe_reg_write(cam, REG_TWSIC0, rval);
377 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
378 rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
379 cafe_reg_write(cam, REG_TWSIC1, rval);
380 spin_unlock_irqrestore(&cam->dev_lock, flags);
382 /* Unfortunately, reading TWSIC1 too soon after sending a command
383 * causes the device to die.
384 * Use a busy-wait because we often send a large quantity of small
385 * commands at-once; using msleep() would cause a lot of context
386 * switches which take longer than 2ms, resulting in a noticable
387 * boot-time and capture-start delays.
389 mdelay(2);
392 * Another sad fact is that sometimes, commands silently complete but
393 * cafe_smbus_write_done() never becomes aware of this.
394 * This happens at random and appears to possible occur with any
395 * command.
396 * We don't understand why this is. We work around this issue
397 * with the timeout in the wait below, assuming that all commands
398 * complete within the timeout.
400 wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(cam),
401 CAFE_SMBUS_TIMEOUT);
403 spin_lock_irqsave(&cam->dev_lock, flags);
404 rval = cafe_reg_read(cam, REG_TWSIC1);
405 spin_unlock_irqrestore(&cam->dev_lock, flags);
407 if (rval & TWSIC1_WSTAT) {
408 cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
409 command, value);
410 return -EIO;
412 if (rval & TWSIC1_ERROR) {
413 cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
414 command, value);
415 return -EIO;
417 return 0;
422 static int cafe_smbus_read_done(struct cafe_camera *cam)
424 unsigned long flags;
425 int c1;
428 * We must delay after the interrupt, or the controller gets confused
429 * and never does give us good status. Fortunately, we don't do this
430 * often.
432 udelay(20);
433 spin_lock_irqsave(&cam->dev_lock, flags);
434 c1 = cafe_reg_read(cam, REG_TWSIC1);
435 spin_unlock_irqrestore(&cam->dev_lock, flags);
436 return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
441 static int cafe_smbus_read_data(struct cafe_camera *cam,
442 u16 addr, u8 command, u8 *value)
444 unsigned int rval;
445 unsigned long flags;
447 spin_lock_irqsave(&cam->dev_lock, flags);
448 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
449 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
451 * Marvel sez set clkdiv to all 1's for now.
453 rval |= TWSIC0_CLKDIV;
454 cafe_reg_write(cam, REG_TWSIC0, rval);
455 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
456 rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
457 cafe_reg_write(cam, REG_TWSIC1, rval);
458 spin_unlock_irqrestore(&cam->dev_lock, flags);
460 wait_event_timeout(cam->smbus_wait,
461 cafe_smbus_read_done(cam), CAFE_SMBUS_TIMEOUT);
462 spin_lock_irqsave(&cam->dev_lock, flags);
463 rval = cafe_reg_read(cam, REG_TWSIC1);
464 spin_unlock_irqrestore(&cam->dev_lock, flags);
466 if (rval & TWSIC1_ERROR) {
467 cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
468 return -EIO;
470 if (! (rval & TWSIC1_RVALID)) {
471 cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
472 command);
473 return -EIO;
475 *value = rval & 0xff;
476 return 0;
480 * Perform a transfer over SMBUS. This thing is called under
481 * the i2c bus lock, so we shouldn't race with ourselves...
483 static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
484 unsigned short flags, char rw, u8 command,
485 int size, union i2c_smbus_data *data)
487 struct v4l2_device *v4l2_dev = i2c_get_adapdata(adapter);
488 struct cafe_camera *cam = to_cam(v4l2_dev);
489 int ret = -EINVAL;
492 * This interface would appear to only do byte data ops. OK
493 * it can do word too, but the cam chip has no use for that.
495 if (size != I2C_SMBUS_BYTE_DATA) {
496 cam_err(cam, "funky xfer size %d\n", size);
497 return -EINVAL;
500 if (rw == I2C_SMBUS_WRITE)
501 ret = cafe_smbus_write_data(cam, addr, command, data->byte);
502 else if (rw == I2C_SMBUS_READ)
503 ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
504 return ret;
508 static void cafe_smbus_enable_irq(struct cafe_camera *cam)
510 unsigned long flags;
512 spin_lock_irqsave(&cam->dev_lock, flags);
513 cafe_reg_set_bit(cam, REG_IRQMASK, TWSIIRQS);
514 spin_unlock_irqrestore(&cam->dev_lock, flags);
517 static u32 cafe_smbus_func(struct i2c_adapter *adapter)
519 return I2C_FUNC_SMBUS_READ_BYTE_DATA |
520 I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
523 static struct i2c_algorithm cafe_smbus_algo = {
524 .smbus_xfer = cafe_smbus_xfer,
525 .functionality = cafe_smbus_func
528 /* Somebody is on the bus */
529 static void cafe_ctlr_stop_dma(struct cafe_camera *cam);
530 static void cafe_ctlr_power_down(struct cafe_camera *cam);
532 static int cafe_smbus_setup(struct cafe_camera *cam)
534 struct i2c_adapter *adap = &cam->i2c_adapter;
535 int ret;
537 cafe_smbus_enable_irq(cam);
538 adap->owner = THIS_MODULE;
539 adap->algo = &cafe_smbus_algo;
540 strcpy(adap->name, "cafe_ccic");
541 adap->dev.parent = &cam->pdev->dev;
542 i2c_set_adapdata(adap, &cam->v4l2_dev);
543 ret = i2c_add_adapter(adap);
544 if (ret)
545 printk(KERN_ERR "Unable to register cafe i2c adapter\n");
546 return ret;
549 static void cafe_smbus_shutdown(struct cafe_camera *cam)
551 i2c_del_adapter(&cam->i2c_adapter);
555 /* ------------------------------------------------------------------- */
557 * Deal with the controller.
561 * Do everything we think we need to have the interface operating
562 * according to the desired format.
564 static void cafe_ctlr_dma(struct cafe_camera *cam)
567 * Store the first two Y buffers (we aren't supporting
568 * planar formats for now, so no UV bufs). Then either
569 * set the third if it exists, or tell the controller
570 * to just use two.
572 cafe_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
573 cafe_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
574 if (cam->nbufs > 2) {
575 cafe_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
576 cafe_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
578 else
579 cafe_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
580 cafe_reg_write(cam, REG_UBAR, 0); /* 32 bits only for now */
583 static void cafe_ctlr_image(struct cafe_camera *cam)
585 int imgsz;
586 struct v4l2_pix_format *fmt = &cam->pix_format;
588 imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
589 (fmt->bytesperline & IMGSZ_H_MASK);
590 cafe_reg_write(cam, REG_IMGSIZE, imgsz);
591 cafe_reg_write(cam, REG_IMGOFFSET, 0);
592 /* YPITCH just drops the last two bits */
593 cafe_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
594 IMGP_YP_MASK);
596 * Tell the controller about the image format we are using.
598 switch (cam->pix_format.pixelformat) {
599 case V4L2_PIX_FMT_YUYV:
600 cafe_reg_write_mask(cam, REG_CTRL0,
601 C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
602 C0_DF_MASK);
603 break;
605 case V4L2_PIX_FMT_RGB444:
606 cafe_reg_write_mask(cam, REG_CTRL0,
607 C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
608 C0_DF_MASK);
609 /* Alpha value? */
610 break;
612 case V4L2_PIX_FMT_RGB565:
613 cafe_reg_write_mask(cam, REG_CTRL0,
614 C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
615 C0_DF_MASK);
616 break;
618 default:
619 cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
620 break;
623 * Make sure it knows we want to use hsync/vsync.
625 cafe_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
626 C0_SIFM_MASK);
631 * Configure the controller for operation; caller holds the
632 * device mutex.
634 static int cafe_ctlr_configure(struct cafe_camera *cam)
636 unsigned long flags;
638 spin_lock_irqsave(&cam->dev_lock, flags);
639 cafe_ctlr_dma(cam);
640 cafe_ctlr_image(cam);
641 cafe_set_config_needed(cam, 0);
642 spin_unlock_irqrestore(&cam->dev_lock, flags);
643 return 0;
646 static void cafe_ctlr_irq_enable(struct cafe_camera *cam)
649 * Clear any pending interrupts, since we do not
650 * expect to have I/O active prior to enabling.
652 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
653 cafe_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
656 static void cafe_ctlr_irq_disable(struct cafe_camera *cam)
658 cafe_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
662 * Make the controller start grabbing images. Everything must
663 * be set up before doing this.
665 static void cafe_ctlr_start(struct cafe_camera *cam)
667 /* set_bit performs a read, so no other barrier should be
668 needed here */
669 cafe_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
672 static void cafe_ctlr_stop(struct cafe_camera *cam)
674 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
677 static void cafe_ctlr_init(struct cafe_camera *cam)
679 unsigned long flags;
681 spin_lock_irqsave(&cam->dev_lock, flags);
683 * Added magic to bring up the hardware on the B-Test board
685 cafe_reg_write(cam, 0x3038, 0x8);
686 cafe_reg_write(cam, 0x315c, 0x80008);
688 * Go through the dance needed to wake the device up.
689 * Note that these registers are global and shared
690 * with the NAND and SD devices. Interaction between the
691 * three still needs to be examined.
693 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
694 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
695 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
697 * Here we must wait a bit for the controller to come around.
699 spin_unlock_irqrestore(&cam->dev_lock, flags);
700 msleep(5);
701 spin_lock_irqsave(&cam->dev_lock, flags);
703 cafe_reg_write(cam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
704 cafe_reg_set_bit(cam, REG_GL_IMASK, GIMSK_CCIC_EN);
706 * Make sure it's not powered down.
708 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
710 * Turn off the enable bit. It sure should be off anyway,
711 * but it's good to be sure.
713 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
715 * Mask all interrupts.
717 cafe_reg_write(cam, REG_IRQMASK, 0);
719 * Clock the sensor appropriately. Controller clock should
720 * be 48MHz, sensor "typical" value is half that.
722 cafe_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
723 spin_unlock_irqrestore(&cam->dev_lock, flags);
728 * Stop the controller, and don't return until we're really sure that no
729 * further DMA is going on.
731 static void cafe_ctlr_stop_dma(struct cafe_camera *cam)
733 unsigned long flags;
736 * Theory: stop the camera controller (whether it is operating
737 * or not). Delay briefly just in case we race with the SOF
738 * interrupt, then wait until no DMA is active.
740 spin_lock_irqsave(&cam->dev_lock, flags);
741 cafe_ctlr_stop(cam);
742 spin_unlock_irqrestore(&cam->dev_lock, flags);
743 mdelay(1);
744 wait_event_timeout(cam->iowait,
745 !test_bit(CF_DMA_ACTIVE, &cam->flags), HZ);
746 if (test_bit(CF_DMA_ACTIVE, &cam->flags))
747 cam_err(cam, "Timeout waiting for DMA to end\n");
748 /* This would be bad news - what now? */
749 spin_lock_irqsave(&cam->dev_lock, flags);
750 cam->state = S_IDLE;
751 cafe_ctlr_irq_disable(cam);
752 spin_unlock_irqrestore(&cam->dev_lock, flags);
756 * Power up and down.
758 static void cafe_ctlr_power_up(struct cafe_camera *cam)
760 unsigned long flags;
762 spin_lock_irqsave(&cam->dev_lock, flags);
763 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
765 * Part one of the sensor dance: turn the global
766 * GPIO signal on.
768 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
769 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
771 * Put the sensor into operational mode (assumes OLPC-style
772 * wiring). Control 0 is reset - set to 1 to operate.
773 * Control 1 is power down, set to 0 to operate.
775 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
776 /* mdelay(1); */ /* Marvell says 1ms will do it */
777 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
778 /* mdelay(1); */ /* Enough? */
779 spin_unlock_irqrestore(&cam->dev_lock, flags);
780 msleep(5); /* Just to be sure */
783 static void cafe_ctlr_power_down(struct cafe_camera *cam)
785 unsigned long flags;
787 spin_lock_irqsave(&cam->dev_lock, flags);
788 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
789 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
790 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT);
791 cafe_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
792 spin_unlock_irqrestore(&cam->dev_lock, flags);
795 /* -------------------------------------------------------------------- */
797 * Communications with the sensor.
800 static int __cafe_cam_reset(struct cafe_camera *cam)
802 return sensor_call(cam, core, reset, 0);
806 * We have found the sensor on the i2c. Let's try to have a
807 * conversation.
809 static int cafe_cam_init(struct cafe_camera *cam)
811 struct v4l2_dbg_chip_ident chip;
812 int ret;
814 mutex_lock(&cam->s_mutex);
815 if (cam->state != S_NOTREADY)
816 cam_warn(cam, "Cam init with device in funky state %d",
817 cam->state);
818 ret = __cafe_cam_reset(cam);
819 if (ret)
820 goto out;
821 chip.ident = V4L2_IDENT_NONE;
822 chip.match.type = V4L2_CHIP_MATCH_I2C_ADDR;
823 chip.match.addr = cam->sensor_addr;
824 ret = sensor_call(cam, core, g_chip_ident, &chip);
825 if (ret)
826 goto out;
827 cam->sensor_type = chip.ident;
828 if (cam->sensor_type != V4L2_IDENT_OV7670) {
829 cam_err(cam, "Unsupported sensor type 0x%x", cam->sensor_type);
830 ret = -EINVAL;
831 goto out;
833 /* Get/set parameters? */
834 ret = 0;
835 cam->state = S_IDLE;
836 out:
837 cafe_ctlr_power_down(cam);
838 mutex_unlock(&cam->s_mutex);
839 return ret;
843 * Configure the sensor to match the parameters we have. Caller should
844 * hold s_mutex
846 static int cafe_cam_set_flip(struct cafe_camera *cam)
848 struct v4l2_control ctrl;
850 memset(&ctrl, 0, sizeof(ctrl));
851 ctrl.id = V4L2_CID_VFLIP;
852 ctrl.value = flip;
853 return sensor_call(cam, core, s_ctrl, &ctrl);
857 static int cafe_cam_configure(struct cafe_camera *cam)
859 struct v4l2_mbus_framefmt mbus_fmt;
860 int ret;
862 v4l2_fill_mbus_format(&mbus_fmt, &cam->pix_format, cam->mbus_code);
863 ret = sensor_call(cam, core, init, 0);
864 if (ret == 0)
865 ret = sensor_call(cam, video, s_mbus_fmt, &mbus_fmt);
867 * OV7670 does weird things if flip is set *before* format...
869 ret += cafe_cam_set_flip(cam);
870 return ret;
873 /* -------------------------------------------------------------------- */
875 * DMA buffer management. These functions need s_mutex held.
878 /* FIXME: this is inefficient as hell, since dma_alloc_coherent just
879 * does a get_free_pages() call, and we waste a good chunk of an orderN
880 * allocation. Should try to allocate the whole set in one chunk.
882 static int cafe_alloc_dma_bufs(struct cafe_camera *cam, int loadtime)
884 int i;
886 cafe_set_config_needed(cam, 1);
887 if (loadtime)
888 cam->dma_buf_size = dma_buf_size;
889 else
890 cam->dma_buf_size = cam->pix_format.sizeimage;
891 if (n_dma_bufs > 3)
892 n_dma_bufs = 3;
894 cam->nbufs = 0;
895 for (i = 0; i < n_dma_bufs; i++) {
896 cam->dma_bufs[i] = dma_alloc_coherent(&cam->pdev->dev,
897 cam->dma_buf_size, cam->dma_handles + i,
898 GFP_KERNEL);
899 if (cam->dma_bufs[i] == NULL) {
900 cam_warn(cam, "Failed to allocate DMA buffer\n");
901 break;
903 /* For debug, remove eventually */
904 memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size);
905 (cam->nbufs)++;
908 switch (cam->nbufs) {
909 case 1:
910 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
911 cam->dma_bufs[0], cam->dma_handles[0]);
912 cam->nbufs = 0;
913 case 0:
914 cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
915 return -ENOMEM;
917 case 2:
918 if (n_dma_bufs > 2)
919 cam_warn(cam, "Will limp along with only 2 buffers\n");
920 break;
922 return 0;
925 static void cafe_free_dma_bufs(struct cafe_camera *cam)
927 int i;
929 for (i = 0; i < cam->nbufs; i++) {
930 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
931 cam->dma_bufs[i], cam->dma_handles[i]);
932 cam->dma_bufs[i] = NULL;
934 cam->nbufs = 0;
941 /* ----------------------------------------------------------------------- */
943 * Here starts the V4L2 interface code.
947 * Read an image from the device.
949 static ssize_t cafe_deliver_buffer(struct cafe_camera *cam,
950 char __user *buffer, size_t len, loff_t *pos)
952 int bufno;
953 unsigned long flags;
955 spin_lock_irqsave(&cam->dev_lock, flags);
956 if (cam->next_buf < 0) {
957 cam_err(cam, "deliver_buffer: No next buffer\n");
958 spin_unlock_irqrestore(&cam->dev_lock, flags);
959 return -EIO;
961 bufno = cam->next_buf;
962 clear_bit(bufno, &cam->flags);
963 if (++(cam->next_buf) >= cam->nbufs)
964 cam->next_buf = 0;
965 if (! test_bit(cam->next_buf, &cam->flags))
966 cam->next_buf = -1;
967 cam->specframes = 0;
968 spin_unlock_irqrestore(&cam->dev_lock, flags);
970 if (len > cam->pix_format.sizeimage)
971 len = cam->pix_format.sizeimage;
972 if (copy_to_user(buffer, cam->dma_bufs[bufno], len))
973 return -EFAULT;
974 (*pos) += len;
975 return len;
979 * Get everything ready, and start grabbing frames.
981 static int cafe_read_setup(struct cafe_camera *cam, enum cafe_state state)
983 int ret;
984 unsigned long flags;
987 * Configuration. If we still don't have DMA buffers,
988 * make one last, desperate attempt.
990 if (cam->nbufs == 0)
991 if (cafe_alloc_dma_bufs(cam, 0))
992 return -ENOMEM;
994 if (cafe_needs_config(cam)) {
995 cafe_cam_configure(cam);
996 ret = cafe_ctlr_configure(cam);
997 if (ret)
998 return ret;
1002 * Turn it loose.
1004 spin_lock_irqsave(&cam->dev_lock, flags);
1005 cafe_reset_buffers(cam);
1006 cafe_ctlr_irq_enable(cam);
1007 cam->state = state;
1008 cafe_ctlr_start(cam);
1009 spin_unlock_irqrestore(&cam->dev_lock, flags);
1010 return 0;
1014 static ssize_t cafe_v4l_read(struct file *filp,
1015 char __user *buffer, size_t len, loff_t *pos)
1017 struct cafe_camera *cam = filp->private_data;
1018 int ret = 0;
1021 * Perhaps we're in speculative read mode and already
1022 * have data?
1024 mutex_lock(&cam->s_mutex);
1025 if (cam->state == S_SPECREAD) {
1026 if (cam->next_buf >= 0) {
1027 ret = cafe_deliver_buffer(cam, buffer, len, pos);
1028 if (ret != 0)
1029 goto out_unlock;
1031 } else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) {
1032 ret = -EIO;
1033 goto out_unlock;
1034 } else if (cam->state != S_IDLE) {
1035 ret = -EBUSY;
1036 goto out_unlock;
1040 * v4l2: multiple processes can open the device, but only
1041 * one gets to grab data from it.
1043 if (cam->owner && cam->owner != filp) {
1044 ret = -EBUSY;
1045 goto out_unlock;
1047 cam->owner = filp;
1050 * Do setup if need be.
1052 if (cam->state != S_SPECREAD) {
1053 ret = cafe_read_setup(cam, S_SINGLEREAD);
1054 if (ret)
1055 goto out_unlock;
1058 * Wait for something to happen. This should probably
1059 * be interruptible (FIXME).
1061 wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ);
1062 if (cam->next_buf < 0) {
1063 cam_err(cam, "read() operation timed out\n");
1064 cafe_ctlr_stop_dma(cam);
1065 ret = -EIO;
1066 goto out_unlock;
1069 * Give them their data and we should be done.
1071 ret = cafe_deliver_buffer(cam, buffer, len, pos);
1073 out_unlock:
1074 mutex_unlock(&cam->s_mutex);
1075 return ret;
1086 * Streaming I/O support.
1091 static int cafe_vidioc_streamon(struct file *filp, void *priv,
1092 enum v4l2_buf_type type)
1094 struct cafe_camera *cam = filp->private_data;
1095 int ret = -EINVAL;
1097 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1098 goto out;
1099 mutex_lock(&cam->s_mutex);
1100 if (cam->state != S_IDLE || cam->n_sbufs == 0)
1101 goto out_unlock;
1103 cam->sequence = 0;
1104 ret = cafe_read_setup(cam, S_STREAMING);
1106 out_unlock:
1107 mutex_unlock(&cam->s_mutex);
1108 out:
1109 return ret;
1113 static int cafe_vidioc_streamoff(struct file *filp, void *priv,
1114 enum v4l2_buf_type type)
1116 struct cafe_camera *cam = filp->private_data;
1117 int ret = -EINVAL;
1119 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1120 goto out;
1121 mutex_lock(&cam->s_mutex);
1122 if (cam->state != S_STREAMING)
1123 goto out_unlock;
1125 cafe_ctlr_stop_dma(cam);
1126 ret = 0;
1128 out_unlock:
1129 mutex_unlock(&cam->s_mutex);
1130 out:
1131 return ret;
1136 static int cafe_setup_siobuf(struct cafe_camera *cam, int index)
1138 struct cafe_sio_buffer *buf = cam->sb_bufs + index;
1140 INIT_LIST_HEAD(&buf->list);
1141 buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage);
1142 buf->buffer = vmalloc_user(buf->v4lbuf.length);
1143 if (buf->buffer == NULL)
1144 return -ENOMEM;
1145 buf->mapcount = 0;
1146 buf->cam = cam;
1148 buf->v4lbuf.index = index;
1149 buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1150 buf->v4lbuf.field = V4L2_FIELD_NONE;
1151 buf->v4lbuf.memory = V4L2_MEMORY_MMAP;
1153 * Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg
1154 * just uses the length times the index, but the spec warns
1155 * against doing just that - vma merging problems. So we
1156 * leave a gap between each pair of buffers.
1158 buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length;
1159 return 0;
1162 static int cafe_free_sio_buffers(struct cafe_camera *cam)
1164 int i;
1167 * If any buffers are mapped, we cannot free them at all.
1169 for (i = 0; i < cam->n_sbufs; i++)
1170 if (cam->sb_bufs[i].mapcount > 0)
1171 return -EBUSY;
1173 * OK, let's do it.
1175 for (i = 0; i < cam->n_sbufs; i++)
1176 vfree(cam->sb_bufs[i].buffer);
1177 cam->n_sbufs = 0;
1178 kfree(cam->sb_bufs);
1179 cam->sb_bufs = NULL;
1180 INIT_LIST_HEAD(&cam->sb_avail);
1181 INIT_LIST_HEAD(&cam->sb_full);
1182 return 0;
1187 static int cafe_vidioc_reqbufs(struct file *filp, void *priv,
1188 struct v4l2_requestbuffers *req)
1190 struct cafe_camera *cam = filp->private_data;
1191 int ret = 0; /* Silence warning */
1194 * Make sure it's something we can do. User pointers could be
1195 * implemented without great pain, but that's not been done yet.
1197 if (req->memory != V4L2_MEMORY_MMAP)
1198 return -EINVAL;
1200 * If they ask for zero buffers, they really want us to stop streaming
1201 * (if it's happening) and free everything. Should we check owner?
1203 mutex_lock(&cam->s_mutex);
1204 if (req->count == 0) {
1205 if (cam->state == S_STREAMING)
1206 cafe_ctlr_stop_dma(cam);
1207 ret = cafe_free_sio_buffers (cam);
1208 goto out;
1211 * Device needs to be idle and working. We *could* try to do the
1212 * right thing in S_SPECREAD by shutting things down, but it
1213 * probably doesn't matter.
1215 if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) {
1216 ret = -EBUSY;
1217 goto out;
1219 cam->owner = filp;
1221 if (req->count < min_buffers)
1222 req->count = min_buffers;
1223 else if (req->count > max_buffers)
1224 req->count = max_buffers;
1225 if (cam->n_sbufs > 0) {
1226 ret = cafe_free_sio_buffers(cam);
1227 if (ret)
1228 goto out;
1231 cam->sb_bufs = kzalloc(req->count*sizeof(struct cafe_sio_buffer),
1232 GFP_KERNEL);
1233 if (cam->sb_bufs == NULL) {
1234 ret = -ENOMEM;
1235 goto out;
1237 for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) {
1238 ret = cafe_setup_siobuf(cam, cam->n_sbufs);
1239 if (ret)
1240 break;
1243 if (cam->n_sbufs == 0) /* no luck at all - ret already set */
1244 kfree(cam->sb_bufs);
1245 req->count = cam->n_sbufs; /* In case of partial success */
1247 out:
1248 mutex_unlock(&cam->s_mutex);
1249 return ret;
1253 static int cafe_vidioc_querybuf(struct file *filp, void *priv,
1254 struct v4l2_buffer *buf)
1256 struct cafe_camera *cam = filp->private_data;
1257 int ret = -EINVAL;
1259 mutex_lock(&cam->s_mutex);
1260 if (buf->index >= cam->n_sbufs)
1261 goto out;
1262 *buf = cam->sb_bufs[buf->index].v4lbuf;
1263 ret = 0;
1264 out:
1265 mutex_unlock(&cam->s_mutex);
1266 return ret;
1269 static int cafe_vidioc_qbuf(struct file *filp, void *priv,
1270 struct v4l2_buffer *buf)
1272 struct cafe_camera *cam = filp->private_data;
1273 struct cafe_sio_buffer *sbuf;
1274 int ret = -EINVAL;
1275 unsigned long flags;
1277 mutex_lock(&cam->s_mutex);
1278 if (buf->index >= cam->n_sbufs)
1279 goto out;
1280 sbuf = cam->sb_bufs + buf->index;
1281 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) {
1282 ret = 0; /* Already queued?? */
1283 goto out;
1285 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) {
1286 /* Spec doesn't say anything, seems appropriate tho */
1287 ret = -EBUSY;
1288 goto out;
1290 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED;
1291 spin_lock_irqsave(&cam->dev_lock, flags);
1292 list_add(&sbuf->list, &cam->sb_avail);
1293 spin_unlock_irqrestore(&cam->dev_lock, flags);
1294 ret = 0;
1295 out:
1296 mutex_unlock(&cam->s_mutex);
1297 return ret;
1300 static int cafe_vidioc_dqbuf(struct file *filp, void *priv,
1301 struct v4l2_buffer *buf)
1303 struct cafe_camera *cam = filp->private_data;
1304 struct cafe_sio_buffer *sbuf;
1305 int ret = -EINVAL;
1306 unsigned long flags;
1308 mutex_lock(&cam->s_mutex);
1309 if (cam->state != S_STREAMING)
1310 goto out_unlock;
1311 if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) {
1312 ret = -EAGAIN;
1313 goto out_unlock;
1316 while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) {
1317 mutex_unlock(&cam->s_mutex);
1318 if (wait_event_interruptible(cam->iowait,
1319 !list_empty(&cam->sb_full))) {
1320 ret = -ERESTARTSYS;
1321 goto out;
1323 mutex_lock(&cam->s_mutex);
1326 if (cam->state != S_STREAMING)
1327 ret = -EINTR;
1328 else {
1329 spin_lock_irqsave(&cam->dev_lock, flags);
1330 /* Should probably recheck !list_empty() here */
1331 sbuf = list_entry(cam->sb_full.next,
1332 struct cafe_sio_buffer, list);
1333 list_del_init(&sbuf->list);
1334 spin_unlock_irqrestore(&cam->dev_lock, flags);
1335 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE;
1336 *buf = sbuf->v4lbuf;
1337 ret = 0;
1340 out_unlock:
1341 mutex_unlock(&cam->s_mutex);
1342 out:
1343 return ret;
1348 static void cafe_v4l_vm_open(struct vm_area_struct *vma)
1350 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1352 * Locking: done under mmap_sem, so we don't need to
1353 * go back to the camera lock here.
1355 sbuf->mapcount++;
1359 static void cafe_v4l_vm_close(struct vm_area_struct *vma)
1361 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1363 mutex_lock(&sbuf->cam->s_mutex);
1364 sbuf->mapcount--;
1365 /* Docs say we should stop I/O too... */
1366 if (sbuf->mapcount == 0)
1367 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED;
1368 mutex_unlock(&sbuf->cam->s_mutex);
1371 static const struct vm_operations_struct cafe_v4l_vm_ops = {
1372 .open = cafe_v4l_vm_open,
1373 .close = cafe_v4l_vm_close
1377 static int cafe_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
1379 struct cafe_camera *cam = filp->private_data;
1380 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1381 int ret = -EINVAL;
1382 int i;
1383 struct cafe_sio_buffer *sbuf = NULL;
1385 if (! (vma->vm_flags & VM_WRITE) || ! (vma->vm_flags & VM_SHARED))
1386 return -EINVAL;
1388 * Find the buffer they are looking for.
1390 mutex_lock(&cam->s_mutex);
1391 for (i = 0; i < cam->n_sbufs; i++)
1392 if (cam->sb_bufs[i].v4lbuf.m.offset == offset) {
1393 sbuf = cam->sb_bufs + i;
1394 break;
1396 if (sbuf == NULL)
1397 goto out;
1399 ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
1400 if (ret)
1401 goto out;
1402 vma->vm_flags |= VM_DONTEXPAND;
1403 vma->vm_private_data = sbuf;
1404 vma->vm_ops = &cafe_v4l_vm_ops;
1405 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED;
1406 cafe_v4l_vm_open(vma);
1407 ret = 0;
1408 out:
1409 mutex_unlock(&cam->s_mutex);
1410 return ret;
1415 static int cafe_v4l_open(struct file *filp)
1417 struct cafe_camera *cam = video_drvdata(filp);
1419 filp->private_data = cam;
1421 mutex_lock(&cam->s_mutex);
1422 if (cam->users == 0) {
1423 cafe_ctlr_power_up(cam);
1424 __cafe_cam_reset(cam);
1425 cafe_set_config_needed(cam, 1);
1426 /* FIXME make sure this is complete */
1428 (cam->users)++;
1429 mutex_unlock(&cam->s_mutex);
1430 return 0;
1434 static int cafe_v4l_release(struct file *filp)
1436 struct cafe_camera *cam = filp->private_data;
1438 mutex_lock(&cam->s_mutex);
1439 (cam->users)--;
1440 if (filp == cam->owner) {
1441 cafe_ctlr_stop_dma(cam);
1442 cafe_free_sio_buffers(cam);
1443 cam->owner = NULL;
1445 if (cam->users == 0) {
1446 cafe_ctlr_power_down(cam);
1447 if (alloc_bufs_at_read)
1448 cafe_free_dma_bufs(cam);
1450 mutex_unlock(&cam->s_mutex);
1451 return 0;
1456 static unsigned int cafe_v4l_poll(struct file *filp,
1457 struct poll_table_struct *pt)
1459 struct cafe_camera *cam = filp->private_data;
1461 poll_wait(filp, &cam->iowait, pt);
1462 if (cam->next_buf >= 0)
1463 return POLLIN | POLLRDNORM;
1464 return 0;
1469 static int cafe_vidioc_queryctrl(struct file *filp, void *priv,
1470 struct v4l2_queryctrl *qc)
1472 struct cafe_camera *cam = priv;
1473 int ret;
1475 mutex_lock(&cam->s_mutex);
1476 ret = sensor_call(cam, core, queryctrl, qc);
1477 mutex_unlock(&cam->s_mutex);
1478 return ret;
1482 static int cafe_vidioc_g_ctrl(struct file *filp, void *priv,
1483 struct v4l2_control *ctrl)
1485 struct cafe_camera *cam = priv;
1486 int ret;
1488 mutex_lock(&cam->s_mutex);
1489 ret = sensor_call(cam, core, g_ctrl, ctrl);
1490 mutex_unlock(&cam->s_mutex);
1491 return ret;
1495 static int cafe_vidioc_s_ctrl(struct file *filp, void *priv,
1496 struct v4l2_control *ctrl)
1498 struct cafe_camera *cam = priv;
1499 int ret;
1501 mutex_lock(&cam->s_mutex);
1502 ret = sensor_call(cam, core, s_ctrl, ctrl);
1503 mutex_unlock(&cam->s_mutex);
1504 return ret;
1511 static int cafe_vidioc_querycap(struct file *file, void *priv,
1512 struct v4l2_capability *cap)
1514 strcpy(cap->driver, "cafe_ccic");
1515 strcpy(cap->card, "cafe_ccic");
1516 cap->version = CAFE_VERSION;
1517 cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
1518 V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
1519 return 0;
1524 * The default format we use until somebody says otherwise.
1526 static const struct v4l2_pix_format cafe_def_pix_format = {
1527 .width = VGA_WIDTH,
1528 .height = VGA_HEIGHT,
1529 .pixelformat = V4L2_PIX_FMT_YUYV,
1530 .field = V4L2_FIELD_NONE,
1531 .bytesperline = VGA_WIDTH*2,
1532 .sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
1535 static const enum v4l2_mbus_pixelcode cafe_def_mbus_code =
1536 V4L2_MBUS_FMT_YUYV8_2X8;
1538 static int cafe_vidioc_enum_fmt_vid_cap(struct file *filp,
1539 void *priv, struct v4l2_fmtdesc *fmt)
1541 if (fmt->index >= N_CAFE_FMTS)
1542 return -EINVAL;
1543 strlcpy(fmt->description, cafe_formats[fmt->index].desc,
1544 sizeof(fmt->description));
1545 fmt->pixelformat = cafe_formats[fmt->index].pixelformat;
1546 return 0;
1549 static int cafe_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1550 struct v4l2_format *fmt)
1552 struct cafe_camera *cam = priv;
1553 struct cafe_format_struct *f;
1554 struct v4l2_pix_format *pix = &fmt->fmt.pix;
1555 struct v4l2_mbus_framefmt mbus_fmt;
1556 int ret;
1558 f = cafe_find_format(pix->pixelformat);
1559 pix->pixelformat = f->pixelformat;
1560 v4l2_fill_mbus_format(&mbus_fmt, pix, f->mbus_code);
1561 mutex_lock(&cam->s_mutex);
1562 ret = sensor_call(cam, video, try_mbus_fmt, &mbus_fmt);
1563 mutex_unlock(&cam->s_mutex);
1564 v4l2_fill_pix_format(pix, &mbus_fmt);
1565 pix->bytesperline = pix->width * f->bpp;
1566 pix->sizeimage = pix->height * pix->bytesperline;
1567 return ret;
1570 static int cafe_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1571 struct v4l2_format *fmt)
1573 struct cafe_camera *cam = priv;
1574 struct cafe_format_struct *f;
1575 int ret;
1578 * Can't do anything if the device is not idle
1579 * Also can't if there are streaming buffers in place.
1581 if (cam->state != S_IDLE || cam->n_sbufs > 0)
1582 return -EBUSY;
1584 f = cafe_find_format(fmt->fmt.pix.pixelformat);
1587 * See if the formatting works in principle.
1589 ret = cafe_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1590 if (ret)
1591 return ret;
1593 * Now we start to change things for real, so let's do it
1594 * under lock.
1596 mutex_lock(&cam->s_mutex);
1597 cam->pix_format = fmt->fmt.pix;
1598 cam->mbus_code = f->mbus_code;
1601 * Make sure we have appropriate DMA buffers.
1603 ret = -ENOMEM;
1604 if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
1605 cafe_free_dma_bufs(cam);
1606 if (cam->nbufs == 0) {
1607 if (cafe_alloc_dma_bufs(cam, 0))
1608 goto out;
1611 * It looks like this might work, so let's program the sensor.
1613 ret = cafe_cam_configure(cam);
1614 if (! ret)
1615 ret = cafe_ctlr_configure(cam);
1616 out:
1617 mutex_unlock(&cam->s_mutex);
1618 return ret;
1622 * Return our stored notion of how the camera is/should be configured.
1623 * The V4l2 spec wants us to be smarter, and actually get this from
1624 * the camera (and not mess with it at open time). Someday.
1626 static int cafe_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1627 struct v4l2_format *f)
1629 struct cafe_camera *cam = priv;
1631 f->fmt.pix = cam->pix_format;
1632 return 0;
1636 * We only have one input - the sensor - so minimize the nonsense here.
1638 static int cafe_vidioc_enum_input(struct file *filp, void *priv,
1639 struct v4l2_input *input)
1641 if (input->index != 0)
1642 return -EINVAL;
1644 input->type = V4L2_INPUT_TYPE_CAMERA;
1645 input->std = V4L2_STD_ALL; /* Not sure what should go here */
1646 strcpy(input->name, "Camera");
1647 return 0;
1650 static int cafe_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1652 *i = 0;
1653 return 0;
1656 static int cafe_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1658 if (i != 0)
1659 return -EINVAL;
1660 return 0;
1663 /* from vivi.c */
1664 static int cafe_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
1666 return 0;
1670 * G/S_PARM. Most of this is done by the sensor, but we are
1671 * the level which controls the number of read buffers.
1673 static int cafe_vidioc_g_parm(struct file *filp, void *priv,
1674 struct v4l2_streamparm *parms)
1676 struct cafe_camera *cam = priv;
1677 int ret;
1679 mutex_lock(&cam->s_mutex);
1680 ret = sensor_call(cam, video, g_parm, parms);
1681 mutex_unlock(&cam->s_mutex);
1682 parms->parm.capture.readbuffers = n_dma_bufs;
1683 return ret;
1686 static int cafe_vidioc_s_parm(struct file *filp, void *priv,
1687 struct v4l2_streamparm *parms)
1689 struct cafe_camera *cam = priv;
1690 int ret;
1692 mutex_lock(&cam->s_mutex);
1693 ret = sensor_call(cam, video, s_parm, parms);
1694 mutex_unlock(&cam->s_mutex);
1695 parms->parm.capture.readbuffers = n_dma_bufs;
1696 return ret;
1699 static int cafe_vidioc_g_chip_ident(struct file *file, void *priv,
1700 struct v4l2_dbg_chip_ident *chip)
1702 struct cafe_camera *cam = priv;
1704 chip->ident = V4L2_IDENT_NONE;
1705 chip->revision = 0;
1706 if (v4l2_chip_match_host(&chip->match)) {
1707 chip->ident = V4L2_IDENT_CAFE;
1708 return 0;
1710 return sensor_call(cam, core, g_chip_ident, chip);
1713 static int cafe_vidioc_enum_framesizes(struct file *filp, void *priv,
1714 struct v4l2_frmsizeenum *sizes)
1716 struct cafe_camera *cam = priv;
1717 int ret;
1719 mutex_lock(&cam->s_mutex);
1720 ret = sensor_call(cam, video, enum_framesizes, sizes);
1721 mutex_unlock(&cam->s_mutex);
1722 return ret;
1725 static int cafe_vidioc_enum_frameintervals(struct file *filp, void *priv,
1726 struct v4l2_frmivalenum *interval)
1728 struct cafe_camera *cam = priv;
1729 int ret;
1731 mutex_lock(&cam->s_mutex);
1732 ret = sensor_call(cam, video, enum_frameintervals, interval);
1733 mutex_unlock(&cam->s_mutex);
1734 return ret;
1737 #ifdef CONFIG_VIDEO_ADV_DEBUG
1738 static int cafe_vidioc_g_register(struct file *file, void *priv,
1739 struct v4l2_dbg_register *reg)
1741 struct cafe_camera *cam = priv;
1743 if (v4l2_chip_match_host(&reg->match)) {
1744 reg->val = cafe_reg_read(cam, reg->reg);
1745 reg->size = 4;
1746 return 0;
1748 return sensor_call(cam, core, g_register, reg);
1751 static int cafe_vidioc_s_register(struct file *file, void *priv,
1752 struct v4l2_dbg_register *reg)
1754 struct cafe_camera *cam = priv;
1756 if (v4l2_chip_match_host(&reg->match)) {
1757 cafe_reg_write(cam, reg->reg, reg->val);
1758 return 0;
1760 return sensor_call(cam, core, s_register, reg);
1762 #endif
1765 * This template device holds all of those v4l2 methods; we
1766 * clone it for specific real devices.
1769 static const struct v4l2_file_operations cafe_v4l_fops = {
1770 .owner = THIS_MODULE,
1771 .open = cafe_v4l_open,
1772 .release = cafe_v4l_release,
1773 .read = cafe_v4l_read,
1774 .poll = cafe_v4l_poll,
1775 .mmap = cafe_v4l_mmap,
1776 .unlocked_ioctl = video_ioctl2,
1779 static const struct v4l2_ioctl_ops cafe_v4l_ioctl_ops = {
1780 .vidioc_querycap = cafe_vidioc_querycap,
1781 .vidioc_enum_fmt_vid_cap = cafe_vidioc_enum_fmt_vid_cap,
1782 .vidioc_try_fmt_vid_cap = cafe_vidioc_try_fmt_vid_cap,
1783 .vidioc_s_fmt_vid_cap = cafe_vidioc_s_fmt_vid_cap,
1784 .vidioc_g_fmt_vid_cap = cafe_vidioc_g_fmt_vid_cap,
1785 .vidioc_enum_input = cafe_vidioc_enum_input,
1786 .vidioc_g_input = cafe_vidioc_g_input,
1787 .vidioc_s_input = cafe_vidioc_s_input,
1788 .vidioc_s_std = cafe_vidioc_s_std,
1789 .vidioc_reqbufs = cafe_vidioc_reqbufs,
1790 .vidioc_querybuf = cafe_vidioc_querybuf,
1791 .vidioc_qbuf = cafe_vidioc_qbuf,
1792 .vidioc_dqbuf = cafe_vidioc_dqbuf,
1793 .vidioc_streamon = cafe_vidioc_streamon,
1794 .vidioc_streamoff = cafe_vidioc_streamoff,
1795 .vidioc_queryctrl = cafe_vidioc_queryctrl,
1796 .vidioc_g_ctrl = cafe_vidioc_g_ctrl,
1797 .vidioc_s_ctrl = cafe_vidioc_s_ctrl,
1798 .vidioc_g_parm = cafe_vidioc_g_parm,
1799 .vidioc_s_parm = cafe_vidioc_s_parm,
1800 .vidioc_enum_framesizes = cafe_vidioc_enum_framesizes,
1801 .vidioc_enum_frameintervals = cafe_vidioc_enum_frameintervals,
1802 .vidioc_g_chip_ident = cafe_vidioc_g_chip_ident,
1803 #ifdef CONFIG_VIDEO_ADV_DEBUG
1804 .vidioc_g_register = cafe_vidioc_g_register,
1805 .vidioc_s_register = cafe_vidioc_s_register,
1806 #endif
1809 static struct video_device cafe_v4l_template = {
1810 .name = "cafe",
1811 .tvnorms = V4L2_STD_NTSC_M,
1812 .current_norm = V4L2_STD_NTSC_M, /* make mplayer happy */
1814 .fops = &cafe_v4l_fops,
1815 .ioctl_ops = &cafe_v4l_ioctl_ops,
1816 .release = video_device_release_empty,
1820 /* ---------------------------------------------------------------------- */
1822 * Interrupt handler stuff
1827 static void cafe_frame_tasklet(unsigned long data)
1829 struct cafe_camera *cam = (struct cafe_camera *) data;
1830 int i;
1831 unsigned long flags;
1832 struct cafe_sio_buffer *sbuf;
1834 spin_lock_irqsave(&cam->dev_lock, flags);
1835 for (i = 0; i < cam->nbufs; i++) {
1836 int bufno = cam->next_buf;
1837 if (bufno < 0) { /* "will never happen" */
1838 cam_err(cam, "No valid bufs in tasklet!\n");
1839 break;
1841 if (++(cam->next_buf) >= cam->nbufs)
1842 cam->next_buf = 0;
1843 if (! test_bit(bufno, &cam->flags))
1844 continue;
1845 if (list_empty(&cam->sb_avail))
1846 break; /* Leave it valid, hope for better later */
1847 clear_bit(bufno, &cam->flags);
1848 sbuf = list_entry(cam->sb_avail.next,
1849 struct cafe_sio_buffer, list);
1851 * Drop the lock during the big copy. This *should* be safe...
1853 spin_unlock_irqrestore(&cam->dev_lock, flags);
1854 memcpy(sbuf->buffer, cam->dma_bufs[bufno],
1855 cam->pix_format.sizeimage);
1856 sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage;
1857 sbuf->v4lbuf.sequence = cam->buf_seq[bufno];
1858 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED;
1859 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE;
1860 spin_lock_irqsave(&cam->dev_lock, flags);
1861 list_move_tail(&sbuf->list, &cam->sb_full);
1863 if (! list_empty(&cam->sb_full))
1864 wake_up(&cam->iowait);
1865 spin_unlock_irqrestore(&cam->dev_lock, flags);
1870 static void cafe_frame_complete(struct cafe_camera *cam, int frame)
1873 * Basic frame housekeeping.
1875 if (test_bit(frame, &cam->flags) && printk_ratelimit())
1876 cam_err(cam, "Frame overrun on %d, frames lost\n", frame);
1877 set_bit(frame, &cam->flags);
1878 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1879 if (cam->next_buf < 0)
1880 cam->next_buf = frame;
1881 cam->buf_seq[frame] = ++(cam->sequence);
1883 switch (cam->state) {
1885 * If in single read mode, try going speculative.
1887 case S_SINGLEREAD:
1888 cam->state = S_SPECREAD;
1889 cam->specframes = 0;
1890 wake_up(&cam->iowait);
1891 break;
1894 * If we are already doing speculative reads, and nobody is
1895 * reading them, just stop.
1897 case S_SPECREAD:
1898 if (++(cam->specframes) >= cam->nbufs) {
1899 cafe_ctlr_stop(cam);
1900 cafe_ctlr_irq_disable(cam);
1901 cam->state = S_IDLE;
1903 wake_up(&cam->iowait);
1904 break;
1906 * For the streaming case, we defer the real work to the
1907 * camera tasklet.
1909 * FIXME: if the application is not consuming the buffers,
1910 * we should eventually put things on hold and restart in
1911 * vidioc_dqbuf().
1913 case S_STREAMING:
1914 tasklet_schedule(&cam->s_tasklet);
1915 break;
1917 default:
1918 cam_err(cam, "Frame interrupt in non-operational state\n");
1919 break;
1926 static void cafe_frame_irq(struct cafe_camera *cam, unsigned int irqs)
1928 unsigned int frame;
1930 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1932 * Handle any frame completions. There really should
1933 * not be more than one of these, or we have fallen
1934 * far behind.
1936 for (frame = 0; frame < cam->nbufs; frame++)
1937 if (irqs & (IRQ_EOF0 << frame))
1938 cafe_frame_complete(cam, frame);
1940 * If a frame starts, note that we have DMA active. This
1941 * code assumes that we won't get multiple frame interrupts
1942 * at once; may want to rethink that.
1944 if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2))
1945 set_bit(CF_DMA_ACTIVE, &cam->flags);
1950 static irqreturn_t cafe_irq(int irq, void *data)
1952 struct cafe_camera *cam = data;
1953 unsigned int irqs;
1955 spin_lock(&cam->dev_lock);
1956 irqs = cafe_reg_read(cam, REG_IRQSTAT);
1957 if ((irqs & ALLIRQS) == 0) {
1958 spin_unlock(&cam->dev_lock);
1959 return IRQ_NONE;
1961 if (irqs & FRAMEIRQS)
1962 cafe_frame_irq(cam, irqs);
1963 if (irqs & TWSIIRQS) {
1964 cafe_reg_write(cam, REG_IRQSTAT, TWSIIRQS);
1965 wake_up(&cam->smbus_wait);
1967 spin_unlock(&cam->dev_lock);
1968 return IRQ_HANDLED;
1972 /* -------------------------------------------------------------------------- */
1974 * PCI interface stuff.
1977 static const struct dmi_system_id olpc_xo1_dmi[] = {
1979 .matches = {
1980 DMI_MATCH(DMI_SYS_VENDOR, "OLPC"),
1981 DMI_MATCH(DMI_PRODUCT_NAME, "XO"),
1982 DMI_MATCH(DMI_PRODUCT_VERSION, "1"),
1988 static int cafe_pci_probe(struct pci_dev *pdev,
1989 const struct pci_device_id *id)
1991 int ret;
1992 struct cafe_camera *cam;
1993 struct ov7670_config sensor_cfg = {
1994 /* This controller only does SMBUS */
1995 .use_smbus = true,
1998 * Exclude QCIF mode, because it only captures a tiny portion
1999 * of the sensor FOV
2001 .min_width = 320,
2002 .min_height = 240,
2004 struct i2c_board_info ov7670_info = {
2005 .type = "ov7670",
2006 .addr = 0x42,
2007 .platform_data = &sensor_cfg,
2011 * Start putting together one of our big camera structures.
2013 ret = -ENOMEM;
2014 cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
2015 if (cam == NULL)
2016 goto out;
2017 ret = v4l2_device_register(&pdev->dev, &cam->v4l2_dev);
2018 if (ret)
2019 goto out_free;
2021 mutex_init(&cam->s_mutex);
2022 spin_lock_init(&cam->dev_lock);
2023 cam->state = S_NOTREADY;
2024 cafe_set_config_needed(cam, 1);
2025 init_waitqueue_head(&cam->smbus_wait);
2026 init_waitqueue_head(&cam->iowait);
2027 cam->pdev = pdev;
2028 cam->pix_format = cafe_def_pix_format;
2029 cam->mbus_code = cafe_def_mbus_code;
2030 INIT_LIST_HEAD(&cam->dev_list);
2031 INIT_LIST_HEAD(&cam->sb_avail);
2032 INIT_LIST_HEAD(&cam->sb_full);
2033 tasklet_init(&cam->s_tasklet, cafe_frame_tasklet, (unsigned long) cam);
2035 * Get set up on the PCI bus.
2037 ret = pci_enable_device(pdev);
2038 if (ret)
2039 goto out_unreg;
2040 pci_set_master(pdev);
2042 ret = -EIO;
2043 cam->regs = pci_iomap(pdev, 0, 0);
2044 if (! cam->regs) {
2045 printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
2046 goto out_unreg;
2048 ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
2049 if (ret)
2050 goto out_iounmap;
2052 * Initialize the controller and leave it powered up. It will
2053 * stay that way until the sensor driver shows up.
2055 cafe_ctlr_init(cam);
2056 cafe_ctlr_power_up(cam);
2058 * Set up I2C/SMBUS communications. We have to drop the mutex here
2059 * because the sensor could attach in this call chain, leading to
2060 * unsightly deadlocks.
2062 ret = cafe_smbus_setup(cam);
2063 if (ret)
2064 goto out_freeirq;
2066 /* Apply XO-1 clock speed */
2067 if (dmi_check_system(olpc_xo1_dmi))
2068 sensor_cfg.clock_speed = 45;
2070 cam->sensor_addr = ov7670_info.addr;
2071 cam->sensor = v4l2_i2c_new_subdev_board(&cam->v4l2_dev, &cam->i2c_adapter,
2072 &ov7670_info, NULL);
2073 if (cam->sensor == NULL) {
2074 ret = -ENODEV;
2075 goto out_smbus;
2078 ret = cafe_cam_init(cam);
2079 if (ret)
2080 goto out_smbus;
2083 * Get the v4l2 setup done.
2085 mutex_lock(&cam->s_mutex);
2086 cam->vdev = cafe_v4l_template;
2087 cam->vdev.debug = 0;
2088 /* cam->vdev.debug = V4L2_DEBUG_IOCTL_ARG;*/
2089 cam->vdev.v4l2_dev = &cam->v4l2_dev;
2090 ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
2091 if (ret)
2092 goto out_unlock;
2093 video_set_drvdata(&cam->vdev, cam);
2096 * If so requested, try to get our DMA buffers now.
2098 if (!alloc_bufs_at_read) {
2099 if (cafe_alloc_dma_bufs(cam, 1))
2100 cam_warn(cam, "Unable to alloc DMA buffers at load"
2101 " will try again later.");
2104 mutex_unlock(&cam->s_mutex);
2105 return 0;
2107 out_unlock:
2108 mutex_unlock(&cam->s_mutex);
2109 out_smbus:
2110 cafe_smbus_shutdown(cam);
2111 out_freeirq:
2112 cafe_ctlr_power_down(cam);
2113 free_irq(pdev->irq, cam);
2114 out_iounmap:
2115 pci_iounmap(pdev, cam->regs);
2116 out_free:
2117 v4l2_device_unregister(&cam->v4l2_dev);
2118 out_unreg:
2119 kfree(cam);
2120 out:
2121 return ret;
2126 * Shut down an initialized device
2128 static void cafe_shutdown(struct cafe_camera *cam)
2130 /* FIXME: Make sure we take care of everything here */
2131 if (cam->n_sbufs > 0)
2132 /* What if they are still mapped? Shouldn't be, but... */
2133 cafe_free_sio_buffers(cam);
2134 cafe_ctlr_stop_dma(cam);
2135 cafe_ctlr_power_down(cam);
2136 cafe_smbus_shutdown(cam);
2137 cafe_free_dma_bufs(cam);
2138 free_irq(cam->pdev->irq, cam);
2139 pci_iounmap(cam->pdev, cam->regs);
2140 video_unregister_device(&cam->vdev);
2144 static void cafe_pci_remove(struct pci_dev *pdev)
2146 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2147 struct cafe_camera *cam = to_cam(v4l2_dev);
2149 if (cam == NULL) {
2150 printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
2151 return;
2153 mutex_lock(&cam->s_mutex);
2154 if (cam->users > 0)
2155 cam_warn(cam, "Removing a device with users!\n");
2156 cafe_shutdown(cam);
2157 v4l2_device_unregister(&cam->v4l2_dev);
2158 kfree(cam);
2159 /* No unlock - it no longer exists */
2163 #ifdef CONFIG_PM
2165 * Basic power management.
2167 static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2169 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2170 struct cafe_camera *cam = to_cam(v4l2_dev);
2171 int ret;
2172 enum cafe_state cstate;
2174 ret = pci_save_state(pdev);
2175 if (ret)
2176 return ret;
2177 cstate = cam->state; /* HACK - stop_dma sets to idle */
2178 cafe_ctlr_stop_dma(cam);
2179 cafe_ctlr_power_down(cam);
2180 pci_disable_device(pdev);
2181 cam->state = cstate;
2182 return 0;
2186 static int cafe_pci_resume(struct pci_dev *pdev)
2188 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2189 struct cafe_camera *cam = to_cam(v4l2_dev);
2190 int ret = 0;
2192 pci_restore_state(pdev);
2193 ret = pci_enable_device(pdev);
2195 if (ret) {
2196 cam_warn(cam, "Unable to re-enable device on resume!\n");
2197 return ret;
2199 cafe_ctlr_init(cam);
2201 mutex_lock(&cam->s_mutex);
2202 if (cam->users > 0) {
2203 cafe_ctlr_power_up(cam);
2204 __cafe_cam_reset(cam);
2205 } else {
2206 cafe_ctlr_power_down(cam);
2208 mutex_unlock(&cam->s_mutex);
2210 set_bit(CF_CONFIG_NEEDED, &cam->flags);
2211 if (cam->state == S_SPECREAD)
2212 cam->state = S_IDLE; /* Don't bother restarting */
2213 else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING)
2214 ret = cafe_read_setup(cam, cam->state);
2215 return ret;
2218 #endif /* CONFIG_PM */
2221 static struct pci_device_id cafe_ids[] = {
2222 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL,
2223 PCI_DEVICE_ID_MARVELL_88ALP01_CCIC) },
2224 { 0, }
2227 MODULE_DEVICE_TABLE(pci, cafe_ids);
2229 static struct pci_driver cafe_pci_driver = {
2230 .name = "cafe1000-ccic",
2231 .id_table = cafe_ids,
2232 .probe = cafe_pci_probe,
2233 .remove = cafe_pci_remove,
2234 #ifdef CONFIG_PM
2235 .suspend = cafe_pci_suspend,
2236 .resume = cafe_pci_resume,
2237 #endif
2243 static int __init cafe_init(void)
2245 int ret;
2247 printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
2248 CAFE_VERSION);
2249 ret = pci_register_driver(&cafe_pci_driver);
2250 if (ret) {
2251 printk(KERN_ERR "Unable to register cafe_ccic driver\n");
2252 goto out;
2254 ret = 0;
2256 out:
2257 return ret;
2261 static void __exit cafe_exit(void)
2263 pci_unregister_driver(&cafe_pci_driver);
2266 module_init(cafe_init);
2267 module_exit(cafe_exit);