Merge branch 'v6v7' into devel
[linux/fpc-iii.git] / drivers / media / video / gspca / ov519.c
blob8ab2c452c25effdba21d956e494bbe6b7ea3ff39
1 /**
2 * OV519 driver
4 * Copyright (C) 2008 Jean-Francois Moine (http://moinejf.free.fr)
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
10 * Original copyright for the ov511 driver is:
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
19 * ov51x-jpeg original copyright is:
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * any later version.
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 #define MODULE_NAME "ov519"
41 #include <linux/input.h>
42 #include "gspca.h"
44 /* The jpeg_hdr is used by w996Xcf only */
45 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
46 #define CONEX_CAM
47 #include "jpeg.h"
49 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
50 MODULE_DESCRIPTION("OV519 USB Camera Driver");
51 MODULE_LICENSE("GPL");
53 /* global parameters */
54 static int frame_rate;
56 /* Number of times to retry a failed I2C transaction. Increase this if you
57 * are getting "Failed to read sensor ID..." */
58 static int i2c_detect_tries = 10;
60 /* controls */
61 enum e_ctrl {
62 BRIGHTNESS,
63 CONTRAST,
64 COLORS,
65 HFLIP,
66 VFLIP,
67 AUTOBRIGHT,
68 FREQ,
69 NCTRL /* number of controls */
72 /* ov519 device descriptor */
73 struct sd {
74 struct gspca_dev gspca_dev; /* !! must be the first item */
76 struct gspca_ctrl ctrls[NCTRL];
78 u8 packet_nr;
80 char bridge;
81 #define BRIDGE_OV511 0
82 #define BRIDGE_OV511PLUS 1
83 #define BRIDGE_OV518 2
84 #define BRIDGE_OV518PLUS 3
85 #define BRIDGE_OV519 4 /* = ov530 */
86 #define BRIDGE_OVFX2 5
87 #define BRIDGE_W9968CF 6
88 #define BRIDGE_MASK 7
90 char invert_led;
91 #define BRIDGE_INVERT_LED 8
93 char snapshot_pressed;
94 char snapshot_needs_reset;
96 /* Determined by sensor type */
97 u8 sif;
99 u8 quality;
100 #define QUALITY_MIN 50
101 #define QUALITY_MAX 70
102 #define QUALITY_DEF 50
104 u8 stopped; /* Streaming is temporarily paused */
105 u8 first_frame;
107 u8 frame_rate; /* current Framerate */
108 u8 clockdiv; /* clockdiv override */
110 s8 sensor; /* Type of image sensor chip (SEN_*) */
112 u8 sensor_addr;
113 u16 sensor_width;
114 u16 sensor_height;
115 s16 sensor_reg_cache[256];
117 u8 jpeg_hdr[JPEG_HDR_SZ];
119 enum sensors {
120 SEN_OV2610,
121 SEN_OV3610,
122 SEN_OV6620,
123 SEN_OV6630,
124 SEN_OV66308AF,
125 SEN_OV7610,
126 SEN_OV7620,
127 SEN_OV7620AE,
128 SEN_OV7640,
129 SEN_OV7648,
130 SEN_OV7660,
131 SEN_OV7670,
132 SEN_OV76BE,
133 SEN_OV8610,
136 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
137 the ov sensors which is already present here. When we have the time we
138 really should move the sensor drivers to v4l2 sub drivers. */
139 #include "w996Xcf.c"
141 /* V4L2 controls supported by the driver */
142 static void setbrightness(struct gspca_dev *gspca_dev);
143 static void setcontrast(struct gspca_dev *gspca_dev);
144 static void setcolors(struct gspca_dev *gspca_dev);
145 static void sethvflip(struct gspca_dev *gspca_dev);
146 static void setautobright(struct gspca_dev *gspca_dev);
147 static void setfreq(struct gspca_dev *gspca_dev);
148 static void setfreq_i(struct sd *sd);
150 static const struct ctrl sd_ctrls[] = {
151 [BRIGHTNESS] = {
153 .id = V4L2_CID_BRIGHTNESS,
154 .type = V4L2_CTRL_TYPE_INTEGER,
155 .name = "Brightness",
156 .minimum = 0,
157 .maximum = 255,
158 .step = 1,
159 .default_value = 127,
161 .set_control = setbrightness,
163 [CONTRAST] = {
165 .id = V4L2_CID_CONTRAST,
166 .type = V4L2_CTRL_TYPE_INTEGER,
167 .name = "Contrast",
168 .minimum = 0,
169 .maximum = 255,
170 .step = 1,
171 .default_value = 127,
173 .set_control = setcontrast,
175 [COLORS] = {
177 .id = V4L2_CID_SATURATION,
178 .type = V4L2_CTRL_TYPE_INTEGER,
179 .name = "Color",
180 .minimum = 0,
181 .maximum = 255,
182 .step = 1,
183 .default_value = 127,
185 .set_control = setcolors,
187 /* The flip controls work for sensors ov7660 and ov7670 only */
188 [HFLIP] = {
190 .id = V4L2_CID_HFLIP,
191 .type = V4L2_CTRL_TYPE_BOOLEAN,
192 .name = "Mirror",
193 .minimum = 0,
194 .maximum = 1,
195 .step = 1,
196 .default_value = 0,
198 .set_control = sethvflip,
200 [VFLIP] = {
202 .id = V4L2_CID_VFLIP,
203 .type = V4L2_CTRL_TYPE_BOOLEAN,
204 .name = "Vflip",
205 .minimum = 0,
206 .maximum = 1,
207 .step = 1,
208 .default_value = 0,
210 .set_control = sethvflip,
212 [AUTOBRIGHT] = {
214 .id = V4L2_CID_AUTOBRIGHTNESS,
215 .type = V4L2_CTRL_TYPE_BOOLEAN,
216 .name = "Auto Brightness",
217 .minimum = 0,
218 .maximum = 1,
219 .step = 1,
220 .default_value = 1,
222 .set_control = setautobright,
224 [FREQ] = {
226 .id = V4L2_CID_POWER_LINE_FREQUENCY,
227 .type = V4L2_CTRL_TYPE_MENU,
228 .name = "Light frequency filter",
229 .minimum = 0,
230 .maximum = 2, /* 0: no flicker, 1: 50Hz, 2:60Hz, 3: auto */
231 .step = 1,
232 .default_value = 0,
234 .set_control = setfreq,
238 /* table of the disabled controls */
239 static const unsigned ctrl_dis[] = {
240 [SEN_OV2610] = (1 << NCTRL) - 1, /* no control */
242 [SEN_OV3610] = (1 << NCTRL) - 1, /* no control */
244 [SEN_OV6620] = (1 << HFLIP) |
245 (1 << VFLIP),
247 [SEN_OV6630] = (1 << HFLIP) |
248 (1 << VFLIP),
250 [SEN_OV66308AF] = (1 << HFLIP) |
251 (1 << VFLIP),
253 [SEN_OV7610] = (1 << HFLIP) |
254 (1 << VFLIP),
256 [SEN_OV7620] = (1 << HFLIP) |
257 (1 << VFLIP),
259 [SEN_OV7620AE] = (1 << HFLIP) |
260 (1 << VFLIP),
262 [SEN_OV7640] = (1 << HFLIP) |
263 (1 << VFLIP) |
264 (1 << AUTOBRIGHT) |
265 (1 << CONTRAST),
267 [SEN_OV7648] = (1 << HFLIP) |
268 (1 << VFLIP) |
269 (1 << AUTOBRIGHT) |
270 (1 << CONTRAST),
272 [SEN_OV7660] = (1 << AUTOBRIGHT),
274 [SEN_OV7670] = (1 << COLORS) |
275 (1 << AUTOBRIGHT),
277 [SEN_OV76BE] = (1 << HFLIP) |
278 (1 << VFLIP),
280 [SEN_OV8610] = (1 << HFLIP) |
281 (1 << VFLIP) |
282 (1 << FREQ),
285 static const struct v4l2_pix_format ov519_vga_mode[] = {
286 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
287 .bytesperline = 320,
288 .sizeimage = 320 * 240 * 3 / 8 + 590,
289 .colorspace = V4L2_COLORSPACE_JPEG,
290 .priv = 1},
291 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
292 .bytesperline = 640,
293 .sizeimage = 640 * 480 * 3 / 8 + 590,
294 .colorspace = V4L2_COLORSPACE_JPEG,
295 .priv = 0},
297 static const struct v4l2_pix_format ov519_sif_mode[] = {
298 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
299 .bytesperline = 160,
300 .sizeimage = 160 * 120 * 3 / 8 + 590,
301 .colorspace = V4L2_COLORSPACE_JPEG,
302 .priv = 3},
303 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
304 .bytesperline = 176,
305 .sizeimage = 176 * 144 * 3 / 8 + 590,
306 .colorspace = V4L2_COLORSPACE_JPEG,
307 .priv = 1},
308 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
309 .bytesperline = 320,
310 .sizeimage = 320 * 240 * 3 / 8 + 590,
311 .colorspace = V4L2_COLORSPACE_JPEG,
312 .priv = 2},
313 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
314 .bytesperline = 352,
315 .sizeimage = 352 * 288 * 3 / 8 + 590,
316 .colorspace = V4L2_COLORSPACE_JPEG,
317 .priv = 0},
320 /* Note some of the sizeimage values for the ov511 / ov518 may seem
321 larger then necessary, however they need to be this big as the ov511 /
322 ov518 always fills the entire isoc frame, using 0 padding bytes when
323 it doesn't have any data. So with low framerates the amount of data
324 transfered can become quite large (libv4l will remove all the 0 padding
325 in userspace). */
326 static const struct v4l2_pix_format ov518_vga_mode[] = {
327 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
328 .bytesperline = 320,
329 .sizeimage = 320 * 240 * 3,
330 .colorspace = V4L2_COLORSPACE_JPEG,
331 .priv = 1},
332 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
333 .bytesperline = 640,
334 .sizeimage = 640 * 480 * 2,
335 .colorspace = V4L2_COLORSPACE_JPEG,
336 .priv = 0},
338 static const struct v4l2_pix_format ov518_sif_mode[] = {
339 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
340 .bytesperline = 160,
341 .sizeimage = 70000,
342 .colorspace = V4L2_COLORSPACE_JPEG,
343 .priv = 3},
344 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
345 .bytesperline = 176,
346 .sizeimage = 70000,
347 .colorspace = V4L2_COLORSPACE_JPEG,
348 .priv = 1},
349 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
350 .bytesperline = 320,
351 .sizeimage = 320 * 240 * 3,
352 .colorspace = V4L2_COLORSPACE_JPEG,
353 .priv = 2},
354 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
355 .bytesperline = 352,
356 .sizeimage = 352 * 288 * 3,
357 .colorspace = V4L2_COLORSPACE_JPEG,
358 .priv = 0},
361 static const struct v4l2_pix_format ov511_vga_mode[] = {
362 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
363 .bytesperline = 320,
364 .sizeimage = 320 * 240 * 3,
365 .colorspace = V4L2_COLORSPACE_JPEG,
366 .priv = 1},
367 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
368 .bytesperline = 640,
369 .sizeimage = 640 * 480 * 2,
370 .colorspace = V4L2_COLORSPACE_JPEG,
371 .priv = 0},
373 static const struct v4l2_pix_format ov511_sif_mode[] = {
374 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
375 .bytesperline = 160,
376 .sizeimage = 70000,
377 .colorspace = V4L2_COLORSPACE_JPEG,
378 .priv = 3},
379 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
380 .bytesperline = 176,
381 .sizeimage = 70000,
382 .colorspace = V4L2_COLORSPACE_JPEG,
383 .priv = 1},
384 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
385 .bytesperline = 320,
386 .sizeimage = 320 * 240 * 3,
387 .colorspace = V4L2_COLORSPACE_JPEG,
388 .priv = 2},
389 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
390 .bytesperline = 352,
391 .sizeimage = 352 * 288 * 3,
392 .colorspace = V4L2_COLORSPACE_JPEG,
393 .priv = 0},
396 static const struct v4l2_pix_format ovfx2_vga_mode[] = {
397 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
398 .bytesperline = 320,
399 .sizeimage = 320 * 240,
400 .colorspace = V4L2_COLORSPACE_SRGB,
401 .priv = 1},
402 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
403 .bytesperline = 640,
404 .sizeimage = 640 * 480,
405 .colorspace = V4L2_COLORSPACE_SRGB,
406 .priv = 0},
408 static const struct v4l2_pix_format ovfx2_cif_mode[] = {
409 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
410 .bytesperline = 160,
411 .sizeimage = 160 * 120,
412 .colorspace = V4L2_COLORSPACE_SRGB,
413 .priv = 3},
414 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
415 .bytesperline = 176,
416 .sizeimage = 176 * 144,
417 .colorspace = V4L2_COLORSPACE_SRGB,
418 .priv = 1},
419 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
420 .bytesperline = 320,
421 .sizeimage = 320 * 240,
422 .colorspace = V4L2_COLORSPACE_SRGB,
423 .priv = 2},
424 {352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
425 .bytesperline = 352,
426 .sizeimage = 352 * 288,
427 .colorspace = V4L2_COLORSPACE_SRGB,
428 .priv = 0},
430 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
431 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
432 .bytesperline = 1600,
433 .sizeimage = 1600 * 1200,
434 .colorspace = V4L2_COLORSPACE_SRGB},
436 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
437 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
438 .bytesperline = 640,
439 .sizeimage = 640 * 480,
440 .colorspace = V4L2_COLORSPACE_SRGB,
441 .priv = 1},
442 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
443 .bytesperline = 800,
444 .sizeimage = 800 * 600,
445 .colorspace = V4L2_COLORSPACE_SRGB,
446 .priv = 1},
447 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
448 .bytesperline = 1024,
449 .sizeimage = 1024 * 768,
450 .colorspace = V4L2_COLORSPACE_SRGB,
451 .priv = 1},
452 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
453 .bytesperline = 1600,
454 .sizeimage = 1600 * 1200,
455 .colorspace = V4L2_COLORSPACE_SRGB,
456 .priv = 0},
457 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
458 .bytesperline = 2048,
459 .sizeimage = 2048 * 1536,
460 .colorspace = V4L2_COLORSPACE_SRGB,
461 .priv = 0},
464 /* Registers common to OV511 / OV518 */
465 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
466 #define R51x_SYS_RESET 0x50
467 /* Reset type flags */
468 #define OV511_RESET_OMNICE 0x08
469 #define R51x_SYS_INIT 0x53
470 #define R51x_SYS_SNAP 0x52
471 #define R51x_SYS_CUST_ID 0x5f
472 #define R51x_COMP_LUT_BEGIN 0x80
474 /* OV511 Camera interface register numbers */
475 #define R511_CAM_DELAY 0x10
476 #define R511_CAM_EDGE 0x11
477 #define R511_CAM_PXCNT 0x12
478 #define R511_CAM_LNCNT 0x13
479 #define R511_CAM_PXDIV 0x14
480 #define R511_CAM_LNDIV 0x15
481 #define R511_CAM_UV_EN 0x16
482 #define R511_CAM_LINE_MODE 0x17
483 #define R511_CAM_OPTS 0x18
485 #define R511_SNAP_FRAME 0x19
486 #define R511_SNAP_PXCNT 0x1a
487 #define R511_SNAP_LNCNT 0x1b
488 #define R511_SNAP_PXDIV 0x1c
489 #define R511_SNAP_LNDIV 0x1d
490 #define R511_SNAP_UV_EN 0x1e
491 #define R511_SNAP_OPTS 0x1f
493 #define R511_DRAM_FLOW_CTL 0x20
494 #define R511_FIFO_OPTS 0x31
495 #define R511_I2C_CTL 0x40
496 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
497 #define R511_COMP_EN 0x78
498 #define R511_COMP_LUT_EN 0x79
500 /* OV518 Camera interface register numbers */
501 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
502 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
504 /* OV519 Camera interface register numbers */
505 #define OV519_R10_H_SIZE 0x10
506 #define OV519_R11_V_SIZE 0x11
507 #define OV519_R12_X_OFFSETL 0x12
508 #define OV519_R13_X_OFFSETH 0x13
509 #define OV519_R14_Y_OFFSETL 0x14
510 #define OV519_R15_Y_OFFSETH 0x15
511 #define OV519_R16_DIVIDER 0x16
512 #define OV519_R20_DFR 0x20
513 #define OV519_R25_FORMAT 0x25
515 /* OV519 System Controller register numbers */
516 #define OV519_R51_RESET1 0x51
517 #define OV519_R54_EN_CLK1 0x54
518 #define OV519_R57_SNAPSHOT 0x57
520 #define OV519_GPIO_DATA_OUT0 0x71
521 #define OV519_GPIO_IO_CTRL0 0x72
523 /*#define OV511_ENDPOINT_ADDRESS 1 * Isoc endpoint number */
526 * The FX2 chip does not give us a zero length read at end of frame.
527 * It does, however, give a short read at the end of a frame, if
528 * necessary, rather than run two frames together.
530 * By choosing the right bulk transfer size, we are guaranteed to always
531 * get a short read for the last read of each frame. Frame sizes are
532 * always a composite number (width * height, or a multiple) so if we
533 * choose a prime number, we are guaranteed that the last read of a
534 * frame will be short.
536 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
537 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
538 * to figure out why. [PMiller]
540 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
542 * It isn't enough to know the number of bytes per frame, in case we
543 * have data dropouts or buffer overruns (even though the FX2 double
544 * buffers, there are some pretty strict real time constraints for
545 * isochronous transfer for larger frame sizes).
547 #define OVFX2_BULK_SIZE (13 * 4096)
549 /* I2C registers */
550 #define R51x_I2C_W_SID 0x41
551 #define R51x_I2C_SADDR_3 0x42
552 #define R51x_I2C_SADDR_2 0x43
553 #define R51x_I2C_R_SID 0x44
554 #define R51x_I2C_DATA 0x45
555 #define R518_I2C_CTL 0x47 /* OV518(+) only */
556 #define OVFX2_I2C_ADDR 0x00
558 /* I2C ADDRESSES */
559 #define OV7xx0_SID 0x42
560 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
561 #define OV8xx0_SID 0xa0
562 #define OV6xx0_SID 0xc0
564 /* OV7610 registers */
565 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
566 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
567 #define OV7610_REG_RED 0x02 /* red channel balance */
568 #define OV7610_REG_SAT 0x03 /* saturation */
569 #define OV8610_REG_HUE 0x04 /* 04 reserved */
570 #define OV7610_REG_CNT 0x05 /* Y contrast */
571 #define OV7610_REG_BRT 0x06 /* Y brightness */
572 #define OV7610_REG_COM_C 0x14 /* misc common regs */
573 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
574 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
575 #define OV7610_REG_COM_I 0x29 /* misc settings */
577 /* OV7660 and OV7670 registers */
578 #define OV7670_R00_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
579 #define OV7670_R01_BLUE 0x01 /* blue gain */
580 #define OV7670_R02_RED 0x02 /* red gain */
581 #define OV7670_R03_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
582 #define OV7670_R04_COM1 0x04 /* Control 1 */
583 /*#define OV7670_R07_AECHH 0x07 * AEC MS 5 bits */
584 #define OV7670_R0C_COM3 0x0c /* Control 3 */
585 #define OV7670_R0D_COM4 0x0d /* Control 4 */
586 #define OV7670_R0E_COM5 0x0e /* All "reserved" */
587 #define OV7670_R0F_COM6 0x0f /* Control 6 */
588 #define OV7670_R10_AECH 0x10 /* More bits of AEC value */
589 #define OV7670_R11_CLKRC 0x11 /* Clock control */
590 #define OV7670_R12_COM7 0x12 /* Control 7 */
591 #define OV7670_COM7_FMT_VGA 0x00
592 /*#define OV7670_COM7_YUV 0x00 * YUV */
593 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
594 #define OV7670_COM7_FMT_MASK 0x38
595 #define OV7670_COM7_RESET 0x80 /* Register reset */
596 #define OV7670_R13_COM8 0x13 /* Control 8 */
597 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
598 #define OV7670_COM8_AWB 0x02 /* White balance enable */
599 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
600 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
601 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
602 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
603 #define OV7670_R14_COM9 0x14 /* Control 9 - gain ceiling */
604 #define OV7670_R15_COM10 0x15 /* Control 10 */
605 #define OV7670_R17_HSTART 0x17 /* Horiz start high bits */
606 #define OV7670_R18_HSTOP 0x18 /* Horiz stop high bits */
607 #define OV7670_R19_VSTART 0x19 /* Vert start high bits */
608 #define OV7670_R1A_VSTOP 0x1a /* Vert stop high bits */
609 #define OV7670_R1E_MVFP 0x1e /* Mirror / vflip */
610 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
611 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
612 #define OV7670_R24_AEW 0x24 /* AGC upper limit */
613 #define OV7670_R25_AEB 0x25 /* AGC lower limit */
614 #define OV7670_R26_VPT 0x26 /* AGC/AEC fast mode op region */
615 #define OV7670_R32_HREF 0x32 /* HREF pieces */
616 #define OV7670_R3A_TSLB 0x3a /* lots of stuff */
617 #define OV7670_R3B_COM11 0x3b /* Control 11 */
618 #define OV7670_COM11_EXP 0x02
619 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
620 #define OV7670_R3C_COM12 0x3c /* Control 12 */
621 #define OV7670_R3D_COM13 0x3d /* Control 13 */
622 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
623 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
624 #define OV7670_R3E_COM14 0x3e /* Control 14 */
625 #define OV7670_R3F_EDGE 0x3f /* Edge enhancement factor */
626 #define OV7670_R40_COM15 0x40 /* Control 15 */
627 /*#define OV7670_COM15_R00FF 0xc0 * 00 to FF */
628 #define OV7670_R41_COM16 0x41 /* Control 16 */
629 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
630 /* end of ov7660 common registers */
631 #define OV7670_R55_BRIGHT 0x55 /* Brightness */
632 #define OV7670_R56_CONTRAS 0x56 /* Contrast control */
633 #define OV7670_R69_GFIX 0x69 /* Fix gain control */
634 /*#define OV7670_R8C_RGB444 0x8c * RGB 444 control */
635 #define OV7670_R9F_HAECC1 0x9f /* Hist AEC/AGC control 1 */
636 #define OV7670_RA0_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
637 #define OV7670_RA5_BD50MAX 0xa5 /* 50hz banding step limit */
638 #define OV7670_RA6_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
639 #define OV7670_RA7_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
640 #define OV7670_RA8_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
641 #define OV7670_RA9_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
642 #define OV7670_RAA_HAECC7 0xaa /* Hist AEC/AGC control 7 */
643 #define OV7670_RAB_BD60MAX 0xab /* 60hz banding step limit */
645 struct ov_regvals {
646 u8 reg;
647 u8 val;
649 struct ov_i2c_regvals {
650 u8 reg;
651 u8 val;
654 /* Settings for OV2610 camera chip */
655 static const struct ov_i2c_regvals norm_2610[] = {
656 { 0x12, 0x80 }, /* reset */
659 static const struct ov_i2c_regvals norm_3620b[] = {
661 * From the datasheet: "Note that after writing to register COMH
662 * (0x12) to change the sensor mode, registers related to the
663 * sensor’s cropping window will be reset back to their default
664 * values."
666 * "wait 4096 external clock ... to make sure the sensor is
667 * stable and ready to access registers" i.e. 160us at 24MHz
669 { 0x12, 0x80 }, /* COMH reset */
670 { 0x12, 0x00 }, /* QXGA, master */
673 * 11 CLKRC "Clock Rate Control"
674 * [7] internal frequency doublers: on
675 * [6] video port mode: master
676 * [5:0] clock divider: 1
678 { 0x11, 0x80 },
681 * 13 COMI "Common Control I"
682 * = 192 (0xC0) 11000000
683 * COMI[7] "AEC speed selection"
684 * = 1 (0x01) 1....... "Faster AEC correction"
685 * COMI[6] "AEC speed step selection"
686 * = 1 (0x01) .1...... "Big steps, fast"
687 * COMI[5] "Banding filter on off"
688 * = 0 (0x00) ..0..... "Off"
689 * COMI[4] "Banding filter option"
690 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
691 * the PLL is ON"
692 * COMI[3] "Reserved"
693 * = 0 (0x00) ....0...
694 * COMI[2] "AGC auto manual control selection"
695 * = 0 (0x00) .....0.. "Manual"
696 * COMI[1] "AWB auto manual control selection"
697 * = 0 (0x00) ......0. "Manual"
698 * COMI[0] "Exposure control"
699 * = 0 (0x00) .......0 "Manual"
701 { 0x13, 0xc0 },
704 * 09 COMC "Common Control C"
705 * = 8 (0x08) 00001000
706 * COMC[7:5] "Reserved"
707 * = 0 (0x00) 000.....
708 * COMC[4] "Sleep Mode Enable"
709 * = 0 (0x00) ...0.... "Normal mode"
710 * COMC[3:2] "Sensor sampling reset timing selection"
711 * = 2 (0x02) ....10.. "Longer reset time"
712 * COMC[1:0] "Output drive current select"
713 * = 0 (0x00) ......00 "Weakest"
715 { 0x09, 0x08 },
718 * 0C COMD "Common Control D"
719 * = 8 (0x08) 00001000
720 * COMD[7] "Reserved"
721 * = 0 (0x00) 0.......
722 * COMD[6] "Swap MSB and LSB at the output port"
723 * = 0 (0x00) .0...... "False"
724 * COMD[5:3] "Reserved"
725 * = 1 (0x01) ..001...
726 * COMD[2] "Output Average On Off"
727 * = 0 (0x00) .....0.. "Output Normal"
728 * COMD[1] "Sensor precharge voltage selection"
729 * = 0 (0x00) ......0. "Selects internal
730 * reference precharge
731 * voltage"
732 * COMD[0] "Snapshot option"
733 * = 0 (0x00) .......0 "Enable live video output
734 * after snapshot sequence"
736 { 0x0c, 0x08 },
739 * 0D COME "Common Control E"
740 * = 161 (0xA1) 10100001
741 * COME[7] "Output average option"
742 * = 1 (0x01) 1....... "Output average of 4 pixels"
743 * COME[6] "Anti-blooming control"
744 * = 0 (0x00) .0...... "Off"
745 * COME[5:3] "Reserved"
746 * = 4 (0x04) ..100...
747 * COME[2] "Clock output power down pin status"
748 * = 0 (0x00) .....0.. "Tri-state data output pin
749 * on power down"
750 * COME[1] "Data output pin status selection at power down"
751 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
752 * HREF, and CHSYNC pins on
753 * power down"
754 * COME[0] "Auto zero circuit select"
755 * = 1 (0x01) .......1 "On"
757 { 0x0d, 0xa1 },
760 * 0E COMF "Common Control F"
761 * = 112 (0x70) 01110000
762 * COMF[7] "System clock selection"
763 * = 0 (0x00) 0....... "Use 24 MHz system clock"
764 * COMF[6:4] "Reserved"
765 * = 7 (0x07) .111....
766 * COMF[3] "Manual auto negative offset canceling selection"
767 * = 0 (0x00) ....0... "Auto detect negative
768 * offset and cancel it"
769 * COMF[2:0] "Reserved"
770 * = 0 (0x00) .....000
772 { 0x0e, 0x70 },
775 * 0F COMG "Common Control G"
776 * = 66 (0x42) 01000010
777 * COMG[7] "Optical black output selection"
778 * = 0 (0x00) 0....... "Disable"
779 * COMG[6] "Black level calibrate selection"
780 * = 1 (0x01) .1...... "Use optical black pixels
781 * to calibrate"
782 * COMG[5:4] "Reserved"
783 * = 0 (0x00) ..00....
784 * COMG[3] "Channel offset adjustment"
785 * = 0 (0x00) ....0... "Disable offset adjustment"
786 * COMG[2] "ADC black level calibration option"
787 * = 0 (0x00) .....0.. "Use B/G line and G/R
788 * line to calibrate each
789 * channel's black level"
790 * COMG[1] "Reserved"
791 * = 1 (0x01) ......1.
792 * COMG[0] "ADC black level calibration enable"
793 * = 0 (0x00) .......0 "Disable"
795 { 0x0f, 0x42 },
798 * 14 COMJ "Common Control J"
799 * = 198 (0xC6) 11000110
800 * COMJ[7:6] "AGC gain ceiling"
801 * = 3 (0x03) 11...... "8x"
802 * COMJ[5:4] "Reserved"
803 * = 0 (0x00) ..00....
804 * COMJ[3] "Auto banding filter"
805 * = 0 (0x00) ....0... "Banding filter is always
806 * on off depending on
807 * COMI[5] setting"
808 * COMJ[2] "VSYNC drop option"
809 * = 1 (0x01) .....1.. "SYNC is dropped if frame
810 * data is dropped"
811 * COMJ[1] "Frame data drop"
812 * = 1 (0x01) ......1. "Drop frame data if
813 * exposure is not within
814 * tolerance. In AEC mode,
815 * data is normally dropped
816 * when data is out of
817 * range."
818 * COMJ[0] "Reserved"
819 * = 0 (0x00) .......0
821 { 0x14, 0xc6 },
824 * 15 COMK "Common Control K"
825 * = 2 (0x02) 00000010
826 * COMK[7] "CHSYNC pin output swap"
827 * = 0 (0x00) 0....... "CHSYNC"
828 * COMK[6] "HREF pin output swap"
829 * = 0 (0x00) .0...... "HREF"
830 * COMK[5] "PCLK output selection"
831 * = 0 (0x00) ..0..... "PCLK always output"
832 * COMK[4] "PCLK edge selection"
833 * = 0 (0x00) ...0.... "Data valid on falling edge"
834 * COMK[3] "HREF output polarity"
835 * = 0 (0x00) ....0... "positive"
836 * COMK[2] "Reserved"
837 * = 0 (0x00) .....0..
838 * COMK[1] "VSYNC polarity"
839 * = 1 (0x01) ......1. "negative"
840 * COMK[0] "HSYNC polarity"
841 * = 0 (0x00) .......0 "positive"
843 { 0x15, 0x02 },
846 * 33 CHLF "Current Control"
847 * = 9 (0x09) 00001001
848 * CHLF[7:6] "Sensor current control"
849 * = 0 (0x00) 00......
850 * CHLF[5] "Sensor current range control"
851 * = 0 (0x00) ..0..... "normal range"
852 * CHLF[4] "Sensor current"
853 * = 0 (0x00) ...0.... "normal current"
854 * CHLF[3] "Sensor buffer current control"
855 * = 1 (0x01) ....1... "half current"
856 * CHLF[2] "Column buffer current control"
857 * = 0 (0x00) .....0.. "normal current"
858 * CHLF[1] "Analog DSP current control"
859 * = 0 (0x00) ......0. "normal current"
860 * CHLF[1] "ADC current control"
861 * = 0 (0x00) ......0. "normal current"
863 { 0x33, 0x09 },
866 * 34 VBLM "Blooming Control"
867 * = 80 (0x50) 01010000
868 * VBLM[7] "Hard soft reset switch"
869 * = 0 (0x00) 0....... "Hard reset"
870 * VBLM[6:4] "Blooming voltage selection"
871 * = 5 (0x05) .101....
872 * VBLM[3:0] "Sensor current control"
873 * = 0 (0x00) ....0000
875 { 0x34, 0x50 },
878 * 36 VCHG "Sensor Precharge Voltage Control"
879 * = 0 (0x00) 00000000
880 * VCHG[7] "Reserved"
881 * = 0 (0x00) 0.......
882 * VCHG[6:4] "Sensor precharge voltage control"
883 * = 0 (0x00) .000....
884 * VCHG[3:0] "Sensor array common reference"
885 * = 0 (0x00) ....0000
887 { 0x36, 0x00 },
890 * 37 ADC "ADC Reference Control"
891 * = 4 (0x04) 00000100
892 * ADC[7:4] "Reserved"
893 * = 0 (0x00) 0000....
894 * ADC[3] "ADC input signal range"
895 * = 0 (0x00) ....0... "Input signal 1.0x"
896 * ADC[2:0] "ADC range control"
897 * = 4 (0x04) .....100
899 { 0x37, 0x04 },
902 * 38 ACOM "Analog Common Ground"
903 * = 82 (0x52) 01010010
904 * ACOM[7] "Analog gain control"
905 * = 0 (0x00) 0....... "Gain 1x"
906 * ACOM[6] "Analog black level calibration"
907 * = 1 (0x01) .1...... "On"
908 * ACOM[5:0] "Reserved"
909 * = 18 (0x12) ..010010
911 { 0x38, 0x52 },
914 * 3A FREFA "Internal Reference Adjustment"
915 * = 0 (0x00) 00000000
916 * FREFA[7:0] "Range"
917 * = 0 (0x00) 00000000
919 { 0x3a, 0x00 },
922 * 3C FVOPT "Internal Reference Adjustment"
923 * = 31 (0x1F) 00011111
924 * FVOPT[7:0] "Range"
925 * = 31 (0x1F) 00011111
927 { 0x3c, 0x1f },
930 * 44 Undocumented = 0 (0x00) 00000000
931 * 44[7:0] "It's a secret"
932 * = 0 (0x00) 00000000
934 { 0x44, 0x00 },
937 * 40 Undocumented = 0 (0x00) 00000000
938 * 40[7:0] "It's a secret"
939 * = 0 (0x00) 00000000
941 { 0x40, 0x00 },
944 * 41 Undocumented = 0 (0x00) 00000000
945 * 41[7:0] "It's a secret"
946 * = 0 (0x00) 00000000
948 { 0x41, 0x00 },
951 * 42 Undocumented = 0 (0x00) 00000000
952 * 42[7:0] "It's a secret"
953 * = 0 (0x00) 00000000
955 { 0x42, 0x00 },
958 * 43 Undocumented = 0 (0x00) 00000000
959 * 43[7:0] "It's a secret"
960 * = 0 (0x00) 00000000
962 { 0x43, 0x00 },
965 * 45 Undocumented = 128 (0x80) 10000000
966 * 45[7:0] "It's a secret"
967 * = 128 (0x80) 10000000
969 { 0x45, 0x80 },
972 * 48 Undocumented = 192 (0xC0) 11000000
973 * 48[7:0] "It's a secret"
974 * = 192 (0xC0) 11000000
976 { 0x48, 0xc0 },
979 * 49 Undocumented = 25 (0x19) 00011001
980 * 49[7:0] "It's a secret"
981 * = 25 (0x19) 00011001
983 { 0x49, 0x19 },
986 * 4B Undocumented = 128 (0x80) 10000000
987 * 4B[7:0] "It's a secret"
988 * = 128 (0x80) 10000000
990 { 0x4b, 0x80 },
993 * 4D Undocumented = 196 (0xC4) 11000100
994 * 4D[7:0] "It's a secret"
995 * = 196 (0xC4) 11000100
997 { 0x4d, 0xc4 },
1000 * 35 VREF "Reference Voltage Control"
1001 * = 76 (0x4c) 01001100
1002 * VREF[7:5] "Column high reference control"
1003 * = 2 (0x02) 010..... "higher voltage"
1004 * VREF[4:2] "Column low reference control"
1005 * = 3 (0x03) ...011.. "Highest voltage"
1006 * VREF[1:0] "Reserved"
1007 * = 0 (0x00) ......00
1009 { 0x35, 0x4c },
1012 * 3D Undocumented = 0 (0x00) 00000000
1013 * 3D[7:0] "It's a secret"
1014 * = 0 (0x00) 00000000
1016 { 0x3d, 0x00 },
1019 * 3E Undocumented = 0 (0x00) 00000000
1020 * 3E[7:0] "It's a secret"
1021 * = 0 (0x00) 00000000
1023 { 0x3e, 0x00 },
1026 * 3B FREFB "Internal Reference Adjustment"
1027 * = 24 (0x18) 00011000
1028 * FREFB[7:0] "Range"
1029 * = 24 (0x18) 00011000
1031 { 0x3b, 0x18 },
1034 * 33 CHLF "Current Control"
1035 * = 25 (0x19) 00011001
1036 * CHLF[7:6] "Sensor current control"
1037 * = 0 (0x00) 00......
1038 * CHLF[5] "Sensor current range control"
1039 * = 0 (0x00) ..0..... "normal range"
1040 * CHLF[4] "Sensor current"
1041 * = 1 (0x01) ...1.... "double current"
1042 * CHLF[3] "Sensor buffer current control"
1043 * = 1 (0x01) ....1... "half current"
1044 * CHLF[2] "Column buffer current control"
1045 * = 0 (0x00) .....0.. "normal current"
1046 * CHLF[1] "Analog DSP current control"
1047 * = 0 (0x00) ......0. "normal current"
1048 * CHLF[1] "ADC current control"
1049 * = 0 (0x00) ......0. "normal current"
1051 { 0x33, 0x19 },
1054 * 34 VBLM "Blooming Control"
1055 * = 90 (0x5A) 01011010
1056 * VBLM[7] "Hard soft reset switch"
1057 * = 0 (0x00) 0....... "Hard reset"
1058 * VBLM[6:4] "Blooming voltage selection"
1059 * = 5 (0x05) .101....
1060 * VBLM[3:0] "Sensor current control"
1061 * = 10 (0x0A) ....1010
1063 { 0x34, 0x5a },
1066 * 3B FREFB "Internal Reference Adjustment"
1067 * = 0 (0x00) 00000000
1068 * FREFB[7:0] "Range"
1069 * = 0 (0x00) 00000000
1071 { 0x3b, 0x00 },
1074 * 33 CHLF "Current Control"
1075 * = 9 (0x09) 00001001
1076 * CHLF[7:6] "Sensor current control"
1077 * = 0 (0x00) 00......
1078 * CHLF[5] "Sensor current range control"
1079 * = 0 (0x00) ..0..... "normal range"
1080 * CHLF[4] "Sensor current"
1081 * = 0 (0x00) ...0.... "normal current"
1082 * CHLF[3] "Sensor buffer current control"
1083 * = 1 (0x01) ....1... "half current"
1084 * CHLF[2] "Column buffer current control"
1085 * = 0 (0x00) .....0.. "normal current"
1086 * CHLF[1] "Analog DSP current control"
1087 * = 0 (0x00) ......0. "normal current"
1088 * CHLF[1] "ADC current control"
1089 * = 0 (0x00) ......0. "normal current"
1091 { 0x33, 0x09 },
1094 * 34 VBLM "Blooming Control"
1095 * = 80 (0x50) 01010000
1096 * VBLM[7] "Hard soft reset switch"
1097 * = 0 (0x00) 0....... "Hard reset"
1098 * VBLM[6:4] "Blooming voltage selection"
1099 * = 5 (0x05) .101....
1100 * VBLM[3:0] "Sensor current control"
1101 * = 0 (0x00) ....0000
1103 { 0x34, 0x50 },
1106 * 12 COMH "Common Control H"
1107 * = 64 (0x40) 01000000
1108 * COMH[7] "SRST"
1109 * = 0 (0x00) 0....... "No-op"
1110 * COMH[6:4] "Resolution selection"
1111 * = 4 (0x04) .100.... "XGA"
1112 * COMH[3] "Master slave selection"
1113 * = 0 (0x00) ....0... "Master mode"
1114 * COMH[2] "Internal B/R channel option"
1115 * = 0 (0x00) .....0.. "B/R use same channel"
1116 * COMH[1] "Color bar test pattern"
1117 * = 0 (0x00) ......0. "Off"
1118 * COMH[0] "Reserved"
1119 * = 0 (0x00) .......0
1121 { 0x12, 0x40 },
1124 * 17 HREFST "Horizontal window start"
1125 * = 31 (0x1F) 00011111
1126 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1127 * = 31 (0x1F) 00011111
1129 { 0x17, 0x1f },
1132 * 18 HREFEND "Horizontal window end"
1133 * = 95 (0x5F) 01011111
1134 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1135 * = 95 (0x5F) 01011111
1137 { 0x18, 0x5f },
1140 * 19 VSTRT "Vertical window start"
1141 * = 0 (0x00) 00000000
1142 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1143 * = 0 (0x00) 00000000
1145 { 0x19, 0x00 },
1148 * 1A VEND "Vertical window end"
1149 * = 96 (0x60) 01100000
1150 * VEND[7:0] "Vertical Window End, 8 MSBs"
1151 * = 96 (0x60) 01100000
1153 { 0x1a, 0x60 },
1156 * 32 COMM "Common Control M"
1157 * = 18 (0x12) 00010010
1158 * COMM[7:6] "Pixel clock divide option"
1159 * = 0 (0x00) 00...... "/1"
1160 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1161 * = 2 (0x02) ..010...
1162 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1163 * = 2 (0x02) .....010
1165 { 0x32, 0x12 },
1168 * 03 COMA "Common Control A"
1169 * = 74 (0x4A) 01001010
1170 * COMA[7:4] "AWB Update Threshold"
1171 * = 4 (0x04) 0100....
1172 * COMA[3:2] "Vertical window end line control 2 LSBs"
1173 * = 2 (0x02) ....10..
1174 * COMA[1:0] "Vertical window start line control 2 LSBs"
1175 * = 2 (0x02) ......10
1177 { 0x03, 0x4a },
1180 * 11 CLKRC "Clock Rate Control"
1181 * = 128 (0x80) 10000000
1182 * CLKRC[7] "Internal frequency doublers on off seclection"
1183 * = 1 (0x01) 1....... "On"
1184 * CLKRC[6] "Digital video master slave selection"
1185 * = 0 (0x00) .0...... "Master mode, sensor
1186 * provides PCLK"
1187 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1188 * = 0 (0x00) ..000000
1190 { 0x11, 0x80 },
1193 * 12 COMH "Common Control H"
1194 * = 0 (0x00) 00000000
1195 * COMH[7] "SRST"
1196 * = 0 (0x00) 0....... "No-op"
1197 * COMH[6:4] "Resolution selection"
1198 * = 0 (0x00) .000.... "QXGA"
1199 * COMH[3] "Master slave selection"
1200 * = 0 (0x00) ....0... "Master mode"
1201 * COMH[2] "Internal B/R channel option"
1202 * = 0 (0x00) .....0.. "B/R use same channel"
1203 * COMH[1] "Color bar test pattern"
1204 * = 0 (0x00) ......0. "Off"
1205 * COMH[0] "Reserved"
1206 * = 0 (0x00) .......0
1208 { 0x12, 0x00 },
1211 * 12 COMH "Common Control H"
1212 * = 64 (0x40) 01000000
1213 * COMH[7] "SRST"
1214 * = 0 (0x00) 0....... "No-op"
1215 * COMH[6:4] "Resolution selection"
1216 * = 4 (0x04) .100.... "XGA"
1217 * COMH[3] "Master slave selection"
1218 * = 0 (0x00) ....0... "Master mode"
1219 * COMH[2] "Internal B/R channel option"
1220 * = 0 (0x00) .....0.. "B/R use same channel"
1221 * COMH[1] "Color bar test pattern"
1222 * = 0 (0x00) ......0. "Off"
1223 * COMH[0] "Reserved"
1224 * = 0 (0x00) .......0
1226 { 0x12, 0x40 },
1229 * 17 HREFST "Horizontal window start"
1230 * = 31 (0x1F) 00011111
1231 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1232 * = 31 (0x1F) 00011111
1234 { 0x17, 0x1f },
1237 * 18 HREFEND "Horizontal window end"
1238 * = 95 (0x5F) 01011111
1239 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1240 * = 95 (0x5F) 01011111
1242 { 0x18, 0x5f },
1245 * 19 VSTRT "Vertical window start"
1246 * = 0 (0x00) 00000000
1247 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1248 * = 0 (0x00) 00000000
1250 { 0x19, 0x00 },
1253 * 1A VEND "Vertical window end"
1254 * = 96 (0x60) 01100000
1255 * VEND[7:0] "Vertical Window End, 8 MSBs"
1256 * = 96 (0x60) 01100000
1258 { 0x1a, 0x60 },
1261 * 32 COMM "Common Control M"
1262 * = 18 (0x12) 00010010
1263 * COMM[7:6] "Pixel clock divide option"
1264 * = 0 (0x00) 00...... "/1"
1265 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1266 * = 2 (0x02) ..010...
1267 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1268 * = 2 (0x02) .....010
1270 { 0x32, 0x12 },
1273 * 03 COMA "Common Control A"
1274 * = 74 (0x4A) 01001010
1275 * COMA[7:4] "AWB Update Threshold"
1276 * = 4 (0x04) 0100....
1277 * COMA[3:2] "Vertical window end line control 2 LSBs"
1278 * = 2 (0x02) ....10..
1279 * COMA[1:0] "Vertical window start line control 2 LSBs"
1280 * = 2 (0x02) ......10
1282 { 0x03, 0x4a },
1285 * 02 RED "Red Gain Control"
1286 * = 175 (0xAF) 10101111
1287 * RED[7] "Action"
1288 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1289 * RED[6:0] "Value"
1290 * = 47 (0x2F) .0101111
1292 { 0x02, 0xaf },
1295 * 2D ADDVSL "VSYNC Pulse Width"
1296 * = 210 (0xD2) 11010010
1297 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1298 * = 210 (0xD2) 11010010
1300 { 0x2d, 0xd2 },
1303 * 00 GAIN = 24 (0x18) 00011000
1304 * GAIN[7:6] "Reserved"
1305 * = 0 (0x00) 00......
1306 * GAIN[5] "Double"
1307 * = 0 (0x00) ..0..... "False"
1308 * GAIN[4] "Double"
1309 * = 1 (0x01) ...1.... "True"
1310 * GAIN[3:0] "Range"
1311 * = 8 (0x08) ....1000
1313 { 0x00, 0x18 },
1316 * 01 BLUE "Blue Gain Control"
1317 * = 240 (0xF0) 11110000
1318 * BLUE[7] "Action"
1319 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1320 * BLUE[6:0] "Value"
1321 * = 112 (0x70) .1110000
1323 { 0x01, 0xf0 },
1326 * 10 AEC "Automatic Exposure Control"
1327 * = 10 (0x0A) 00001010
1328 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1329 * = 10 (0x0A) 00001010
1331 { 0x10, 0x0a },
1333 { 0xe1, 0x67 },
1334 { 0xe3, 0x03 },
1335 { 0xe4, 0x26 },
1336 { 0xe5, 0x3e },
1337 { 0xf8, 0x01 },
1338 { 0xff, 0x01 },
1341 static const struct ov_i2c_regvals norm_6x20[] = {
1342 { 0x12, 0x80 }, /* reset */
1343 { 0x11, 0x01 },
1344 { 0x03, 0x60 },
1345 { 0x05, 0x7f }, /* For when autoadjust is off */
1346 { 0x07, 0xa8 },
1347 /* The ratio of 0x0c and 0x0d controls the white point */
1348 { 0x0c, 0x24 },
1349 { 0x0d, 0x24 },
1350 { 0x0f, 0x15 }, /* COMS */
1351 { 0x10, 0x75 }, /* AEC Exposure time */
1352 { 0x12, 0x24 }, /* Enable AGC */
1353 { 0x14, 0x04 },
1354 /* 0x16: 0x06 helps frame stability with moving objects */
1355 { 0x16, 0x06 },
1356 /* { 0x20, 0x30 }, * Aperture correction enable */
1357 { 0x26, 0xb2 }, /* BLC enable */
1358 /* 0x28: 0x05 Selects RGB format if RGB on */
1359 { 0x28, 0x05 },
1360 { 0x2a, 0x04 }, /* Disable framerate adjust */
1361 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1362 { 0x2d, 0x85 },
1363 { 0x33, 0xa0 }, /* Color Processing Parameter */
1364 { 0x34, 0xd2 }, /* Max A/D range */
1365 { 0x38, 0x8b },
1366 { 0x39, 0x40 },
1368 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1369 { 0x3c, 0x3c }, /* Change AEC mode */
1370 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1372 { 0x3d, 0x80 },
1373 /* These next two registers (0x4a, 0x4b) are undocumented.
1374 * They control the color balance */
1375 { 0x4a, 0x80 },
1376 { 0x4b, 0x80 },
1377 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1378 { 0x4e, 0xc1 },
1379 { 0x4f, 0x04 },
1380 /* Do 50-53 have any effect? */
1381 /* Toggle 0x12[2] off and on here? */
1384 static const struct ov_i2c_regvals norm_6x30[] = {
1385 { 0x12, 0x80 }, /* Reset */
1386 { 0x00, 0x1f }, /* Gain */
1387 { 0x01, 0x99 }, /* Blue gain */
1388 { 0x02, 0x7c }, /* Red gain */
1389 { 0x03, 0xc0 }, /* Saturation */
1390 { 0x05, 0x0a }, /* Contrast */
1391 { 0x06, 0x95 }, /* Brightness */
1392 { 0x07, 0x2d }, /* Sharpness */
1393 { 0x0c, 0x20 },
1394 { 0x0d, 0x20 },
1395 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1396 { 0x0f, 0x05 },
1397 { 0x10, 0x9a },
1398 { 0x11, 0x00 }, /* Pixel clock = fastest */
1399 { 0x12, 0x24 }, /* Enable AGC and AWB */
1400 { 0x13, 0x21 },
1401 { 0x14, 0x80 },
1402 { 0x15, 0x01 },
1403 { 0x16, 0x03 },
1404 { 0x17, 0x38 },
1405 { 0x18, 0xea },
1406 { 0x19, 0x04 },
1407 { 0x1a, 0x93 },
1408 { 0x1b, 0x00 },
1409 { 0x1e, 0xc4 },
1410 { 0x1f, 0x04 },
1411 { 0x20, 0x20 },
1412 { 0x21, 0x10 },
1413 { 0x22, 0x88 },
1414 { 0x23, 0xc0 }, /* Crystal circuit power level */
1415 { 0x25, 0x9a }, /* Increase AEC black ratio */
1416 { 0x26, 0xb2 }, /* BLC enable */
1417 { 0x27, 0xa2 },
1418 { 0x28, 0x00 },
1419 { 0x29, 0x00 },
1420 { 0x2a, 0x84 }, /* 60 Hz power */
1421 { 0x2b, 0xa8 }, /* 60 Hz power */
1422 { 0x2c, 0xa0 },
1423 { 0x2d, 0x95 }, /* Enable auto-brightness */
1424 { 0x2e, 0x88 },
1425 { 0x33, 0x26 },
1426 { 0x34, 0x03 },
1427 { 0x36, 0x8f },
1428 { 0x37, 0x80 },
1429 { 0x38, 0x83 },
1430 { 0x39, 0x80 },
1431 { 0x3a, 0x0f },
1432 { 0x3b, 0x3c },
1433 { 0x3c, 0x1a },
1434 { 0x3d, 0x80 },
1435 { 0x3e, 0x80 },
1436 { 0x3f, 0x0e },
1437 { 0x40, 0x00 }, /* White bal */
1438 { 0x41, 0x00 }, /* White bal */
1439 { 0x42, 0x80 },
1440 { 0x43, 0x3f }, /* White bal */
1441 { 0x44, 0x80 },
1442 { 0x45, 0x20 },
1443 { 0x46, 0x20 },
1444 { 0x47, 0x80 },
1445 { 0x48, 0x7f },
1446 { 0x49, 0x00 },
1447 { 0x4a, 0x00 },
1448 { 0x4b, 0x80 },
1449 { 0x4c, 0xd0 },
1450 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1451 { 0x4e, 0x40 },
1452 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1453 { 0x50, 0xff },
1454 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1455 { 0x55, 0xff },
1456 { 0x56, 0x12 },
1457 { 0x57, 0x81 },
1458 { 0x58, 0x75 },
1459 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1460 { 0x5a, 0x2c },
1461 { 0x5b, 0x0f }, /* AWB chrominance levels */
1462 { 0x5c, 0x10 },
1463 { 0x3d, 0x80 },
1464 { 0x27, 0xa6 },
1465 { 0x12, 0x20 }, /* Toggle AWB */
1466 { 0x12, 0x24 },
1469 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1471 * Register 0x0f in the 7610 has the following effects:
1473 * 0x85 (AEC method 1): Best overall, good contrast range
1474 * 0x45 (AEC method 2): Very overexposed
1475 * 0xa5 (spec sheet default): Ok, but the black level is
1476 * shifted resulting in loss of contrast
1477 * 0x05 (old driver setting): very overexposed, too much
1478 * contrast
1480 static const struct ov_i2c_regvals norm_7610[] = {
1481 { 0x10, 0xff },
1482 { 0x16, 0x06 },
1483 { 0x28, 0x24 },
1484 { 0x2b, 0xac },
1485 { 0x12, 0x00 },
1486 { 0x38, 0x81 },
1487 { 0x28, 0x24 }, /* 0c */
1488 { 0x0f, 0x85 }, /* lg's setting */
1489 { 0x15, 0x01 },
1490 { 0x20, 0x1c },
1491 { 0x23, 0x2a },
1492 { 0x24, 0x10 },
1493 { 0x25, 0x8a },
1494 { 0x26, 0xa2 },
1495 { 0x27, 0xc2 },
1496 { 0x2a, 0x04 },
1497 { 0x2c, 0xfe },
1498 { 0x2d, 0x93 },
1499 { 0x30, 0x71 },
1500 { 0x31, 0x60 },
1501 { 0x32, 0x26 },
1502 { 0x33, 0x20 },
1503 { 0x34, 0x48 },
1504 { 0x12, 0x24 },
1505 { 0x11, 0x01 },
1506 { 0x0c, 0x24 },
1507 { 0x0d, 0x24 },
1510 static const struct ov_i2c_regvals norm_7620[] = {
1511 { 0x12, 0x80 }, /* reset */
1512 { 0x00, 0x00 }, /* gain */
1513 { 0x01, 0x80 }, /* blue gain */
1514 { 0x02, 0x80 }, /* red gain */
1515 { 0x03, 0xc0 }, /* OV7670_R03_VREF */
1516 { 0x06, 0x60 },
1517 { 0x07, 0x00 },
1518 { 0x0c, 0x24 },
1519 { 0x0c, 0x24 },
1520 { 0x0d, 0x24 },
1521 { 0x11, 0x01 },
1522 { 0x12, 0x24 },
1523 { 0x13, 0x01 },
1524 { 0x14, 0x84 },
1525 { 0x15, 0x01 },
1526 { 0x16, 0x03 },
1527 { 0x17, 0x2f },
1528 { 0x18, 0xcf },
1529 { 0x19, 0x06 },
1530 { 0x1a, 0xf5 },
1531 { 0x1b, 0x00 },
1532 { 0x20, 0x18 },
1533 { 0x21, 0x80 },
1534 { 0x22, 0x80 },
1535 { 0x23, 0x00 },
1536 { 0x26, 0xa2 },
1537 { 0x27, 0xea },
1538 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1539 { 0x29, 0x00 },
1540 { 0x2a, 0x10 },
1541 { 0x2b, 0x00 },
1542 { 0x2c, 0x88 },
1543 { 0x2d, 0x91 },
1544 { 0x2e, 0x80 },
1545 { 0x2f, 0x44 },
1546 { 0x60, 0x27 },
1547 { 0x61, 0x02 },
1548 { 0x62, 0x5f },
1549 { 0x63, 0xd5 },
1550 { 0x64, 0x57 },
1551 { 0x65, 0x83 },
1552 { 0x66, 0x55 },
1553 { 0x67, 0x92 },
1554 { 0x68, 0xcf },
1555 { 0x69, 0x76 },
1556 { 0x6a, 0x22 },
1557 { 0x6b, 0x00 },
1558 { 0x6c, 0x02 },
1559 { 0x6d, 0x44 },
1560 { 0x6e, 0x80 },
1561 { 0x6f, 0x1d },
1562 { 0x70, 0x8b },
1563 { 0x71, 0x00 },
1564 { 0x72, 0x14 },
1565 { 0x73, 0x54 },
1566 { 0x74, 0x00 },
1567 { 0x75, 0x8e },
1568 { 0x76, 0x00 },
1569 { 0x77, 0xff },
1570 { 0x78, 0x80 },
1571 { 0x79, 0x80 },
1572 { 0x7a, 0x80 },
1573 { 0x7b, 0xe2 },
1574 { 0x7c, 0x00 },
1577 /* 7640 and 7648. The defaults should be OK for most registers. */
1578 static const struct ov_i2c_regvals norm_7640[] = {
1579 { 0x12, 0x80 },
1580 { 0x12, 0x14 },
1583 static const struct ov_regvals init_519_ov7660[] = {
1584 { 0x5d, 0x03 }, /* Turn off suspend mode */
1585 { 0x53, 0x9b }, /* 0x9f enables the (unused) microcontroller */
1586 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
1587 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
1588 { 0xa3, 0x18 },
1589 { 0xa4, 0x04 },
1590 { 0xa5, 0x28 },
1591 { 0x37, 0x00 }, /* SetUsbInit */
1592 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
1593 /* Enable both fields, YUV Input, disable defect comp (why?) */
1594 { 0x20, 0x0c }, /* 0x0d does U <-> V swap */
1595 { 0x21, 0x38 },
1596 { 0x22, 0x1d },
1597 { 0x17, 0x50 }, /* undocumented */
1598 { 0x37, 0x00 }, /* undocumented */
1599 { 0x40, 0xff }, /* I2C timeout counter */
1600 { 0x46, 0x00 }, /* I2C clock prescaler */
1602 static const struct ov_i2c_regvals norm_7660[] = {
1603 {OV7670_R12_COM7, OV7670_COM7_RESET},
1604 {OV7670_R11_CLKRC, 0x81},
1605 {0x92, 0x00}, /* DM_LNL */
1606 {0x93, 0x00}, /* DM_LNH */
1607 {0x9d, 0x4c}, /* BD50ST */
1608 {0x9e, 0x3f}, /* BD60ST */
1609 {OV7670_R3B_COM11, 0x02},
1610 {OV7670_R13_COM8, 0xf5},
1611 {OV7670_R10_AECH, 0x00},
1612 {OV7670_R00_GAIN, 0x00},
1613 {OV7670_R01_BLUE, 0x7c},
1614 {OV7670_R02_RED, 0x9d},
1615 {OV7670_R12_COM7, 0x00},
1616 {OV7670_R04_COM1, 00},
1617 {OV7670_R18_HSTOP, 0x01},
1618 {OV7670_R17_HSTART, 0x13},
1619 {OV7670_R32_HREF, 0x92},
1620 {OV7670_R19_VSTART, 0x02},
1621 {OV7670_R1A_VSTOP, 0x7a},
1622 {OV7670_R03_VREF, 0x00},
1623 {OV7670_R0E_COM5, 0x04},
1624 {OV7670_R0F_COM6, 0x62},
1625 {OV7670_R15_COM10, 0x00},
1626 {0x16, 0x02}, /* RSVD */
1627 {0x1b, 0x00}, /* PSHFT */
1628 {OV7670_R1E_MVFP, 0x01},
1629 {0x29, 0x3c}, /* RSVD */
1630 {0x33, 0x00}, /* CHLF */
1631 {0x34, 0x07}, /* ARBLM */
1632 {0x35, 0x84}, /* RSVD */
1633 {0x36, 0x00}, /* RSVD */
1634 {0x37, 0x04}, /* ADC */
1635 {0x39, 0x43}, /* OFON */
1636 {OV7670_R3A_TSLB, 0x00},
1637 {OV7670_R3C_COM12, 0x6c},
1638 {OV7670_R3D_COM13, 0x98},
1639 {OV7670_R3F_EDGE, 0x23},
1640 {OV7670_R40_COM15, 0xc1},
1641 {OV7670_R41_COM16, 0x22},
1642 {0x6b, 0x0a}, /* DBLV */
1643 {0xa1, 0x08}, /* RSVD */
1644 {0x69, 0x80}, /* HV */
1645 {0x43, 0xf0}, /* RSVD.. */
1646 {0x44, 0x10},
1647 {0x45, 0x78},
1648 {0x46, 0xa8},
1649 {0x47, 0x60},
1650 {0x48, 0x80},
1651 {0x59, 0xba},
1652 {0x5a, 0x9a},
1653 {0x5b, 0x22},
1654 {0x5c, 0xb9},
1655 {0x5d, 0x9b},
1656 {0x5e, 0x10},
1657 {0x5f, 0xe0},
1658 {0x60, 0x85},
1659 {0x61, 0x60},
1660 {0x9f, 0x9d}, /* RSVD */
1661 {0xa0, 0xa0}, /* DSPC2 */
1662 {0x4f, 0x60}, /* matrix */
1663 {0x50, 0x64},
1664 {0x51, 0x04},
1665 {0x52, 0x18},
1666 {0x53, 0x3c},
1667 {0x54, 0x54},
1668 {0x55, 0x40},
1669 {0x56, 0x40},
1670 {0x57, 0x40},
1671 {0x58, 0x0d}, /* matrix sign */
1672 {0x8b, 0xcc}, /* RSVD */
1673 {0x8c, 0xcc},
1674 {0x8d, 0xcf},
1675 {0x6c, 0x40}, /* gamma curve */
1676 {0x6d, 0xe0},
1677 {0x6e, 0xa0},
1678 {0x6f, 0x80},
1679 {0x70, 0x70},
1680 {0x71, 0x80},
1681 {0x72, 0x60},
1682 {0x73, 0x60},
1683 {0x74, 0x50},
1684 {0x75, 0x40},
1685 {0x76, 0x38},
1686 {0x77, 0x3c},
1687 {0x78, 0x32},
1688 {0x79, 0x1a},
1689 {0x7a, 0x28},
1690 {0x7b, 0x24},
1691 {0x7c, 0x04}, /* gamma curve */
1692 {0x7d, 0x12},
1693 {0x7e, 0x26},
1694 {0x7f, 0x46},
1695 {0x80, 0x54},
1696 {0x81, 0x64},
1697 {0x82, 0x70},
1698 {0x83, 0x7c},
1699 {0x84, 0x86},
1700 {0x85, 0x8e},
1701 {0x86, 0x9c},
1702 {0x87, 0xab},
1703 {0x88, 0xc4},
1704 {0x89, 0xd1},
1705 {0x8a, 0xe5},
1706 {OV7670_R14_COM9, 0x1e},
1707 {OV7670_R24_AEW, 0x80},
1708 {OV7670_R25_AEB, 0x72},
1709 {OV7670_R26_VPT, 0xb3},
1710 {0x62, 0x80}, /* LCC1 */
1711 {0x63, 0x80}, /* LCC2 */
1712 {0x64, 0x06}, /* LCC3 */
1713 {0x65, 0x00}, /* LCC4 */
1714 {0x66, 0x01}, /* LCC5 */
1715 {0x94, 0x0e}, /* RSVD.. */
1716 {0x95, 0x14},
1717 {OV7670_R13_COM8, OV7670_COM8_FASTAEC
1718 | OV7670_COM8_AECSTEP
1719 | OV7670_COM8_BFILT
1720 | 0x10
1721 | OV7670_COM8_AGC
1722 | OV7670_COM8_AWB
1723 | OV7670_COM8_AEC},
1724 {0xa1, 0xc8}
1727 /* 7670. Defaults taken from OmniVision provided data,
1728 * as provided by Jonathan Corbet of OLPC */
1729 static const struct ov_i2c_regvals norm_7670[] = {
1730 { OV7670_R12_COM7, OV7670_COM7_RESET },
1731 { OV7670_R3A_TSLB, 0x04 }, /* OV */
1732 { OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1733 { OV7670_R11_CLKRC, 0x01 },
1735 * Set the hardware window. These values from OV don't entirely
1736 * make sense - hstop is less than hstart. But they work...
1738 { OV7670_R17_HSTART, 0x13 },
1739 { OV7670_R18_HSTOP, 0x01 },
1740 { OV7670_R32_HREF, 0xb6 },
1741 { OV7670_R19_VSTART, 0x02 },
1742 { OV7670_R1A_VSTOP, 0x7a },
1743 { OV7670_R03_VREF, 0x0a },
1745 { OV7670_R0C_COM3, 0x00 },
1746 { OV7670_R3E_COM14, 0x00 },
1747 /* Mystery scaling numbers */
1748 { 0x70, 0x3a },
1749 { 0x71, 0x35 },
1750 { 0x72, 0x11 },
1751 { 0x73, 0xf0 },
1752 { 0xa2, 0x02 },
1753 /* { OV7670_R15_COM10, 0x0 }, */
1755 /* Gamma curve values */
1756 { 0x7a, 0x20 },
1757 { 0x7b, 0x10 },
1758 { 0x7c, 0x1e },
1759 { 0x7d, 0x35 },
1760 { 0x7e, 0x5a },
1761 { 0x7f, 0x69 },
1762 { 0x80, 0x76 },
1763 { 0x81, 0x80 },
1764 { 0x82, 0x88 },
1765 { 0x83, 0x8f },
1766 { 0x84, 0x96 },
1767 { 0x85, 0xa3 },
1768 { 0x86, 0xaf },
1769 { 0x87, 0xc4 },
1770 { 0x88, 0xd7 },
1771 { 0x89, 0xe8 },
1773 /* AGC and AEC parameters. Note we start by disabling those features,
1774 then turn them only after tweaking the values. */
1775 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1776 | OV7670_COM8_AECSTEP
1777 | OV7670_COM8_BFILT },
1778 { OV7670_R00_GAIN, 0x00 },
1779 { OV7670_R10_AECH, 0x00 },
1780 { OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1781 { OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1782 { OV7670_RA5_BD50MAX, 0x05 },
1783 { OV7670_RAB_BD60MAX, 0x07 },
1784 { OV7670_R24_AEW, 0x95 },
1785 { OV7670_R25_AEB, 0x33 },
1786 { OV7670_R26_VPT, 0xe3 },
1787 { OV7670_R9F_HAECC1, 0x78 },
1788 { OV7670_RA0_HAECC2, 0x68 },
1789 { 0xa1, 0x03 }, /* magic */
1790 { OV7670_RA6_HAECC3, 0xd8 },
1791 { OV7670_RA7_HAECC4, 0xd8 },
1792 { OV7670_RA8_HAECC5, 0xf0 },
1793 { OV7670_RA9_HAECC6, 0x90 },
1794 { OV7670_RAA_HAECC7, 0x94 },
1795 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1796 | OV7670_COM8_AECSTEP
1797 | OV7670_COM8_BFILT
1798 | OV7670_COM8_AGC
1799 | OV7670_COM8_AEC },
1801 /* Almost all of these are magic "reserved" values. */
1802 { OV7670_R0E_COM5, 0x61 },
1803 { OV7670_R0F_COM6, 0x4b },
1804 { 0x16, 0x02 },
1805 { OV7670_R1E_MVFP, 0x07 },
1806 { 0x21, 0x02 },
1807 { 0x22, 0x91 },
1808 { 0x29, 0x07 },
1809 { 0x33, 0x0b },
1810 { 0x35, 0x0b },
1811 { 0x37, 0x1d },
1812 { 0x38, 0x71 },
1813 { 0x39, 0x2a },
1814 { OV7670_R3C_COM12, 0x78 },
1815 { 0x4d, 0x40 },
1816 { 0x4e, 0x20 },
1817 { OV7670_R69_GFIX, 0x00 },
1818 { 0x6b, 0x4a },
1819 { 0x74, 0x10 },
1820 { 0x8d, 0x4f },
1821 { 0x8e, 0x00 },
1822 { 0x8f, 0x00 },
1823 { 0x90, 0x00 },
1824 { 0x91, 0x00 },
1825 { 0x96, 0x00 },
1826 { 0x9a, 0x00 },
1827 { 0xb0, 0x84 },
1828 { 0xb1, 0x0c },
1829 { 0xb2, 0x0e },
1830 { 0xb3, 0x82 },
1831 { 0xb8, 0x0a },
1833 /* More reserved magic, some of which tweaks white balance */
1834 { 0x43, 0x0a },
1835 { 0x44, 0xf0 },
1836 { 0x45, 0x34 },
1837 { 0x46, 0x58 },
1838 { 0x47, 0x28 },
1839 { 0x48, 0x3a },
1840 { 0x59, 0x88 },
1841 { 0x5a, 0x88 },
1842 { 0x5b, 0x44 },
1843 { 0x5c, 0x67 },
1844 { 0x5d, 0x49 },
1845 { 0x5e, 0x0e },
1846 { 0x6c, 0x0a },
1847 { 0x6d, 0x55 },
1848 { 0x6e, 0x11 },
1849 { 0x6f, 0x9f }, /* "9e for advance AWB" */
1850 { 0x6a, 0x40 },
1851 { OV7670_R01_BLUE, 0x40 },
1852 { OV7670_R02_RED, 0x60 },
1853 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1854 | OV7670_COM8_AECSTEP
1855 | OV7670_COM8_BFILT
1856 | OV7670_COM8_AGC
1857 | OV7670_COM8_AEC
1858 | OV7670_COM8_AWB },
1860 /* Matrix coefficients */
1861 { 0x4f, 0x80 },
1862 { 0x50, 0x80 },
1863 { 0x51, 0x00 },
1864 { 0x52, 0x22 },
1865 { 0x53, 0x5e },
1866 { 0x54, 0x80 },
1867 { 0x58, 0x9e },
1869 { OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1870 { OV7670_R3F_EDGE, 0x00 },
1871 { 0x75, 0x05 },
1872 { 0x76, 0xe1 },
1873 { 0x4c, 0x00 },
1874 { 0x77, 0x01 },
1875 { OV7670_R3D_COM13, OV7670_COM13_GAMMA
1876 | OV7670_COM13_UVSAT
1877 | 2}, /* was 3 */
1878 { 0x4b, 0x09 },
1879 { 0xc9, 0x60 },
1880 { OV7670_R41_COM16, 0x38 },
1881 { 0x56, 0x40 },
1883 { 0x34, 0x11 },
1884 { OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1885 { 0xa4, 0x88 },
1886 { 0x96, 0x00 },
1887 { 0x97, 0x30 },
1888 { 0x98, 0x20 },
1889 { 0x99, 0x30 },
1890 { 0x9a, 0x84 },
1891 { 0x9b, 0x29 },
1892 { 0x9c, 0x03 },
1893 { 0x9d, 0x4c },
1894 { 0x9e, 0x3f },
1895 { 0x78, 0x04 },
1897 /* Extra-weird stuff. Some sort of multiplexor register */
1898 { 0x79, 0x01 },
1899 { 0xc8, 0xf0 },
1900 { 0x79, 0x0f },
1901 { 0xc8, 0x00 },
1902 { 0x79, 0x10 },
1903 { 0xc8, 0x7e },
1904 { 0x79, 0x0a },
1905 { 0xc8, 0x80 },
1906 { 0x79, 0x0b },
1907 { 0xc8, 0x01 },
1908 { 0x79, 0x0c },
1909 { 0xc8, 0x0f },
1910 { 0x79, 0x0d },
1911 { 0xc8, 0x20 },
1912 { 0x79, 0x09 },
1913 { 0xc8, 0x80 },
1914 { 0x79, 0x02 },
1915 { 0xc8, 0xc0 },
1916 { 0x79, 0x03 },
1917 { 0xc8, 0x40 },
1918 { 0x79, 0x05 },
1919 { 0xc8, 0x30 },
1920 { 0x79, 0x26 },
1923 static const struct ov_i2c_regvals norm_8610[] = {
1924 { 0x12, 0x80 },
1925 { 0x00, 0x00 },
1926 { 0x01, 0x80 },
1927 { 0x02, 0x80 },
1928 { 0x03, 0xc0 },
1929 { 0x04, 0x30 },
1930 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1931 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1932 { 0x0a, 0x86 },
1933 { 0x0b, 0xb0 },
1934 { 0x0c, 0x20 },
1935 { 0x0d, 0x20 },
1936 { 0x11, 0x01 },
1937 { 0x12, 0x25 },
1938 { 0x13, 0x01 },
1939 { 0x14, 0x04 },
1940 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
1941 { 0x16, 0x03 },
1942 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1943 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1944 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1945 { 0x1a, 0xf5 },
1946 { 0x1b, 0x00 },
1947 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1948 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1949 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1950 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1951 { 0x26, 0xa2 },
1952 { 0x27, 0xea },
1953 { 0x28, 0x00 },
1954 { 0x29, 0x00 },
1955 { 0x2a, 0x80 },
1956 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1957 { 0x2c, 0xac },
1958 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1959 { 0x2e, 0x80 },
1960 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1961 { 0x4c, 0x00 },
1962 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1963 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1964 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1965 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1966 { 0x63, 0xff },
1967 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1968 * maybe thats wrong */
1969 { 0x65, 0x00 },
1970 { 0x66, 0x55 },
1971 { 0x67, 0xb0 },
1972 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1973 { 0x69, 0x02 },
1974 { 0x6a, 0x22 },
1975 { 0x6b, 0x00 },
1976 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1977 * deleting bit7 colors the first images red */
1978 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1979 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1980 { 0x6f, 0x01 },
1981 { 0x70, 0x8b },
1982 { 0x71, 0x00 },
1983 { 0x72, 0x14 },
1984 { 0x73, 0x54 },
1985 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
1986 { 0x75, 0x0e },
1987 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
1988 { 0x77, 0xff },
1989 { 0x78, 0x80 },
1990 { 0x79, 0x80 },
1991 { 0x7a, 0x80 },
1992 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
1993 { 0x7c, 0x00 },
1994 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
1995 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
1996 { 0x7f, 0xfb },
1997 { 0x80, 0x28 },
1998 { 0x81, 0x00 },
1999 { 0x82, 0x23 },
2000 { 0x83, 0x0b },
2001 { 0x84, 0x00 },
2002 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
2003 { 0x86, 0xc9 },
2004 { 0x87, 0x00 },
2005 { 0x88, 0x00 },
2006 { 0x89, 0x01 },
2007 { 0x12, 0x20 },
2008 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
2011 static unsigned char ov7670_abs_to_sm(unsigned char v)
2013 if (v > 127)
2014 return v & 0x7f;
2015 return (128 - v) | 0x80;
2018 /* Write a OV519 register */
2019 static void reg_w(struct sd *sd, u16 index, u16 value)
2021 int ret, req = 0;
2023 if (sd->gspca_dev.usb_err < 0)
2024 return;
2026 switch (sd->bridge) {
2027 case BRIDGE_OV511:
2028 case BRIDGE_OV511PLUS:
2029 req = 2;
2030 break;
2031 case BRIDGE_OVFX2:
2032 req = 0x0a;
2033 /* fall through */
2034 case BRIDGE_W9968CF:
2035 PDEBUG(D_USBO, "SET %02x %04x %04x",
2036 req, value, index);
2037 ret = usb_control_msg(sd->gspca_dev.dev,
2038 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2039 req,
2040 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2041 value, index, NULL, 0, 500);
2042 goto leave;
2043 default:
2044 req = 1;
2047 PDEBUG(D_USBO, "SET %02x 0000 %04x %02x",
2048 req, index, value);
2049 sd->gspca_dev.usb_buf[0] = value;
2050 ret = usb_control_msg(sd->gspca_dev.dev,
2051 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2052 req,
2053 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2054 0, index,
2055 sd->gspca_dev.usb_buf, 1, 500);
2056 leave:
2057 if (ret < 0) {
2058 err("reg_w %02x failed %d", index, ret);
2059 sd->gspca_dev.usb_err = ret;
2060 return;
2064 /* Read from a OV519 register, note not valid for the w9968cf!! */
2065 /* returns: negative is error, pos or zero is data */
2066 static int reg_r(struct sd *sd, u16 index)
2068 int ret;
2069 int req;
2071 if (sd->gspca_dev.usb_err < 0)
2072 return -1;
2074 switch (sd->bridge) {
2075 case BRIDGE_OV511:
2076 case BRIDGE_OV511PLUS:
2077 req = 3;
2078 break;
2079 case BRIDGE_OVFX2:
2080 req = 0x0b;
2081 break;
2082 default:
2083 req = 1;
2086 ret = usb_control_msg(sd->gspca_dev.dev,
2087 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2088 req,
2089 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2090 0, index, sd->gspca_dev.usb_buf, 1, 500);
2092 if (ret >= 0) {
2093 ret = sd->gspca_dev.usb_buf[0];
2094 PDEBUG(D_USBI, "GET %02x 0000 %04x %02x",
2095 req, index, ret);
2096 } else {
2097 err("reg_r %02x failed %d", index, ret);
2098 sd->gspca_dev.usb_err = ret;
2101 return ret;
2104 /* Read 8 values from a OV519 register */
2105 static int reg_r8(struct sd *sd,
2106 u16 index)
2108 int ret;
2110 if (sd->gspca_dev.usb_err < 0)
2111 return -1;
2113 ret = usb_control_msg(sd->gspca_dev.dev,
2114 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2115 1, /* REQ_IO */
2116 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2117 0, index, sd->gspca_dev.usb_buf, 8, 500);
2119 if (ret >= 0) {
2120 ret = sd->gspca_dev.usb_buf[0];
2121 } else {
2122 err("reg_r8 %02x failed %d", index, ret);
2123 sd->gspca_dev.usb_err = ret;
2126 return ret;
2130 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2131 * the same position as 1's in "mask" are cleared and set to "value". Bits
2132 * that are in the same position as 0's in "mask" are preserved, regardless
2133 * of their respective state in "value".
2135 static void reg_w_mask(struct sd *sd,
2136 u16 index,
2137 u8 value,
2138 u8 mask)
2140 int ret;
2141 u8 oldval;
2143 if (mask != 0xff) {
2144 value &= mask; /* Enforce mask on value */
2145 ret = reg_r(sd, index);
2146 if (ret < 0)
2147 return;
2149 oldval = ret & ~mask; /* Clear the masked bits */
2150 value |= oldval; /* Set the desired bits */
2152 reg_w(sd, index, value);
2156 * Writes multiple (n) byte value to a single register. Only valid with certain
2157 * registers (0x30 and 0xc4 - 0xce).
2159 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2161 int ret;
2163 if (sd->gspca_dev.usb_err < 0)
2164 return;
2166 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2168 ret = usb_control_msg(sd->gspca_dev.dev,
2169 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2170 1 /* REG_IO */,
2171 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2172 0, index,
2173 sd->gspca_dev.usb_buf, n, 500);
2174 if (ret < 0) {
2175 err("reg_w32 %02x failed %d", index, ret);
2176 sd->gspca_dev.usb_err = ret;
2180 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2182 int rc, retries;
2184 PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value);
2186 /* Three byte write cycle */
2187 for (retries = 6; ; ) {
2188 /* Select camera register */
2189 reg_w(sd, R51x_I2C_SADDR_3, reg);
2191 /* Write "value" to I2C data port of OV511 */
2192 reg_w(sd, R51x_I2C_DATA, value);
2194 /* Initiate 3-byte write cycle */
2195 reg_w(sd, R511_I2C_CTL, 0x01);
2197 do {
2198 rc = reg_r(sd, R511_I2C_CTL);
2199 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2201 if (rc < 0)
2202 return;
2204 if ((rc & 2) == 0) /* Ack? */
2205 break;
2206 if (--retries < 0) {
2207 PDEBUG(D_USBO, "i2c write retries exhausted");
2208 return;
2213 static int ov511_i2c_r(struct sd *sd, u8 reg)
2215 int rc, value, retries;
2217 /* Two byte write cycle */
2218 for (retries = 6; ; ) {
2219 /* Select camera register */
2220 reg_w(sd, R51x_I2C_SADDR_2, reg);
2222 /* Initiate 2-byte write cycle */
2223 reg_w(sd, R511_I2C_CTL, 0x03);
2225 do {
2226 rc = reg_r(sd, R511_I2C_CTL);
2227 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2229 if (rc < 0)
2230 return rc;
2232 if ((rc & 2) == 0) /* Ack? */
2233 break;
2235 /* I2C abort */
2236 reg_w(sd, R511_I2C_CTL, 0x10);
2238 if (--retries < 0) {
2239 PDEBUG(D_USBI, "i2c write retries exhausted");
2240 return -1;
2244 /* Two byte read cycle */
2245 for (retries = 6; ; ) {
2246 /* Initiate 2-byte read cycle */
2247 reg_w(sd, R511_I2C_CTL, 0x05);
2249 do {
2250 rc = reg_r(sd, R511_I2C_CTL);
2251 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2253 if (rc < 0)
2254 return rc;
2256 if ((rc & 2) == 0) /* Ack? */
2257 break;
2259 /* I2C abort */
2260 reg_w(sd, R511_I2C_CTL, 0x10);
2262 if (--retries < 0) {
2263 PDEBUG(D_USBI, "i2c read retries exhausted");
2264 return -1;
2268 value = reg_r(sd, R51x_I2C_DATA);
2270 PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value);
2272 /* This is needed to make i2c_w() work */
2273 reg_w(sd, R511_I2C_CTL, 0x05);
2275 return value;
2279 * The OV518 I2C I/O procedure is different, hence, this function.
2280 * This is normally only called from i2c_w(). Note that this function
2281 * always succeeds regardless of whether the sensor is present and working.
2283 static void ov518_i2c_w(struct sd *sd,
2284 u8 reg,
2285 u8 value)
2287 PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value);
2289 /* Select camera register */
2290 reg_w(sd, R51x_I2C_SADDR_3, reg);
2292 /* Write "value" to I2C data port of OV511 */
2293 reg_w(sd, R51x_I2C_DATA, value);
2295 /* Initiate 3-byte write cycle */
2296 reg_w(sd, R518_I2C_CTL, 0x01);
2298 /* wait for write complete */
2299 msleep(4);
2300 reg_r8(sd, R518_I2C_CTL);
2304 * returns: negative is error, pos or zero is data
2306 * The OV518 I2C I/O procedure is different, hence, this function.
2307 * This is normally only called from i2c_r(). Note that this function
2308 * always succeeds regardless of whether the sensor is present and working.
2310 static int ov518_i2c_r(struct sd *sd, u8 reg)
2312 int value;
2314 /* Select camera register */
2315 reg_w(sd, R51x_I2C_SADDR_2, reg);
2317 /* Initiate 2-byte write cycle */
2318 reg_w(sd, R518_I2C_CTL, 0x03);
2320 /* Initiate 2-byte read cycle */
2321 reg_w(sd, R518_I2C_CTL, 0x05);
2322 value = reg_r(sd, R51x_I2C_DATA);
2323 PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value);
2324 return value;
2327 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2329 int ret;
2331 if (sd->gspca_dev.usb_err < 0)
2332 return;
2334 ret = usb_control_msg(sd->gspca_dev.dev,
2335 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2336 0x02,
2337 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2338 (u16) value, (u16) reg, NULL, 0, 500);
2340 if (ret < 0) {
2341 err("ovfx2_i2c_w %02x failed %d", reg, ret);
2342 sd->gspca_dev.usb_err = ret;
2345 PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value);
2348 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2350 int ret;
2352 if (sd->gspca_dev.usb_err < 0)
2353 return -1;
2355 ret = usb_control_msg(sd->gspca_dev.dev,
2356 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2357 0x03,
2358 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2359 0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2361 if (ret >= 0) {
2362 ret = sd->gspca_dev.usb_buf[0];
2363 PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret);
2364 } else {
2365 err("ovfx2_i2c_r %02x failed %d", reg, ret);
2366 sd->gspca_dev.usb_err = ret;
2369 return ret;
2372 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2374 if (sd->sensor_reg_cache[reg] == value)
2375 return;
2377 switch (sd->bridge) {
2378 case BRIDGE_OV511:
2379 case BRIDGE_OV511PLUS:
2380 ov511_i2c_w(sd, reg, value);
2381 break;
2382 case BRIDGE_OV518:
2383 case BRIDGE_OV518PLUS:
2384 case BRIDGE_OV519:
2385 ov518_i2c_w(sd, reg, value);
2386 break;
2387 case BRIDGE_OVFX2:
2388 ovfx2_i2c_w(sd, reg, value);
2389 break;
2390 case BRIDGE_W9968CF:
2391 w9968cf_i2c_w(sd, reg, value);
2392 break;
2395 if (sd->gspca_dev.usb_err >= 0) {
2396 /* Up on sensor reset empty the register cache */
2397 if (reg == 0x12 && (value & 0x80))
2398 memset(sd->sensor_reg_cache, -1,
2399 sizeof(sd->sensor_reg_cache));
2400 else
2401 sd->sensor_reg_cache[reg] = value;
2405 static int i2c_r(struct sd *sd, u8 reg)
2407 int ret = -1;
2409 if (sd->sensor_reg_cache[reg] != -1)
2410 return sd->sensor_reg_cache[reg];
2412 switch (sd->bridge) {
2413 case BRIDGE_OV511:
2414 case BRIDGE_OV511PLUS:
2415 ret = ov511_i2c_r(sd, reg);
2416 break;
2417 case BRIDGE_OV518:
2418 case BRIDGE_OV518PLUS:
2419 case BRIDGE_OV519:
2420 ret = ov518_i2c_r(sd, reg);
2421 break;
2422 case BRIDGE_OVFX2:
2423 ret = ovfx2_i2c_r(sd, reg);
2424 break;
2425 case BRIDGE_W9968CF:
2426 ret = w9968cf_i2c_r(sd, reg);
2427 break;
2430 if (ret >= 0)
2431 sd->sensor_reg_cache[reg] = ret;
2433 return ret;
2436 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2437 * the same position as 1's in "mask" are cleared and set to "value". Bits
2438 * that are in the same position as 0's in "mask" are preserved, regardless
2439 * of their respective state in "value".
2441 static void i2c_w_mask(struct sd *sd,
2442 u8 reg,
2443 u8 value,
2444 u8 mask)
2446 int rc;
2447 u8 oldval;
2449 value &= mask; /* Enforce mask on value */
2450 rc = i2c_r(sd, reg);
2451 if (rc < 0)
2452 return;
2453 oldval = rc & ~mask; /* Clear the masked bits */
2454 value |= oldval; /* Set the desired bits */
2455 i2c_w(sd, reg, value);
2458 /* Temporarily stops OV511 from functioning. Must do this before changing
2459 * registers while the camera is streaming */
2460 static inline void ov51x_stop(struct sd *sd)
2462 PDEBUG(D_STREAM, "stopping");
2463 sd->stopped = 1;
2464 switch (sd->bridge) {
2465 case BRIDGE_OV511:
2466 case BRIDGE_OV511PLUS:
2467 reg_w(sd, R51x_SYS_RESET, 0x3d);
2468 break;
2469 case BRIDGE_OV518:
2470 case BRIDGE_OV518PLUS:
2471 reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2472 break;
2473 case BRIDGE_OV519:
2474 reg_w(sd, OV519_R51_RESET1, 0x0f);
2475 reg_w(sd, OV519_R51_RESET1, 0x00);
2476 reg_w(sd, 0x22, 0x00); /* FRAR */
2477 break;
2478 case BRIDGE_OVFX2:
2479 reg_w_mask(sd, 0x0f, 0x00, 0x02);
2480 break;
2481 case BRIDGE_W9968CF:
2482 reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2483 break;
2487 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2488 * actually stopped (for performance). */
2489 static inline void ov51x_restart(struct sd *sd)
2491 PDEBUG(D_STREAM, "restarting");
2492 if (!sd->stopped)
2493 return;
2494 sd->stopped = 0;
2496 /* Reinitialize the stream */
2497 switch (sd->bridge) {
2498 case BRIDGE_OV511:
2499 case BRIDGE_OV511PLUS:
2500 reg_w(sd, R51x_SYS_RESET, 0x00);
2501 break;
2502 case BRIDGE_OV518:
2503 case BRIDGE_OV518PLUS:
2504 reg_w(sd, 0x2f, 0x80);
2505 reg_w(sd, R51x_SYS_RESET, 0x00);
2506 break;
2507 case BRIDGE_OV519:
2508 reg_w(sd, OV519_R51_RESET1, 0x0f);
2509 reg_w(sd, OV519_R51_RESET1, 0x00);
2510 reg_w(sd, 0x22, 0x1d); /* FRAR */
2511 break;
2512 case BRIDGE_OVFX2:
2513 reg_w_mask(sd, 0x0f, 0x02, 0x02);
2514 break;
2515 case BRIDGE_W9968CF:
2516 reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2517 break;
2521 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2523 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2524 * is synchronized. Returns <0 on failure.
2526 static int init_ov_sensor(struct sd *sd, u8 slave)
2528 int i;
2530 ov51x_set_slave_ids(sd, slave);
2532 /* Reset the sensor */
2533 i2c_w(sd, 0x12, 0x80);
2535 /* Wait for it to initialize */
2536 msleep(150);
2538 for (i = 0; i < i2c_detect_tries; i++) {
2539 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2540 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2541 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2542 return 0;
2545 /* Reset the sensor */
2546 i2c_w(sd, 0x12, 0x80);
2548 /* Wait for it to initialize */
2549 msleep(150);
2551 /* Dummy read to sync I2C */
2552 if (i2c_r(sd, 0x00) < 0)
2553 return -1;
2555 return -1;
2558 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2559 * and the read slave will be set to (slave + 1).
2560 * This should not be called from outside the i2c I/O functions.
2561 * Sets I2C read and write slave IDs. Returns <0 for error
2563 static void ov51x_set_slave_ids(struct sd *sd,
2564 u8 slave)
2566 switch (sd->bridge) {
2567 case BRIDGE_OVFX2:
2568 reg_w(sd, OVFX2_I2C_ADDR, slave);
2569 return;
2570 case BRIDGE_W9968CF:
2571 sd->sensor_addr = slave;
2572 return;
2575 reg_w(sd, R51x_I2C_W_SID, slave);
2576 reg_w(sd, R51x_I2C_R_SID, slave + 1);
2579 static void write_regvals(struct sd *sd,
2580 const struct ov_regvals *regvals,
2581 int n)
2583 while (--n >= 0) {
2584 reg_w(sd, regvals->reg, regvals->val);
2585 regvals++;
2589 static void write_i2c_regvals(struct sd *sd,
2590 const struct ov_i2c_regvals *regvals,
2591 int n)
2593 while (--n >= 0) {
2594 i2c_w(sd, regvals->reg, regvals->val);
2595 regvals++;
2599 /****************************************************************************
2601 * OV511 and sensor configuration
2603 ***************************************************************************/
2605 /* This initializes the OV2x10 / OV3610 / OV3620 */
2606 static void ov_hires_configure(struct sd *sd)
2608 int high, low;
2610 if (sd->bridge != BRIDGE_OVFX2) {
2611 err("error hires sensors only supported with ovfx2");
2612 return;
2615 PDEBUG(D_PROBE, "starting ov hires configuration");
2617 /* Detect sensor (sub)type */
2618 high = i2c_r(sd, 0x0a);
2619 low = i2c_r(sd, 0x0b);
2620 /* info("%x, %x", high, low); */
2621 if (high == 0x96 && low == 0x40) {
2622 PDEBUG(D_PROBE, "Sensor is an OV2610");
2623 sd->sensor = SEN_OV2610;
2624 } else if (high == 0x36 && (low & 0x0f) == 0x00) {
2625 PDEBUG(D_PROBE, "Sensor is an OV3610");
2626 sd->sensor = SEN_OV3610;
2627 } else {
2628 err("Error unknown sensor type: %02x%02x",
2629 high, low);
2633 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2634 * the same register settings as the OV8610, since they are very similar.
2636 static void ov8xx0_configure(struct sd *sd)
2638 int rc;
2640 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2642 /* Detect sensor (sub)type */
2643 rc = i2c_r(sd, OV7610_REG_COM_I);
2644 if (rc < 0) {
2645 PDEBUG(D_ERR, "Error detecting sensor type");
2646 return;
2648 if ((rc & 3) == 1)
2649 sd->sensor = SEN_OV8610;
2650 else
2651 err("Unknown image sensor version: %d", rc & 3);
2654 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2655 * the same register settings as the OV7610, since they are very similar.
2657 static void ov7xx0_configure(struct sd *sd)
2659 int rc, high, low;
2661 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2663 /* Detect sensor (sub)type */
2664 rc = i2c_r(sd, OV7610_REG_COM_I);
2666 /* add OV7670 here
2667 * it appears to be wrongly detected as a 7610 by default */
2668 if (rc < 0) {
2669 PDEBUG(D_ERR, "Error detecting sensor type");
2670 return;
2672 if ((rc & 3) == 3) {
2673 /* quick hack to make OV7670s work */
2674 high = i2c_r(sd, 0x0a);
2675 low = i2c_r(sd, 0x0b);
2676 /* info("%x, %x", high, low); */
2677 if (high == 0x76 && (low & 0xf0) == 0x70) {
2678 PDEBUG(D_PROBE, "Sensor is an OV76%02x", low);
2679 sd->sensor = SEN_OV7670;
2680 } else {
2681 PDEBUG(D_PROBE, "Sensor is an OV7610");
2682 sd->sensor = SEN_OV7610;
2684 } else if ((rc & 3) == 1) {
2685 /* I don't know what's different about the 76BE yet. */
2686 if (i2c_r(sd, 0x15) & 1) {
2687 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2688 sd->sensor = SEN_OV7620AE;
2689 } else {
2690 PDEBUG(D_PROBE, "Sensor is an OV76BE");
2691 sd->sensor = SEN_OV76BE;
2693 } else if ((rc & 3) == 0) {
2694 /* try to read product id registers */
2695 high = i2c_r(sd, 0x0a);
2696 if (high < 0) {
2697 PDEBUG(D_ERR, "Error detecting camera chip PID");
2698 return;
2700 low = i2c_r(sd, 0x0b);
2701 if (low < 0) {
2702 PDEBUG(D_ERR, "Error detecting camera chip VER");
2703 return;
2705 if (high == 0x76) {
2706 switch (low) {
2707 case 0x30:
2708 err("Sensor is an OV7630/OV7635");
2709 err("7630 is not supported by this driver");
2710 return;
2711 case 0x40:
2712 PDEBUG(D_PROBE, "Sensor is an OV7645");
2713 sd->sensor = SEN_OV7640; /* FIXME */
2714 break;
2715 case 0x45:
2716 PDEBUG(D_PROBE, "Sensor is an OV7645B");
2717 sd->sensor = SEN_OV7640; /* FIXME */
2718 break;
2719 case 0x48:
2720 PDEBUG(D_PROBE, "Sensor is an OV7648");
2721 sd->sensor = SEN_OV7648;
2722 break;
2723 case 0x60:
2724 PDEBUG(D_PROBE, "Sensor is a OV7660");
2725 sd->sensor = SEN_OV7660;
2726 sd->invert_led = 0;
2727 break;
2728 default:
2729 PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low);
2730 return;
2732 } else {
2733 PDEBUG(D_PROBE, "Sensor is an OV7620");
2734 sd->sensor = SEN_OV7620;
2736 } else {
2737 err("Unknown image sensor version: %d", rc & 3);
2741 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2742 static void ov6xx0_configure(struct sd *sd)
2744 int rc;
2745 PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2747 /* Detect sensor (sub)type */
2748 rc = i2c_r(sd, OV7610_REG_COM_I);
2749 if (rc < 0) {
2750 PDEBUG(D_ERR, "Error detecting sensor type");
2751 return;
2754 /* Ugh. The first two bits are the version bits, but
2755 * the entire register value must be used. I guess OVT
2756 * underestimated how many variants they would make. */
2757 switch (rc) {
2758 case 0x00:
2759 sd->sensor = SEN_OV6630;
2760 warn("WARNING: Sensor is an OV66308. Your camera may have");
2761 warn("been misdetected in previous driver versions.");
2762 break;
2763 case 0x01:
2764 sd->sensor = SEN_OV6620;
2765 PDEBUG(D_PROBE, "Sensor is an OV6620");
2766 break;
2767 case 0x02:
2768 sd->sensor = SEN_OV6630;
2769 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2770 break;
2771 case 0x03:
2772 sd->sensor = SEN_OV66308AF;
2773 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2774 break;
2775 case 0x90:
2776 sd->sensor = SEN_OV6630;
2777 warn("WARNING: Sensor is an OV66307. Your camera may have");
2778 warn("been misdetected in previous driver versions.");
2779 break;
2780 default:
2781 err("FATAL: Unknown sensor version: 0x%02x", rc);
2782 return;
2785 /* Set sensor-specific vars */
2786 sd->sif = 1;
2789 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2790 static void ov51x_led_control(struct sd *sd, int on)
2792 if (sd->invert_led)
2793 on = !on;
2795 switch (sd->bridge) {
2796 /* OV511 has no LED control */
2797 case BRIDGE_OV511PLUS:
2798 reg_w(sd, R511_SYS_LED_CTL, on);
2799 break;
2800 case BRIDGE_OV518:
2801 case BRIDGE_OV518PLUS:
2802 reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2803 break;
2804 case BRIDGE_OV519:
2805 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2806 break;
2810 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2812 struct sd *sd = (struct sd *) gspca_dev;
2814 if (!sd->snapshot_needs_reset)
2815 return;
2817 /* Note it is important that we clear sd->snapshot_needs_reset,
2818 before actually clearing the snapshot state in the bridge
2819 otherwise we might race with the pkt_scan interrupt handler */
2820 sd->snapshot_needs_reset = 0;
2822 switch (sd->bridge) {
2823 case BRIDGE_OV511:
2824 case BRIDGE_OV511PLUS:
2825 reg_w(sd, R51x_SYS_SNAP, 0x02);
2826 reg_w(sd, R51x_SYS_SNAP, 0x00);
2827 break;
2828 case BRIDGE_OV518:
2829 case BRIDGE_OV518PLUS:
2830 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2831 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2832 break;
2833 case BRIDGE_OV519:
2834 reg_w(sd, R51x_SYS_RESET, 0x40);
2835 reg_w(sd, R51x_SYS_RESET, 0x00);
2836 break;
2840 static void ov51x_upload_quan_tables(struct sd *sd)
2842 const unsigned char yQuanTable511[] = {
2843 0, 1, 1, 2, 2, 3, 3, 4,
2844 1, 1, 1, 2, 2, 3, 4, 4,
2845 1, 1, 2, 2, 3, 4, 4, 4,
2846 2, 2, 2, 3, 4, 4, 4, 4,
2847 2, 2, 3, 4, 4, 5, 5, 5,
2848 3, 3, 4, 4, 5, 5, 5, 5,
2849 3, 4, 4, 4, 5, 5, 5, 5,
2850 4, 4, 4, 4, 5, 5, 5, 5
2853 const unsigned char uvQuanTable511[] = {
2854 0, 2, 2, 3, 4, 4, 4, 4,
2855 2, 2, 2, 4, 4, 4, 4, 4,
2856 2, 2, 3, 4, 4, 4, 4, 4,
2857 3, 4, 4, 4, 4, 4, 4, 4,
2858 4, 4, 4, 4, 4, 4, 4, 4,
2859 4, 4, 4, 4, 4, 4, 4, 4,
2860 4, 4, 4, 4, 4, 4, 4, 4,
2861 4, 4, 4, 4, 4, 4, 4, 4
2864 /* OV518 quantization tables are 8x4 (instead of 8x8) */
2865 const unsigned char yQuanTable518[] = {
2866 5, 4, 5, 6, 6, 7, 7, 7,
2867 5, 5, 5, 5, 6, 7, 7, 7,
2868 6, 6, 6, 6, 7, 7, 7, 8,
2869 7, 7, 6, 7, 7, 7, 8, 8
2871 const unsigned char uvQuanTable518[] = {
2872 6, 6, 6, 7, 7, 7, 7, 7,
2873 6, 6, 6, 7, 7, 7, 7, 7,
2874 6, 6, 6, 7, 7, 7, 7, 8,
2875 7, 7, 7, 7, 7, 7, 8, 8
2878 const unsigned char *pYTable, *pUVTable;
2879 unsigned char val0, val1;
2880 int i, size, reg = R51x_COMP_LUT_BEGIN;
2882 PDEBUG(D_PROBE, "Uploading quantization tables");
2884 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2885 pYTable = yQuanTable511;
2886 pUVTable = uvQuanTable511;
2887 size = 32;
2888 } else {
2889 pYTable = yQuanTable518;
2890 pUVTable = uvQuanTable518;
2891 size = 16;
2894 for (i = 0; i < size; i++) {
2895 val0 = *pYTable++;
2896 val1 = *pYTable++;
2897 val0 &= 0x0f;
2898 val1 &= 0x0f;
2899 val0 |= val1 << 4;
2900 reg_w(sd, reg, val0);
2902 val0 = *pUVTable++;
2903 val1 = *pUVTable++;
2904 val0 &= 0x0f;
2905 val1 &= 0x0f;
2906 val0 |= val1 << 4;
2907 reg_w(sd, reg + size, val0);
2909 reg++;
2913 /* This initializes the OV511/OV511+ and the sensor */
2914 static void ov511_configure(struct gspca_dev *gspca_dev)
2916 struct sd *sd = (struct sd *) gspca_dev;
2918 /* For 511 and 511+ */
2919 const struct ov_regvals init_511[] = {
2920 { R51x_SYS_RESET, 0x7f },
2921 { R51x_SYS_INIT, 0x01 },
2922 { R51x_SYS_RESET, 0x7f },
2923 { R51x_SYS_INIT, 0x01 },
2924 { R51x_SYS_RESET, 0x3f },
2925 { R51x_SYS_INIT, 0x01 },
2926 { R51x_SYS_RESET, 0x3d },
2929 const struct ov_regvals norm_511[] = {
2930 { R511_DRAM_FLOW_CTL, 0x01 },
2931 { R51x_SYS_SNAP, 0x00 },
2932 { R51x_SYS_SNAP, 0x02 },
2933 { R51x_SYS_SNAP, 0x00 },
2934 { R511_FIFO_OPTS, 0x1f },
2935 { R511_COMP_EN, 0x00 },
2936 { R511_COMP_LUT_EN, 0x03 },
2939 const struct ov_regvals norm_511_p[] = {
2940 { R511_DRAM_FLOW_CTL, 0xff },
2941 { R51x_SYS_SNAP, 0x00 },
2942 { R51x_SYS_SNAP, 0x02 },
2943 { R51x_SYS_SNAP, 0x00 },
2944 { R511_FIFO_OPTS, 0xff },
2945 { R511_COMP_EN, 0x00 },
2946 { R511_COMP_LUT_EN, 0x03 },
2949 const struct ov_regvals compress_511[] = {
2950 { 0x70, 0x1f },
2951 { 0x71, 0x05 },
2952 { 0x72, 0x06 },
2953 { 0x73, 0x06 },
2954 { 0x74, 0x14 },
2955 { 0x75, 0x03 },
2956 { 0x76, 0x04 },
2957 { 0x77, 0x04 },
2960 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
2962 write_regvals(sd, init_511, ARRAY_SIZE(init_511));
2964 switch (sd->bridge) {
2965 case BRIDGE_OV511:
2966 write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
2967 break;
2968 case BRIDGE_OV511PLUS:
2969 write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
2970 break;
2973 /* Init compression */
2974 write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
2976 ov51x_upload_quan_tables(sd);
2979 /* This initializes the OV518/OV518+ and the sensor */
2980 static void ov518_configure(struct gspca_dev *gspca_dev)
2982 struct sd *sd = (struct sd *) gspca_dev;
2984 /* For 518 and 518+ */
2985 const struct ov_regvals init_518[] = {
2986 { R51x_SYS_RESET, 0x40 },
2987 { R51x_SYS_INIT, 0xe1 },
2988 { R51x_SYS_RESET, 0x3e },
2989 { R51x_SYS_INIT, 0xe1 },
2990 { R51x_SYS_RESET, 0x00 },
2991 { R51x_SYS_INIT, 0xe1 },
2992 { 0x46, 0x00 },
2993 { 0x5d, 0x03 },
2996 const struct ov_regvals norm_518[] = {
2997 { R51x_SYS_SNAP, 0x02 }, /* Reset */
2998 { R51x_SYS_SNAP, 0x01 }, /* Enable */
2999 { 0x31, 0x0f },
3000 { 0x5d, 0x03 },
3001 { 0x24, 0x9f },
3002 { 0x25, 0x90 },
3003 { 0x20, 0x00 },
3004 { 0x51, 0x04 },
3005 { 0x71, 0x19 },
3006 { 0x2f, 0x80 },
3009 const struct ov_regvals norm_518_p[] = {
3010 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3011 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3012 { 0x31, 0x0f },
3013 { 0x5d, 0x03 },
3014 { 0x24, 0x9f },
3015 { 0x25, 0x90 },
3016 { 0x20, 0x60 },
3017 { 0x51, 0x02 },
3018 { 0x71, 0x19 },
3019 { 0x40, 0xff },
3020 { 0x41, 0x42 },
3021 { 0x46, 0x00 },
3022 { 0x33, 0x04 },
3023 { 0x21, 0x19 },
3024 { 0x3f, 0x10 },
3025 { 0x2f, 0x80 },
3028 /* First 5 bits of custom ID reg are a revision ID on OV518 */
3029 PDEBUG(D_PROBE, "Device revision %d",
3030 0x1f & reg_r(sd, R51x_SYS_CUST_ID));
3032 write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3034 /* Set LED GPIO pin to output mode */
3035 reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3037 switch (sd->bridge) {
3038 case BRIDGE_OV518:
3039 write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3040 break;
3041 case BRIDGE_OV518PLUS:
3042 write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3043 break;
3046 ov51x_upload_quan_tables(sd);
3048 reg_w(sd, 0x2f, 0x80);
3051 static void ov519_configure(struct sd *sd)
3053 static const struct ov_regvals init_519[] = {
3054 { 0x5a, 0x6d }, /* EnableSystem */
3055 { 0x53, 0x9b }, /* don't enable the microcontroller */
3056 { OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3057 { 0x5d, 0x03 },
3058 { 0x49, 0x01 },
3059 { 0x48, 0x00 },
3060 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
3061 * detection will fail. This deserves further investigation. */
3062 { OV519_GPIO_IO_CTRL0, 0xee },
3063 { OV519_R51_RESET1, 0x0f },
3064 { OV519_R51_RESET1, 0x00 },
3065 { 0x22, 0x00 },
3066 /* windows reads 0x55 at this point*/
3069 write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3072 static void ovfx2_configure(struct sd *sd)
3074 static const struct ov_regvals init_fx2[] = {
3075 { 0x00, 0x60 },
3076 { 0x02, 0x01 },
3077 { 0x0f, 0x1d },
3078 { 0xe9, 0x82 },
3079 { 0xea, 0xc7 },
3080 { 0xeb, 0x10 },
3081 { 0xec, 0xf6 },
3084 sd->stopped = 1;
3086 write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3089 /* set the mode */
3090 /* This function works for ov7660 only */
3091 static void ov519_set_mode(struct sd *sd)
3093 static const struct ov_regvals bridge_ov7660[2][10] = {
3094 {{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3095 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3096 {0x25, 0x01}, {0x26, 0x00}},
3097 {{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3098 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3099 {0x25, 0x03}, {0x26, 0x00}}
3101 static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3102 {{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3103 {{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3105 static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3106 {OV7670_R17_HSTART, 0x13},
3107 {OV7670_R18_HSTOP, 0x01},
3108 {OV7670_R32_HREF, 0x92},
3109 {OV7670_R19_VSTART, 0x02},
3110 {OV7670_R1A_VSTOP, 0x7a},
3111 {OV7670_R03_VREF, 0x00},
3112 /* {0x33, 0x00}, */
3113 /* {0x34, 0x07}, */
3114 /* {0x36, 0x00}, */
3115 /* {0x6b, 0x0a}, */
3118 write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3119 ARRAY_SIZE(bridge_ov7660[0]));
3120 write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3121 ARRAY_SIZE(sensor_ov7660[0]));
3122 write_i2c_regvals(sd, sensor_ov7660_2,
3123 ARRAY_SIZE(sensor_ov7660_2));
3126 /* set the frame rate */
3127 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3128 static void ov519_set_fr(struct sd *sd)
3130 int fr;
3131 u8 clock;
3132 /* frame rate table with indices:
3133 * - mode = 0: 320x240, 1: 640x480
3134 * - fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3135 * - reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3137 static const u8 fr_tb[2][6][3] = {
3138 {{0x04, 0xff, 0x00},
3139 {0x04, 0x1f, 0x00},
3140 {0x04, 0x1b, 0x00},
3141 {0x04, 0x15, 0x00},
3142 {0x04, 0x09, 0x00},
3143 {0x04, 0x01, 0x00}},
3144 {{0x0c, 0xff, 0x00},
3145 {0x0c, 0x1f, 0x00},
3146 {0x0c, 0x1b, 0x00},
3147 {0x04, 0xff, 0x01},
3148 {0x04, 0x1f, 0x01},
3149 {0x04, 0x1b, 0x01}},
3152 if (frame_rate > 0)
3153 sd->frame_rate = frame_rate;
3154 if (sd->frame_rate >= 30)
3155 fr = 0;
3156 else if (sd->frame_rate >= 25)
3157 fr = 1;
3158 else if (sd->frame_rate >= 20)
3159 fr = 2;
3160 else if (sd->frame_rate >= 15)
3161 fr = 3;
3162 else if (sd->frame_rate >= 10)
3163 fr = 4;
3164 else
3165 fr = 5;
3166 reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3167 reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3168 clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3169 if (sd->sensor == SEN_OV7660)
3170 clock |= 0x80; /* enable double clock */
3171 ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3174 /* this function is called at probe time */
3175 static int sd_config(struct gspca_dev *gspca_dev,
3176 const struct usb_device_id *id)
3178 struct sd *sd = (struct sd *) gspca_dev;
3179 struct cam *cam = &gspca_dev->cam;
3181 sd->bridge = id->driver_info & BRIDGE_MASK;
3182 sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3184 switch (sd->bridge) {
3185 case BRIDGE_OV511:
3186 case BRIDGE_OV511PLUS:
3187 cam->cam_mode = ov511_vga_mode;
3188 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3189 break;
3190 case BRIDGE_OV518:
3191 case BRIDGE_OV518PLUS:
3192 cam->cam_mode = ov518_vga_mode;
3193 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3194 break;
3195 case BRIDGE_OV519:
3196 cam->cam_mode = ov519_vga_mode;
3197 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3198 sd->invert_led = !sd->invert_led;
3199 break;
3200 case BRIDGE_OVFX2:
3201 cam->cam_mode = ov519_vga_mode;
3202 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3203 cam->bulk_size = OVFX2_BULK_SIZE;
3204 cam->bulk_nurbs = MAX_NURBS;
3205 cam->bulk = 1;
3206 break;
3207 case BRIDGE_W9968CF:
3208 cam->cam_mode = w9968cf_vga_mode;
3209 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3210 cam->reverse_alts = 1;
3211 break;
3214 gspca_dev->cam.ctrls = sd->ctrls;
3215 sd->quality = QUALITY_DEF;
3217 return 0;
3220 /* this function is called at probe and resume time */
3221 static int sd_init(struct gspca_dev *gspca_dev)
3223 struct sd *sd = (struct sd *) gspca_dev;
3224 struct cam *cam = &gspca_dev->cam;
3226 switch (sd->bridge) {
3227 case BRIDGE_OV511:
3228 case BRIDGE_OV511PLUS:
3229 ov511_configure(gspca_dev);
3230 break;
3231 case BRIDGE_OV518:
3232 case BRIDGE_OV518PLUS:
3233 ov518_configure(gspca_dev);
3234 break;
3235 case BRIDGE_OV519:
3236 ov519_configure(sd);
3237 break;
3238 case BRIDGE_OVFX2:
3239 ovfx2_configure(sd);
3240 break;
3241 case BRIDGE_W9968CF:
3242 w9968cf_configure(sd);
3243 break;
3246 /* The OV519 must be more aggressive about sensor detection since
3247 * I2C write will never fail if the sensor is not present. We have
3248 * to try to initialize the sensor to detect its presence */
3249 sd->sensor = -1;
3251 /* Test for 76xx */
3252 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3253 ov7xx0_configure(sd);
3255 /* Test for 6xx0 */
3256 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3257 ov6xx0_configure(sd);
3259 /* Test for 8xx0 */
3260 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3261 ov8xx0_configure(sd);
3263 /* Test for 3xxx / 2xxx */
3264 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3265 ov_hires_configure(sd);
3266 } else {
3267 err("Can't determine sensor slave IDs");
3268 goto error;
3271 if (sd->sensor < 0)
3272 goto error;
3274 ov51x_led_control(sd, 0); /* turn LED off */
3276 switch (sd->bridge) {
3277 case BRIDGE_OV511:
3278 case BRIDGE_OV511PLUS:
3279 if (sd->sif) {
3280 cam->cam_mode = ov511_sif_mode;
3281 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3283 break;
3284 case BRIDGE_OV518:
3285 case BRIDGE_OV518PLUS:
3286 if (sd->sif) {
3287 cam->cam_mode = ov518_sif_mode;
3288 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3290 break;
3291 case BRIDGE_OV519:
3292 if (sd->sif) {
3293 cam->cam_mode = ov519_sif_mode;
3294 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3296 break;
3297 case BRIDGE_OVFX2:
3298 if (sd->sensor == SEN_OV2610) {
3299 cam->cam_mode = ovfx2_ov2610_mode;
3300 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3301 } else if (sd->sensor == SEN_OV3610) {
3302 cam->cam_mode = ovfx2_ov3610_mode;
3303 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3304 } else if (sd->sif) {
3305 cam->cam_mode = ov519_sif_mode;
3306 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3308 break;
3309 case BRIDGE_W9968CF:
3310 if (sd->sif)
3311 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3313 /* w9968cf needs initialisation once the sensor is known */
3314 w9968cf_init(sd);
3315 break;
3318 gspca_dev->ctrl_dis = ctrl_dis[sd->sensor];
3320 /* initialize the sensor */
3321 switch (sd->sensor) {
3322 case SEN_OV2610:
3323 write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3325 /* Enable autogain, autoexpo, awb, bandfilter */
3326 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3327 break;
3328 case SEN_OV3610:
3329 write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3331 /* Enable autogain, autoexpo, awb, bandfilter */
3332 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3333 break;
3334 case SEN_OV6620:
3335 write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3336 break;
3337 case SEN_OV6630:
3338 case SEN_OV66308AF:
3339 sd->ctrls[CONTRAST].def = 200;
3340 /* The default is too low for the ov6630 */
3341 write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3342 break;
3343 default:
3344 /* case SEN_OV7610: */
3345 /* case SEN_OV76BE: */
3346 write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3347 i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3348 break;
3349 case SEN_OV7620:
3350 case SEN_OV7620AE:
3351 write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3352 break;
3353 case SEN_OV7640:
3354 case SEN_OV7648:
3355 write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3356 break;
3357 case SEN_OV7660:
3358 i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3359 msleep(14);
3360 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3361 write_regvals(sd, init_519_ov7660,
3362 ARRAY_SIZE(init_519_ov7660));
3363 write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3364 sd->gspca_dev.curr_mode = 1; /* 640x480 */
3365 sd->frame_rate = 15;
3366 ov519_set_mode(sd);
3367 ov519_set_fr(sd);
3368 sd->ctrls[COLORS].max = 4; /* 0..4 */
3369 sd->ctrls[COLORS].val =
3370 sd->ctrls[COLORS].def = 2;
3371 setcolors(gspca_dev);
3372 sd->ctrls[CONTRAST].max = 6; /* 0..6 */
3373 sd->ctrls[CONTRAST].val =
3374 sd->ctrls[CONTRAST].def = 3;
3375 setcontrast(gspca_dev);
3376 sd->ctrls[BRIGHTNESS].max = 6; /* 0..6 */
3377 sd->ctrls[BRIGHTNESS].val =
3378 sd->ctrls[BRIGHTNESS].def = 3;
3379 setbrightness(gspca_dev);
3380 sd_reset_snapshot(gspca_dev);
3381 ov51x_restart(sd);
3382 ov51x_stop(sd); /* not in win traces */
3383 ov51x_led_control(sd, 0);
3384 break;
3385 case SEN_OV7670:
3386 sd->ctrls[FREQ].max = 3; /* auto */
3387 sd->ctrls[FREQ].def = 3;
3388 write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3389 break;
3390 case SEN_OV8610:
3391 write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3392 break;
3394 return gspca_dev->usb_err;
3395 error:
3396 PDEBUG(D_ERR, "OV519 Config failed");
3397 return -EINVAL;
3400 /* Set up the OV511/OV511+ with the given image parameters.
3402 * Do not put any sensor-specific code in here (including I2C I/O functions)
3404 static void ov511_mode_init_regs(struct sd *sd)
3406 int hsegs, vsegs, packet_size, fps, needed;
3407 int interlaced = 0;
3408 struct usb_host_interface *alt;
3409 struct usb_interface *intf;
3411 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3412 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3413 if (!alt) {
3414 err("Couldn't get altsetting");
3415 sd->gspca_dev.usb_err = -EIO;
3416 return;
3419 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3420 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3422 reg_w(sd, R511_CAM_UV_EN, 0x01);
3423 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3424 reg_w(sd, R511_SNAP_OPTS, 0x03);
3426 /* Here I'm assuming that snapshot size == image size.
3427 * I hope that's always true. --claudio
3429 hsegs = (sd->gspca_dev.width >> 3) - 1;
3430 vsegs = (sd->gspca_dev.height >> 3) - 1;
3432 reg_w(sd, R511_CAM_PXCNT, hsegs);
3433 reg_w(sd, R511_CAM_LNCNT, vsegs);
3434 reg_w(sd, R511_CAM_PXDIV, 0x00);
3435 reg_w(sd, R511_CAM_LNDIV, 0x00);
3437 /* YUV420, low pass filter on */
3438 reg_w(sd, R511_CAM_OPTS, 0x03);
3440 /* Snapshot additions */
3441 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3442 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3443 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3444 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3446 /******** Set the framerate ********/
3447 if (frame_rate > 0)
3448 sd->frame_rate = frame_rate;
3450 switch (sd->sensor) {
3451 case SEN_OV6620:
3452 /* No framerate control, doesn't like higher rates yet */
3453 sd->clockdiv = 3;
3454 break;
3456 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3457 for more sensors we need to do this for them too */
3458 case SEN_OV7620:
3459 case SEN_OV7620AE:
3460 case SEN_OV7640:
3461 case SEN_OV7648:
3462 case SEN_OV76BE:
3463 if (sd->gspca_dev.width == 320)
3464 interlaced = 1;
3465 /* Fall through */
3466 case SEN_OV6630:
3467 case SEN_OV7610:
3468 case SEN_OV7670:
3469 switch (sd->frame_rate) {
3470 case 30:
3471 case 25:
3472 /* Not enough bandwidth to do 640x480 @ 30 fps */
3473 if (sd->gspca_dev.width != 640) {
3474 sd->clockdiv = 0;
3475 break;
3477 /* Fall through for 640x480 case */
3478 default:
3479 /* case 20: */
3480 /* case 15: */
3481 sd->clockdiv = 1;
3482 break;
3483 case 10:
3484 sd->clockdiv = 2;
3485 break;
3486 case 5:
3487 sd->clockdiv = 5;
3488 break;
3490 if (interlaced) {
3491 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3492 /* Higher then 10 does not work */
3493 if (sd->clockdiv > 10)
3494 sd->clockdiv = 10;
3496 break;
3498 case SEN_OV8610:
3499 /* No framerate control ?? */
3500 sd->clockdiv = 0;
3501 break;
3504 /* Check if we have enough bandwidth to disable compression */
3505 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3506 needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
3507 /* 1400 is a conservative estimate of the max nr of isoc packets/sec */
3508 if (needed > 1400 * packet_size) {
3509 /* Enable Y and UV quantization and compression */
3510 reg_w(sd, R511_COMP_EN, 0x07);
3511 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3512 } else {
3513 reg_w(sd, R511_COMP_EN, 0x06);
3514 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3517 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3518 reg_w(sd, R51x_SYS_RESET, 0);
3521 /* Sets up the OV518/OV518+ with the given image parameters
3523 * OV518 needs a completely different approach, until we can figure out what
3524 * the individual registers do. Also, only 15 FPS is supported now.
3526 * Do not put any sensor-specific code in here (including I2C I/O functions)
3528 static void ov518_mode_init_regs(struct sd *sd)
3530 int hsegs, vsegs, packet_size;
3531 struct usb_host_interface *alt;
3532 struct usb_interface *intf;
3534 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3535 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3536 if (!alt) {
3537 err("Couldn't get altsetting");
3538 sd->gspca_dev.usb_err = -EIO;
3539 return;
3542 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3543 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3545 /******** Set the mode ********/
3546 reg_w(sd, 0x2b, 0);
3547 reg_w(sd, 0x2c, 0);
3548 reg_w(sd, 0x2d, 0);
3549 reg_w(sd, 0x2e, 0);
3550 reg_w(sd, 0x3b, 0);
3551 reg_w(sd, 0x3c, 0);
3552 reg_w(sd, 0x3d, 0);
3553 reg_w(sd, 0x3e, 0);
3555 if (sd->bridge == BRIDGE_OV518) {
3556 /* Set 8-bit (YVYU) input format */
3557 reg_w_mask(sd, 0x20, 0x08, 0x08);
3559 /* Set 12-bit (4:2:0) output format */
3560 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3561 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3562 } else {
3563 reg_w(sd, 0x28, 0x80);
3564 reg_w(sd, 0x38, 0x80);
3567 hsegs = sd->gspca_dev.width / 16;
3568 vsegs = sd->gspca_dev.height / 4;
3570 reg_w(sd, 0x29, hsegs);
3571 reg_w(sd, 0x2a, vsegs);
3573 reg_w(sd, 0x39, hsegs);
3574 reg_w(sd, 0x3a, vsegs);
3576 /* Windows driver does this here; who knows why */
3577 reg_w(sd, 0x2f, 0x80);
3579 /******** Set the framerate ********/
3580 sd->clockdiv = 1;
3582 /* Mode independent, but framerate dependent, regs */
3583 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3584 reg_w(sd, 0x51, 0x04);
3585 reg_w(sd, 0x22, 0x18);
3586 reg_w(sd, 0x23, 0xff);
3588 if (sd->bridge == BRIDGE_OV518PLUS) {
3589 switch (sd->sensor) {
3590 case SEN_OV7620AE:
3591 if (sd->gspca_dev.width == 320) {
3592 reg_w(sd, 0x20, 0x00);
3593 reg_w(sd, 0x21, 0x19);
3594 } else {
3595 reg_w(sd, 0x20, 0x60);
3596 reg_w(sd, 0x21, 0x1f);
3598 break;
3599 case SEN_OV7620:
3600 reg_w(sd, 0x20, 0x00);
3601 reg_w(sd, 0x21, 0x19);
3602 break;
3603 default:
3604 reg_w(sd, 0x21, 0x19);
3606 } else
3607 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3609 /* FIXME: Sensor-specific */
3610 /* Bit 5 is what matters here. Of course, it is "reserved" */
3611 i2c_w(sd, 0x54, 0x23);
3613 reg_w(sd, 0x2f, 0x80);
3615 if (sd->bridge == BRIDGE_OV518PLUS) {
3616 reg_w(sd, 0x24, 0x94);
3617 reg_w(sd, 0x25, 0x90);
3618 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3619 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3620 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3621 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3622 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3623 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3624 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3625 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3626 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3627 } else {
3628 reg_w(sd, 0x24, 0x9f);
3629 reg_w(sd, 0x25, 0x90);
3630 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3631 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3632 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3633 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3634 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3635 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3636 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3637 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3638 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3641 reg_w(sd, 0x2f, 0x80);
3644 /* Sets up the OV519 with the given image parameters
3646 * OV519 needs a completely different approach, until we can figure out what
3647 * the individual registers do.
3649 * Do not put any sensor-specific code in here (including I2C I/O functions)
3651 static void ov519_mode_init_regs(struct sd *sd)
3653 static const struct ov_regvals mode_init_519_ov7670[] = {
3654 { 0x5d, 0x03 }, /* Turn off suspend mode */
3655 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3656 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3657 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3658 { 0xa3, 0x18 },
3659 { 0xa4, 0x04 },
3660 { 0xa5, 0x28 },
3661 { 0x37, 0x00 }, /* SetUsbInit */
3662 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3663 /* Enable both fields, YUV Input, disable defect comp (why?) */
3664 { 0x20, 0x0c },
3665 { 0x21, 0x38 },
3666 { 0x22, 0x1d },
3667 { 0x17, 0x50 }, /* undocumented */
3668 { 0x37, 0x00 }, /* undocumented */
3669 { 0x40, 0xff }, /* I2C timeout counter */
3670 { 0x46, 0x00 }, /* I2C clock prescaler */
3671 { 0x59, 0x04 }, /* new from windrv 090403 */
3672 { 0xff, 0x00 }, /* undocumented */
3673 /* windows reads 0x55 at this point, why? */
3676 static const struct ov_regvals mode_init_519[] = {
3677 { 0x5d, 0x03 }, /* Turn off suspend mode */
3678 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3679 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3680 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3681 { 0xa3, 0x18 },
3682 { 0xa4, 0x04 },
3683 { 0xa5, 0x28 },
3684 { 0x37, 0x00 }, /* SetUsbInit */
3685 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3686 /* Enable both fields, YUV Input, disable defect comp (why?) */
3687 { 0x22, 0x1d },
3688 { 0x17, 0x50 }, /* undocumented */
3689 { 0x37, 0x00 }, /* undocumented */
3690 { 0x40, 0xff }, /* I2C timeout counter */
3691 { 0x46, 0x00 }, /* I2C clock prescaler */
3692 { 0x59, 0x04 }, /* new from windrv 090403 */
3693 { 0xff, 0x00 }, /* undocumented */
3694 /* windows reads 0x55 at this point, why? */
3697 /******** Set the mode ********/
3698 switch (sd->sensor) {
3699 default:
3700 write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3701 if (sd->sensor == SEN_OV7640 ||
3702 sd->sensor == SEN_OV7648) {
3703 /* Select 8-bit input mode */
3704 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3706 break;
3707 case SEN_OV7660:
3708 return; /* done by ov519_set_mode/fr() */
3709 case SEN_OV7670:
3710 write_regvals(sd, mode_init_519_ov7670,
3711 ARRAY_SIZE(mode_init_519_ov7670));
3712 break;
3715 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.width >> 4);
3716 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.height >> 3);
3717 if (sd->sensor == SEN_OV7670 &&
3718 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3719 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3720 else if (sd->sensor == SEN_OV7648 &&
3721 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3722 reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3723 else
3724 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3725 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3726 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3727 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3728 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3729 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3730 reg_w(sd, 0x26, 0x00); /* Undocumented */
3732 /******** Set the framerate ********/
3733 if (frame_rate > 0)
3734 sd->frame_rate = frame_rate;
3736 /* FIXME: These are only valid at the max resolution. */
3737 sd->clockdiv = 0;
3738 switch (sd->sensor) {
3739 case SEN_OV7640:
3740 case SEN_OV7648:
3741 switch (sd->frame_rate) {
3742 default:
3743 /* case 30: */
3744 reg_w(sd, 0xa4, 0x0c);
3745 reg_w(sd, 0x23, 0xff);
3746 break;
3747 case 25:
3748 reg_w(sd, 0xa4, 0x0c);
3749 reg_w(sd, 0x23, 0x1f);
3750 break;
3751 case 20:
3752 reg_w(sd, 0xa4, 0x0c);
3753 reg_w(sd, 0x23, 0x1b);
3754 break;
3755 case 15:
3756 reg_w(sd, 0xa4, 0x04);
3757 reg_w(sd, 0x23, 0xff);
3758 sd->clockdiv = 1;
3759 break;
3760 case 10:
3761 reg_w(sd, 0xa4, 0x04);
3762 reg_w(sd, 0x23, 0x1f);
3763 sd->clockdiv = 1;
3764 break;
3765 case 5:
3766 reg_w(sd, 0xa4, 0x04);
3767 reg_w(sd, 0x23, 0x1b);
3768 sd->clockdiv = 1;
3769 break;
3771 break;
3772 case SEN_OV8610:
3773 switch (sd->frame_rate) {
3774 default: /* 15 fps */
3775 /* case 15: */
3776 reg_w(sd, 0xa4, 0x06);
3777 reg_w(sd, 0x23, 0xff);
3778 break;
3779 case 10:
3780 reg_w(sd, 0xa4, 0x06);
3781 reg_w(sd, 0x23, 0x1f);
3782 break;
3783 case 5:
3784 reg_w(sd, 0xa4, 0x06);
3785 reg_w(sd, 0x23, 0x1b);
3786 break;
3788 break;
3789 case SEN_OV7670: /* guesses, based on 7640 */
3790 PDEBUG(D_STREAM, "Setting framerate to %d fps",
3791 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3792 reg_w(sd, 0xa4, 0x10);
3793 switch (sd->frame_rate) {
3794 case 30:
3795 reg_w(sd, 0x23, 0xff);
3796 break;
3797 case 20:
3798 reg_w(sd, 0x23, 0x1b);
3799 break;
3800 default:
3801 /* case 15: */
3802 reg_w(sd, 0x23, 0xff);
3803 sd->clockdiv = 1;
3804 break;
3806 break;
3810 static void mode_init_ov_sensor_regs(struct sd *sd)
3812 struct gspca_dev *gspca_dev;
3813 int qvga, xstart, xend, ystart, yend;
3814 u8 v;
3816 gspca_dev = &sd->gspca_dev;
3817 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3819 /******** Mode (VGA/QVGA) and sensor specific regs ********/
3820 switch (sd->sensor) {
3821 case SEN_OV2610:
3822 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3823 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3824 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3825 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3826 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3827 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3828 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3829 return;
3830 case SEN_OV3610:
3831 if (qvga) {
3832 xstart = (1040 - gspca_dev->width) / 2 + (0x1f << 4);
3833 ystart = (776 - gspca_dev->height) / 2;
3834 } else {
3835 xstart = (2076 - gspca_dev->width) / 2 + (0x10 << 4);
3836 ystart = (1544 - gspca_dev->height) / 2;
3838 xend = xstart + gspca_dev->width;
3839 yend = ystart + gspca_dev->height;
3840 /* Writing to the COMH register resets the other windowing regs
3841 to their default values, so we must do this first. */
3842 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3843 i2c_w_mask(sd, 0x32,
3844 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3845 0x3f);
3846 i2c_w_mask(sd, 0x03,
3847 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3848 0x0f);
3849 i2c_w(sd, 0x17, xstart >> 4);
3850 i2c_w(sd, 0x18, xend >> 4);
3851 i2c_w(sd, 0x19, ystart >> 3);
3852 i2c_w(sd, 0x1a, yend >> 3);
3853 return;
3854 case SEN_OV8610:
3855 /* For OV8610 qvga means qsvga */
3856 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3857 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3858 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3859 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3860 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3861 break;
3862 case SEN_OV7610:
3863 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3864 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3865 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3866 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3867 break;
3868 case SEN_OV7620:
3869 case SEN_OV7620AE:
3870 case SEN_OV76BE:
3871 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3872 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3873 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3874 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3875 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3876 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3877 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3878 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3879 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3880 if (sd->sensor == SEN_OV76BE)
3881 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3882 break;
3883 case SEN_OV7640:
3884 case SEN_OV7648:
3885 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3886 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3887 /* Setting this undocumented bit in qvga mode removes a very
3888 annoying vertical shaking of the image */
3889 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3890 /* Unknown */
3891 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3892 /* Allow higher automatic gain (to allow higher framerates) */
3893 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3894 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3895 break;
3896 case SEN_OV7670:
3897 /* set COM7_FMT_VGA or COM7_FMT_QVGA
3898 * do we need to set anything else?
3899 * HSTART etc are set in set_ov_sensor_window itself */
3900 i2c_w_mask(sd, OV7670_R12_COM7,
3901 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
3902 OV7670_COM7_FMT_MASK);
3903 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3904 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
3905 OV7670_COM8_AWB);
3906 if (qvga) { /* QVGA from ov7670.c by
3907 * Jonathan Corbet */
3908 xstart = 164;
3909 xend = 28;
3910 ystart = 14;
3911 yend = 494;
3912 } else { /* VGA */
3913 xstart = 158;
3914 xend = 14;
3915 ystart = 10;
3916 yend = 490;
3918 /* OV7670 hardware window registers are split across
3919 * multiple locations */
3920 i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
3921 i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
3922 v = i2c_r(sd, OV7670_R32_HREF);
3923 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
3924 msleep(10); /* need to sleep between read and write to
3925 * same reg! */
3926 i2c_w(sd, OV7670_R32_HREF, v);
3928 i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
3929 i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
3930 v = i2c_r(sd, OV7670_R03_VREF);
3931 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
3932 msleep(10); /* need to sleep between read and write to
3933 * same reg! */
3934 i2c_w(sd, OV7670_R03_VREF, v);
3935 break;
3936 case SEN_OV6620:
3937 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3938 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3939 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3940 break;
3941 case SEN_OV6630:
3942 case SEN_OV66308AF:
3943 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3944 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3945 break;
3946 default:
3947 return;
3950 /******** Clock programming ********/
3951 i2c_w(sd, 0x11, sd->clockdiv);
3954 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
3955 static void sethvflip(struct gspca_dev *gspca_dev)
3957 struct sd *sd = (struct sd *) gspca_dev;
3959 if (sd->gspca_dev.streaming)
3960 reg_w(sd, OV519_R51_RESET1, 0x0f); /* block stream */
3961 i2c_w_mask(sd, OV7670_R1E_MVFP,
3962 OV7670_MVFP_MIRROR * sd->ctrls[HFLIP].val
3963 | OV7670_MVFP_VFLIP * sd->ctrls[VFLIP].val,
3964 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
3965 if (sd->gspca_dev.streaming)
3966 reg_w(sd, OV519_R51_RESET1, 0x00); /* restart stream */
3969 static void set_ov_sensor_window(struct sd *sd)
3971 struct gspca_dev *gspca_dev;
3972 int qvga, crop;
3973 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
3975 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
3976 switch (sd->sensor) {
3977 case SEN_OV2610:
3978 case SEN_OV3610:
3979 case SEN_OV7670:
3980 mode_init_ov_sensor_regs(sd);
3981 return;
3982 case SEN_OV7660:
3983 ov519_set_mode(sd);
3984 ov519_set_fr(sd);
3985 return;
3988 gspca_dev = &sd->gspca_dev;
3989 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3990 crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
3992 /* The different sensor ICs handle setting up of window differently.
3993 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
3994 switch (sd->sensor) {
3995 case SEN_OV8610:
3996 hwsbase = 0x1e;
3997 hwebase = 0x1e;
3998 vwsbase = 0x02;
3999 vwebase = 0x02;
4000 break;
4001 case SEN_OV7610:
4002 case SEN_OV76BE:
4003 hwsbase = 0x38;
4004 hwebase = 0x3a;
4005 vwsbase = vwebase = 0x05;
4006 break;
4007 case SEN_OV6620:
4008 case SEN_OV6630:
4009 case SEN_OV66308AF:
4010 hwsbase = 0x38;
4011 hwebase = 0x3a;
4012 vwsbase = 0x05;
4013 vwebase = 0x06;
4014 if (sd->sensor == SEN_OV66308AF && qvga)
4015 /* HDG: this fixes U and V getting swapped */
4016 hwsbase++;
4017 if (crop) {
4018 hwsbase += 8;
4019 hwebase += 8;
4020 vwsbase += 11;
4021 vwebase += 11;
4023 break;
4024 case SEN_OV7620:
4025 case SEN_OV7620AE:
4026 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
4027 hwebase = 0x2f;
4028 vwsbase = vwebase = 0x05;
4029 break;
4030 case SEN_OV7640:
4031 case SEN_OV7648:
4032 hwsbase = 0x1a;
4033 hwebase = 0x1a;
4034 vwsbase = vwebase = 0x03;
4035 break;
4036 default:
4037 return;
4040 switch (sd->sensor) {
4041 case SEN_OV6620:
4042 case SEN_OV6630:
4043 case SEN_OV66308AF:
4044 if (qvga) { /* QCIF */
4045 hwscale = 0;
4046 vwscale = 0;
4047 } else { /* CIF */
4048 hwscale = 1;
4049 vwscale = 1; /* The datasheet says 0;
4050 * it's wrong */
4052 break;
4053 case SEN_OV8610:
4054 if (qvga) { /* QSVGA */
4055 hwscale = 1;
4056 vwscale = 1;
4057 } else { /* SVGA */
4058 hwscale = 2;
4059 vwscale = 2;
4061 break;
4062 default: /* SEN_OV7xx0 */
4063 if (qvga) { /* QVGA */
4064 hwscale = 1;
4065 vwscale = 0;
4066 } else { /* VGA */
4067 hwscale = 2;
4068 vwscale = 1;
4072 mode_init_ov_sensor_regs(sd);
4074 i2c_w(sd, 0x17, hwsbase);
4075 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4076 i2c_w(sd, 0x19, vwsbase);
4077 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4080 /* -- start the camera -- */
4081 static int sd_start(struct gspca_dev *gspca_dev)
4083 struct sd *sd = (struct sd *) gspca_dev;
4085 /* Default for most bridges, allow bridge_mode_init_regs to override */
4086 sd->sensor_width = sd->gspca_dev.width;
4087 sd->sensor_height = sd->gspca_dev.height;
4089 switch (sd->bridge) {
4090 case BRIDGE_OV511:
4091 case BRIDGE_OV511PLUS:
4092 ov511_mode_init_regs(sd);
4093 break;
4094 case BRIDGE_OV518:
4095 case BRIDGE_OV518PLUS:
4096 ov518_mode_init_regs(sd);
4097 break;
4098 case BRIDGE_OV519:
4099 ov519_mode_init_regs(sd);
4100 break;
4101 /* case BRIDGE_OVFX2: nothing to do */
4102 case BRIDGE_W9968CF:
4103 w9968cf_mode_init_regs(sd);
4104 break;
4107 set_ov_sensor_window(sd);
4109 if (!(sd->gspca_dev.ctrl_dis & (1 << CONTRAST)))
4110 setcontrast(gspca_dev);
4111 if (!(sd->gspca_dev.ctrl_dis & (1 << BRIGHTNESS)))
4112 setbrightness(gspca_dev);
4113 if (!(sd->gspca_dev.ctrl_dis & (1 << COLORS)))
4114 setcolors(gspca_dev);
4115 if (!(sd->gspca_dev.ctrl_dis & ((1 << HFLIP) | (1 << VFLIP))))
4116 sethvflip(gspca_dev);
4117 if (!(sd->gspca_dev.ctrl_dis & (1 << AUTOBRIGHT)))
4118 setautobright(gspca_dev);
4119 if (!(sd->gspca_dev.ctrl_dis & (1 << FREQ)))
4120 setfreq_i(sd);
4122 /* Force clear snapshot state in case the snapshot button was
4123 pressed while we weren't streaming */
4124 sd->snapshot_needs_reset = 1;
4125 sd_reset_snapshot(gspca_dev);
4127 sd->first_frame = 3;
4129 ov51x_restart(sd);
4130 ov51x_led_control(sd, 1);
4131 return gspca_dev->usb_err;
4134 static void sd_stopN(struct gspca_dev *gspca_dev)
4136 struct sd *sd = (struct sd *) gspca_dev;
4138 ov51x_stop(sd);
4139 ov51x_led_control(sd, 0);
4142 static void sd_stop0(struct gspca_dev *gspca_dev)
4144 struct sd *sd = (struct sd *) gspca_dev;
4146 if (!sd->gspca_dev.present)
4147 return;
4148 if (sd->bridge == BRIDGE_W9968CF)
4149 w9968cf_stop0(sd);
4151 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4152 /* If the last button state is pressed, release it now! */
4153 if (sd->snapshot_pressed) {
4154 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4155 input_sync(gspca_dev->input_dev);
4156 sd->snapshot_pressed = 0;
4158 #endif
4159 if (sd->bridge == BRIDGE_OV519)
4160 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4163 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4165 struct sd *sd = (struct sd *) gspca_dev;
4167 if (sd->snapshot_pressed != state) {
4168 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4169 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4170 input_sync(gspca_dev->input_dev);
4171 #endif
4172 if (state)
4173 sd->snapshot_needs_reset = 1;
4175 sd->snapshot_pressed = state;
4176 } else {
4177 /* On the ov511 / ov519 we need to reset the button state
4178 multiple times, as resetting does not work as long as the
4179 button stays pressed */
4180 switch (sd->bridge) {
4181 case BRIDGE_OV511:
4182 case BRIDGE_OV511PLUS:
4183 case BRIDGE_OV519:
4184 if (state)
4185 sd->snapshot_needs_reset = 1;
4186 break;
4191 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4192 u8 *in, /* isoc packet */
4193 int len) /* iso packet length */
4195 struct sd *sd = (struct sd *) gspca_dev;
4197 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4198 * byte non-zero. The EOF packet has image width/height in the
4199 * 10th and 11th bytes. The 9th byte is given as follows:
4201 * bit 7: EOF
4202 * 6: compression enabled
4203 * 5: 422/420/400 modes
4204 * 4: 422/420/400 modes
4205 * 3: 1
4206 * 2: snapshot button on
4207 * 1: snapshot frame
4208 * 0: even/odd field
4210 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4211 (in[8] & 0x08)) {
4212 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4213 if (in[8] & 0x80) {
4214 /* Frame end */
4215 if ((in[9] + 1) * 8 != gspca_dev->width ||
4216 (in[10] + 1) * 8 != gspca_dev->height) {
4217 PDEBUG(D_ERR, "Invalid frame size, got: %dx%d,"
4218 " requested: %dx%d\n",
4219 (in[9] + 1) * 8, (in[10] + 1) * 8,
4220 gspca_dev->width, gspca_dev->height);
4221 gspca_dev->last_packet_type = DISCARD_PACKET;
4222 return;
4224 /* Add 11 byte footer to frame, might be usefull */
4225 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4226 return;
4227 } else {
4228 /* Frame start */
4229 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4230 sd->packet_nr = 0;
4234 /* Ignore the packet number */
4235 len--;
4237 /* intermediate packet */
4238 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4241 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4242 u8 *data, /* isoc packet */
4243 int len) /* iso packet length */
4245 struct sd *sd = (struct sd *) gspca_dev;
4247 /* A false positive here is likely, until OVT gives me
4248 * the definitive SOF/EOF format */
4249 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4250 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4251 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4252 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4253 sd->packet_nr = 0;
4256 if (gspca_dev->last_packet_type == DISCARD_PACKET)
4257 return;
4259 /* Does this device use packet numbers ? */
4260 if (len & 7) {
4261 len--;
4262 if (sd->packet_nr == data[len])
4263 sd->packet_nr++;
4264 /* The last few packets of the frame (which are all 0's
4265 except that they may contain part of the footer), are
4266 numbered 0 */
4267 else if (sd->packet_nr == 0 || data[len]) {
4268 PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)",
4269 (int)data[len], (int)sd->packet_nr);
4270 gspca_dev->last_packet_type = DISCARD_PACKET;
4271 return;
4275 /* intermediate packet */
4276 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4279 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4280 u8 *data, /* isoc packet */
4281 int len) /* iso packet length */
4283 /* Header of ov519 is 16 bytes:
4284 * Byte Value Description
4285 * 0 0xff magic
4286 * 1 0xff magic
4287 * 2 0xff magic
4288 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4289 * 9 0xXX 0x01 initial frame without data,
4290 * 0x00 standard frame with image
4291 * 14 Lo in EOF: length of image data / 8
4292 * 15 Hi
4295 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4296 switch (data[3]) {
4297 case 0x50: /* start of frame */
4298 /* Don't check the button state here, as the state
4299 usually (always ?) changes at EOF and checking it
4300 here leads to unnecessary snapshot state resets. */
4301 #define HDRSZ 16
4302 data += HDRSZ;
4303 len -= HDRSZ;
4304 #undef HDRSZ
4305 if (data[0] == 0xff || data[1] == 0xd8)
4306 gspca_frame_add(gspca_dev, FIRST_PACKET,
4307 data, len);
4308 else
4309 gspca_dev->last_packet_type = DISCARD_PACKET;
4310 return;
4311 case 0x51: /* end of frame */
4312 ov51x_handle_button(gspca_dev, data[11] & 1);
4313 if (data[9] != 0)
4314 gspca_dev->last_packet_type = DISCARD_PACKET;
4315 gspca_frame_add(gspca_dev, LAST_PACKET,
4316 NULL, 0);
4317 return;
4321 /* intermediate packet */
4322 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4325 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4326 u8 *data, /* isoc packet */
4327 int len) /* iso packet length */
4329 struct sd *sd = (struct sd *) gspca_dev;
4331 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4333 /* A short read signals EOF */
4334 if (len < OVFX2_BULK_SIZE) {
4335 /* If the frame is short, and it is one of the first ones
4336 the sensor and bridge are still syncing, so drop it. */
4337 if (sd->first_frame) {
4338 sd->first_frame--;
4339 if (gspca_dev->image_len <
4340 sd->gspca_dev.width * sd->gspca_dev.height)
4341 gspca_dev->last_packet_type = DISCARD_PACKET;
4343 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4344 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4348 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4349 u8 *data, /* isoc packet */
4350 int len) /* iso packet length */
4352 struct sd *sd = (struct sd *) gspca_dev;
4354 switch (sd->bridge) {
4355 case BRIDGE_OV511:
4356 case BRIDGE_OV511PLUS:
4357 ov511_pkt_scan(gspca_dev, data, len);
4358 break;
4359 case BRIDGE_OV518:
4360 case BRIDGE_OV518PLUS:
4361 ov518_pkt_scan(gspca_dev, data, len);
4362 break;
4363 case BRIDGE_OV519:
4364 ov519_pkt_scan(gspca_dev, data, len);
4365 break;
4366 case BRIDGE_OVFX2:
4367 ovfx2_pkt_scan(gspca_dev, data, len);
4368 break;
4369 case BRIDGE_W9968CF:
4370 w9968cf_pkt_scan(gspca_dev, data, len);
4371 break;
4375 /* -- management routines -- */
4377 static void setbrightness(struct gspca_dev *gspca_dev)
4379 struct sd *sd = (struct sd *) gspca_dev;
4380 int val;
4381 static const struct ov_i2c_regvals brit_7660[][7] = {
4382 {{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4383 {0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4384 {{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4385 {0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4386 {{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4387 {0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4388 {{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4389 {0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4390 {{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4391 {0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4392 {{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4393 {0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4394 {{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4395 {0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4398 val = sd->ctrls[BRIGHTNESS].val;
4399 switch (sd->sensor) {
4400 case SEN_OV8610:
4401 case SEN_OV7610:
4402 case SEN_OV76BE:
4403 case SEN_OV6620:
4404 case SEN_OV6630:
4405 case SEN_OV66308AF:
4406 case SEN_OV7640:
4407 case SEN_OV7648:
4408 i2c_w(sd, OV7610_REG_BRT, val);
4409 break;
4410 case SEN_OV7620:
4411 case SEN_OV7620AE:
4412 /* 7620 doesn't like manual changes when in auto mode */
4413 if (!sd->ctrls[AUTOBRIGHT].val)
4414 i2c_w(sd, OV7610_REG_BRT, val);
4415 break;
4416 case SEN_OV7660:
4417 write_i2c_regvals(sd, brit_7660[val],
4418 ARRAY_SIZE(brit_7660[0]));
4419 break;
4420 case SEN_OV7670:
4421 /*win trace
4422 * i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4423 i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4424 break;
4428 static void setcontrast(struct gspca_dev *gspca_dev)
4430 struct sd *sd = (struct sd *) gspca_dev;
4431 int val;
4432 static const struct ov_i2c_regvals contrast_7660[][31] = {
4433 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4434 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4435 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4436 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4437 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4438 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4439 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4440 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4441 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4442 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4443 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4444 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4445 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4446 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4447 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4448 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4449 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4450 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4451 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4452 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4453 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4454 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4455 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4456 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4457 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4458 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4459 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4460 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4461 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4462 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4463 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4464 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4465 {{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4466 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4467 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4468 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4469 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4470 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4471 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4472 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4473 {{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4474 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4475 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4476 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4477 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4478 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4479 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4480 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4481 {{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4482 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4483 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4484 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4485 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4486 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4487 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4488 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4491 val = sd->ctrls[CONTRAST].val;
4492 switch (sd->sensor) {
4493 case SEN_OV7610:
4494 case SEN_OV6620:
4495 i2c_w(sd, OV7610_REG_CNT, val);
4496 break;
4497 case SEN_OV6630:
4498 case SEN_OV66308AF:
4499 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4500 break;
4501 case SEN_OV8610: {
4502 static const u8 ctab[] = {
4503 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4506 /* Use Y gamma control instead. Bit 0 enables it. */
4507 i2c_w(sd, 0x64, ctab[val >> 5]);
4508 break;
4510 case SEN_OV7620:
4511 case SEN_OV7620AE: {
4512 static const u8 ctab[] = {
4513 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4514 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4517 /* Use Y gamma control instead. Bit 0 enables it. */
4518 i2c_w(sd, 0x64, ctab[val >> 4]);
4519 break;
4521 case SEN_OV7660:
4522 write_i2c_regvals(sd, contrast_7660[val],
4523 ARRAY_SIZE(contrast_7660[0]));
4524 break;
4525 case SEN_OV7670:
4526 /* check that this isn't just the same as ov7610 */
4527 i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4528 break;
4532 static void setcolors(struct gspca_dev *gspca_dev)
4534 struct sd *sd = (struct sd *) gspca_dev;
4535 int val;
4536 static const struct ov_i2c_regvals colors_7660[][6] = {
4537 {{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4538 {0x53, 0x19}, {0x54, 0x23}},
4539 {{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4540 {0x53, 0x2c}, {0x54, 0x3e}},
4541 {{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4542 {0x53, 0x40}, {0x54, 0x59}},
4543 {{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4544 {0x53, 0x53}, {0x54, 0x73}},
4545 {{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4546 {0x53, 0x66}, {0x54, 0x8e}},
4549 val = sd->ctrls[COLORS].val;
4550 switch (sd->sensor) {
4551 case SEN_OV8610:
4552 case SEN_OV7610:
4553 case SEN_OV76BE:
4554 case SEN_OV6620:
4555 case SEN_OV6630:
4556 case SEN_OV66308AF:
4557 i2c_w(sd, OV7610_REG_SAT, val);
4558 break;
4559 case SEN_OV7620:
4560 case SEN_OV7620AE:
4561 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4562 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4563 if (rc < 0)
4564 goto out; */
4565 i2c_w(sd, OV7610_REG_SAT, val);
4566 break;
4567 case SEN_OV7640:
4568 case SEN_OV7648:
4569 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4570 break;
4571 case SEN_OV7660:
4572 write_i2c_regvals(sd, colors_7660[val],
4573 ARRAY_SIZE(colors_7660[0]));
4574 break;
4575 case SEN_OV7670:
4576 /* supported later once I work out how to do it
4577 * transparently fail now! */
4578 /* set REG_COM13 values for UV sat auto mode */
4579 break;
4583 static void setautobright(struct gspca_dev *gspca_dev)
4585 struct sd *sd = (struct sd *) gspca_dev;
4587 i2c_w_mask(sd, 0x2d, sd->ctrls[AUTOBRIGHT].val ? 0x10 : 0x00, 0x10);
4590 static void setfreq_i(struct sd *sd)
4592 if (sd->sensor == SEN_OV7660
4593 || sd->sensor == SEN_OV7670) {
4594 switch (sd->ctrls[FREQ].val) {
4595 case 0: /* Banding filter disabled */
4596 i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4597 break;
4598 case 1: /* 50 hz */
4599 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4600 OV7670_COM8_BFILT);
4601 i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4602 break;
4603 case 2: /* 60 hz */
4604 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4605 OV7670_COM8_BFILT);
4606 i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4607 break;
4608 case 3: /* Auto hz - ov7670 only */
4609 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4610 OV7670_COM8_BFILT);
4611 i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4612 0x18);
4613 break;
4615 } else {
4616 switch (sd->ctrls[FREQ].val) {
4617 case 0: /* Banding filter disabled */
4618 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4619 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4620 break;
4621 case 1: /* 50 hz (filter on and framerate adj) */
4622 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4623 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4624 /* 20 fps -> 16.667 fps */
4625 if (sd->sensor == SEN_OV6620 ||
4626 sd->sensor == SEN_OV6630 ||
4627 sd->sensor == SEN_OV66308AF)
4628 i2c_w(sd, 0x2b, 0x5e);
4629 else
4630 i2c_w(sd, 0x2b, 0xac);
4631 break;
4632 case 2: /* 60 hz (filter on, ...) */
4633 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4634 if (sd->sensor == SEN_OV6620 ||
4635 sd->sensor == SEN_OV6630 ||
4636 sd->sensor == SEN_OV66308AF) {
4637 /* 20 fps -> 15 fps */
4638 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4639 i2c_w(sd, 0x2b, 0xa8);
4640 } else {
4641 /* no framerate adj. */
4642 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4644 break;
4648 static void setfreq(struct gspca_dev *gspca_dev)
4650 struct sd *sd = (struct sd *) gspca_dev;
4652 setfreq_i(sd);
4654 /* Ugly but necessary */
4655 if (sd->bridge == BRIDGE_W9968CF)
4656 w9968cf_set_crop_window(sd);
4659 static int sd_querymenu(struct gspca_dev *gspca_dev,
4660 struct v4l2_querymenu *menu)
4662 struct sd *sd = (struct sd *) gspca_dev;
4664 switch (menu->id) {
4665 case V4L2_CID_POWER_LINE_FREQUENCY:
4666 switch (menu->index) {
4667 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
4668 strcpy((char *) menu->name, "NoFliker");
4669 return 0;
4670 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
4671 strcpy((char *) menu->name, "50 Hz");
4672 return 0;
4673 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
4674 strcpy((char *) menu->name, "60 Hz");
4675 return 0;
4676 case 3:
4677 if (sd->sensor != SEN_OV7670)
4678 return -EINVAL;
4680 strcpy((char *) menu->name, "Automatic");
4681 return 0;
4683 break;
4685 return -EINVAL;
4688 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4689 struct v4l2_jpegcompression *jcomp)
4691 struct sd *sd = (struct sd *) gspca_dev;
4693 if (sd->bridge != BRIDGE_W9968CF)
4694 return -EINVAL;
4696 memset(jcomp, 0, sizeof *jcomp);
4697 jcomp->quality = sd->quality;
4698 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4699 V4L2_JPEG_MARKER_DRI;
4700 return 0;
4703 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4704 struct v4l2_jpegcompression *jcomp)
4706 struct sd *sd = (struct sd *) gspca_dev;
4708 if (sd->bridge != BRIDGE_W9968CF)
4709 return -EINVAL;
4711 if (gspca_dev->streaming)
4712 return -EBUSY;
4714 if (jcomp->quality < QUALITY_MIN)
4715 sd->quality = QUALITY_MIN;
4716 else if (jcomp->quality > QUALITY_MAX)
4717 sd->quality = QUALITY_MAX;
4718 else
4719 sd->quality = jcomp->quality;
4721 /* Return resulting jcomp params to app */
4722 sd_get_jcomp(gspca_dev, jcomp);
4724 return 0;
4727 /* sub-driver description */
4728 static const struct sd_desc sd_desc = {
4729 .name = MODULE_NAME,
4730 .ctrls = sd_ctrls,
4731 .nctrls = ARRAY_SIZE(sd_ctrls),
4732 .config = sd_config,
4733 .init = sd_init,
4734 .start = sd_start,
4735 .stopN = sd_stopN,
4736 .stop0 = sd_stop0,
4737 .pkt_scan = sd_pkt_scan,
4738 .dq_callback = sd_reset_snapshot,
4739 .querymenu = sd_querymenu,
4740 .get_jcomp = sd_get_jcomp,
4741 .set_jcomp = sd_set_jcomp,
4742 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4743 .other_input = 1,
4744 #endif
4747 /* -- module initialisation -- */
4748 static const struct usb_device_id device_table[] = {
4749 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4750 {USB_DEVICE(0x041e, 0x4052), .driver_info = BRIDGE_OV519 },
4751 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4752 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4753 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4754 {USB_DEVICE(0x041e, 0x4064),
4755 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4756 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4757 {USB_DEVICE(0x041e, 0x4068),
4758 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4759 {USB_DEVICE(0x045e, 0x028c), .driver_info = BRIDGE_OV519 },
4760 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4761 {USB_DEVICE(0x054c, 0x0155),
4762 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4763 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4764 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4765 {USB_DEVICE(0x05a9, 0x0519), .driver_info = BRIDGE_OV519 },
4766 {USB_DEVICE(0x05a9, 0x0530), .driver_info = BRIDGE_OV519 },
4767 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4768 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4769 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4770 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4771 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4772 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4773 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4774 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4775 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4776 {USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
4780 MODULE_DEVICE_TABLE(usb, device_table);
4782 /* -- device connect -- */
4783 static int sd_probe(struct usb_interface *intf,
4784 const struct usb_device_id *id)
4786 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
4787 THIS_MODULE);
4790 static struct usb_driver sd_driver = {
4791 .name = MODULE_NAME,
4792 .id_table = device_table,
4793 .probe = sd_probe,
4794 .disconnect = gspca_disconnect,
4795 #ifdef CONFIG_PM
4796 .suspend = gspca_suspend,
4797 .resume = gspca_resume,
4798 #endif
4801 /* -- module insert / remove -- */
4802 static int __init sd_mod_init(void)
4804 return usb_register(&sd_driver);
4806 static void __exit sd_mod_exit(void)
4808 usb_deregister(&sd_driver);
4811 module_init(sd_mod_init);
4812 module_exit(sd_mod_exit);
4814 module_param(frame_rate, int, 0644);
4815 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");