Merge branch 'v6v7' into devel
[linux/fpc-iii.git] / fs / btrfs / delayed-ref.c
blobe807b143b8578a5ed58d3f90dfeec06fa5af7f20
1 /*
2 * Copyright (C) 2009 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include "ctree.h"
23 #include "delayed-ref.h"
24 #include "transaction.h"
27 * delayed back reference update tracking. For subvolume trees
28 * we queue up extent allocations and backref maintenance for
29 * delayed processing. This avoids deep call chains where we
30 * add extents in the middle of btrfs_search_slot, and it allows
31 * us to buffer up frequently modified backrefs in an rb tree instead
32 * of hammering updates on the extent allocation tree.
36 * compare two delayed tree backrefs with same bytenr and type
38 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
39 struct btrfs_delayed_tree_ref *ref1)
41 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
42 if (ref1->root < ref2->root)
43 return -1;
44 if (ref1->root > ref2->root)
45 return 1;
46 } else {
47 if (ref1->parent < ref2->parent)
48 return -1;
49 if (ref1->parent > ref2->parent)
50 return 1;
52 return 0;
56 * compare two delayed data backrefs with same bytenr and type
58 static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
59 struct btrfs_delayed_data_ref *ref1)
61 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
62 if (ref1->root < ref2->root)
63 return -1;
64 if (ref1->root > ref2->root)
65 return 1;
66 if (ref1->objectid < ref2->objectid)
67 return -1;
68 if (ref1->objectid > ref2->objectid)
69 return 1;
70 if (ref1->offset < ref2->offset)
71 return -1;
72 if (ref1->offset > ref2->offset)
73 return 1;
74 } else {
75 if (ref1->parent < ref2->parent)
76 return -1;
77 if (ref1->parent > ref2->parent)
78 return 1;
80 return 0;
84 * entries in the rb tree are ordered by the byte number of the extent,
85 * type of the delayed backrefs and content of delayed backrefs.
87 static int comp_entry(struct btrfs_delayed_ref_node *ref2,
88 struct btrfs_delayed_ref_node *ref1)
90 if (ref1->bytenr < ref2->bytenr)
91 return -1;
92 if (ref1->bytenr > ref2->bytenr)
93 return 1;
94 if (ref1->is_head && ref2->is_head)
95 return 0;
96 if (ref2->is_head)
97 return -1;
98 if (ref1->is_head)
99 return 1;
100 if (ref1->type < ref2->type)
101 return -1;
102 if (ref1->type > ref2->type)
103 return 1;
104 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
105 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
106 return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
107 btrfs_delayed_node_to_tree_ref(ref1));
108 } else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
109 ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
110 return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
111 btrfs_delayed_node_to_data_ref(ref1));
113 BUG();
114 return 0;
118 * insert a new ref into the rbtree. This returns any existing refs
119 * for the same (bytenr,parent) tuple, or NULL if the new node was properly
120 * inserted.
122 static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
123 struct rb_node *node)
125 struct rb_node **p = &root->rb_node;
126 struct rb_node *parent_node = NULL;
127 struct btrfs_delayed_ref_node *entry;
128 struct btrfs_delayed_ref_node *ins;
129 int cmp;
131 ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
132 while (*p) {
133 parent_node = *p;
134 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
135 rb_node);
137 cmp = comp_entry(entry, ins);
138 if (cmp < 0)
139 p = &(*p)->rb_left;
140 else if (cmp > 0)
141 p = &(*p)->rb_right;
142 else
143 return entry;
146 rb_link_node(node, parent_node, p);
147 rb_insert_color(node, root);
148 return NULL;
152 * find an head entry based on bytenr. This returns the delayed ref
153 * head if it was able to find one, or NULL if nothing was in that spot
155 static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
156 u64 bytenr,
157 struct btrfs_delayed_ref_node **last)
159 struct rb_node *n = root->rb_node;
160 struct btrfs_delayed_ref_node *entry;
161 int cmp;
163 while (n) {
164 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
165 WARN_ON(!entry->in_tree);
166 if (last)
167 *last = entry;
169 if (bytenr < entry->bytenr)
170 cmp = -1;
171 else if (bytenr > entry->bytenr)
172 cmp = 1;
173 else if (!btrfs_delayed_ref_is_head(entry))
174 cmp = 1;
175 else
176 cmp = 0;
178 if (cmp < 0)
179 n = n->rb_left;
180 else if (cmp > 0)
181 n = n->rb_right;
182 else
183 return entry;
185 return NULL;
188 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
189 struct btrfs_delayed_ref_head *head)
191 struct btrfs_delayed_ref_root *delayed_refs;
193 delayed_refs = &trans->transaction->delayed_refs;
194 assert_spin_locked(&delayed_refs->lock);
195 if (mutex_trylock(&head->mutex))
196 return 0;
198 atomic_inc(&head->node.refs);
199 spin_unlock(&delayed_refs->lock);
201 mutex_lock(&head->mutex);
202 spin_lock(&delayed_refs->lock);
203 if (!head->node.in_tree) {
204 mutex_unlock(&head->mutex);
205 btrfs_put_delayed_ref(&head->node);
206 return -EAGAIN;
208 btrfs_put_delayed_ref(&head->node);
209 return 0;
212 int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
213 struct list_head *cluster, u64 start)
215 int count = 0;
216 struct btrfs_delayed_ref_root *delayed_refs;
217 struct rb_node *node;
218 struct btrfs_delayed_ref_node *ref;
219 struct btrfs_delayed_ref_head *head;
221 delayed_refs = &trans->transaction->delayed_refs;
222 if (start == 0) {
223 node = rb_first(&delayed_refs->root);
224 } else {
225 ref = NULL;
226 find_ref_head(&delayed_refs->root, start, &ref);
227 if (ref) {
228 struct btrfs_delayed_ref_node *tmp;
230 node = rb_prev(&ref->rb_node);
231 while (node) {
232 tmp = rb_entry(node,
233 struct btrfs_delayed_ref_node,
234 rb_node);
235 if (tmp->bytenr < start)
236 break;
237 ref = tmp;
238 node = rb_prev(&ref->rb_node);
240 node = &ref->rb_node;
241 } else
242 node = rb_first(&delayed_refs->root);
244 again:
245 while (node && count < 32) {
246 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
247 if (btrfs_delayed_ref_is_head(ref)) {
248 head = btrfs_delayed_node_to_head(ref);
249 if (list_empty(&head->cluster)) {
250 list_add_tail(&head->cluster, cluster);
251 delayed_refs->run_delayed_start =
252 head->node.bytenr;
253 count++;
255 WARN_ON(delayed_refs->num_heads_ready == 0);
256 delayed_refs->num_heads_ready--;
257 } else if (count) {
258 /* the goal of the clustering is to find extents
259 * that are likely to end up in the same extent
260 * leaf on disk. So, we don't want them spread
261 * all over the tree. Stop now if we've hit
262 * a head that was already in use
264 break;
267 node = rb_next(node);
269 if (count) {
270 return 0;
271 } else if (start) {
273 * we've gone to the end of the rbtree without finding any
274 * clusters. start from the beginning and try again
276 start = 0;
277 node = rb_first(&delayed_refs->root);
278 goto again;
280 return 1;
284 * This checks to see if there are any delayed refs in the
285 * btree for a given bytenr. It returns one if it finds any
286 * and zero otherwise.
288 * If it only finds a head node, it returns 0.
290 * The idea is to use this when deciding if you can safely delete an
291 * extent from the extent allocation tree. There may be a pending
292 * ref in the rbtree that adds or removes references, so as long as this
293 * returns one you need to leave the BTRFS_EXTENT_ITEM in the extent
294 * allocation tree.
296 int btrfs_delayed_ref_pending(struct btrfs_trans_handle *trans, u64 bytenr)
298 struct btrfs_delayed_ref_node *ref;
299 struct btrfs_delayed_ref_root *delayed_refs;
300 struct rb_node *prev_node;
301 int ret = 0;
303 delayed_refs = &trans->transaction->delayed_refs;
304 spin_lock(&delayed_refs->lock);
306 ref = find_ref_head(&delayed_refs->root, bytenr, NULL);
307 if (ref) {
308 prev_node = rb_prev(&ref->rb_node);
309 if (!prev_node)
310 goto out;
311 ref = rb_entry(prev_node, struct btrfs_delayed_ref_node,
312 rb_node);
313 if (ref->bytenr == bytenr)
314 ret = 1;
316 out:
317 spin_unlock(&delayed_refs->lock);
318 return ret;
322 * helper function to update an extent delayed ref in the
323 * rbtree. existing and update must both have the same
324 * bytenr and parent
326 * This may free existing if the update cancels out whatever
327 * operation it was doing.
329 static noinline void
330 update_existing_ref(struct btrfs_trans_handle *trans,
331 struct btrfs_delayed_ref_root *delayed_refs,
332 struct btrfs_delayed_ref_node *existing,
333 struct btrfs_delayed_ref_node *update)
335 if (update->action != existing->action) {
337 * this is effectively undoing either an add or a
338 * drop. We decrement the ref_mod, and if it goes
339 * down to zero we just delete the entry without
340 * every changing the extent allocation tree.
342 existing->ref_mod--;
343 if (existing->ref_mod == 0) {
344 rb_erase(&existing->rb_node,
345 &delayed_refs->root);
346 existing->in_tree = 0;
347 btrfs_put_delayed_ref(existing);
348 delayed_refs->num_entries--;
349 if (trans->delayed_ref_updates)
350 trans->delayed_ref_updates--;
351 } else {
352 WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
353 existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
355 } else {
356 WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
357 existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
359 * the action on the existing ref matches
360 * the action on the ref we're trying to add.
361 * Bump the ref_mod by one so the backref that
362 * is eventually added/removed has the correct
363 * reference count
365 existing->ref_mod += update->ref_mod;
370 * helper function to update the accounting in the head ref
371 * existing and update must have the same bytenr
373 static noinline void
374 update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
375 struct btrfs_delayed_ref_node *update)
377 struct btrfs_delayed_ref_head *existing_ref;
378 struct btrfs_delayed_ref_head *ref;
380 existing_ref = btrfs_delayed_node_to_head(existing);
381 ref = btrfs_delayed_node_to_head(update);
382 BUG_ON(existing_ref->is_data != ref->is_data);
384 if (ref->must_insert_reserved) {
385 /* if the extent was freed and then
386 * reallocated before the delayed ref
387 * entries were processed, we can end up
388 * with an existing head ref without
389 * the must_insert_reserved flag set.
390 * Set it again here
392 existing_ref->must_insert_reserved = ref->must_insert_reserved;
395 * update the num_bytes so we make sure the accounting
396 * is done correctly
398 existing->num_bytes = update->num_bytes;
402 if (ref->extent_op) {
403 if (!existing_ref->extent_op) {
404 existing_ref->extent_op = ref->extent_op;
405 } else {
406 if (ref->extent_op->update_key) {
407 memcpy(&existing_ref->extent_op->key,
408 &ref->extent_op->key,
409 sizeof(ref->extent_op->key));
410 existing_ref->extent_op->update_key = 1;
412 if (ref->extent_op->update_flags) {
413 existing_ref->extent_op->flags_to_set |=
414 ref->extent_op->flags_to_set;
415 existing_ref->extent_op->update_flags = 1;
417 kfree(ref->extent_op);
421 * update the reference mod on the head to reflect this new operation
423 existing->ref_mod += update->ref_mod;
427 * helper function to actually insert a head node into the rbtree.
428 * this does all the dirty work in terms of maintaining the correct
429 * overall modification count.
431 static noinline int add_delayed_ref_head(struct btrfs_trans_handle *trans,
432 struct btrfs_delayed_ref_node *ref,
433 u64 bytenr, u64 num_bytes,
434 int action, int is_data)
436 struct btrfs_delayed_ref_node *existing;
437 struct btrfs_delayed_ref_head *head_ref = NULL;
438 struct btrfs_delayed_ref_root *delayed_refs;
439 int count_mod = 1;
440 int must_insert_reserved = 0;
443 * the head node stores the sum of all the mods, so dropping a ref
444 * should drop the sum in the head node by one.
446 if (action == BTRFS_UPDATE_DELAYED_HEAD)
447 count_mod = 0;
448 else if (action == BTRFS_DROP_DELAYED_REF)
449 count_mod = -1;
452 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
453 * the reserved accounting when the extent is finally added, or
454 * if a later modification deletes the delayed ref without ever
455 * inserting the extent into the extent allocation tree.
456 * ref->must_insert_reserved is the flag used to record
457 * that accounting mods are required.
459 * Once we record must_insert_reserved, switch the action to
460 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
462 if (action == BTRFS_ADD_DELAYED_EXTENT)
463 must_insert_reserved = 1;
464 else
465 must_insert_reserved = 0;
467 delayed_refs = &trans->transaction->delayed_refs;
469 /* first set the basic ref node struct up */
470 atomic_set(&ref->refs, 1);
471 ref->bytenr = bytenr;
472 ref->num_bytes = num_bytes;
473 ref->ref_mod = count_mod;
474 ref->type = 0;
475 ref->action = 0;
476 ref->is_head = 1;
477 ref->in_tree = 1;
479 head_ref = btrfs_delayed_node_to_head(ref);
480 head_ref->must_insert_reserved = must_insert_reserved;
481 head_ref->is_data = is_data;
483 INIT_LIST_HEAD(&head_ref->cluster);
484 mutex_init(&head_ref->mutex);
486 existing = tree_insert(&delayed_refs->root, &ref->rb_node);
488 if (existing) {
489 update_existing_head_ref(existing, ref);
491 * we've updated the existing ref, free the newly
492 * allocated ref
494 kfree(ref);
495 } else {
496 delayed_refs->num_heads++;
497 delayed_refs->num_heads_ready++;
498 delayed_refs->num_entries++;
499 trans->delayed_ref_updates++;
501 return 0;
505 * helper to insert a delayed tree ref into the rbtree.
507 static noinline int add_delayed_tree_ref(struct btrfs_trans_handle *trans,
508 struct btrfs_delayed_ref_node *ref,
509 u64 bytenr, u64 num_bytes, u64 parent,
510 u64 ref_root, int level, int action)
512 struct btrfs_delayed_ref_node *existing;
513 struct btrfs_delayed_tree_ref *full_ref;
514 struct btrfs_delayed_ref_root *delayed_refs;
516 if (action == BTRFS_ADD_DELAYED_EXTENT)
517 action = BTRFS_ADD_DELAYED_REF;
519 delayed_refs = &trans->transaction->delayed_refs;
521 /* first set the basic ref node struct up */
522 atomic_set(&ref->refs, 1);
523 ref->bytenr = bytenr;
524 ref->num_bytes = num_bytes;
525 ref->ref_mod = 1;
526 ref->action = action;
527 ref->is_head = 0;
528 ref->in_tree = 1;
530 full_ref = btrfs_delayed_node_to_tree_ref(ref);
531 if (parent) {
532 full_ref->parent = parent;
533 ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
534 } else {
535 full_ref->root = ref_root;
536 ref->type = BTRFS_TREE_BLOCK_REF_KEY;
538 full_ref->level = level;
540 existing = tree_insert(&delayed_refs->root, &ref->rb_node);
542 if (existing) {
543 update_existing_ref(trans, delayed_refs, existing, ref);
545 * we've updated the existing ref, free the newly
546 * allocated ref
548 kfree(ref);
549 } else {
550 delayed_refs->num_entries++;
551 trans->delayed_ref_updates++;
553 return 0;
557 * helper to insert a delayed data ref into the rbtree.
559 static noinline int add_delayed_data_ref(struct btrfs_trans_handle *trans,
560 struct btrfs_delayed_ref_node *ref,
561 u64 bytenr, u64 num_bytes, u64 parent,
562 u64 ref_root, u64 owner, u64 offset,
563 int action)
565 struct btrfs_delayed_ref_node *existing;
566 struct btrfs_delayed_data_ref *full_ref;
567 struct btrfs_delayed_ref_root *delayed_refs;
569 if (action == BTRFS_ADD_DELAYED_EXTENT)
570 action = BTRFS_ADD_DELAYED_REF;
572 delayed_refs = &trans->transaction->delayed_refs;
574 /* first set the basic ref node struct up */
575 atomic_set(&ref->refs, 1);
576 ref->bytenr = bytenr;
577 ref->num_bytes = num_bytes;
578 ref->ref_mod = 1;
579 ref->action = action;
580 ref->is_head = 0;
581 ref->in_tree = 1;
583 full_ref = btrfs_delayed_node_to_data_ref(ref);
584 if (parent) {
585 full_ref->parent = parent;
586 ref->type = BTRFS_SHARED_DATA_REF_KEY;
587 } else {
588 full_ref->root = ref_root;
589 ref->type = BTRFS_EXTENT_DATA_REF_KEY;
591 full_ref->objectid = owner;
592 full_ref->offset = offset;
594 existing = tree_insert(&delayed_refs->root, &ref->rb_node);
596 if (existing) {
597 update_existing_ref(trans, delayed_refs, existing, ref);
599 * we've updated the existing ref, free the newly
600 * allocated ref
602 kfree(ref);
603 } else {
604 delayed_refs->num_entries++;
605 trans->delayed_ref_updates++;
607 return 0;
611 * add a delayed tree ref. This does all of the accounting required
612 * to make sure the delayed ref is eventually processed before this
613 * transaction commits.
615 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
616 u64 bytenr, u64 num_bytes, u64 parent,
617 u64 ref_root, int level, int action,
618 struct btrfs_delayed_extent_op *extent_op)
620 struct btrfs_delayed_tree_ref *ref;
621 struct btrfs_delayed_ref_head *head_ref;
622 struct btrfs_delayed_ref_root *delayed_refs;
623 int ret;
625 BUG_ON(extent_op && extent_op->is_data);
626 ref = kmalloc(sizeof(*ref), GFP_NOFS);
627 if (!ref)
628 return -ENOMEM;
630 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
631 if (!head_ref) {
632 kfree(ref);
633 return -ENOMEM;
636 head_ref->extent_op = extent_op;
638 delayed_refs = &trans->transaction->delayed_refs;
639 spin_lock(&delayed_refs->lock);
642 * insert both the head node and the new ref without dropping
643 * the spin lock
645 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
646 action, 0);
647 BUG_ON(ret);
649 ret = add_delayed_tree_ref(trans, &ref->node, bytenr, num_bytes,
650 parent, ref_root, level, action);
651 BUG_ON(ret);
652 spin_unlock(&delayed_refs->lock);
653 return 0;
657 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
659 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
660 u64 bytenr, u64 num_bytes,
661 u64 parent, u64 ref_root,
662 u64 owner, u64 offset, int action,
663 struct btrfs_delayed_extent_op *extent_op)
665 struct btrfs_delayed_data_ref *ref;
666 struct btrfs_delayed_ref_head *head_ref;
667 struct btrfs_delayed_ref_root *delayed_refs;
668 int ret;
670 BUG_ON(extent_op && !extent_op->is_data);
671 ref = kmalloc(sizeof(*ref), GFP_NOFS);
672 if (!ref)
673 return -ENOMEM;
675 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
676 if (!head_ref) {
677 kfree(ref);
678 return -ENOMEM;
681 head_ref->extent_op = extent_op;
683 delayed_refs = &trans->transaction->delayed_refs;
684 spin_lock(&delayed_refs->lock);
687 * insert both the head node and the new ref without dropping
688 * the spin lock
690 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
691 action, 1);
692 BUG_ON(ret);
694 ret = add_delayed_data_ref(trans, &ref->node, bytenr, num_bytes,
695 parent, ref_root, owner, offset, action);
696 BUG_ON(ret);
697 spin_unlock(&delayed_refs->lock);
698 return 0;
701 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
702 u64 bytenr, u64 num_bytes,
703 struct btrfs_delayed_extent_op *extent_op)
705 struct btrfs_delayed_ref_head *head_ref;
706 struct btrfs_delayed_ref_root *delayed_refs;
707 int ret;
709 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
710 if (!head_ref)
711 return -ENOMEM;
713 head_ref->extent_op = extent_op;
715 delayed_refs = &trans->transaction->delayed_refs;
716 spin_lock(&delayed_refs->lock);
718 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr,
719 num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
720 extent_op->is_data);
721 BUG_ON(ret);
723 spin_unlock(&delayed_refs->lock);
724 return 0;
728 * this does a simple search for the head node for a given extent.
729 * It must be called with the delayed ref spinlock held, and it returns
730 * the head node if any where found, or NULL if not.
732 struct btrfs_delayed_ref_head *
733 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
735 struct btrfs_delayed_ref_node *ref;
736 struct btrfs_delayed_ref_root *delayed_refs;
738 delayed_refs = &trans->transaction->delayed_refs;
739 ref = find_ref_head(&delayed_refs->root, bytenr, NULL);
740 if (ref)
741 return btrfs_delayed_node_to_head(ref);
742 return NULL;
746 * add a delayed ref to the tree. This does all of the accounting required
747 * to make sure the delayed ref is eventually processed before this
748 * transaction commits.
750 * The main point of this call is to add and remove a backreference in a single
751 * shot, taking the lock only once, and only searching for the head node once.
753 * It is the same as doing a ref add and delete in two separate calls.
755 #if 0
756 int btrfs_update_delayed_ref(struct btrfs_trans_handle *trans,
757 u64 bytenr, u64 num_bytes, u64 orig_parent,
758 u64 parent, u64 orig_ref_root, u64 ref_root,
759 u64 orig_ref_generation, u64 ref_generation,
760 u64 owner_objectid, int pin)
762 struct btrfs_delayed_ref *ref;
763 struct btrfs_delayed_ref *old_ref;
764 struct btrfs_delayed_ref_head *head_ref;
765 struct btrfs_delayed_ref_root *delayed_refs;
766 int ret;
768 ref = kmalloc(sizeof(*ref), GFP_NOFS);
769 if (!ref)
770 return -ENOMEM;
772 old_ref = kmalloc(sizeof(*old_ref), GFP_NOFS);
773 if (!old_ref) {
774 kfree(ref);
775 return -ENOMEM;
779 * the parent = 0 case comes from cases where we don't actually
780 * know the parent yet. It will get updated later via a add/drop
781 * pair.
783 if (parent == 0)
784 parent = bytenr;
785 if (orig_parent == 0)
786 orig_parent = bytenr;
788 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
789 if (!head_ref) {
790 kfree(ref);
791 kfree(old_ref);
792 return -ENOMEM;
794 delayed_refs = &trans->transaction->delayed_refs;
795 spin_lock(&delayed_refs->lock);
798 * insert both the head node and the new ref without dropping
799 * the spin lock
801 ret = __btrfs_add_delayed_ref(trans, &head_ref->node, bytenr, num_bytes,
802 (u64)-1, 0, 0, 0,
803 BTRFS_UPDATE_DELAYED_HEAD, 0);
804 BUG_ON(ret);
806 ret = __btrfs_add_delayed_ref(trans, &ref->node, bytenr, num_bytes,
807 parent, ref_root, ref_generation,
808 owner_objectid, BTRFS_ADD_DELAYED_REF, 0);
809 BUG_ON(ret);
811 ret = __btrfs_add_delayed_ref(trans, &old_ref->node, bytenr, num_bytes,
812 orig_parent, orig_ref_root,
813 orig_ref_generation, owner_objectid,
814 BTRFS_DROP_DELAYED_REF, pin);
815 BUG_ON(ret);
816 spin_unlock(&delayed_refs->lock);
817 return 0;
819 #endif