2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "async-thread.h"
42 #include "free-space-cache.h"
44 static struct extent_io_ops btree_extent_io_ops
;
45 static void end_workqueue_fn(struct btrfs_work
*work
);
46 static void free_fs_root(struct btrfs_root
*root
);
47 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
49 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
);
50 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
51 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
52 struct btrfs_root
*root
);
53 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
);
54 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
55 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
56 struct extent_io_tree
*dirty_pages
,
58 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
59 struct extent_io_tree
*pinned_extents
);
60 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
63 * end_io_wq structs are used to do processing in task context when an IO is
64 * complete. This is used during reads to verify checksums, and it is used
65 * by writes to insert metadata for new file extents after IO is complete.
71 struct btrfs_fs_info
*info
;
74 struct list_head list
;
75 struct btrfs_work work
;
79 * async submit bios are used to offload expensive checksumming
80 * onto the worker threads. They checksum file and metadata bios
81 * just before they are sent down the IO stack.
83 struct async_submit_bio
{
86 struct list_head list
;
87 extent_submit_bio_hook_t
*submit_bio_start
;
88 extent_submit_bio_hook_t
*submit_bio_done
;
91 unsigned long bio_flags
;
93 * bio_offset is optional, can be used if the pages in the bio
94 * can't tell us where in the file the bio should go
97 struct btrfs_work work
;
100 /* These are used to set the lockdep class on the extent buffer locks.
101 * The class is set by the readpage_end_io_hook after the buffer has
102 * passed csum validation but before the pages are unlocked.
104 * The lockdep class is also set by btrfs_init_new_buffer on freshly
107 * The class is based on the level in the tree block, which allows lockdep
108 * to know that lower nodes nest inside the locks of higher nodes.
110 * We also add a check to make sure the highest level of the tree is
111 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
112 * code needs update as well.
114 #ifdef CONFIG_DEBUG_LOCK_ALLOC
115 # if BTRFS_MAX_LEVEL != 8
118 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
119 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
129 /* highest possible level */
135 * extents on the btree inode are pretty simple, there's one extent
136 * that covers the entire device
138 static struct extent_map
*btree_get_extent(struct inode
*inode
,
139 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
142 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
143 struct extent_map
*em
;
146 read_lock(&em_tree
->lock
);
147 em
= lookup_extent_mapping(em_tree
, start
, len
);
150 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
151 read_unlock(&em_tree
->lock
);
154 read_unlock(&em_tree
->lock
);
156 em
= alloc_extent_map(GFP_NOFS
);
158 em
= ERR_PTR(-ENOMEM
);
163 em
->block_len
= (u64
)-1;
165 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
167 write_lock(&em_tree
->lock
);
168 ret
= add_extent_mapping(em_tree
, em
);
169 if (ret
== -EEXIST
) {
170 u64 failed_start
= em
->start
;
171 u64 failed_len
= em
->len
;
174 em
= lookup_extent_mapping(em_tree
, start
, len
);
178 em
= lookup_extent_mapping(em_tree
, failed_start
,
186 write_unlock(&em_tree
->lock
);
194 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
196 return crc32c(seed
, data
, len
);
199 void btrfs_csum_final(u32 crc
, char *result
)
201 *(__le32
*)result
= ~cpu_to_le32(crc
);
205 * compute the csum for a btree block, and either verify it or write it
206 * into the csum field of the block.
208 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
212 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
215 unsigned long cur_len
;
216 unsigned long offset
= BTRFS_CSUM_SIZE
;
217 char *map_token
= NULL
;
219 unsigned long map_start
;
220 unsigned long map_len
;
223 unsigned long inline_result
;
225 len
= buf
->len
- offset
;
227 err
= map_private_extent_buffer(buf
, offset
, 32,
229 &map_start
, &map_len
, KM_USER0
);
232 cur_len
= min(len
, map_len
- (offset
- map_start
));
233 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
237 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
239 if (csum_size
> sizeof(inline_result
)) {
240 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
244 result
= (char *)&inline_result
;
247 btrfs_csum_final(crc
, result
);
250 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
253 memcpy(&found
, result
, csum_size
);
255 read_extent_buffer(buf
, &val
, 0, csum_size
);
256 if (printk_ratelimit()) {
257 printk(KERN_INFO
"btrfs: %s checksum verify "
258 "failed on %llu wanted %X found %X "
260 root
->fs_info
->sb
->s_id
,
261 (unsigned long long)buf
->start
, val
, found
,
262 btrfs_header_level(buf
));
264 if (result
!= (char *)&inline_result
)
269 write_extent_buffer(buf
, result
, 0, csum_size
);
271 if (result
!= (char *)&inline_result
)
277 * we can't consider a given block up to date unless the transid of the
278 * block matches the transid in the parent node's pointer. This is how we
279 * detect blocks that either didn't get written at all or got written
280 * in the wrong place.
282 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
283 struct extent_buffer
*eb
, u64 parent_transid
)
285 struct extent_state
*cached_state
= NULL
;
288 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
291 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
292 0, &cached_state
, GFP_NOFS
);
293 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
294 btrfs_header_generation(eb
) == parent_transid
) {
298 if (printk_ratelimit()) {
299 printk("parent transid verify failed on %llu wanted %llu "
301 (unsigned long long)eb
->start
,
302 (unsigned long long)parent_transid
,
303 (unsigned long long)btrfs_header_generation(eb
));
306 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
308 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
309 &cached_state
, GFP_NOFS
);
314 * helper to read a given tree block, doing retries as required when
315 * the checksums don't match and we have alternate mirrors to try.
317 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
318 struct extent_buffer
*eb
,
319 u64 start
, u64 parent_transid
)
321 struct extent_io_tree
*io_tree
;
326 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
328 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
329 btree_get_extent
, mirror_num
);
331 !verify_parent_transid(io_tree
, eb
, parent_transid
))
334 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
340 if (mirror_num
> num_copies
)
347 * checksum a dirty tree block before IO. This has extra checks to make sure
348 * we only fill in the checksum field in the first page of a multi-page block
351 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
353 struct extent_io_tree
*tree
;
354 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
357 struct extent_buffer
*eb
;
360 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
362 if (page
->private == EXTENT_PAGE_PRIVATE
) {
366 if (!page
->private) {
370 len
= page
->private >> 2;
373 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
378 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
379 btrfs_header_generation(eb
));
381 WARN_ON(!btrfs_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
));
383 found_start
= btrfs_header_bytenr(eb
);
384 if (found_start
!= start
) {
388 if (eb
->first_page
!= page
) {
392 if (!PageUptodate(page
)) {
396 csum_tree_block(root
, eb
, 0);
398 free_extent_buffer(eb
);
403 static int check_tree_block_fsid(struct btrfs_root
*root
,
404 struct extent_buffer
*eb
)
406 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
407 u8 fsid
[BTRFS_UUID_SIZE
];
410 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
413 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
417 fs_devices
= fs_devices
->seed
;
422 #ifdef CONFIG_DEBUG_LOCK_ALLOC
423 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
425 lockdep_set_class_and_name(&eb
->lock
,
426 &btrfs_eb_class
[level
],
427 btrfs_eb_name
[level
]);
431 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
432 struct extent_state
*state
)
434 struct extent_io_tree
*tree
;
438 struct extent_buffer
*eb
;
439 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
442 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
443 if (page
->private == EXTENT_PAGE_PRIVATE
)
448 len
= page
->private >> 2;
451 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
457 found_start
= btrfs_header_bytenr(eb
);
458 if (found_start
!= start
) {
459 if (printk_ratelimit()) {
460 printk(KERN_INFO
"btrfs bad tree block start "
462 (unsigned long long)found_start
,
463 (unsigned long long)eb
->start
);
468 if (eb
->first_page
!= page
) {
469 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
470 eb
->first_page
->index
, page
->index
);
475 if (check_tree_block_fsid(root
, eb
)) {
476 if (printk_ratelimit()) {
477 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
478 (unsigned long long)eb
->start
);
483 found_level
= btrfs_header_level(eb
);
485 btrfs_set_buffer_lockdep_class(eb
, found_level
);
487 ret
= csum_tree_block(root
, eb
, 1);
491 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
492 end
= eb
->start
+ end
- 1;
494 free_extent_buffer(eb
);
499 static void end_workqueue_bio(struct bio
*bio
, int err
)
501 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
502 struct btrfs_fs_info
*fs_info
;
504 fs_info
= end_io_wq
->info
;
505 end_io_wq
->error
= err
;
506 end_io_wq
->work
.func
= end_workqueue_fn
;
507 end_io_wq
->work
.flags
= 0;
509 if (bio
->bi_rw
& REQ_WRITE
) {
510 if (end_io_wq
->metadata
== 1)
511 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
513 else if (end_io_wq
->metadata
== 2)
514 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
517 btrfs_queue_worker(&fs_info
->endio_write_workers
,
520 if (end_io_wq
->metadata
)
521 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
524 btrfs_queue_worker(&fs_info
->endio_workers
,
530 * For the metadata arg you want
533 * 1 - if normal metadta
534 * 2 - if writing to the free space cache area
536 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
539 struct end_io_wq
*end_io_wq
;
540 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
544 end_io_wq
->private = bio
->bi_private
;
545 end_io_wq
->end_io
= bio
->bi_end_io
;
546 end_io_wq
->info
= info
;
547 end_io_wq
->error
= 0;
548 end_io_wq
->bio
= bio
;
549 end_io_wq
->metadata
= metadata
;
551 bio
->bi_private
= end_io_wq
;
552 bio
->bi_end_io
= end_workqueue_bio
;
556 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
558 unsigned long limit
= min_t(unsigned long,
559 info
->workers
.max_workers
,
560 info
->fs_devices
->open_devices
);
564 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
566 return atomic_read(&info
->nr_async_bios
) >
567 btrfs_async_submit_limit(info
);
570 static void run_one_async_start(struct btrfs_work
*work
)
572 struct async_submit_bio
*async
;
574 async
= container_of(work
, struct async_submit_bio
, work
);
575 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
576 async
->mirror_num
, async
->bio_flags
,
580 static void run_one_async_done(struct btrfs_work
*work
)
582 struct btrfs_fs_info
*fs_info
;
583 struct async_submit_bio
*async
;
586 async
= container_of(work
, struct async_submit_bio
, work
);
587 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
589 limit
= btrfs_async_submit_limit(fs_info
);
590 limit
= limit
* 2 / 3;
592 atomic_dec(&fs_info
->nr_async_submits
);
594 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
595 waitqueue_active(&fs_info
->async_submit_wait
))
596 wake_up(&fs_info
->async_submit_wait
);
598 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
599 async
->mirror_num
, async
->bio_flags
,
603 static void run_one_async_free(struct btrfs_work
*work
)
605 struct async_submit_bio
*async
;
607 async
= container_of(work
, struct async_submit_bio
, work
);
611 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
612 int rw
, struct bio
*bio
, int mirror_num
,
613 unsigned long bio_flags
,
615 extent_submit_bio_hook_t
*submit_bio_start
,
616 extent_submit_bio_hook_t
*submit_bio_done
)
618 struct async_submit_bio
*async
;
620 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
624 async
->inode
= inode
;
627 async
->mirror_num
= mirror_num
;
628 async
->submit_bio_start
= submit_bio_start
;
629 async
->submit_bio_done
= submit_bio_done
;
631 async
->work
.func
= run_one_async_start
;
632 async
->work
.ordered_func
= run_one_async_done
;
633 async
->work
.ordered_free
= run_one_async_free
;
635 async
->work
.flags
= 0;
636 async
->bio_flags
= bio_flags
;
637 async
->bio_offset
= bio_offset
;
639 atomic_inc(&fs_info
->nr_async_submits
);
642 btrfs_set_work_high_prio(&async
->work
);
644 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
646 while (atomic_read(&fs_info
->async_submit_draining
) &&
647 atomic_read(&fs_info
->nr_async_submits
)) {
648 wait_event(fs_info
->async_submit_wait
,
649 (atomic_read(&fs_info
->nr_async_submits
) == 0));
655 static int btree_csum_one_bio(struct bio
*bio
)
657 struct bio_vec
*bvec
= bio
->bi_io_vec
;
659 struct btrfs_root
*root
;
661 WARN_ON(bio
->bi_vcnt
<= 0);
662 while (bio_index
< bio
->bi_vcnt
) {
663 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
664 csum_dirty_buffer(root
, bvec
->bv_page
);
671 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
672 struct bio
*bio
, int mirror_num
,
673 unsigned long bio_flags
,
677 * when we're called for a write, we're already in the async
678 * submission context. Just jump into btrfs_map_bio
680 btree_csum_one_bio(bio
);
684 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
685 int mirror_num
, unsigned long bio_flags
,
689 * when we're called for a write, we're already in the async
690 * submission context. Just jump into btrfs_map_bio
692 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
695 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
696 int mirror_num
, unsigned long bio_flags
,
701 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
705 if (!(rw
& REQ_WRITE
)) {
707 * called for a read, do the setup so that checksum validation
708 * can happen in the async kernel threads
710 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
715 * kthread helpers are used to submit writes so that checksumming
716 * can happen in parallel across all CPUs
718 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
719 inode
, rw
, bio
, mirror_num
, 0,
721 __btree_submit_bio_start
,
722 __btree_submit_bio_done
);
725 #ifdef CONFIG_MIGRATION
726 static int btree_migratepage(struct address_space
*mapping
,
727 struct page
*newpage
, struct page
*page
)
730 * we can't safely write a btree page from here,
731 * we haven't done the locking hook
736 * Buffers may be managed in a filesystem specific way.
737 * We must have no buffers or drop them.
739 if (page_has_private(page
) &&
740 !try_to_release_page(page
, GFP_KERNEL
))
742 return migrate_page(mapping
, newpage
, page
);
746 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
748 struct extent_io_tree
*tree
;
749 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
750 struct extent_buffer
*eb
;
753 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
754 if (!(current
->flags
& PF_MEMALLOC
)) {
755 return extent_write_full_page(tree
, page
,
756 btree_get_extent
, wbc
);
759 redirty_page_for_writepage(wbc
, page
);
760 eb
= btrfs_find_tree_block(root
, page_offset(page
), PAGE_CACHE_SIZE
);
763 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
765 spin_lock(&root
->fs_info
->delalloc_lock
);
766 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
767 spin_unlock(&root
->fs_info
->delalloc_lock
);
769 free_extent_buffer(eb
);
775 static int btree_writepages(struct address_space
*mapping
,
776 struct writeback_control
*wbc
)
778 struct extent_io_tree
*tree
;
779 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
780 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
781 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
783 unsigned long thresh
= 32 * 1024 * 1024;
785 if (wbc
->for_kupdate
)
788 /* this is a bit racy, but that's ok */
789 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
790 if (num_dirty
< thresh
)
793 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
796 static int btree_readpage(struct file
*file
, struct page
*page
)
798 struct extent_io_tree
*tree
;
799 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
800 return extent_read_full_page(tree
, page
, btree_get_extent
);
803 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
805 struct extent_io_tree
*tree
;
806 struct extent_map_tree
*map
;
809 if (PageWriteback(page
) || PageDirty(page
))
812 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
813 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
815 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
819 ret
= try_release_extent_buffer(tree
, page
);
821 ClearPagePrivate(page
);
822 set_page_private(page
, 0);
823 page_cache_release(page
);
829 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
831 struct extent_io_tree
*tree
;
832 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
833 extent_invalidatepage(tree
, page
, offset
);
834 btree_releasepage(page
, GFP_NOFS
);
835 if (PagePrivate(page
)) {
836 printk(KERN_WARNING
"btrfs warning page private not zero "
837 "on page %llu\n", (unsigned long long)page_offset(page
));
838 ClearPagePrivate(page
);
839 set_page_private(page
, 0);
840 page_cache_release(page
);
844 static const struct address_space_operations btree_aops
= {
845 .readpage
= btree_readpage
,
846 .writepage
= btree_writepage
,
847 .writepages
= btree_writepages
,
848 .releasepage
= btree_releasepage
,
849 .invalidatepage
= btree_invalidatepage
,
850 .sync_page
= block_sync_page
,
851 #ifdef CONFIG_MIGRATION
852 .migratepage
= btree_migratepage
,
856 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
859 struct extent_buffer
*buf
= NULL
;
860 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
863 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
866 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
867 buf
, 0, 0, btree_get_extent
, 0);
868 free_extent_buffer(buf
);
872 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
873 u64 bytenr
, u32 blocksize
)
875 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
876 struct extent_buffer
*eb
;
877 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
878 bytenr
, blocksize
, GFP_NOFS
);
882 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
883 u64 bytenr
, u32 blocksize
)
885 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
886 struct extent_buffer
*eb
;
888 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
889 bytenr
, blocksize
, NULL
, GFP_NOFS
);
894 int btrfs_write_tree_block(struct extent_buffer
*buf
)
896 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
897 buf
->start
+ buf
->len
- 1);
900 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
902 return filemap_fdatawait_range(buf
->first_page
->mapping
,
903 buf
->start
, buf
->start
+ buf
->len
- 1);
906 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
907 u32 blocksize
, u64 parent_transid
)
909 struct extent_buffer
*buf
= NULL
;
912 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
916 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
919 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
924 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
925 struct extent_buffer
*buf
)
927 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
928 if (btrfs_header_generation(buf
) ==
929 root
->fs_info
->running_transaction
->transid
) {
930 btrfs_assert_tree_locked(buf
);
932 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
933 spin_lock(&root
->fs_info
->delalloc_lock
);
934 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
935 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
938 spin_unlock(&root
->fs_info
->delalloc_lock
);
941 /* ugh, clear_extent_buffer_dirty needs to lock the page */
942 btrfs_set_lock_blocking(buf
);
943 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
949 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
950 u32 stripesize
, struct btrfs_root
*root
,
951 struct btrfs_fs_info
*fs_info
,
955 root
->commit_root
= NULL
;
956 root
->sectorsize
= sectorsize
;
957 root
->nodesize
= nodesize
;
958 root
->leafsize
= leafsize
;
959 root
->stripesize
= stripesize
;
961 root
->track_dirty
= 0;
963 root
->orphan_item_inserted
= 0;
964 root
->orphan_cleanup_state
= 0;
966 root
->fs_info
= fs_info
;
967 root
->objectid
= objectid
;
968 root
->last_trans
= 0;
969 root
->highest_objectid
= 0;
972 root
->inode_tree
= RB_ROOT
;
973 root
->block_rsv
= NULL
;
974 root
->orphan_block_rsv
= NULL
;
976 INIT_LIST_HEAD(&root
->dirty_list
);
977 INIT_LIST_HEAD(&root
->orphan_list
);
978 INIT_LIST_HEAD(&root
->root_list
);
979 spin_lock_init(&root
->node_lock
);
980 spin_lock_init(&root
->orphan_lock
);
981 spin_lock_init(&root
->inode_lock
);
982 spin_lock_init(&root
->accounting_lock
);
983 mutex_init(&root
->objectid_mutex
);
984 mutex_init(&root
->log_mutex
);
985 init_waitqueue_head(&root
->log_writer_wait
);
986 init_waitqueue_head(&root
->log_commit_wait
[0]);
987 init_waitqueue_head(&root
->log_commit_wait
[1]);
988 atomic_set(&root
->log_commit
[0], 0);
989 atomic_set(&root
->log_commit
[1], 0);
990 atomic_set(&root
->log_writers
, 0);
992 root
->log_transid
= 0;
993 root
->last_log_commit
= 0;
994 extent_io_tree_init(&root
->dirty_log_pages
,
995 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
997 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
998 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
999 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1000 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1001 root
->defrag_trans_start
= fs_info
->generation
;
1002 init_completion(&root
->kobj_unregister
);
1003 root
->defrag_running
= 0;
1004 root
->root_key
.objectid
= objectid
;
1005 root
->anon_super
.s_root
= NULL
;
1006 root
->anon_super
.s_dev
= 0;
1007 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
1008 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
1009 init_rwsem(&root
->anon_super
.s_umount
);
1014 static int find_and_setup_root(struct btrfs_root
*tree_root
,
1015 struct btrfs_fs_info
*fs_info
,
1017 struct btrfs_root
*root
)
1023 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1024 tree_root
->sectorsize
, tree_root
->stripesize
,
1025 root
, fs_info
, objectid
);
1026 ret
= btrfs_find_last_root(tree_root
, objectid
,
1027 &root
->root_item
, &root
->root_key
);
1032 generation
= btrfs_root_generation(&root
->root_item
);
1033 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1034 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1035 blocksize
, generation
);
1036 if (!root
->node
|| !btrfs_buffer_uptodate(root
->node
, generation
)) {
1037 free_extent_buffer(root
->node
);
1040 root
->commit_root
= btrfs_root_node(root
);
1044 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1045 struct btrfs_fs_info
*fs_info
)
1047 struct btrfs_root
*root
;
1048 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1049 struct extent_buffer
*leaf
;
1051 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1053 return ERR_PTR(-ENOMEM
);
1055 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1056 tree_root
->sectorsize
, tree_root
->stripesize
,
1057 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1059 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1060 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1061 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1063 * log trees do not get reference counted because they go away
1064 * before a real commit is actually done. They do store pointers
1065 * to file data extents, and those reference counts still get
1066 * updated (along with back refs to the log tree).
1070 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1071 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1074 return ERR_CAST(leaf
);
1077 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1078 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1079 btrfs_set_header_generation(leaf
, trans
->transid
);
1080 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1081 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1084 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1085 (unsigned long)btrfs_header_fsid(root
->node
),
1087 btrfs_mark_buffer_dirty(root
->node
);
1088 btrfs_tree_unlock(root
->node
);
1092 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1093 struct btrfs_fs_info
*fs_info
)
1095 struct btrfs_root
*log_root
;
1097 log_root
= alloc_log_tree(trans
, fs_info
);
1098 if (IS_ERR(log_root
))
1099 return PTR_ERR(log_root
);
1100 WARN_ON(fs_info
->log_root_tree
);
1101 fs_info
->log_root_tree
= log_root
;
1105 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1106 struct btrfs_root
*root
)
1108 struct btrfs_root
*log_root
;
1109 struct btrfs_inode_item
*inode_item
;
1111 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1112 if (IS_ERR(log_root
))
1113 return PTR_ERR(log_root
);
1115 log_root
->last_trans
= trans
->transid
;
1116 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1118 inode_item
= &log_root
->root_item
.inode
;
1119 inode_item
->generation
= cpu_to_le64(1);
1120 inode_item
->size
= cpu_to_le64(3);
1121 inode_item
->nlink
= cpu_to_le32(1);
1122 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1123 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1125 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1127 WARN_ON(root
->log_root
);
1128 root
->log_root
= log_root
;
1129 root
->log_transid
= 0;
1130 root
->last_log_commit
= 0;
1134 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1135 struct btrfs_key
*location
)
1137 struct btrfs_root
*root
;
1138 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1139 struct btrfs_path
*path
;
1140 struct extent_buffer
*l
;
1145 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1147 return ERR_PTR(-ENOMEM
);
1148 if (location
->offset
== (u64
)-1) {
1149 ret
= find_and_setup_root(tree_root
, fs_info
,
1150 location
->objectid
, root
);
1153 return ERR_PTR(ret
);
1158 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1159 tree_root
->sectorsize
, tree_root
->stripesize
,
1160 root
, fs_info
, location
->objectid
);
1162 path
= btrfs_alloc_path();
1164 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1167 read_extent_buffer(l
, &root
->root_item
,
1168 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1169 sizeof(root
->root_item
));
1170 memcpy(&root
->root_key
, location
, sizeof(*location
));
1172 btrfs_free_path(path
);
1177 return ERR_PTR(ret
);
1180 generation
= btrfs_root_generation(&root
->root_item
);
1181 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1182 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1183 blocksize
, generation
);
1184 root
->commit_root
= btrfs_root_node(root
);
1185 BUG_ON(!root
->node
);
1187 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
)
1193 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1196 struct btrfs_root
*root
;
1198 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1199 return fs_info
->tree_root
;
1200 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1201 return fs_info
->extent_root
;
1203 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1204 (unsigned long)root_objectid
);
1208 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1209 struct btrfs_key
*location
)
1211 struct btrfs_root
*root
;
1214 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1215 return fs_info
->tree_root
;
1216 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1217 return fs_info
->extent_root
;
1218 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1219 return fs_info
->chunk_root
;
1220 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1221 return fs_info
->dev_root
;
1222 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1223 return fs_info
->csum_root
;
1225 spin_lock(&fs_info
->fs_roots_radix_lock
);
1226 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1227 (unsigned long)location
->objectid
);
1228 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1232 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1236 set_anon_super(&root
->anon_super
, NULL
);
1238 if (btrfs_root_refs(&root
->root_item
) == 0) {
1243 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1247 root
->orphan_item_inserted
= 1;
1249 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1253 spin_lock(&fs_info
->fs_roots_radix_lock
);
1254 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1255 (unsigned long)root
->root_key
.objectid
,
1260 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1261 radix_tree_preload_end();
1263 if (ret
== -EEXIST
) {
1270 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1271 root
->root_key
.objectid
);
1276 return ERR_PTR(ret
);
1279 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1280 struct btrfs_key
*location
,
1281 const char *name
, int namelen
)
1283 return btrfs_read_fs_root_no_name(fs_info
, location
);
1285 struct btrfs_root
*root
;
1288 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1295 ret
= btrfs_set_root_name(root
, name
, namelen
);
1297 free_extent_buffer(root
->node
);
1299 return ERR_PTR(ret
);
1302 ret
= btrfs_sysfs_add_root(root
);
1304 free_extent_buffer(root
->node
);
1307 return ERR_PTR(ret
);
1314 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1316 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1318 struct btrfs_device
*device
;
1319 struct backing_dev_info
*bdi
;
1321 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1324 bdi
= blk_get_backing_dev_info(device
->bdev
);
1325 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1334 * this unplugs every device on the box, and it is only used when page
1337 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1339 struct btrfs_device
*device
;
1340 struct btrfs_fs_info
*info
;
1342 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1343 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1347 bdi
= blk_get_backing_dev_info(device
->bdev
);
1348 if (bdi
->unplug_io_fn
)
1349 bdi
->unplug_io_fn(bdi
, page
);
1353 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1355 struct inode
*inode
;
1356 struct extent_map_tree
*em_tree
;
1357 struct extent_map
*em
;
1358 struct address_space
*mapping
;
1361 /* the generic O_DIRECT read code does this */
1363 __unplug_io_fn(bdi
, page
);
1368 * page->mapping may change at any time. Get a consistent copy
1369 * and use that for everything below
1372 mapping
= page
->mapping
;
1376 inode
= mapping
->host
;
1379 * don't do the expensive searching for a small number of
1382 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1383 __unplug_io_fn(bdi
, page
);
1387 offset
= page_offset(page
);
1389 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1390 read_lock(&em_tree
->lock
);
1391 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1392 read_unlock(&em_tree
->lock
);
1394 __unplug_io_fn(bdi
, page
);
1398 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1399 free_extent_map(em
);
1400 __unplug_io_fn(bdi
, page
);
1403 offset
= offset
- em
->start
;
1404 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1405 em
->block_start
+ offset
, page
);
1406 free_extent_map(em
);
1410 * If this fails, caller must call bdi_destroy() to get rid of the
1413 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1417 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1418 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1422 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1423 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1424 bdi
->unplug_io_data
= info
;
1425 bdi
->congested_fn
= btrfs_congested_fn
;
1426 bdi
->congested_data
= info
;
1430 static int bio_ready_for_csum(struct bio
*bio
)
1436 struct extent_io_tree
*io_tree
= NULL
;
1437 struct bio_vec
*bvec
;
1441 bio_for_each_segment(bvec
, bio
, i
) {
1442 page
= bvec
->bv_page
;
1443 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1444 length
+= bvec
->bv_len
;
1447 if (!page
->private) {
1448 length
+= bvec
->bv_len
;
1451 length
= bvec
->bv_len
;
1452 buf_len
= page
->private >> 2;
1453 start
= page_offset(page
) + bvec
->bv_offset
;
1454 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1456 /* are we fully contained in this bio? */
1457 if (buf_len
<= length
)
1460 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1461 start
+ buf_len
- 1);
1466 * called by the kthread helper functions to finally call the bio end_io
1467 * functions. This is where read checksum verification actually happens
1469 static void end_workqueue_fn(struct btrfs_work
*work
)
1472 struct end_io_wq
*end_io_wq
;
1473 struct btrfs_fs_info
*fs_info
;
1476 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1477 bio
= end_io_wq
->bio
;
1478 fs_info
= end_io_wq
->info
;
1480 /* metadata bio reads are special because the whole tree block must
1481 * be checksummed at once. This makes sure the entire block is in
1482 * ram and up to date before trying to verify things. For
1483 * blocksize <= pagesize, it is basically a noop
1485 if (!(bio
->bi_rw
& REQ_WRITE
) && end_io_wq
->metadata
&&
1486 !bio_ready_for_csum(bio
)) {
1487 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1491 error
= end_io_wq
->error
;
1492 bio
->bi_private
= end_io_wq
->private;
1493 bio
->bi_end_io
= end_io_wq
->end_io
;
1495 bio_endio(bio
, error
);
1498 static int cleaner_kthread(void *arg
)
1500 struct btrfs_root
*root
= arg
;
1503 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1505 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1506 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1507 btrfs_run_delayed_iputs(root
);
1508 btrfs_clean_old_snapshots(root
);
1509 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1512 if (freezing(current
)) {
1515 set_current_state(TASK_INTERRUPTIBLE
);
1516 if (!kthread_should_stop())
1518 __set_current_state(TASK_RUNNING
);
1520 } while (!kthread_should_stop());
1524 static int transaction_kthread(void *arg
)
1526 struct btrfs_root
*root
= arg
;
1527 struct btrfs_trans_handle
*trans
;
1528 struct btrfs_transaction
*cur
;
1531 unsigned long delay
;
1536 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1537 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1539 spin_lock(&root
->fs_info
->new_trans_lock
);
1540 cur
= root
->fs_info
->running_transaction
;
1542 spin_unlock(&root
->fs_info
->new_trans_lock
);
1546 now
= get_seconds();
1547 if (!cur
->blocked
&&
1548 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1549 spin_unlock(&root
->fs_info
->new_trans_lock
);
1553 transid
= cur
->transid
;
1554 spin_unlock(&root
->fs_info
->new_trans_lock
);
1556 trans
= btrfs_join_transaction(root
, 1);
1557 BUG_ON(IS_ERR(trans
));
1558 if (transid
== trans
->transid
) {
1559 ret
= btrfs_commit_transaction(trans
, root
);
1562 btrfs_end_transaction(trans
, root
);
1565 wake_up_process(root
->fs_info
->cleaner_kthread
);
1566 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1568 if (freezing(current
)) {
1571 set_current_state(TASK_INTERRUPTIBLE
);
1572 if (!kthread_should_stop() &&
1573 !btrfs_transaction_blocked(root
->fs_info
))
1574 schedule_timeout(delay
);
1575 __set_current_state(TASK_RUNNING
);
1577 } while (!kthread_should_stop());
1581 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1582 struct btrfs_fs_devices
*fs_devices
,
1592 struct btrfs_key location
;
1593 struct buffer_head
*bh
;
1594 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1596 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1598 struct btrfs_root
*tree_root
= btrfs_sb(sb
);
1599 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1600 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1602 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1604 struct btrfs_root
*log_tree_root
;
1609 struct btrfs_super_block
*disk_super
;
1611 if (!extent_root
|| !tree_root
|| !fs_info
||
1612 !chunk_root
|| !dev_root
|| !csum_root
) {
1617 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1623 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1629 fs_info
->btree_inode
= new_inode(sb
);
1630 if (!fs_info
->btree_inode
) {
1635 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1636 INIT_LIST_HEAD(&fs_info
->trans_list
);
1637 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1638 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1639 INIT_LIST_HEAD(&fs_info
->hashers
);
1640 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1641 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1642 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1643 spin_lock_init(&fs_info
->delalloc_lock
);
1644 spin_lock_init(&fs_info
->new_trans_lock
);
1645 spin_lock_init(&fs_info
->ref_cache_lock
);
1646 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1647 spin_lock_init(&fs_info
->delayed_iput_lock
);
1649 init_completion(&fs_info
->kobj_unregister
);
1650 fs_info
->tree_root
= tree_root
;
1651 fs_info
->extent_root
= extent_root
;
1652 fs_info
->csum_root
= csum_root
;
1653 fs_info
->chunk_root
= chunk_root
;
1654 fs_info
->dev_root
= dev_root
;
1655 fs_info
->fs_devices
= fs_devices
;
1656 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1657 INIT_LIST_HEAD(&fs_info
->space_info
);
1658 btrfs_mapping_init(&fs_info
->mapping_tree
);
1659 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1660 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1661 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1662 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1663 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1664 INIT_LIST_HEAD(&fs_info
->durable_block_rsv_list
);
1665 mutex_init(&fs_info
->durable_block_rsv_mutex
);
1666 atomic_set(&fs_info
->nr_async_submits
, 0);
1667 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1668 atomic_set(&fs_info
->async_submit_draining
, 0);
1669 atomic_set(&fs_info
->nr_async_bios
, 0);
1671 fs_info
->max_inline
= 8192 * 1024;
1672 fs_info
->metadata_ratio
= 0;
1674 fs_info
->thread_pool_size
= min_t(unsigned long,
1675 num_online_cpus() + 2, 8);
1677 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1678 spin_lock_init(&fs_info
->ordered_extent_lock
);
1680 sb
->s_blocksize
= 4096;
1681 sb
->s_blocksize_bits
= blksize_bits(4096);
1682 sb
->s_bdi
= &fs_info
->bdi
;
1684 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1685 fs_info
->btree_inode
->i_nlink
= 1;
1687 * we set the i_size on the btree inode to the max possible int.
1688 * the real end of the address space is determined by all of
1689 * the devices in the system
1691 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1692 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1693 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1695 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1696 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1697 fs_info
->btree_inode
->i_mapping
,
1699 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1702 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1704 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1705 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1706 sizeof(struct btrfs_key
));
1707 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1708 insert_inode_hash(fs_info
->btree_inode
);
1710 spin_lock_init(&fs_info
->block_group_cache_lock
);
1711 fs_info
->block_group_cache_tree
= RB_ROOT
;
1713 extent_io_tree_init(&fs_info
->freed_extents
[0],
1714 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1715 extent_io_tree_init(&fs_info
->freed_extents
[1],
1716 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1717 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1718 fs_info
->do_barriers
= 1;
1721 mutex_init(&fs_info
->trans_mutex
);
1722 mutex_init(&fs_info
->ordered_operations_mutex
);
1723 mutex_init(&fs_info
->tree_log_mutex
);
1724 mutex_init(&fs_info
->chunk_mutex
);
1725 mutex_init(&fs_info
->transaction_kthread_mutex
);
1726 mutex_init(&fs_info
->cleaner_mutex
);
1727 mutex_init(&fs_info
->volume_mutex
);
1728 init_rwsem(&fs_info
->extent_commit_sem
);
1729 init_rwsem(&fs_info
->cleanup_work_sem
);
1730 init_rwsem(&fs_info
->subvol_sem
);
1732 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1733 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1735 init_waitqueue_head(&fs_info
->transaction_throttle
);
1736 init_waitqueue_head(&fs_info
->transaction_wait
);
1737 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
1738 init_waitqueue_head(&fs_info
->async_submit_wait
);
1740 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1741 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1743 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1749 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1750 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1751 sizeof(fs_info
->super_for_commit
));
1754 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1756 disk_super
= &fs_info
->super_copy
;
1757 if (!btrfs_super_root(disk_super
))
1760 /* check FS state, whether FS is broken. */
1761 fs_info
->fs_state
|= btrfs_super_flags(disk_super
);
1763 btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
1765 ret
= btrfs_parse_options(tree_root
, options
);
1771 features
= btrfs_super_incompat_flags(disk_super
) &
1772 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1774 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1775 "unsupported optional features (%Lx).\n",
1776 (unsigned long long)features
);
1781 features
= btrfs_super_incompat_flags(disk_super
);
1782 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1783 if (tree_root
->fs_info
->compress_type
& BTRFS_COMPRESS_LZO
)
1784 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
1785 btrfs_set_super_incompat_flags(disk_super
, features
);
1787 features
= btrfs_super_compat_ro_flags(disk_super
) &
1788 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1789 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1790 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1791 "unsupported option features (%Lx).\n",
1792 (unsigned long long)features
);
1797 btrfs_init_workers(&fs_info
->generic_worker
,
1798 "genwork", 1, NULL
);
1800 btrfs_init_workers(&fs_info
->workers
, "worker",
1801 fs_info
->thread_pool_size
,
1802 &fs_info
->generic_worker
);
1804 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1805 fs_info
->thread_pool_size
,
1806 &fs_info
->generic_worker
);
1808 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1809 min_t(u64
, fs_devices
->num_devices
,
1810 fs_info
->thread_pool_size
),
1811 &fs_info
->generic_worker
);
1813 /* a higher idle thresh on the submit workers makes it much more
1814 * likely that bios will be send down in a sane order to the
1817 fs_info
->submit_workers
.idle_thresh
= 64;
1819 fs_info
->workers
.idle_thresh
= 16;
1820 fs_info
->workers
.ordered
= 1;
1822 fs_info
->delalloc_workers
.idle_thresh
= 2;
1823 fs_info
->delalloc_workers
.ordered
= 1;
1825 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1826 &fs_info
->generic_worker
);
1827 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1828 fs_info
->thread_pool_size
,
1829 &fs_info
->generic_worker
);
1830 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1831 fs_info
->thread_pool_size
,
1832 &fs_info
->generic_worker
);
1833 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1834 "endio-meta-write", fs_info
->thread_pool_size
,
1835 &fs_info
->generic_worker
);
1836 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1837 fs_info
->thread_pool_size
,
1838 &fs_info
->generic_worker
);
1839 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
1840 1, &fs_info
->generic_worker
);
1843 * endios are largely parallel and should have a very
1846 fs_info
->endio_workers
.idle_thresh
= 4;
1847 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1849 fs_info
->endio_write_workers
.idle_thresh
= 2;
1850 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1852 btrfs_start_workers(&fs_info
->workers
, 1);
1853 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1854 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1855 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1856 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1857 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1858 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1859 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1860 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1861 btrfs_start_workers(&fs_info
->endio_freespace_worker
, 1);
1863 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1864 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1865 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1867 nodesize
= btrfs_super_nodesize(disk_super
);
1868 leafsize
= btrfs_super_leafsize(disk_super
);
1869 sectorsize
= btrfs_super_sectorsize(disk_super
);
1870 stripesize
= btrfs_super_stripesize(disk_super
);
1871 tree_root
->nodesize
= nodesize
;
1872 tree_root
->leafsize
= leafsize
;
1873 tree_root
->sectorsize
= sectorsize
;
1874 tree_root
->stripesize
= stripesize
;
1876 sb
->s_blocksize
= sectorsize
;
1877 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1879 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1880 sizeof(disk_super
->magic
))) {
1881 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1882 goto fail_sb_buffer
;
1885 mutex_lock(&fs_info
->chunk_mutex
);
1886 ret
= btrfs_read_sys_array(tree_root
);
1887 mutex_unlock(&fs_info
->chunk_mutex
);
1889 printk(KERN_WARNING
"btrfs: failed to read the system "
1890 "array on %s\n", sb
->s_id
);
1891 goto fail_sb_buffer
;
1894 blocksize
= btrfs_level_size(tree_root
,
1895 btrfs_super_chunk_root_level(disk_super
));
1896 generation
= btrfs_super_chunk_root_generation(disk_super
);
1898 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1899 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1901 chunk_root
->node
= read_tree_block(chunk_root
,
1902 btrfs_super_chunk_root(disk_super
),
1903 blocksize
, generation
);
1904 BUG_ON(!chunk_root
->node
);
1905 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1906 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1908 goto fail_chunk_root
;
1910 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1911 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1913 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1914 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1917 mutex_lock(&fs_info
->chunk_mutex
);
1918 ret
= btrfs_read_chunk_tree(chunk_root
);
1919 mutex_unlock(&fs_info
->chunk_mutex
);
1921 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1923 goto fail_chunk_root
;
1926 btrfs_close_extra_devices(fs_devices
);
1928 blocksize
= btrfs_level_size(tree_root
,
1929 btrfs_super_root_level(disk_super
));
1930 generation
= btrfs_super_generation(disk_super
);
1932 tree_root
->node
= read_tree_block(tree_root
,
1933 btrfs_super_root(disk_super
),
1934 blocksize
, generation
);
1935 if (!tree_root
->node
)
1936 goto fail_chunk_root
;
1937 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1938 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1940 goto fail_tree_root
;
1942 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1943 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1945 ret
= find_and_setup_root(tree_root
, fs_info
,
1946 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1948 goto fail_tree_root
;
1949 extent_root
->track_dirty
= 1;
1951 ret
= find_and_setup_root(tree_root
, fs_info
,
1952 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1954 goto fail_extent_root
;
1955 dev_root
->track_dirty
= 1;
1957 ret
= find_and_setup_root(tree_root
, fs_info
,
1958 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1962 csum_root
->track_dirty
= 1;
1964 fs_info
->generation
= generation
;
1965 fs_info
->last_trans_committed
= generation
;
1966 fs_info
->data_alloc_profile
= (u64
)-1;
1967 fs_info
->metadata_alloc_profile
= (u64
)-1;
1968 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1970 ret
= btrfs_read_block_groups(extent_root
);
1972 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
1973 goto fail_block_groups
;
1976 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1978 if (IS_ERR(fs_info
->cleaner_kthread
))
1979 goto fail_block_groups
;
1981 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1983 "btrfs-transaction");
1984 if (IS_ERR(fs_info
->transaction_kthread
))
1987 if (!btrfs_test_opt(tree_root
, SSD
) &&
1988 !btrfs_test_opt(tree_root
, NOSSD
) &&
1989 !fs_info
->fs_devices
->rotating
) {
1990 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
1992 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
1995 /* do not make disk changes in broken FS */
1996 if (btrfs_super_log_root(disk_super
) != 0 &&
1997 !(fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)) {
1998 u64 bytenr
= btrfs_super_log_root(disk_super
);
2000 if (fs_devices
->rw_devices
== 0) {
2001 printk(KERN_WARNING
"Btrfs log replay required "
2004 goto fail_trans_kthread
;
2007 btrfs_level_size(tree_root
,
2008 btrfs_super_log_root_level(disk_super
));
2010 log_tree_root
= kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
2011 if (!log_tree_root
) {
2013 goto fail_trans_kthread
;
2016 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2017 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2019 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2022 ret
= btrfs_recover_log_trees(log_tree_root
);
2025 if (sb
->s_flags
& MS_RDONLY
) {
2026 ret
= btrfs_commit_super(tree_root
);
2031 ret
= btrfs_find_orphan_roots(tree_root
);
2034 if (!(sb
->s_flags
& MS_RDONLY
)) {
2035 ret
= btrfs_cleanup_fs_roots(fs_info
);
2038 ret
= btrfs_recover_relocation(tree_root
);
2041 "btrfs: failed to recover relocation\n");
2043 goto fail_trans_kthread
;
2047 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2048 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2049 location
.offset
= (u64
)-1;
2051 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2052 if (!fs_info
->fs_root
)
2053 goto fail_trans_kthread
;
2054 if (IS_ERR(fs_info
->fs_root
)) {
2055 err
= PTR_ERR(fs_info
->fs_root
);
2056 goto fail_trans_kthread
;
2059 if (!(sb
->s_flags
& MS_RDONLY
)) {
2060 down_read(&fs_info
->cleanup_work_sem
);
2061 btrfs_orphan_cleanup(fs_info
->fs_root
);
2062 btrfs_orphan_cleanup(fs_info
->tree_root
);
2063 up_read(&fs_info
->cleanup_work_sem
);
2069 kthread_stop(fs_info
->transaction_kthread
);
2071 kthread_stop(fs_info
->cleaner_kthread
);
2074 * make sure we're done with the btree inode before we stop our
2077 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2078 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2081 btrfs_free_block_groups(fs_info
);
2082 free_extent_buffer(csum_root
->node
);
2083 free_extent_buffer(csum_root
->commit_root
);
2085 free_extent_buffer(dev_root
->node
);
2086 free_extent_buffer(dev_root
->commit_root
);
2088 free_extent_buffer(extent_root
->node
);
2089 free_extent_buffer(extent_root
->commit_root
);
2091 free_extent_buffer(tree_root
->node
);
2092 free_extent_buffer(tree_root
->commit_root
);
2094 free_extent_buffer(chunk_root
->node
);
2095 free_extent_buffer(chunk_root
->commit_root
);
2097 btrfs_stop_workers(&fs_info
->generic_worker
);
2098 btrfs_stop_workers(&fs_info
->fixup_workers
);
2099 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2100 btrfs_stop_workers(&fs_info
->workers
);
2101 btrfs_stop_workers(&fs_info
->endio_workers
);
2102 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2103 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2104 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2105 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2106 btrfs_stop_workers(&fs_info
->submit_workers
);
2108 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2109 iput(fs_info
->btree_inode
);
2111 btrfs_close_devices(fs_info
->fs_devices
);
2112 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2114 bdi_destroy(&fs_info
->bdi
);
2116 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2124 return ERR_PTR(err
);
2127 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2129 char b
[BDEVNAME_SIZE
];
2132 set_buffer_uptodate(bh
);
2134 if (printk_ratelimit()) {
2135 printk(KERN_WARNING
"lost page write due to "
2136 "I/O error on %s\n",
2137 bdevname(bh
->b_bdev
, b
));
2139 /* note, we dont' set_buffer_write_io_error because we have
2140 * our own ways of dealing with the IO errors
2142 clear_buffer_uptodate(bh
);
2148 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2150 struct buffer_head
*bh
;
2151 struct buffer_head
*latest
= NULL
;
2152 struct btrfs_super_block
*super
;
2157 /* we would like to check all the supers, but that would make
2158 * a btrfs mount succeed after a mkfs from a different FS.
2159 * So, we need to add a special mount option to scan for
2160 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2162 for (i
= 0; i
< 1; i
++) {
2163 bytenr
= btrfs_sb_offset(i
);
2164 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2166 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2170 super
= (struct btrfs_super_block
*)bh
->b_data
;
2171 if (btrfs_super_bytenr(super
) != bytenr
||
2172 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2173 sizeof(super
->magic
))) {
2178 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2181 transid
= btrfs_super_generation(super
);
2190 * this should be called twice, once with wait == 0 and
2191 * once with wait == 1. When wait == 0 is done, all the buffer heads
2192 * we write are pinned.
2194 * They are released when wait == 1 is done.
2195 * max_mirrors must be the same for both runs, and it indicates how
2196 * many supers on this one device should be written.
2198 * max_mirrors == 0 means to write them all.
2200 static int write_dev_supers(struct btrfs_device
*device
,
2201 struct btrfs_super_block
*sb
,
2202 int do_barriers
, int wait
, int max_mirrors
)
2204 struct buffer_head
*bh
;
2210 int last_barrier
= 0;
2212 if (max_mirrors
== 0)
2213 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2215 /* make sure only the last submit_bh does a barrier */
2217 for (i
= 0; i
< max_mirrors
; i
++) {
2218 bytenr
= btrfs_sb_offset(i
);
2219 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2220 device
->total_bytes
)
2226 for (i
= 0; i
< max_mirrors
; i
++) {
2227 bytenr
= btrfs_sb_offset(i
);
2228 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2232 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2233 BTRFS_SUPER_INFO_SIZE
);
2236 if (!buffer_uptodate(bh
))
2239 /* drop our reference */
2242 /* drop the reference from the wait == 0 run */
2246 btrfs_set_super_bytenr(sb
, bytenr
);
2249 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2250 BTRFS_CSUM_SIZE
, crc
,
2251 BTRFS_SUPER_INFO_SIZE
-
2253 btrfs_csum_final(crc
, sb
->csum
);
2256 * one reference for us, and we leave it for the
2259 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2260 BTRFS_SUPER_INFO_SIZE
);
2261 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2263 /* one reference for submit_bh */
2266 set_buffer_uptodate(bh
);
2268 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2271 if (i
== last_barrier
&& do_barriers
)
2272 ret
= submit_bh(WRITE_FLUSH_FUA
, bh
);
2274 ret
= submit_bh(WRITE_SYNC
, bh
);
2279 return errors
< i
? 0 : -1;
2282 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2284 struct list_head
*head
;
2285 struct btrfs_device
*dev
;
2286 struct btrfs_super_block
*sb
;
2287 struct btrfs_dev_item
*dev_item
;
2291 int total_errors
= 0;
2294 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2295 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2297 sb
= &root
->fs_info
->super_for_commit
;
2298 dev_item
= &sb
->dev_item
;
2300 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2301 head
= &root
->fs_info
->fs_devices
->devices
;
2302 list_for_each_entry(dev
, head
, dev_list
) {
2307 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2310 btrfs_set_stack_device_generation(dev_item
, 0);
2311 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2312 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2313 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2314 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2315 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2316 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2317 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2318 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2319 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2321 flags
= btrfs_super_flags(sb
);
2322 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2324 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2328 if (total_errors
> max_errors
) {
2329 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2335 list_for_each_entry(dev
, head
, dev_list
) {
2338 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2341 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2345 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2346 if (total_errors
> max_errors
) {
2347 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2354 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2355 struct btrfs_root
*root
, int max_mirrors
)
2359 ret
= write_all_supers(root
, max_mirrors
);
2363 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2365 spin_lock(&fs_info
->fs_roots_radix_lock
);
2366 radix_tree_delete(&fs_info
->fs_roots_radix
,
2367 (unsigned long)root
->root_key
.objectid
);
2368 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2370 if (btrfs_root_refs(&root
->root_item
) == 0)
2371 synchronize_srcu(&fs_info
->subvol_srcu
);
2377 static void free_fs_root(struct btrfs_root
*root
)
2379 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2380 if (root
->anon_super
.s_dev
) {
2381 down_write(&root
->anon_super
.s_umount
);
2382 kill_anon_super(&root
->anon_super
);
2384 free_extent_buffer(root
->node
);
2385 free_extent_buffer(root
->commit_root
);
2390 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2393 struct btrfs_root
*gang
[8];
2396 while (!list_empty(&fs_info
->dead_roots
)) {
2397 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2398 struct btrfs_root
, root_list
);
2399 list_del(&gang
[0]->root_list
);
2401 if (gang
[0]->in_radix
) {
2402 btrfs_free_fs_root(fs_info
, gang
[0]);
2404 free_extent_buffer(gang
[0]->node
);
2405 free_extent_buffer(gang
[0]->commit_root
);
2411 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2416 for (i
= 0; i
< ret
; i
++)
2417 btrfs_free_fs_root(fs_info
, gang
[i
]);
2422 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2424 u64 root_objectid
= 0;
2425 struct btrfs_root
*gang
[8];
2430 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2431 (void **)gang
, root_objectid
,
2436 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2437 for (i
= 0; i
< ret
; i
++) {
2438 root_objectid
= gang
[i
]->root_key
.objectid
;
2439 btrfs_orphan_cleanup(gang
[i
]);
2446 int btrfs_commit_super(struct btrfs_root
*root
)
2448 struct btrfs_trans_handle
*trans
;
2451 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2452 btrfs_run_delayed_iputs(root
);
2453 btrfs_clean_old_snapshots(root
);
2454 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2456 /* wait until ongoing cleanup work done */
2457 down_write(&root
->fs_info
->cleanup_work_sem
);
2458 up_write(&root
->fs_info
->cleanup_work_sem
);
2460 trans
= btrfs_join_transaction(root
, 1);
2462 return PTR_ERR(trans
);
2463 ret
= btrfs_commit_transaction(trans
, root
);
2465 /* run commit again to drop the original snapshot */
2466 trans
= btrfs_join_transaction(root
, 1);
2468 return PTR_ERR(trans
);
2469 btrfs_commit_transaction(trans
, root
);
2470 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2473 ret
= write_ctree_super(NULL
, root
, 0);
2477 int close_ctree(struct btrfs_root
*root
)
2479 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2482 fs_info
->closing
= 1;
2485 btrfs_put_block_group_cache(fs_info
);
2488 * Here come 2 situations when btrfs is broken to flip readonly:
2490 * 1. when btrfs flips readonly somewhere else before
2491 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2492 * and btrfs will skip to write sb directly to keep
2493 * ERROR state on disk.
2495 * 2. when btrfs flips readonly just in btrfs_commit_super,
2496 * and in such case, btrfs cannnot write sb via btrfs_commit_super,
2497 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2498 * btrfs will cleanup all FS resources first and write sb then.
2500 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2501 ret
= btrfs_commit_super(root
);
2503 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2506 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
2507 ret
= btrfs_error_commit_super(root
);
2509 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2512 kthread_stop(root
->fs_info
->transaction_kthread
);
2513 kthread_stop(root
->fs_info
->cleaner_kthread
);
2515 fs_info
->closing
= 2;
2518 if (fs_info
->delalloc_bytes
) {
2519 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2520 (unsigned long long)fs_info
->delalloc_bytes
);
2522 if (fs_info
->total_ref_cache_size
) {
2523 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2524 (unsigned long long)fs_info
->total_ref_cache_size
);
2527 free_extent_buffer(fs_info
->extent_root
->node
);
2528 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2529 free_extent_buffer(fs_info
->tree_root
->node
);
2530 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2531 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2532 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2533 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2534 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2535 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2536 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2538 btrfs_free_block_groups(root
->fs_info
);
2540 del_fs_roots(fs_info
);
2542 iput(fs_info
->btree_inode
);
2544 btrfs_stop_workers(&fs_info
->generic_worker
);
2545 btrfs_stop_workers(&fs_info
->fixup_workers
);
2546 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2547 btrfs_stop_workers(&fs_info
->workers
);
2548 btrfs_stop_workers(&fs_info
->endio_workers
);
2549 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2550 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2551 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2552 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2553 btrfs_stop_workers(&fs_info
->submit_workers
);
2555 btrfs_close_devices(fs_info
->fs_devices
);
2556 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2558 bdi_destroy(&fs_info
->bdi
);
2559 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2561 kfree(fs_info
->extent_root
);
2562 kfree(fs_info
->tree_root
);
2563 kfree(fs_info
->chunk_root
);
2564 kfree(fs_info
->dev_root
);
2565 kfree(fs_info
->csum_root
);
2571 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2574 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2576 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2581 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2586 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2588 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2589 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2593 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2595 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2596 u64 transid
= btrfs_header_generation(buf
);
2597 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2600 btrfs_assert_tree_locked(buf
);
2601 if (transid
!= root
->fs_info
->generation
) {
2602 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2603 "found %llu running %llu\n",
2604 (unsigned long long)buf
->start
,
2605 (unsigned long long)transid
,
2606 (unsigned long long)root
->fs_info
->generation
);
2609 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2612 spin_lock(&root
->fs_info
->delalloc_lock
);
2613 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2614 spin_unlock(&root
->fs_info
->delalloc_lock
);
2618 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2621 * looks as though older kernels can get into trouble with
2622 * this code, they end up stuck in balance_dirty_pages forever
2625 unsigned long thresh
= 32 * 1024 * 1024;
2627 if (current
->flags
& PF_MEMALLOC
)
2630 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2632 if (num_dirty
> thresh
) {
2633 balance_dirty_pages_ratelimited_nr(
2634 root
->fs_info
->btree_inode
->i_mapping
, 1);
2639 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2641 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2643 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2645 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2649 int btree_lock_page_hook(struct page
*page
)
2651 struct inode
*inode
= page
->mapping
->host
;
2652 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2653 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2654 struct extent_buffer
*eb
;
2656 u64 bytenr
= page_offset(page
);
2658 if (page
->private == EXTENT_PAGE_PRIVATE
)
2661 len
= page
->private >> 2;
2662 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2666 btrfs_tree_lock(eb
);
2667 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2669 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2670 spin_lock(&root
->fs_info
->delalloc_lock
);
2671 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2672 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2675 spin_unlock(&root
->fs_info
->delalloc_lock
);
2678 btrfs_tree_unlock(eb
);
2679 free_extent_buffer(eb
);
2685 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
2691 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
2692 printk(KERN_WARNING
"warning: mount fs with errors, "
2693 "running btrfsck is recommended\n");
2696 int btrfs_error_commit_super(struct btrfs_root
*root
)
2700 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2701 btrfs_run_delayed_iputs(root
);
2702 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2704 down_write(&root
->fs_info
->cleanup_work_sem
);
2705 up_write(&root
->fs_info
->cleanup_work_sem
);
2707 /* cleanup FS via transaction */
2708 btrfs_cleanup_transaction(root
);
2710 ret
= write_ctree_super(NULL
, root
, 0);
2715 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
)
2717 struct btrfs_inode
*btrfs_inode
;
2718 struct list_head splice
;
2720 INIT_LIST_HEAD(&splice
);
2722 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
2723 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2725 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
2726 while (!list_empty(&splice
)) {
2727 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2728 ordered_operations
);
2730 list_del_init(&btrfs_inode
->ordered_operations
);
2732 btrfs_invalidate_inodes(btrfs_inode
->root
);
2735 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2736 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
2741 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
2743 struct list_head splice
;
2744 struct btrfs_ordered_extent
*ordered
;
2745 struct inode
*inode
;
2747 INIT_LIST_HEAD(&splice
);
2749 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2751 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
2752 while (!list_empty(&splice
)) {
2753 ordered
= list_entry(splice
.next
, struct btrfs_ordered_extent
,
2756 list_del_init(&ordered
->root_extent_list
);
2757 atomic_inc(&ordered
->refs
);
2759 /* the inode may be getting freed (in sys_unlink path). */
2760 inode
= igrab(ordered
->inode
);
2762 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2766 atomic_set(&ordered
->refs
, 1);
2767 btrfs_put_ordered_extent(ordered
);
2769 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2772 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2777 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
2778 struct btrfs_root
*root
)
2780 struct rb_node
*node
;
2781 struct btrfs_delayed_ref_root
*delayed_refs
;
2782 struct btrfs_delayed_ref_node
*ref
;
2785 delayed_refs
= &trans
->delayed_refs
;
2787 spin_lock(&delayed_refs
->lock
);
2788 if (delayed_refs
->num_entries
== 0) {
2789 printk(KERN_INFO
"delayed_refs has NO entry\n");
2793 node
= rb_first(&delayed_refs
->root
);
2795 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2796 node
= rb_next(node
);
2799 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2800 delayed_refs
->num_entries
--;
2802 atomic_set(&ref
->refs
, 1);
2803 if (btrfs_delayed_ref_is_head(ref
)) {
2804 struct btrfs_delayed_ref_head
*head
;
2806 head
= btrfs_delayed_node_to_head(ref
);
2807 mutex_lock(&head
->mutex
);
2808 kfree(head
->extent_op
);
2809 delayed_refs
->num_heads
--;
2810 if (list_empty(&head
->cluster
))
2811 delayed_refs
->num_heads_ready
--;
2812 list_del_init(&head
->cluster
);
2813 mutex_unlock(&head
->mutex
);
2816 spin_unlock(&delayed_refs
->lock
);
2817 btrfs_put_delayed_ref(ref
);
2820 spin_lock(&delayed_refs
->lock
);
2823 spin_unlock(&delayed_refs
->lock
);
2828 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
)
2830 struct btrfs_pending_snapshot
*snapshot
;
2831 struct list_head splice
;
2833 INIT_LIST_HEAD(&splice
);
2835 list_splice_init(&t
->pending_snapshots
, &splice
);
2837 while (!list_empty(&splice
)) {
2838 snapshot
= list_entry(splice
.next
,
2839 struct btrfs_pending_snapshot
,
2842 list_del_init(&snapshot
->list
);
2850 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
2852 struct btrfs_inode
*btrfs_inode
;
2853 struct list_head splice
;
2855 INIT_LIST_HEAD(&splice
);
2857 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
2859 spin_lock(&root
->fs_info
->delalloc_lock
);
2861 while (!list_empty(&splice
)) {
2862 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2865 list_del_init(&btrfs_inode
->delalloc_inodes
);
2867 btrfs_invalidate_inodes(btrfs_inode
->root
);
2870 spin_unlock(&root
->fs_info
->delalloc_lock
);
2875 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
2876 struct extent_io_tree
*dirty_pages
,
2881 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2882 struct extent_buffer
*eb
;
2886 unsigned long index
;
2889 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
2894 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
2895 while (start
<= end
) {
2896 index
= start
>> PAGE_CACHE_SHIFT
;
2897 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
2898 page
= find_get_page(btree_inode
->i_mapping
, index
);
2901 offset
= page_offset(page
);
2903 spin_lock(&dirty_pages
->buffer_lock
);
2904 eb
= radix_tree_lookup(
2905 &(&BTRFS_I(page
->mapping
->host
)->io_tree
)->buffer
,
2906 offset
>> PAGE_CACHE_SHIFT
);
2907 spin_unlock(&dirty_pages
->buffer_lock
);
2909 ret
= test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
2911 atomic_set(&eb
->refs
, 1);
2913 if (PageWriteback(page
))
2914 end_page_writeback(page
);
2917 if (PageDirty(page
)) {
2918 clear_page_dirty_for_io(page
);
2919 spin_lock_irq(&page
->mapping
->tree_lock
);
2920 radix_tree_tag_clear(&page
->mapping
->page_tree
,
2922 PAGECACHE_TAG_DIRTY
);
2923 spin_unlock_irq(&page
->mapping
->tree_lock
);
2926 page
->mapping
->a_ops
->invalidatepage(page
, 0);
2934 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
2935 struct extent_io_tree
*pinned_extents
)
2937 struct extent_io_tree
*unpin
;
2942 unpin
= pinned_extents
;
2944 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
2950 ret
= btrfs_error_discard_extent(root
, start
, end
+ 1 - start
);
2952 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
2953 btrfs_error_unpin_extent_range(root
, start
, end
);
2960 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
2962 struct btrfs_transaction
*t
;
2967 mutex_lock(&root
->fs_info
->trans_mutex
);
2968 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
2970 list_splice_init(&root
->fs_info
->trans_list
, &list
);
2971 while (!list_empty(&list
)) {
2972 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
2976 btrfs_destroy_ordered_operations(root
);
2978 btrfs_destroy_ordered_extents(root
);
2980 btrfs_destroy_delayed_refs(t
, root
);
2982 btrfs_block_rsv_release(root
,
2983 &root
->fs_info
->trans_block_rsv
,
2984 t
->dirty_pages
.dirty_bytes
);
2986 /* FIXME: cleanup wait for commit */
2989 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
2990 wake_up(&root
->fs_info
->transaction_blocked_wait
);
2993 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
2994 wake_up(&root
->fs_info
->transaction_wait
);
2995 mutex_unlock(&root
->fs_info
->trans_mutex
);
2997 mutex_lock(&root
->fs_info
->trans_mutex
);
2999 if (waitqueue_active(&t
->commit_wait
))
3000 wake_up(&t
->commit_wait
);
3001 mutex_unlock(&root
->fs_info
->trans_mutex
);
3003 mutex_lock(&root
->fs_info
->trans_mutex
);
3005 btrfs_destroy_pending_snapshots(t
);
3007 btrfs_destroy_delalloc_inodes(root
);
3009 spin_lock(&root
->fs_info
->new_trans_lock
);
3010 root
->fs_info
->running_transaction
= NULL
;
3011 spin_unlock(&root
->fs_info
->new_trans_lock
);
3013 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
3016 btrfs_destroy_pinned_extent(root
,
3017 root
->fs_info
->pinned_extents
);
3020 list_del_init(&t
->list
);
3021 memset(t
, 0, sizeof(*t
));
3022 kmem_cache_free(btrfs_transaction_cachep
, t
);
3025 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
3026 mutex_unlock(&root
->fs_info
->trans_mutex
);
3031 static struct extent_io_ops btree_extent_io_ops
= {
3032 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
3033 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
3034 .submit_bio_hook
= btree_submit_bio_hook
,
3035 /* note we're sharing with inode.c for the merge bio hook */
3036 .merge_bio_hook
= btrfs_merge_bio_hook
,