2 * linux/kernel/power/snapshot.c
4 * This file provides system snapshot/restore functionality for swsusp.
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * This file is released under the GPLv2.
13 #include <linux/version.h>
14 #include <linux/module.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
39 static int swsusp_page_is_free(struct page
*);
40 static void swsusp_set_page_forbidden(struct page
*);
41 static void swsusp_unset_page_forbidden(struct page
*);
44 * Preferred image size in bytes (tunable via /sys/power/image_size).
45 * When it is set to N, swsusp will do its best to ensure the image
46 * size will not exceed N bytes, but if that is impossible, it will
47 * try to create the smallest image possible.
49 unsigned long image_size
;
51 void __init
hibernate_image_size_init(void)
53 image_size
= ((totalram_pages
* 2) / 5) * PAGE_SIZE
;
56 /* List of PBEs needed for restoring the pages that were allocated before
57 * the suspend and included in the suspend image, but have also been
58 * allocated by the "resume" kernel, so their contents cannot be written
59 * directly to their "original" page frames.
61 struct pbe
*restore_pblist
;
63 /* Pointer to an auxiliary buffer (1 page) */
67 * @safe_needed - on resume, for storing the PBE list and the image,
68 * we can only use memory pages that do not conflict with the pages
69 * used before suspend. The unsafe pages have PageNosaveFree set
70 * and we count them using unsafe_pages.
72 * Each allocated image page is marked as PageNosave and PageNosaveFree
73 * so that swsusp_free() can release it.
78 #define PG_UNSAFE_CLEAR 1
79 #define PG_UNSAFE_KEEP 0
81 static unsigned int allocated_unsafe_pages
;
83 static void *get_image_page(gfp_t gfp_mask
, int safe_needed
)
87 res
= (void *)get_zeroed_page(gfp_mask
);
89 while (res
&& swsusp_page_is_free(virt_to_page(res
))) {
90 /* The page is unsafe, mark it for swsusp_free() */
91 swsusp_set_page_forbidden(virt_to_page(res
));
92 allocated_unsafe_pages
++;
93 res
= (void *)get_zeroed_page(gfp_mask
);
96 swsusp_set_page_forbidden(virt_to_page(res
));
97 swsusp_set_page_free(virt_to_page(res
));
102 unsigned long get_safe_page(gfp_t gfp_mask
)
104 return (unsigned long)get_image_page(gfp_mask
, PG_SAFE
);
107 static struct page
*alloc_image_page(gfp_t gfp_mask
)
111 page
= alloc_page(gfp_mask
);
113 swsusp_set_page_forbidden(page
);
114 swsusp_set_page_free(page
);
120 * free_image_page - free page represented by @addr, allocated with
121 * get_image_page (page flags set by it must be cleared)
124 static inline void free_image_page(void *addr
, int clear_nosave_free
)
128 BUG_ON(!virt_addr_valid(addr
));
130 page
= virt_to_page(addr
);
132 swsusp_unset_page_forbidden(page
);
133 if (clear_nosave_free
)
134 swsusp_unset_page_free(page
);
139 /* struct linked_page is used to build chains of pages */
141 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
144 struct linked_page
*next
;
145 char data
[LINKED_PAGE_DATA_SIZE
];
146 } __attribute__((packed
));
149 free_list_of_pages(struct linked_page
*list
, int clear_page_nosave
)
152 struct linked_page
*lp
= list
->next
;
154 free_image_page(list
, clear_page_nosave
);
160 * struct chain_allocator is used for allocating small objects out of
161 * a linked list of pages called 'the chain'.
163 * The chain grows each time when there is no room for a new object in
164 * the current page. The allocated objects cannot be freed individually.
165 * It is only possible to free them all at once, by freeing the entire
168 * NOTE: The chain allocator may be inefficient if the allocated objects
169 * are not much smaller than PAGE_SIZE.
172 struct chain_allocator
{
173 struct linked_page
*chain
; /* the chain */
174 unsigned int used_space
; /* total size of objects allocated out
175 * of the current page
177 gfp_t gfp_mask
; /* mask for allocating pages */
178 int safe_needed
; /* if set, only "safe" pages are allocated */
182 chain_init(struct chain_allocator
*ca
, gfp_t gfp_mask
, int safe_needed
)
185 ca
->used_space
= LINKED_PAGE_DATA_SIZE
;
186 ca
->gfp_mask
= gfp_mask
;
187 ca
->safe_needed
= safe_needed
;
190 static void *chain_alloc(struct chain_allocator
*ca
, unsigned int size
)
194 if (LINKED_PAGE_DATA_SIZE
- ca
->used_space
< size
) {
195 struct linked_page
*lp
;
197 lp
= get_image_page(ca
->gfp_mask
, ca
->safe_needed
);
201 lp
->next
= ca
->chain
;
205 ret
= ca
->chain
->data
+ ca
->used_space
;
206 ca
->used_space
+= size
;
211 * Data types related to memory bitmaps.
213 * Memory bitmap is a structure consiting of many linked lists of
214 * objects. The main list's elements are of type struct zone_bitmap
215 * and each of them corresonds to one zone. For each zone bitmap
216 * object there is a list of objects of type struct bm_block that
217 * represent each blocks of bitmap in which information is stored.
219 * struct memory_bitmap contains a pointer to the main list of zone
220 * bitmap objects, a struct bm_position used for browsing the bitmap,
221 * and a pointer to the list of pages used for allocating all of the
222 * zone bitmap objects and bitmap block objects.
224 * NOTE: It has to be possible to lay out the bitmap in memory
225 * using only allocations of order 0. Additionally, the bitmap is
226 * designed to work with arbitrary number of zones (this is over the
227 * top for now, but let's avoid making unnecessary assumptions ;-).
229 * struct zone_bitmap contains a pointer to a list of bitmap block
230 * objects and a pointer to the bitmap block object that has been
231 * most recently used for setting bits. Additionally, it contains the
232 * pfns that correspond to the start and end of the represented zone.
234 * struct bm_block contains a pointer to the memory page in which
235 * information is stored (in the form of a block of bitmap)
236 * It also contains the pfns that correspond to the start and end of
237 * the represented memory area.
240 #define BM_END_OF_MAP (~0UL)
242 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
245 struct list_head hook
; /* hook into a list of bitmap blocks */
246 unsigned long start_pfn
; /* pfn represented by the first bit */
247 unsigned long end_pfn
; /* pfn represented by the last bit plus 1 */
248 unsigned long *data
; /* bitmap representing pages */
251 static inline unsigned long bm_block_bits(struct bm_block
*bb
)
253 return bb
->end_pfn
- bb
->start_pfn
;
256 /* strcut bm_position is used for browsing memory bitmaps */
259 struct bm_block
*block
;
263 struct memory_bitmap
{
264 struct list_head blocks
; /* list of bitmap blocks */
265 struct linked_page
*p_list
; /* list of pages used to store zone
266 * bitmap objects and bitmap block
269 struct bm_position cur
; /* most recently used bit position */
272 /* Functions that operate on memory bitmaps */
274 static void memory_bm_position_reset(struct memory_bitmap
*bm
)
276 bm
->cur
.block
= list_entry(bm
->blocks
.next
, struct bm_block
, hook
);
280 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
);
283 * create_bm_block_list - create a list of block bitmap objects
284 * @pages - number of pages to track
285 * @list - list to put the allocated blocks into
286 * @ca - chain allocator to be used for allocating memory
288 static int create_bm_block_list(unsigned long pages
,
289 struct list_head
*list
,
290 struct chain_allocator
*ca
)
292 unsigned int nr_blocks
= DIV_ROUND_UP(pages
, BM_BITS_PER_BLOCK
);
294 while (nr_blocks
-- > 0) {
297 bb
= chain_alloc(ca
, sizeof(struct bm_block
));
300 list_add(&bb
->hook
, list
);
307 struct list_head hook
;
313 * free_mem_extents - free a list of memory extents
314 * @list - list of extents to empty
316 static void free_mem_extents(struct list_head
*list
)
318 struct mem_extent
*ext
, *aux
;
320 list_for_each_entry_safe(ext
, aux
, list
, hook
) {
321 list_del(&ext
->hook
);
327 * create_mem_extents - create a list of memory extents representing
328 * contiguous ranges of PFNs
329 * @list - list to put the extents into
330 * @gfp_mask - mask to use for memory allocations
332 static int create_mem_extents(struct list_head
*list
, gfp_t gfp_mask
)
336 INIT_LIST_HEAD(list
);
338 for_each_populated_zone(zone
) {
339 unsigned long zone_start
, zone_end
;
340 struct mem_extent
*ext
, *cur
, *aux
;
342 zone_start
= zone
->zone_start_pfn
;
343 zone_end
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
345 list_for_each_entry(ext
, list
, hook
)
346 if (zone_start
<= ext
->end
)
349 if (&ext
->hook
== list
|| zone_end
< ext
->start
) {
350 /* New extent is necessary */
351 struct mem_extent
*new_ext
;
353 new_ext
= kzalloc(sizeof(struct mem_extent
), gfp_mask
);
355 free_mem_extents(list
);
358 new_ext
->start
= zone_start
;
359 new_ext
->end
= zone_end
;
360 list_add_tail(&new_ext
->hook
, &ext
->hook
);
364 /* Merge this zone's range of PFNs with the existing one */
365 if (zone_start
< ext
->start
)
366 ext
->start
= zone_start
;
367 if (zone_end
> ext
->end
)
370 /* More merging may be possible */
372 list_for_each_entry_safe_continue(cur
, aux
, list
, hook
) {
373 if (zone_end
< cur
->start
)
375 if (zone_end
< cur
->end
)
377 list_del(&cur
->hook
);
386 * memory_bm_create - allocate memory for a memory bitmap
389 memory_bm_create(struct memory_bitmap
*bm
, gfp_t gfp_mask
, int safe_needed
)
391 struct chain_allocator ca
;
392 struct list_head mem_extents
;
393 struct mem_extent
*ext
;
396 chain_init(&ca
, gfp_mask
, safe_needed
);
397 INIT_LIST_HEAD(&bm
->blocks
);
399 error
= create_mem_extents(&mem_extents
, gfp_mask
);
403 list_for_each_entry(ext
, &mem_extents
, hook
) {
405 unsigned long pfn
= ext
->start
;
406 unsigned long pages
= ext
->end
- ext
->start
;
408 bb
= list_entry(bm
->blocks
.prev
, struct bm_block
, hook
);
410 error
= create_bm_block_list(pages
, bm
->blocks
.prev
, &ca
);
414 list_for_each_entry_continue(bb
, &bm
->blocks
, hook
) {
415 bb
->data
= get_image_page(gfp_mask
, safe_needed
);
422 if (pages
>= BM_BITS_PER_BLOCK
) {
423 pfn
+= BM_BITS_PER_BLOCK
;
424 pages
-= BM_BITS_PER_BLOCK
;
426 /* This is executed only once in the loop */
433 bm
->p_list
= ca
.chain
;
434 memory_bm_position_reset(bm
);
436 free_mem_extents(&mem_extents
);
440 bm
->p_list
= ca
.chain
;
441 memory_bm_free(bm
, PG_UNSAFE_CLEAR
);
446 * memory_bm_free - free memory occupied by the memory bitmap @bm
448 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
)
452 list_for_each_entry(bb
, &bm
->blocks
, hook
)
454 free_image_page(bb
->data
, clear_nosave_free
);
456 free_list_of_pages(bm
->p_list
, clear_nosave_free
);
458 INIT_LIST_HEAD(&bm
->blocks
);
462 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
463 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
464 * of @bm->cur_zone_bm are updated.
466 static int memory_bm_find_bit(struct memory_bitmap
*bm
, unsigned long pfn
,
467 void **addr
, unsigned int *bit_nr
)
472 * Check if the pfn corresponds to the current bitmap block and find
473 * the block where it fits if this is not the case.
476 if (pfn
< bb
->start_pfn
)
477 list_for_each_entry_continue_reverse(bb
, &bm
->blocks
, hook
)
478 if (pfn
>= bb
->start_pfn
)
481 if (pfn
>= bb
->end_pfn
)
482 list_for_each_entry_continue(bb
, &bm
->blocks
, hook
)
483 if (pfn
>= bb
->start_pfn
&& pfn
< bb
->end_pfn
)
486 if (&bb
->hook
== &bm
->blocks
)
489 /* The block has been found */
491 pfn
-= bb
->start_pfn
;
492 bm
->cur
.bit
= pfn
+ 1;
498 static void memory_bm_set_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
504 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
509 static int mem_bm_set_bit_check(struct memory_bitmap
*bm
, unsigned long pfn
)
515 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
521 static void memory_bm_clear_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
527 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
529 clear_bit(bit
, addr
);
532 static int memory_bm_test_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
538 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
540 return test_bit(bit
, addr
);
543 static bool memory_bm_pfn_present(struct memory_bitmap
*bm
, unsigned long pfn
)
548 return !memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
552 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
553 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
556 * It is required to run memory_bm_position_reset() before the first call to
560 static unsigned long memory_bm_next_pfn(struct memory_bitmap
*bm
)
568 bit
= find_next_bit(bb
->data
, bm_block_bits(bb
), bit
);
569 if (bit
< bm_block_bits(bb
))
572 bb
= list_entry(bb
->hook
.next
, struct bm_block
, hook
);
575 } while (&bb
->hook
!= &bm
->blocks
);
577 memory_bm_position_reset(bm
);
578 return BM_END_OF_MAP
;
581 bm
->cur
.bit
= bit
+ 1;
582 return bb
->start_pfn
+ bit
;
586 * This structure represents a range of page frames the contents of which
587 * should not be saved during the suspend.
590 struct nosave_region
{
591 struct list_head list
;
592 unsigned long start_pfn
;
593 unsigned long end_pfn
;
596 static LIST_HEAD(nosave_regions
);
599 * register_nosave_region - register a range of page frames the contents
600 * of which should not be saved during the suspend (to be used in the early
601 * initialization code)
605 __register_nosave_region(unsigned long start_pfn
, unsigned long end_pfn
,
608 struct nosave_region
*region
;
610 if (start_pfn
>= end_pfn
)
613 if (!list_empty(&nosave_regions
)) {
614 /* Try to extend the previous region (they should be sorted) */
615 region
= list_entry(nosave_regions
.prev
,
616 struct nosave_region
, list
);
617 if (region
->end_pfn
== start_pfn
) {
618 region
->end_pfn
= end_pfn
;
623 /* during init, this shouldn't fail */
624 region
= kmalloc(sizeof(struct nosave_region
), GFP_KERNEL
);
627 /* This allocation cannot fail */
628 region
= alloc_bootmem(sizeof(struct nosave_region
));
629 region
->start_pfn
= start_pfn
;
630 region
->end_pfn
= end_pfn
;
631 list_add_tail(®ion
->list
, &nosave_regions
);
633 printk(KERN_INFO
"PM: Registered nosave memory: %016lx - %016lx\n",
634 start_pfn
<< PAGE_SHIFT
, end_pfn
<< PAGE_SHIFT
);
638 * Set bits in this map correspond to the page frames the contents of which
639 * should not be saved during the suspend.
641 static struct memory_bitmap
*forbidden_pages_map
;
643 /* Set bits in this map correspond to free page frames. */
644 static struct memory_bitmap
*free_pages_map
;
647 * Each page frame allocated for creating the image is marked by setting the
648 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
651 void swsusp_set_page_free(struct page
*page
)
654 memory_bm_set_bit(free_pages_map
, page_to_pfn(page
));
657 static int swsusp_page_is_free(struct page
*page
)
659 return free_pages_map
?
660 memory_bm_test_bit(free_pages_map
, page_to_pfn(page
)) : 0;
663 void swsusp_unset_page_free(struct page
*page
)
666 memory_bm_clear_bit(free_pages_map
, page_to_pfn(page
));
669 static void swsusp_set_page_forbidden(struct page
*page
)
671 if (forbidden_pages_map
)
672 memory_bm_set_bit(forbidden_pages_map
, page_to_pfn(page
));
675 int swsusp_page_is_forbidden(struct page
*page
)
677 return forbidden_pages_map
?
678 memory_bm_test_bit(forbidden_pages_map
, page_to_pfn(page
)) : 0;
681 static void swsusp_unset_page_forbidden(struct page
*page
)
683 if (forbidden_pages_map
)
684 memory_bm_clear_bit(forbidden_pages_map
, page_to_pfn(page
));
688 * mark_nosave_pages - set bits corresponding to the page frames the
689 * contents of which should not be saved in a given bitmap.
692 static void mark_nosave_pages(struct memory_bitmap
*bm
)
694 struct nosave_region
*region
;
696 if (list_empty(&nosave_regions
))
699 list_for_each_entry(region
, &nosave_regions
, list
) {
702 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
703 region
->start_pfn
<< PAGE_SHIFT
,
704 region
->end_pfn
<< PAGE_SHIFT
);
706 for (pfn
= region
->start_pfn
; pfn
< region
->end_pfn
; pfn
++)
707 if (pfn_valid(pfn
)) {
709 * It is safe to ignore the result of
710 * mem_bm_set_bit_check() here, since we won't
711 * touch the PFNs for which the error is
714 mem_bm_set_bit_check(bm
, pfn
);
720 * create_basic_memory_bitmaps - create bitmaps needed for marking page
721 * frames that should not be saved and free page frames. The pointers
722 * forbidden_pages_map and free_pages_map are only modified if everything
723 * goes well, because we don't want the bits to be used before both bitmaps
727 int create_basic_memory_bitmaps(void)
729 struct memory_bitmap
*bm1
, *bm2
;
732 BUG_ON(forbidden_pages_map
|| free_pages_map
);
734 bm1
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
738 error
= memory_bm_create(bm1
, GFP_KERNEL
, PG_ANY
);
740 goto Free_first_object
;
742 bm2
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
744 goto Free_first_bitmap
;
746 error
= memory_bm_create(bm2
, GFP_KERNEL
, PG_ANY
);
748 goto Free_second_object
;
750 forbidden_pages_map
= bm1
;
751 free_pages_map
= bm2
;
752 mark_nosave_pages(forbidden_pages_map
);
754 pr_debug("PM: Basic memory bitmaps created\n");
761 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
768 * free_basic_memory_bitmaps - free memory bitmaps allocated by
769 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
770 * so that the bitmaps themselves are not referred to while they are being
774 void free_basic_memory_bitmaps(void)
776 struct memory_bitmap
*bm1
, *bm2
;
778 BUG_ON(!(forbidden_pages_map
&& free_pages_map
));
780 bm1
= forbidden_pages_map
;
781 bm2
= free_pages_map
;
782 forbidden_pages_map
= NULL
;
783 free_pages_map
= NULL
;
784 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
786 memory_bm_free(bm2
, PG_UNSAFE_CLEAR
);
789 pr_debug("PM: Basic memory bitmaps freed\n");
793 * snapshot_additional_pages - estimate the number of additional pages
794 * be needed for setting up the suspend image data structures for given
795 * zone (usually the returned value is greater than the exact number)
798 unsigned int snapshot_additional_pages(struct zone
*zone
)
802 res
= DIV_ROUND_UP(zone
->spanned_pages
, BM_BITS_PER_BLOCK
);
803 res
+= DIV_ROUND_UP(res
* sizeof(struct bm_block
), PAGE_SIZE
);
807 #ifdef CONFIG_HIGHMEM
809 * count_free_highmem_pages - compute the total number of free highmem
810 * pages, system-wide.
813 static unsigned int count_free_highmem_pages(void)
816 unsigned int cnt
= 0;
818 for_each_populated_zone(zone
)
819 if (is_highmem(zone
))
820 cnt
+= zone_page_state(zone
, NR_FREE_PAGES
);
826 * saveable_highmem_page - Determine whether a highmem page should be
827 * included in the suspend image.
829 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
830 * and it isn't a part of a free chunk of pages.
832 static struct page
*saveable_highmem_page(struct zone
*zone
, unsigned long pfn
)
839 page
= pfn_to_page(pfn
);
840 if (page_zone(page
) != zone
)
843 BUG_ON(!PageHighMem(page
));
845 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
) ||
853 * count_highmem_pages - compute the total number of saveable highmem
857 static unsigned int count_highmem_pages(void)
862 for_each_populated_zone(zone
) {
863 unsigned long pfn
, max_zone_pfn
;
865 if (!is_highmem(zone
))
868 mark_free_pages(zone
);
869 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
870 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
871 if (saveable_highmem_page(zone
, pfn
))
877 static inline void *saveable_highmem_page(struct zone
*z
, unsigned long p
)
881 #endif /* CONFIG_HIGHMEM */
884 * saveable_page - Determine whether a non-highmem page should be included
885 * in the suspend image.
887 * We should save the page if it isn't Nosave, and is not in the range
888 * of pages statically defined as 'unsaveable', and it isn't a part of
889 * a free chunk of pages.
891 static struct page
*saveable_page(struct zone
*zone
, unsigned long pfn
)
898 page
= pfn_to_page(pfn
);
899 if (page_zone(page
) != zone
)
902 BUG_ON(PageHighMem(page
));
904 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
))
907 if (PageReserved(page
)
908 && (!kernel_page_present(page
) || pfn_is_nosave(pfn
)))
915 * count_data_pages - compute the total number of saveable non-highmem
919 static unsigned int count_data_pages(void)
922 unsigned long pfn
, max_zone_pfn
;
925 for_each_populated_zone(zone
) {
926 if (is_highmem(zone
))
929 mark_free_pages(zone
);
930 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
931 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
932 if (saveable_page(zone
, pfn
))
938 /* This is needed, because copy_page and memcpy are not usable for copying
941 static inline void do_copy_page(long *dst
, long *src
)
945 for (n
= PAGE_SIZE
/ sizeof(long); n
; n
--)
951 * safe_copy_page - check if the page we are going to copy is marked as
952 * present in the kernel page tables (this always is the case if
953 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
954 * kernel_page_present() always returns 'true').
956 static void safe_copy_page(void *dst
, struct page
*s_page
)
958 if (kernel_page_present(s_page
)) {
959 do_copy_page(dst
, page_address(s_page
));
961 kernel_map_pages(s_page
, 1, 1);
962 do_copy_page(dst
, page_address(s_page
));
963 kernel_map_pages(s_page
, 1, 0);
968 #ifdef CONFIG_HIGHMEM
969 static inline struct page
*
970 page_is_saveable(struct zone
*zone
, unsigned long pfn
)
972 return is_highmem(zone
) ?
973 saveable_highmem_page(zone
, pfn
) : saveable_page(zone
, pfn
);
976 static void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
978 struct page
*s_page
, *d_page
;
981 s_page
= pfn_to_page(src_pfn
);
982 d_page
= pfn_to_page(dst_pfn
);
983 if (PageHighMem(s_page
)) {
984 src
= kmap_atomic(s_page
, KM_USER0
);
985 dst
= kmap_atomic(d_page
, KM_USER1
);
986 do_copy_page(dst
, src
);
987 kunmap_atomic(dst
, KM_USER1
);
988 kunmap_atomic(src
, KM_USER0
);
990 if (PageHighMem(d_page
)) {
991 /* Page pointed to by src may contain some kernel
992 * data modified by kmap_atomic()
994 safe_copy_page(buffer
, s_page
);
995 dst
= kmap_atomic(d_page
, KM_USER0
);
996 copy_page(dst
, buffer
);
997 kunmap_atomic(dst
, KM_USER0
);
999 safe_copy_page(page_address(d_page
), s_page
);
1004 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1006 static inline void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
1008 safe_copy_page(page_address(pfn_to_page(dst_pfn
)),
1009 pfn_to_page(src_pfn
));
1011 #endif /* CONFIG_HIGHMEM */
1014 copy_data_pages(struct memory_bitmap
*copy_bm
, struct memory_bitmap
*orig_bm
)
1019 for_each_populated_zone(zone
) {
1020 unsigned long max_zone_pfn
;
1022 mark_free_pages(zone
);
1023 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1024 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1025 if (page_is_saveable(zone
, pfn
))
1026 memory_bm_set_bit(orig_bm
, pfn
);
1028 memory_bm_position_reset(orig_bm
);
1029 memory_bm_position_reset(copy_bm
);
1031 pfn
= memory_bm_next_pfn(orig_bm
);
1032 if (unlikely(pfn
== BM_END_OF_MAP
))
1034 copy_data_page(memory_bm_next_pfn(copy_bm
), pfn
);
1038 /* Total number of image pages */
1039 static unsigned int nr_copy_pages
;
1040 /* Number of pages needed for saving the original pfns of the image pages */
1041 static unsigned int nr_meta_pages
;
1043 * Numbers of normal and highmem page frames allocated for hibernation image
1044 * before suspending devices.
1046 unsigned int alloc_normal
, alloc_highmem
;
1048 * Memory bitmap used for marking saveable pages (during hibernation) or
1049 * hibernation image pages (during restore)
1051 static struct memory_bitmap orig_bm
;
1053 * Memory bitmap used during hibernation for marking allocated page frames that
1054 * will contain copies of saveable pages. During restore it is initially used
1055 * for marking hibernation image pages, but then the set bits from it are
1056 * duplicated in @orig_bm and it is released. On highmem systems it is next
1057 * used for marking "safe" highmem pages, but it has to be reinitialized for
1060 static struct memory_bitmap copy_bm
;
1063 * swsusp_free - free pages allocated for the suspend.
1065 * Suspend pages are alocated before the atomic copy is made, so we
1066 * need to release them after the resume.
1069 void swsusp_free(void)
1072 unsigned long pfn
, max_zone_pfn
;
1074 for_each_populated_zone(zone
) {
1075 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1076 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1077 if (pfn_valid(pfn
)) {
1078 struct page
*page
= pfn_to_page(pfn
);
1080 if (swsusp_page_is_forbidden(page
) &&
1081 swsusp_page_is_free(page
)) {
1082 swsusp_unset_page_forbidden(page
);
1083 swsusp_unset_page_free(page
);
1090 restore_pblist
= NULL
;
1096 /* Helper functions used for the shrinking of memory. */
1098 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1101 * preallocate_image_pages - Allocate a number of pages for hibernation image
1102 * @nr_pages: Number of page frames to allocate.
1103 * @mask: GFP flags to use for the allocation.
1105 * Return value: Number of page frames actually allocated
1107 static unsigned long preallocate_image_pages(unsigned long nr_pages
, gfp_t mask
)
1109 unsigned long nr_alloc
= 0;
1111 while (nr_pages
> 0) {
1114 page
= alloc_image_page(mask
);
1117 memory_bm_set_bit(©_bm
, page_to_pfn(page
));
1118 if (PageHighMem(page
))
1129 static unsigned long preallocate_image_memory(unsigned long nr_pages
,
1130 unsigned long avail_normal
)
1132 unsigned long alloc
;
1134 if (avail_normal
<= alloc_normal
)
1137 alloc
= avail_normal
- alloc_normal
;
1138 if (nr_pages
< alloc
)
1141 return preallocate_image_pages(alloc
, GFP_IMAGE
);
1144 #ifdef CONFIG_HIGHMEM
1145 static unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1147 return preallocate_image_pages(nr_pages
, GFP_IMAGE
| __GFP_HIGHMEM
);
1151 * __fraction - Compute (an approximation of) x * (multiplier / base)
1153 static unsigned long __fraction(u64 x
, u64 multiplier
, u64 base
)
1157 return (unsigned long)x
;
1160 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1161 unsigned long highmem
,
1162 unsigned long total
)
1164 unsigned long alloc
= __fraction(nr_pages
, highmem
, total
);
1166 return preallocate_image_pages(alloc
, GFP_IMAGE
| __GFP_HIGHMEM
);
1168 #else /* CONFIG_HIGHMEM */
1169 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1174 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1175 unsigned long highmem
,
1176 unsigned long total
)
1180 #endif /* CONFIG_HIGHMEM */
1183 * free_unnecessary_pages - Release preallocated pages not needed for the image
1185 static void free_unnecessary_pages(void)
1187 unsigned long save
, to_free_normal
, to_free_highmem
;
1189 save
= count_data_pages();
1190 if (alloc_normal
>= save
) {
1191 to_free_normal
= alloc_normal
- save
;
1195 save
-= alloc_normal
;
1197 save
+= count_highmem_pages();
1198 if (alloc_highmem
>= save
) {
1199 to_free_highmem
= alloc_highmem
- save
;
1201 to_free_highmem
= 0;
1202 to_free_normal
-= save
- alloc_highmem
;
1205 memory_bm_position_reset(©_bm
);
1207 while (to_free_normal
> 0 || to_free_highmem
> 0) {
1208 unsigned long pfn
= memory_bm_next_pfn(©_bm
);
1209 struct page
*page
= pfn_to_page(pfn
);
1211 if (PageHighMem(page
)) {
1212 if (!to_free_highmem
)
1217 if (!to_free_normal
)
1222 memory_bm_clear_bit(©_bm
, pfn
);
1223 swsusp_unset_page_forbidden(page
);
1224 swsusp_unset_page_free(page
);
1230 * minimum_image_size - Estimate the minimum acceptable size of an image
1231 * @saveable: Number of saveable pages in the system.
1233 * We want to avoid attempting to free too much memory too hard, so estimate the
1234 * minimum acceptable size of a hibernation image to use as the lower limit for
1235 * preallocating memory.
1237 * We assume that the minimum image size should be proportional to
1239 * [number of saveable pages] - [number of pages that can be freed in theory]
1241 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1242 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1243 * minus mapped file pages.
1245 static unsigned long minimum_image_size(unsigned long saveable
)
1249 size
= global_page_state(NR_SLAB_RECLAIMABLE
)
1250 + global_page_state(NR_ACTIVE_ANON
)
1251 + global_page_state(NR_INACTIVE_ANON
)
1252 + global_page_state(NR_ACTIVE_FILE
)
1253 + global_page_state(NR_INACTIVE_FILE
)
1254 - global_page_state(NR_FILE_MAPPED
);
1256 return saveable
<= size
? 0 : saveable
- size
;
1260 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1262 * To create a hibernation image it is necessary to make a copy of every page
1263 * frame in use. We also need a number of page frames to be free during
1264 * hibernation for allocations made while saving the image and for device
1265 * drivers, in case they need to allocate memory from their hibernation
1266 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1267 * respectively, both of which are rough estimates). To make this happen, we
1268 * compute the total number of available page frames and allocate at least
1270 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1272 * of them, which corresponds to the maximum size of a hibernation image.
1274 * If image_size is set below the number following from the above formula,
1275 * the preallocation of memory is continued until the total number of saveable
1276 * pages in the system is below the requested image size or the minimum
1277 * acceptable image size returned by minimum_image_size(), whichever is greater.
1279 int hibernate_preallocate_memory(void)
1282 unsigned long saveable
, size
, max_size
, count
, highmem
, pages
= 0;
1283 unsigned long alloc
, save_highmem
, pages_highmem
, avail_normal
;
1284 struct timeval start
, stop
;
1287 printk(KERN_INFO
"PM: Preallocating image memory... ");
1288 do_gettimeofday(&start
);
1290 error
= memory_bm_create(&orig_bm
, GFP_IMAGE
, PG_ANY
);
1294 error
= memory_bm_create(©_bm
, GFP_IMAGE
, PG_ANY
);
1301 /* Count the number of saveable data pages. */
1302 save_highmem
= count_highmem_pages();
1303 saveable
= count_data_pages();
1306 * Compute the total number of page frames we can use (count) and the
1307 * number of pages needed for image metadata (size).
1310 saveable
+= save_highmem
;
1311 highmem
= save_highmem
;
1313 for_each_populated_zone(zone
) {
1314 size
+= snapshot_additional_pages(zone
);
1315 if (is_highmem(zone
))
1316 highmem
+= zone_page_state(zone
, NR_FREE_PAGES
);
1318 count
+= zone_page_state(zone
, NR_FREE_PAGES
);
1320 avail_normal
= count
;
1322 count
-= totalreserve_pages
;
1324 /* Compute the maximum number of saveable pages to leave in memory. */
1325 max_size
= (count
- (size
+ PAGES_FOR_IO
)) / 2 - 2 * SPARE_PAGES
;
1326 /* Compute the desired number of image pages specified by image_size. */
1327 size
= DIV_ROUND_UP(image_size
, PAGE_SIZE
);
1328 if (size
> max_size
)
1331 * If the desired number of image pages is at least as large as the
1332 * current number of saveable pages in memory, allocate page frames for
1333 * the image and we're done.
1335 if (size
>= saveable
) {
1336 pages
= preallocate_image_highmem(save_highmem
);
1337 pages
+= preallocate_image_memory(saveable
- pages
, avail_normal
);
1341 /* Estimate the minimum size of the image. */
1342 pages
= minimum_image_size(saveable
);
1344 * To avoid excessive pressure on the normal zone, leave room in it to
1345 * accommodate an image of the minimum size (unless it's already too
1346 * small, in which case don't preallocate pages from it at all).
1348 if (avail_normal
> pages
)
1349 avail_normal
-= pages
;
1353 size
= min_t(unsigned long, pages
, max_size
);
1356 * Let the memory management subsystem know that we're going to need a
1357 * large number of page frames to allocate and make it free some memory.
1358 * NOTE: If this is not done, performance will be hurt badly in some
1361 shrink_all_memory(saveable
- size
);
1364 * The number of saveable pages in memory was too high, so apply some
1365 * pressure to decrease it. First, make room for the largest possible
1366 * image and fail if that doesn't work. Next, try to decrease the size
1367 * of the image as much as indicated by 'size' using allocations from
1368 * highmem and non-highmem zones separately.
1370 pages_highmem
= preallocate_image_highmem(highmem
/ 2);
1371 alloc
= (count
- max_size
) - pages_highmem
;
1372 pages
= preallocate_image_memory(alloc
, avail_normal
);
1373 if (pages
< alloc
) {
1374 /* We have exhausted non-highmem pages, try highmem. */
1376 pages
+= pages_highmem
;
1377 pages_highmem
= preallocate_image_highmem(alloc
);
1378 if (pages_highmem
< alloc
)
1380 pages
+= pages_highmem
;
1382 * size is the desired number of saveable pages to leave in
1383 * memory, so try to preallocate (all memory - size) pages.
1385 alloc
= (count
- pages
) - size
;
1386 pages
+= preallocate_image_highmem(alloc
);
1389 * There are approximately max_size saveable pages at this point
1390 * and we want to reduce this number down to size.
1392 alloc
= max_size
- size
;
1393 size
= preallocate_highmem_fraction(alloc
, highmem
, count
);
1394 pages_highmem
+= size
;
1396 size
= preallocate_image_memory(alloc
, avail_normal
);
1397 pages_highmem
+= preallocate_image_highmem(alloc
- size
);
1398 pages
+= pages_highmem
+ size
;
1402 * We only need as many page frames for the image as there are saveable
1403 * pages in memory, but we have allocated more. Release the excessive
1406 free_unnecessary_pages();
1409 do_gettimeofday(&stop
);
1410 printk(KERN_CONT
"done (allocated %lu pages)\n", pages
);
1411 swsusp_show_speed(&start
, &stop
, pages
, "Allocated");
1416 printk(KERN_CONT
"\n");
1421 #ifdef CONFIG_HIGHMEM
1423 * count_pages_for_highmem - compute the number of non-highmem pages
1424 * that will be necessary for creating copies of highmem pages.
1427 static unsigned int count_pages_for_highmem(unsigned int nr_highmem
)
1429 unsigned int free_highmem
= count_free_highmem_pages() + alloc_highmem
;
1431 if (free_highmem
>= nr_highmem
)
1434 nr_highmem
-= free_highmem
;
1440 count_pages_for_highmem(unsigned int nr_highmem
) { return 0; }
1441 #endif /* CONFIG_HIGHMEM */
1444 * enough_free_mem - Make sure we have enough free memory for the
1448 static int enough_free_mem(unsigned int nr_pages
, unsigned int nr_highmem
)
1451 unsigned int free
= alloc_normal
;
1453 for_each_populated_zone(zone
)
1454 if (!is_highmem(zone
))
1455 free
+= zone_page_state(zone
, NR_FREE_PAGES
);
1457 nr_pages
+= count_pages_for_highmem(nr_highmem
);
1458 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1459 nr_pages
, PAGES_FOR_IO
, free
);
1461 return free
> nr_pages
+ PAGES_FOR_IO
;
1464 #ifdef CONFIG_HIGHMEM
1466 * get_highmem_buffer - if there are some highmem pages in the suspend
1467 * image, we may need the buffer to copy them and/or load their data.
1470 static inline int get_highmem_buffer(int safe_needed
)
1472 buffer
= get_image_page(GFP_ATOMIC
| __GFP_COLD
, safe_needed
);
1473 return buffer
? 0 : -ENOMEM
;
1477 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1478 * Try to allocate as many pages as needed, but if the number of free
1479 * highmem pages is lesser than that, allocate them all.
1482 static inline unsigned int
1483 alloc_highmem_pages(struct memory_bitmap
*bm
, unsigned int nr_highmem
)
1485 unsigned int to_alloc
= count_free_highmem_pages();
1487 if (to_alloc
> nr_highmem
)
1488 to_alloc
= nr_highmem
;
1490 nr_highmem
-= to_alloc
;
1491 while (to_alloc
-- > 0) {
1494 page
= alloc_image_page(__GFP_HIGHMEM
);
1495 memory_bm_set_bit(bm
, page_to_pfn(page
));
1500 static inline int get_highmem_buffer(int safe_needed
) { return 0; }
1502 static inline unsigned int
1503 alloc_highmem_pages(struct memory_bitmap
*bm
, unsigned int n
) { return 0; }
1504 #endif /* CONFIG_HIGHMEM */
1507 * swsusp_alloc - allocate memory for the suspend image
1509 * We first try to allocate as many highmem pages as there are
1510 * saveable highmem pages in the system. If that fails, we allocate
1511 * non-highmem pages for the copies of the remaining highmem ones.
1513 * In this approach it is likely that the copies of highmem pages will
1514 * also be located in the high memory, because of the way in which
1515 * copy_data_pages() works.
1519 swsusp_alloc(struct memory_bitmap
*orig_bm
, struct memory_bitmap
*copy_bm
,
1520 unsigned int nr_pages
, unsigned int nr_highmem
)
1522 if (nr_highmem
> 0) {
1523 if (get_highmem_buffer(PG_ANY
))
1525 if (nr_highmem
> alloc_highmem
) {
1526 nr_highmem
-= alloc_highmem
;
1527 nr_pages
+= alloc_highmem_pages(copy_bm
, nr_highmem
);
1530 if (nr_pages
> alloc_normal
) {
1531 nr_pages
-= alloc_normal
;
1532 while (nr_pages
-- > 0) {
1535 page
= alloc_image_page(GFP_ATOMIC
| __GFP_COLD
);
1538 memory_bm_set_bit(copy_bm
, page_to_pfn(page
));
1549 asmlinkage
int swsusp_save(void)
1551 unsigned int nr_pages
, nr_highmem
;
1553 printk(KERN_INFO
"PM: Creating hibernation image:\n");
1555 drain_local_pages(NULL
);
1556 nr_pages
= count_data_pages();
1557 nr_highmem
= count_highmem_pages();
1558 printk(KERN_INFO
"PM: Need to copy %u pages\n", nr_pages
+ nr_highmem
);
1560 if (!enough_free_mem(nr_pages
, nr_highmem
)) {
1561 printk(KERN_ERR
"PM: Not enough free memory\n");
1565 if (swsusp_alloc(&orig_bm
, ©_bm
, nr_pages
, nr_highmem
)) {
1566 printk(KERN_ERR
"PM: Memory allocation failed\n");
1570 /* During allocating of suspend pagedir, new cold pages may appear.
1573 drain_local_pages(NULL
);
1574 copy_data_pages(©_bm
, &orig_bm
);
1577 * End of critical section. From now on, we can write to memory,
1578 * but we should not touch disk. This specially means we must _not_
1579 * touch swap space! Except we must write out our image of course.
1582 nr_pages
+= nr_highmem
;
1583 nr_copy_pages
= nr_pages
;
1584 nr_meta_pages
= DIV_ROUND_UP(nr_pages
* sizeof(long), PAGE_SIZE
);
1586 printk(KERN_INFO
"PM: Hibernation image created (%d pages copied)\n",
1592 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1593 static int init_header_complete(struct swsusp_info
*info
)
1595 memcpy(&info
->uts
, init_utsname(), sizeof(struct new_utsname
));
1596 info
->version_code
= LINUX_VERSION_CODE
;
1600 static char *check_image_kernel(struct swsusp_info
*info
)
1602 if (info
->version_code
!= LINUX_VERSION_CODE
)
1603 return "kernel version";
1604 if (strcmp(info
->uts
.sysname
,init_utsname()->sysname
))
1605 return "system type";
1606 if (strcmp(info
->uts
.release
,init_utsname()->release
))
1607 return "kernel release";
1608 if (strcmp(info
->uts
.version
,init_utsname()->version
))
1610 if (strcmp(info
->uts
.machine
,init_utsname()->machine
))
1614 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1616 unsigned long snapshot_get_image_size(void)
1618 return nr_copy_pages
+ nr_meta_pages
+ 1;
1621 static int init_header(struct swsusp_info
*info
)
1623 memset(info
, 0, sizeof(struct swsusp_info
));
1624 info
->num_physpages
= num_physpages
;
1625 info
->image_pages
= nr_copy_pages
;
1626 info
->pages
= snapshot_get_image_size();
1627 info
->size
= info
->pages
;
1628 info
->size
<<= PAGE_SHIFT
;
1629 return init_header_complete(info
);
1633 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1634 * are stored in the array @buf[] (1 page at a time)
1638 pack_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
1642 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
1643 buf
[j
] = memory_bm_next_pfn(bm
);
1644 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
1650 * snapshot_read_next - used for reading the system memory snapshot.
1652 * On the first call to it @handle should point to a zeroed
1653 * snapshot_handle structure. The structure gets updated and a pointer
1654 * to it should be passed to this function every next time.
1656 * On success the function returns a positive number. Then, the caller
1657 * is allowed to read up to the returned number of bytes from the memory
1658 * location computed by the data_of() macro.
1660 * The function returns 0 to indicate the end of data stream condition,
1661 * and a negative number is returned on error. In such cases the
1662 * structure pointed to by @handle is not updated and should not be used
1666 int snapshot_read_next(struct snapshot_handle
*handle
)
1668 if (handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
1672 /* This makes the buffer be freed by swsusp_free() */
1673 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
1680 error
= init_header((struct swsusp_info
*)buffer
);
1683 handle
->buffer
= buffer
;
1684 memory_bm_position_reset(&orig_bm
);
1685 memory_bm_position_reset(©_bm
);
1686 } else if (handle
->cur
<= nr_meta_pages
) {
1688 pack_pfns(buffer
, &orig_bm
);
1692 page
= pfn_to_page(memory_bm_next_pfn(©_bm
));
1693 if (PageHighMem(page
)) {
1694 /* Highmem pages are copied to the buffer,
1695 * because we can't return with a kmapped
1696 * highmem page (we may not be called again).
1700 kaddr
= kmap_atomic(page
, KM_USER0
);
1701 copy_page(buffer
, kaddr
);
1702 kunmap_atomic(kaddr
, KM_USER0
);
1703 handle
->buffer
= buffer
;
1705 handle
->buffer
= page_address(page
);
1713 * mark_unsafe_pages - mark the pages that cannot be used for storing
1714 * the image during resume, because they conflict with the pages that
1715 * had been used before suspend
1718 static int mark_unsafe_pages(struct memory_bitmap
*bm
)
1721 unsigned long pfn
, max_zone_pfn
;
1723 /* Clear page flags */
1724 for_each_populated_zone(zone
) {
1725 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1726 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1728 swsusp_unset_page_free(pfn_to_page(pfn
));
1731 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1732 memory_bm_position_reset(bm
);
1734 pfn
= memory_bm_next_pfn(bm
);
1735 if (likely(pfn
!= BM_END_OF_MAP
)) {
1736 if (likely(pfn_valid(pfn
)))
1737 swsusp_set_page_free(pfn_to_page(pfn
));
1741 } while (pfn
!= BM_END_OF_MAP
);
1743 allocated_unsafe_pages
= 0;
1749 duplicate_memory_bitmap(struct memory_bitmap
*dst
, struct memory_bitmap
*src
)
1753 memory_bm_position_reset(src
);
1754 pfn
= memory_bm_next_pfn(src
);
1755 while (pfn
!= BM_END_OF_MAP
) {
1756 memory_bm_set_bit(dst
, pfn
);
1757 pfn
= memory_bm_next_pfn(src
);
1761 static int check_header(struct swsusp_info
*info
)
1765 reason
= check_image_kernel(info
);
1766 if (!reason
&& info
->num_physpages
!= num_physpages
)
1767 reason
= "memory size";
1769 printk(KERN_ERR
"PM: Image mismatch: %s\n", reason
);
1776 * load header - check the image header and copy data from it
1780 load_header(struct swsusp_info
*info
)
1784 restore_pblist
= NULL
;
1785 error
= check_header(info
);
1787 nr_copy_pages
= info
->image_pages
;
1788 nr_meta_pages
= info
->pages
- info
->image_pages
- 1;
1794 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1795 * the corresponding bit in the memory bitmap @bm
1797 static int unpack_orig_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
1801 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
1802 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
1805 if (memory_bm_pfn_present(bm
, buf
[j
]))
1806 memory_bm_set_bit(bm
, buf
[j
]);
1814 /* List of "safe" pages that may be used to store data loaded from the suspend
1817 static struct linked_page
*safe_pages_list
;
1819 #ifdef CONFIG_HIGHMEM
1820 /* struct highmem_pbe is used for creating the list of highmem pages that
1821 * should be restored atomically during the resume from disk, because the page
1822 * frames they have occupied before the suspend are in use.
1824 struct highmem_pbe
{
1825 struct page
*copy_page
; /* data is here now */
1826 struct page
*orig_page
; /* data was here before the suspend */
1827 struct highmem_pbe
*next
;
1830 /* List of highmem PBEs needed for restoring the highmem pages that were
1831 * allocated before the suspend and included in the suspend image, but have
1832 * also been allocated by the "resume" kernel, so their contents cannot be
1833 * written directly to their "original" page frames.
1835 static struct highmem_pbe
*highmem_pblist
;
1838 * count_highmem_image_pages - compute the number of highmem pages in the
1839 * suspend image. The bits in the memory bitmap @bm that correspond to the
1840 * image pages are assumed to be set.
1843 static unsigned int count_highmem_image_pages(struct memory_bitmap
*bm
)
1846 unsigned int cnt
= 0;
1848 memory_bm_position_reset(bm
);
1849 pfn
= memory_bm_next_pfn(bm
);
1850 while (pfn
!= BM_END_OF_MAP
) {
1851 if (PageHighMem(pfn_to_page(pfn
)))
1854 pfn
= memory_bm_next_pfn(bm
);
1860 * prepare_highmem_image - try to allocate as many highmem pages as
1861 * there are highmem image pages (@nr_highmem_p points to the variable
1862 * containing the number of highmem image pages). The pages that are
1863 * "safe" (ie. will not be overwritten when the suspend image is
1864 * restored) have the corresponding bits set in @bm (it must be
1867 * NOTE: This function should not be called if there are no highmem
1871 static unsigned int safe_highmem_pages
;
1873 static struct memory_bitmap
*safe_highmem_bm
;
1876 prepare_highmem_image(struct memory_bitmap
*bm
, unsigned int *nr_highmem_p
)
1878 unsigned int to_alloc
;
1880 if (memory_bm_create(bm
, GFP_ATOMIC
, PG_SAFE
))
1883 if (get_highmem_buffer(PG_SAFE
))
1886 to_alloc
= count_free_highmem_pages();
1887 if (to_alloc
> *nr_highmem_p
)
1888 to_alloc
= *nr_highmem_p
;
1890 *nr_highmem_p
= to_alloc
;
1892 safe_highmem_pages
= 0;
1893 while (to_alloc
-- > 0) {
1896 page
= alloc_page(__GFP_HIGHMEM
);
1897 if (!swsusp_page_is_free(page
)) {
1898 /* The page is "safe", set its bit the bitmap */
1899 memory_bm_set_bit(bm
, page_to_pfn(page
));
1900 safe_highmem_pages
++;
1902 /* Mark the page as allocated */
1903 swsusp_set_page_forbidden(page
);
1904 swsusp_set_page_free(page
);
1906 memory_bm_position_reset(bm
);
1907 safe_highmem_bm
= bm
;
1912 * get_highmem_page_buffer - for given highmem image page find the buffer
1913 * that suspend_write_next() should set for its caller to write to.
1915 * If the page is to be saved to its "original" page frame or a copy of
1916 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1917 * the copy of the page is to be made in normal memory, so the address of
1918 * the copy is returned.
1920 * If @buffer is returned, the caller of suspend_write_next() will write
1921 * the page's contents to @buffer, so they will have to be copied to the
1922 * right location on the next call to suspend_write_next() and it is done
1923 * with the help of copy_last_highmem_page(). For this purpose, if
1924 * @buffer is returned, @last_highmem page is set to the page to which
1925 * the data will have to be copied from @buffer.
1928 static struct page
*last_highmem_page
;
1931 get_highmem_page_buffer(struct page
*page
, struct chain_allocator
*ca
)
1933 struct highmem_pbe
*pbe
;
1936 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
)) {
1937 /* We have allocated the "original" page frame and we can
1938 * use it directly to store the loaded page.
1940 last_highmem_page
= page
;
1943 /* The "original" page frame has not been allocated and we have to
1944 * use a "safe" page frame to store the loaded page.
1946 pbe
= chain_alloc(ca
, sizeof(struct highmem_pbe
));
1949 return ERR_PTR(-ENOMEM
);
1951 pbe
->orig_page
= page
;
1952 if (safe_highmem_pages
> 0) {
1955 /* Copy of the page will be stored in high memory */
1957 tmp
= pfn_to_page(memory_bm_next_pfn(safe_highmem_bm
));
1958 safe_highmem_pages
--;
1959 last_highmem_page
= tmp
;
1960 pbe
->copy_page
= tmp
;
1962 /* Copy of the page will be stored in normal memory */
1963 kaddr
= safe_pages_list
;
1964 safe_pages_list
= safe_pages_list
->next
;
1965 pbe
->copy_page
= virt_to_page(kaddr
);
1967 pbe
->next
= highmem_pblist
;
1968 highmem_pblist
= pbe
;
1973 * copy_last_highmem_page - copy the contents of a highmem image from
1974 * @buffer, where the caller of snapshot_write_next() has place them,
1975 * to the right location represented by @last_highmem_page .
1978 static void copy_last_highmem_page(void)
1980 if (last_highmem_page
) {
1983 dst
= kmap_atomic(last_highmem_page
, KM_USER0
);
1984 copy_page(dst
, buffer
);
1985 kunmap_atomic(dst
, KM_USER0
);
1986 last_highmem_page
= NULL
;
1990 static inline int last_highmem_page_copied(void)
1992 return !last_highmem_page
;
1995 static inline void free_highmem_data(void)
1997 if (safe_highmem_bm
)
1998 memory_bm_free(safe_highmem_bm
, PG_UNSAFE_CLEAR
);
2001 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
2004 static inline int get_safe_write_buffer(void) { return 0; }
2007 count_highmem_image_pages(struct memory_bitmap
*bm
) { return 0; }
2010 prepare_highmem_image(struct memory_bitmap
*bm
, unsigned int *nr_highmem_p
)
2015 static inline void *
2016 get_highmem_page_buffer(struct page
*page
, struct chain_allocator
*ca
)
2018 return ERR_PTR(-EINVAL
);
2021 static inline void copy_last_highmem_page(void) {}
2022 static inline int last_highmem_page_copied(void) { return 1; }
2023 static inline void free_highmem_data(void) {}
2024 #endif /* CONFIG_HIGHMEM */
2027 * prepare_image - use the memory bitmap @bm to mark the pages that will
2028 * be overwritten in the process of restoring the system memory state
2029 * from the suspend image ("unsafe" pages) and allocate memory for the
2032 * The idea is to allocate a new memory bitmap first and then allocate
2033 * as many pages as needed for the image data, but not to assign these
2034 * pages to specific tasks initially. Instead, we just mark them as
2035 * allocated and create a lists of "safe" pages that will be used
2036 * later. On systems with high memory a list of "safe" highmem pages is
2040 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2043 prepare_image(struct memory_bitmap
*new_bm
, struct memory_bitmap
*bm
)
2045 unsigned int nr_pages
, nr_highmem
;
2046 struct linked_page
*sp_list
, *lp
;
2049 /* If there is no highmem, the buffer will not be necessary */
2050 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
2053 nr_highmem
= count_highmem_image_pages(bm
);
2054 error
= mark_unsafe_pages(bm
);
2058 error
= memory_bm_create(new_bm
, GFP_ATOMIC
, PG_SAFE
);
2062 duplicate_memory_bitmap(new_bm
, bm
);
2063 memory_bm_free(bm
, PG_UNSAFE_KEEP
);
2064 if (nr_highmem
> 0) {
2065 error
= prepare_highmem_image(bm
, &nr_highmem
);
2069 /* Reserve some safe pages for potential later use.
2071 * NOTE: This way we make sure there will be enough safe pages for the
2072 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2073 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2076 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2077 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
2078 nr_pages
= DIV_ROUND_UP(nr_pages
, PBES_PER_LINKED_PAGE
);
2079 while (nr_pages
> 0) {
2080 lp
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2089 /* Preallocate memory for the image */
2090 safe_pages_list
= NULL
;
2091 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
2092 while (nr_pages
> 0) {
2093 lp
= (struct linked_page
*)get_zeroed_page(GFP_ATOMIC
);
2098 if (!swsusp_page_is_free(virt_to_page(lp
))) {
2099 /* The page is "safe", add it to the list */
2100 lp
->next
= safe_pages_list
;
2101 safe_pages_list
= lp
;
2103 /* Mark the page as allocated */
2104 swsusp_set_page_forbidden(virt_to_page(lp
));
2105 swsusp_set_page_free(virt_to_page(lp
));
2108 /* Free the reserved safe pages so that chain_alloc() can use them */
2111 free_image_page(sp_list
, PG_UNSAFE_CLEAR
);
2122 * get_buffer - compute the address that snapshot_write_next() should
2123 * set for its caller to write to.
2126 static void *get_buffer(struct memory_bitmap
*bm
, struct chain_allocator
*ca
)
2130 unsigned long pfn
= memory_bm_next_pfn(bm
);
2132 if (pfn
== BM_END_OF_MAP
)
2133 return ERR_PTR(-EFAULT
);
2135 page
= pfn_to_page(pfn
);
2136 if (PageHighMem(page
))
2137 return get_highmem_page_buffer(page
, ca
);
2139 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
))
2140 /* We have allocated the "original" page frame and we can
2141 * use it directly to store the loaded page.
2143 return page_address(page
);
2145 /* The "original" page frame has not been allocated and we have to
2146 * use a "safe" page frame to store the loaded page.
2148 pbe
= chain_alloc(ca
, sizeof(struct pbe
));
2151 return ERR_PTR(-ENOMEM
);
2153 pbe
->orig_address
= page_address(page
);
2154 pbe
->address
= safe_pages_list
;
2155 safe_pages_list
= safe_pages_list
->next
;
2156 pbe
->next
= restore_pblist
;
2157 restore_pblist
= pbe
;
2158 return pbe
->address
;
2162 * snapshot_write_next - used for writing the system memory snapshot.
2164 * On the first call to it @handle should point to a zeroed
2165 * snapshot_handle structure. The structure gets updated and a pointer
2166 * to it should be passed to this function every next time.
2168 * On success the function returns a positive number. Then, the caller
2169 * is allowed to write up to the returned number of bytes to the memory
2170 * location computed by the data_of() macro.
2172 * The function returns 0 to indicate the "end of file" condition,
2173 * and a negative number is returned on error. In such cases the
2174 * structure pointed to by @handle is not updated and should not be used
2178 int snapshot_write_next(struct snapshot_handle
*handle
)
2180 static struct chain_allocator ca
;
2183 /* Check if we have already loaded the entire image */
2184 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
2187 handle
->sync_read
= 1;
2191 /* This makes the buffer be freed by swsusp_free() */
2192 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
2197 handle
->buffer
= buffer
;
2198 } else if (handle
->cur
== 1) {
2199 error
= load_header(buffer
);
2203 error
= memory_bm_create(©_bm
, GFP_ATOMIC
, PG_ANY
);
2207 } else if (handle
->cur
<= nr_meta_pages
+ 1) {
2208 error
= unpack_orig_pfns(buffer
, ©_bm
);
2212 if (handle
->cur
== nr_meta_pages
+ 1) {
2213 error
= prepare_image(&orig_bm
, ©_bm
);
2217 chain_init(&ca
, GFP_ATOMIC
, PG_SAFE
);
2218 memory_bm_position_reset(&orig_bm
);
2219 restore_pblist
= NULL
;
2220 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2221 handle
->sync_read
= 0;
2222 if (IS_ERR(handle
->buffer
))
2223 return PTR_ERR(handle
->buffer
);
2226 copy_last_highmem_page();
2227 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2228 if (IS_ERR(handle
->buffer
))
2229 return PTR_ERR(handle
->buffer
);
2230 if (handle
->buffer
!= buffer
)
2231 handle
->sync_read
= 0;
2238 * snapshot_write_finalize - must be called after the last call to
2239 * snapshot_write_next() in case the last page in the image happens
2240 * to be a highmem page and its contents should be stored in the
2241 * highmem. Additionally, it releases the memory that will not be
2245 void snapshot_write_finalize(struct snapshot_handle
*handle
)
2247 copy_last_highmem_page();
2248 /* Free only if we have loaded the image entirely */
2249 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
) {
2250 memory_bm_free(&orig_bm
, PG_UNSAFE_CLEAR
);
2251 free_highmem_data();
2255 int snapshot_image_loaded(struct snapshot_handle
*handle
)
2257 return !(!nr_copy_pages
|| !last_highmem_page_copied() ||
2258 handle
->cur
<= nr_meta_pages
+ nr_copy_pages
);
2261 #ifdef CONFIG_HIGHMEM
2262 /* Assumes that @buf is ready and points to a "safe" page */
2264 swap_two_pages_data(struct page
*p1
, struct page
*p2
, void *buf
)
2266 void *kaddr1
, *kaddr2
;
2268 kaddr1
= kmap_atomic(p1
, KM_USER0
);
2269 kaddr2
= kmap_atomic(p2
, KM_USER1
);
2270 copy_page(buf
, kaddr1
);
2271 copy_page(kaddr1
, kaddr2
);
2272 copy_page(kaddr2
, buf
);
2273 kunmap_atomic(kaddr2
, KM_USER1
);
2274 kunmap_atomic(kaddr1
, KM_USER0
);
2278 * restore_highmem - for each highmem page that was allocated before
2279 * the suspend and included in the suspend image, and also has been
2280 * allocated by the "resume" kernel swap its current (ie. "before
2281 * resume") contents with the previous (ie. "before suspend") one.
2283 * If the resume eventually fails, we can call this function once
2284 * again and restore the "before resume" highmem state.
2287 int restore_highmem(void)
2289 struct highmem_pbe
*pbe
= highmem_pblist
;
2295 buf
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2300 swap_two_pages_data(pbe
->copy_page
, pbe
->orig_page
, buf
);
2303 free_image_page(buf
, PG_UNSAFE_CLEAR
);
2306 #endif /* CONFIG_HIGHMEM */