Merge branch 'v6v7' into devel
[linux/fpc-iii.git] / mm / memcontrol.c
blobda53a252b259f0f36f553e9646187db18d49d76a
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
72 #else
73 #define do_swap_account (0)
74 #endif
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
87 * Statistics for memory cgroup.
89 enum mem_cgroup_stat_index {
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
104 MEM_CGROUP_STAT_NSTATS,
107 struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
112 * per-zone information in memory controller.
114 struct mem_cgroup_per_zone {
116 * spin_lock to protect the per cgroup LRU
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
132 struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
136 struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
145 struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
150 struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
154 struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
160 struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
175 struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
183 struct mem_cgroup_threshold_ary *spare;
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
209 * the counter to account for memory usage
211 struct res_counter res;
213 * the counter to account for mem+swap usage.
215 struct res_counter memsw;
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
220 struct mem_cgroup_lru_info info;
223 protect against reclaim related member.
225 spinlock_t reclaim_param_lock;
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
231 int last_scanned_child;
233 * Should the accounting and control be hierarchical, per subtree?
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
262 unsigned long move_charge_at_immigrate;
264 * percpu counter.
266 struct mem_cgroup_stat_cpu *stat;
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
275 /* Stuffs for move charges at task migration. */
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
280 enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296 } mc = {
297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
301 static bool move_anon(void)
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
307 static bool move_file(void)
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
320 enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
327 NR_CHARGE_TYPE,
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE (1UL << PCG_CACHE)
332 #define PCGF_USED (1UL << PCG_USED)
333 #define PCGF_LOCK (1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT (1UL << PCG_ACCT)
337 /* for encoding cft->private value on file */
338 #define _MEM (0)
339 #define _MEMSWAP (1)
340 #define _OOM_TYPE (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val) ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL (0)
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
370 return &mem->css;
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
376 struct mem_cgroup *mem = pc->mem_cgroup;
377 int nid = page_cgroup_nid(pc);
378 int zid = page_cgroup_zid(pc);
380 if (!mem)
381 return NULL;
383 return mem_cgroup_zoneinfo(mem, nid, zid);
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403 struct mem_cgroup_per_zone *mz,
404 struct mem_cgroup_tree_per_zone *mctz,
405 unsigned long long new_usage_in_excess)
407 struct rb_node **p = &mctz->rb_root.rb_node;
408 struct rb_node *parent = NULL;
409 struct mem_cgroup_per_zone *mz_node;
411 if (mz->on_tree)
412 return;
414 mz->usage_in_excess = new_usage_in_excess;
415 if (!mz->usage_in_excess)
416 return;
417 while (*p) {
418 parent = *p;
419 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 tree_node);
421 if (mz->usage_in_excess < mz_node->usage_in_excess)
422 p = &(*p)->rb_left;
424 * We can't avoid mem cgroups that are over their soft
425 * limit by the same amount
427 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 p = &(*p)->rb_right;
430 rb_link_node(&mz->tree_node, parent, p);
431 rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = true;
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
440 if (!mz->on_tree)
441 return;
442 rb_erase(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = false;
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz)
451 spin_lock(&mctz->lock);
452 __mem_cgroup_remove_exceeded(mem, mz, mctz);
453 spin_unlock(&mctz->lock);
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
459 unsigned long long excess;
460 struct mem_cgroup_per_zone *mz;
461 struct mem_cgroup_tree_per_zone *mctz;
462 int nid = page_to_nid(page);
463 int zid = page_zonenum(page);
464 mctz = soft_limit_tree_from_page(page);
467 * Necessary to update all ancestors when hierarchy is used.
468 * because their event counter is not touched.
470 for (; mem; mem = parent_mem_cgroup(mem)) {
471 mz = mem_cgroup_zoneinfo(mem, nid, zid);
472 excess = res_counter_soft_limit_excess(&mem->res);
474 * We have to update the tree if mz is on RB-tree or
475 * mem is over its softlimit.
477 if (excess || mz->on_tree) {
478 spin_lock(&mctz->lock);
479 /* if on-tree, remove it */
480 if (mz->on_tree)
481 __mem_cgroup_remove_exceeded(mem, mz, mctz);
483 * Insert again. mz->usage_in_excess will be updated.
484 * If excess is 0, no tree ops.
486 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 spin_unlock(&mctz->lock);
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
494 int node, zone;
495 struct mem_cgroup_per_zone *mz;
496 struct mem_cgroup_tree_per_zone *mctz;
498 for_each_node_state(node, N_POSSIBLE) {
499 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 mz = mem_cgroup_zoneinfo(mem, node, zone);
501 mctz = soft_limit_tree_node_zone(node, zone);
502 mem_cgroup_remove_exceeded(mem, mz, mctz);
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
509 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
515 struct rb_node *rightmost = NULL;
516 struct mem_cgroup_per_zone *mz;
518 retry:
519 mz = NULL;
520 rightmost = rb_last(&mctz->rb_root);
521 if (!rightmost)
522 goto done; /* Nothing to reclaim from */
524 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
530 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 !css_tryget(&mz->mem->css))
533 goto retry;
534 done:
535 return mz;
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
541 struct mem_cgroup_per_zone *mz;
543 spin_lock(&mctz->lock);
544 mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 spin_unlock(&mctz->lock);
546 return mz;
550 * Implementation Note: reading percpu statistics for memcg.
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 enum mem_cgroup_stat_index idx)
571 int cpu;
572 s64 val = 0;
574 get_online_cpus();
575 for_each_online_cpu(cpu)
576 val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&mem->pcp_counter_lock);
579 val += mem->nocpu_base.count[idx];
580 spin_unlock(&mem->pcp_counter_lock);
581 #endif
582 put_online_cpus();
583 return val;
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
588 s64 ret;
590 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 return ret;
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 bool charge)
598 int val = (charge) ? 1 : -1;
599 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603 bool file, int nr_pages)
605 preempt_disable();
607 if (file)
608 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609 else
610 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
612 /* pagein of a big page is an event. So, ignore page size */
613 if (nr_pages > 0)
614 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615 else {
616 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617 nr_pages = -nr_pages; /* for event */
620 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
622 preempt_enable();
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626 enum lru_list idx)
628 int nid, zid;
629 struct mem_cgroup_per_zone *mz;
630 u64 total = 0;
632 for_each_online_node(nid)
633 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634 mz = mem_cgroup_zoneinfo(mem, nid, zid);
635 total += MEM_CGROUP_ZSTAT(mz, idx);
637 return total;
640 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
642 s64 val;
644 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
646 return !(val & ((1 << event_mask_shift) - 1));
650 * Check events in order.
653 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
655 /* threshold event is triggered in finer grain than soft limit */
656 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657 mem_cgroup_threshold(mem);
658 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659 mem_cgroup_update_tree(mem, page);
663 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
665 return container_of(cgroup_subsys_state(cont,
666 mem_cgroup_subsys_id), struct mem_cgroup,
667 css);
670 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
673 * mm_update_next_owner() may clear mm->owner to NULL
674 * if it races with swapoff, page migration, etc.
675 * So this can be called with p == NULL.
677 if (unlikely(!p))
678 return NULL;
680 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681 struct mem_cgroup, css);
684 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
686 struct mem_cgroup *mem = NULL;
688 if (!mm)
689 return NULL;
691 * Because we have no locks, mm->owner's may be being moved to other
692 * cgroup. We use css_tryget() here even if this looks
693 * pessimistic (rather than adding locks here).
695 rcu_read_lock();
696 do {
697 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698 if (unlikely(!mem))
699 break;
700 } while (!css_tryget(&mem->css));
701 rcu_read_unlock();
702 return mem;
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
708 struct cgroup_subsys_state *css;
709 int found;
711 if (!mem) /* ROOT cgroup has the smallest ID */
712 return root_mem_cgroup; /*css_put/get against root is ignored*/
713 if (!mem->use_hierarchy) {
714 if (css_tryget(&mem->css))
715 return mem;
716 return NULL;
718 rcu_read_lock();
720 * searching a memory cgroup which has the smallest ID under given
721 * ROOT cgroup. (ID >= 1)
723 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724 if (css && css_tryget(css))
725 mem = container_of(css, struct mem_cgroup, css);
726 else
727 mem = NULL;
728 rcu_read_unlock();
729 return mem;
732 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733 struct mem_cgroup *root,
734 bool cond)
736 int nextid = css_id(&iter->css) + 1;
737 int found;
738 int hierarchy_used;
739 struct cgroup_subsys_state *css;
741 hierarchy_used = iter->use_hierarchy;
743 css_put(&iter->css);
744 /* If no ROOT, walk all, ignore hierarchy */
745 if (!cond || (root && !hierarchy_used))
746 return NULL;
748 if (!root)
749 root = root_mem_cgroup;
751 do {
752 iter = NULL;
753 rcu_read_lock();
755 css = css_get_next(&mem_cgroup_subsys, nextid,
756 &root->css, &found);
757 if (css && css_tryget(css))
758 iter = container_of(css, struct mem_cgroup, css);
759 rcu_read_unlock();
760 /* If css is NULL, no more cgroups will be found */
761 nextid = found + 1;
762 } while (css && !iter);
764 return iter;
767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768 * be careful that "break" loop is not allowed. We have reference count.
769 * Instead of that modify "cond" to be false and "continue" to exit the loop.
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772 for (iter = mem_cgroup_start_loop(root);\
773 iter != NULL;\
774 iter = mem_cgroup_get_next(iter, root, cond))
776 #define for_each_mem_cgroup_tree(iter, root) \
777 for_each_mem_cgroup_tree_cond(iter, root, true)
779 #define for_each_mem_cgroup_all(iter) \
780 for_each_mem_cgroup_tree_cond(iter, NULL, true)
783 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
785 return (mem == root_mem_cgroup);
789 * Following LRU functions are allowed to be used without PCG_LOCK.
790 * Operations are called by routine of global LRU independently from memcg.
791 * What we have to take care of here is validness of pc->mem_cgroup.
793 * Changes to pc->mem_cgroup happens when
794 * 1. charge
795 * 2. moving account
796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797 * It is added to LRU before charge.
798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799 * When moving account, the page is not on LRU. It's isolated.
802 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
804 struct page_cgroup *pc;
805 struct mem_cgroup_per_zone *mz;
807 if (mem_cgroup_disabled())
808 return;
809 pc = lookup_page_cgroup(page);
810 /* can happen while we handle swapcache. */
811 if (!TestClearPageCgroupAcctLRU(pc))
812 return;
813 VM_BUG_ON(!pc->mem_cgroup);
815 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 * removed from global LRU.
818 mz = page_cgroup_zoneinfo(pc);
819 /* huge page split is done under lru_lock. so, we have no races. */
820 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
821 if (mem_cgroup_is_root(pc->mem_cgroup))
822 return;
823 VM_BUG_ON(list_empty(&pc->lru));
824 list_del_init(&pc->lru);
827 void mem_cgroup_del_lru(struct page *page)
829 mem_cgroup_del_lru_list(page, page_lru(page));
832 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
834 struct mem_cgroup_per_zone *mz;
835 struct page_cgroup *pc;
837 if (mem_cgroup_disabled())
838 return;
840 pc = lookup_page_cgroup(page);
841 /* unused or root page is not rotated. */
842 if (!PageCgroupUsed(pc))
843 return;
844 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
845 smp_rmb();
846 if (mem_cgroup_is_root(pc->mem_cgroup))
847 return;
848 mz = page_cgroup_zoneinfo(pc);
849 list_move(&pc->lru, &mz->lists[lru]);
852 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
854 struct page_cgroup *pc;
855 struct mem_cgroup_per_zone *mz;
857 if (mem_cgroup_disabled())
858 return;
859 pc = lookup_page_cgroup(page);
860 VM_BUG_ON(PageCgroupAcctLRU(pc));
861 if (!PageCgroupUsed(pc))
862 return;
863 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
864 smp_rmb();
865 mz = page_cgroup_zoneinfo(pc);
866 /* huge page split is done under lru_lock. so, we have no races. */
867 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
868 SetPageCgroupAcctLRU(pc);
869 if (mem_cgroup_is_root(pc->mem_cgroup))
870 return;
871 list_add(&pc->lru, &mz->lists[lru]);
875 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
876 * lru because the page may.be reused after it's fully uncharged (because of
877 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
878 * it again. This function is only used to charge SwapCache. It's done under
879 * lock_page and expected that zone->lru_lock is never held.
881 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
883 unsigned long flags;
884 struct zone *zone = page_zone(page);
885 struct page_cgroup *pc = lookup_page_cgroup(page);
887 spin_lock_irqsave(&zone->lru_lock, flags);
889 * Forget old LRU when this page_cgroup is *not* used. This Used bit
890 * is guarded by lock_page() because the page is SwapCache.
892 if (!PageCgroupUsed(pc))
893 mem_cgroup_del_lru_list(page, page_lru(page));
894 spin_unlock_irqrestore(&zone->lru_lock, flags);
897 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
899 unsigned long flags;
900 struct zone *zone = page_zone(page);
901 struct page_cgroup *pc = lookup_page_cgroup(page);
903 spin_lock_irqsave(&zone->lru_lock, flags);
904 /* link when the page is linked to LRU but page_cgroup isn't */
905 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
906 mem_cgroup_add_lru_list(page, page_lru(page));
907 spin_unlock_irqrestore(&zone->lru_lock, flags);
911 void mem_cgroup_move_lists(struct page *page,
912 enum lru_list from, enum lru_list to)
914 if (mem_cgroup_disabled())
915 return;
916 mem_cgroup_del_lru_list(page, from);
917 mem_cgroup_add_lru_list(page, to);
920 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
922 int ret;
923 struct mem_cgroup *curr = NULL;
924 struct task_struct *p;
926 p = find_lock_task_mm(task);
927 if (!p)
928 return 0;
929 curr = try_get_mem_cgroup_from_mm(p->mm);
930 task_unlock(p);
931 if (!curr)
932 return 0;
934 * We should check use_hierarchy of "mem" not "curr". Because checking
935 * use_hierarchy of "curr" here make this function true if hierarchy is
936 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
937 * hierarchy(even if use_hierarchy is disabled in "mem").
939 if (mem->use_hierarchy)
940 ret = css_is_ancestor(&curr->css, &mem->css);
941 else
942 ret = (curr == mem);
943 css_put(&curr->css);
944 return ret;
947 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
949 unsigned long active;
950 unsigned long inactive;
951 unsigned long gb;
952 unsigned long inactive_ratio;
954 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
955 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
957 gb = (inactive + active) >> (30 - PAGE_SHIFT);
958 if (gb)
959 inactive_ratio = int_sqrt(10 * gb);
960 else
961 inactive_ratio = 1;
963 if (present_pages) {
964 present_pages[0] = inactive;
965 present_pages[1] = active;
968 return inactive_ratio;
971 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
973 unsigned long active;
974 unsigned long inactive;
975 unsigned long present_pages[2];
976 unsigned long inactive_ratio;
978 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
980 inactive = present_pages[0];
981 active = present_pages[1];
983 if (inactive * inactive_ratio < active)
984 return 1;
986 return 0;
989 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
991 unsigned long active;
992 unsigned long inactive;
994 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
995 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
997 return (active > inactive);
1000 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1001 struct zone *zone,
1002 enum lru_list lru)
1004 int nid = zone_to_nid(zone);
1005 int zid = zone_idx(zone);
1006 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1008 return MEM_CGROUP_ZSTAT(mz, lru);
1011 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1012 struct zone *zone)
1014 int nid = zone_to_nid(zone);
1015 int zid = zone_idx(zone);
1016 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1018 return &mz->reclaim_stat;
1021 struct zone_reclaim_stat *
1022 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1024 struct page_cgroup *pc;
1025 struct mem_cgroup_per_zone *mz;
1027 if (mem_cgroup_disabled())
1028 return NULL;
1030 pc = lookup_page_cgroup(page);
1031 if (!PageCgroupUsed(pc))
1032 return NULL;
1033 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1034 smp_rmb();
1035 mz = page_cgroup_zoneinfo(pc);
1036 if (!mz)
1037 return NULL;
1039 return &mz->reclaim_stat;
1042 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1043 struct list_head *dst,
1044 unsigned long *scanned, int order,
1045 int mode, struct zone *z,
1046 struct mem_cgroup *mem_cont,
1047 int active, int file)
1049 unsigned long nr_taken = 0;
1050 struct page *page;
1051 unsigned long scan;
1052 LIST_HEAD(pc_list);
1053 struct list_head *src;
1054 struct page_cgroup *pc, *tmp;
1055 int nid = zone_to_nid(z);
1056 int zid = zone_idx(z);
1057 struct mem_cgroup_per_zone *mz;
1058 int lru = LRU_FILE * file + active;
1059 int ret;
1061 BUG_ON(!mem_cont);
1062 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1063 src = &mz->lists[lru];
1065 scan = 0;
1066 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1067 if (scan >= nr_to_scan)
1068 break;
1070 page = pc->page;
1071 if (unlikely(!PageCgroupUsed(pc)))
1072 continue;
1073 if (unlikely(!PageLRU(page)))
1074 continue;
1076 scan++;
1077 ret = __isolate_lru_page(page, mode, file);
1078 switch (ret) {
1079 case 0:
1080 list_move(&page->lru, dst);
1081 mem_cgroup_del_lru(page);
1082 nr_taken += hpage_nr_pages(page);
1083 break;
1084 case -EBUSY:
1085 /* we don't affect global LRU but rotate in our LRU */
1086 mem_cgroup_rotate_lru_list(page, page_lru(page));
1087 break;
1088 default:
1089 break;
1093 *scanned = scan;
1095 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1096 0, 0, 0, mode);
1098 return nr_taken;
1101 #define mem_cgroup_from_res_counter(counter, member) \
1102 container_of(counter, struct mem_cgroup, member)
1104 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1106 if (do_swap_account) {
1107 if (res_counter_check_under_limit(&mem->res) &&
1108 res_counter_check_under_limit(&mem->memsw))
1109 return true;
1110 } else
1111 if (res_counter_check_under_limit(&mem->res))
1112 return true;
1113 return false;
1117 * mem_cgroup_check_margin - check if the memory cgroup allows charging
1118 * @mem: memory cgroup to check
1119 * @bytes: the number of bytes the caller intends to charge
1121 * Returns a boolean value on whether @mem can be charged @bytes or
1122 * whether this would exceed the limit.
1124 static bool mem_cgroup_check_margin(struct mem_cgroup *mem, unsigned long bytes)
1126 if (!res_counter_check_margin(&mem->res, bytes))
1127 return false;
1128 if (do_swap_account && !res_counter_check_margin(&mem->memsw, bytes))
1129 return false;
1130 return true;
1133 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1135 struct cgroup *cgrp = memcg->css.cgroup;
1136 unsigned int swappiness;
1138 /* root ? */
1139 if (cgrp->parent == NULL)
1140 return vm_swappiness;
1142 spin_lock(&memcg->reclaim_param_lock);
1143 swappiness = memcg->swappiness;
1144 spin_unlock(&memcg->reclaim_param_lock);
1146 return swappiness;
1149 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1151 int cpu;
1153 get_online_cpus();
1154 spin_lock(&mem->pcp_counter_lock);
1155 for_each_online_cpu(cpu)
1156 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1157 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1158 spin_unlock(&mem->pcp_counter_lock);
1159 put_online_cpus();
1161 synchronize_rcu();
1164 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1166 int cpu;
1168 if (!mem)
1169 return;
1170 get_online_cpus();
1171 spin_lock(&mem->pcp_counter_lock);
1172 for_each_online_cpu(cpu)
1173 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1174 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1175 spin_unlock(&mem->pcp_counter_lock);
1176 put_online_cpus();
1179 * 2 routines for checking "mem" is under move_account() or not.
1181 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1182 * for avoiding race in accounting. If true,
1183 * pc->mem_cgroup may be overwritten.
1185 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1186 * under hierarchy of moving cgroups. This is for
1187 * waiting at hith-memory prressure caused by "move".
1190 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1192 VM_BUG_ON(!rcu_read_lock_held());
1193 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1196 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1198 struct mem_cgroup *from;
1199 struct mem_cgroup *to;
1200 bool ret = false;
1202 * Unlike task_move routines, we access mc.to, mc.from not under
1203 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1205 spin_lock(&mc.lock);
1206 from = mc.from;
1207 to = mc.to;
1208 if (!from)
1209 goto unlock;
1210 if (from == mem || to == mem
1211 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1212 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1213 ret = true;
1214 unlock:
1215 spin_unlock(&mc.lock);
1216 return ret;
1219 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1221 if (mc.moving_task && current != mc.moving_task) {
1222 if (mem_cgroup_under_move(mem)) {
1223 DEFINE_WAIT(wait);
1224 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1225 /* moving charge context might have finished. */
1226 if (mc.moving_task)
1227 schedule();
1228 finish_wait(&mc.waitq, &wait);
1229 return true;
1232 return false;
1236 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1237 * @memcg: The memory cgroup that went over limit
1238 * @p: Task that is going to be killed
1240 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1241 * enabled
1243 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1245 struct cgroup *task_cgrp;
1246 struct cgroup *mem_cgrp;
1248 * Need a buffer in BSS, can't rely on allocations. The code relies
1249 * on the assumption that OOM is serialized for memory controller.
1250 * If this assumption is broken, revisit this code.
1252 static char memcg_name[PATH_MAX];
1253 int ret;
1255 if (!memcg || !p)
1256 return;
1259 rcu_read_lock();
1261 mem_cgrp = memcg->css.cgroup;
1262 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1264 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1265 if (ret < 0) {
1267 * Unfortunately, we are unable to convert to a useful name
1268 * But we'll still print out the usage information
1270 rcu_read_unlock();
1271 goto done;
1273 rcu_read_unlock();
1275 printk(KERN_INFO "Task in %s killed", memcg_name);
1277 rcu_read_lock();
1278 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1279 if (ret < 0) {
1280 rcu_read_unlock();
1281 goto done;
1283 rcu_read_unlock();
1286 * Continues from above, so we don't need an KERN_ level
1288 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1289 done:
1291 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1292 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1293 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1294 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1295 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1296 "failcnt %llu\n",
1297 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1298 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1299 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1303 * This function returns the number of memcg under hierarchy tree. Returns
1304 * 1(self count) if no children.
1306 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1308 int num = 0;
1309 struct mem_cgroup *iter;
1311 for_each_mem_cgroup_tree(iter, mem)
1312 num++;
1313 return num;
1317 * Return the memory (and swap, if configured) limit for a memcg.
1319 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1321 u64 limit;
1322 u64 memsw;
1324 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1325 limit += total_swap_pages << PAGE_SHIFT;
1327 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1329 * If memsw is finite and limits the amount of swap space available
1330 * to this memcg, return that limit.
1332 return min(limit, memsw);
1336 * Visit the first child (need not be the first child as per the ordering
1337 * of the cgroup list, since we track last_scanned_child) of @mem and use
1338 * that to reclaim free pages from.
1340 static struct mem_cgroup *
1341 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1343 struct mem_cgroup *ret = NULL;
1344 struct cgroup_subsys_state *css;
1345 int nextid, found;
1347 if (!root_mem->use_hierarchy) {
1348 css_get(&root_mem->css);
1349 ret = root_mem;
1352 while (!ret) {
1353 rcu_read_lock();
1354 nextid = root_mem->last_scanned_child + 1;
1355 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1356 &found);
1357 if (css && css_tryget(css))
1358 ret = container_of(css, struct mem_cgroup, css);
1360 rcu_read_unlock();
1361 /* Updates scanning parameter */
1362 spin_lock(&root_mem->reclaim_param_lock);
1363 if (!css) {
1364 /* this means start scan from ID:1 */
1365 root_mem->last_scanned_child = 0;
1366 } else
1367 root_mem->last_scanned_child = found;
1368 spin_unlock(&root_mem->reclaim_param_lock);
1371 return ret;
1375 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1376 * we reclaimed from, so that we don't end up penalizing one child extensively
1377 * based on its position in the children list.
1379 * root_mem is the original ancestor that we've been reclaim from.
1381 * We give up and return to the caller when we visit root_mem twice.
1382 * (other groups can be removed while we're walking....)
1384 * If shrink==true, for avoiding to free too much, this returns immedieately.
1386 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1387 struct zone *zone,
1388 gfp_t gfp_mask,
1389 unsigned long reclaim_options)
1391 struct mem_cgroup *victim;
1392 int ret, total = 0;
1393 int loop = 0;
1394 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1395 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1396 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1397 unsigned long excess = mem_cgroup_get_excess(root_mem);
1399 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1400 if (root_mem->memsw_is_minimum)
1401 noswap = true;
1403 while (1) {
1404 victim = mem_cgroup_select_victim(root_mem);
1405 if (victim == root_mem) {
1406 loop++;
1407 if (loop >= 1)
1408 drain_all_stock_async();
1409 if (loop >= 2) {
1411 * If we have not been able to reclaim
1412 * anything, it might because there are
1413 * no reclaimable pages under this hierarchy
1415 if (!check_soft || !total) {
1416 css_put(&victim->css);
1417 break;
1420 * We want to do more targetted reclaim.
1421 * excess >> 2 is not to excessive so as to
1422 * reclaim too much, nor too less that we keep
1423 * coming back to reclaim from this cgroup
1425 if (total >= (excess >> 2) ||
1426 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1427 css_put(&victim->css);
1428 break;
1432 if (!mem_cgroup_local_usage(victim)) {
1433 /* this cgroup's local usage == 0 */
1434 css_put(&victim->css);
1435 continue;
1437 /* we use swappiness of local cgroup */
1438 if (check_soft)
1439 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1440 noswap, get_swappiness(victim), zone);
1441 else
1442 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1443 noswap, get_swappiness(victim));
1444 css_put(&victim->css);
1446 * At shrinking usage, we can't check we should stop here or
1447 * reclaim more. It's depends on callers. last_scanned_child
1448 * will work enough for keeping fairness under tree.
1450 if (shrink)
1451 return ret;
1452 total += ret;
1453 if (check_soft) {
1454 if (res_counter_check_under_soft_limit(&root_mem->res))
1455 return total;
1456 } else if (mem_cgroup_check_under_limit(root_mem))
1457 return 1 + total;
1459 return total;
1463 * Check OOM-Killer is already running under our hierarchy.
1464 * If someone is running, return false.
1466 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1468 int x, lock_count = 0;
1469 struct mem_cgroup *iter;
1471 for_each_mem_cgroup_tree(iter, mem) {
1472 x = atomic_inc_return(&iter->oom_lock);
1473 lock_count = max(x, lock_count);
1476 if (lock_count == 1)
1477 return true;
1478 return false;
1481 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1483 struct mem_cgroup *iter;
1486 * When a new child is created while the hierarchy is under oom,
1487 * mem_cgroup_oom_lock() may not be called. We have to use
1488 * atomic_add_unless() here.
1490 for_each_mem_cgroup_tree(iter, mem)
1491 atomic_add_unless(&iter->oom_lock, -1, 0);
1492 return 0;
1496 static DEFINE_MUTEX(memcg_oom_mutex);
1497 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1499 struct oom_wait_info {
1500 struct mem_cgroup *mem;
1501 wait_queue_t wait;
1504 static int memcg_oom_wake_function(wait_queue_t *wait,
1505 unsigned mode, int sync, void *arg)
1507 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1508 struct oom_wait_info *oom_wait_info;
1510 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1512 if (oom_wait_info->mem == wake_mem)
1513 goto wakeup;
1514 /* if no hierarchy, no match */
1515 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1516 return 0;
1518 * Both of oom_wait_info->mem and wake_mem are stable under us.
1519 * Then we can use css_is_ancestor without taking care of RCU.
1521 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1522 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1523 return 0;
1525 wakeup:
1526 return autoremove_wake_function(wait, mode, sync, arg);
1529 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1531 /* for filtering, pass "mem" as argument. */
1532 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1535 static void memcg_oom_recover(struct mem_cgroup *mem)
1537 if (mem && atomic_read(&mem->oom_lock))
1538 memcg_wakeup_oom(mem);
1542 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1544 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1546 struct oom_wait_info owait;
1547 bool locked, need_to_kill;
1549 owait.mem = mem;
1550 owait.wait.flags = 0;
1551 owait.wait.func = memcg_oom_wake_function;
1552 owait.wait.private = current;
1553 INIT_LIST_HEAD(&owait.wait.task_list);
1554 need_to_kill = true;
1555 /* At first, try to OOM lock hierarchy under mem.*/
1556 mutex_lock(&memcg_oom_mutex);
1557 locked = mem_cgroup_oom_lock(mem);
1559 * Even if signal_pending(), we can't quit charge() loop without
1560 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1561 * under OOM is always welcomed, use TASK_KILLABLE here.
1563 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1564 if (!locked || mem->oom_kill_disable)
1565 need_to_kill = false;
1566 if (locked)
1567 mem_cgroup_oom_notify(mem);
1568 mutex_unlock(&memcg_oom_mutex);
1570 if (need_to_kill) {
1571 finish_wait(&memcg_oom_waitq, &owait.wait);
1572 mem_cgroup_out_of_memory(mem, mask);
1573 } else {
1574 schedule();
1575 finish_wait(&memcg_oom_waitq, &owait.wait);
1577 mutex_lock(&memcg_oom_mutex);
1578 mem_cgroup_oom_unlock(mem);
1579 memcg_wakeup_oom(mem);
1580 mutex_unlock(&memcg_oom_mutex);
1582 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1583 return false;
1584 /* Give chance to dying process */
1585 schedule_timeout(1);
1586 return true;
1590 * Currently used to update mapped file statistics, but the routine can be
1591 * generalized to update other statistics as well.
1593 * Notes: Race condition
1595 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1596 * it tends to be costly. But considering some conditions, we doesn't need
1597 * to do so _always_.
1599 * Considering "charge", lock_page_cgroup() is not required because all
1600 * file-stat operations happen after a page is attached to radix-tree. There
1601 * are no race with "charge".
1603 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1604 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1605 * if there are race with "uncharge". Statistics itself is properly handled
1606 * by flags.
1608 * Considering "move", this is an only case we see a race. To make the race
1609 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1610 * possibility of race condition. If there is, we take a lock.
1613 void mem_cgroup_update_page_stat(struct page *page,
1614 enum mem_cgroup_page_stat_item idx, int val)
1616 struct mem_cgroup *mem;
1617 struct page_cgroup *pc = lookup_page_cgroup(page);
1618 bool need_unlock = false;
1619 unsigned long uninitialized_var(flags);
1621 if (unlikely(!pc))
1622 return;
1624 rcu_read_lock();
1625 mem = pc->mem_cgroup;
1626 if (unlikely(!mem || !PageCgroupUsed(pc)))
1627 goto out;
1628 /* pc->mem_cgroup is unstable ? */
1629 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1630 /* take a lock against to access pc->mem_cgroup */
1631 move_lock_page_cgroup(pc, &flags);
1632 need_unlock = true;
1633 mem = pc->mem_cgroup;
1634 if (!mem || !PageCgroupUsed(pc))
1635 goto out;
1638 switch (idx) {
1639 case MEMCG_NR_FILE_MAPPED:
1640 if (val > 0)
1641 SetPageCgroupFileMapped(pc);
1642 else if (!page_mapped(page))
1643 ClearPageCgroupFileMapped(pc);
1644 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1645 break;
1646 default:
1647 BUG();
1650 this_cpu_add(mem->stat->count[idx], val);
1652 out:
1653 if (unlikely(need_unlock))
1654 move_unlock_page_cgroup(pc, &flags);
1655 rcu_read_unlock();
1656 return;
1658 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1661 * size of first charge trial. "32" comes from vmscan.c's magic value.
1662 * TODO: maybe necessary to use big numbers in big irons.
1664 #define CHARGE_SIZE (32 * PAGE_SIZE)
1665 struct memcg_stock_pcp {
1666 struct mem_cgroup *cached; /* this never be root cgroup */
1667 int charge;
1668 struct work_struct work;
1670 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1671 static atomic_t memcg_drain_count;
1674 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1675 * from local stock and true is returned. If the stock is 0 or charges from a
1676 * cgroup which is not current target, returns false. This stock will be
1677 * refilled.
1679 static bool consume_stock(struct mem_cgroup *mem)
1681 struct memcg_stock_pcp *stock;
1682 bool ret = true;
1684 stock = &get_cpu_var(memcg_stock);
1685 if (mem == stock->cached && stock->charge)
1686 stock->charge -= PAGE_SIZE;
1687 else /* need to call res_counter_charge */
1688 ret = false;
1689 put_cpu_var(memcg_stock);
1690 return ret;
1694 * Returns stocks cached in percpu to res_counter and reset cached information.
1696 static void drain_stock(struct memcg_stock_pcp *stock)
1698 struct mem_cgroup *old = stock->cached;
1700 if (stock->charge) {
1701 res_counter_uncharge(&old->res, stock->charge);
1702 if (do_swap_account)
1703 res_counter_uncharge(&old->memsw, stock->charge);
1705 stock->cached = NULL;
1706 stock->charge = 0;
1710 * This must be called under preempt disabled or must be called by
1711 * a thread which is pinned to local cpu.
1713 static void drain_local_stock(struct work_struct *dummy)
1715 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1716 drain_stock(stock);
1720 * Cache charges(val) which is from res_counter, to local per_cpu area.
1721 * This will be consumed by consume_stock() function, later.
1723 static void refill_stock(struct mem_cgroup *mem, int val)
1725 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1727 if (stock->cached != mem) { /* reset if necessary */
1728 drain_stock(stock);
1729 stock->cached = mem;
1731 stock->charge += val;
1732 put_cpu_var(memcg_stock);
1736 * Tries to drain stocked charges in other cpus. This function is asynchronous
1737 * and just put a work per cpu for draining localy on each cpu. Caller can
1738 * expects some charges will be back to res_counter later but cannot wait for
1739 * it.
1741 static void drain_all_stock_async(void)
1743 int cpu;
1744 /* This function is for scheduling "drain" in asynchronous way.
1745 * The result of "drain" is not directly handled by callers. Then,
1746 * if someone is calling drain, we don't have to call drain more.
1747 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1748 * there is a race. We just do loose check here.
1750 if (atomic_read(&memcg_drain_count))
1751 return;
1752 /* Notify other cpus that system-wide "drain" is running */
1753 atomic_inc(&memcg_drain_count);
1754 get_online_cpus();
1755 for_each_online_cpu(cpu) {
1756 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1757 schedule_work_on(cpu, &stock->work);
1759 put_online_cpus();
1760 atomic_dec(&memcg_drain_count);
1761 /* We don't wait for flush_work */
1764 /* This is a synchronous drain interface. */
1765 static void drain_all_stock_sync(void)
1767 /* called when force_empty is called */
1768 atomic_inc(&memcg_drain_count);
1769 schedule_on_each_cpu(drain_local_stock);
1770 atomic_dec(&memcg_drain_count);
1774 * This function drains percpu counter value from DEAD cpu and
1775 * move it to local cpu. Note that this function can be preempted.
1777 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1779 int i;
1781 spin_lock(&mem->pcp_counter_lock);
1782 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1783 s64 x = per_cpu(mem->stat->count[i], cpu);
1785 per_cpu(mem->stat->count[i], cpu) = 0;
1786 mem->nocpu_base.count[i] += x;
1788 /* need to clear ON_MOVE value, works as a kind of lock. */
1789 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1790 spin_unlock(&mem->pcp_counter_lock);
1793 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1795 int idx = MEM_CGROUP_ON_MOVE;
1797 spin_lock(&mem->pcp_counter_lock);
1798 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1799 spin_unlock(&mem->pcp_counter_lock);
1802 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1803 unsigned long action,
1804 void *hcpu)
1806 int cpu = (unsigned long)hcpu;
1807 struct memcg_stock_pcp *stock;
1808 struct mem_cgroup *iter;
1810 if ((action == CPU_ONLINE)) {
1811 for_each_mem_cgroup_all(iter)
1812 synchronize_mem_cgroup_on_move(iter, cpu);
1813 return NOTIFY_OK;
1816 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1817 return NOTIFY_OK;
1819 for_each_mem_cgroup_all(iter)
1820 mem_cgroup_drain_pcp_counter(iter, cpu);
1822 stock = &per_cpu(memcg_stock, cpu);
1823 drain_stock(stock);
1824 return NOTIFY_OK;
1828 /* See __mem_cgroup_try_charge() for details */
1829 enum {
1830 CHARGE_OK, /* success */
1831 CHARGE_RETRY, /* need to retry but retry is not bad */
1832 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1833 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1834 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1837 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1838 int csize, bool oom_check)
1840 struct mem_cgroup *mem_over_limit;
1841 struct res_counter *fail_res;
1842 unsigned long flags = 0;
1843 int ret;
1845 ret = res_counter_charge(&mem->res, csize, &fail_res);
1847 if (likely(!ret)) {
1848 if (!do_swap_account)
1849 return CHARGE_OK;
1850 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1851 if (likely(!ret))
1852 return CHARGE_OK;
1854 res_counter_uncharge(&mem->res, csize);
1855 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1856 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1857 } else
1858 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1860 * csize can be either a huge page (HPAGE_SIZE), a batch of
1861 * regular pages (CHARGE_SIZE), or a single regular page
1862 * (PAGE_SIZE).
1864 * Never reclaim on behalf of optional batching, retry with a
1865 * single page instead.
1867 if (csize == CHARGE_SIZE)
1868 return CHARGE_RETRY;
1870 if (!(gfp_mask & __GFP_WAIT))
1871 return CHARGE_WOULDBLOCK;
1873 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1874 gfp_mask, flags);
1875 if (mem_cgroup_check_margin(mem_over_limit, csize))
1876 return CHARGE_RETRY;
1878 * Even though the limit is exceeded at this point, reclaim
1879 * may have been able to free some pages. Retry the charge
1880 * before killing the task.
1882 * Only for regular pages, though: huge pages are rather
1883 * unlikely to succeed so close to the limit, and we fall back
1884 * to regular pages anyway in case of failure.
1886 if (csize == PAGE_SIZE && ret)
1887 return CHARGE_RETRY;
1890 * At task move, charge accounts can be doubly counted. So, it's
1891 * better to wait until the end of task_move if something is going on.
1893 if (mem_cgroup_wait_acct_move(mem_over_limit))
1894 return CHARGE_RETRY;
1896 /* If we don't need to call oom-killer at el, return immediately */
1897 if (!oom_check)
1898 return CHARGE_NOMEM;
1899 /* check OOM */
1900 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1901 return CHARGE_OOM_DIE;
1903 return CHARGE_RETRY;
1907 * Unlike exported interface, "oom" parameter is added. if oom==true,
1908 * oom-killer can be invoked.
1910 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1911 gfp_t gfp_mask,
1912 struct mem_cgroup **memcg, bool oom,
1913 int page_size)
1915 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1916 struct mem_cgroup *mem = NULL;
1917 int ret;
1918 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1921 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1922 * in system level. So, allow to go ahead dying process in addition to
1923 * MEMDIE process.
1925 if (unlikely(test_thread_flag(TIF_MEMDIE)
1926 || fatal_signal_pending(current)))
1927 goto bypass;
1930 * We always charge the cgroup the mm_struct belongs to.
1931 * The mm_struct's mem_cgroup changes on task migration if the
1932 * thread group leader migrates. It's possible that mm is not
1933 * set, if so charge the init_mm (happens for pagecache usage).
1935 if (!*memcg && !mm)
1936 goto bypass;
1937 again:
1938 if (*memcg) { /* css should be a valid one */
1939 mem = *memcg;
1940 VM_BUG_ON(css_is_removed(&mem->css));
1941 if (mem_cgroup_is_root(mem))
1942 goto done;
1943 if (page_size == PAGE_SIZE && consume_stock(mem))
1944 goto done;
1945 css_get(&mem->css);
1946 } else {
1947 struct task_struct *p;
1949 rcu_read_lock();
1950 p = rcu_dereference(mm->owner);
1952 * Because we don't have task_lock(), "p" can exit.
1953 * In that case, "mem" can point to root or p can be NULL with
1954 * race with swapoff. Then, we have small risk of mis-accouning.
1955 * But such kind of mis-account by race always happens because
1956 * we don't have cgroup_mutex(). It's overkill and we allo that
1957 * small race, here.
1958 * (*) swapoff at el will charge against mm-struct not against
1959 * task-struct. So, mm->owner can be NULL.
1961 mem = mem_cgroup_from_task(p);
1962 if (!mem || mem_cgroup_is_root(mem)) {
1963 rcu_read_unlock();
1964 goto done;
1966 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1968 * It seems dagerous to access memcg without css_get().
1969 * But considering how consume_stok works, it's not
1970 * necessary. If consume_stock success, some charges
1971 * from this memcg are cached on this cpu. So, we
1972 * don't need to call css_get()/css_tryget() before
1973 * calling consume_stock().
1975 rcu_read_unlock();
1976 goto done;
1978 /* after here, we may be blocked. we need to get refcnt */
1979 if (!css_tryget(&mem->css)) {
1980 rcu_read_unlock();
1981 goto again;
1983 rcu_read_unlock();
1986 do {
1987 bool oom_check;
1989 /* If killed, bypass charge */
1990 if (fatal_signal_pending(current)) {
1991 css_put(&mem->css);
1992 goto bypass;
1995 oom_check = false;
1996 if (oom && !nr_oom_retries) {
1997 oom_check = true;
1998 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2001 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2003 switch (ret) {
2004 case CHARGE_OK:
2005 break;
2006 case CHARGE_RETRY: /* not in OOM situation but retry */
2007 csize = page_size;
2008 css_put(&mem->css);
2009 mem = NULL;
2010 goto again;
2011 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2012 css_put(&mem->css);
2013 goto nomem;
2014 case CHARGE_NOMEM: /* OOM routine works */
2015 if (!oom) {
2016 css_put(&mem->css);
2017 goto nomem;
2019 /* If oom, we never return -ENOMEM */
2020 nr_oom_retries--;
2021 break;
2022 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2023 css_put(&mem->css);
2024 goto bypass;
2026 } while (ret != CHARGE_OK);
2028 if (csize > page_size)
2029 refill_stock(mem, csize - page_size);
2030 css_put(&mem->css);
2031 done:
2032 *memcg = mem;
2033 return 0;
2034 nomem:
2035 *memcg = NULL;
2036 return -ENOMEM;
2037 bypass:
2038 *memcg = NULL;
2039 return 0;
2043 * Somemtimes we have to undo a charge we got by try_charge().
2044 * This function is for that and do uncharge, put css's refcnt.
2045 * gotten by try_charge().
2047 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2048 unsigned long count)
2050 if (!mem_cgroup_is_root(mem)) {
2051 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2052 if (do_swap_account)
2053 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2057 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2058 int page_size)
2060 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2064 * A helper function to get mem_cgroup from ID. must be called under
2065 * rcu_read_lock(). The caller must check css_is_removed() or some if
2066 * it's concern. (dropping refcnt from swap can be called against removed
2067 * memcg.)
2069 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2071 struct cgroup_subsys_state *css;
2073 /* ID 0 is unused ID */
2074 if (!id)
2075 return NULL;
2076 css = css_lookup(&mem_cgroup_subsys, id);
2077 if (!css)
2078 return NULL;
2079 return container_of(css, struct mem_cgroup, css);
2082 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2084 struct mem_cgroup *mem = NULL;
2085 struct page_cgroup *pc;
2086 unsigned short id;
2087 swp_entry_t ent;
2089 VM_BUG_ON(!PageLocked(page));
2091 pc = lookup_page_cgroup(page);
2092 lock_page_cgroup(pc);
2093 if (PageCgroupUsed(pc)) {
2094 mem = pc->mem_cgroup;
2095 if (mem && !css_tryget(&mem->css))
2096 mem = NULL;
2097 } else if (PageSwapCache(page)) {
2098 ent.val = page_private(page);
2099 id = lookup_swap_cgroup(ent);
2100 rcu_read_lock();
2101 mem = mem_cgroup_lookup(id);
2102 if (mem && !css_tryget(&mem->css))
2103 mem = NULL;
2104 rcu_read_unlock();
2106 unlock_page_cgroup(pc);
2107 return mem;
2110 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2111 struct page_cgroup *pc,
2112 enum charge_type ctype,
2113 int page_size)
2115 int nr_pages = page_size >> PAGE_SHIFT;
2117 /* try_charge() can return NULL to *memcg, taking care of it. */
2118 if (!mem)
2119 return;
2121 lock_page_cgroup(pc);
2122 if (unlikely(PageCgroupUsed(pc))) {
2123 unlock_page_cgroup(pc);
2124 mem_cgroup_cancel_charge(mem, page_size);
2125 return;
2128 * we don't need page_cgroup_lock about tail pages, becase they are not
2129 * accessed by any other context at this point.
2131 pc->mem_cgroup = mem;
2133 * We access a page_cgroup asynchronously without lock_page_cgroup().
2134 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2135 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2136 * before USED bit, we need memory barrier here.
2137 * See mem_cgroup_add_lru_list(), etc.
2139 smp_wmb();
2140 switch (ctype) {
2141 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2142 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2143 SetPageCgroupCache(pc);
2144 SetPageCgroupUsed(pc);
2145 break;
2146 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2147 ClearPageCgroupCache(pc);
2148 SetPageCgroupUsed(pc);
2149 break;
2150 default:
2151 break;
2154 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2155 unlock_page_cgroup(pc);
2157 * "charge_statistics" updated event counter. Then, check it.
2158 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2159 * if they exceeds softlimit.
2161 memcg_check_events(mem, pc->page);
2164 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2166 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2167 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2169 * Because tail pages are not marked as "used", set it. We're under
2170 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2172 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2174 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2175 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2176 unsigned long flags;
2178 if (mem_cgroup_disabled())
2179 return;
2181 * We have no races with charge/uncharge but will have races with
2182 * page state accounting.
2184 move_lock_page_cgroup(head_pc, &flags);
2186 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2187 smp_wmb(); /* see __commit_charge() */
2188 if (PageCgroupAcctLRU(head_pc)) {
2189 enum lru_list lru;
2190 struct mem_cgroup_per_zone *mz;
2193 * LRU flags cannot be copied because we need to add tail
2194 *.page to LRU by generic call and our hook will be called.
2195 * We hold lru_lock, then, reduce counter directly.
2197 lru = page_lru(head);
2198 mz = page_cgroup_zoneinfo(head_pc);
2199 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2201 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2202 move_unlock_page_cgroup(head_pc, &flags);
2204 #endif
2207 * __mem_cgroup_move_account - move account of the page
2208 * @pc: page_cgroup of the page.
2209 * @from: mem_cgroup which the page is moved from.
2210 * @to: mem_cgroup which the page is moved to. @from != @to.
2211 * @uncharge: whether we should call uncharge and css_put against @from.
2213 * The caller must confirm following.
2214 * - page is not on LRU (isolate_page() is useful.)
2215 * - the pc is locked, used, and ->mem_cgroup points to @from.
2217 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2218 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2219 * true, this function does "uncharge" from old cgroup, but it doesn't if
2220 * @uncharge is false, so a caller should do "uncharge".
2223 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2224 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2225 int charge_size)
2227 int nr_pages = charge_size >> PAGE_SHIFT;
2229 VM_BUG_ON(from == to);
2230 VM_BUG_ON(PageLRU(pc->page));
2231 VM_BUG_ON(!page_is_cgroup_locked(pc));
2232 VM_BUG_ON(!PageCgroupUsed(pc));
2233 VM_BUG_ON(pc->mem_cgroup != from);
2235 if (PageCgroupFileMapped(pc)) {
2236 /* Update mapped_file data for mem_cgroup */
2237 preempt_disable();
2238 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2239 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2240 preempt_enable();
2242 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2243 if (uncharge)
2244 /* This is not "cancel", but cancel_charge does all we need. */
2245 mem_cgroup_cancel_charge(from, charge_size);
2247 /* caller should have done css_get */
2248 pc->mem_cgroup = to;
2249 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2251 * We charges against "to" which may not have any tasks. Then, "to"
2252 * can be under rmdir(). But in current implementation, caller of
2253 * this function is just force_empty() and move charge, so it's
2254 * garanteed that "to" is never removed. So, we don't check rmdir
2255 * status here.
2260 * check whether the @pc is valid for moving account and call
2261 * __mem_cgroup_move_account()
2263 static int mem_cgroup_move_account(struct page_cgroup *pc,
2264 struct mem_cgroup *from, struct mem_cgroup *to,
2265 bool uncharge, int charge_size)
2267 int ret = -EINVAL;
2268 unsigned long flags;
2270 * The page is isolated from LRU. So, collapse function
2271 * will not handle this page. But page splitting can happen.
2272 * Do this check under compound_page_lock(). The caller should
2273 * hold it.
2275 if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2276 return -EBUSY;
2278 lock_page_cgroup(pc);
2279 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2280 move_lock_page_cgroup(pc, &flags);
2281 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2282 move_unlock_page_cgroup(pc, &flags);
2283 ret = 0;
2285 unlock_page_cgroup(pc);
2287 * check events
2289 memcg_check_events(to, pc->page);
2290 memcg_check_events(from, pc->page);
2291 return ret;
2295 * move charges to its parent.
2298 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2299 struct mem_cgroup *child,
2300 gfp_t gfp_mask)
2302 struct page *page = pc->page;
2303 struct cgroup *cg = child->css.cgroup;
2304 struct cgroup *pcg = cg->parent;
2305 struct mem_cgroup *parent;
2306 int page_size = PAGE_SIZE;
2307 unsigned long flags;
2308 int ret;
2310 /* Is ROOT ? */
2311 if (!pcg)
2312 return -EINVAL;
2314 ret = -EBUSY;
2315 if (!get_page_unless_zero(page))
2316 goto out;
2317 if (isolate_lru_page(page))
2318 goto put;
2320 if (PageTransHuge(page))
2321 page_size = HPAGE_SIZE;
2323 parent = mem_cgroup_from_cont(pcg);
2324 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2325 &parent, false, page_size);
2326 if (ret || !parent)
2327 goto put_back;
2329 if (page_size > PAGE_SIZE)
2330 flags = compound_lock_irqsave(page);
2332 ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2333 if (ret)
2334 mem_cgroup_cancel_charge(parent, page_size);
2336 if (page_size > PAGE_SIZE)
2337 compound_unlock_irqrestore(page, flags);
2338 put_back:
2339 putback_lru_page(page);
2340 put:
2341 put_page(page);
2342 out:
2343 return ret;
2347 * Charge the memory controller for page usage.
2348 * Return
2349 * 0 if the charge was successful
2350 * < 0 if the cgroup is over its limit
2352 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2353 gfp_t gfp_mask, enum charge_type ctype)
2355 struct mem_cgroup *mem = NULL;
2356 int page_size = PAGE_SIZE;
2357 struct page_cgroup *pc;
2358 bool oom = true;
2359 int ret;
2361 if (PageTransHuge(page)) {
2362 page_size <<= compound_order(page);
2363 VM_BUG_ON(!PageTransHuge(page));
2365 * Never OOM-kill a process for a huge page. The
2366 * fault handler will fall back to regular pages.
2368 oom = false;
2371 pc = lookup_page_cgroup(page);
2372 /* can happen at boot */
2373 if (unlikely(!pc))
2374 return 0;
2375 prefetchw(pc);
2377 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2378 if (ret || !mem)
2379 return ret;
2381 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2382 return 0;
2385 int mem_cgroup_newpage_charge(struct page *page,
2386 struct mm_struct *mm, gfp_t gfp_mask)
2388 if (mem_cgroup_disabled())
2389 return 0;
2391 * If already mapped, we don't have to account.
2392 * If page cache, page->mapping has address_space.
2393 * But page->mapping may have out-of-use anon_vma pointer,
2394 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2395 * is NULL.
2397 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2398 return 0;
2399 if (unlikely(!mm))
2400 mm = &init_mm;
2401 return mem_cgroup_charge_common(page, mm, gfp_mask,
2402 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2405 static void
2406 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2407 enum charge_type ctype);
2409 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2410 gfp_t gfp_mask)
2412 int ret;
2414 if (mem_cgroup_disabled())
2415 return 0;
2416 if (PageCompound(page))
2417 return 0;
2419 * Corner case handling. This is called from add_to_page_cache()
2420 * in usual. But some FS (shmem) precharges this page before calling it
2421 * and call add_to_page_cache() with GFP_NOWAIT.
2423 * For GFP_NOWAIT case, the page may be pre-charged before calling
2424 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2425 * charge twice. (It works but has to pay a bit larger cost.)
2426 * And when the page is SwapCache, it should take swap information
2427 * into account. This is under lock_page() now.
2429 if (!(gfp_mask & __GFP_WAIT)) {
2430 struct page_cgroup *pc;
2432 pc = lookup_page_cgroup(page);
2433 if (!pc)
2434 return 0;
2435 lock_page_cgroup(pc);
2436 if (PageCgroupUsed(pc)) {
2437 unlock_page_cgroup(pc);
2438 return 0;
2440 unlock_page_cgroup(pc);
2443 if (unlikely(!mm))
2444 mm = &init_mm;
2446 if (page_is_file_cache(page))
2447 return mem_cgroup_charge_common(page, mm, gfp_mask,
2448 MEM_CGROUP_CHARGE_TYPE_CACHE);
2450 /* shmem */
2451 if (PageSwapCache(page)) {
2452 struct mem_cgroup *mem = NULL;
2454 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2455 if (!ret)
2456 __mem_cgroup_commit_charge_swapin(page, mem,
2457 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2458 } else
2459 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2460 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2462 return ret;
2466 * While swap-in, try_charge -> commit or cancel, the page is locked.
2467 * And when try_charge() successfully returns, one refcnt to memcg without
2468 * struct page_cgroup is acquired. This refcnt will be consumed by
2469 * "commit()" or removed by "cancel()"
2471 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2472 struct page *page,
2473 gfp_t mask, struct mem_cgroup **ptr)
2475 struct mem_cgroup *mem;
2476 int ret;
2478 if (mem_cgroup_disabled())
2479 return 0;
2481 if (!do_swap_account)
2482 goto charge_cur_mm;
2484 * A racing thread's fault, or swapoff, may have already updated
2485 * the pte, and even removed page from swap cache: in those cases
2486 * do_swap_page()'s pte_same() test will fail; but there's also a
2487 * KSM case which does need to charge the page.
2489 if (!PageSwapCache(page))
2490 goto charge_cur_mm;
2491 mem = try_get_mem_cgroup_from_page(page);
2492 if (!mem)
2493 goto charge_cur_mm;
2494 *ptr = mem;
2495 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2496 css_put(&mem->css);
2497 return ret;
2498 charge_cur_mm:
2499 if (unlikely(!mm))
2500 mm = &init_mm;
2501 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2504 static void
2505 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2506 enum charge_type ctype)
2508 struct page_cgroup *pc;
2510 if (mem_cgroup_disabled())
2511 return;
2512 if (!ptr)
2513 return;
2514 cgroup_exclude_rmdir(&ptr->css);
2515 pc = lookup_page_cgroup(page);
2516 mem_cgroup_lru_del_before_commit_swapcache(page);
2517 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2518 mem_cgroup_lru_add_after_commit_swapcache(page);
2520 * Now swap is on-memory. This means this page may be
2521 * counted both as mem and swap....double count.
2522 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2523 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2524 * may call delete_from_swap_cache() before reach here.
2526 if (do_swap_account && PageSwapCache(page)) {
2527 swp_entry_t ent = {.val = page_private(page)};
2528 unsigned short id;
2529 struct mem_cgroup *memcg;
2531 id = swap_cgroup_record(ent, 0);
2532 rcu_read_lock();
2533 memcg = mem_cgroup_lookup(id);
2534 if (memcg) {
2536 * This recorded memcg can be obsolete one. So, avoid
2537 * calling css_tryget
2539 if (!mem_cgroup_is_root(memcg))
2540 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2541 mem_cgroup_swap_statistics(memcg, false);
2542 mem_cgroup_put(memcg);
2544 rcu_read_unlock();
2547 * At swapin, we may charge account against cgroup which has no tasks.
2548 * So, rmdir()->pre_destroy() can be called while we do this charge.
2549 * In that case, we need to call pre_destroy() again. check it here.
2551 cgroup_release_and_wakeup_rmdir(&ptr->css);
2554 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2556 __mem_cgroup_commit_charge_swapin(page, ptr,
2557 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2560 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2562 if (mem_cgroup_disabled())
2563 return;
2564 if (!mem)
2565 return;
2566 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2569 static void
2570 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2571 int page_size)
2573 struct memcg_batch_info *batch = NULL;
2574 bool uncharge_memsw = true;
2575 /* If swapout, usage of swap doesn't decrease */
2576 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2577 uncharge_memsw = false;
2579 batch = &current->memcg_batch;
2581 * In usual, we do css_get() when we remember memcg pointer.
2582 * But in this case, we keep res->usage until end of a series of
2583 * uncharges. Then, it's ok to ignore memcg's refcnt.
2585 if (!batch->memcg)
2586 batch->memcg = mem;
2588 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2589 * In those cases, all pages freed continously can be expected to be in
2590 * the same cgroup and we have chance to coalesce uncharges.
2591 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2592 * because we want to do uncharge as soon as possible.
2595 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2596 goto direct_uncharge;
2598 if (page_size != PAGE_SIZE)
2599 goto direct_uncharge;
2602 * In typical case, batch->memcg == mem. This means we can
2603 * merge a series of uncharges to an uncharge of res_counter.
2604 * If not, we uncharge res_counter ony by one.
2606 if (batch->memcg != mem)
2607 goto direct_uncharge;
2608 /* remember freed charge and uncharge it later */
2609 batch->bytes += PAGE_SIZE;
2610 if (uncharge_memsw)
2611 batch->memsw_bytes += PAGE_SIZE;
2612 return;
2613 direct_uncharge:
2614 res_counter_uncharge(&mem->res, page_size);
2615 if (uncharge_memsw)
2616 res_counter_uncharge(&mem->memsw, page_size);
2617 if (unlikely(batch->memcg != mem))
2618 memcg_oom_recover(mem);
2619 return;
2623 * uncharge if !page_mapped(page)
2625 static struct mem_cgroup *
2626 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2628 int count;
2629 struct page_cgroup *pc;
2630 struct mem_cgroup *mem = NULL;
2631 int page_size = PAGE_SIZE;
2633 if (mem_cgroup_disabled())
2634 return NULL;
2636 if (PageSwapCache(page))
2637 return NULL;
2639 if (PageTransHuge(page)) {
2640 page_size <<= compound_order(page);
2641 VM_BUG_ON(!PageTransHuge(page));
2644 count = page_size >> PAGE_SHIFT;
2646 * Check if our page_cgroup is valid
2648 pc = lookup_page_cgroup(page);
2649 if (unlikely(!pc || !PageCgroupUsed(pc)))
2650 return NULL;
2652 lock_page_cgroup(pc);
2654 mem = pc->mem_cgroup;
2656 if (!PageCgroupUsed(pc))
2657 goto unlock_out;
2659 switch (ctype) {
2660 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2661 case MEM_CGROUP_CHARGE_TYPE_DROP:
2662 /* See mem_cgroup_prepare_migration() */
2663 if (page_mapped(page) || PageCgroupMigration(pc))
2664 goto unlock_out;
2665 break;
2666 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2667 if (!PageAnon(page)) { /* Shared memory */
2668 if (page->mapping && !page_is_file_cache(page))
2669 goto unlock_out;
2670 } else if (page_mapped(page)) /* Anon */
2671 goto unlock_out;
2672 break;
2673 default:
2674 break;
2677 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2679 ClearPageCgroupUsed(pc);
2681 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2682 * freed from LRU. This is safe because uncharged page is expected not
2683 * to be reused (freed soon). Exception is SwapCache, it's handled by
2684 * special functions.
2687 unlock_page_cgroup(pc);
2689 * even after unlock, we have mem->res.usage here and this memcg
2690 * will never be freed.
2692 memcg_check_events(mem, page);
2693 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2694 mem_cgroup_swap_statistics(mem, true);
2695 mem_cgroup_get(mem);
2697 if (!mem_cgroup_is_root(mem))
2698 __do_uncharge(mem, ctype, page_size);
2700 return mem;
2702 unlock_out:
2703 unlock_page_cgroup(pc);
2704 return NULL;
2707 void mem_cgroup_uncharge_page(struct page *page)
2709 /* early check. */
2710 if (page_mapped(page))
2711 return;
2712 if (page->mapping && !PageAnon(page))
2713 return;
2714 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2717 void mem_cgroup_uncharge_cache_page(struct page *page)
2719 VM_BUG_ON(page_mapped(page));
2720 VM_BUG_ON(page->mapping);
2721 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2725 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2726 * In that cases, pages are freed continuously and we can expect pages
2727 * are in the same memcg. All these calls itself limits the number of
2728 * pages freed at once, then uncharge_start/end() is called properly.
2729 * This may be called prural(2) times in a context,
2732 void mem_cgroup_uncharge_start(void)
2734 current->memcg_batch.do_batch++;
2735 /* We can do nest. */
2736 if (current->memcg_batch.do_batch == 1) {
2737 current->memcg_batch.memcg = NULL;
2738 current->memcg_batch.bytes = 0;
2739 current->memcg_batch.memsw_bytes = 0;
2743 void mem_cgroup_uncharge_end(void)
2745 struct memcg_batch_info *batch = &current->memcg_batch;
2747 if (!batch->do_batch)
2748 return;
2750 batch->do_batch--;
2751 if (batch->do_batch) /* If stacked, do nothing. */
2752 return;
2754 if (!batch->memcg)
2755 return;
2757 * This "batch->memcg" is valid without any css_get/put etc...
2758 * bacause we hide charges behind us.
2760 if (batch->bytes)
2761 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2762 if (batch->memsw_bytes)
2763 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2764 memcg_oom_recover(batch->memcg);
2765 /* forget this pointer (for sanity check) */
2766 batch->memcg = NULL;
2769 #ifdef CONFIG_SWAP
2771 * called after __delete_from_swap_cache() and drop "page" account.
2772 * memcg information is recorded to swap_cgroup of "ent"
2774 void
2775 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2777 struct mem_cgroup *memcg;
2778 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2780 if (!swapout) /* this was a swap cache but the swap is unused ! */
2781 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2783 memcg = __mem_cgroup_uncharge_common(page, ctype);
2786 * record memcg information, if swapout && memcg != NULL,
2787 * mem_cgroup_get() was called in uncharge().
2789 if (do_swap_account && swapout && memcg)
2790 swap_cgroup_record(ent, css_id(&memcg->css));
2792 #endif
2794 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2796 * called from swap_entry_free(). remove record in swap_cgroup and
2797 * uncharge "memsw" account.
2799 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2801 struct mem_cgroup *memcg;
2802 unsigned short id;
2804 if (!do_swap_account)
2805 return;
2807 id = swap_cgroup_record(ent, 0);
2808 rcu_read_lock();
2809 memcg = mem_cgroup_lookup(id);
2810 if (memcg) {
2812 * We uncharge this because swap is freed.
2813 * This memcg can be obsolete one. We avoid calling css_tryget
2815 if (!mem_cgroup_is_root(memcg))
2816 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2817 mem_cgroup_swap_statistics(memcg, false);
2818 mem_cgroup_put(memcg);
2820 rcu_read_unlock();
2824 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2825 * @entry: swap entry to be moved
2826 * @from: mem_cgroup which the entry is moved from
2827 * @to: mem_cgroup which the entry is moved to
2828 * @need_fixup: whether we should fixup res_counters and refcounts.
2830 * It succeeds only when the swap_cgroup's record for this entry is the same
2831 * as the mem_cgroup's id of @from.
2833 * Returns 0 on success, -EINVAL on failure.
2835 * The caller must have charged to @to, IOW, called res_counter_charge() about
2836 * both res and memsw, and called css_get().
2838 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2839 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2841 unsigned short old_id, new_id;
2843 old_id = css_id(&from->css);
2844 new_id = css_id(&to->css);
2846 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2847 mem_cgroup_swap_statistics(from, false);
2848 mem_cgroup_swap_statistics(to, true);
2850 * This function is only called from task migration context now.
2851 * It postpones res_counter and refcount handling till the end
2852 * of task migration(mem_cgroup_clear_mc()) for performance
2853 * improvement. But we cannot postpone mem_cgroup_get(to)
2854 * because if the process that has been moved to @to does
2855 * swap-in, the refcount of @to might be decreased to 0.
2857 mem_cgroup_get(to);
2858 if (need_fixup) {
2859 if (!mem_cgroup_is_root(from))
2860 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2861 mem_cgroup_put(from);
2863 * we charged both to->res and to->memsw, so we should
2864 * uncharge to->res.
2866 if (!mem_cgroup_is_root(to))
2867 res_counter_uncharge(&to->res, PAGE_SIZE);
2869 return 0;
2871 return -EINVAL;
2873 #else
2874 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2875 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2877 return -EINVAL;
2879 #endif
2882 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2883 * page belongs to.
2885 int mem_cgroup_prepare_migration(struct page *page,
2886 struct page *newpage, struct mem_cgroup **ptr)
2888 struct page_cgroup *pc;
2889 struct mem_cgroup *mem = NULL;
2890 enum charge_type ctype;
2891 int ret = 0;
2893 VM_BUG_ON(PageTransHuge(page));
2894 if (mem_cgroup_disabled())
2895 return 0;
2897 pc = lookup_page_cgroup(page);
2898 lock_page_cgroup(pc);
2899 if (PageCgroupUsed(pc)) {
2900 mem = pc->mem_cgroup;
2901 css_get(&mem->css);
2903 * At migrating an anonymous page, its mapcount goes down
2904 * to 0 and uncharge() will be called. But, even if it's fully
2905 * unmapped, migration may fail and this page has to be
2906 * charged again. We set MIGRATION flag here and delay uncharge
2907 * until end_migration() is called
2909 * Corner Case Thinking
2910 * A)
2911 * When the old page was mapped as Anon and it's unmap-and-freed
2912 * while migration was ongoing.
2913 * If unmap finds the old page, uncharge() of it will be delayed
2914 * until end_migration(). If unmap finds a new page, it's
2915 * uncharged when it make mapcount to be 1->0. If unmap code
2916 * finds swap_migration_entry, the new page will not be mapped
2917 * and end_migration() will find it(mapcount==0).
2919 * B)
2920 * When the old page was mapped but migraion fails, the kernel
2921 * remaps it. A charge for it is kept by MIGRATION flag even
2922 * if mapcount goes down to 0. We can do remap successfully
2923 * without charging it again.
2925 * C)
2926 * The "old" page is under lock_page() until the end of
2927 * migration, so, the old page itself will not be swapped-out.
2928 * If the new page is swapped out before end_migraton, our
2929 * hook to usual swap-out path will catch the event.
2931 if (PageAnon(page))
2932 SetPageCgroupMigration(pc);
2934 unlock_page_cgroup(pc);
2936 * If the page is not charged at this point,
2937 * we return here.
2939 if (!mem)
2940 return 0;
2942 *ptr = mem;
2943 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2944 css_put(&mem->css);/* drop extra refcnt */
2945 if (ret || *ptr == NULL) {
2946 if (PageAnon(page)) {
2947 lock_page_cgroup(pc);
2948 ClearPageCgroupMigration(pc);
2949 unlock_page_cgroup(pc);
2951 * The old page may be fully unmapped while we kept it.
2953 mem_cgroup_uncharge_page(page);
2955 return -ENOMEM;
2958 * We charge new page before it's used/mapped. So, even if unlock_page()
2959 * is called before end_migration, we can catch all events on this new
2960 * page. In the case new page is migrated but not remapped, new page's
2961 * mapcount will be finally 0 and we call uncharge in end_migration().
2963 pc = lookup_page_cgroup(newpage);
2964 if (PageAnon(page))
2965 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2966 else if (page_is_file_cache(page))
2967 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2968 else
2969 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2970 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2971 return ret;
2974 /* remove redundant charge if migration failed*/
2975 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2976 struct page *oldpage, struct page *newpage, bool migration_ok)
2978 struct page *used, *unused;
2979 struct page_cgroup *pc;
2981 if (!mem)
2982 return;
2983 /* blocks rmdir() */
2984 cgroup_exclude_rmdir(&mem->css);
2985 if (!migration_ok) {
2986 used = oldpage;
2987 unused = newpage;
2988 } else {
2989 used = newpage;
2990 unused = oldpage;
2993 * We disallowed uncharge of pages under migration because mapcount
2994 * of the page goes down to zero, temporarly.
2995 * Clear the flag and check the page should be charged.
2997 pc = lookup_page_cgroup(oldpage);
2998 lock_page_cgroup(pc);
2999 ClearPageCgroupMigration(pc);
3000 unlock_page_cgroup(pc);
3002 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3005 * If a page is a file cache, radix-tree replacement is very atomic
3006 * and we can skip this check. When it was an Anon page, its mapcount
3007 * goes down to 0. But because we added MIGRATION flage, it's not
3008 * uncharged yet. There are several case but page->mapcount check
3009 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3010 * check. (see prepare_charge() also)
3012 if (PageAnon(used))
3013 mem_cgroup_uncharge_page(used);
3015 * At migration, we may charge account against cgroup which has no
3016 * tasks.
3017 * So, rmdir()->pre_destroy() can be called while we do this charge.
3018 * In that case, we need to call pre_destroy() again. check it here.
3020 cgroup_release_and_wakeup_rmdir(&mem->css);
3024 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3025 * Calling hierarchical_reclaim is not enough because we should update
3026 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3027 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3028 * not from the memcg which this page would be charged to.
3029 * try_charge_swapin does all of these works properly.
3031 int mem_cgroup_shmem_charge_fallback(struct page *page,
3032 struct mm_struct *mm,
3033 gfp_t gfp_mask)
3035 struct mem_cgroup *mem = NULL;
3036 int ret;
3038 if (mem_cgroup_disabled())
3039 return 0;
3041 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3042 if (!ret)
3043 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3045 return ret;
3048 static DEFINE_MUTEX(set_limit_mutex);
3050 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3051 unsigned long long val)
3053 int retry_count;
3054 u64 memswlimit, memlimit;
3055 int ret = 0;
3056 int children = mem_cgroup_count_children(memcg);
3057 u64 curusage, oldusage;
3058 int enlarge;
3061 * For keeping hierarchical_reclaim simple, how long we should retry
3062 * is depends on callers. We set our retry-count to be function
3063 * of # of children which we should visit in this loop.
3065 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3067 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3069 enlarge = 0;
3070 while (retry_count) {
3071 if (signal_pending(current)) {
3072 ret = -EINTR;
3073 break;
3076 * Rather than hide all in some function, I do this in
3077 * open coded manner. You see what this really does.
3078 * We have to guarantee mem->res.limit < mem->memsw.limit.
3080 mutex_lock(&set_limit_mutex);
3081 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3082 if (memswlimit < val) {
3083 ret = -EINVAL;
3084 mutex_unlock(&set_limit_mutex);
3085 break;
3088 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3089 if (memlimit < val)
3090 enlarge = 1;
3092 ret = res_counter_set_limit(&memcg->res, val);
3093 if (!ret) {
3094 if (memswlimit == val)
3095 memcg->memsw_is_minimum = true;
3096 else
3097 memcg->memsw_is_minimum = false;
3099 mutex_unlock(&set_limit_mutex);
3101 if (!ret)
3102 break;
3104 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3105 MEM_CGROUP_RECLAIM_SHRINK);
3106 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3107 /* Usage is reduced ? */
3108 if (curusage >= oldusage)
3109 retry_count--;
3110 else
3111 oldusage = curusage;
3113 if (!ret && enlarge)
3114 memcg_oom_recover(memcg);
3116 return ret;
3119 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3120 unsigned long long val)
3122 int retry_count;
3123 u64 memlimit, memswlimit, oldusage, curusage;
3124 int children = mem_cgroup_count_children(memcg);
3125 int ret = -EBUSY;
3126 int enlarge = 0;
3128 /* see mem_cgroup_resize_res_limit */
3129 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3130 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3131 while (retry_count) {
3132 if (signal_pending(current)) {
3133 ret = -EINTR;
3134 break;
3137 * Rather than hide all in some function, I do this in
3138 * open coded manner. You see what this really does.
3139 * We have to guarantee mem->res.limit < mem->memsw.limit.
3141 mutex_lock(&set_limit_mutex);
3142 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3143 if (memlimit > val) {
3144 ret = -EINVAL;
3145 mutex_unlock(&set_limit_mutex);
3146 break;
3148 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3149 if (memswlimit < val)
3150 enlarge = 1;
3151 ret = res_counter_set_limit(&memcg->memsw, val);
3152 if (!ret) {
3153 if (memlimit == val)
3154 memcg->memsw_is_minimum = true;
3155 else
3156 memcg->memsw_is_minimum = false;
3158 mutex_unlock(&set_limit_mutex);
3160 if (!ret)
3161 break;
3163 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3164 MEM_CGROUP_RECLAIM_NOSWAP |
3165 MEM_CGROUP_RECLAIM_SHRINK);
3166 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3167 /* Usage is reduced ? */
3168 if (curusage >= oldusage)
3169 retry_count--;
3170 else
3171 oldusage = curusage;
3173 if (!ret && enlarge)
3174 memcg_oom_recover(memcg);
3175 return ret;
3178 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3179 gfp_t gfp_mask)
3181 unsigned long nr_reclaimed = 0;
3182 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3183 unsigned long reclaimed;
3184 int loop = 0;
3185 struct mem_cgroup_tree_per_zone *mctz;
3186 unsigned long long excess;
3188 if (order > 0)
3189 return 0;
3191 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3193 * This loop can run a while, specially if mem_cgroup's continuously
3194 * keep exceeding their soft limit and putting the system under
3195 * pressure
3197 do {
3198 if (next_mz)
3199 mz = next_mz;
3200 else
3201 mz = mem_cgroup_largest_soft_limit_node(mctz);
3202 if (!mz)
3203 break;
3205 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3206 gfp_mask,
3207 MEM_CGROUP_RECLAIM_SOFT);
3208 nr_reclaimed += reclaimed;
3209 spin_lock(&mctz->lock);
3212 * If we failed to reclaim anything from this memory cgroup
3213 * it is time to move on to the next cgroup
3215 next_mz = NULL;
3216 if (!reclaimed) {
3217 do {
3219 * Loop until we find yet another one.
3221 * By the time we get the soft_limit lock
3222 * again, someone might have aded the
3223 * group back on the RB tree. Iterate to
3224 * make sure we get a different mem.
3225 * mem_cgroup_largest_soft_limit_node returns
3226 * NULL if no other cgroup is present on
3227 * the tree
3229 next_mz =
3230 __mem_cgroup_largest_soft_limit_node(mctz);
3231 if (next_mz == mz) {
3232 css_put(&next_mz->mem->css);
3233 next_mz = NULL;
3234 } else /* next_mz == NULL or other memcg */
3235 break;
3236 } while (1);
3238 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3239 excess = res_counter_soft_limit_excess(&mz->mem->res);
3241 * One school of thought says that we should not add
3242 * back the node to the tree if reclaim returns 0.
3243 * But our reclaim could return 0, simply because due
3244 * to priority we are exposing a smaller subset of
3245 * memory to reclaim from. Consider this as a longer
3246 * term TODO.
3248 /* If excess == 0, no tree ops */
3249 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3250 spin_unlock(&mctz->lock);
3251 css_put(&mz->mem->css);
3252 loop++;
3254 * Could not reclaim anything and there are no more
3255 * mem cgroups to try or we seem to be looping without
3256 * reclaiming anything.
3258 if (!nr_reclaimed &&
3259 (next_mz == NULL ||
3260 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3261 break;
3262 } while (!nr_reclaimed);
3263 if (next_mz)
3264 css_put(&next_mz->mem->css);
3265 return nr_reclaimed;
3269 * This routine traverse page_cgroup in given list and drop them all.
3270 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3272 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3273 int node, int zid, enum lru_list lru)
3275 struct zone *zone;
3276 struct mem_cgroup_per_zone *mz;
3277 struct page_cgroup *pc, *busy;
3278 unsigned long flags, loop;
3279 struct list_head *list;
3280 int ret = 0;
3282 zone = &NODE_DATA(node)->node_zones[zid];
3283 mz = mem_cgroup_zoneinfo(mem, node, zid);
3284 list = &mz->lists[lru];
3286 loop = MEM_CGROUP_ZSTAT(mz, lru);
3287 /* give some margin against EBUSY etc...*/
3288 loop += 256;
3289 busy = NULL;
3290 while (loop--) {
3291 ret = 0;
3292 spin_lock_irqsave(&zone->lru_lock, flags);
3293 if (list_empty(list)) {
3294 spin_unlock_irqrestore(&zone->lru_lock, flags);
3295 break;
3297 pc = list_entry(list->prev, struct page_cgroup, lru);
3298 if (busy == pc) {
3299 list_move(&pc->lru, list);
3300 busy = NULL;
3301 spin_unlock_irqrestore(&zone->lru_lock, flags);
3302 continue;
3304 spin_unlock_irqrestore(&zone->lru_lock, flags);
3306 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3307 if (ret == -ENOMEM)
3308 break;
3310 if (ret == -EBUSY || ret == -EINVAL) {
3311 /* found lock contention or "pc" is obsolete. */
3312 busy = pc;
3313 cond_resched();
3314 } else
3315 busy = NULL;
3318 if (!ret && !list_empty(list))
3319 return -EBUSY;
3320 return ret;
3324 * make mem_cgroup's charge to be 0 if there is no task.
3325 * This enables deleting this mem_cgroup.
3327 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3329 int ret;
3330 int node, zid, shrink;
3331 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3332 struct cgroup *cgrp = mem->css.cgroup;
3334 css_get(&mem->css);
3336 shrink = 0;
3337 /* should free all ? */
3338 if (free_all)
3339 goto try_to_free;
3340 move_account:
3341 do {
3342 ret = -EBUSY;
3343 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3344 goto out;
3345 ret = -EINTR;
3346 if (signal_pending(current))
3347 goto out;
3348 /* This is for making all *used* pages to be on LRU. */
3349 lru_add_drain_all();
3350 drain_all_stock_sync();
3351 ret = 0;
3352 mem_cgroup_start_move(mem);
3353 for_each_node_state(node, N_HIGH_MEMORY) {
3354 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3355 enum lru_list l;
3356 for_each_lru(l) {
3357 ret = mem_cgroup_force_empty_list(mem,
3358 node, zid, l);
3359 if (ret)
3360 break;
3363 if (ret)
3364 break;
3366 mem_cgroup_end_move(mem);
3367 memcg_oom_recover(mem);
3368 /* it seems parent cgroup doesn't have enough mem */
3369 if (ret == -ENOMEM)
3370 goto try_to_free;
3371 cond_resched();
3372 /* "ret" should also be checked to ensure all lists are empty. */
3373 } while (mem->res.usage > 0 || ret);
3374 out:
3375 css_put(&mem->css);
3376 return ret;
3378 try_to_free:
3379 /* returns EBUSY if there is a task or if we come here twice. */
3380 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3381 ret = -EBUSY;
3382 goto out;
3384 /* we call try-to-free pages for make this cgroup empty */
3385 lru_add_drain_all();
3386 /* try to free all pages in this cgroup */
3387 shrink = 1;
3388 while (nr_retries && mem->res.usage > 0) {
3389 int progress;
3391 if (signal_pending(current)) {
3392 ret = -EINTR;
3393 goto out;
3395 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3396 false, get_swappiness(mem));
3397 if (!progress) {
3398 nr_retries--;
3399 /* maybe some writeback is necessary */
3400 congestion_wait(BLK_RW_ASYNC, HZ/10);
3404 lru_add_drain();
3405 /* try move_account...there may be some *locked* pages. */
3406 goto move_account;
3409 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3411 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3415 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3417 return mem_cgroup_from_cont(cont)->use_hierarchy;
3420 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3421 u64 val)
3423 int retval = 0;
3424 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3425 struct cgroup *parent = cont->parent;
3426 struct mem_cgroup *parent_mem = NULL;
3428 if (parent)
3429 parent_mem = mem_cgroup_from_cont(parent);
3431 cgroup_lock();
3433 * If parent's use_hierarchy is set, we can't make any modifications
3434 * in the child subtrees. If it is unset, then the change can
3435 * occur, provided the current cgroup has no children.
3437 * For the root cgroup, parent_mem is NULL, we allow value to be
3438 * set if there are no children.
3440 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3441 (val == 1 || val == 0)) {
3442 if (list_empty(&cont->children))
3443 mem->use_hierarchy = val;
3444 else
3445 retval = -EBUSY;
3446 } else
3447 retval = -EINVAL;
3448 cgroup_unlock();
3450 return retval;
3454 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3455 enum mem_cgroup_stat_index idx)
3457 struct mem_cgroup *iter;
3458 s64 val = 0;
3460 /* each per cpu's value can be minus.Then, use s64 */
3461 for_each_mem_cgroup_tree(iter, mem)
3462 val += mem_cgroup_read_stat(iter, idx);
3464 if (val < 0) /* race ? */
3465 val = 0;
3466 return val;
3469 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3471 u64 val;
3473 if (!mem_cgroup_is_root(mem)) {
3474 if (!swap)
3475 return res_counter_read_u64(&mem->res, RES_USAGE);
3476 else
3477 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3480 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3481 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3483 if (swap)
3484 val += mem_cgroup_get_recursive_idx_stat(mem,
3485 MEM_CGROUP_STAT_SWAPOUT);
3487 return val << PAGE_SHIFT;
3490 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3492 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3493 u64 val;
3494 int type, name;
3496 type = MEMFILE_TYPE(cft->private);
3497 name = MEMFILE_ATTR(cft->private);
3498 switch (type) {
3499 case _MEM:
3500 if (name == RES_USAGE)
3501 val = mem_cgroup_usage(mem, false);
3502 else
3503 val = res_counter_read_u64(&mem->res, name);
3504 break;
3505 case _MEMSWAP:
3506 if (name == RES_USAGE)
3507 val = mem_cgroup_usage(mem, true);
3508 else
3509 val = res_counter_read_u64(&mem->memsw, name);
3510 break;
3511 default:
3512 BUG();
3513 break;
3515 return val;
3518 * The user of this function is...
3519 * RES_LIMIT.
3521 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3522 const char *buffer)
3524 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3525 int type, name;
3526 unsigned long long val;
3527 int ret;
3529 type = MEMFILE_TYPE(cft->private);
3530 name = MEMFILE_ATTR(cft->private);
3531 switch (name) {
3532 case RES_LIMIT:
3533 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3534 ret = -EINVAL;
3535 break;
3537 /* This function does all necessary parse...reuse it */
3538 ret = res_counter_memparse_write_strategy(buffer, &val);
3539 if (ret)
3540 break;
3541 if (type == _MEM)
3542 ret = mem_cgroup_resize_limit(memcg, val);
3543 else
3544 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3545 break;
3546 case RES_SOFT_LIMIT:
3547 ret = res_counter_memparse_write_strategy(buffer, &val);
3548 if (ret)
3549 break;
3551 * For memsw, soft limits are hard to implement in terms
3552 * of semantics, for now, we support soft limits for
3553 * control without swap
3555 if (type == _MEM)
3556 ret = res_counter_set_soft_limit(&memcg->res, val);
3557 else
3558 ret = -EINVAL;
3559 break;
3560 default:
3561 ret = -EINVAL; /* should be BUG() ? */
3562 break;
3564 return ret;
3567 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3568 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3570 struct cgroup *cgroup;
3571 unsigned long long min_limit, min_memsw_limit, tmp;
3573 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3574 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3575 cgroup = memcg->css.cgroup;
3576 if (!memcg->use_hierarchy)
3577 goto out;
3579 while (cgroup->parent) {
3580 cgroup = cgroup->parent;
3581 memcg = mem_cgroup_from_cont(cgroup);
3582 if (!memcg->use_hierarchy)
3583 break;
3584 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3585 min_limit = min(min_limit, tmp);
3586 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3587 min_memsw_limit = min(min_memsw_limit, tmp);
3589 out:
3590 *mem_limit = min_limit;
3591 *memsw_limit = min_memsw_limit;
3592 return;
3595 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3597 struct mem_cgroup *mem;
3598 int type, name;
3600 mem = mem_cgroup_from_cont(cont);
3601 type = MEMFILE_TYPE(event);
3602 name = MEMFILE_ATTR(event);
3603 switch (name) {
3604 case RES_MAX_USAGE:
3605 if (type == _MEM)
3606 res_counter_reset_max(&mem->res);
3607 else
3608 res_counter_reset_max(&mem->memsw);
3609 break;
3610 case RES_FAILCNT:
3611 if (type == _MEM)
3612 res_counter_reset_failcnt(&mem->res);
3613 else
3614 res_counter_reset_failcnt(&mem->memsw);
3615 break;
3618 return 0;
3621 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3622 struct cftype *cft)
3624 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3627 #ifdef CONFIG_MMU
3628 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3629 struct cftype *cft, u64 val)
3631 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3633 if (val >= (1 << NR_MOVE_TYPE))
3634 return -EINVAL;
3636 * We check this value several times in both in can_attach() and
3637 * attach(), so we need cgroup lock to prevent this value from being
3638 * inconsistent.
3640 cgroup_lock();
3641 mem->move_charge_at_immigrate = val;
3642 cgroup_unlock();
3644 return 0;
3646 #else
3647 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3648 struct cftype *cft, u64 val)
3650 return -ENOSYS;
3652 #endif
3655 /* For read statistics */
3656 enum {
3657 MCS_CACHE,
3658 MCS_RSS,
3659 MCS_FILE_MAPPED,
3660 MCS_PGPGIN,
3661 MCS_PGPGOUT,
3662 MCS_SWAP,
3663 MCS_INACTIVE_ANON,
3664 MCS_ACTIVE_ANON,
3665 MCS_INACTIVE_FILE,
3666 MCS_ACTIVE_FILE,
3667 MCS_UNEVICTABLE,
3668 NR_MCS_STAT,
3671 struct mcs_total_stat {
3672 s64 stat[NR_MCS_STAT];
3675 struct {
3676 char *local_name;
3677 char *total_name;
3678 } memcg_stat_strings[NR_MCS_STAT] = {
3679 {"cache", "total_cache"},
3680 {"rss", "total_rss"},
3681 {"mapped_file", "total_mapped_file"},
3682 {"pgpgin", "total_pgpgin"},
3683 {"pgpgout", "total_pgpgout"},
3684 {"swap", "total_swap"},
3685 {"inactive_anon", "total_inactive_anon"},
3686 {"active_anon", "total_active_anon"},
3687 {"inactive_file", "total_inactive_file"},
3688 {"active_file", "total_active_file"},
3689 {"unevictable", "total_unevictable"}
3693 static void
3694 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3696 s64 val;
3698 /* per cpu stat */
3699 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3700 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3701 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3702 s->stat[MCS_RSS] += val * PAGE_SIZE;
3703 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3704 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3705 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3706 s->stat[MCS_PGPGIN] += val;
3707 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3708 s->stat[MCS_PGPGOUT] += val;
3709 if (do_swap_account) {
3710 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3711 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3714 /* per zone stat */
3715 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3716 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3717 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3718 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3719 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3720 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3721 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3722 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3723 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3724 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3727 static void
3728 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3730 struct mem_cgroup *iter;
3732 for_each_mem_cgroup_tree(iter, mem)
3733 mem_cgroup_get_local_stat(iter, s);
3736 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3737 struct cgroup_map_cb *cb)
3739 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3740 struct mcs_total_stat mystat;
3741 int i;
3743 memset(&mystat, 0, sizeof(mystat));
3744 mem_cgroup_get_local_stat(mem_cont, &mystat);
3746 for (i = 0; i < NR_MCS_STAT; i++) {
3747 if (i == MCS_SWAP && !do_swap_account)
3748 continue;
3749 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3752 /* Hierarchical information */
3754 unsigned long long limit, memsw_limit;
3755 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3756 cb->fill(cb, "hierarchical_memory_limit", limit);
3757 if (do_swap_account)
3758 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3761 memset(&mystat, 0, sizeof(mystat));
3762 mem_cgroup_get_total_stat(mem_cont, &mystat);
3763 for (i = 0; i < NR_MCS_STAT; i++) {
3764 if (i == MCS_SWAP && !do_swap_account)
3765 continue;
3766 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3769 #ifdef CONFIG_DEBUG_VM
3770 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3773 int nid, zid;
3774 struct mem_cgroup_per_zone *mz;
3775 unsigned long recent_rotated[2] = {0, 0};
3776 unsigned long recent_scanned[2] = {0, 0};
3778 for_each_online_node(nid)
3779 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3780 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3782 recent_rotated[0] +=
3783 mz->reclaim_stat.recent_rotated[0];
3784 recent_rotated[1] +=
3785 mz->reclaim_stat.recent_rotated[1];
3786 recent_scanned[0] +=
3787 mz->reclaim_stat.recent_scanned[0];
3788 recent_scanned[1] +=
3789 mz->reclaim_stat.recent_scanned[1];
3791 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3792 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3793 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3794 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3796 #endif
3798 return 0;
3801 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3803 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3805 return get_swappiness(memcg);
3808 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3809 u64 val)
3811 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3812 struct mem_cgroup *parent;
3814 if (val > 100)
3815 return -EINVAL;
3817 if (cgrp->parent == NULL)
3818 return -EINVAL;
3820 parent = mem_cgroup_from_cont(cgrp->parent);
3822 cgroup_lock();
3824 /* If under hierarchy, only empty-root can set this value */
3825 if ((parent->use_hierarchy) ||
3826 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3827 cgroup_unlock();
3828 return -EINVAL;
3831 spin_lock(&memcg->reclaim_param_lock);
3832 memcg->swappiness = val;
3833 spin_unlock(&memcg->reclaim_param_lock);
3835 cgroup_unlock();
3837 return 0;
3840 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3842 struct mem_cgroup_threshold_ary *t;
3843 u64 usage;
3844 int i;
3846 rcu_read_lock();
3847 if (!swap)
3848 t = rcu_dereference(memcg->thresholds.primary);
3849 else
3850 t = rcu_dereference(memcg->memsw_thresholds.primary);
3852 if (!t)
3853 goto unlock;
3855 usage = mem_cgroup_usage(memcg, swap);
3858 * current_threshold points to threshold just below usage.
3859 * If it's not true, a threshold was crossed after last
3860 * call of __mem_cgroup_threshold().
3862 i = t->current_threshold;
3865 * Iterate backward over array of thresholds starting from
3866 * current_threshold and check if a threshold is crossed.
3867 * If none of thresholds below usage is crossed, we read
3868 * only one element of the array here.
3870 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3871 eventfd_signal(t->entries[i].eventfd, 1);
3873 /* i = current_threshold + 1 */
3874 i++;
3877 * Iterate forward over array of thresholds starting from
3878 * current_threshold+1 and check if a threshold is crossed.
3879 * If none of thresholds above usage is crossed, we read
3880 * only one element of the array here.
3882 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3883 eventfd_signal(t->entries[i].eventfd, 1);
3885 /* Update current_threshold */
3886 t->current_threshold = i - 1;
3887 unlock:
3888 rcu_read_unlock();
3891 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3893 while (memcg) {
3894 __mem_cgroup_threshold(memcg, false);
3895 if (do_swap_account)
3896 __mem_cgroup_threshold(memcg, true);
3898 memcg = parent_mem_cgroup(memcg);
3902 static int compare_thresholds(const void *a, const void *b)
3904 const struct mem_cgroup_threshold *_a = a;
3905 const struct mem_cgroup_threshold *_b = b;
3907 return _a->threshold - _b->threshold;
3910 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3912 struct mem_cgroup_eventfd_list *ev;
3914 list_for_each_entry(ev, &mem->oom_notify, list)
3915 eventfd_signal(ev->eventfd, 1);
3916 return 0;
3919 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3921 struct mem_cgroup *iter;
3923 for_each_mem_cgroup_tree(iter, mem)
3924 mem_cgroup_oom_notify_cb(iter);
3927 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3928 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3930 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3931 struct mem_cgroup_thresholds *thresholds;
3932 struct mem_cgroup_threshold_ary *new;
3933 int type = MEMFILE_TYPE(cft->private);
3934 u64 threshold, usage;
3935 int i, size, ret;
3937 ret = res_counter_memparse_write_strategy(args, &threshold);
3938 if (ret)
3939 return ret;
3941 mutex_lock(&memcg->thresholds_lock);
3943 if (type == _MEM)
3944 thresholds = &memcg->thresholds;
3945 else if (type == _MEMSWAP)
3946 thresholds = &memcg->memsw_thresholds;
3947 else
3948 BUG();
3950 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3952 /* Check if a threshold crossed before adding a new one */
3953 if (thresholds->primary)
3954 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3956 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3958 /* Allocate memory for new array of thresholds */
3959 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3960 GFP_KERNEL);
3961 if (!new) {
3962 ret = -ENOMEM;
3963 goto unlock;
3965 new->size = size;
3967 /* Copy thresholds (if any) to new array */
3968 if (thresholds->primary) {
3969 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3970 sizeof(struct mem_cgroup_threshold));
3973 /* Add new threshold */
3974 new->entries[size - 1].eventfd = eventfd;
3975 new->entries[size - 1].threshold = threshold;
3977 /* Sort thresholds. Registering of new threshold isn't time-critical */
3978 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3979 compare_thresholds, NULL);
3981 /* Find current threshold */
3982 new->current_threshold = -1;
3983 for (i = 0; i < size; i++) {
3984 if (new->entries[i].threshold < usage) {
3986 * new->current_threshold will not be used until
3987 * rcu_assign_pointer(), so it's safe to increment
3988 * it here.
3990 ++new->current_threshold;
3994 /* Free old spare buffer and save old primary buffer as spare */
3995 kfree(thresholds->spare);
3996 thresholds->spare = thresholds->primary;
3998 rcu_assign_pointer(thresholds->primary, new);
4000 /* To be sure that nobody uses thresholds */
4001 synchronize_rcu();
4003 unlock:
4004 mutex_unlock(&memcg->thresholds_lock);
4006 return ret;
4009 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4010 struct cftype *cft, struct eventfd_ctx *eventfd)
4012 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4013 struct mem_cgroup_thresholds *thresholds;
4014 struct mem_cgroup_threshold_ary *new;
4015 int type = MEMFILE_TYPE(cft->private);
4016 u64 usage;
4017 int i, j, size;
4019 mutex_lock(&memcg->thresholds_lock);
4020 if (type == _MEM)
4021 thresholds = &memcg->thresholds;
4022 else if (type == _MEMSWAP)
4023 thresholds = &memcg->memsw_thresholds;
4024 else
4025 BUG();
4028 * Something went wrong if we trying to unregister a threshold
4029 * if we don't have thresholds
4031 BUG_ON(!thresholds);
4033 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4035 /* Check if a threshold crossed before removing */
4036 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4038 /* Calculate new number of threshold */
4039 size = 0;
4040 for (i = 0; i < thresholds->primary->size; i++) {
4041 if (thresholds->primary->entries[i].eventfd != eventfd)
4042 size++;
4045 new = thresholds->spare;
4047 /* Set thresholds array to NULL if we don't have thresholds */
4048 if (!size) {
4049 kfree(new);
4050 new = NULL;
4051 goto swap_buffers;
4054 new->size = size;
4056 /* Copy thresholds and find current threshold */
4057 new->current_threshold = -1;
4058 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4059 if (thresholds->primary->entries[i].eventfd == eventfd)
4060 continue;
4062 new->entries[j] = thresholds->primary->entries[i];
4063 if (new->entries[j].threshold < usage) {
4065 * new->current_threshold will not be used
4066 * until rcu_assign_pointer(), so it's safe to increment
4067 * it here.
4069 ++new->current_threshold;
4071 j++;
4074 swap_buffers:
4075 /* Swap primary and spare array */
4076 thresholds->spare = thresholds->primary;
4077 rcu_assign_pointer(thresholds->primary, new);
4079 /* To be sure that nobody uses thresholds */
4080 synchronize_rcu();
4082 mutex_unlock(&memcg->thresholds_lock);
4085 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4086 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4088 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4089 struct mem_cgroup_eventfd_list *event;
4090 int type = MEMFILE_TYPE(cft->private);
4092 BUG_ON(type != _OOM_TYPE);
4093 event = kmalloc(sizeof(*event), GFP_KERNEL);
4094 if (!event)
4095 return -ENOMEM;
4097 mutex_lock(&memcg_oom_mutex);
4099 event->eventfd = eventfd;
4100 list_add(&event->list, &memcg->oom_notify);
4102 /* already in OOM ? */
4103 if (atomic_read(&memcg->oom_lock))
4104 eventfd_signal(eventfd, 1);
4105 mutex_unlock(&memcg_oom_mutex);
4107 return 0;
4110 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4111 struct cftype *cft, struct eventfd_ctx *eventfd)
4113 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4114 struct mem_cgroup_eventfd_list *ev, *tmp;
4115 int type = MEMFILE_TYPE(cft->private);
4117 BUG_ON(type != _OOM_TYPE);
4119 mutex_lock(&memcg_oom_mutex);
4121 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4122 if (ev->eventfd == eventfd) {
4123 list_del(&ev->list);
4124 kfree(ev);
4128 mutex_unlock(&memcg_oom_mutex);
4131 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4132 struct cftype *cft, struct cgroup_map_cb *cb)
4134 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4136 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4138 if (atomic_read(&mem->oom_lock))
4139 cb->fill(cb, "under_oom", 1);
4140 else
4141 cb->fill(cb, "under_oom", 0);
4142 return 0;
4145 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4146 struct cftype *cft, u64 val)
4148 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4149 struct mem_cgroup *parent;
4151 /* cannot set to root cgroup and only 0 and 1 are allowed */
4152 if (!cgrp->parent || !((val == 0) || (val == 1)))
4153 return -EINVAL;
4155 parent = mem_cgroup_from_cont(cgrp->parent);
4157 cgroup_lock();
4158 /* oom-kill-disable is a flag for subhierarchy. */
4159 if ((parent->use_hierarchy) ||
4160 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4161 cgroup_unlock();
4162 return -EINVAL;
4164 mem->oom_kill_disable = val;
4165 if (!val)
4166 memcg_oom_recover(mem);
4167 cgroup_unlock();
4168 return 0;
4171 static struct cftype mem_cgroup_files[] = {
4173 .name = "usage_in_bytes",
4174 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4175 .read_u64 = mem_cgroup_read,
4176 .register_event = mem_cgroup_usage_register_event,
4177 .unregister_event = mem_cgroup_usage_unregister_event,
4180 .name = "max_usage_in_bytes",
4181 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4182 .trigger = mem_cgroup_reset,
4183 .read_u64 = mem_cgroup_read,
4186 .name = "limit_in_bytes",
4187 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4188 .write_string = mem_cgroup_write,
4189 .read_u64 = mem_cgroup_read,
4192 .name = "soft_limit_in_bytes",
4193 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4194 .write_string = mem_cgroup_write,
4195 .read_u64 = mem_cgroup_read,
4198 .name = "failcnt",
4199 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4200 .trigger = mem_cgroup_reset,
4201 .read_u64 = mem_cgroup_read,
4204 .name = "stat",
4205 .read_map = mem_control_stat_show,
4208 .name = "force_empty",
4209 .trigger = mem_cgroup_force_empty_write,
4212 .name = "use_hierarchy",
4213 .write_u64 = mem_cgroup_hierarchy_write,
4214 .read_u64 = mem_cgroup_hierarchy_read,
4217 .name = "swappiness",
4218 .read_u64 = mem_cgroup_swappiness_read,
4219 .write_u64 = mem_cgroup_swappiness_write,
4222 .name = "move_charge_at_immigrate",
4223 .read_u64 = mem_cgroup_move_charge_read,
4224 .write_u64 = mem_cgroup_move_charge_write,
4227 .name = "oom_control",
4228 .read_map = mem_cgroup_oom_control_read,
4229 .write_u64 = mem_cgroup_oom_control_write,
4230 .register_event = mem_cgroup_oom_register_event,
4231 .unregister_event = mem_cgroup_oom_unregister_event,
4232 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4236 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4237 static struct cftype memsw_cgroup_files[] = {
4239 .name = "memsw.usage_in_bytes",
4240 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4241 .read_u64 = mem_cgroup_read,
4242 .register_event = mem_cgroup_usage_register_event,
4243 .unregister_event = mem_cgroup_usage_unregister_event,
4246 .name = "memsw.max_usage_in_bytes",
4247 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4248 .trigger = mem_cgroup_reset,
4249 .read_u64 = mem_cgroup_read,
4252 .name = "memsw.limit_in_bytes",
4253 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4254 .write_string = mem_cgroup_write,
4255 .read_u64 = mem_cgroup_read,
4258 .name = "memsw.failcnt",
4259 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4260 .trigger = mem_cgroup_reset,
4261 .read_u64 = mem_cgroup_read,
4265 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4267 if (!do_swap_account)
4268 return 0;
4269 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4270 ARRAY_SIZE(memsw_cgroup_files));
4272 #else
4273 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4275 return 0;
4277 #endif
4279 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4281 struct mem_cgroup_per_node *pn;
4282 struct mem_cgroup_per_zone *mz;
4283 enum lru_list l;
4284 int zone, tmp = node;
4286 * This routine is called against possible nodes.
4287 * But it's BUG to call kmalloc() against offline node.
4289 * TODO: this routine can waste much memory for nodes which will
4290 * never be onlined. It's better to use memory hotplug callback
4291 * function.
4293 if (!node_state(node, N_NORMAL_MEMORY))
4294 tmp = -1;
4295 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4296 if (!pn)
4297 return 1;
4299 mem->info.nodeinfo[node] = pn;
4300 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4301 mz = &pn->zoneinfo[zone];
4302 for_each_lru(l)
4303 INIT_LIST_HEAD(&mz->lists[l]);
4304 mz->usage_in_excess = 0;
4305 mz->on_tree = false;
4306 mz->mem = mem;
4308 return 0;
4311 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4313 kfree(mem->info.nodeinfo[node]);
4316 static struct mem_cgroup *mem_cgroup_alloc(void)
4318 struct mem_cgroup *mem;
4319 int size = sizeof(struct mem_cgroup);
4321 /* Can be very big if MAX_NUMNODES is very big */
4322 if (size < PAGE_SIZE)
4323 mem = kzalloc(size, GFP_KERNEL);
4324 else
4325 mem = vzalloc(size);
4327 if (!mem)
4328 return NULL;
4330 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4331 if (!mem->stat)
4332 goto out_free;
4333 spin_lock_init(&mem->pcp_counter_lock);
4334 return mem;
4336 out_free:
4337 if (size < PAGE_SIZE)
4338 kfree(mem);
4339 else
4340 vfree(mem);
4341 return NULL;
4345 * At destroying mem_cgroup, references from swap_cgroup can remain.
4346 * (scanning all at force_empty is too costly...)
4348 * Instead of clearing all references at force_empty, we remember
4349 * the number of reference from swap_cgroup and free mem_cgroup when
4350 * it goes down to 0.
4352 * Removal of cgroup itself succeeds regardless of refs from swap.
4355 static void __mem_cgroup_free(struct mem_cgroup *mem)
4357 int node;
4359 mem_cgroup_remove_from_trees(mem);
4360 free_css_id(&mem_cgroup_subsys, &mem->css);
4362 for_each_node_state(node, N_POSSIBLE)
4363 free_mem_cgroup_per_zone_info(mem, node);
4365 free_percpu(mem->stat);
4366 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4367 kfree(mem);
4368 else
4369 vfree(mem);
4372 static void mem_cgroup_get(struct mem_cgroup *mem)
4374 atomic_inc(&mem->refcnt);
4377 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4379 if (atomic_sub_and_test(count, &mem->refcnt)) {
4380 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4381 __mem_cgroup_free(mem);
4382 if (parent)
4383 mem_cgroup_put(parent);
4387 static void mem_cgroup_put(struct mem_cgroup *mem)
4389 __mem_cgroup_put(mem, 1);
4393 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4395 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4397 if (!mem->res.parent)
4398 return NULL;
4399 return mem_cgroup_from_res_counter(mem->res.parent, res);
4402 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4403 static void __init enable_swap_cgroup(void)
4405 if (!mem_cgroup_disabled() && really_do_swap_account)
4406 do_swap_account = 1;
4408 #else
4409 static void __init enable_swap_cgroup(void)
4412 #endif
4414 static int mem_cgroup_soft_limit_tree_init(void)
4416 struct mem_cgroup_tree_per_node *rtpn;
4417 struct mem_cgroup_tree_per_zone *rtpz;
4418 int tmp, node, zone;
4420 for_each_node_state(node, N_POSSIBLE) {
4421 tmp = node;
4422 if (!node_state(node, N_NORMAL_MEMORY))
4423 tmp = -1;
4424 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4425 if (!rtpn)
4426 return 1;
4428 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4430 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4431 rtpz = &rtpn->rb_tree_per_zone[zone];
4432 rtpz->rb_root = RB_ROOT;
4433 spin_lock_init(&rtpz->lock);
4436 return 0;
4439 static struct cgroup_subsys_state * __ref
4440 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4442 struct mem_cgroup *mem, *parent;
4443 long error = -ENOMEM;
4444 int node;
4446 mem = mem_cgroup_alloc();
4447 if (!mem)
4448 return ERR_PTR(error);
4450 for_each_node_state(node, N_POSSIBLE)
4451 if (alloc_mem_cgroup_per_zone_info(mem, node))
4452 goto free_out;
4454 /* root ? */
4455 if (cont->parent == NULL) {
4456 int cpu;
4457 enable_swap_cgroup();
4458 parent = NULL;
4459 root_mem_cgroup = mem;
4460 if (mem_cgroup_soft_limit_tree_init())
4461 goto free_out;
4462 for_each_possible_cpu(cpu) {
4463 struct memcg_stock_pcp *stock =
4464 &per_cpu(memcg_stock, cpu);
4465 INIT_WORK(&stock->work, drain_local_stock);
4467 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4468 } else {
4469 parent = mem_cgroup_from_cont(cont->parent);
4470 mem->use_hierarchy = parent->use_hierarchy;
4471 mem->oom_kill_disable = parent->oom_kill_disable;
4474 if (parent && parent->use_hierarchy) {
4475 res_counter_init(&mem->res, &parent->res);
4476 res_counter_init(&mem->memsw, &parent->memsw);
4478 * We increment refcnt of the parent to ensure that we can
4479 * safely access it on res_counter_charge/uncharge.
4480 * This refcnt will be decremented when freeing this
4481 * mem_cgroup(see mem_cgroup_put).
4483 mem_cgroup_get(parent);
4484 } else {
4485 res_counter_init(&mem->res, NULL);
4486 res_counter_init(&mem->memsw, NULL);
4488 mem->last_scanned_child = 0;
4489 spin_lock_init(&mem->reclaim_param_lock);
4490 INIT_LIST_HEAD(&mem->oom_notify);
4492 if (parent)
4493 mem->swappiness = get_swappiness(parent);
4494 atomic_set(&mem->refcnt, 1);
4495 mem->move_charge_at_immigrate = 0;
4496 mutex_init(&mem->thresholds_lock);
4497 return &mem->css;
4498 free_out:
4499 __mem_cgroup_free(mem);
4500 root_mem_cgroup = NULL;
4501 return ERR_PTR(error);
4504 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4505 struct cgroup *cont)
4507 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4509 return mem_cgroup_force_empty(mem, false);
4512 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4513 struct cgroup *cont)
4515 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4517 mem_cgroup_put(mem);
4520 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4521 struct cgroup *cont)
4523 int ret;
4525 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4526 ARRAY_SIZE(mem_cgroup_files));
4528 if (!ret)
4529 ret = register_memsw_files(cont, ss);
4530 return ret;
4533 #ifdef CONFIG_MMU
4534 /* Handlers for move charge at task migration. */
4535 #define PRECHARGE_COUNT_AT_ONCE 256
4536 static int mem_cgroup_do_precharge(unsigned long count)
4538 int ret = 0;
4539 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4540 struct mem_cgroup *mem = mc.to;
4542 if (mem_cgroup_is_root(mem)) {
4543 mc.precharge += count;
4544 /* we don't need css_get for root */
4545 return ret;
4547 /* try to charge at once */
4548 if (count > 1) {
4549 struct res_counter *dummy;
4551 * "mem" cannot be under rmdir() because we've already checked
4552 * by cgroup_lock_live_cgroup() that it is not removed and we
4553 * are still under the same cgroup_mutex. So we can postpone
4554 * css_get().
4556 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4557 goto one_by_one;
4558 if (do_swap_account && res_counter_charge(&mem->memsw,
4559 PAGE_SIZE * count, &dummy)) {
4560 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4561 goto one_by_one;
4563 mc.precharge += count;
4564 return ret;
4566 one_by_one:
4567 /* fall back to one by one charge */
4568 while (count--) {
4569 if (signal_pending(current)) {
4570 ret = -EINTR;
4571 break;
4573 if (!batch_count--) {
4574 batch_count = PRECHARGE_COUNT_AT_ONCE;
4575 cond_resched();
4577 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4578 PAGE_SIZE);
4579 if (ret || !mem)
4580 /* mem_cgroup_clear_mc() will do uncharge later */
4581 return -ENOMEM;
4582 mc.precharge++;
4584 return ret;
4588 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4589 * @vma: the vma the pte to be checked belongs
4590 * @addr: the address corresponding to the pte to be checked
4591 * @ptent: the pte to be checked
4592 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4594 * Returns
4595 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4596 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4597 * move charge. if @target is not NULL, the page is stored in target->page
4598 * with extra refcnt got(Callers should handle it).
4599 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4600 * target for charge migration. if @target is not NULL, the entry is stored
4601 * in target->ent.
4603 * Called with pte lock held.
4605 union mc_target {
4606 struct page *page;
4607 swp_entry_t ent;
4610 enum mc_target_type {
4611 MC_TARGET_NONE, /* not used */
4612 MC_TARGET_PAGE,
4613 MC_TARGET_SWAP,
4616 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4617 unsigned long addr, pte_t ptent)
4619 struct page *page = vm_normal_page(vma, addr, ptent);
4621 if (!page || !page_mapped(page))
4622 return NULL;
4623 if (PageAnon(page)) {
4624 /* we don't move shared anon */
4625 if (!move_anon() || page_mapcount(page) > 2)
4626 return NULL;
4627 } else if (!move_file())
4628 /* we ignore mapcount for file pages */
4629 return NULL;
4630 if (!get_page_unless_zero(page))
4631 return NULL;
4633 return page;
4636 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4637 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4639 int usage_count;
4640 struct page *page = NULL;
4641 swp_entry_t ent = pte_to_swp_entry(ptent);
4643 if (!move_anon() || non_swap_entry(ent))
4644 return NULL;
4645 usage_count = mem_cgroup_count_swap_user(ent, &page);
4646 if (usage_count > 1) { /* we don't move shared anon */
4647 if (page)
4648 put_page(page);
4649 return NULL;
4651 if (do_swap_account)
4652 entry->val = ent.val;
4654 return page;
4657 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4658 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4660 struct page *page = NULL;
4661 struct inode *inode;
4662 struct address_space *mapping;
4663 pgoff_t pgoff;
4665 if (!vma->vm_file) /* anonymous vma */
4666 return NULL;
4667 if (!move_file())
4668 return NULL;
4670 inode = vma->vm_file->f_path.dentry->d_inode;
4671 mapping = vma->vm_file->f_mapping;
4672 if (pte_none(ptent))
4673 pgoff = linear_page_index(vma, addr);
4674 else /* pte_file(ptent) is true */
4675 pgoff = pte_to_pgoff(ptent);
4677 /* page is moved even if it's not RSS of this task(page-faulted). */
4678 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4679 page = find_get_page(mapping, pgoff);
4680 } else { /* shmem/tmpfs file. we should take account of swap too. */
4681 swp_entry_t ent;
4682 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4683 if (do_swap_account)
4684 entry->val = ent.val;
4687 return page;
4690 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4691 unsigned long addr, pte_t ptent, union mc_target *target)
4693 struct page *page = NULL;
4694 struct page_cgroup *pc;
4695 int ret = 0;
4696 swp_entry_t ent = { .val = 0 };
4698 if (pte_present(ptent))
4699 page = mc_handle_present_pte(vma, addr, ptent);
4700 else if (is_swap_pte(ptent))
4701 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4702 else if (pte_none(ptent) || pte_file(ptent))
4703 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4705 if (!page && !ent.val)
4706 return 0;
4707 if (page) {
4708 pc = lookup_page_cgroup(page);
4710 * Do only loose check w/o page_cgroup lock.
4711 * mem_cgroup_move_account() checks the pc is valid or not under
4712 * the lock.
4714 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4715 ret = MC_TARGET_PAGE;
4716 if (target)
4717 target->page = page;
4719 if (!ret || !target)
4720 put_page(page);
4722 /* There is a swap entry and a page doesn't exist or isn't charged */
4723 if (ent.val && !ret &&
4724 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4725 ret = MC_TARGET_SWAP;
4726 if (target)
4727 target->ent = ent;
4729 return ret;
4732 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4733 unsigned long addr, unsigned long end,
4734 struct mm_walk *walk)
4736 struct vm_area_struct *vma = walk->private;
4737 pte_t *pte;
4738 spinlock_t *ptl;
4740 VM_BUG_ON(pmd_trans_huge(*pmd));
4741 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4742 for (; addr != end; pte++, addr += PAGE_SIZE)
4743 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4744 mc.precharge++; /* increment precharge temporarily */
4745 pte_unmap_unlock(pte - 1, ptl);
4746 cond_resched();
4748 return 0;
4751 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4753 unsigned long precharge;
4754 struct vm_area_struct *vma;
4756 down_read(&mm->mmap_sem);
4757 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4758 struct mm_walk mem_cgroup_count_precharge_walk = {
4759 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4760 .mm = mm,
4761 .private = vma,
4763 if (is_vm_hugetlb_page(vma))
4764 continue;
4765 walk_page_range(vma->vm_start, vma->vm_end,
4766 &mem_cgroup_count_precharge_walk);
4768 up_read(&mm->mmap_sem);
4770 precharge = mc.precharge;
4771 mc.precharge = 0;
4773 return precharge;
4776 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4778 unsigned long precharge = mem_cgroup_count_precharge(mm);
4780 VM_BUG_ON(mc.moving_task);
4781 mc.moving_task = current;
4782 return mem_cgroup_do_precharge(precharge);
4785 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4786 static void __mem_cgroup_clear_mc(void)
4788 struct mem_cgroup *from = mc.from;
4789 struct mem_cgroup *to = mc.to;
4791 /* we must uncharge all the leftover precharges from mc.to */
4792 if (mc.precharge) {
4793 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4794 mc.precharge = 0;
4797 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4798 * we must uncharge here.
4800 if (mc.moved_charge) {
4801 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4802 mc.moved_charge = 0;
4804 /* we must fixup refcnts and charges */
4805 if (mc.moved_swap) {
4806 /* uncharge swap account from the old cgroup */
4807 if (!mem_cgroup_is_root(mc.from))
4808 res_counter_uncharge(&mc.from->memsw,
4809 PAGE_SIZE * mc.moved_swap);
4810 __mem_cgroup_put(mc.from, mc.moved_swap);
4812 if (!mem_cgroup_is_root(mc.to)) {
4814 * we charged both to->res and to->memsw, so we should
4815 * uncharge to->res.
4817 res_counter_uncharge(&mc.to->res,
4818 PAGE_SIZE * mc.moved_swap);
4820 /* we've already done mem_cgroup_get(mc.to) */
4821 mc.moved_swap = 0;
4823 memcg_oom_recover(from);
4824 memcg_oom_recover(to);
4825 wake_up_all(&mc.waitq);
4828 static void mem_cgroup_clear_mc(void)
4830 struct mem_cgroup *from = mc.from;
4833 * we must clear moving_task before waking up waiters at the end of
4834 * task migration.
4836 mc.moving_task = NULL;
4837 __mem_cgroup_clear_mc();
4838 spin_lock(&mc.lock);
4839 mc.from = NULL;
4840 mc.to = NULL;
4841 spin_unlock(&mc.lock);
4842 mem_cgroup_end_move(from);
4845 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4846 struct cgroup *cgroup,
4847 struct task_struct *p,
4848 bool threadgroup)
4850 int ret = 0;
4851 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4853 if (mem->move_charge_at_immigrate) {
4854 struct mm_struct *mm;
4855 struct mem_cgroup *from = mem_cgroup_from_task(p);
4857 VM_BUG_ON(from == mem);
4859 mm = get_task_mm(p);
4860 if (!mm)
4861 return 0;
4862 /* We move charges only when we move a owner of the mm */
4863 if (mm->owner == p) {
4864 VM_BUG_ON(mc.from);
4865 VM_BUG_ON(mc.to);
4866 VM_BUG_ON(mc.precharge);
4867 VM_BUG_ON(mc.moved_charge);
4868 VM_BUG_ON(mc.moved_swap);
4869 mem_cgroup_start_move(from);
4870 spin_lock(&mc.lock);
4871 mc.from = from;
4872 mc.to = mem;
4873 spin_unlock(&mc.lock);
4874 /* We set mc.moving_task later */
4876 ret = mem_cgroup_precharge_mc(mm);
4877 if (ret)
4878 mem_cgroup_clear_mc();
4880 mmput(mm);
4882 return ret;
4885 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4886 struct cgroup *cgroup,
4887 struct task_struct *p,
4888 bool threadgroup)
4890 mem_cgroup_clear_mc();
4893 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4894 unsigned long addr, unsigned long end,
4895 struct mm_walk *walk)
4897 int ret = 0;
4898 struct vm_area_struct *vma = walk->private;
4899 pte_t *pte;
4900 spinlock_t *ptl;
4902 retry:
4903 VM_BUG_ON(pmd_trans_huge(*pmd));
4904 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4905 for (; addr != end; addr += PAGE_SIZE) {
4906 pte_t ptent = *(pte++);
4907 union mc_target target;
4908 int type;
4909 struct page *page;
4910 struct page_cgroup *pc;
4911 swp_entry_t ent;
4913 if (!mc.precharge)
4914 break;
4916 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4917 switch (type) {
4918 case MC_TARGET_PAGE:
4919 page = target.page;
4920 if (isolate_lru_page(page))
4921 goto put;
4922 pc = lookup_page_cgroup(page);
4923 if (!mem_cgroup_move_account(pc,
4924 mc.from, mc.to, false, PAGE_SIZE)) {
4925 mc.precharge--;
4926 /* we uncharge from mc.from later. */
4927 mc.moved_charge++;
4929 putback_lru_page(page);
4930 put: /* is_target_pte_for_mc() gets the page */
4931 put_page(page);
4932 break;
4933 case MC_TARGET_SWAP:
4934 ent = target.ent;
4935 if (!mem_cgroup_move_swap_account(ent,
4936 mc.from, mc.to, false)) {
4937 mc.precharge--;
4938 /* we fixup refcnts and charges later. */
4939 mc.moved_swap++;
4941 break;
4942 default:
4943 break;
4946 pte_unmap_unlock(pte - 1, ptl);
4947 cond_resched();
4949 if (addr != end) {
4951 * We have consumed all precharges we got in can_attach().
4952 * We try charge one by one, but don't do any additional
4953 * charges to mc.to if we have failed in charge once in attach()
4954 * phase.
4956 ret = mem_cgroup_do_precharge(1);
4957 if (!ret)
4958 goto retry;
4961 return ret;
4964 static void mem_cgroup_move_charge(struct mm_struct *mm)
4966 struct vm_area_struct *vma;
4968 lru_add_drain_all();
4969 retry:
4970 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4972 * Someone who are holding the mmap_sem might be waiting in
4973 * waitq. So we cancel all extra charges, wake up all waiters,
4974 * and retry. Because we cancel precharges, we might not be able
4975 * to move enough charges, but moving charge is a best-effort
4976 * feature anyway, so it wouldn't be a big problem.
4978 __mem_cgroup_clear_mc();
4979 cond_resched();
4980 goto retry;
4982 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4983 int ret;
4984 struct mm_walk mem_cgroup_move_charge_walk = {
4985 .pmd_entry = mem_cgroup_move_charge_pte_range,
4986 .mm = mm,
4987 .private = vma,
4989 if (is_vm_hugetlb_page(vma))
4990 continue;
4991 ret = walk_page_range(vma->vm_start, vma->vm_end,
4992 &mem_cgroup_move_charge_walk);
4993 if (ret)
4995 * means we have consumed all precharges and failed in
4996 * doing additional charge. Just abandon here.
4998 break;
5000 up_read(&mm->mmap_sem);
5003 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5004 struct cgroup *cont,
5005 struct cgroup *old_cont,
5006 struct task_struct *p,
5007 bool threadgroup)
5009 struct mm_struct *mm;
5011 if (!mc.to)
5012 /* no need to move charge */
5013 return;
5015 mm = get_task_mm(p);
5016 if (mm) {
5017 mem_cgroup_move_charge(mm);
5018 mmput(mm);
5020 mem_cgroup_clear_mc();
5022 #else /* !CONFIG_MMU */
5023 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5024 struct cgroup *cgroup,
5025 struct task_struct *p,
5026 bool threadgroup)
5028 return 0;
5030 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5031 struct cgroup *cgroup,
5032 struct task_struct *p,
5033 bool threadgroup)
5036 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5037 struct cgroup *cont,
5038 struct cgroup *old_cont,
5039 struct task_struct *p,
5040 bool threadgroup)
5043 #endif
5045 struct cgroup_subsys mem_cgroup_subsys = {
5046 .name = "memory",
5047 .subsys_id = mem_cgroup_subsys_id,
5048 .create = mem_cgroup_create,
5049 .pre_destroy = mem_cgroup_pre_destroy,
5050 .destroy = mem_cgroup_destroy,
5051 .populate = mem_cgroup_populate,
5052 .can_attach = mem_cgroup_can_attach,
5053 .cancel_attach = mem_cgroup_cancel_attach,
5054 .attach = mem_cgroup_move_task,
5055 .early_init = 0,
5056 .use_id = 1,
5059 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5060 static int __init enable_swap_account(char *s)
5062 /* consider enabled if no parameter or 1 is given */
5063 if (!(*s) || !strcmp(s, "=1"))
5064 really_do_swap_account = 1;
5065 else if (!strcmp(s, "=0"))
5066 really_do_swap_account = 0;
5067 return 1;
5069 __setup("swapaccount", enable_swap_account);
5071 static int __init disable_swap_account(char *s)
5073 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5074 enable_swap_account("=0");
5075 return 1;
5077 __setup("noswapaccount", disable_swap_account);
5078 #endif