Merge branch 'v6v7' into devel
[linux/fpc-iii.git] / net / irda / ircomm / ircomm_tty.c
bloba39cca8331dfdf16c0d8cea14682e93472a75ce1
1 /*********************************************************************
3 * Filename: ircomm_tty.c
4 * Version: 1.0
5 * Description: IrCOMM serial TTY driver
6 * Status: Experimental.
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun Jun 6 21:00:56 1999
9 * Modified at: Wed Feb 23 00:09:02 2000
10 * Modified by: Dag Brattli <dagb@cs.uit.no>
11 * Sources: serial.c and previous IrCOMM work by Takahide Higuchi
13 * Copyright (c) 1999-2000 Dag Brattli, All Rights Reserved.
14 * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; either version 2 of
19 * the License, or (at your option) any later version.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 * MA 02111-1307 USA
31 ********************************************************************/
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/fs.h>
36 #include <linux/slab.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/termios.h>
40 #include <linux/tty.h>
41 #include <linux/interrupt.h>
42 #include <linux/device.h> /* for MODULE_ALIAS_CHARDEV_MAJOR */
44 #include <asm/uaccess.h>
46 #include <net/irda/irda.h>
47 #include <net/irda/irmod.h>
49 #include <net/irda/ircomm_core.h>
50 #include <net/irda/ircomm_param.h>
51 #include <net/irda/ircomm_tty_attach.h>
52 #include <net/irda/ircomm_tty.h>
54 static int ircomm_tty_open(struct tty_struct *tty, struct file *filp);
55 static void ircomm_tty_close(struct tty_struct * tty, struct file *filp);
56 static int ircomm_tty_write(struct tty_struct * tty,
57 const unsigned char *buf, int count);
58 static int ircomm_tty_write_room(struct tty_struct *tty);
59 static void ircomm_tty_throttle(struct tty_struct *tty);
60 static void ircomm_tty_unthrottle(struct tty_struct *tty);
61 static int ircomm_tty_chars_in_buffer(struct tty_struct *tty);
62 static void ircomm_tty_flush_buffer(struct tty_struct *tty);
63 static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch);
64 static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout);
65 static void ircomm_tty_hangup(struct tty_struct *tty);
66 static void ircomm_tty_do_softint(struct work_struct *work);
67 static void ircomm_tty_shutdown(struct ircomm_tty_cb *self);
68 static void ircomm_tty_stop(struct tty_struct *tty);
70 static int ircomm_tty_data_indication(void *instance, void *sap,
71 struct sk_buff *skb);
72 static int ircomm_tty_control_indication(void *instance, void *sap,
73 struct sk_buff *skb);
74 static void ircomm_tty_flow_indication(void *instance, void *sap,
75 LOCAL_FLOW cmd);
76 #ifdef CONFIG_PROC_FS
77 static const struct file_operations ircomm_tty_proc_fops;
78 #endif /* CONFIG_PROC_FS */
79 static struct tty_driver *driver;
81 static hashbin_t *ircomm_tty = NULL;
83 static const struct tty_operations ops = {
84 .open = ircomm_tty_open,
85 .close = ircomm_tty_close,
86 .write = ircomm_tty_write,
87 .write_room = ircomm_tty_write_room,
88 .chars_in_buffer = ircomm_tty_chars_in_buffer,
89 .flush_buffer = ircomm_tty_flush_buffer,
90 .ioctl = ircomm_tty_ioctl, /* ircomm_tty_ioctl.c */
91 .tiocmget = ircomm_tty_tiocmget, /* ircomm_tty_ioctl.c */
92 .tiocmset = ircomm_tty_tiocmset, /* ircomm_tty_ioctl.c */
93 .throttle = ircomm_tty_throttle,
94 .unthrottle = ircomm_tty_unthrottle,
95 .send_xchar = ircomm_tty_send_xchar,
96 .set_termios = ircomm_tty_set_termios,
97 .stop = ircomm_tty_stop,
98 .start = ircomm_tty_start,
99 .hangup = ircomm_tty_hangup,
100 .wait_until_sent = ircomm_tty_wait_until_sent,
101 #ifdef CONFIG_PROC_FS
102 .proc_fops = &ircomm_tty_proc_fops,
103 #endif /* CONFIG_PROC_FS */
107 * Function ircomm_tty_init()
109 * Init IrCOMM TTY layer/driver
112 static int __init ircomm_tty_init(void)
114 driver = alloc_tty_driver(IRCOMM_TTY_PORTS);
115 if (!driver)
116 return -ENOMEM;
117 ircomm_tty = hashbin_new(HB_LOCK);
118 if (ircomm_tty == NULL) {
119 IRDA_ERROR("%s(), can't allocate hashbin!\n", __func__);
120 put_tty_driver(driver);
121 return -ENOMEM;
124 driver->owner = THIS_MODULE;
125 driver->driver_name = "ircomm";
126 driver->name = "ircomm";
127 driver->major = IRCOMM_TTY_MAJOR;
128 driver->minor_start = IRCOMM_TTY_MINOR;
129 driver->type = TTY_DRIVER_TYPE_SERIAL;
130 driver->subtype = SERIAL_TYPE_NORMAL;
131 driver->init_termios = tty_std_termios;
132 driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
133 driver->flags = TTY_DRIVER_REAL_RAW;
134 tty_set_operations(driver, &ops);
135 if (tty_register_driver(driver)) {
136 IRDA_ERROR("%s(): Couldn't register serial driver\n",
137 __func__);
138 put_tty_driver(driver);
139 return -1;
141 return 0;
144 static void __exit __ircomm_tty_cleanup(struct ircomm_tty_cb *self)
146 IRDA_DEBUG(0, "%s()\n", __func__ );
148 IRDA_ASSERT(self != NULL, return;);
149 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
151 ircomm_tty_shutdown(self);
153 self->magic = 0;
154 kfree(self);
158 * Function ircomm_tty_cleanup ()
160 * Remove IrCOMM TTY layer/driver
163 static void __exit ircomm_tty_cleanup(void)
165 int ret;
167 IRDA_DEBUG(4, "%s()\n", __func__ );
169 ret = tty_unregister_driver(driver);
170 if (ret) {
171 IRDA_ERROR("%s(), failed to unregister driver\n",
172 __func__);
173 return;
176 hashbin_delete(ircomm_tty, (FREE_FUNC) __ircomm_tty_cleanup);
177 put_tty_driver(driver);
181 * Function ircomm_startup (self)
186 static int ircomm_tty_startup(struct ircomm_tty_cb *self)
188 notify_t notify;
189 int ret = -ENODEV;
191 IRDA_DEBUG(2, "%s()\n", __func__ );
193 IRDA_ASSERT(self != NULL, return -1;);
194 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
196 /* Check if already open */
197 if (test_and_set_bit(ASYNC_B_INITIALIZED, &self->flags)) {
198 IRDA_DEBUG(2, "%s(), already open so break out!\n", __func__ );
199 return 0;
202 /* Register with IrCOMM */
203 irda_notify_init(&notify);
204 /* These callbacks we must handle ourselves */
205 notify.data_indication = ircomm_tty_data_indication;
206 notify.udata_indication = ircomm_tty_control_indication;
207 notify.flow_indication = ircomm_tty_flow_indication;
209 /* Use the ircomm_tty interface for these ones */
210 notify.disconnect_indication = ircomm_tty_disconnect_indication;
211 notify.connect_confirm = ircomm_tty_connect_confirm;
212 notify.connect_indication = ircomm_tty_connect_indication;
213 strlcpy(notify.name, "ircomm_tty", sizeof(notify.name));
214 notify.instance = self;
216 if (!self->ircomm) {
217 self->ircomm = ircomm_open(&notify, self->service_type,
218 self->line);
220 if (!self->ircomm)
221 goto err;
223 self->slsap_sel = self->ircomm->slsap_sel;
225 /* Connect IrCOMM link with remote device */
226 ret = ircomm_tty_attach_cable(self);
227 if (ret < 0) {
228 IRDA_ERROR("%s(), error attaching cable!\n", __func__);
229 goto err;
232 return 0;
233 err:
234 clear_bit(ASYNC_B_INITIALIZED, &self->flags);
235 return ret;
239 * Function ircomm_block_til_ready (self, filp)
244 static int ircomm_tty_block_til_ready(struct ircomm_tty_cb *self,
245 struct file *filp)
247 DECLARE_WAITQUEUE(wait, current);
248 int retval;
249 int do_clocal = 0, extra_count = 0;
250 unsigned long flags;
251 struct tty_struct *tty;
253 IRDA_DEBUG(2, "%s()\n", __func__ );
255 tty = self->tty;
258 * If non-blocking mode is set, or the port is not enabled,
259 * then make the check up front and then exit.
261 if (filp->f_flags & O_NONBLOCK || tty->flags & (1 << TTY_IO_ERROR)){
262 /* nonblock mode is set or port is not enabled */
263 self->flags |= ASYNC_NORMAL_ACTIVE;
264 IRDA_DEBUG(1, "%s(), O_NONBLOCK requested!\n", __func__ );
265 return 0;
268 if (tty->termios->c_cflag & CLOCAL) {
269 IRDA_DEBUG(1, "%s(), doing CLOCAL!\n", __func__ );
270 do_clocal = 1;
273 /* Wait for carrier detect and the line to become
274 * free (i.e., not in use by the callout). While we are in
275 * this loop, self->open_count is dropped by one, so that
276 * mgsl_close() knows when to free things. We restore it upon
277 * exit, either normal or abnormal.
280 retval = 0;
281 add_wait_queue(&self->open_wait, &wait);
283 IRDA_DEBUG(2, "%s(%d):block_til_ready before block on %s open_count=%d\n",
284 __FILE__,__LINE__, tty->driver->name, self->open_count );
286 /* As far as I can see, we protect open_count - Jean II */
287 spin_lock_irqsave(&self->spinlock, flags);
288 if (!tty_hung_up_p(filp)) {
289 extra_count = 1;
290 self->open_count--;
292 spin_unlock_irqrestore(&self->spinlock, flags);
293 self->blocked_open++;
295 while (1) {
296 if (tty->termios->c_cflag & CBAUD) {
297 /* Here, we use to lock those two guys, but
298 * as ircomm_param_request() does it itself,
299 * I don't see the point (and I see the deadlock).
300 * Jean II */
301 self->settings.dte |= IRCOMM_RTS + IRCOMM_DTR;
303 ircomm_param_request(self, IRCOMM_DTE, TRUE);
306 current->state = TASK_INTERRUPTIBLE;
308 if (tty_hung_up_p(filp) ||
309 !test_bit(ASYNC_B_INITIALIZED, &self->flags)) {
310 retval = (self->flags & ASYNC_HUP_NOTIFY) ?
311 -EAGAIN : -ERESTARTSYS;
312 break;
316 * Check if link is ready now. Even if CLOCAL is
317 * specified, we cannot return before the IrCOMM link is
318 * ready
320 if (!test_bit(ASYNC_B_CLOSING, &self->flags) &&
321 (do_clocal || (self->settings.dce & IRCOMM_CD)) &&
322 self->state == IRCOMM_TTY_READY)
324 break;
327 if (signal_pending(current)) {
328 retval = -ERESTARTSYS;
329 break;
332 IRDA_DEBUG(1, "%s(%d):block_til_ready blocking on %s open_count=%d\n",
333 __FILE__,__LINE__, tty->driver->name, self->open_count );
335 schedule();
338 __set_current_state(TASK_RUNNING);
339 remove_wait_queue(&self->open_wait, &wait);
341 if (extra_count) {
342 /* ++ is not atomic, so this should be protected - Jean II */
343 spin_lock_irqsave(&self->spinlock, flags);
344 self->open_count++;
345 spin_unlock_irqrestore(&self->spinlock, flags);
347 self->blocked_open--;
349 IRDA_DEBUG(1, "%s(%d):block_til_ready after blocking on %s open_count=%d\n",
350 __FILE__,__LINE__, tty->driver->name, self->open_count);
352 if (!retval)
353 self->flags |= ASYNC_NORMAL_ACTIVE;
355 return retval;
359 * Function ircomm_tty_open (tty, filp)
361 * This routine is called when a particular tty device is opened. This
362 * routine is mandatory; if this routine is not filled in, the attempted
363 * open will fail with ENODEV.
365 static int ircomm_tty_open(struct tty_struct *tty, struct file *filp)
367 struct ircomm_tty_cb *self;
368 unsigned int line;
369 unsigned long flags;
370 int ret;
372 IRDA_DEBUG(2, "%s()\n", __func__ );
374 line = tty->index;
375 if (line >= IRCOMM_TTY_PORTS)
376 return -ENODEV;
378 /* Check if instance already exists */
379 self = hashbin_lock_find(ircomm_tty, line, NULL);
380 if (!self) {
381 /* No, so make new instance */
382 self = kzalloc(sizeof(struct ircomm_tty_cb), GFP_KERNEL);
383 if (self == NULL) {
384 IRDA_ERROR("%s(), kmalloc failed!\n", __func__);
385 return -ENOMEM;
388 self->magic = IRCOMM_TTY_MAGIC;
389 self->flow = FLOW_STOP;
391 self->line = line;
392 INIT_WORK(&self->tqueue, ircomm_tty_do_softint);
393 self->max_header_size = IRCOMM_TTY_HDR_UNINITIALISED;
394 self->max_data_size = IRCOMM_TTY_DATA_UNINITIALISED;
395 self->close_delay = 5*HZ/10;
396 self->closing_wait = 30*HZ;
398 /* Init some important stuff */
399 init_timer(&self->watchdog_timer);
400 init_waitqueue_head(&self->open_wait);
401 init_waitqueue_head(&self->close_wait);
402 spin_lock_init(&self->spinlock);
405 * Force TTY into raw mode by default which is usually what
406 * we want for IrCOMM and IrLPT. This way applications will
407 * not have to twiddle with printcap etc.
409 * Note this is completely usafe and doesn't work properly
411 tty->termios->c_iflag = 0;
412 tty->termios->c_oflag = 0;
414 /* Insert into hash */
415 hashbin_insert(ircomm_tty, (irda_queue_t *) self, line, NULL);
417 /* ++ is not atomic, so this should be protected - Jean II */
418 spin_lock_irqsave(&self->spinlock, flags);
419 self->open_count++;
421 tty->driver_data = self;
422 self->tty = tty;
423 spin_unlock_irqrestore(&self->spinlock, flags);
425 IRDA_DEBUG(1, "%s(), %s%d, count = %d\n", __func__ , tty->driver->name,
426 self->line, self->open_count);
428 /* Not really used by us, but lets do it anyway */
429 self->tty->low_latency = (self->flags & ASYNC_LOW_LATENCY) ? 1 : 0;
432 * If the port is the middle of closing, bail out now
434 if (tty_hung_up_p(filp) ||
435 test_bit(ASYNC_B_CLOSING, &self->flags)) {
437 /* Hm, why are we blocking on ASYNC_CLOSING if we
438 * do return -EAGAIN/-ERESTARTSYS below anyway?
439 * IMHO it's either not needed in the first place
440 * or for some reason we need to make sure the async
441 * closing has been finished - if so, wouldn't we
442 * probably better sleep uninterruptible?
445 if (wait_event_interruptible(self->close_wait, !test_bit(ASYNC_B_CLOSING, &self->flags))) {
446 IRDA_WARNING("%s - got signal while blocking on ASYNC_CLOSING!\n",
447 __func__);
448 return -ERESTARTSYS;
451 #ifdef SERIAL_DO_RESTART
452 return (self->flags & ASYNC_HUP_NOTIFY) ?
453 -EAGAIN : -ERESTARTSYS;
454 #else
455 return -EAGAIN;
456 #endif
459 /* Check if this is a "normal" ircomm device, or an irlpt device */
460 if (line < 0x10) {
461 self->service_type = IRCOMM_3_WIRE | IRCOMM_9_WIRE;
462 self->settings.service_type = IRCOMM_9_WIRE; /* 9 wire as default */
463 /* Jan Kiszka -> add DSR/RI -> Conform to IrCOMM spec */
464 self->settings.dce = IRCOMM_CTS | IRCOMM_CD | IRCOMM_DSR | IRCOMM_RI; /* Default line settings */
465 IRDA_DEBUG(2, "%s(), IrCOMM device\n", __func__ );
466 } else {
467 IRDA_DEBUG(2, "%s(), IrLPT device\n", __func__ );
468 self->service_type = IRCOMM_3_WIRE_RAW;
469 self->settings.service_type = IRCOMM_3_WIRE_RAW; /* Default */
472 ret = ircomm_tty_startup(self);
473 if (ret)
474 return ret;
476 ret = ircomm_tty_block_til_ready(self, filp);
477 if (ret) {
478 IRDA_DEBUG(2,
479 "%s(), returning after block_til_ready with %d\n", __func__ ,
480 ret);
482 return ret;
484 return 0;
488 * Function ircomm_tty_close (tty, filp)
490 * This routine is called when a particular tty device is closed.
493 static void ircomm_tty_close(struct tty_struct *tty, struct file *filp)
495 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
496 unsigned long flags;
498 IRDA_DEBUG(0, "%s()\n", __func__ );
500 IRDA_ASSERT(self != NULL, return;);
501 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
503 spin_lock_irqsave(&self->spinlock, flags);
505 if (tty_hung_up_p(filp)) {
506 spin_unlock_irqrestore(&self->spinlock, flags);
508 IRDA_DEBUG(0, "%s(), returning 1\n", __func__ );
509 return;
512 if ((tty->count == 1) && (self->open_count != 1)) {
514 * Uh, oh. tty->count is 1, which means that the tty
515 * structure will be freed. state->count should always
516 * be one in these conditions. If it's greater than
517 * one, we've got real problems, since it means the
518 * serial port won't be shutdown.
520 IRDA_DEBUG(0, "%s(), bad serial port count; "
521 "tty->count is 1, state->count is %d\n", __func__ ,
522 self->open_count);
523 self->open_count = 1;
526 if (--self->open_count < 0) {
527 IRDA_ERROR("%s(), bad serial port count for ttys%d: %d\n",
528 __func__, self->line, self->open_count);
529 self->open_count = 0;
531 if (self->open_count) {
532 spin_unlock_irqrestore(&self->spinlock, flags);
534 IRDA_DEBUG(0, "%s(), open count > 0\n", __func__ );
535 return;
538 /* Hum... Should be test_and_set_bit ??? - Jean II */
539 set_bit(ASYNC_B_CLOSING, &self->flags);
541 /* We need to unlock here (we were unlocking at the end of this
542 * function), because tty_wait_until_sent() may schedule.
543 * I don't know if the rest should be protected somehow,
544 * so someone should check. - Jean II */
545 spin_unlock_irqrestore(&self->spinlock, flags);
548 * Now we wait for the transmit buffer to clear; and we notify
549 * the line discipline to only process XON/XOFF characters.
551 tty->closing = 1;
552 if (self->closing_wait != ASYNC_CLOSING_WAIT_NONE)
553 tty_wait_until_sent(tty, self->closing_wait);
555 ircomm_tty_shutdown(self);
557 tty_driver_flush_buffer(tty);
558 tty_ldisc_flush(tty);
560 tty->closing = 0;
561 self->tty = NULL;
563 if (self->blocked_open) {
564 if (self->close_delay)
565 schedule_timeout_interruptible(self->close_delay);
566 wake_up_interruptible(&self->open_wait);
569 self->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
570 wake_up_interruptible(&self->close_wait);
574 * Function ircomm_tty_flush_buffer (tty)
579 static void ircomm_tty_flush_buffer(struct tty_struct *tty)
581 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
583 IRDA_ASSERT(self != NULL, return;);
584 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
587 * Let do_softint() do this to avoid race condition with
588 * do_softint() ;-)
590 schedule_work(&self->tqueue);
594 * Function ircomm_tty_do_softint (work)
596 * We use this routine to give the write wakeup to the user at at a
597 * safe time (as fast as possible after write have completed). This
598 * can be compared to the Tx interrupt.
600 static void ircomm_tty_do_softint(struct work_struct *work)
602 struct ircomm_tty_cb *self =
603 container_of(work, struct ircomm_tty_cb, tqueue);
604 struct tty_struct *tty;
605 unsigned long flags;
606 struct sk_buff *skb, *ctrl_skb;
608 IRDA_DEBUG(2, "%s()\n", __func__ );
610 if (!self || self->magic != IRCOMM_TTY_MAGIC)
611 return;
613 tty = self->tty;
614 if (!tty)
615 return;
617 /* Unlink control buffer */
618 spin_lock_irqsave(&self->spinlock, flags);
620 ctrl_skb = self->ctrl_skb;
621 self->ctrl_skb = NULL;
623 spin_unlock_irqrestore(&self->spinlock, flags);
625 /* Flush control buffer if any */
626 if(ctrl_skb) {
627 if(self->flow == FLOW_START)
628 ircomm_control_request(self->ircomm, ctrl_skb);
629 /* Drop reference count - see ircomm_ttp_data_request(). */
630 dev_kfree_skb(ctrl_skb);
633 if (tty->hw_stopped)
634 return;
636 /* Unlink transmit buffer */
637 spin_lock_irqsave(&self->spinlock, flags);
639 skb = self->tx_skb;
640 self->tx_skb = NULL;
642 spin_unlock_irqrestore(&self->spinlock, flags);
644 /* Flush transmit buffer if any */
645 if (skb) {
646 ircomm_tty_do_event(self, IRCOMM_TTY_DATA_REQUEST, skb, NULL);
647 /* Drop reference count - see ircomm_ttp_data_request(). */
648 dev_kfree_skb(skb);
651 /* Check if user (still) wants to be waken up */
652 tty_wakeup(tty);
656 * Function ircomm_tty_write (tty, buf, count)
658 * This routine is called by the kernel to write a series of characters
659 * to the tty device. The characters may come from user space or kernel
660 * space. This routine will return the number of characters actually
661 * accepted for writing. This routine is mandatory.
663 static int ircomm_tty_write(struct tty_struct *tty,
664 const unsigned char *buf, int count)
666 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
667 unsigned long flags;
668 struct sk_buff *skb;
669 int tailroom = 0;
670 int len = 0;
671 int size;
673 IRDA_DEBUG(2, "%s(), count=%d, hw_stopped=%d\n", __func__ , count,
674 tty->hw_stopped);
676 IRDA_ASSERT(self != NULL, return -1;);
677 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
679 /* We may receive packets from the TTY even before we have finished
680 * our setup. Not cool.
681 * The problem is that we don't know the final header and data size
682 * to create the proper skb, so any skb we would create would have
683 * bogus header and data size, so need care.
684 * We use a bogus header size to safely detect this condition.
685 * Another problem is that hw_stopped was set to 0 way before it
686 * should be, so we would drop this skb. It should now be fixed.
687 * One option is to not accept data until we are properly setup.
688 * But, I suspect that when it happens, the ppp line discipline
689 * just "drops" the data, which might screw up connect scripts.
690 * The second option is to create a "safe skb", with large header
691 * and small size (see ircomm_tty_open() for values).
692 * We just need to make sure that when the real values get filled,
693 * we don't mess up the original "safe skb" (see tx_data_size).
694 * Jean II */
695 if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED) {
696 IRDA_DEBUG(1, "%s() : not initialised\n", __func__);
697 #ifdef IRCOMM_NO_TX_BEFORE_INIT
698 /* We didn't consume anything, TTY will retry */
699 return 0;
700 #endif
703 if (count < 1)
704 return 0;
706 /* Protect our manipulation of self->tx_skb and related */
707 spin_lock_irqsave(&self->spinlock, flags);
709 /* Fetch current transmit buffer */
710 skb = self->tx_skb;
713 * Send out all the data we get, possibly as multiple fragmented
714 * frames, but this will only happen if the data is larger than the
715 * max data size. The normal case however is just the opposite, and
716 * this function may be called multiple times, and will then actually
717 * defragment the data and send it out as one packet as soon as
718 * possible, but at a safer point in time
720 while (count) {
721 size = count;
723 /* Adjust data size to the max data size */
724 if (size > self->max_data_size)
725 size = self->max_data_size;
728 * Do we already have a buffer ready for transmit, or do
729 * we need to allocate a new frame
731 if (skb) {
733 * Any room for more data at the end of the current
734 * transmit buffer? Cannot use skb_tailroom, since
735 * dev_alloc_skb gives us a larger skb than we
736 * requested
737 * Note : use tx_data_size, because max_data_size
738 * may have changed and we don't want to overwrite
739 * the skb. - Jean II
741 if ((tailroom = (self->tx_data_size - skb->len)) > 0) {
742 /* Adjust data to tailroom */
743 if (size > tailroom)
744 size = tailroom;
745 } else {
747 * Current transmit frame is full, so break
748 * out, so we can send it as soon as possible
750 break;
752 } else {
753 /* Prepare a full sized frame */
754 skb = alloc_skb(self->max_data_size+
755 self->max_header_size,
756 GFP_ATOMIC);
757 if (!skb) {
758 spin_unlock_irqrestore(&self->spinlock, flags);
759 return -ENOBUFS;
761 skb_reserve(skb, self->max_header_size);
762 self->tx_skb = skb;
763 /* Remember skb size because max_data_size may
764 * change later on - Jean II */
765 self->tx_data_size = self->max_data_size;
768 /* Copy data */
769 memcpy(skb_put(skb,size), buf + len, size);
771 count -= size;
772 len += size;
775 spin_unlock_irqrestore(&self->spinlock, flags);
778 * Schedule a new thread which will transmit the frame as soon
779 * as possible, but at a safe point in time. We do this so the
780 * "user" can give us data multiple times, as PPP does (because of
781 * its 256 byte tx buffer). We will then defragment and send out
782 * all this data as one single packet.
784 schedule_work(&self->tqueue);
786 return len;
790 * Function ircomm_tty_write_room (tty)
792 * This routine returns the numbers of characters the tty driver will
793 * accept for queuing to be written. This number is subject to change as
794 * output buffers get emptied, or if the output flow control is acted.
796 static int ircomm_tty_write_room(struct tty_struct *tty)
798 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
799 unsigned long flags;
800 int ret;
802 IRDA_ASSERT(self != NULL, return -1;);
803 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
805 #ifdef IRCOMM_NO_TX_BEFORE_INIT
806 /* max_header_size tells us if the channel is initialised or not. */
807 if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED)
808 /* Don't bother us yet */
809 return 0;
810 #endif
812 /* Check if we are allowed to transmit any data.
813 * hw_stopped is the regular flow control.
814 * Jean II */
815 if (tty->hw_stopped)
816 ret = 0;
817 else {
818 spin_lock_irqsave(&self->spinlock, flags);
819 if (self->tx_skb)
820 ret = self->tx_data_size - self->tx_skb->len;
821 else
822 ret = self->max_data_size;
823 spin_unlock_irqrestore(&self->spinlock, flags);
825 IRDA_DEBUG(2, "%s(), ret=%d\n", __func__ , ret);
827 return ret;
831 * Function ircomm_tty_wait_until_sent (tty, timeout)
833 * This routine waits until the device has written out all of the
834 * characters in its transmitter FIFO.
836 static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout)
838 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
839 unsigned long orig_jiffies, poll_time;
840 unsigned long flags;
842 IRDA_DEBUG(2, "%s()\n", __func__ );
844 IRDA_ASSERT(self != NULL, return;);
845 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
847 orig_jiffies = jiffies;
849 /* Set poll time to 200 ms */
850 poll_time = IRDA_MIN(timeout, msecs_to_jiffies(200));
852 spin_lock_irqsave(&self->spinlock, flags);
853 while (self->tx_skb && self->tx_skb->len) {
854 spin_unlock_irqrestore(&self->spinlock, flags);
855 schedule_timeout_interruptible(poll_time);
856 spin_lock_irqsave(&self->spinlock, flags);
857 if (signal_pending(current))
858 break;
859 if (timeout && time_after(jiffies, orig_jiffies + timeout))
860 break;
862 spin_unlock_irqrestore(&self->spinlock, flags);
863 current->state = TASK_RUNNING;
867 * Function ircomm_tty_throttle (tty)
869 * This routine notifies the tty driver that input buffers for the line
870 * discipline are close to full, and it should somehow signal that no
871 * more characters should be sent to the tty.
873 static void ircomm_tty_throttle(struct tty_struct *tty)
875 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
877 IRDA_DEBUG(2, "%s()\n", __func__ );
879 IRDA_ASSERT(self != NULL, return;);
880 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
882 /* Software flow control? */
883 if (I_IXOFF(tty))
884 ircomm_tty_send_xchar(tty, STOP_CHAR(tty));
886 /* Hardware flow control? */
887 if (tty->termios->c_cflag & CRTSCTS) {
888 self->settings.dte &= ~IRCOMM_RTS;
889 self->settings.dte |= IRCOMM_DELTA_RTS;
891 ircomm_param_request(self, IRCOMM_DTE, TRUE);
894 ircomm_flow_request(self->ircomm, FLOW_STOP);
898 * Function ircomm_tty_unthrottle (tty)
900 * This routine notifies the tty drivers that it should signals that
901 * characters can now be sent to the tty without fear of overrunning the
902 * input buffers of the line disciplines.
904 static void ircomm_tty_unthrottle(struct tty_struct *tty)
906 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
908 IRDA_DEBUG(2, "%s()\n", __func__ );
910 IRDA_ASSERT(self != NULL, return;);
911 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
913 /* Using software flow control? */
914 if (I_IXOFF(tty)) {
915 ircomm_tty_send_xchar(tty, START_CHAR(tty));
918 /* Using hardware flow control? */
919 if (tty->termios->c_cflag & CRTSCTS) {
920 self->settings.dte |= (IRCOMM_RTS|IRCOMM_DELTA_RTS);
922 ircomm_param_request(self, IRCOMM_DTE, TRUE);
923 IRDA_DEBUG(1, "%s(), FLOW_START\n", __func__ );
925 ircomm_flow_request(self->ircomm, FLOW_START);
929 * Function ircomm_tty_chars_in_buffer (tty)
931 * Indicates if there are any data in the buffer
934 static int ircomm_tty_chars_in_buffer(struct tty_struct *tty)
936 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
937 unsigned long flags;
938 int len = 0;
940 IRDA_ASSERT(self != NULL, return -1;);
941 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
943 spin_lock_irqsave(&self->spinlock, flags);
945 if (self->tx_skb)
946 len = self->tx_skb->len;
948 spin_unlock_irqrestore(&self->spinlock, flags);
950 return len;
953 static void ircomm_tty_shutdown(struct ircomm_tty_cb *self)
955 unsigned long flags;
957 IRDA_ASSERT(self != NULL, return;);
958 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
960 IRDA_DEBUG(0, "%s()\n", __func__ );
962 if (!test_and_clear_bit(ASYNC_B_INITIALIZED, &self->flags))
963 return;
965 ircomm_tty_detach_cable(self);
967 spin_lock_irqsave(&self->spinlock, flags);
969 del_timer(&self->watchdog_timer);
971 /* Free parameter buffer */
972 if (self->ctrl_skb) {
973 dev_kfree_skb(self->ctrl_skb);
974 self->ctrl_skb = NULL;
977 /* Free transmit buffer */
978 if (self->tx_skb) {
979 dev_kfree_skb(self->tx_skb);
980 self->tx_skb = NULL;
983 if (self->ircomm) {
984 ircomm_close(self->ircomm);
985 self->ircomm = NULL;
988 spin_unlock_irqrestore(&self->spinlock, flags);
992 * Function ircomm_tty_hangup (tty)
994 * This routine notifies the tty driver that it should hangup the tty
995 * device.
998 static void ircomm_tty_hangup(struct tty_struct *tty)
1000 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
1001 unsigned long flags;
1003 IRDA_DEBUG(0, "%s()\n", __func__ );
1005 IRDA_ASSERT(self != NULL, return;);
1006 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1008 /* ircomm_tty_flush_buffer(tty); */
1009 ircomm_tty_shutdown(self);
1011 /* I guess we need to lock here - Jean II */
1012 spin_lock_irqsave(&self->spinlock, flags);
1013 self->flags &= ~ASYNC_NORMAL_ACTIVE;
1014 self->tty = NULL;
1015 self->open_count = 0;
1016 spin_unlock_irqrestore(&self->spinlock, flags);
1018 wake_up_interruptible(&self->open_wait);
1022 * Function ircomm_tty_send_xchar (tty, ch)
1024 * This routine is used to send a high-priority XON/XOFF character to
1025 * the device.
1027 static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch)
1029 IRDA_DEBUG(0, "%s(), not impl\n", __func__ );
1033 * Function ircomm_tty_start (tty)
1035 * This routine notifies the tty driver that it resume sending
1036 * characters to the tty device.
1038 void ircomm_tty_start(struct tty_struct *tty)
1040 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
1042 ircomm_flow_request(self->ircomm, FLOW_START);
1046 * Function ircomm_tty_stop (tty)
1048 * This routine notifies the tty driver that it should stop outputting
1049 * characters to the tty device.
1051 static void ircomm_tty_stop(struct tty_struct *tty)
1053 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
1055 IRDA_ASSERT(self != NULL, return;);
1056 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1058 ircomm_flow_request(self->ircomm, FLOW_STOP);
1062 * Function ircomm_check_modem_status (self)
1064 * Check for any changes in the DCE's line settings. This function should
1065 * be called whenever the dce parameter settings changes, to update the
1066 * flow control settings and other things
1068 void ircomm_tty_check_modem_status(struct ircomm_tty_cb *self)
1070 struct tty_struct *tty;
1071 int status;
1073 IRDA_DEBUG(0, "%s()\n", __func__ );
1075 IRDA_ASSERT(self != NULL, return;);
1076 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1078 tty = self->tty;
1080 status = self->settings.dce;
1082 if (status & IRCOMM_DCE_DELTA_ANY) {
1083 /*wake_up_interruptible(&self->delta_msr_wait);*/
1085 if ((self->flags & ASYNC_CHECK_CD) && (status & IRCOMM_DELTA_CD)) {
1086 IRDA_DEBUG(2,
1087 "%s(), ircomm%d CD now %s...\n", __func__ , self->line,
1088 (status & IRCOMM_CD) ? "on" : "off");
1090 if (status & IRCOMM_CD) {
1091 wake_up_interruptible(&self->open_wait);
1092 } else {
1093 IRDA_DEBUG(2,
1094 "%s(), Doing serial hangup..\n", __func__ );
1095 if (tty)
1096 tty_hangup(tty);
1098 /* Hangup will remote the tty, so better break out */
1099 return;
1102 if (self->flags & ASYNC_CTS_FLOW) {
1103 if (tty->hw_stopped) {
1104 if (status & IRCOMM_CTS) {
1105 IRDA_DEBUG(2,
1106 "%s(), CTS tx start...\n", __func__ );
1107 tty->hw_stopped = 0;
1109 /* Wake up processes blocked on open */
1110 wake_up_interruptible(&self->open_wait);
1112 schedule_work(&self->tqueue);
1113 return;
1115 } else {
1116 if (!(status & IRCOMM_CTS)) {
1117 IRDA_DEBUG(2,
1118 "%s(), CTS tx stop...\n", __func__ );
1119 tty->hw_stopped = 1;
1126 * Function ircomm_tty_data_indication (instance, sap, skb)
1128 * Handle incoming data, and deliver it to the line discipline
1131 static int ircomm_tty_data_indication(void *instance, void *sap,
1132 struct sk_buff *skb)
1134 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1135 struct tty_ldisc *ld;
1137 IRDA_DEBUG(2, "%s()\n", __func__ );
1139 IRDA_ASSERT(self != NULL, return -1;);
1140 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
1141 IRDA_ASSERT(skb != NULL, return -1;);
1143 if (!self->tty) {
1144 IRDA_DEBUG(0, "%s(), no tty!\n", __func__ );
1145 return 0;
1149 * If we receive data when hardware is stopped then something is wrong.
1150 * We try to poll the peers line settings to check if we are up todate.
1151 * Devices like WinCE can do this, and since they don't send any
1152 * params, we can just as well declare the hardware for running.
1154 if (self->tty->hw_stopped && (self->flow == FLOW_START)) {
1155 IRDA_DEBUG(0, "%s(), polling for line settings!\n", __func__ );
1156 ircomm_param_request(self, IRCOMM_POLL, TRUE);
1158 /* We can just as well declare the hardware for running */
1159 ircomm_tty_send_initial_parameters(self);
1160 ircomm_tty_link_established(self);
1164 * Just give it over to the line discipline. There is no need to
1165 * involve the flip buffers, since we are not running in an interrupt
1166 * handler
1169 ld = tty_ldisc_ref(self->tty);
1170 if (ld)
1171 ld->ops->receive_buf(self->tty, skb->data, NULL, skb->len);
1172 tty_ldisc_deref(ld);
1174 /* No need to kfree_skb - see ircomm_ttp_data_indication() */
1176 return 0;
1180 * Function ircomm_tty_control_indication (instance, sap, skb)
1182 * Parse all incoming parameters (easy!)
1185 static int ircomm_tty_control_indication(void *instance, void *sap,
1186 struct sk_buff *skb)
1188 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1189 int clen;
1191 IRDA_DEBUG(4, "%s()\n", __func__ );
1193 IRDA_ASSERT(self != NULL, return -1;);
1194 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
1195 IRDA_ASSERT(skb != NULL, return -1;);
1197 clen = skb->data[0];
1199 irda_param_extract_all(self, skb->data+1, IRDA_MIN(skb->len-1, clen),
1200 &ircomm_param_info);
1202 /* No need to kfree_skb - see ircomm_control_indication() */
1204 return 0;
1208 * Function ircomm_tty_flow_indication (instance, sap, cmd)
1210 * This function is called by IrTTP when it wants us to slow down the
1211 * transmission of data. We just mark the hardware as stopped, and wait
1212 * for IrTTP to notify us that things are OK again.
1214 static void ircomm_tty_flow_indication(void *instance, void *sap,
1215 LOCAL_FLOW cmd)
1217 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1218 struct tty_struct *tty;
1220 IRDA_ASSERT(self != NULL, return;);
1221 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1223 tty = self->tty;
1225 switch (cmd) {
1226 case FLOW_START:
1227 IRDA_DEBUG(2, "%s(), hw start!\n", __func__ );
1228 tty->hw_stopped = 0;
1230 /* ircomm_tty_do_softint will take care of the rest */
1231 schedule_work(&self->tqueue);
1232 break;
1233 default: /* If we get here, something is very wrong, better stop */
1234 case FLOW_STOP:
1235 IRDA_DEBUG(2, "%s(), hw stopped!\n", __func__ );
1236 tty->hw_stopped = 1;
1237 break;
1239 self->flow = cmd;
1242 #ifdef CONFIG_PROC_FS
1243 static void ircomm_tty_line_info(struct ircomm_tty_cb *self, struct seq_file *m)
1245 char sep;
1247 seq_printf(m, "State: %s\n", ircomm_tty_state[self->state]);
1249 seq_puts(m, "Service type: ");
1250 if (self->service_type & IRCOMM_9_WIRE)
1251 seq_puts(m, "9_WIRE");
1252 else if (self->service_type & IRCOMM_3_WIRE)
1253 seq_puts(m, "3_WIRE");
1254 else if (self->service_type & IRCOMM_3_WIRE_RAW)
1255 seq_puts(m, "3_WIRE_RAW");
1256 else
1257 seq_puts(m, "No common service type!\n");
1258 seq_putc(m, '\n');
1260 seq_printf(m, "Port name: %s\n", self->settings.port_name);
1262 seq_printf(m, "DTE status:");
1263 sep = ' ';
1264 if (self->settings.dte & IRCOMM_RTS) {
1265 seq_printf(m, "%cRTS", sep);
1266 sep = '|';
1268 if (self->settings.dte & IRCOMM_DTR) {
1269 seq_printf(m, "%cDTR", sep);
1270 sep = '|';
1272 seq_putc(m, '\n');
1274 seq_puts(m, "DCE status:");
1275 sep = ' ';
1276 if (self->settings.dce & IRCOMM_CTS) {
1277 seq_printf(m, "%cCTS", sep);
1278 sep = '|';
1280 if (self->settings.dce & IRCOMM_DSR) {
1281 seq_printf(m, "%cDSR", sep);
1282 sep = '|';
1284 if (self->settings.dce & IRCOMM_CD) {
1285 seq_printf(m, "%cCD", sep);
1286 sep = '|';
1288 if (self->settings.dce & IRCOMM_RI) {
1289 seq_printf(m, "%cRI", sep);
1290 sep = '|';
1292 seq_putc(m, '\n');
1294 seq_puts(m, "Configuration: ");
1295 if (!self->settings.null_modem)
1296 seq_puts(m, "DTE <-> DCE\n");
1297 else
1298 seq_puts(m, "DTE <-> DTE (null modem emulation)\n");
1300 seq_printf(m, "Data rate: %d\n", self->settings.data_rate);
1302 seq_puts(m, "Flow control:");
1303 sep = ' ';
1304 if (self->settings.flow_control & IRCOMM_XON_XOFF_IN) {
1305 seq_printf(m, "%cXON_XOFF_IN", sep);
1306 sep = '|';
1308 if (self->settings.flow_control & IRCOMM_XON_XOFF_OUT) {
1309 seq_printf(m, "%cXON_XOFF_OUT", sep);
1310 sep = '|';
1312 if (self->settings.flow_control & IRCOMM_RTS_CTS_IN) {
1313 seq_printf(m, "%cRTS_CTS_IN", sep);
1314 sep = '|';
1316 if (self->settings.flow_control & IRCOMM_RTS_CTS_OUT) {
1317 seq_printf(m, "%cRTS_CTS_OUT", sep);
1318 sep = '|';
1320 if (self->settings.flow_control & IRCOMM_DSR_DTR_IN) {
1321 seq_printf(m, "%cDSR_DTR_IN", sep);
1322 sep = '|';
1324 if (self->settings.flow_control & IRCOMM_DSR_DTR_OUT) {
1325 seq_printf(m, "%cDSR_DTR_OUT", sep);
1326 sep = '|';
1328 if (self->settings.flow_control & IRCOMM_ENQ_ACK_IN) {
1329 seq_printf(m, "%cENQ_ACK_IN", sep);
1330 sep = '|';
1332 if (self->settings.flow_control & IRCOMM_ENQ_ACK_OUT) {
1333 seq_printf(m, "%cENQ_ACK_OUT", sep);
1334 sep = '|';
1336 seq_putc(m, '\n');
1338 seq_puts(m, "Flags:");
1339 sep = ' ';
1340 if (self->flags & ASYNC_CTS_FLOW) {
1341 seq_printf(m, "%cASYNC_CTS_FLOW", sep);
1342 sep = '|';
1344 if (self->flags & ASYNC_CHECK_CD) {
1345 seq_printf(m, "%cASYNC_CHECK_CD", sep);
1346 sep = '|';
1348 if (self->flags & ASYNC_INITIALIZED) {
1349 seq_printf(m, "%cASYNC_INITIALIZED", sep);
1350 sep = '|';
1352 if (self->flags & ASYNC_LOW_LATENCY) {
1353 seq_printf(m, "%cASYNC_LOW_LATENCY", sep);
1354 sep = '|';
1356 if (self->flags & ASYNC_CLOSING) {
1357 seq_printf(m, "%cASYNC_CLOSING", sep);
1358 sep = '|';
1360 if (self->flags & ASYNC_NORMAL_ACTIVE) {
1361 seq_printf(m, "%cASYNC_NORMAL_ACTIVE", sep);
1362 sep = '|';
1364 seq_putc(m, '\n');
1366 seq_printf(m, "Role: %s\n", self->client ? "client" : "server");
1367 seq_printf(m, "Open count: %d\n", self->open_count);
1368 seq_printf(m, "Max data size: %d\n", self->max_data_size);
1369 seq_printf(m, "Max header size: %d\n", self->max_header_size);
1371 if (self->tty)
1372 seq_printf(m, "Hardware: %s\n",
1373 self->tty->hw_stopped ? "Stopped" : "Running");
1376 static int ircomm_tty_proc_show(struct seq_file *m, void *v)
1378 struct ircomm_tty_cb *self;
1379 unsigned long flags;
1381 spin_lock_irqsave(&ircomm_tty->hb_spinlock, flags);
1383 self = (struct ircomm_tty_cb *) hashbin_get_first(ircomm_tty);
1384 while (self != NULL) {
1385 if (self->magic != IRCOMM_TTY_MAGIC)
1386 break;
1388 ircomm_tty_line_info(self, m);
1389 self = (struct ircomm_tty_cb *) hashbin_get_next(ircomm_tty);
1391 spin_unlock_irqrestore(&ircomm_tty->hb_spinlock, flags);
1392 return 0;
1395 static int ircomm_tty_proc_open(struct inode *inode, struct file *file)
1397 return single_open(file, ircomm_tty_proc_show, NULL);
1400 static const struct file_operations ircomm_tty_proc_fops = {
1401 .owner = THIS_MODULE,
1402 .open = ircomm_tty_proc_open,
1403 .read = seq_read,
1404 .llseek = seq_lseek,
1405 .release = single_release,
1407 #endif /* CONFIG_PROC_FS */
1409 MODULE_AUTHOR("Dag Brattli <dagb@cs.uit.no>");
1410 MODULE_DESCRIPTION("IrCOMM serial TTY driver");
1411 MODULE_LICENSE("GPL");
1412 MODULE_ALIAS_CHARDEV_MAJOR(IRCOMM_TTY_MAJOR);
1414 module_init(ircomm_tty_init);
1415 module_exit(ircomm_tty_cleanup);